
A tableau algorithm for reasoning about

on
epts and similarity

Carsten Lutz

1

, Frank Wolter

2

, and Mi
hael Zakharyas
hev

3

1

Institut f�ur Theoretis
he Informatik, TU Dresden,

Fakult�at Informatik, 01062 Dresden, Germany;

lutz�t
s.inf.tu-dresden.de

2

Department of Computer S
ien
e, University of Liverpool

Liverpool L69 7ZF, U.K.

frank�
s
.liv.a
.uk

3

Department of Computer S
ien
e, King's College London,

Strand, London WC2R 2LS, U.K.

mz�d
s.k
l.a
.uk

Abstra
t. We present a tableau-based de
ision pro
edure for the fusion

(independent join) of the expressive des
ription logi
 ALCQO and the

logi
 MS for reasoning about distan
es and similarities. The resulting

`hybrid' logi
 allows both pre
ise and approximate representation of and

reasoning about
on
epts. The tableau algorithm
ombines the existing

tableaux for the
omponents and shows that the tableau te
hnique
an

be fruitfully applied to fusions of logi
s with nominals|the
ase in whi
h

no general de
idability transfer results for fusions are available.

1 Introdu
tion

Undoubtedly, there will
ome a day when, to attra
t submissions, organisers will

be trying to annotate their
onferen
e sites with ma
hine readable information.

Imagine, for instan
e, that we want to do this now for Tableaux 2003. Choosing a

formalism for representation of and reasoning about the terminology used in the

Tableaux 2003 site, we may naturally try the des
ription logi
 ALCQO under-

lying the DAML+OIL language of the semanti
 web [7, 1℄. Then we start with

a de�nition of tableau-style algorithms and, as a �rst attempt, write something

like this:

Tableau style algorithm = Algorithm u 9
omprises:Rule; (y)

saying that tableau-style algorithms are pre
isely those algorithms that are

equipped with rules. Well, it seems unlikely that any potential parti
ipant of

Tableaux 2003 would be happy with this provo
ative de�nition (a

ording to

whi
h almost all reasoning pro
edures may be
alled tableau-based). Then how

to improve it? Do we really have a good,
lear and
on
ise de�nition (whi
h is

better than `lots of rules, but few axioms')? How
an we represent in ALCQO

many other `vague'
on
epts from the site, su
h as `related te
hniques,' `related

methods,' `new
al
uli,' et
.?

2 Carsten Lutz et al.

One of the possible solutions to these problems is to introdu
e a similarity

measure between the obje
ts of the appli
ation domain|in our
ase the reason-

ing pro
edures (whi
h
an be based on
ommon sense, or de�ned by an expert, or

automati
ally generated using
ertain algorithms). Then, by taking a role name

similar to degree � 1, we
ould say, for instan
e, that tableau-style algorithms

are similar to degree � 1 to at least one of the prototypi
al tableau algorithms

ta

1

; : : : ; ta

7

. However, this approa
h is in
on
i
t with the expressive
apabili-

ties of standard des
ription logi
s (DLs) su
h as ALC or DAML+OIL be
ause

usually similarity measures are supposed to satisfy a number of natural axioms

like the axioms of metri
 spa
es, in parti
ular, a sort of `triangular inequality'

whi
h is not expressible in standard DLs.

The main idea of this paper is not to extend the family of DLs by intro-

du
ing a new one, but rather to
ombine the existing knowledge representation

formalisms, viz.,

{ the standard des
ription logi
 ALCQO|i.e., the basi
 DL ALC extended

with quali�ed number restri
tions, nominals and general TBoxes [5℄, and

{ the logi
 MS [13℄ for reasoning about metri
 spa
es

4

in order to a
hieve the desirable expressivity.

To illustrate the expressive power of the resulting `hybrid' logi
 sim-ALCQO,

we show how one
an further `approximate' the de�nition of tableau-style algo-

rithms. First, we add to the right-hand side of (y) the
onjun
t

E

�1

(ta

1

t � � � t ta

7

)

whi
h is an MS-formula saying that tableau-style algorithms should be similar

to degree � 1 to at least one of ta

1

; : : : ; ta

7

. If this `positive information' is still

not enough, one
an add some `negative' bit. For example, it may be natural to

say that tableau-style algorithms are neither similar to degree � 0:5 to a
ertain

Hilbert-style algorithm ha, nor similar to degree � 0:5 to any resolution-based

de
ision pro
edure:

:E

�0:5

ha u :E

�0:5

Resolution based algorithm:

Of
ourse, the individual algorithms su
h as ha
an also be des
ribed by means

of
on
epts, possibly involving similarity measures:

ha : Algorithm u :9feature:Termination u A

�0:5

(9
omprises:Modus ponens)

(i.e., ha does not ne
essarily terminate and all � 0:5 similar algorithms use a

kind of modus ponens as one of their inferen
e rules). It may seem more natural

to spe
ify similarity in terms of a �nite set of symboli
 similarity measures

su
h as `
lose' and `far' rather than in terms of rational numbers as above. In

4

This metri
 logi
 di�ers
onsiderably from the metri
 logi
s investigated in [9℄. Here

we quantify over open and
losed `balls,' while in [9℄ over
losed balls and their

omplements. The expressive power of the two languages is, therefore, in
omparable.

Le
ture Notes in Computer S
ien
e 3

our approa
h, however, the user is free to
hoose either option: one may �x a

rational number for ea
h symboli
 similarity measure, say, 1 for `
lose' and 10

for `far' (or the other way round), and then work with the symboli
 names.

In this paper, we provide a tableau-style de
ision pro
edure for the new logi

sim-ALCQO. Te
hni
ally, this logi
 is the fusion (or independent join) [8, 3℄ of

ALCQO andMS. We believe that this is a reasonable starting point, sin
e many

similarity measures are indeed metri
, and our approa
h without any problems

an be adapted to similarity measures whi
h do not satisfy all of the axioms

of metri
 spa
es. Moreover, we
an easily extend sim-ALCQO and the tableau

algorithm with additional similarity measures (say, between inferen
e rules).

In our opinion, sim-ALCQO provides just the right
ompromise between

expressive power and
omputational
ost:

(1) In sim-ALCQO, we
an mix
onstru
tors of ALCQO and MS in order

to de�ne
on
epts based on similarity measures as illustrated above. Moreover,

as our tableau algorithm shows, reasoning in sim-ALCQO is de
idable. It is of

interest to
ontrast this with the fa
t that a tighter
oupling of ALCQO and

MS leads to unde
idability: as we also show, the extension ofMS with quali�ed

number restri
tions su
h as `there exists at most 1 point x with property P within

distan
e � 1' results in an unde
idable logi
. Therefore, the fusion of the two

formalisms seems to be a good starting point for investigating the intera
tion

between
on
epts and similarity measures.

(2) Although there exists a number of general results regarding the transfer

of de
idability from the
omponents of a fusion to the fusion itself [8, 3, 12, 2, 11℄,

these results do not apply to logi
s with nominals (atomi

on
epts interpreted

as singleton sets) su
h as ALCQO. In fa
t, no transfer result is available from

whi
h we
ould derive the de
idability of sim-ALCQO using the de
idability

of both ALCQO and MS. Despite the fa
t that they are not appli
able, it is

of interest to note that our algorithm has an important advantage over general

approa
hes to proving de
idability: stru
turally, it is very similar to the tableau

algorithms for SHIQ and SHOQ proposed in [6, 5℄. Sin
e these algorithms have

turned out to be implementable in eÆ
ient reasoning systems, we do hope that

our algorithm shares this attra
tive property as well.

The paper is organised as follows: in Se
tion 2, we introdu
e the des
ription

logi
 sim-ALCQO. In Se
tion 3, we des
ribe the tableau algorithm for de
id-

ing the satis�ability of sim-ALCQO-knowledge bases, whose
orre
tness is then

proved in Se
tion 4. Se
tion 5 is
on
erned with the unde
idability of MS ex-

tended with qualifying number restri
tions. A version of this paper with detailed

proofs is available at http://www.
s
.liv.a
.uk=

�

frank.

2 The logi
 sim-ALCQO

In this se
tion, we introdu
e the
ombined logi
 sim-ALCQO. The alphabet for

forming
on
epts and assertions
onsists of the following elements:

{ a
ountably in�nite list of
on
ept names A

1

; A

2

; : : : ;

4 Carsten Lutz et al.

{ a
ountably in�nite list of obje
t names `

1

; `

2

; : : : ;

{ binary distan
e (Æ), equality (=) and membership (:) predi
ates ;

{ the Boolean operators u, t, :;

{ two distan
e quanti�ers E

<a

, E

�a

and their duals A

<a

, A

�a

, for every posi-

tive rational number a (i.e., a 2 Q

+

);

{ role names R

1

; R

2

; : : : ;

{ quali�ed number restri
tions (� nR:C) and (� nR:C), for every natural n,

every role name R, and every
on
ept C.

Using this alphabet, sim-ALCQO-
on
epts are de�ned by the formation rule:

C ::= A

i

j `

i

j :C j C

1

u C

2

j C

1

t C

2

j E

<a

C j E

�a

C j A

<a

C j

j A

�a

C j (� nR

i

:C) j (� nR

i

:C):

As usual, we write > as an abbreviation for an arbitrary propositional tautology,

? for :>, 9R:C for (� 1R:C), and 8R:C for (� 0R::C). At �rst sight, it

may seem strange to have both stri
t and non-stri
t versions of the E and A

onstru
tors available for talking about similarity measures. Note, however, that

this allows us to de�ne the
on
ept E

�a

C u :E

<a

C whi
h states that the most

similar obje
t from C is lo
ated pre
isely at distan
e a. Obje
t names o

urring

in
on
epts will also be
alled nominals.

Now we de�ne sim-ALCQO-assertions as expressions of the following forms:

{ ` : C, where ` is an obje
t name and C a
on
ept;

{ C

1

= C

2

, where C

1

and C

2

are
on
epts;

{ Æ(k; `) < a, Æ(k; `) � a, Æ(k; `) > a, Æ(k; `) � a, where k, ` are obje
t names

and a 2 Q

+

.

Assertions of the third form are
alled distan
e assertions. A sim-ALCQO-

knowledge base is a �nite set of sim-ALCQO-assertions.

Observe that knowledge bases subsume both general TBoxes and ABoxes. In

parti
ular, the rather
ommon ABox assertions of the form (`

1

; `

2

) : R, where `

1

and `

2

are obje
t names and R a role name,
an be viewed as abbreviations for

`

1

: 9R:`

2

.

The semanti
s of sim-ALCQO-
on
epts is a blend of the semanti
s of the

logi
 of metri
 spa
es [13℄ and the usual set-theoreti
 semanti
s of des
ription

logi
s. A
on
ept-distan
e model (a CD-model, for short) is a stru
ture of the

form

B =

W;d;A

B

1

; A

B

2

; : : : ; R

B

1

; R

B

2

; : : : ; `

B

1

; `

B

2

: : :

�

;

where hW;di is a metri
 spa
e with a distan
e fun
tion d satisfying, for all

x; y; z 2 W , the axioms

d(x; y) = 0 i� x = y; (1)

d(x; z) � d(x; y) + d(y; z); (2)

d(x; y) = d(y; x); (3)

Le
ture Notes in Computer S
ien
e 5

the A

B

i

are subsets of W , the R

B

i

are binary relations on W , and the `

B

i

are

singleton subsets of W su
h that i 6= j implies `

B

i

6= `

B

j

.

The extension C

B

of a sim-ALCQO-
on
ept C is
omputed indu
tively:

(C

1

u C

2

)

B

= C

B

1

\ C

B

2

; (C

1

t C

2

)

B

= C

B

1

[C

B

2

; (:C)

B

=W � C

B

;

(E

�a

C)

B

= fx 2W j 9y 2 W

�

d(x; y) � a ^ y 2 C

B

�

g;

(E

<a

C)

B

= fx 2W j 9y 2 W

�

d(x; y) < a ^ y 2 C

B

�

g;

(A

�a

C)

B

= fx 2W j 8y 2 W

�

d(x; y) � a ! y 2 C

B

�

g;

(A

<a

C)

B

= fx 2W j 8y 2 W

�

d(x; y) < a ! y 2 C

B

�

g;

(� nR:C)

B

= fx 2W j

�

�

fy 2 W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng;

(� nR:C)

B

= fx 2W j

�

�

fy 2 W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng:

We still have to spe
ify when a CD-model satis�es a sim-ALCQO-assertion: the

truth-relation j= between CD-models B and assertions ' is de�ned as follows:

{ B j= ` : C i� `

B

� C

B

,

{ B j= C

1

:

= C

2

i� C

B

1

= C

B

2

,

{ B j= Æ(k; `) � a i� d(k

B

; `

B

) � a,

{ B j= Æ(k; `) < a i� d(k

B

; `

B

) < a, and similar for � and >.

Finally, a sim-ALCQO-knowledge base � is
alled satis�able if there exists a

CD-model B su
h that B j= ' for all ' 2 �. In this
ase we write B j= �.

Note that we make the unique name assumption (UNA), i.e., di�erent obje
t

names denote distin
t domain elements. The sole purpose of this assumption is

to allow a
learer presentation of our tableau algorithm. It is, however, easily seen

that the UNA has no in
uen
e on de
idability, and that our tableau algorithm

an be extended to deal with sim-ALCQO without UNA.

3 The tableau algorithm

Now we present a sound,
omplete and terminating algorithm for
he
king the

satis�ability of sim-ALCQO-knowledge bases. In fa
t, it is a (labelled) tableau

algorithm that generalises the existing tableau algorithms for metri
 logi
s [13℄

and for the des
ription logi
 ALCQO [5℄. Before formulating the algorithm and

proving its
orre
tness, we introdu
e some notations and auxiliary de�nitions.

Supose we are given a sim-ALCQO-knowledge base �. Denote by
on(�)

the set of
on
epts o

urring in � (in
luding all sub
on
epts), by rol(�) the set

of role names o

urring in �, by par(�) the set of rational numbers o

urring in

� (either in E/A
on
epts or in distan
e assertions), and by ob(�) we denote the

set of obje
t names o

urring in �. Without loss of generality, we may assume

that neither par(�) nor ob(�) are empty: if this is not the
ase, we
an always

add an assertion ` : A

<a

> with a fresh obje
t name `. To simplify presentation,

it is
onvenient to make three assumptions:

6 Carsten Lutz et al.

(1) A
on
ept C is in negation normal form (NNF) if negation o

urs only

in front of
on
ept names and nominals. Ea
h
on
ept
an be transformed into

an equivalent one in NNF by pushing negation inwards: for example, :E

<a

C

is equivalent to A

<a

:C. So, without loss of generality, we may assume that all

on
epts are in NNF. In what follows, we use _:C to denote the NNF of :C.

(2) We may also assume that knowledge bases
ontain only assertions of the

form ` : C and C

:

= >. To see this, note �rst that distan
e assertions
an be

expressed using nominals and distan
e quanti�ers:

Æ(k; `) < a is equivalent to k : E

<a

`; Æ(k; `) � a is equivalent to k : E

�a

`;

Æ(k; `) > a is equivalent to k : A

�a

:`; Æ(k; `) � a is equivalent to k : :A

<a

:`:

Assertions of the form C

1

:

= C

2

an be rewritten as (C

1

uC

2

)t(_:C

1

u _:C

2

)

:

= >.

(3) Without loss of generality, we may assume that par(�)
ontains only

natural numbers: given a knowledge base � with par (�) � Q

+

, we may repla
e

every element q of par (�) with q � x, where x is the least
ommon multiple of

the denominators of all elements of par (�). It is then straightforward to show

that any CD-model of the resulting knowledge base
an be
onverted into a

CD-model of � and vi
e versa.

We use �

�

to denote the largest natural number that o

urs in par (�) and

M [�℄ to denote the smallest set satisfying the following
onditions:

{ par (�) �M [�℄;

{ if a; b 2M [�℄ and a+ b < �

�

, then a+ b 2M [�℄;

{ if a; b 2M [�℄ and a� b > 0, then a� b 2M [�℄.

Having started on the input knowledge base � (in the form des
ribed above),

the tableau algorithm
onsiders only
ertain `relevant'
on
epts. More pre
isely,

we de�ne the
losure
l(�) of � to be the (�nite) set of
on
epts

on(�) [f _:C j C 2
on(�)g [

fA

<a

C;A

�a

C j a 2M [�℄ and 9b � a fA

�b

C;A

<b

Cg \
on(�) 6= ;g:

Similar to the set
l(�) of relevant
on
epts, M [�℄ des
ribes the set of relevant

numbers. However, the numbers inM [�℄ are not enough: to distinguish between

`� a' and `< a,' we require some additional symbols that will be used in the same

way as numbers, namely,M [�℄

�

= fa

�

j a 2M [�℄g. De�ne a stri
t linear order

� on M [�℄ [M [�℄

�

by setting

a

�

1

� a

1

� a

�

2

� a

2

� � � � � a

�

n

� a

n

;

where a

1

< a

2

< � � � < a

n

.

We are in a position now to des
ribe our tableau algorithm. Starting with

�, it operates on
onstraint systems S = hT;<;L; S;Ei, where

{ hT;<i is a forest whose set of roots
oin
ides with ob(�);

Le
ture Notes in Computer S
ien
e 7

{ S is a node labelling fun
tion whi
h asso
iates with ea
h x 2 T a set

S(x) �
l(�) [f(R; `); (a; `); (a

�

; `) j ` 2 ob(�); R 2 rol(�); a 2M [�℄g;

{ L is a labelling fun
tion whi
h asso
iates with ea
h pair x; y 2 T su
h that

x < y either a role name or a number from M [�℄, or a symbol from M [�℄

�

;

{ E is a set of inequalities between members of T .

Intuitively, we have x < y if either x and y are related by some role R or the

distan
e between x and y is known to be smaller than some value from M [�℄.

The purpose of the extra elements (R; `) and (a; `) in node labels is to represent

additional edges that lead to nominals (roots in the forest), and whose expli
it

representation would destroy the forest stru
ture.

The algorithm starts with S

0

= hT

0

; <

0

; L

0

; S

0

; E

0

i, the initial
onstraint

system for �, where

{ T

0

= ob(�),

{ S

0

(`) = f`g [fC j ` : C 2 �g, for every ` 2 ob(�),

{ E

0

= f` 6= `

0

j ` 6= `

0

; `; `

0

2 ob(�)g, and

{ <

0

= L

0

= ;.

Before des
ribing the
ompletion rules, we introdu
e some simplifying notation

required to deal with edges represented via node labels. We write L(x; y) = a

to express that either x < y and L(x; y) = a or that a is the �-minimum

of f
 j (
; y) 2 S(x)g.

5

To a

ount for the fa
t that, for some rules, it is not

important whether a node is a prede
essor or a su

essor, we write L

o

(fx; yg) = a

if a is the �-minimum of fL(x; y); L(y; x)g. Finally, for a role name R, we say

that y is an R-su

essor of x if either x < y and L(x; y) = R or (R; y) 2 S(x).

The
ompletion rules are shown in Fig. 1. Constraint systems obtained by

applying the
ompletion rules to the initial
onstraint system for � will be

alled
onstraint systems for �. The terms `blo
ked' and `indire
tly blo
ked' in

the rule premises refer to a
y
le dete
tion me
hanism that is needed to ensure

termination of the algorithm. Before dis
ussing the
ompletion rules in more

detail, let us formally introdu
e this me
hanism. The general idea is that we

stop the expansion of node labels if a node is labelled with exa
tly the same set

of
on
epts as one of its <-an
estors. This simple approa
h works perfe
tly well,

but it is not the most sensible thing we
an do: the problem is that, due to the

`extra'
on
epts A

<a

C and A

�a

C, the size of
l(�) is exponential in the size of

� rather than polynomial, and thus paths of the forest may grow to a length

doubly exponential in � before the blo
king o

urs. Fortunately, this worst
ase

an be avoided. When
omparing node labels to
he
k for a blo
king situation, it

is not ne
essary to take into a

ount all of the extra A

<a

C and A

�a

C
on
epts:

if, for example, we �nd A

�a

C 2 S(x), then it is
lear that the obje
t x also

satis�es the
on
epts A

�b

C for all b � a, even if they do not expli
itly appear

in the node label S(x). This observation leads to the following, re�ned variant

of blo
king.

5

This gives a well-de�ned value for L(x; y), as (
; y) 2 S(x) implies that y is a root.

8 Carsten Lutz et al.

For a node x 2 T , we use S

�

(x) to denote the set of
on
epts C 2 S(x) su
h

that one of the following
onditions is satis�ed:

1. C is not of the form A

<a

D or A

�a

D;

2. C is of the form A

�a

D and there is no b > a su
h that A

�b

D 2 S(x);

3. C is of the form A

<a

D and there is no b > a su
h that A

<b

D 2 S(x).

Denote by <

+

the transitive
losure of <. We say that a node x 2 T is dire
tly

blo
ked by a node y if y <

+

x, S

�

(x) = S

�

(y), but for no distin
t u <

+

x and

v <

+

x do we have S

�

(u) = S

�

(v). The <

+

-su

essors of dire
tly blo
ked nodes

are
alled indire
tly blo
ked. All dire
tly or indire
tly blo
ked nodes
omprise the

set of blo
ked nodes. Observe that the elements (R; `) and (a; `) of node labels

are not taken into a

ount for blo
king.

Note that this blo
king
ondition
an be re�ned even further by taking into

a

ount impli
ations between A

�a

C and A

<b

C
on
epts. We prefer to work

with the above variant, sin
e it suÆ
es to restri
t paths in forests to exponential

length, and the more elaborate version makes proofs rather unreadable due to

many additional
ase distin
tions.

Let us now return to the
ompletion rules. In what follows we assume that

a rule
an be applied to a tableau only if the tableau is
hanged. Su
h a rule

will be
alled appli
able to the tableau. The tableau algorithm applies the rules

until either the obtained
onstraint system
ontains an obvious
ontradi
tion or

no more rules are appli
able. To be more pre
ise, say that a
onstraint system S

ontains a
lash if it
ontains a node x su
h that one of the following
onditions

hold:

1. fA; _:Ag � S(x), for some
on
ept name A;

2. f`;:`g � S(x) for some obje
t name `;

3. `

0

2 S(`) for some obje
t names `

0

6= `;

4. (x 6= x) 2 E;

5. for some R, (� nR:C) 2 S(x) and there are n+1 R-su

essors y

0

; : : : ; y

n

of

x with C 2 L(y

i

), for ea
h 0 � i � n and y

i

6= y

j

2 E for ea
h 0 � i < j � n.

A
onstraint system S is
omplete if it either
ontains a
lash or none of the

rules in Fig. 1 is appli
able to S.

4 Termination, soundness and
ompleteness

We show now that the tableau algorithm above always terminates, is sound

(i.e., if there is a
omplete and
lash-free
onstraint system for �, then � is

satis�able), and
omplete (i.e., if � is satis�able, then the tableau algorithm

eventually su

eeds in �nding a
omplete and
lash-free
omplete system).

Termination

Theorem 1. Any sequen
e of appli
ations of tableau rules to the initial
on-

straint system for � terminates after �nitely many steps.

Le
ture Notes in Computer S
ien
e 9

R

u

If C

1

u C

2

2 S(x) and x is not indire
tly blo
ked,

then set S(x) := S(x) [fC

1

; C

2

g.

R

t

If C

1

t C

2

2 S(x) and x is not indire
tly blo
ked,

then set either S(x) := S(x) [fC

1

g or S(x) := S(x) [fC

2

g.

R

=

If C = > 2 � and x is not indire
tly blo
ked, then set S(x) := S(x) [fCg.

R

A

If A

<a

C 2 S(x) or A

�a

C 2 S(x) and x is not indire
tly blo
ked,

then set S(x) := S(x) [fCg.

R

A

< Let A

<a

C 2 S(x) and x is not indire
tly blo
ked. Then:

if L

o

(fy; xg) = a

�

, then set S(y) := fCg [S(y);

if L

o

(fy; xg) = b < a, then set S(y) := fA

<a�b

Cg [S(y);

if L

o

(fy; xg) = b

�

with b < a, then set S(y) := fA

�a�b

Cg [S(y).

R

A

�

Let A

�a

C 2 S(x), L

o

(fy; xg) 2 fb; b

�

g and x is not indire
tly blo
ked. Then:

if b = a, then set S(y) := fCg [S(y);

if b < a, then set S(y) := fA

�a�b

Cg [S(y).

R

E

< If E

<a

C 2 S(x), x is not blo
ked, and

L(x; y) =2 fb j b < ag [fb

�

j b � ag for any y with C 2 S(y),

then
reate a new node y > x and set L(x; y) := a

�

and S(y) := fCg.

R

E

�

If E

�a

C 2 S(x), x is not blo
ked and

L(x; y) =2 fb j b � ag [fb

�

j b � ag for any y with C 2 S(y),

then
reate a new node y > x and set L(x; y) := a and S(y) := fCg.

R

h

If f(� nR:C); (� nR:C)g \ S(x) 6= ;, x is not blo
ked and y is an

R-su

essor of x, then set S(y) := S(y) [fCg or S(y) = S(y) [f _:Cg.

R

�

If (� nR:C) 2 S(x), x is not blo
ked, and there are no R-su

essors y

1

; : : : ; y

n

with C 2 S(y

i

) and y

i

6= y

j

2 E, for all i 6= j, then take new y

1

> x; : : : ; y

n

> x

and set L(x; y

i

) := R, S(y

i

) := fCg, E := E [fy

i

6= y

j

j 1 � i < j � ng.

R

�

If (� nR:C) 2 S(x), x is not blo
ked, has n+ 1 R-su

essors y

0

; : : : ; y

n

with C 2 S(y

i

) for all i, and, for some i; j � n, y

i

6= y

j

62 E and y

j

62 ob(�),

then set E := E [fy 6= y

i

j y 6= y

j

2 Eg, S(y

i

) := S(y

i

) [S(y

j

),

S(x) := S(x) [f(R

0

; `) j R

0

= L(x; y

j

)g, if y

i

= ` 2 ob(�),

and �nally delete y

j

and all z with y

j

<

+

z from T .

R

`

If ` 2 S(x), x 62 ob(�), and x is not indire
tly blo
ked,

Then set S(`) := S(`) [S(x), and, for every y,

S(y) := S(y) [f(
; `) j
 = L(y; x) or
 = R a role and x an R-su

essor of yg,

E := E [fy 6= ` j y 6= x 2 Eg, and delete x and all z with x <

+

z from T .

Fig. 1. Tableau rules.

10 Carsten Lutz et al.

Proof. Let m

0

= j
on(�)j and m

q

be the maximal number o

urring in quali�ed

number restri
tions of �. Termination follows from the following �ve observa-

tions.

(1) Ea
h rule ex
ept R

�

and R

`

stri
tly extends the
onstraint system. More-

over, neither R

`

nor R

�

removes
on
epts from nodes.

(2) None of the generating rules R

E

<

, R

E

�

, R

�

an be applied more than on
e

to a given node and a given
on
ept.

Suppose that R

E

<

is applied to a node x, generates y with x < y and updates

L(x; y) = a

�

and S(y) = fCg. The only reason why R

E

<

ould be applied on
e

again to x and E

<a

C is that later on y is removed by an appli
ation of R

�

or

R

`

. However, unless x is removed (in this
ase the
laim is trivial) y
annot be

removed by an appli
ation of R

�

be
ause we do not �nd a z and a role R with

R = L(z; y). Suppose y is removed by an appli
ation of R

`

be
ause ` 2 S(y).

Then, after the appli
ation of R

`

, we have (a

�

; `) 2 S(x) and C 2 S(`), sin
e

a

�

= L(x; y). But then, sin
e a node of the form ` is never removed, the rule

R

E

<

is not appli
able to x and E

<a

C afterwards. The rule R

E

�
is
onsidered

analogously.

Suppose that R

�

is applied to a node x, generates y

1

; : : : ; y

n

with x < y

i

and

updates L(x; y

i

) = R, S(y

i

) = fCg, and E = E [fy

i

6= y

j

j 1 � i < j � ng.

Now, whenever some y

j

is removed by R

�

or R

`

and x is not removed, after the

removal of y

j

we still have n R-su

essors z

1

; : : : ; z

n

of x su
h that C 2 S(z

i

),

E � fz

i

6= z

j

j 1 � i < j � ng. So, R

�

is not applied to x after su
h a removal.

(3) The out-degree of the forest
onstru
ted using the tableaux rules is

bounded by m

0

+ m

q

� m

0

. This follows from (2) and the fa
t that nodes are

labelled with subsets of the set

l(�) [f(R; `); (a; `); (a

�

; `) j ` 2 ob(�); R 2 rol(�); a 2M [�℄g:

(4) If a node x is removed, then all z with x <

+

z are removed as well

(5) No <-bran
h in any
onstraint system for �
an ever be of length ex-

eeding 2

m

0

� jM [�℄j

2

, sin
e no node introdu
ing rule
an be applied to a node

x su
h that S

�

(y) = S

�

(z) for two distin
t y; z � x.

Soundness

Before proving the soundness of the tableau algorithm, we introdu
e a relational

semanti
s for sim-ALCQO. This semanti
s
omprises, for ea
h a 2 M [�℄, ad-

ditional binary relations R

a

and S

a

su
h that, intuitively, we have uR

a

v if the

distan
e between u and v is at most a, and uS

a

v if the distan
e between u and

v is less than a. Formally, a Kripke model for � is a stru
ture of the form

M =

W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

satisfying, for all u; v; w 2W and all a; b 2M [�℄, the following
onditions:

(S1

R

) if uR

a

v and a � b, then uR

b

v,

(S2

R

) uR

a

v i� vR

a

u,

Le
ture Notes in Computer S
ien
e 11

(S3

R

) uR

a

u,

(S4

R

) if uR

a

v, vR

b

w and a+ b 2M [�℄, then uR

a+b

w,

(S1

S

) if uS

a

v and a � b, then uS

b

v;

(S2

S

) uS

a

v i� vS

a

u;

(S3

S

) uS

a

u,

(S4

S

) if uS

a

v, vS

b

w and a+ b 2M [�℄, then uS

a+b

w,

(C1) if uS

a

v then uR

a

v,

(C2) if uR

a

v and a < b, then uS

b

v,

(C3) if uR

a

v, vS

b

w and a+ b 2M [�℄, then uS

a+b

w,

(C4) if uS

a

v, vR

b

w and a+ b 2M [�℄, then uS

a+b

w.

The value C

M

of a
on
ept C in M and the truth-relation M j= C

1

:

= C

2

are

de�ned in almost the same way as for CD-models: we only repla
e B with M

and de�ne the
lauses for the distan
e quanti�ers as follows:

(E

�a

C)

M

= fx 2 W j 9y 2W

�

xR

a

y ^ y 2 C

M

�

g;

(E

<a

C)

M

= fx 2 W j 9y 2W

�

xS

a

y ^ y 2 C

M

�

g;

(A

�a

C)

M

= fx 2 W j 8y 2W

�

xR

a

y ! y 2 C

M

�

g;

(A

<a

C)

M

= fx 2 W j 8y 2W

�

xS

a

y ! y 2 C

M

�

g:

The next theorem ensures that the alternative Kripke semanti
s is `equivalent'

to the original one.

Theorem 2. The knowledge base � is satis�able in a CD-model i� it is satis-

�able in a Kripke model for �.

Proof. ()) Suppose that � is satis�ed in a CD-model

B =

W;d;A

B

1

; : : : ; R

B

1

; : : : ; `

B

1

; : : :

�

:

De�ne a Kripke model

M =

W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

for � by taking, for a 2M [�℄,

{ A

M

i

= A

B

i

, `

M

i

= `

B

i

, and R

M

i

= R

B

i

;

{ xR

a

y i� d(x; y) � a;

{ xS

a

y i� d(x; y) < a.

It is not diÆ
ult to see thatM is a Kripke model for � and to prove by indu
tion

that C

M

= C

B

, for all C 2
l(�). It follows that M satis�es �.

(() Suppose now that � is satis�ed in a Kripke model

M =

W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

for �. Let M [�℄ = fa

1

; : : : ; a

N

g with 0 < a

1

< a

2

< � � � < a

N

. Choose a

rational number

�

> a

N

in su
h a way that there are no a

1

; a

2

2 M [�℄ with

a

N

< a

1

+ a

2

�

�

. Let D be the minimal number in the set

M [�℄ [fa

1

+ a

2

�

�

j a

1

; a

2

2M [�℄� f

�

g & a

1

+ a

2

>

�

g:

12 Carsten Lutz et al.

Take some positive � <

D

2

N+1

. De�ne a fun
tion d : W � W ! R by taking

d(u; v) = 0 if u = v and otherwise

d(u; v) =

8

>

<

>

:

�

; if :9a 2M [�℄ uR

a

v,

a; if 9a 2M [�℄ (uR

a

v ^ :uS

a

v),

a

i

� 2

i

� �; if 9a

i

2M [�℄ (uS

a

i

v ^ 8j (0 < j < i! :uR

a

j

v)).

Consider the model

B =

W;d;A

B

1

; : : : ; R

B

1

; : : : ; `

B

1

; : : :

�

:

where A

B

i

= A

M

i

, R

B

i

= R

M

i

, and `

B

i

= `

M

i

for all i. One
an show now that B

is a CD-model satisfying �.

Thus, it suÆ
es to prove soundness with respe
t to Kripke semanti
s.

Theorem 3. If there exists a
omplete and
lash-free
onstraint system for �,

then � is satis�able in a Kripke model for �.

Proof. Suppose that S = hT;<; S; L;Ei is a
omplete and
lash-free
onstraint

system for � that is obtained by repeatedly applying
ompletion rules from

Fig. 1 to the initial
onstraint system hT

0

; <

0

; S

0

; L

0

; E

0

i. We use this
onstraint

system to
onstru
t a Kripke model

M =

W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

satisfying �. Denote by T

i

the set of nodes from T that are not indire
tly (but

possible dire
tly) blo
ked. The domain W of M
onsists of all sequen
es of the

form h`; x

1

; : : : ; x

k

i, where ` 2 ob(�) and x

1

; : : : ; x

k

2 T

i

(with k � 0) su
h that

` < x

1

and, for 1 � i < k, either (i) x

i

is unblo
ked and x

i

< x

i+1

or (ii) there

is a z su
h that z dire
tly blo
ks x

i

and z < x

i+1

. Role names R are interpreted

by setting

{ (h`

1

; x

1

; : : : ; x

k

i ; h`

2

i) 2 R

M

i� x

k

is not blo
ked and (R; `

2

) 2 S(x

k

), or

there exists z whi
h dire
tly blo
ks x

k

su
h that (R; `

2

) 2 S(z);

{ (h`; x

1

; : : : ; x

k

i ; h`; x

1

; : : : ; x

k+1

i) 2 R

M

i� one of the following holds:

� x

i

is not blo
ked, x

k

< x

k+1

, and L(x

k

; x

k+1

) = R;

� there is z whi
h dire
tly blo
ks x

k

, z < x

k+1

and L(z; x

k+1

) = R.

Given x = h`; x

1

; : : : ; x

k

i 2 W , let S(x) denote S(x

k

). We now de�ne the re-

lations R

a

and S

a

. Let R

a

be the set of pairs (x; y) 2 W �W su
h that, for

fu; vg = fx; yg, the following
onditions are satis�ed:

(a) A

�a

C 2 S(u) implies C 2 S(v);

(b) A

�b

C 2 S(u) and b > a imply that A

�

C 2 S(v) for some
 � b� a;

(
) A

<b

C 2 S(u) and b > a imply that A

<

C 2 S(v) or A

�

C 2 S(v) for some

 � b� a.

Similarly, S

a

is
omprised of the pairs (x; y) 2 W �W su
h that, for fu; vg =

fx; yg, the following
onditions are satis�ed:

Le
ture Notes in Computer S
ien
e 13

(d) A

<a

C 2 S(u) implies C 2 S(v);

(e) A

�b

C 2 S(u) and b > a imply that A

�

C 2 S(v) for some
 � b� a;

(f) A

<b

C 2 S(u) and b > a imply that A

<

C 2 S(v) or A

�

C 2 S(v) for some

 � b� a.

For all ` 2 ob(�), we set `

M

= fh`ig. This is well-de�ned, sin
e no nominal is

removed from the tableau. Finally, for all
on
ept names A

i

and x 2 W , we set

x 2 A

M

i

i� A

i

2 S(x). M is a Kripke models for � whi
h �. A proof of this

laim
an be found in the full version of this paper.

Completeness

Let us say that a model B =

W;d;A

B

1

; : : : ; `

B

1

; : : :

�

realises a
onstraint system

hT;<;L; S;Ei for � if B j= � and there exists a map � : T !W su
h that

{ C 2 S(x) implies �(x) 2 C

B

;

{ L

o

(fx; yg) = a 2M [�℄ implies d(�(x); �(y)) � a;

{ L

o

(fx; yg) = a

�

2M [�℄

�

implies d(�(x); �(y)) < a;

{ x 6= y 2 E implies �(x) 6= �(y);

{ if y is an R-su

essor of x, then (�(x); �(y)) 2 R

B

.

The following lemma is an immediate
onsequen
e of the de�nitions:

Lemma 1. If a knowledge base � is satis�ed in a CD-model B, then the initial

onstraint system for � is realisable in B.

Lemma 2. Suppose that B realises a
onstraint system S = hT;<;L; S;Ei for

� and a
ompletion rule R is appli
able to S. Then R
an be applied in su
h

a way that B realises the resulting
onstraint system S

0

= hT

0

; <

0

; S

0

; L

0

; E

0

i as

well.

Proof. Let B =

W;d;A

B

1

; : : : ; `

B

1

; : : :

�

realise S by means of a map � : T !W

and let S

0

be obtained from S using some rule R. We
onsider only two rules,

R = R

E

�

and R = R

A

<

, and and leave the remaining
ases to the reader.

R

E

�
: Suppose that E

�a

C 2 S(x), T

0

= T [fyg, L

0

(fx; yg) = a, <

0

=< [f(x; y)g,

and S(y) = fCg. We know that �(x) 2 (E

�a

C)

B

. So we
an �nd v 2W su
h that

d(�(x); v) � a and v 2 C

B

. De�ne a map �

0

: T

0

! W by taking �

0

(z) = �(z)

for all z 2 T and �

0

(y) = v. It should be
lear that B realises S

0

my means of �

0

.

R

A

<

: Let A

<a

C 2 S(x), x 2 T . Suppose that the rule is applied to some y 2 T .

Consider three possible
ases.

(i) If L

o

(fx; yg) = a

�

then d(�(x); �(y)) < a and S(y) = fCg[S(y). We need

to show that �(y) 2 C

B

. But this follows immediately from �(x) 2 (A

<a

C)

B

.

(ii) If L

o

(fy; xg) = b < a then d(�(x); �(y)) � b and S(y) = fA

<a�b

Cg[S(y).

To show that �(y) 2 (A

<a�b

C)

B

, take any v 2 W su
h that d(�(y); v) < a� b.

By the triangular inequality, we then have d(�(y); v) < a and so v 2 C

B

.

(iii) The
ase of L

o

(fy; xg) = b

�

and b < a is
onsidered similarly to (ii).

As a
onsequen
e of these two lemmas and Theorem 1 we obtain

Theorem 4. If � is satis�able, then there exists a
omplete
lash-free
onstraint

system for �.

14 Carsten Lutz et al.

5 Unde
idability

We show now that a rather natural and
loser integration of distan
e quanti�ers

and quali�ed number restri
tions results in an unde
idable logi
. Denote by sim

f

the language with the following
on
ept formation rule:

C ::= A

i

j `

i

j :C j C

1

u C

2

j C

1

t C

2

j E

�a

C j (�

1

a

:C);

where (�

1

a

:C) is interpreted in
on
ept distan
e models B as follows

(�

1

a

:C)

B

= fx 2W j

�

�

fy j d(x; y) � a; y 2 C

B

g

�

�

� 1g:

Theorem 5. The satis�ability problem for sim

f

-knowledge bases in
on
ept dis-

tan
e models is unde
idable.

Proof. (sket
h) We
an simulate the unde
idable N�N -tiling problem in almost

the same way as in the unde
idability proof of [9℄ for the language MS

1

with

the operators A

�a

, A

>0

�a

and their duals: just repla
e everywhere in the proof of

Theorem 3.1 the
on
ept A

>0

�80

:�

i;j

by the
on
ept (�

1

80

:�

i;j

).

6 Con
lusion

We have introdu
ed the des
ription-metri
 logi
 sim-ALCQO for de�ning
on-

epts based on similarity measures, and have proposed a tableau algorithm for

de
iding the satis�ability of sim-ALCQO-knowledge bases. This algorithm uni-

�es the tableau algorithms for SHOQ (a superlogi
 of ALCQO) presented in

[5℄ and for the logi
 of metri
 spa
es MS as de�ned in [13℄. It is of interest

to note that, in
ontrast to what is done in [13℄, we need a di�erent soundness

proof, sin
e the presen
e of number restri
tions prohibits the use of �ltration

te
hniques.

We regard the presented logi
 only as a �rst step towards DLs that allow

de�nitions of
on
epts based on similarity measures. Although we believe that

the expressive power provided by sim-ALCQO is quite natural and useful, an

in-depth investigation of the expressive means that are useful for de�ning vague

on
epts are in order. Some possible extensions of sim-ALCQO are the following:

(1) New
onstru
tors E

<a

R:C and A

<a

R:C, where the former expresses that

there exists an R-su

essor at distan
e smaller than a satisfying C, and the

latter is its dual. Su
h
onstru
tors would, e.g., allow us to say that a person is

very similar to his father: E

<0:5

parent:Male. The presented algorithm should be

extendable to this
ase without any problems.

(2) New
onstru
tors E

>a

C and E

�a

C (and their duals) with the obvious se-

manti
s. Although these
onstru
tors do not seem to be so natural as the vari-

ants based on < and �, they
ould, e.g., be used to express that a propo-

typi
al tableau algorithm pta is very
lose to all other tableau algorithms:

pta : A

>0:5

:Tableau algorithm. While [9℄ proves the de
idability of the metri

logi
 with the operators E

�a

C and E

>a

C (and their duals), nothing is
urrently

known about the extension of MS with all four possible
onstru
tors.

Le
ture Notes in Computer S
ien
e 15

A
knowledgements:

The work of the se
ond author was supported by Deuts
he Fors
hungsgemein-

s
haft (DFG) grant Wo583/3-3. The work of the third author was partially

supported by U.K. EPSRC grants no. GR/R45369/01 and GR/R42474/01.

Referen
es

1. F. Baader, D. Calvanese, D. M
Guinness, D. Nardi, and P. Patel-S
hneider, editors.

The Des
ription Logi
 Handbook. Cambridge University Press, 2003.

2. F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of des
ription logi
s and

abstra
t des
ription systems. J. of Arti�
ial Intelligen
e Resear
h, 16:1{58, 2002.

3. K. Fine and G. S
hurz. Transfer theorems for strati�ed modal logi
s. In

J. Copeland, editor, Logi
 and Reality, Essays in Pure and Applied Logi
. In mem-

ory of Arthur Prior, pages 169{213. Oxford University Press, 1996.

4. I. Horro
ks and P. Patel-S
hneider. The generation of DAML+OIL. In C. Goble,

D. M
Guinness, R. M�oller, and P. Patel-S
hneider, editors, Pro
eedings of the Inter-

national Workshop in Des
ription Logi
s 2001 (DL2001), number 49 in CEUR-WS

(http://
eur-ws.org/), pages 30{35, 2001.

5. I. Horro
ks and U. Sattler. Ontology reasoning in the SHOQ(D) des
ription

logi
. In B. Nebel, editor, Pro
eedings of the 17th International Joint Conferen
e

on Arti�
ial Intelligen
e (IJCAI'01), pages 199{204. Morgan Kaufmann, 2001.

6. I. Horro
ks, U. Sattler, and S. Tobies. Reasoning with individuals for the de-

s
ription logi
 SHIQ. In D. Ma
Allester, editor, Pro
. of the 17th International

Conferen
e on Automated Dedu
tion (CADE-17), number 1831 in LNCS. Springer,

2000.

7. I. Horro
ks, P. Patel-S
hneider, and F. van Harmelen. Reviewing the design of

DAML+OIL: An ontology language for the semanti
 web. In Pro
eedings of the

18th National Conferen
e on Arti�
ial Intelligen
e (AAAI 2002), 2002.

8. M. Kra
ht and F. Wolter. Properties of independently axiomatizable bimodal

logi
s. J. Symboli
 Logi
, 56:1469{1485, 1991.

9. O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyas
hev. Logi
s of

metri
 spa
es. ACM Transa
tions on Computational Logi
, 2003. In print.

10. M. S
hmidt-S
hau� and G. Smolka. Attributive
on
ept des
riptions with
omple-

ments. Arti�
ial Intelligen
e, 48:1{26, 1991.

11. E. Spaan. Complexity of Modal Logi
s. PhD thesis, Department of Mathemati
s

and Computer S
ien
e, University of Amsterdam, 1993.

12. F. Wolter. Fusions of modal logi
s revisited. In M. Kra
ht, M. De Rijke, H. Wans-

ing, and M. Zakharyas
hev, editors, Advan
es in Modal Logi
, volume 1, pages

361{379. CSLI, Stanford, 1997.

13. F. Wolter and M. Zakharyas
hev. Reasoning about distan
es. To appear in Pro
.

IJCAI 2003.

