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1 Introdu
tion

Suppose you want to use des
ription logi
s (DLs) to develop an ontology of des
ription

logi
s. Su
h an ontology should 
ontain information about standard DLs su
h as

FL

0

, ALC, and ALCQO, des
ription logi
s extended with temporal, epistemi
, and

dynami
 operators, the 
omputational 
omplexity of DLs, known de
ision pro
edures,

appli
ations, publi
ations, relevant workshops and 
onferen
es, and so on.

A 
onsiderable part of su
h an ontology 
an straightforwardly be formulated in a

suÆ
iently expressive des
ription logi
, say ALCQO [1℄. However, there also exist a

number of important 
on
epts that are rather vague and 
annot be pre
isely de�ned

in terms of simpler 
on
epts. Examples of su
h 
on
epts are `DL,' `tableau-algorithm,'

`pra
ti
al de
ision pro
edure,' `extended des
ription logi
,' and others. The vagueness

of these 
on
epts is witnessed by the fa
t that there is often no satisfa
tory `yes/no'

answer to the question whether a 
ertain formalism is a des
ription logi
, whether

a 
ertain de
ision pro
edure is a tableau algorithm, and so forth. We argue that it

is more adequate and informative to de�ne su
h vague 
on
epts by referring to their

prototypi
al instan
es. For example, we 
ould de�ne tableau algorithms as algorithms

being `very similar to the standard tableau-algorithm for ALC-
on
epts relative to gen-

eral TBoxes, and not similar to stru
tural subsumption algorithms.' Su
h an approa
h

to de�ning vague 
on
epts looks mu
h more promising than squeezing them into 
risp,


lassi
al DL-style de�nitions.

This observation suggests that it 
an be useful to integrate into standard de-

s
ription logi
s some means for representing and reasoning about similarities between

obje
ts. Interpretations I of su
h an extended des
ription logi
 should be equipped

with similarity measures Æ

1

; : : : ; Æ

n

saying that, a

ording to Æ

j

, obje
ts x; y 2 �

I

are similar to degree Æ

j

(x; y) 2 Q

+

. For example, Æ

1


ould measure the similarity

between de
ision pro
edures for DLs with respe
t to 
ertain stru
tural features. A
-


ording to Æ

1

, resolution-based algorithms would not be very similar to tableau-based

algorithms, while the standard tableau-algorithm for ALC-
on
epts relative to general

TBoxes would be rather similar to the tableau-algorithm for ALC-
on
epts with the

universal modality. Another similarity measure Æ

2

on the set of implemented de
ision

pro
edures 
ould 
ompare their performan
e on 
ertain ben
hmarks.



As a �rst step towards a language for representing knowledge using similarity

measures we should therefore allow expressions of the form

Æ

i

(k; `) < a; Æ

i

(k; `) � a; Æ

i

(k; `) > a; Æ

i

(k; `) � a;

where k, ` are obje
t names (representing, say, des
ription logi
s or de
ision pro
e-

dures) and a 2 Q

+

. For example, the expression Æ

i

(k; `) < a means that, a

ording

to Æ

i

, the `distan
e' between obje
t k and obje
t ` is < a, with smaller distan
es

representing a higher degree of similarity.

When designing the DL ontology mentioned above, we obviously 
annot assume

that the set of all possible de
ision pro
edures is known to us, and that we know

how similar any two of them are. Thus, ontologies using similarities will neither

�x domains nor 
ontain 
omplete information about all obje
ts|a property that is

shared by ontologies formulated in standard DLs. To deal with this in
ompleteness, it

is desirable to have at our disposal not only the above similarity expressions operating

on named obje
ts, but also 
on
ept 
onstru
tors that allow 
on
ept de�ninitions based

on similarity measures.

A �rst idea is to de�ne, for ea
h Æ

i

and ea
h q 2 Q

+

, a role name similar

�q

i

whi
h

is interpreted as follows:

(x; y) 2 similar

�q

i

i� Æ

i

(x; y) � q:

Then the ALCQO-de�nition

tableau algorithm = algorithm u 9similar

�0:5

1

:(ta

1

t � � � t ta

7

); (1)

says that tableau algorithms are algorithms whi
h are similar to degree � 0:5 to at

least one of the prototypi
al tableau algorithms ta

1

; : : : ; ta

7

(here the ta

i

are nominals).

Given a new pro
edure ta, we 
an integrate it into the knowledge base by using

assertions like

Æ

i

(ta; ta

1

) < 0:5

or ta v tableau algorithm

or ta v :9similar

�5

1

:tableau algorithm:

The last assertion says that the distan
e from ta to the `
losest' tableau algorithm is

more than 5.

It should be 
lear that the roles similar

�q

i


annot be interpreted by arbitrary rela-

tions: in order to des
ribe natural similarity measures, some spe
ial properties have

to be taken into a

ount. We stipulate that similarity measures Æ

i

should satisfy the

standard axioms of metri
 spa
es, that is

Æ

i

(x; x) = 0;

Æ

i

(x; y) = Æ

i

(y; x);

Æ

i

(x; z) � Æ

i

(x; y) + Æ

i

(y; z):

A
tually, these metri
 axioms are a standard 
hoi
e for dealing with similarity mea-

sures [3, 5℄, and we believe that it is adequate for similarity-based des
ription logi
s

as well. Moreover, even if we do not assume all axioms of metri
 spa
es, the `positive'



results presented in this paper still hold true. This applies, for example, to the sim-

ilarity measures 
onsidered in [15, 9, 4℄ whi
h satisfy the �rst two axioms of metri


spa
es only.

Returning ba
k to our initial idea of representing similarity measures in terms of

roles, we now fa
e the problem that the axioms of metri
 spa
es, in parti
ular the

triangle inequality, 
annot be expressed in standard DLs. Indeed, it will turn out that

it is a good idea to keep roles talking about similarity measures stri
tly separated

from standard roles: as shown in Se
tion 4, there may be strong intera
tions between

standard DL 
onstru
tors (e.g., quali�ed number restri
tions) and the properties of

similarity measures that 
an lead to unde
idability. For this reason, we treat sep-

arately the 
onstru
tors speaking about similarity measures and those required to

model 
on
eptual knowledge. In other words, we propose to form the fusion [10, 6, 2℄

of standard DLs with a suitable formalism for reasoning about similarity measures.

The main message of this paper is that su
h a 
ombined expressive des
ription logi



an indeed be devised and, moreover, supported by a tableau-based de
ision algorithm

that is rather similar to tableau algorithms for standard DLs. More pre
isely, we merge

the expressive power of

� the standard des
ription logi
 ALCQO|i.e., the basi
 DL ALC extended with

quali�ed number restri
tions, nominals, and general TBoxes [1℄|

with

� the logi
 MS devised in [17℄ for reasoning about metri
 spa
es.

De�nition (1) 
an serve as an example of a typi
al TBox assertion of the resulting

`hybrid' logi
 that we 
all sim-ALCQO. As another example, 
onsider the following

sim-ALCQO ABox assertion, where ha denotes a 
ertain Hilbert-style algorithm:

ha : Algorithm u :9feature:Termination u 8similar

�0:5

:(9
omprises:Modus ponens):

It says that ha does not ne
essarily terminate and that all � 0:5 similar algorithms

use a kind of modus ponens as one of their inferen
e rules.

It may seem more natural to spe
ify similarity in terms of a �nite set of symboli


similarity measures su
h as `
lose' or `far' rather than in terms of rational numbers as

above. In our approa
h, however, the user is free to 
hoose either option: one may �x

a rational number for ea
h symboli
 similarity measure, say, 1 for `
lose' and 10 for

`far,' and then work with the symboli
 names.

In our opinion, sim-ALCQO provides just the right 
ompromise between expressive

power and 
omputational 
ost:

(1) In sim-ALCQO, we 
an mix 
onstru
tors of ALCQO and MS in order to

de�ne 
on
epts based on similarity measures as illustrated above. Moreover, our

tableau algorithm shows that reasoning in sim-ALCQO is still de
idable. It is of

interest to 
ontrast this with the fa
t that a tighter 
oupling of ALCQO and MS

leads to unde
idability: as we also show, the extension of MS with quali�ed number

restri
tions su
h as `there exists at most 1 point x with property P within distan
e

� 1' results in an unde
idable logi
. Therefore, the fusion of the two formalisms

seems to be a good starting point for investigating the intera
tion between 
on
epts

and similarity measures.



(2) Although there exists a number of general results regarding the transfer of

de
idability from the 
omponents of a fusion to the fusion itself [10, 6, 16, 2, 14℄, these

results do not apply to logi
s with nominals su
h as ALCQO. In fa
t, no transfer

result is available from whi
h we 
ould derive the de
idability of sim-ALCQO using

the de
idability of both ALCQO and MS. Despite the fa
t that general transfer

results are not appli
able, our algorithm has an important advantage over algorithms

obtained from general transfer theorems: stru
turally, it is very similar to the tableau

algorithms for SHIQ and SHOQ proposed in [7, 8℄. Sin
e these algorithms have

turned out to be implementable in eÆ
ient reasoning systems, we hope that our algo-

rithm also has this attra
tive property.

The reader 
an �nd a tableau-based system for sim-ALCQO in [12℄. The full

version of this paper is available at http://www.
s
.liv.a
.uk=

�

frank/.

2 The logi
 sim-ALCQO

In this se
tion, we introdu
e the 
ombined logi
 sim-ALCQO. To simplify notation,

we 
on�ne ourselves to the language with a single similarity measure. The reader

should not have big problems in extending the language and the de
ision pro
edure

to 
ope with a �nite set of su
h measures. The alphabet of sim-ALCQO 
onsists of

the following elements:

� a 
ountably in�nite list of 
on
ept names A

1

; A

2

; : : : ;

� a 
ountably in�nite list of obje
t names `

1

; `

2

; : : : ;

� binary distan
e (Æ), equality (

:

=) and membership (:) predi
ates;

� the Boolean operators u, t, :;

� two distan
e quanti�ers E

<a

, E

�a

and their duals A

<a

, A

�a

, for every positive

rational number a (i.e., a 2 Q

+

);

� role names R

1

; R

2

; : : : ;

� quali�ed number restri
tions (� nR:C) and (� nR:C), for every natural n, every

role name R, and every 
on
ept C.

Using this alphabet, sim-ALCQO-
on
epts are de�ned by the formation rule:

C ::= A

i

j `

i

j :C j C

1

u C

2

j C

1

t C

2

j E

<a

C j E

�a

C j A

<a

C

j A

�a

C j (� nR

i

:C) j (� nR

i

:C):

As usual, we write 9R:C for (� 1R:C) and 8R:C for (� 0R::C). Obje
t names

o

urring in 
on
epts are known as nominals. We de�ne sim-ALCQO-assertions as

expressions of the following forms:

� ` : C, where ` is an obje
t name and C a 
on
ept;

� C

1

:

= C

2

, where C

1

and C

2

are 
on
epts;



� Æ(k; `) < a, Æ(k; `) � a, Æ(k; `) > a, Æ(k; `) � a, where k, ` are obje
t names

and a 2 Q

+

.

A sim-ALCQO knowledge base is a �nite set of sim-ALCQO-assertions.

The semanti
s of sim-ALCQO-
on
epts is a blend of the semanti
s for the logi


of metri
 spa
es [17℄ and the usual set-theoreti
 semanti
s of des
ription logi
s. A


on
ept-distan
e model (a CD-model, for short) is a stru
ture of the form

B =

D

W;d;A

B

1

; A

B

2

; : : : ; R

B

1

; R

B

2

; : : : ; `

B

1

; `

B

2

: : :

E

;

where hW;di is a metri
 spa
e with a distan
e fun
tion d satisfying, for all x; y; z 2W ,

the axioms

d(x; y) = 0 i� x = y; (2)

d(x; z) � d(x; y) + d(y; z); (3)

d(x; y) = d(y; x); (4)

the A

B

i

are subsets of W , the R

B

i

are binary relations on W , and the `

B

i

are singleton

subsets of W su
h that i 6= j implies `

B

i

6= `

B

j

(unique name assumption). The

extension C

B

of a sim-ALCQO-
on
ept C is 
omputed indu
tively:

(:C)

B

=W �C

B

;

(C

1

u C

2

)

B

= C

B

1

\C

B

2

;

(C

1

t C

2

)

B

= C

B

1

[C

B

2

;

(E

�a

C)

B

= fx 2W j 9y 2W

�

d(x; y) � a ^ y 2 C

B

�

g;

(E

<a

C)

B

= fx 2W j 9y 2W

�

d(x; y) < a ^ y 2 C

B

�

g;

(A

�a

C)

B

= fx 2W j 8y 2W

�

d(x; y) � a ! y 2 C

B

�

g;

(A

<a

C)

B

= fx 2W j 8y 2W

�

d(x; y) < a ! y 2 C

B

�

g;

(� nR:C)

B

= fx 2W j

�

�

fy 2W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng;

(� nR:C)

B

= fx 2W j

�

�

fy 2W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng:

The truth-relation j= between CD-models B and sim-ALCQO-assertions ' is de�ned

in the natural way by taking:

B j= ` : C i� `

B

� C

B

;

B j= C

1

:

= C

2

i� C

B

1

= C

B

2

;

B j= Æ(k; `) � a i� d(k

B

; `

B

) � a;

B j= Æ(k; `) < a i� d(k

B

; `

B

) < a; and similar for � and >:

Finally, a sim-ALCQO knowledge base � is 
alled satis�able if there exists a CD-

model B su
h that B j= ' for all ' 2 �. In this 
ase we write B j= �.

Let us make some notes on several synta
ti
 and semanti
 parti
ularities of our

logi
:



(1) In 
ontrast to the initial idea from Se
tion 1, we do not expli
itly introdu
e

a role for the similarity measure|in fa
t this approa
h was only taken for dida
ti


purposes in the introdu
tion. Instead, the 
on
ept 
onstru
tors E

�a

, E

<a

, A

�a

, and

A

<a

refer dire
tly to distan
es.

(2) At �rst sight, it may seem strange to have both stri
t and non-stri
t versions

of the E and A 
onstru
tors available. However, this allows us to de�ne the 
on
ept

E

�a

C u :E

<a

C whi
h states that the most similar obje
t from C is lo
ated pre
isely

at distan
e a.

(3) Observe that sim-ALCQO knowledge bases subsume both general TBoxes and

ABoxes. In parti
ular, the usual ABox assertions of the form (`

1

; `

2

) : R, where `

1

and

`

2

are obje
t names and R a role name, 
an be viewed as abbreviations for `

1

: 9R:`

2

.

(4) In the semanti
s, we make the unique name assumption (UNA), i.e., di�erent

obje
t names denote distin
t domain elements. The sole purpose of this assumption is

to 
omply with the de�nition of sim-ALCQO given in [12℄, where a tableau algorithm

is devised and the UNA allows a 
learer presentation of this algorithm. It is, how-

ever, easily seen that the UNA has no in
uen
e on de
idability, and that the tableau

algorithm in [12℄ 
an be extended to deal with sim-ALCQO without UNA.

(5) Quite often, similarity measures are required to take values from the interval

[0; 1℄, with 0 denoting the lowest degree of similarity and 1 denoting the highest one.

There are two main di�eren
es to the similarity measures used in sim-ALCQO: �rst,

in our approa
h small distan
e denotes high degree of similarity while large distan
e

denotes low degree of similarity. Se
ond, in our logi
 there is no absolute, lowest

degree of similarity. Thus, obje
ts may be `arbitrarily non-similar.'

(6) We use rational numbers as distan
es in our language only for simpli
ity. One


ould take instead any 
ountable subset of the real numbers on whi
h arithmeti
al

operations 
an be performed e�e
tively.

3 Tableau algorithm

In [12℄, we present a tableau algorithm for de
iding satis�ability of sim-ALCQO knowl-

edge bases. Essentially, this algorithm is a 
ombination of the tableau algorithm for

the DL SHOQ (of whi
h ALCQO is a fragment) presented in [8℄, and the tableau

algorithm for the logi
 MS of metri
 spa
es presented in [17℄. Sin
e spa
e limitations

make a detailed presentation of the algorithm impossible in this paper, we will only

highlight (on a rather abstra
t level) some of its prominent features.

The tableau algorithm for sim-ALCQO attempts to 
onstru
t a Kripke model

for the given input knowledge base. To do this, the algorithm starts with an initial

`
ompletion forest' (having one root for ea
h nominal o

urring in the input knowledge

base), and then exhaustively applies 
ompletion rules whi
h are essentially the ones

known from the SHOQ andMS algorithms. Let us 
omment on the MS part of the

algorithm. Apart from the distan
es that o

ur expli
itly in the input knowledge base

�, the tableau algorithm may generate new distan
es during its run. All generated

distan
es are from the 
losure M [�℄, whi
h is the smallest set satisfying the following


onditions:

� if E

�a

, E

<a

, A

�a

, or A

<a

o

urs in �, then a 2M [�℄;



� if a; b 2M [�℄ and a+ b is stri
tly smaller than the largest distan
e o

urring in

�, then a+ b 2M [�℄;

� if a; b 2M [�℄ and a� b > 0, then a� b 2M [�℄.

Ea
h distan
e a from M [�℄ may also o

ur in the form a

�

(e.g., 3:5 be
omes 3:5

�

)

whi
h denotes the distan
e that is smaller than a by some in�nitesimal 
onstant �. A

typi
al tableau rule for dealing with the similarity 
onstru
tors looks as follows:

R

A

<

If A

<a

C 2 S(x) and d is the similarity between x and y, then:

if d = a

�

, then set S(y) := fCg [ S(y);

if d = b < a, then set S(y) := fA

<a�b

Cg [ S(y);

if d = b

�

with b < a, then set S(y) := fA

�a�b

Cg [ S(y).

Observe that this rule may introdu
e `new' distan
es through subtra
tion. All these

distan
es are from the 
losure M [�℄.

Sin
e the algorithm does not terminate `naturally,' we need to use a blo
king me
h-

anism. More pre
isely, we use standard equality blo
king with one notable ex
eption:

due to the introdu
tion of the additional distan
es fromM [�℄, the number of di�erent


on
epts that may appear in a run of the tableau algorithm is exponential in the size

of the input knowledge base. This implies that, with a na��ve use of equality blo
k-

ing, the algorithm would generate paths of double exponential length before blo
king

o

urs (as opposed to the exponential length in standard tableau algorithms su
h as

the one for SHOQ). The key observation for 
uring this defe
t is that many of the


on
epts appearing in runs of the tableau algorithm are not independent from one

another: `most' 
on
epts are of the form A

�a

D and A

<a

D, and, e.g., A

�a

D implies

A

�b

D if b � a. By taking into a

ount su
h intera
tions, one 
an manage to devise a

blo
king me
hanism that guarantees blo
king on every path of exponential length.

The soundness proof of the tableau algorithm makes use of an alternative, re-

lational semanti
s for sim-ALCQO. This semanti
s 
omprises, for ea
h a 2 Q

+

,

additional binary relations R

a

and S

a

su
h that, intuitively, we have uR

a

v if the dis-

tan
e between u and v is at most a, and uS

a

v if the distan
e between u and v is less

than a. Formally, a Kripke model for � is a stru
ture of the form

M =

D

W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2Q

+ ; (S

a

)

a2Q

+ ; `

M

1

; : : :

E

satisfying, for all u; v; w 2W and all a; b 2 Q

+

, the following 
onditions:

(S1

R

) if uR

a

v and a � b, then uR

b

v,

(S2

R

) uR

a

v i� vR

a

u,

(S3

R

) uR

a

u,

(S4

R

) if uR

a

v, vR

b

w, then uR

a+b

w,

(S1

S

) if uS

a

v and a � b, then uS

b

v,

(S2

S

) uS

a

v i� vS

a

u,

(S3

S

) uS

a

u,

(S4

S

) if uS

a

v, vS

b

w, then uS

a+b

w,

(C1) if uS

a

v then uR

a

v,

(C2) if uR

a

v and a < b, then uS

b

v,

(C3) if uR

a

v, vS

b

w, then uS

a+b

w,



(C4) if uS

a

v, vR

b

w, then uS

a+b

w.

The value C

M

of a 
on
ept C in M and the truth-relation M j= C

1

:

= C

2

are de�ned

in almost the same way as for CD-models: we only repla
e B with M and de�ne the


lauses for the distan
e quanti�ers as follows:

(E

�a

C)

M

= fx 2W j 9y 2W

�

xR

a

y ^ y 2 C

M

�

g;

(E

<a

C)

M

= fx 2W j 9y 2W

�

xS

a

y ^ y 2 C

M

�

g;

(A

�a

C)

M

= fx 2W j 8y 2W

�

xR

a

y ! y 2 C

M

�

g;

(A

<a

C)

M

= fx 2W j 8y 2W

�

xS

a

y ! y 2 C

M

�

g:

It 
an be proved that the alternative Kripke semanti
s is `equivalent' to the original

one:

Theorem 1 The knowledge base � is satis�able in a CD-model i� it is satis�able in

a Kripke model for �.

This �nishes our dis
ussion of the tableau algorithm. We obtain the following main

result:

Theorem 2 The satis�ability problem for sim-ALCQO knowledge bases is de
idable.

As for the 
omplexity of reasoning, we 
annot (yet) provide tight bounds. The 
ompo-

nent logi
 MS is ExpTime-
omplete, even if the distan
es are en
oded in binary [17℄.

The 
omplexity of the 
omponent logi
 ALCQO has, to the best of our knowledge,

never been formally investigated. There are, however, good reasons to 
onje
ture that

it is also ExpTime-
omplete (in the presen
e of general TBoxes), even if numbers in-

side number restri
tions are 
oded in binary. For the 
ombined logi
 sim-ALCQO, we

thus 
learly inherit ExpTime-hardness from the 
omponent logi
s. The upper bound

obtained from our tableau algorithm is a 2-NExpTime one. We 
onje
ture that this

upper bound 
an be improved. We also should like to note that the 
omplexity of the

standard tableau algorithms for MS and SHOQ is also 2-NExpTime. Surprisingly,

despite this high 
omplexity su
h algorithms 
an be well-suited for implementation as

witnessed by the FaCT and RACER systems.

4 Unde
idability

It is natural idea to try a 
loser integration of the 
onstru
tors ofMS and SHOQ by

providing 
on
ept 
onstru
tors that resemble quali�ed number restri
tions, but talk

about similarity measures. Unfortunately, even very simple variants of this logi
 are

unde
idable: denote by sim

f

the language with the following 
on
ept formation rule:

C ::= A

i

j `

i

j :C j C

1

uC

2

j E

�a

C j (�

1

a

:C);

where (�

1

a

:C) is interpreted in 
on
ept-distan
e models B as follows

(�

1

a

:C)

B

= fx 2W j

�

�

fy j d(x; y) � a; y 2 C

B

g

�

�

� 1g:

Even this simple form of number restri
tion on similarity measures suÆ
es to make

reasoning unde
idable.



Theorem 3 The satis�ability problem for sim

f

knowledge bases in 
on
ept-distan
e

models is unde
idable.

Proof (sket
h): We 
an simulate the unde
idable N � N-tiling problem in almost

the same way as in the unde
idability proof of [11℄ for the language MS

1

with the

operators A

�a

, A

>0

�a

and their duals: just repla
e everywhere in the proof of Theorem

3.1 the 
on
ept A

>0

�80

:�

i;j

with the 
on
ept (�

1

80

:�

i;j

). 2

5 Con
lusion

We regard sim-ALCQO only as a �rst step towards DLs that allow de�nitions of


on
epts based on similarity measures. Although we believe that the expressive power

provided by sim-ALCQO is quite natural and useful, an in-depth investigation of

the expressive means that are relevant for de�ning vague 
on
epts still has to be

performed. Some possible extensions of sim-ALCQO are the following:

(1) New 
onstru
tors E

<a

R:C and A

<a

R:C, where the former expresses that there

exists an R-su

essor satisfying C at distan
e smaller than a, and the latter is its

dual. Su
h 
onstru
tors would, e.g., allow us to say that a person is very similar to

his father: E

<0:5

parent:Male. The tableau algorithm in [12℄ should be extendable to

this 
ase without any problems.

(2) New 
onstru
tors E

>a

C and E

�a

C (and their duals) with the obvious semanti
s.

Although these 
onstru
tors do not seem to be as natural as the variants based on <

and �, they 
ould, e.g., be used to express that a prototypi
al tableau algorithm pta

is very 
lose to all other tableau algorithms: pta : A

>0:5

:Tableau algorithm. While

[11℄ proves the de
idability of the metri
 logi
 with the operators E

�a

C and E

>a

C

(and their duals), nothing is 
urrently known about the extension ofMS with all four

possible 
onstru
tors.

We should add that sim-ALCQO is not the �rst logi
 
on
erned with similarity

measures. For example, modal logi
s for reasoning about similarity have been pro-

posed in [15, 9, 4℄. However, there are three main di�eren
es to our proposal: �rst,

in the existing approa
hes similarity measures are usually only required to be re
ex-

ive and symmetri
; the full set of metri
 axioms is not treated. Se
ond, the existing

approa
hes do not allow referen
es to 
on
rete distan
es|one 
an only say that two

obje
ts are similar or not similar. Third, to the best of our knowledge our approa
h is

the �rst one that uses an integration with des
ription logi
s by admitting `free' roles

that are not regarded as similarity measures, and by taking into a

ount DL-style


onstru
tors su
h as quali�ed number restri
tions.
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