A tableau algorithm for reasoning about
concepts and similarity

Carsten Lutz! Frank Wolter? and Michael Zakharyaschev®

! Institut fiir Theoretische Informatik, TU Dresden,
Fakultat Informatik, 01062 Dresden, Germany;
lutz@tcs.inf.tu-dresden.de
2 Department of Computer Science, University of Liverpool
Liverpool L69 7ZF, U.K.
frank@csc.liv.ac.uk
3 Department of Computer Science, King’s College London,
Strand, London WC2R 2LS, U.K.

mz@dcs.kcl.ac.uk

Abstract. We present a tableau-based decision procedure for the fusion
(independent join) of the expressive description logic ALCQO and the
logic MS for reasoning about distances and similarities. The resulting
‘hybrid’ logic allows both precise and approximate representation of and
reasoning about concepts. The tableau algorithm combines the existing
tableaux for the components and shows that the tableau technique can
be fruitfully applied to fusions of logics with nominals—the case in which
no general decidability transfer results for fusions are available.

1 Introduction

Undoubtedly, there will come a day when, to attract submissions, organisers will
be trying to annotate their conference sites with machine readable information.
Imagine, for instance, that we want to do this now for Tableauz 2003. Choosing a
formalism for representation of and reasoning about the terminology used in the
Tableaux 2003 site, we may naturally try the description logic ALC QO under-
lying the DAML+OIL language of the semantic web [7,1]. Then we start with
a definition of tableau-style algorithms and, as a first attempt, write something
like this:

Tableau_style_algorithm = Algorithm M Jcomprises.Rule, (1)

saying that tableau-style algorithms are precisely those algorithms that are
equipped with rules. Well, it seems unlikely that any potential participant of
Tableauz 2003 would be happy with this provocative definition (according to
which almost all reasoning procedures may be called tableau-based). Then how
to improve it? Do we really have a good, clear and concise definition (which is
better than ‘lots of rules, but few axioms’)? How can we represent in ALC QO
many other ‘vague’ concepts from the site, such as ‘related techniques,’ ‘related
methods,” ‘new calculi,” etc.?

2 Carsten Lutz et al.

One of the possible solutions to these problems is to introduce a similarity
measure between the objects of the application domain—in our case the reason-
ing procedures (which can be based on common sense, or defined by an expert, or
automatically generated using certain algorithms). Then, by taking a role name
similar_to_degree < 1, we could say, for instance, that tableau-style algorithms
are similar to degree < 1 to at least one of the prototypical tableau algorithms
ta,...,ta;. However, this approach is in conflict with the expressive capabili-
ties of standard description logics (DLs) such as ALC or DAML4OIL because
usually similarity measures are supposed to satisfy a number of natural axioms
like the axioms of metric spaces, in particular, a sort of ‘triangular inequality’
which is not expressible in standard DLs.

The main idea of this paper is not to extend the family of DLs by intro-
ducing a new one, but rather to combine the existing knowledge representation
formalisms, viz.,

— the standard description logic ALCQO—i.e., the basic DL ALC extended
with qualified number restrictions, nominals and general TBoxes [5], and
— the logic MS [13] for reasoning about metric spaces*

in order to achieve the desirable expressivity.

To illustrate the expressive power of the resulting ‘hybrid’ logic sim-ALCQO,
we show how one can further ‘approximate’ the definition of tableau-style algo-
rithms. First, we add to the right-hand side of (f) the conjunct

E<l(ta; U---Utay)

which is an MS-formula saying that tableau-style algorithms should be similar
to degree <1 to at least one of tay,...,tay. If this ‘positive information’ is still
not enough, one can add some ‘negative’ bit. For example, it may be natural to
say that tableau-style algorithms are neither similar to degree < 0.5 to a certain
Hilbert-style algorithm ha, nor similar to degree < 0.5 to any resolution-based
decision procedure:

—E=%%ha M =E=%Resolution_based_algorithm.

Of course, the individual algorithms such as ha can also be described by means
of concepts, possibly involving similarity measures:

ha : Algorithm M —3feature. Termination M A<C-3(3comprises.Modus_ponens)

(i.e., ha does not necessarily terminate and all < 0.5 similar algorithms use a
kind of modus ponens as one of their inference rules). It may seem more natural
to specify similarity in terms of a finite set of symbolic similarity measures
such as ‘close’ and ‘far’ rather than in terms of rational numbers as above. In

* This metric logic differs considerably from the metric logics investigated in [9]. Here
we quantify over open and closed ‘balls,” while in [9] over closed balls and their
complements. The expressive power of the two languages is, therefore, incomparable.

Lecture Notes in Computer Science 3

our approach, however, the user is free to choose either option: one may fix a
rational number for each symbolic similarity measure, say, 1 for ‘close’ and 10
for ‘far’ (or the other way round), and then work with the symbolic names.

In this paper, we provide a tableau-style decision procedure for the new logic
sim-ALCQQO. Technically, this logic is the fusion (or independent join) [8,3] of
ALCQO and MS. We believe that this is a reasonable starting point, since many
similarity measures are indeed metric, and our approach without any problems
can be adapted to similarity measures which do not satisfy all of the axioms
of metric spaces. Moreover, we can easily extend sim-ALCQO and the tableau
algorithm with additional similarity measures (say, between inference rules).

In our opinion, sim-ALCQQO provides just the right compromise between
expressive power and computational cost:

(1) In sim-ALCQO, we can mix constructors of ALCQO and MS in order
to define concepts based on similarity measures as illustrated above. Moreover,
as our tableau algorithm shows, reasoning in sim-ALCQQ is decidable. It is of
interest to contrast this with the fact that a tighter coupling of ALCQO and
MS leads to undecidability: as we also show, the extension of MS with qualified
number restrictions such as ‘there exists at most 1 point x with property P within
distance < 1’ results in an undecidable logic. Therefore, the fusion of the two
formalisms seems to be a good starting point for investigating the interaction
between concepts and similarity measures.

(2) Although there exists a number of general results regarding the transfer
of decidability from the components of a fusion to the fusion itself [8,3,12,2,11],
these results do not apply to logics with nominals (atomic concepts interpreted
as singleton sets) such as ALCQQO. In fact, no transfer result is available from
which we could derive the decidability of sim-ALCQQO using the decidability
of both ALCQO and MS. Despite the fact that they are not applicable, it is
of interest to note that our algorithm has an important advantage over general
approaches to proving decidability: structurally, it is very similar to the tableau
algorithms for SHZQ and SHOQ proposed in [6, 5]. Since these algorithms have
turned out to be implementable in efficient reasoning systems, we do hope that
our algorithm shares this attractive property as well.

The paper is organised as follows: in Section 2, we introduce the description
logic sim-ALCQO. In Section 3, we describe the tableau algorithm for decid-
ing the satisfiability of sim-ALC QO-knowledge bases, whose correctness is then
proved in Section 4. Section 5 is concerned with the undecidability of MS ex-
tended with qualifying number restrictions. A version of this paper with detailed
proofs is available at http://www.csc.liv.ac.uk/~frank.

2 The logic sim-ALCQO

In this section, we introduce the combined logic sim-ALCQQO. The alphabet for
forming concepts and assertions consists of the following elements:

— a countably infinite list of concept names Ay, As, .. .;

4 Carsten Lutz et al.

— a countably infinite list of object names l1,ls, . ..;

— binary distance (), equality (=) and membership (:) predicates;

— the Boolean operators M, L, —;

— two distance quantifiers E<*, EX® and their duals A<%, A=%, for every posi-
tive rational number a (i.e., a € Q");

— role names R1,Ra, .. .;

— qualified number restrictions (< nR.C) and (> nR.C), for every natural n,
every role name R, and every concept C.

Using this alphabet, sim-ALC QO-concepts are defined by the formation rule:

Cu=A;|6;|-C|CiNCy | CLUC, | ES®C | ES?C | ASeC |
| AS“C' | (€ nR;.C) | (> nR;.C).

As usual, we write T as an abbreviation for an arbitrary propositional tautology,
L for =T, 3R.C for (> 1R.C), and VR.C for (< OR.—C). At first sight, it
may seem strange to have both strict and non-strict versions of the E and A
constructors available for talking about similarity measures. Note, however, that
this allows us to define the concept ES*C' M —E<%C' which states that the most
similar object from C'is located precisely at distance a. Object names occurring
in concepts will also be called nominals.

Now we define sim-ALC QO-assertions as expressions of the following forms:

— (: C, where (is an object name and C' a concept;

— (4 = Cy, where C1 and Cy are concepts;

- 0(k,0) <a, §(k,0) <a, §(k,0) > a, d(k,0) > a, where k, ¢ are object names
and a € Q.

Agsertions of the third form are called distance assertions. A sim-ALCQO-
knowledge base is a finite set of sim-ALC QO-assertions.

Observe that knowledge bases subsume both general TBoxes and ABoxes. In
particular, the rather common ABox assertions of the form (¢1,¢s) : R, where ¢;
and /5 are object names and R a role name, can be viewed as abbreviations for
ﬁl : HREQ

The semantics of sim-ALCQO-concepts is a blend of the semantics of the
logic of metric spaces [13] and the usual set-theoretic semantics of description
logics. A concept-distance model (a CD-model, for short) is a structure of the
form

B = (W,d, AP, AP, ... ,RPRY,... (T3 ..),

where (W,d) is a metric space with a distance function d satisfying, for all
z,y,z € W, the axioms

d(a,y) =0 iff =y, 1)
d(w,) < d(z,y) + d(y, =), (2)
d(x,y) = d(y,), (3)

Lecture Notes in Computer Science 5

the AP are subsets of W, the R® are binary relations on W, and the (* are
singleton subsets of W such that i # j implies £ # (7.
The extension C® of a sim-ALCQO-concept C' is computed inductively:

(Ccine)® =cfncy, (CLucy)®=cPucy, (-C)®=w-C?,

)%:{x€W|EIy€W(d(x,y
)%:{x€W|EIy€W(d(x,y
)%z{x€W|Vy€W(d(x,y
A< O)® ={z e W |Vy € W (d(z,y
(<nRCO)Y® ={zecW| |{y€W|(x,y ER%/\yGC’%H <n},
(>nR.C)® ={zcW| |{y€W|(ac,y) ER%/\yGC’%H >n}.

We still have to specify when a CD-model satisfies a sim-ALC QO-assertion: the
truth-relation |= between CD-models B and assertions ¢ is defined as follows:

~-B=(:C iff (P CC?®,

~-BEC =0, iff CP=CP,

— B =k, 0) <a iff dE®,(®)<a,

— B =k, 0) <a iff d(k®,(®) < a, and similar for > and >.

Finally, a sim-ALC QO-knowledge base X' is called satisfiable if there exists a
CD-model B such that B |= ¢ for all ¢ € ¥. In this case we write B |= X.

Note that we make the unique name assumption (UNA), i.e., different object
names denote distinct domain elements. The sole purpose of this assumption is
to allow a clearer presentation of our tableau algorithm. It is, however, easily seen
that the UNA has no influence on decidability, and that our tableau algorithm
can be extended to deal with sim-ALC QO without UNA.

3 The tableau algorithm

Now we present a sound, complete and terminating algorithm for checking the
satisfiability of sim-ALCQO-knowledge bases. In fact, it is a (labelled) tableau
algorithm that generalises the existing tableau algorithms for metric logics [13]
and for the description logic ALCQO [5]. Before formulating the algorithm and
proving its correctness, we introduce some notations and auxiliary definitions.

Supose we are given a sim-ALCQO-knowledge base ¥. Denote by con(X)
the set of concepts occurring in ¥ (including all subconcepts), by rol(X') the set
of role names occurring in X, by par(X) the set of rational numbers occurring in
X (either in E/A concepts or in distance assertions), and by 0b(X) we denote the
set of object names occurring in X'. Without loss of generality, we may assume
that neither par(X) nor ob(X) are empty: if this is not the case, we can always
add an assertion ¢ : A<®T with a fresh object name (. To simplify presentation,
it is convenient to make three assumptions:

6 Carsten Lutz et al.

(1) A concept C is in negation normal form (NNF) if negation occurs only
in front of concept names and nominals. Each concept can be transformed into
an equivalent one in NNF by pushing negation inwards: for example, =E<*C'
is equivalent to A<®*-(C. So, without loss of generality, we may assume that all
concepts are in NNF. In what follows, we use -C' to denote the NNF of —C.

(2) We may also assume that knowledge bases contain only assertions of the
form ¢ : C and C' = T. To see this, note first that distance assertions can be
expressed using nominals and distance quantifiers:

0(k,0) < a is equivalent to k : E<%¢, §(k,() < a is equivalent to k : ES®,
0(k,0) > a is equivalent to k : AS®—¢, §(k,() > a is equivalent to k : ~A<%—/.

Assertions of the form C; = C5 can be rewritten as (C; MC2)U(-C1M-Cy) = T.

(3) Without loss of generality, we may assume that par(X) contains only
natural numbers: given a knowledge base X with par(Y) C QT, we may replace
every element ¢ of par(X) with ¢ - x, where z is the least common multiple of
the denominators of all elements of par(X). It is then straightforward to show
that any CD-model of the resulting knowledge base can be converted into a
CD-model of X' and vice versa.

We use ayx to denote the largest natural number that occurs in par(X) and
MX] to denote the smallest set satisfying the following conditions:
— par(X) C M[X];
—ifa,be M[X]and a + b < ax, then a +b € M[X];
—ifa,be M[X] and a —b >0, then a — b € M[X].

Having started on the input knowledge base ¥ (in the form described above),
the tableau algorithm considers only certain ‘relevant’ concepts. More precisely,
we define the closure cl(X) of X to be the (finite) set of concepts

con(Z)U{~C | C € con(X)} U
{A<eC ASC | a € M[X] and 3b > a {ASPC,A<PCY N con(X) # 0}
Similar to the set cl(X) of relevant concepts, M[X] describes the set of relevant
numbers. However, the numbers in M[X] are not enough: to distinguish between
‘< a’ and ‘< a,” we require some additional symbols that will be used in the same

way as numbers, namely, M[X]™ = {a~ | a € M[X]}. Define a strict linear order
< on M[X]UM[X]" by setting

a; <ap <ay; <ax < <a, <an,

where a1 < as < -+ < ap,.

We are in a position now to describe our tableau algorithm. Starting with
X, it operates on constraint systems S = (T, <, L, S, E), where

— (T, <) is a forest whose set of roots coincides with ob(X);

Lecture Notes in Computer Science 7

— S is a node labelling function which associates with each z € T a set
S(x) C cl(Y)U{(R,0),(a,0),(a”,0) | L € 0b(X), R € rol(X),a € M[X]};

— L is a labelling function which associates with each pair z,y € T such that
x < y either a role name or a number from M[X], or a symbol from M[X];
— FE is a set of inequalities between members of T'.

Intuitively, we have z < y if either x and y are related by some role R or the
distance between z and y is known to be smaller than some value from M[X].
The purpose of the extra elements (R, ¢) and (a,) in node labels is to represent
additional edges that lead to nominals (roots in the forest), and whose explicit
representation would destroy the forest structure.

The algorithm starts with So = (Tp, <o, Lo, So, Eo), the initial constraint
system for X, where

TO = ob(E),

So(0) ={}u{C | L:C € X}, for every { € ob(X),
—Ey={0AU|C#L, (,{'€ob(X)}, and

— <g=Lo=10.

Before describing the completion rules, we introduce some simplifying notation
required to deal with edges represented via node labels. We write L(z,y) = a
to express that either x < y and L(z,y) = a or that a is the <-minimum
of {c | (e,y) € S(z)}> To account for the fact that, for some rules, it is not
important whether a node is a predecessor or a successor, we write L°({z,y}) = a
if @ is the <-minimum of {L(z,y), L(y,x)}. Finally, for a role name R, we say
that y is an R-successor of z if either x < y and L(z,y) = R or (R,y) € S(z).

The completion rules are shown in Fig. 1. Constraint systems obtained by
applying the completion rules to the initial constraint system for ¥ will be
called constraint systems for ¥. The terms ‘blocked’ and ‘indirectly blocked’ in
the rule premises refer to a cycle detection mechanism that is needed to ensure
termination of the algorithm. Before discussing the completion rules in more
detail, let us formally introduce this mechanism. The general idea is that we
stop the expansion of node labels if a node is labelled with exactly the same set
of concepts as one of its <-ancestors. This simple approach works perfectly well,
but it is not the most sensible thing we can do: the problem is that, due to the
‘extra’ concepts A<®C' and A<®C, the size of cl(X) is exponential in the size of
Y rather than polynomial, and thus paths of the forest may grow to a length
doubly exponential in X' before the blocking occurs. Fortunately, this worst case
can be avoided. When comparing node labels to check for a blocking situation, it
is not necessary to take into account all of the extra A<®C' and A=*C' concepts:
if, for example, we find AS*C' € S(z), then it is clear that the object x also
satisfies the concepts ASPC' for all b < a, even if they do not explicitly appear
in the node label S(x). This observation leads to the following, refined variant
of blocking.

® This gives a well-defined value for L(z,y), as (c,y) € S(z) implies that y is a root.

8 Carsten Lutz et al.

For a node z € T, we use S*(x) to denote the set of concepts C' € S(x) such
that one of the following conditions is satisfied:

1. C is not of the form A<®D or AS®D;
2. C'is of the form AS?D and there is no b > a such that AS?D € S(z);
3. C'is of the form A<?D and there is no b > a such that A<?D € S(z).

Denote by <™ the transitive closure of <. We say that a node x € T is directly
blocked by a node y if y <t z, S*(z) = S*(y), but for no distinct u <* x and
v <T 2 do we have S*(u) = S*(v). The <*-successors of directly blocked nodes
are called indirectly blocked. All directly or indirectly blocked nodes comprise the
set of blocked nodes. Observe that the elements (R, /) and (a, /) of node labels
are not taken into account for blocking.

Note that this blocking condition can be refined even further by taking into
account implications between A<®C' and A<’C concepts. We prefer to work
with the above variant, since it suffices to restrict paths in forests to exponential
length, and the more elaborate version makes proofs rather unreadable due to
many additional case distinctions.

Let us now return to the completion rules. In what follows we assume that
a rule can be applied to a tableau only if the tableau is changed. Such a rule
will be called applicable to the tableau. The tableau algorithm applies the rules
until either the obtained constraint system contains an obvious contradiction or
no more rules are applicable. To be more precise, say that a constraint system S
contains o clash if it contains a node z such that one of the following conditions
hold:

{A,-A} C S(z), for some concept name A;

{¢,~t} C S(z) for some object name ¢;

(" € S(¢) for some object names ¢’ # ¢;

(x #1) € E;

for some R, (< nR.C') € S(z) and there are n + 1 R-successors 4o, . . ., Yn Of
x with C' € L(y;), foreach0 < i <nandy; #y; € Eforeach0<i<j<n.

U

A constraint system S is complete if it either contains a clash or none of the
rules in Fig. 1 is applicable to S.

4 Termination, soundness and completeness

We show now that the tableau algorithm above always terminates, is sound
(i.e., if there is a complete and clash-free constraint system for X, then X is
satisfiable), and complete (i.e., if X' is satisfiable, then the tableau algorithm
eventually succeeds in finding a complete and clash-free complete system).

Termination

Theorem 1. Any sequence of applications of tableau rules to the initial con-
straint system for X terminates after finitely many steps.

Rn

Ru

Ra

Ra<

RE<

R¢

Lecture Notes in Computer Science

If C1 N Cy € S(x) and z is not indirectly blocked,
then set S(z) := S(z) U {Ch,C2}.

If Ci Uy € S(x) and z is not indirectly blocked,
then set either S(z) := S(z) U{C:1} or S(z) := S(z) U {C:}.

If C =T € X and z is not indirectly blocked, then set S(z) := S(z) U {C}.

If A<*C' € S(z) or AS“C' € S(z) and z is not indirectly blocked,
then set S(z) := S(z) U{C}.

Let A<*C € S(x) and z is not indirectly blocked. Then:
if L°({y,z}) =a~, then set S(y) :={C} U S(y);
if L°({y,z}) =b < a, then set S(y) := {A<*"bC} U S(y);
if L°({y,z}) = b~ with b < a, then set S(y) := {AS*~C}U S(y).

< Let ASC' € S(x), L°({y,x}) € {b,b” } and z is not indirectly blocked. Then:

if b = a, then set S(y) := {C} U S(y);
if b < a, then set S(y) := {AS*~bC} U S(y).

If E<*C € S(z), = is not blocked, and
L(z,y) ¢ {b|b<a}U{b |b<a} for any y with C' € S(y),
then create a new node y > z and set L(z,y) :=a~ and S(y) := {C}.

< IfES"C € S(z), z is not blocked and

L(z,y) ¢ {b|b<a}U{b |b<a} for any y with C € S(y),
then create a new node y > z and set L(z,y) :=a and S(y) := {C}.

If {(>nR.C), (< nR.CY)} N S(z) # 0, « is not blocked and y is an
R-successor of z, then set S(y) := S(y) U{C} or S(y) = S(y) U {~C}.

If (> nR.C') € S(z), = is not blocked, and there are no R-successors y1, ..., yn
with C' € S(y;) and y; # y; € E, for all i # j, then take new y1 > x,...,yn >
and set L(z,y;) == R, S(yi) ={C}, E:=EU{yi #y; |1 <i<j<n}

If (< nR.C') € S(z), z is not blocked, has n + 1 R-successors yo, ..., Yn
with C' € S(y;) for all 4, and, for some 4,j < n, y; # y; € F and y; & ob(Y),
then set /:= FU{y #yi |y #y; € E}, S(yi) := S(yi) US(y;),

S(z) :=8S@)U{(R',0)| R = L(z,y;)}, if yi =€ € 0b(Y),

and finally delete y; and all z with y; <* z from 7.

If £ € S(z), z ¢ 0b(X), and z is not indirectly blocked,
Then set S(¢) := S(¢) U S(z), and, for every y,

S(y) :=S(y)U{(c,l) | c= L(y,z) or ¢ = R arole and x an R-successor of y},
E:=EU{y#/(|y+#x € E}, and delete x and all z with = <* 2 from T.

Fig. 1. Tableau rules.

10 Carsten Lutz et al.

Proof. Let mo = |con(X)| and m, be the maximal number occurring in qualified
number restrictions of Y. Termination follows from the following five observa-
tions.

(1) Each rule except R< and Ry strictly extends the constraint system. More-
over, neither R, nor R< removes concepts from nodes.

(2) None of the generating rules Rg<, Rg<, R> can be applied more than once
to a given node and a given concept.

Suppose that Rg< is applied to a node z, generates y with z < y and updates
L(z,y) = a= and S(y) = {C}. The only reason why Re< could be applied once
again to x and E<?C' is that later on y is removed by an application of R< or
R¢. However, unless z is removed (in this case the claim is trivial) y cannot be
removed by an application of R< because we do not find a z and a role R with
R = L(z,y). Suppose y is removed by an application of R, because ¢ € S(y).
Then, after the application of Ry, we have (a—,¢) € S(x) and C € S(¢), since

a~ = L(z,y). But then, since a node of the form ¢ is never removed, the rule
Re< is not applicable to and E<®C' afterwards. The rule Rg< is considered
analogously.

Suppose that R> is applied to a node x, generates y1, ..., y, with # < y; and
updates L(z,y;) = R, S(y;) = {C},and E = EU{y; #y; | 1 <i<j <n}
Now, whenever some y; is removed by R> or R, and x is not removed, after the
removal of y; we still have n R-successors z1, ..., 2, of x such that C' € S(z;),
ED{z;#z|1<i<j<n} So,Rs is not applied to z after such a removal.

(3) The out-degree of the forest constructed using the tableaux rules is
bounded by mg + my - mo. This follows from (2) and the fact that nodes are
labelled with subsets of the set

cl(Z) U{(R,0),(a,0), (a™,0) | £ € ob(5),R € rol(5),a € M[Z]}.

(4) If a node z is removed, then all z with z <™ 2 are removed as well

(5) No <-branch in any constraint system for X' can ever be of length ex-
ceeding 2™ - |M[X]|?, since no node introducing rule can be applied to a node
x such that S*(y) = S*(z) for two distinct y,z < x.

Soundness

Before proving the soundness of the tableau algorithm, we introduce a relational
semantics for sim-ALCQQO. This semantics comprises, for each a € M[X], ad-
ditional binary relations R, and S, such that, intuitively, we have uR,v if the
distance between u and v is at most a, and uS,v if the distance between u and
v is less than a. Formally, a Kripke model for X' is a structure of the form

mt = <VV7 Ail)ﬂ, e ,R?n, ey (Ra)aeM[2]7 (Sa)aEM[Z]agilDta .. >
satisfying, for all w,v,w € W and all a,b € M[X], the following conditions:

(S1g) if uR,v and a < b, then uRyv,
(S2R) uR,v iff vRyu,

Lecture Notes in Computer Science 11

)
S4g) if uR v, vRyw and a + b € M[X], then uR,4pw,
Slg) if uS,v and a < b, then uSyv;
S2g) uS,v iff vS,u;
S3s) uS,u,
S4g) if uS,v, vSyw and a + b € M[X], then uS,4pw,
1) if uS,v then uR,v,
C2) if uR,v and a < b, then uS,v,
C3) if uR,v, vSyw and a+be M[X], then uS,pw,
C4) if uS,v, vRyw and a + b € M[X], then uS,4pw.

The value C™ of a concept C' in 9 and the truth-relation M | Cy = Cy are
defined in almost the same way as for CD-models: we only replace B with 90t
and define the clauses for the distance quantifiers as follows:

ESeO)M ={z e W |Jy € W (zRy Ay € C™)},
ES“C)M ={z e W |y e W (zS,y Ay € C™)},
ASCOY ={z e W |Vy € W (zR,y =y € C™)},
A O ={z e W |Vy € W (2S,y =y € C™)}.

(
(
(
(
(
(
(C
(
(
(

(
(
(
(

The next theorem ensures that the alternative Kripke semantics is ‘equivalent’
to the original one.

Theorem 2. The knowledge base X' is satisfiable in a CD-model iff it is satis-
fiable in a Kripke model for X.

Proof. (=) Suppose that X' is satisfied in a CD-model
B = (W,d AP,...,RP,....(P,..).
Define a Kripke model
Mm= <W, A£1m7 s 7R51m7 SRER) (Ra)aeM[L‘]a (Sa)aEM[Z‘]vgglmv ‘- >
for ¥ by taking, for a € M[X],
— ATt = AP (P = (P and R™ = R?;

10 2

- xRay iff d(z,y) < a;
— xSuy iff d(x,y) < a.

It is not difficult to see that 9 is a Kripke model for X' and to prove by induction
that C™ = C®, for all C € cl(X). It follows that 90 satisfies .

(<) Suppose now that ¥ is satisfied in a Kripke model
M = <W, Ailm, e ,R?n, ey (Ra)aEM[Z]a (Sa)aeM[Z]agilma . e >

for ¥. Let M[X] = {a1,...,an} with 0 < a; < as < --- < ay. Choose a
rational number vy > ay in such a way that there are no ay,a; € M[Y] with
any < a; + az < vx. Let D be the minimal number in the set

M[XU{a1 + a2 —vs | a1,a2 € M[X]—{ys} & a1 + as > ys}.

12 Carsten Lutz et al.

Take some positive € < QN%. Define a function d : W x W — R by taking
d(u,v) = 0 if u = v and otherwise

V5, if =30 € M[X]) uR,v,
d(u,v) =< a, if Ja € M[X] (uR,v A ~uS,v),
ai —2"-¢, if Ja; € M[Z] (uSe,v AV) (0 < j <i— —uRq,v)).

Consider the model
B = (W,d, AP,...,RP,... . (P,...).

where AP = A”", R®? = R, and (¥ = ¢ for all i. One can show now that B
is a CD-model satisfying Y.

Thus, it suffices to prove soundness with respect to Kripke semantics.

Theorem 3. If there exists a complete and clash-free constraint system for X,
then X' is satisfiable in a Kripke model for X.

Proof. Suppose that S = (T, <, S, L, E) is a complete and clash-free constraint
system for X that is obtained by repeatedly applying completion rules from
Fig. 1 to the initial constraint system (7o, <g, So, Lo, Fo). We use this constraint
system to construct a Kripke model

M = <W, Aglm, e ,Rglm, ey (Ra)aEM[Z]a (Sa)aEM[E]agima .. >

satisfying X. Denote by T the set of nodes from T that are not indirectly (but
possible directly) blocked. The domain W of 9t consists of all sequences of the
form ((,x1,...,7s), where ¢ € ob(¥) and 2y, ...,z € T* (with k > 0) such that
¢ < xy and, for 1 <1 < k, either (i) z; is unblocked and z; < x;41 or (ii) there
is a z such that z directly blocks z; and z < z;41. Role names R are interpreted
by setting

— (b, 21, ..., 2), () € R™ iff z, is not blocked and (R, () € S(x}), or
there exists z which directly blocks z such that (R, (s) € S(z);
— ((lyzy, .2y (02, .. wpe)) € R™AF one of the following holds:
e z; is not blocked, xy < zj41, and L(zy, xp41) = R;
e there is z which directly blocks zy, z < xx+1 and L(z,z541) = R.

Given T = ((,x1,...,x) € W, let S(T) denote S(z1). We now define the re-
lations R, and S,. Let R, be the set of pairs (Z,7) € W x W such that, for
{u,v} = {Z,7}, the following conditions are satisfied:

(a) A=eC € S(u) implies C € S(v);

(b) ASPC € S(m) and b > a imply that A<¢C € S(v) for some ¢ > b — a;

() A<PC € S(m) and b > a imply that A<¢C' € S() or AS°C' € S(v) for some
c>b—a.

Similarly, S, is comprised of the pairs (Z,7) € W x W such that, for {u,v} =
{Z, 7}, the following conditions are satisfied:

Lecture Notes in Computer Science 13

(d) A<eC € S(u) implies C' € S(v);

(e) ASPC € S(u) and b > a imply that AS¢C' € S() for some ¢ > b — a;

(f) A<PC € S(m) and b > a imply that A<¢C' € S(v) or AS¢C' € S() for some
c>b—a.

For all ¢ € ob(X), we set (™ = {(¢)}. This is well-defined, since no nominal is
removed from the tableau. Finally, for all concept names A; and T € W, we set
7 € AT iff A; € S(T). M is a Kripke models for X which ¥. A proof of this
claim can be found in the full version of this paper.

Completeness

Let us say that a model B = <W, d,AF,. .. (F, .. > realises a constraint system
(T,<,L,S,E) for ¥ if B = X and there exists a map p : T — W such that

— C € S(x) implies p(z) € CF;

— L°({z,y}) = a € M[X] implies d(p(z), p(y)) < a;

— L*({z,y}) = a— € M[X]™ implies d(p(z), p(y)) < a;

— x #y € E implies p(x) # p(y);

— if y is an R-successor of z, then (p(z), p(y)) € R®.

The following lemma is an immediate consequence of the definitions:

Lemma 1. If a knowledge base X is satisfied in a CD-model B, then the initial
constraint system for X is realisable in B.

Lemma 2. Suppose that B realises a constraint system S = (T, <,L, S, E) for
Y and a completion rule R is applicable to S. Then R can be applied in such
a way that B realises the resulting constraint system S’ = (T',<',S', L', E') as
well.

Proof. Let B = (W,d, AP,... ,(P,...) realise S by means of amap p: T — W
and let S’ be obtained from S using some rule R. We consider only two rules,
R = Rg< and R = Ra<, and and leave the remaining cases to the reader.
Re<: Suppose that ES?C' € S(z), T' = TU{y}, L'({x,y}) = a, <'=< U{(z,y)},
and S(y) = {C}. We know that p(x) € (ES*C)®. So we can find v € W such that
d(p(z),v) < a and v € C®. Define a map p' : T' — W by taking p'(z) = p(2)
for all z € T and p’(y) = v. It should be clear that 98 realises S’ my means of p’.
Ra<: Let A<¢C € S(z), v € T. Suppose that the rule is applied to some y € T'.
Consider three possible cases.

(1) If L°({z,y}) = a~ then d(p(z), p(y)) < a and S(y) = {C}US(y). We need
to show that p(y) € C®. But this follows immediately from p(x) € (A<¢C)®.

(i) If L°({y, #}) = b < a then d(p(x), p(y)) < band S(y) = {A<*~PCIUS(y).
To show that p(y) € (A<®~PC)®, take any v € W such that d(p(y),v) < a —b.
By the triangular inequality, we then have d(p(y),v) < a and so v € C'®.

(iii) The case of L°({y,z}) = b~ and b < a is considered similarly to (ii).

As a consequence of these two lemmas and Theorem 1 we obtain

Theorem 4. If X' is satisfiable, then there exists a complete clash-free constraint
system for X.

14 Carsten Lutz et al.

5 Undecidability

We show now that a rather natural and closer integration of distance quantifiers
and qualified number restrictions results in an undecidable logic. Denote by sim ¢
the language with the following concept formation rule:

Cu=A; | ;| ~C|CiNCy | CrUCy | ESC (<L),
where (<! .C) is interpreted in concept distance models B as follows
(<o -O)® ={zeW | |{y|d(z,y) <a,y e CT} <1}

Theorem 5. The satisfiability problem for sim ¢-knowledge bases in concept dis-
tance models is undecidable.

Proof. (sketch) We can simulate the undecidable N x N-tiling problem in almost
the same way as in the undecidability proof of [9] for the language MS; with

the operators AS?, AZ0 and their duals: just replace everywhere in the proof of

Theorem 3.1 the concept AZ3 —;; by the concept (<iy i)

6 Conclusion

We have introduced the description-metric logic sim-ALCQQO for defining con-
cepts based on similarity measures, and have proposed a tableau algorithm for
deciding the satisfiability of sim-ALC QO-knowledge bases. This algorithm uni-
fies the tableau algorithms for SHOQ (a superlogic of ALCQQO) presented in
[5] and for the logic of metric spaces MS as defined in [13]. Tt is of interest
to note that, in contrast to what is done in [13], we need a different soundness
proof, since the presence of number restrictions prohibits the use of filtration
techniques.

We regard the presented logic only as a first step towards DLs that allow
definitions of concepts based on similarity measures. Although we believe that
the expressive power provided by sim-ALCQQO is quite natural and useful, an
in-depth investigation of the expressive means that are useful for defining vague
concepts are in order. Some possible extensions of sim-ALC QO are the following:

(1) New constructors ES*R.C' and A<®R.C, where the former expresses that
there exists an R-successor at distance smaller than a satisfying C, and the
latter is its dual. Such constructors would, e.g., allow us to say that a person is
very similar to his father: E<?>parent.Male. The presented algorithm should be
extendable to this case without any problems.

(2) New constructors E>?C' and EZ*C' (and their duals) with the obvious se-
mantics. Although these constructors do not seem to be so natural as the vari-
ants based on < and <, they could, e.g., be used to express that a propo-
typical tableau algorithm pta is very close to all other tableau algorithms:
pta : A>9-5—Tableau_algorithm. While [9] proves the decidability of the metric
logic with the operators ES*C' and E>®C' (and their duals), nothing is currently
known about the extension of MS with all four possible constructors.

Lecture Notes in Computer Science 15

Acknowledgements:

The work of the second author was supported by Deutsche Forschungsgemein-
schaft (DFG) grant Wo583/3-3. The work of the third author was partially
supported by U.K. EPSRC grants no. GR/R45369/01 and GR/R42474/01.

References

1.

2.

10.

11.

12.

13.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2003.

F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics and
abstract description systems. J. of Artificial Intelligence Research, 16:1-58, 2002.
K. Fine and G. Schurz. Transfer theorems for stratified modal logics. In
J. Copeland, editor, Logic and Reality, Essays in Pure and Applied Logic. In mem-
ory of Arthur Prior, pages 169-213. Oxford University Press, 1996.

I. Horrocks and P. Patel-Schneider. The generation of DAML+OIL. In C. Goble,
D. McGuinness, R. Méller, and P. Patel-Schneider, editors, Proceedings of the Inter-
national Workshop in Description Logics 2001 (DL2001), number 49 in CEUR-WS
(http://ceur-ws.org/), pages 30-35, 2001.

I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description
logic. In B. Nebel, editor, Proceedings of the 17th International Joint Conference
on Artificial Intelligence (IJCAI'01), pages 199-204. Morgan Kaufmann, 2001.

I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the de-
scription logic SHZQ. In D. MacAllester, editor, Proc. of the 17th International
Conference on Automated Deduction (CADE-17), number 1831 in LNCS. Springer,
2000.

I. Horrocks, P. Patel-Schneider, and F. van Harmelen. Reviewing the design of
DAML+OIL: An ontology language for the semantic web. In Proceedings of the
18th National Conference on Artificial Intelligence (AAAT 2002), 2002.

M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal
logics. J. Symbolic Logic, 56:1469-1485, 1991.

0. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Logics of
metric spaces. ACM Transactions on Computational Logic, 2003. In print.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48:1-26, 1991.

E. Spaan. Complezxity of Modal Logics. PhD thesis, Department of Mathematics
and Computer Science, University of Amsterdam, 1993.

F. Wolter. Fusions of modal logics revisited. In M. Kracht, M. De Rijke, H. Wans-
ing, and M. Zakharyaschev, editors, Advances in Modal Logic, volume 1, pages
361-379. CSLI, Stanford, 1997.

F. Wolter and M. Zakharyaschev. Reasoning about distances. To appear in Proc.
TIJCAT 2003.

