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Abstra
t. We present a tableau-based de
ision pro
edure for the fusion

(independent join) of the expressive des
ription logi
 ALCQO and the

logi
 MS for reasoning about distan
es and similarities. The resulting

`hybrid' logi
 allows both pre
ise and approximate representation of and

reasoning about 
on
epts. The tableau algorithm 
ombines the existing

tableaux for the 
omponents and shows that the tableau te
hnique 
an

be fruitfully applied to fusions of logi
s with nominals|the 
ase in whi
h

no general de
idability transfer results for fusions are available.

1 Introdu
tion

Undoubtedly, there will 
ome a day when, to attra
t submissions, organisers will

be trying to annotate their 
onferen
e sites with ma
hine readable information.

Imagine, for instan
e, that we want to do this now for Tableaux 2003. Choosing a

formalism for representation of and reasoning about the terminology used in the

Tableaux 2003 site, we may naturally try the des
ription logi
 ALCQO under-

lying the DAML+OIL language of the semanti
 web [7, 1℄. Then we start with

a de�nition of tableau-style algorithms and, as a �rst attempt, write something

like this:

Tableau style algorithm = Algorithm u 9
omprises:Rule; (y)

saying that tableau-style algorithms are pre
isely those algorithms that are

equipped with rules. Well, it seems unlikely that any potential parti
ipant of

Tableaux 2003 would be happy with this provo
ative de�nition (a

ording to

whi
h almost all reasoning pro
edures may be 
alled tableau-based). Then how

to improve it? Do we really have a good, 
lear and 
on
ise de�nition (whi
h is

better than `lots of rules, but few axioms')? How 
an we represent in ALCQO

many other `vague' 
on
epts from the site, su
h as `related te
hniques,' `related

methods,' `new 
al
uli,' et
.?
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One of the possible solutions to these problems is to introdu
e a similarity

measure between the obje
ts of the appli
ation domain|in our 
ase the reason-

ing pro
edures (whi
h 
an be based on 
ommon sense, or de�ned by an expert, or

automati
ally generated using 
ertain algorithms). Then, by taking a role name

similar to degree � 1, we 
ould say, for instan
e, that tableau-style algorithms

are similar to degree � 1 to at least one of the prototypi
al tableau algorithms

ta

1

; : : : ; ta

7

. However, this approa
h is in 
on
i
t with the expressive 
apabili-

ties of standard des
ription logi
s (DLs) su
h as ALC or DAML+OIL be
ause

usually similarity measures are supposed to satisfy a number of natural axioms

like the axioms of metri
 spa
es, in parti
ular, a sort of `triangular inequality'

whi
h is not expressible in standard DLs.

The main idea of this paper is not to extend the family of DLs by intro-

du
ing a new one, but rather to 
ombine the existing knowledge representation

formalisms, viz.,

{ the standard des
ription logi
 ALCQO|i.e., the basi
 DL ALC extended

with quali�ed number restri
tions, nominals and general TBoxes [5℄, and

{ the logi
 MS [13℄ for reasoning about metri
 spa
es

4

in order to a
hieve the desirable expressivity.

To illustrate the expressive power of the resulting `hybrid' logi
 sim-ALCQO,

we show how one 
an further `approximate' the de�nition of tableau-style algo-

rithms. First, we add to the right-hand side of (y) the 
onjun
t

E

�1

(ta

1

t � � � t ta

7

)

whi
h is an MS-formula saying that tableau-style algorithms should be similar

to degree � 1 to at least one of ta

1

; : : : ; ta

7

. If this `positive information' is still

not enough, one 
an add some `negative' bit. For example, it may be natural to

say that tableau-style algorithms are neither similar to degree � 0:5 to a 
ertain

Hilbert-style algorithm ha, nor similar to degree � 0:5 to any resolution-based

de
ision pro
edure:

:E

�0:5

ha u :E

�0:5

Resolution based algorithm:

Of 
ourse, the individual algorithms su
h as ha 
an also be des
ribed by means

of 
on
epts, possibly involving similarity measures:

ha : Algorithm u :9feature:Termination u A

�0:5

(9
omprises:Modus ponens)

(i.e., ha does not ne
essarily terminate and all � 0:5 similar algorithms use a

kind of modus ponens as one of their inferen
e rules). It may seem more natural

to spe
ify similarity in terms of a �nite set of symboli
 similarity measures

su
h as `
lose' and `far' rather than in terms of rational numbers as above. In

4

This metri
 logi
 di�ers 
onsiderably from the metri
 logi
s investigated in [9℄. Here

we quantify over open and 
losed `balls,' while in [9℄ over 
losed balls and their


omplements. The expressive power of the two languages is, therefore, in
omparable.



Le
ture Notes in Computer S
ien
e 3

our approa
h, however, the user is free to 
hoose either option: one may �x a

rational number for ea
h symboli
 similarity measure, say, 1 for `
lose' and 10

for `far' (or the other way round), and then work with the symboli
 names.

In this paper, we provide a tableau-style de
ision pro
edure for the new logi


sim-ALCQO. Te
hni
ally, this logi
 is the fusion (or independent join) [8, 3℄ of

ALCQO andMS. We believe that this is a reasonable starting point, sin
e many

similarity measures are indeed metri
, and our approa
h without any problems


an be adapted to similarity measures whi
h do not satisfy all of the axioms

of metri
 spa
es. Moreover, we 
an easily extend sim-ALCQO and the tableau

algorithm with additional similarity measures (say, between inferen
e rules).

In our opinion, sim-ALCQO provides just the right 
ompromise between

expressive power and 
omputational 
ost:

(1) In sim-ALCQO, we 
an mix 
onstru
tors of ALCQO and MS in order

to de�ne 
on
epts based on similarity measures as illustrated above. Moreover,

as our tableau algorithm shows, reasoning in sim-ALCQO is de
idable. It is of

interest to 
ontrast this with the fa
t that a tighter 
oupling of ALCQO and

MS leads to unde
idability: as we also show, the extension ofMS with quali�ed

number restri
tions su
h as `there exists at most 1 point x with property P within

distan
e � 1' results in an unde
idable logi
. Therefore, the fusion of the two

formalisms seems to be a good starting point for investigating the intera
tion

between 
on
epts and similarity measures.

(2) Although there exists a number of general results regarding the transfer

of de
idability from the 
omponents of a fusion to the fusion itself [8, 3, 12, 2, 11℄,

these results do not apply to logi
s with nominals (atomi
 
on
epts interpreted

as singleton sets) su
h as ALCQO. In fa
t, no transfer result is available from

whi
h we 
ould derive the de
idability of sim-ALCQO using the de
idability

of both ALCQO and MS. Despite the fa
t that they are not appli
able, it is

of interest to note that our algorithm has an important advantage over general

approa
hes to proving de
idability: stru
turally, it is very similar to the tableau

algorithms for SHIQ and SHOQ proposed in [6, 5℄. Sin
e these algorithms have

turned out to be implementable in eÆ
ient reasoning systems, we do hope that

our algorithm shares this attra
tive property as well.

The paper is organised as follows: in Se
tion 2, we introdu
e the des
ription

logi
 sim-ALCQO. In Se
tion 3, we des
ribe the tableau algorithm for de
id-

ing the satis�ability of sim-ALCQO-knowledge bases, whose 
orre
tness is then

proved in Se
tion 4. Se
tion 5 is 
on
erned with the unde
idability of MS ex-

tended with qualifying number restri
tions. A version of this paper with detailed

proofs is available at http://www.
s
.liv.a
.uk=

�

frank.

2 The logi
 sim-ALCQO

In this se
tion, we introdu
e the 
ombined logi
 sim-ALCQO. The alphabet for

forming 
on
epts and assertions 
onsists of the following elements:

{ a 
ountably in�nite list of 
on
ept names A

1

; A

2

; : : : ;
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{ a 
ountably in�nite list of obje
t names `

1

; `

2

; : : : ;

{ binary distan
e (Æ), equality (=) and membership (:) predi
ates ;

{ the Boolean operators u, t, :;

{ two distan
e quanti�ers E

<a

, E

�a

and their duals A

<a

, A

�a

, for every posi-

tive rational number a (i.e., a 2 Q

+

);

{ role names R

1

; R

2

; : : : ;

{ quali�ed number restri
tions (� nR:C) and (� nR:C), for every natural n,

every role name R, and every 
on
ept C.

Using this alphabet, sim-ALCQO-
on
epts are de�ned by the formation rule:

C ::= A

i

j `

i

j :C j C

1

u C

2

j C

1

t C

2

j E

<a

C j E

�a

C j A

<a

C j

j A

�a

C j (� nR

i

:C) j (� nR

i

:C):

As usual, we write > as an abbreviation for an arbitrary propositional tautology,

? for :>, 9R:C for (� 1R:C), and 8R:C for (� 0R::C). At �rst sight, it

may seem strange to have both stri
t and non-stri
t versions of the E and A


onstru
tors available for talking about similarity measures. Note, however, that

this allows us to de�ne the 
on
ept E

�a

C u :E

<a

C whi
h states that the most

similar obje
t from C is lo
ated pre
isely at distan
e a. Obje
t names o

urring

in 
on
epts will also be 
alled nominals.

Now we de�ne sim-ALCQO-assertions as expressions of the following forms:

{ ` : C, where ` is an obje
t name and C a 
on
ept;

{ C

1

= C

2

, where C

1

and C

2

are 
on
epts;

{ Æ(k; `) < a, Æ(k; `) � a, Æ(k; `) > a, Æ(k; `) � a, where k, ` are obje
t names

and a 2 Q

+

.

Assertions of the third form are 
alled distan
e assertions. A sim-ALCQO-

knowledge base is a �nite set of sim-ALCQO-assertions.

Observe that knowledge bases subsume both general TBoxes and ABoxes. In

parti
ular, the rather 
ommon ABox assertions of the form (`

1

; `

2

) : R, where `

1

and `

2

are obje
t names and R a role name, 
an be viewed as abbreviations for

`

1

: 9R:`

2

.

The semanti
s of sim-ALCQO-
on
epts is a blend of the semanti
s of the

logi
 of metri
 spa
es [13℄ and the usual set-theoreti
 semanti
s of des
ription

logi
s. A 
on
ept-distan
e model (a CD-model, for short) is a stru
ture of the

form

B =




W;d;A

B

1

; A

B

2

; : : : ; R

B

1

; R

B

2

; : : : ; `

B

1

; `

B

2

: : :

�

;

where hW;di is a metri
 spa
e with a distan
e fun
tion d satisfying, for all

x; y; z 2 W , the axioms

d(x; y) = 0 i� x = y; (1)

d(x; z) � d(x; y) + d(y; z); (2)

d(x; y) = d(y; x); (3)
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the A

B

i

are subsets of W , the R

B

i

are binary relations on W , and the `

B

i

are

singleton subsets of W su
h that i 6= j implies `

B

i

6= `

B

j

.

The extension C

B

of a sim-ALCQO-
on
ept C is 
omputed indu
tively:

(C

1

u C

2

)

B

= C

B

1

\ C

B

2

; (C

1

t C

2

)

B

= C

B

1

[ C

B

2

; (:C)

B

=W � C

B

;

(E

�a

C)

B

= fx 2W j 9y 2 W

�

d(x; y) � a ^ y 2 C

B

�

g;

(E

<a

C)

B

= fx 2W j 9y 2 W

�

d(x; y) < a ^ y 2 C

B

�

g;

(A

�a

C)

B

= fx 2W j 8y 2 W

�

d(x; y) � a ! y 2 C

B

�

g;

(A

<a

C)

B

= fx 2W j 8y 2 W

�

d(x; y) < a ! y 2 C

B

�

g;

(� nR:C)

B

= fx 2W j

�

�

fy 2 W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng;

(� nR:C)

B

= fx 2W j

�

�

fy 2 W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng:

We still have to spe
ify when a CD-model satis�es a sim-ALCQO-assertion: the

truth-relation j= between CD-models B and assertions ' is de�ned as follows:

{ B j= ` : C i� `

B

� C

B

,

{ B j= C

1

:

= C

2

i� C

B

1

= C

B

2

,

{ B j= Æ(k; `) � a i� d(k

B

; `

B

) � a,

{ B j= Æ(k; `) < a i� d(k

B

; `

B

) < a, and similar for � and >.

Finally, a sim-ALCQO-knowledge base � is 
alled satis�able if there exists a

CD-model B su
h that B j= ' for all ' 2 �. In this 
ase we write B j= �.

Note that we make the unique name assumption (UNA), i.e., di�erent obje
t

names denote distin
t domain elements. The sole purpose of this assumption is

to allow a 
learer presentation of our tableau algorithm. It is, however, easily seen

that the UNA has no in
uen
e on de
idability, and that our tableau algorithm


an be extended to deal with sim-ALCQO without UNA.

3 The tableau algorithm

Now we present a sound, 
omplete and terminating algorithm for 
he
king the

satis�ability of sim-ALCQO-knowledge bases. In fa
t, it is a (labelled) tableau

algorithm that generalises the existing tableau algorithms for metri
 logi
s [13℄

and for the des
ription logi
 ALCQO [5℄. Before formulating the algorithm and

proving its 
orre
tness, we introdu
e some notations and auxiliary de�nitions.

Supose we are given a sim-ALCQO-knowledge base �. Denote by 
on(�)

the set of 
on
epts o

urring in � (in
luding all sub
on
epts), by rol(�) the set

of role names o

urring in �, by par(�) the set of rational numbers o

urring in

� (either in E/A 
on
epts or in distan
e assertions), and by ob(�) we denote the

set of obje
t names o

urring in �. Without loss of generality, we may assume

that neither par(�) nor ob(�) are empty: if this is not the 
ase, we 
an always

add an assertion ` : A

<a

> with a fresh obje
t name `. To simplify presentation,

it is 
onvenient to make three assumptions:
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(1) A 
on
ept C is in negation normal form (NNF ) if negation o

urs only

in front of 
on
ept names and nominals. Ea
h 
on
ept 
an be transformed into

an equivalent one in NNF by pushing negation inwards: for example, :E

<a

C

is equivalent to A

<a

:C. So, without loss of generality, we may assume that all


on
epts are in NNF. In what follows, we use _:C to denote the NNF of :C.

(2) We may also assume that knowledge bases 
ontain only assertions of the

form ` : C and C

:

= >. To see this, note �rst that distan
e assertions 
an be

expressed using nominals and distan
e quanti�ers:

Æ(k; `) < a is equivalent to k : E

<a

`; Æ(k; `) � a is equivalent to k : E

�a

`;

Æ(k; `) > a is equivalent to k : A

�a

:`; Æ(k; `) � a is equivalent to k : :A

<a

:`:

Assertions of the form C

1

:

= C

2


an be rewritten as (C

1

uC

2

)t( _:C

1

u _:C

2

)

:

= >.

(3) Without loss of generality, we may assume that par(�) 
ontains only

natural numbers: given a knowledge base � with par (�) � Q

+

, we may repla
e

every element q of par (�) with q � x, where x is the least 
ommon multiple of

the denominators of all elements of par (�). It is then straightforward to show

that any CD-model of the resulting knowledge base 
an be 
onverted into a

CD-model of � and vi
e versa.

We use �

�

to denote the largest natural number that o

urs in par (�) and

M [�℄ to denote the smallest set satisfying the following 
onditions:

{ par (�) �M [�℄;

{ if a; b 2M [�℄ and a+ b < �

�

, then a+ b 2M [�℄;

{ if a; b 2M [�℄ and a� b > 0, then a� b 2M [�℄.

Having started on the input knowledge base � (in the form des
ribed above),

the tableau algorithm 
onsiders only 
ertain `relevant' 
on
epts. More pre
isely,

we de�ne the 
losure 
l(�) of � to be the (�nite) set of 
on
epts


on(�) [ f _:C j C 2 
on(�)g [

fA

<a

C;A

�a

C j a 2M [�℄ and 9b � a fA

�b

C;A

<b

Cg \ 
on(�) 6= ;g:

Similar to the set 
l(�) of relevant 
on
epts, M [�℄ des
ribes the set of relevant

numbers. However, the numbers inM [�℄ are not enough: to distinguish between

`� a' and `< a,' we require some additional symbols that will be used in the same

way as numbers, namely,M [�℄

�

= fa

�

j a 2M [�℄g. De�ne a stri
t linear order

� on M [�℄ [M [�℄

�

by setting

a

�

1

� a

1

� a

�

2

� a

2

� � � � � a

�

n

� a

n

;

where a

1

< a

2

< � � � < a

n

.

We are in a position now to des
ribe our tableau algorithm. Starting with

�, it operates on 
onstraint systems S = hT;<;L; S;Ei, where

{ hT;<i is a forest whose set of roots 
oin
ides with ob(�);
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{ S is a node labelling fun
tion whi
h asso
iates with ea
h x 2 T a set

S(x) � 
l(�) [ f(R; `); (a; `); (a

�

; `) j ` 2 ob(�); R 2 rol(�); a 2M [�℄g;

{ L is a labelling fun
tion whi
h asso
iates with ea
h pair x; y 2 T su
h that

x < y either a role name or a number from M [�℄, or a symbol from M [�℄

�

;

{ E is a set of inequalities between members of T .

Intuitively, we have x < y if either x and y are related by some role R or the

distan
e between x and y is known to be smaller than some value from M [�℄.

The purpose of the extra elements (R; `) and (a; `) in node labels is to represent

additional edges that lead to nominals (roots in the forest), and whose expli
it

representation would destroy the forest stru
ture.

The algorithm starts with S

0

= hT

0

; <

0

; L

0

; S

0

; E

0

i, the initial 
onstraint

system for �, where

{ T

0

= ob(�),

{ S

0

(`) = f`g [ fC j ` : C 2 �g, for every ` 2 ob(�),

{ E

0

= f` 6= `

0

j ` 6= `

0

; `; `

0

2 ob(�)g, and

{ <

0

= L

0

= ;.

Before des
ribing the 
ompletion rules, we introdu
e some simplifying notation

required to deal with edges represented via node labels. We write L(x; y) = a

to express that either x < y and L(x; y) = a or that a is the �-minimum

of f
 j (
; y) 2 S(x)g.

5

To a

ount for the fa
t that, for some rules, it is not

important whether a node is a prede
essor or a su

essor, we write L

o

(fx; yg) = a

if a is the �-minimum of fL(x; y); L(y; x)g. Finally, for a role name R, we say

that y is an R-su

essor of x if either x < y and L(x; y) = R or (R; y) 2 S(x).

The 
ompletion rules are shown in Fig. 1. Constraint systems obtained by

applying the 
ompletion rules to the initial 
onstraint system for � will be


alled 
onstraint systems for �. The terms `blo
ked' and `indire
tly blo
ked' in

the rule premises refer to a 
y
le dete
tion me
hanism that is needed to ensure

termination of the algorithm. Before dis
ussing the 
ompletion rules in more

detail, let us formally introdu
e this me
hanism. The general idea is that we

stop the expansion of node labels if a node is labelled with exa
tly the same set

of 
on
epts as one of its <-an
estors. This simple approa
h works perfe
tly well,

but it is not the most sensible thing we 
an do: the problem is that, due to the

`extra' 
on
epts A

<a

C and A

�a

C, the size of 
l(�) is exponential in the size of

� rather than polynomial, and thus paths of the forest may grow to a length

doubly exponential in � before the blo
king o

urs. Fortunately, this worst 
ase


an be avoided. When 
omparing node labels to 
he
k for a blo
king situation, it

is not ne
essary to take into a

ount all of the extra A

<a

C and A

�a

C 
on
epts:

if, for example, we �nd A

�a

C 2 S(x), then it is 
lear that the obje
t x also

satis�es the 
on
epts A

�b

C for all b � a, even if they do not expli
itly appear

in the node label S(x). This observation leads to the following, re�ned variant

of blo
king.

5

This gives a well-de�ned value for L(x; y), as (
; y) 2 S(x) implies that y is a root.
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For a node x 2 T , we use S

�

(x) to denote the set of 
on
epts C 2 S(x) su
h

that one of the following 
onditions is satis�ed:

1. C is not of the form A

<a

D or A

�a

D;

2. C is of the form A

�a

D and there is no b > a su
h that A

�b

D 2 S(x);

3. C is of the form A

<a

D and there is no b > a su
h that A

<b

D 2 S(x).

Denote by <

+

the transitive 
losure of <. We say that a node x 2 T is dire
tly

blo
ked by a node y if y <

+

x, S

�

(x) = S

�

(y), but for no distin
t u <

+

x and

v <

+

x do we have S

�

(u) = S

�

(v). The <

+

-su

essors of dire
tly blo
ked nodes

are 
alled indire
tly blo
ked. All dire
tly or indire
tly blo
ked nodes 
omprise the

set of blo
ked nodes. Observe that the elements (R; `) and (a; `) of node labels

are not taken into a

ount for blo
king.

Note that this blo
king 
ondition 
an be re�ned even further by taking into

a

ount impli
ations between A

�a

C and A

<b

C 
on
epts. We prefer to work

with the above variant, sin
e it suÆ
es to restri
t paths in forests to exponential

length, and the more elaborate version makes proofs rather unreadable due to

many additional 
ase distin
tions.

Let us now return to the 
ompletion rules. In what follows we assume that

a rule 
an be applied to a tableau only if the tableau is 
hanged. Su
h a rule

will be 
alled appli
able to the tableau. The tableau algorithm applies the rules

until either the obtained 
onstraint system 
ontains an obvious 
ontradi
tion or

no more rules are appli
able. To be more pre
ise, say that a 
onstraint system S


ontains a 
lash if it 
ontains a node x su
h that one of the following 
onditions

hold:

1. fA; _:Ag � S(x), for some 
on
ept name A;

2. f`;:`g � S(x) for some obje
t name `;

3. `

0

2 S(`) for some obje
t names `

0

6= `;

4. (x 6= x) 2 E;

5. for some R, (� nR:C) 2 S(x) and there are n+1 R-su

essors y

0

; : : : ; y

n

of

x with C 2 L(y

i

), for ea
h 0 � i � n and y

i

6= y

j

2 E for ea
h 0 � i < j � n.

A 
onstraint system S is 
omplete if it either 
ontains a 
lash or none of the

rules in Fig. 1 is appli
able to S.

4 Termination, soundness and 
ompleteness

We show now that the tableau algorithm above always terminates, is sound

(i.e., if there is a 
omplete and 
lash-free 
onstraint system for �, then � is

satis�able), and 
omplete (i.e., if � is satis�able, then the tableau algorithm

eventually su

eeds in �nding a 
omplete and 
lash-free 
omplete system).

Termination

Theorem 1. Any sequen
e of appli
ations of tableau rules to the initial 
on-

straint system for � terminates after �nitely many steps.
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R

u

If C

1

u C

2

2 S(x) and x is not indire
tly blo
ked,

then set S(x) := S(x) [ fC

1

; C

2

g.

R

t

If C

1

t C

2

2 S(x) and x is not indire
tly blo
ked,

then set either S(x) := S(x) [ fC

1

g or S(x) := S(x) [ fC

2

g.

R

=

If C = > 2 � and x is not indire
tly blo
ked, then set S(x) := S(x) [ fCg.

R

A

If A

<a

C 2 S(x) or A

�a

C 2 S(x) and x is not indire
tly blo
ked,

then set S(x) := S(x) [ fCg.

R

A

< Let A

<a

C 2 S(x) and x is not indire
tly blo
ked. Then:

if L

o

(fy; xg) = a

�

, then set S(y) := fCg [ S(y);

if L

o

(fy; xg) = b < a, then set S(y) := fA

<a�b

Cg [ S(y);

if L

o

(fy; xg) = b

�

with b < a, then set S(y) := fA

�a�b

Cg [ S(y).

R

A

�

Let A

�a

C 2 S(x), L

o

(fy; xg) 2 fb; b

�

g and x is not indire
tly blo
ked. Then:

if b = a, then set S(y) := fCg [ S(y);

if b < a, then set S(y) := fA

�a�b

Cg [ S(y).

R

E

< If E

<a

C 2 S(x), x is not blo
ked, and

L(x; y) =2 fb j b < ag [ fb

�

j b � ag for any y with C 2 S(y),

then 
reate a new node y > x and set L(x; y) := a

�

and S(y) := fCg.

R

E

�

If E

�a

C 2 S(x), x is not blo
ked and

L(x; y) =2 fb j b � ag [ fb

�

j b � ag for any y with C 2 S(y),

then 
reate a new node y > x and set L(x; y) := a and S(y) := fCg.

R


h

If f(� nR:C); (� nR:C)g \ S(x) 6= ;, x is not blo
ked and y is an

R-su

essor of x, then set S(y) := S(y) [ fCg or S(y) = S(y) [ f _:Cg.

R

�

If (� nR:C) 2 S(x), x is not blo
ked, and there are no R-su

essors y

1

; : : : ; y

n

with C 2 S(y

i

) and y

i

6= y

j

2 E, for all i 6= j, then take new y

1

> x; : : : ; y

n

> x

and set L(x; y

i

) := R, S(y

i

) := fCg, E := E [ fy

i

6= y

j

j 1 � i < j � ng.

R

�

If (� nR:C) 2 S(x), x is not blo
ked, has n+ 1 R-su

essors y

0

; : : : ; y

n

with C 2 S(y

i

) for all i, and, for some i; j � n, y

i

6= y

j

62 E and y

j

62 ob(�),

then set E := E [ fy 6= y

i

j y 6= y

j

2 Eg, S(y

i

) := S(y

i

) [ S(y

j

),

S(x) := S(x) [ f(R

0

; `) j R

0

= L(x; y

j

)g, if y

i

= ` 2 ob(�),

and �nally delete y

j

and all z with y

j

<

+

z from T .

R

`

If ` 2 S(x), x 62 ob(�), and x is not indire
tly blo
ked,

Then set S(`) := S(`) [ S(x), and, for every y,

S(y) := S(y) [ f(
; `) j 
 = L(y; x) or 
 = R a role and x an R-su

essor of yg,

E := E [ fy 6= ` j y 6= x 2 Eg, and delete x and all z with x <

+

z from T .

Fig. 1. Tableau rules.
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Proof. Let m

0

= j
on(�)j and m

q

be the maximal number o

urring in quali�ed

number restri
tions of �. Termination follows from the following �ve observa-

tions.

(1) Ea
h rule ex
ept R

�

and R

`

stri
tly extends the 
onstraint system. More-

over, neither R

`

nor R

�

removes 
on
epts from nodes.

(2) None of the generating rules R

E

<

, R

E

�

, R

�


an be applied more than on
e

to a given node and a given 
on
ept.

Suppose that R

E

<

is applied to a node x, generates y with x < y and updates

L(x; y) = a

�

and S(y) = fCg. The only reason why R

E

<


ould be applied on
e

again to x and E

<a

C is that later on y is removed by an appli
ation of R

�

or

R

`

. However, unless x is removed (in this 
ase the 
laim is trivial) y 
annot be

removed by an appli
ation of R

�

be
ause we do not �nd a z and a role R with

R = L(z; y). Suppose y is removed by an appli
ation of R

`

be
ause ` 2 S(y).

Then, after the appli
ation of R

`

, we have (a

�

; `) 2 S(x) and C 2 S(`), sin
e

a

�

= L(x; y). But then, sin
e a node of the form ` is never removed, the rule

R

E

<

is not appli
able to x and E

<a

C afterwards. The rule R

E

�
is 
onsidered

analogously.

Suppose that R

�

is applied to a node x, generates y

1

; : : : ; y

n

with x < y

i

and

updates L(x; y

i

) = R, S(y

i

) = fCg, and E = E [ fy

i

6= y

j

j 1 � i < j � ng.

Now, whenever some y

j

is removed by R

�

or R

`

and x is not removed, after the

removal of y

j

we still have n R-su

essors z

1

; : : : ; z

n

of x su
h that C 2 S(z

i

),

E � fz

i

6= z

j

j 1 � i < j � ng. So, R

�

is not applied to x after su
h a removal.

(3) The out-degree of the forest 
onstru
ted using the tableaux rules is

bounded by m

0

+ m

q

� m

0

. This follows from (2) and the fa
t that nodes are

labelled with subsets of the set


l(�) [ f(R; `); (a; `); (a

�

; `) j ` 2 ob(�); R 2 rol(�); a 2M [�℄g:

(4) If a node x is removed, then all z with x <

+

z are removed as well

(5) No <-bran
h in any 
onstraint system for � 
an ever be of length ex-


eeding 2

m

0

� jM [�℄j

2

, sin
e no node introdu
ing rule 
an be applied to a node

x su
h that S

�

(y) = S

�

(z) for two distin
t y; z � x.

Soundness

Before proving the soundness of the tableau algorithm, we introdu
e a relational

semanti
s for sim-ALCQO. This semanti
s 
omprises, for ea
h a 2 M [�℄, ad-

ditional binary relations R

a

and S

a

su
h that, intuitively, we have uR

a

v if the

distan
e between u and v is at most a, and uS

a

v if the distan
e between u and

v is less than a. Formally, a Kripke model for � is a stru
ture of the form

M =




W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

satisfying, for all u; v; w 2W and all a; b 2M [�℄, the following 
onditions:

(S1

R

) if uR

a

v and a � b, then uR

b

v,

(S2

R

) uR

a

v i� vR

a

u,
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(S3

R

) uR

a

u,

(S4

R

) if uR

a

v, vR

b

w and a+ b 2M [�℄, then uR

a+b

w,

(S1

S

) if uS

a

v and a � b, then uS

b

v;

(S2

S

) uS

a

v i� vS

a

u;

(S3

S

) uS

a

u,

(S4

S

) if uS

a

v, vS

b

w and a+ b 2M [�℄, then uS

a+b

w,

(C1) if uS

a

v then uR

a

v,

(C2) if uR

a

v and a < b, then uS

b

v,

(C3) if uR

a

v, vS

b

w and a+ b 2M [�℄, then uS

a+b

w,

(C4) if uS

a

v, vR

b

w and a+ b 2M [�℄, then uS

a+b

w.

The value C

M

of a 
on
ept C in M and the truth-relation M j= C

1

:

= C

2

are

de�ned in almost the same way as for CD-models: we only repla
e B with M

and de�ne the 
lauses for the distan
e quanti�ers as follows:

(E

�a

C)

M

= fx 2 W j 9y 2W

�

xR

a

y ^ y 2 C

M

�

g;

(E

<a

C)

M

= fx 2 W j 9y 2W

�

xS

a

y ^ y 2 C

M

�

g;

(A

�a

C)

M

= fx 2 W j 8y 2W

�

xR

a

y ! y 2 C

M

�

g;

(A

<a

C)

M

= fx 2 W j 8y 2W

�

xS

a

y ! y 2 C

M

�

g:

The next theorem ensures that the alternative Kripke semanti
s is `equivalent'

to the original one.

Theorem 2. The knowledge base � is satis�able in a CD-model i� it is satis-

�able in a Kripke model for �.

Proof. ()) Suppose that � is satis�ed in a CD-model

B =




W;d;A

B

1

; : : : ; R

B

1

; : : : ; `

B

1

; : : :

�

:

De�ne a Kripke model

M =




W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

for � by taking, for a 2M [�℄,

{ A

M

i

= A

B

i

, `

M

i

= `

B

i

, and R

M

i

= R

B

i

;

{ xR

a

y i� d(x; y) � a;

{ xS

a

y i� d(x; y) < a.

It is not diÆ
ult to see thatM is a Kripke model for � and to prove by indu
tion

that C

M

= C

B

, for all C 2 
l(�). It follows that M satis�es �.

(() Suppose now that � is satis�ed in a Kripke model

M =




W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

for �. Let M [�℄ = fa

1

; : : : ; a

N

g with 0 < a

1

< a

2

< � � � < a

N

. Choose a

rational number 


�

> a

N

in su
h a way that there are no a

1

; a

2

2 M [�℄ with

a

N

< a

1

+ a

2

� 


�

. Let D be the minimal number in the set

M [�℄ [ fa

1

+ a

2

� 


�

j a

1

; a

2

2M [�℄� f


�

g & a

1

+ a

2

> 


�

g:
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Take some positive � <

D

2

N+1

. De�ne a fun
tion d : W � W ! R by taking

d(u; v) = 0 if u = v and otherwise

d(u; v) =

8

>

<

>

:




�

; if :9a 2M [�℄ uR

a

v,

a; if 9a 2M [�℄ (uR

a

v ^ :uS

a

v),

a

i

� 2

i

� �; if 9a

i

2M [�℄ (uS

a

i

v ^ 8j (0 < j < i! :uR

a

j

v)).

Consider the model

B =




W;d;A

B

1

; : : : ; R

B

1

; : : : ; `

B

1

; : : :

�

:

where A

B

i

= A

M

i

, R

B

i

= R

M

i

, and `

B

i

= `

M

i

for all i. One 
an show now that B

is a CD-model satisfying �.

Thus, it suÆ
es to prove soundness with respe
t to Kripke semanti
s.

Theorem 3. If there exists a 
omplete and 
lash-free 
onstraint system for �,

then � is satis�able in a Kripke model for �.

Proof. Suppose that S = hT;<; S; L;Ei is a 
omplete and 
lash-free 
onstraint

system for � that is obtained by repeatedly applying 
ompletion rules from

Fig. 1 to the initial 
onstraint system hT

0

; <

0

; S

0

; L

0

; E

0

i. We use this 
onstraint

system to 
onstru
t a Kripke model

M =




W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

satisfying �. Denote by T

i

the set of nodes from T that are not indire
tly (but

possible dire
tly) blo
ked. The domain W of M 
onsists of all sequen
es of the

form h`; x

1

; : : : ; x

k

i, where ` 2 ob(�) and x

1

; : : : ; x

k

2 T

i

(with k � 0) su
h that

` < x

1

and, for 1 � i < k, either (i) x

i

is unblo
ked and x

i

< x

i+1

or (ii) there

is a z su
h that z dire
tly blo
ks x

i

and z < x

i+1

. Role names R are interpreted

by setting

{ (h`

1

; x

1

; : : : ; x

k

i ; h`

2

i) 2 R

M

i� x

k

is not blo
ked and (R; `

2

) 2 S(x

k

), or

there exists z whi
h dire
tly blo
ks x

k

su
h that (R; `

2

) 2 S(z);

{ (h`; x

1

; : : : ; x

k

i ; h`; x

1

; : : : ; x

k+1

i) 2 R

M

i� one of the following holds:

� x

i

is not blo
ked, x

k

< x

k+1

, and L(x

k

; x

k+1

) = R;

� there is z whi
h dire
tly blo
ks x

k

, z < x

k+1

and L(z; x

k+1

) = R.

Given x = h`; x

1

; : : : ; x

k

i 2 W , let S(x) denote S(x

k

). We now de�ne the re-

lations R

a

and S

a

. Let R

a

be the set of pairs (x; y) 2 W �W su
h that, for

fu; vg = fx; yg, the following 
onditions are satis�ed:

(a) A

�a

C 2 S(u) implies C 2 S(v);

(b) A

�b

C 2 S(u) and b > a imply that A

�


C 2 S(v) for some 
 � b� a;

(
) A

<b

C 2 S(u) and b > a imply that A

<


C 2 S(v) or A

�


C 2 S(v) for some


 � b� a.

Similarly, S

a

is 
omprised of the pairs (x; y) 2 W �W su
h that, for fu; vg =

fx; yg, the following 
onditions are satis�ed:
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(d) A

<a

C 2 S(u) implies C 2 S(v);

(e) A

�b

C 2 S(u) and b > a imply that A

�


C 2 S(v) for some 
 � b� a;

(f) A

<b

C 2 S(u) and b > a imply that A

<


C 2 S(v) or A

�


C 2 S(v) for some


 � b� a.

For all ` 2 ob(�), we set `

M

= fh`ig. This is well-de�ned, sin
e no nominal is

removed from the tableau. Finally, for all 
on
ept names A

i

and x 2 W , we set

x 2 A

M

i

i� A

i

2 S(x). M is a Kripke models for � whi
h �. A proof of this


laim 
an be found in the full version of this paper.

Completeness

Let us say that a model B =




W;d;A

B

1

; : : : ; `

B

1

; : : :

�

realises a 
onstraint system

hT;<;L; S;Ei for � if B j= � and there exists a map � : T !W su
h that

{ C 2 S(x) implies �(x) 2 C

B

;

{ L

o

(fx; yg) = a 2M [�℄ implies d(�(x); �(y)) � a;

{ L

o

(fx; yg) = a

�

2M [�℄

�

implies d(�(x); �(y)) < a;

{ x 6= y 2 E implies �(x) 6= �(y);

{ if y is an R-su

essor of x, then (�(x); �(y)) 2 R

B

.

The following lemma is an immediate 
onsequen
e of the de�nitions:

Lemma 1. If a knowledge base � is satis�ed in a CD-model B, then the initial


onstraint system for � is realisable in B.

Lemma 2. Suppose that B realises a 
onstraint system S = hT;<;L; S;Ei for

� and a 
ompletion rule R is appli
able to S. Then R 
an be applied in su
h

a way that B realises the resulting 
onstraint system S

0

= hT

0

; <

0

; S

0

; L

0

; E

0

i as

well.

Proof. Let B =




W;d;A

B

1

; : : : ; `

B

1

; : : :

�

realise S by means of a map � : T !W

and let S

0

be obtained from S using some rule R. We 
onsider only two rules,

R = R

E

�

and R = R

A

<

, and and leave the remaining 
ases to the reader.

R

E

�
: Suppose that E

�a

C 2 S(x), T

0

= T [fyg, L

0

(fx; yg) = a, <

0

=< [f(x; y)g,

and S(y) = fCg. We know that �(x) 2 (E

�a

C)

B

. So we 
an �nd v 2W su
h that

d(�(x); v) � a and v 2 C

B

. De�ne a map �

0

: T

0

! W by taking �

0

(z) = �(z)

for all z 2 T and �

0

(y) = v. It should be 
lear that B realises S

0

my means of �

0

.

R

A

<

: Let A

<a

C 2 S(x), x 2 T . Suppose that the rule is applied to some y 2 T .

Consider three possible 
ases.

(i) If L

o

(fx; yg) = a

�

then d(�(x); �(y)) < a and S(y) = fCg[S(y). We need

to show that �(y) 2 C

B

. But this follows immediately from �(x) 2 (A

<a

C)

B

.

(ii) If L

o

(fy; xg) = b < a then d(�(x); �(y)) � b and S(y) = fA

<a�b

Cg[S(y).

To show that �(y) 2 (A

<a�b

C)

B

, take any v 2 W su
h that d(�(y); v) < a� b.

By the triangular inequality, we then have d(�(y); v) < a and so v 2 C

B

.

(iii) The 
ase of L

o

(fy; xg) = b

�

and b < a is 
onsidered similarly to (ii).

As a 
onsequen
e of these two lemmas and Theorem 1 we obtain

Theorem 4. If � is satis�able, then there exists a 
omplete 
lash-free 
onstraint

system for �.
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5 Unde
idability

We show now that a rather natural and 
loser integration of distan
e quanti�ers

and quali�ed number restri
tions results in an unde
idable logi
. Denote by sim

f

the language with the following 
on
ept formation rule:

C ::= A

i

j `

i

j :C j C

1

u C

2

j C

1

t C

2

j E

�a

C j (�

1

a

:C);

where (�

1

a

:C) is interpreted in 
on
ept distan
e models B as follows

(�

1

a

:C)

B

= fx 2W j

�

�

fy j d(x; y) � a; y 2 C

B

g

�

�

� 1g:

Theorem 5. The satis�ability problem for sim

f

-knowledge bases in 
on
ept dis-

tan
e models is unde
idable.

Proof. (sket
h) We 
an simulate the unde
idable N�N -tiling problem in almost

the same way as in the unde
idability proof of [9℄ for the language MS

1

with

the operators A

�a

, A

>0

�a

and their duals: just repla
e everywhere in the proof of

Theorem 3.1 the 
on
ept A

>0

�80

:�

i;j

by the 
on
ept (�

1

80

:�

i;j

).

6 Con
lusion

We have introdu
ed the des
ription-metri
 logi
 sim-ALCQO for de�ning 
on-


epts based on similarity measures, and have proposed a tableau algorithm for

de
iding the satis�ability of sim-ALCQO-knowledge bases. This algorithm uni-

�es the tableau algorithms for SHOQ (a superlogi
 of ALCQO) presented in

[5℄ and for the logi
 of metri
 spa
es MS as de�ned in [13℄. It is of interest

to note that, in 
ontrast to what is done in [13℄, we need a di�erent soundness

proof, sin
e the presen
e of number restri
tions prohibits the use of �ltration

te
hniques.

We regard the presented logi
 only as a �rst step towards DLs that allow

de�nitions of 
on
epts based on similarity measures. Although we believe that

the expressive power provided by sim-ALCQO is quite natural and useful, an

in-depth investigation of the expressive means that are useful for de�ning vague


on
epts are in order. Some possible extensions of sim-ALCQO are the following:

(1) New 
onstru
tors E

<a

R:C and A

<a

R:C, where the former expresses that

there exists an R-su

essor at distan
e smaller than a satisfying C, and the

latter is its dual. Su
h 
onstru
tors would, e.g., allow us to say that a person is

very similar to his father: E

<0:5

parent:Male. The presented algorithm should be

extendable to this 
ase without any problems.

(2) New 
onstru
tors E

>a

C and E

�a

C (and their duals) with the obvious se-

manti
s. Although these 
onstru
tors do not seem to be so natural as the vari-

ants based on < and �, they 
ould, e.g., be used to express that a propo-

typi
al tableau algorithm pta is very 
lose to all other tableau algorithms:

pta : A

>0:5

:Tableau algorithm. While [9℄ proves the de
idability of the metri


logi
 with the operators E

�a

C and E

>a

C (and their duals), nothing is 
urrently

known about the extension of MS with all four possible 
onstru
tors.
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