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1 Introdution

Suppose you want to use desription logis (DLs) to develop an ontology of desription

logis. Suh an ontology should ontain information about standard DLs suh as

FL

0

, ALC, and ALCQO, desription logis extended with temporal, epistemi, and

dynami operators, the omputational omplexity of DLs, known deision proedures,

appliations, publiations, relevant workshops and onferenes, and so on.

A onsiderable part of suh an ontology an straightforwardly be formulated in a

suÆiently expressive desription logi, say ALCQO [1℄. However, there also exist a

number of important onepts that are rather vague and annot be preisely de�ned

in terms of simpler onepts. Examples of suh onepts are `DL,' `tableau-algorithm,'

`pratial deision proedure,' `extended desription logi,' and others. The vagueness

of these onepts is witnessed by the fat that there is often no satisfatory `yes/no'

answer to the question whether a ertain formalism is a desription logi, whether

a ertain deision proedure is a tableau algorithm, and so forth. We argue that it

is more adequate and informative to de�ne suh vague onepts by referring to their

prototypial instanes. For example, we ould de�ne tableau algorithms as algorithms

being `very similar to the standard tableau-algorithm for ALC-onepts relative to gen-

eral TBoxes, and not similar to strutural subsumption algorithms.' Suh an approah

to de�ning vague onepts looks muh more promising than squeezing them into risp,

lassial DL-style de�nitions.

This observation suggests that it an be useful to integrate into standard de-

sription logis some means for representing and reasoning about similarities between

objets. Interpretations I of suh an extended desription logi should be equipped

with similarity measures Æ

1

; : : : ; Æ

n

saying that, aording to Æ

j

, objets x; y 2 �

I

are similar to degree Æ

j

(x; y) 2 Q

+

. For example, Æ

1

ould measure the similarity

between deision proedures for DLs with respet to ertain strutural features. A-

ording to Æ

1

, resolution-based algorithms would not be very similar to tableau-based

algorithms, while the standard tableau-algorithm for ALC-onepts relative to general

TBoxes would be rather similar to the tableau-algorithm for ALC-onepts with the

universal modality. Another similarity measure Æ

2

on the set of implemented deision

proedures ould ompare their performane on ertain benhmarks.



As a �rst step towards a language for representing knowledge using similarity

measures we should therefore allow expressions of the form

Æ

i

(k; `) < a; Æ

i

(k; `) � a; Æ

i

(k; `) > a; Æ

i

(k; `) � a;

where k, ` are objet names (representing, say, desription logis or deision proe-

dures) and a 2 Q

+

. For example, the expression Æ

i

(k; `) < a means that, aording

to Æ

i

, the `distane' between objet k and objet ` is < a, with smaller distanes

representing a higher degree of similarity.

When designing the DL ontology mentioned above, we obviously annot assume

that the set of all possible deision proedures is known to us, and that we know

how similar any two of them are. Thus, ontologies using similarities will neither

�x domains nor ontain omplete information about all objets|a property that is

shared by ontologies formulated in standard DLs. To deal with this inompleteness, it

is desirable to have at our disposal not only the above similarity expressions operating

on named objets, but also onept onstrutors that allow onept de�ninitions based

on similarity measures.

A �rst idea is to de�ne, for eah Æ

i

and eah q 2 Q

+

, a role name similar

�q

i

whih

is interpreted as follows:

(x; y) 2 similar

�q

i

i� Æ

i

(x; y) � q:

Then the ALCQO-de�nition

tableau algorithm = algorithm u 9similar

�0:5

1

:(ta

1

t � � � t ta

7

); (1)

says that tableau algorithms are algorithms whih are similar to degree � 0:5 to at

least one of the prototypial tableau algorithms ta

1

; : : : ; ta

7

(here the ta

i

are nominals).

Given a new proedure ta, we an integrate it into the knowledge base by using

assertions like

Æ

i

(ta; ta

1

) < 0:5

or ta v tableau algorithm

or ta v :9similar

�5

1

:tableau algorithm:

The last assertion says that the distane from ta to the `losest' tableau algorithm is

more than 5.

It should be lear that the roles similar

�q

i

annot be interpreted by arbitrary rela-

tions: in order to desribe natural similarity measures, some speial properties have

to be taken into aount. We stipulate that similarity measures Æ

i

should satisfy the

standard axioms of metri spaes, that is

Æ

i

(x; x) = 0;

Æ

i

(x; y) = Æ

i

(y; x);

Æ

i

(x; z) � Æ

i

(x; y) + Æ

i

(y; z):

Atually, these metri axioms are a standard hoie for dealing with similarity mea-

sures [3, 5℄, and we believe that it is adequate for similarity-based desription logis

as well. Moreover, even if we do not assume all axioms of metri spaes, the `positive'



results presented in this paper still hold true. This applies, for example, to the sim-

ilarity measures onsidered in [15, 9, 4℄ whih satisfy the �rst two axioms of metri

spaes only.

Returning bak to our initial idea of representing similarity measures in terms of

roles, we now fae the problem that the axioms of metri spaes, in partiular the

triangle inequality, annot be expressed in standard DLs. Indeed, it will turn out that

it is a good idea to keep roles talking about similarity measures stritly separated

from standard roles: as shown in Setion 4, there may be strong interations between

standard DL onstrutors (e.g., quali�ed number restritions) and the properties of

similarity measures that an lead to undeidability. For this reason, we treat sep-

arately the onstrutors speaking about similarity measures and those required to

model oneptual knowledge. In other words, we propose to form the fusion [10, 6, 2℄

of standard DLs with a suitable formalism for reasoning about similarity measures.

The main message of this paper is that suh a ombined expressive desription logi

an indeed be devised and, moreover, supported by a tableau-based deision algorithm

that is rather similar to tableau algorithms for standard DLs. More preisely, we merge

the expressive power of

� the standard desription logi ALCQO|i.e., the basi DL ALC extended with

quali�ed number restritions, nominals, and general TBoxes [1℄|

with

� the logi MS devised in [17℄ for reasoning about metri spaes.

De�nition (1) an serve as an example of a typial TBox assertion of the resulting

`hybrid' logi that we all sim-ALCQO. As another example, onsider the following

sim-ALCQO ABox assertion, where ha denotes a ertain Hilbert-style algorithm:

ha : Algorithm u :9feature:Termination u 8similar

�0:5

:(9omprises:Modus ponens):

It says that ha does not neessarily terminate and that all � 0:5 similar algorithms

use a kind of modus ponens as one of their inferene rules.

It may seem more natural to speify similarity in terms of a �nite set of symboli

similarity measures suh as `lose' or `far' rather than in terms of rational numbers as

above. In our approah, however, the user is free to hoose either option: one may �x

a rational number for eah symboli similarity measure, say, 1 for `lose' and 10 for

`far,' and then work with the symboli names.

In our opinion, sim-ALCQO provides just the right ompromise between expressive

power and omputational ost:

(1) In sim-ALCQO, we an mix onstrutors of ALCQO and MS in order to

de�ne onepts based on similarity measures as illustrated above. Moreover, our

tableau algorithm shows that reasoning in sim-ALCQO is still deidable. It is of

interest to ontrast this with the fat that a tighter oupling of ALCQO and MS

leads to undeidability: as we also show, the extension of MS with quali�ed number

restritions suh as `there exists at most 1 point x with property P within distane

� 1' results in an undeidable logi. Therefore, the fusion of the two formalisms

seems to be a good starting point for investigating the interation between onepts

and similarity measures.



(2) Although there exists a number of general results regarding the transfer of

deidability from the omponents of a fusion to the fusion itself [10, 6, 16, 2, 14℄, these

results do not apply to logis with nominals suh as ALCQO. In fat, no transfer

result is available from whih we ould derive the deidability of sim-ALCQO using

the deidability of both ALCQO and MS. Despite the fat that general transfer

results are not appliable, our algorithm has an important advantage over algorithms

obtained from general transfer theorems: struturally, it is very similar to the tableau

algorithms for SHIQ and SHOQ proposed in [7, 8℄. Sine these algorithms have

turned out to be implementable in eÆient reasoning systems, we hope that our algo-

rithm also has this attrative property.

The reader an �nd a tableau-based system for sim-ALCQO in [12℄. The full

version of this paper is available at http://www.s.liv.a.uk=

�

frank/.

2 The logi sim-ALCQO

In this setion, we introdue the ombined logi sim-ALCQO. To simplify notation,

we on�ne ourselves to the language with a single similarity measure. The reader

should not have big problems in extending the language and the deision proedure

to ope with a �nite set of suh measures. The alphabet of sim-ALCQO onsists of

the following elements:

� a ountably in�nite list of onept names A

1

; A

2

; : : : ;

� a ountably in�nite list of objet names `

1

; `

2

; : : : ;

� binary distane (Æ), equality (

:

=) and membership (:) prediates;

� the Boolean operators u, t, :;

� two distane quanti�ers E

<a

, E

�a

and their duals A

<a

, A

�a

, for every positive

rational number a (i.e., a 2 Q

+

);

� role names R

1

; R

2

; : : : ;

� quali�ed number restritions (� nR:C) and (� nR:C), for every natural n, every

role name R, and every onept C.

Using this alphabet, sim-ALCQO-onepts are de�ned by the formation rule:

C ::= A

i

j `

i

j :C j C

1

u C

2

j C

1

t C

2

j E

<a

C j E

�a

C j A

<a

C

j A

�a

C j (� nR

i

:C) j (� nR

i

:C):

As usual, we write 9R:C for (� 1R:C) and 8R:C for (� 0R::C). Objet names

ourring in onepts are known as nominals. We de�ne sim-ALCQO-assertions as

expressions of the following forms:

� ` : C, where ` is an objet name and C a onept;

� C

1

:

= C

2

, where C

1

and C

2

are onepts;



� Æ(k; `) < a, Æ(k; `) � a, Æ(k; `) > a, Æ(k; `) � a, where k, ` are objet names

and a 2 Q

+

.

A sim-ALCQO knowledge base is a �nite set of sim-ALCQO-assertions.

The semantis of sim-ALCQO-onepts is a blend of the semantis for the logi

of metri spaes [17℄ and the usual set-theoreti semantis of desription logis. A

onept-distane model (a CD-model, for short) is a struture of the form

B =

D

W;d;A

B

1

; A

B

2

; : : : ; R

B

1

; R

B

2

; : : : ; `

B

1

; `

B

2

: : :

E

;

where hW;di is a metri spae with a distane funtion d satisfying, for all x; y; z 2W ,

the axioms

d(x; y) = 0 i� x = y; (2)

d(x; z) � d(x; y) + d(y; z); (3)

d(x; y) = d(y; x); (4)

the A

B

i

are subsets of W , the R

B

i

are binary relations on W , and the `

B

i

are singleton

subsets of W suh that i 6= j implies `

B

i

6= `

B

j

(unique name assumption). The

extension C

B

of a sim-ALCQO-onept C is omputed indutively:

(:C)

B

=W �C

B

;

(C

1

u C

2

)

B

= C

B

1

\C

B

2

;

(C

1

t C

2

)

B

= C

B

1

[C

B

2

;

(E

�a

C)

B

= fx 2W j 9y 2W

�

d(x; y) � a ^ y 2 C

B

�

g;

(E

<a

C)

B

= fx 2W j 9y 2W

�

d(x; y) < a ^ y 2 C

B

�

g;

(A

�a

C)

B

= fx 2W j 8y 2W

�

d(x; y) � a ! y 2 C

B

�

g;

(A

<a

C)

B

= fx 2W j 8y 2W

�

d(x; y) < a ! y 2 C

B

�

g;

(� nR:C)

B

= fx 2W j

�

�

fy 2W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng;

(� nR:C)

B

= fx 2W j

�

�

fy 2W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng:

The truth-relation j= between CD-models B and sim-ALCQO-assertions ' is de�ned

in the natural way by taking:

B j= ` : C i� `

B

� C

B

;

B j= C

1

:

= C

2

i� C

B

1

= C

B

2

;

B j= Æ(k; `) � a i� d(k

B

; `

B

) � a;

B j= Æ(k; `) < a i� d(k

B

; `

B

) < a; and similar for � and >:

Finally, a sim-ALCQO knowledge base � is alled satis�able if there exists a CD-

model B suh that B j= ' for all ' 2 �. In this ase we write B j= �.

Let us make some notes on several syntati and semanti partiularities of our

logi:



(1) In ontrast to the initial idea from Setion 1, we do not expliitly introdue

a role for the similarity measure|in fat this approah was only taken for didati

purposes in the introdution. Instead, the onept onstrutors E

�a

, E

<a

, A

�a

, and

A

<a

refer diretly to distanes.

(2) At �rst sight, it may seem strange to have both strit and non-strit versions

of the E and A onstrutors available. However, this allows us to de�ne the onept

E

�a

C u :E

<a

C whih states that the most similar objet from C is loated preisely

at distane a.

(3) Observe that sim-ALCQO knowledge bases subsume both general TBoxes and

ABoxes. In partiular, the usual ABox assertions of the form (`

1

; `

2

) : R, where `

1

and

`

2

are objet names and R a role name, an be viewed as abbreviations for `

1

: 9R:`

2

.

(4) In the semantis, we make the unique name assumption (UNA), i.e., di�erent

objet names denote distint domain elements. The sole purpose of this assumption is

to omply with the de�nition of sim-ALCQO given in [12℄, where a tableau algorithm

is devised and the UNA allows a learer presentation of this algorithm. It is, how-

ever, easily seen that the UNA has no inuene on deidability, and that the tableau

algorithm in [12℄ an be extended to deal with sim-ALCQO without UNA.

(5) Quite often, similarity measures are required to take values from the interval

[0; 1℄, with 0 denoting the lowest degree of similarity and 1 denoting the highest one.

There are two main di�erenes to the similarity measures used in sim-ALCQO: �rst,

in our approah small distane denotes high degree of similarity while large distane

denotes low degree of similarity. Seond, in our logi there is no absolute, lowest

degree of similarity. Thus, objets may be `arbitrarily non-similar.'

(6) We use rational numbers as distanes in our language only for simpliity. One

ould take instead any ountable subset of the real numbers on whih arithmetial

operations an be performed e�etively.

3 Tableau algorithm

In [12℄, we present a tableau algorithm for deiding satis�ability of sim-ALCQO knowl-

edge bases. Essentially, this algorithm is a ombination of the tableau algorithm for

the DL SHOQ (of whih ALCQO is a fragment) presented in [8℄, and the tableau

algorithm for the logi MS of metri spaes presented in [17℄. Sine spae limitations

make a detailed presentation of the algorithm impossible in this paper, we will only

highlight (on a rather abstrat level) some of its prominent features.

The tableau algorithm for sim-ALCQO attempts to onstrut a Kripke model

for the given input knowledge base. To do this, the algorithm starts with an initial

`ompletion forest' (having one root for eah nominal ourring in the input knowledge

base), and then exhaustively applies ompletion rules whih are essentially the ones

known from the SHOQ andMS algorithms. Let us omment on the MS part of the

algorithm. Apart from the distanes that our expliitly in the input knowledge base

�, the tableau algorithm may generate new distanes during its run. All generated

distanes are from the losure M [�℄, whih is the smallest set satisfying the following

onditions:

� if E

�a

, E

<a

, A

�a

, or A

<a

ours in �, then a 2M [�℄;



� if a; b 2M [�℄ and a+ b is stritly smaller than the largest distane ourring in

�, then a+ b 2M [�℄;

� if a; b 2M [�℄ and a� b > 0, then a� b 2M [�℄.

Eah distane a from M [�℄ may also our in the form a

�

(e.g., 3:5 beomes 3:5

�

)

whih denotes the distane that is smaller than a by some in�nitesimal onstant �. A

typial tableau rule for dealing with the similarity onstrutors looks as follows:

R

A

<

If A

<a

C 2 S(x) and d is the similarity between x and y, then:

if d = a

�

, then set S(y) := fCg [ S(y);

if d = b < a, then set S(y) := fA

<a�b

Cg [ S(y);

if d = b

�

with b < a, then set S(y) := fA

�a�b

Cg [ S(y).

Observe that this rule may introdue `new' distanes through subtration. All these

distanes are from the losure M [�℄.

Sine the algorithm does not terminate `naturally,' we need to use a bloking meh-

anism. More preisely, we use standard equality bloking with one notable exeption:

due to the introdution of the additional distanes fromM [�℄, the number of di�erent

onepts that may appear in a run of the tableau algorithm is exponential in the size

of the input knowledge base. This implies that, with a na��ve use of equality blok-

ing, the algorithm would generate paths of double exponential length before bloking

ours (as opposed to the exponential length in standard tableau algorithms suh as

the one for SHOQ). The key observation for uring this defet is that many of the

onepts appearing in runs of the tableau algorithm are not independent from one

another: `most' onepts are of the form A

�a

D and A

<a

D, and, e.g., A

�a

D implies

A

�b

D if b � a. By taking into aount suh interations, one an manage to devise a

bloking mehanism that guarantees bloking on every path of exponential length.

The soundness proof of the tableau algorithm makes use of an alternative, re-

lational semantis for sim-ALCQO. This semantis omprises, for eah a 2 Q

+

,

additional binary relations R

a

and S

a

suh that, intuitively, we have uR

a

v if the dis-

tane between u and v is at most a, and uS

a

v if the distane between u and v is less

than a. Formally, a Kripke model for � is a struture of the form

M =

D

W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2Q

+ ; (S

a

)

a2Q

+ ; `

M

1

; : : :

E

satisfying, for all u; v; w 2W and all a; b 2 Q

+

, the following onditions:

(S1

R

) if uR

a

v and a � b, then uR

b

v,

(S2

R

) uR

a

v i� vR

a

u,

(S3

R

) uR

a

u,

(S4

R

) if uR

a

v, vR

b

w, then uR

a+b

w,

(S1

S

) if uS

a

v and a � b, then uS

b

v,

(S2

S

) uS

a

v i� vS

a

u,

(S3

S

) uS

a

u,

(S4

S

) if uS

a

v, vS

b

w, then uS

a+b

w,

(C1) if uS

a

v then uR

a

v,

(C2) if uR

a

v and a < b, then uS

b

v,

(C3) if uR

a

v, vS

b

w, then uS

a+b

w,



(C4) if uS

a

v, vR

b

w, then uS

a+b

w.

The value C

M

of a onept C in M and the truth-relation M j= C

1

:

= C

2

are de�ned

in almost the same way as for CD-models: we only replae B with M and de�ne the

lauses for the distane quanti�ers as follows:

(E

�a

C)

M

= fx 2W j 9y 2W

�

xR

a

y ^ y 2 C

M

�

g;

(E

<a

C)

M

= fx 2W j 9y 2W

�

xS

a

y ^ y 2 C

M

�

g;

(A

�a

C)

M

= fx 2W j 8y 2W

�

xR

a

y ! y 2 C

M

�

g;

(A

<a

C)

M

= fx 2W j 8y 2W

�

xS

a

y ! y 2 C

M

�

g:

It an be proved that the alternative Kripke semantis is `equivalent' to the original

one:

Theorem 1 The knowledge base � is satis�able in a CD-model i� it is satis�able in

a Kripke model for �.

This �nishes our disussion of the tableau algorithm. We obtain the following main

result:

Theorem 2 The satis�ability problem for sim-ALCQO knowledge bases is deidable.

As for the omplexity of reasoning, we annot (yet) provide tight bounds. The ompo-

nent logi MS is ExpTime-omplete, even if the distanes are enoded in binary [17℄.

The omplexity of the omponent logi ALCQO has, to the best of our knowledge,

never been formally investigated. There are, however, good reasons to onjeture that

it is also ExpTime-omplete (in the presene of general TBoxes), even if numbers in-

side number restritions are oded in binary. For the ombined logi sim-ALCQO, we

thus learly inherit ExpTime-hardness from the omponent logis. The upper bound

obtained from our tableau algorithm is a 2-NExpTime one. We onjeture that this

upper bound an be improved. We also should like to note that the omplexity of the

standard tableau algorithms for MS and SHOQ is also 2-NExpTime. Surprisingly,

despite this high omplexity suh algorithms an be well-suited for implementation as

witnessed by the FaCT and RACER systems.

4 Undeidability

It is natural idea to try a loser integration of the onstrutors ofMS and SHOQ by

providing onept onstrutors that resemble quali�ed number restritions, but talk

about similarity measures. Unfortunately, even very simple variants of this logi are

undeidable: denote by sim

f

the language with the following onept formation rule:

C ::= A

i

j `

i

j :C j C

1

uC

2

j E

�a

C j (�

1

a

:C);

where (�

1

a

:C) is interpreted in onept-distane models B as follows

(�

1

a

:C)

B

= fx 2W j

�

�

fy j d(x; y) � a; y 2 C

B

g

�

�

� 1g:

Even this simple form of number restrition on similarity measures suÆes to make

reasoning undeidable.



Theorem 3 The satis�ability problem for sim

f

knowledge bases in onept-distane

models is undeidable.

Proof (sketh): We an simulate the undeidable N � N-tiling problem in almost

the same way as in the undeidability proof of [11℄ for the language MS

1

with the

operators A

�a

, A

>0

�a

and their duals: just replae everywhere in the proof of Theorem

3.1 the onept A

>0

�80

:�

i;j

with the onept (�

1

80

:�

i;j

). 2

5 Conlusion

We regard sim-ALCQO only as a �rst step towards DLs that allow de�nitions of

onepts based on similarity measures. Although we believe that the expressive power

provided by sim-ALCQO is quite natural and useful, an in-depth investigation of

the expressive means that are relevant for de�ning vague onepts still has to be

performed. Some possible extensions of sim-ALCQO are the following:

(1) New onstrutors E

<a

R:C and A

<a

R:C, where the former expresses that there

exists an R-suessor satisfying C at distane smaller than a, and the latter is its

dual. Suh onstrutors would, e.g., allow us to say that a person is very similar to

his father: E

<0:5

parent:Male. The tableau algorithm in [12℄ should be extendable to

this ase without any problems.

(2) New onstrutors E

>a

C and E

�a

C (and their duals) with the obvious semantis.

Although these onstrutors do not seem to be as natural as the variants based on <

and �, they ould, e.g., be used to express that a prototypial tableau algorithm pta

is very lose to all other tableau algorithms: pta : A

>0:5

:Tableau algorithm. While

[11℄ proves the deidability of the metri logi with the operators E

�a

C and E

>a

C

(and their duals), nothing is urrently known about the extension ofMS with all four

possible onstrutors.

We should add that sim-ALCQO is not the �rst logi onerned with similarity

measures. For example, modal logis for reasoning about similarity have been pro-

posed in [15, 9, 4℄. However, there are three main di�erenes to our proposal: �rst,

in the existing approahes similarity measures are usually only required to be reex-

ive and symmetri; the full set of metri axioms is not treated. Seond, the existing

approahes do not allow referenes to onrete distanes|one an only say that two

objets are similar or not similar. Third, to the best of our knowledge our approah is

the �rst one that uses an integration with desription logis by admitting `free' roles

that are not regarded as similarity measures, and by taking into aount DL-style

onstrutors suh as quali�ed number restritions.
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