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Abstrat. We present a tableau-based deision proedure for the fusion

(independent join) of the expressive desription logi ALCQO and the

logi MS for reasoning about distanes and similarities. The resulting

`hybrid' logi allows both preise and approximate representation of and

reasoning about onepts. The tableau algorithm ombines the existing

tableaux for the omponents and shows that the tableau tehnique an

be fruitfully applied to fusions of logis with nominals|the ase in whih

no general deidability transfer results for fusions are available.

1 Introdution

Undoubtedly, there will ome a day when, to attrat submissions, organisers will

be trying to annotate their onferene sites with mahine readable information.

Imagine, for instane, that we want to do this now for Tableaux 2003. Choosing a

formalism for representation of and reasoning about the terminology used in the

Tableaux 2003 site, we may naturally try the desription logi ALCQO under-

lying the DAML+OIL language of the semanti web [7, 1℄. Then we start with

a de�nition of tableau-style algorithms and, as a �rst attempt, write something

like this:

Tableau style algorithm = Algorithm u 9omprises:Rule; (y)

saying that tableau-style algorithms are preisely those algorithms that are

equipped with rules. Well, it seems unlikely that any potential partiipant of

Tableaux 2003 would be happy with this provoative de�nition (aording to

whih almost all reasoning proedures may be alled tableau-based). Then how

to improve it? Do we really have a good, lear and onise de�nition (whih is

better than `lots of rules, but few axioms')? How an we represent in ALCQO

many other `vague' onepts from the site, suh as `related tehniques,' `related

methods,' `new aluli,' et.?
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One of the possible solutions to these problems is to introdue a similarity

measure between the objets of the appliation domain|in our ase the reason-

ing proedures (whih an be based on ommon sense, or de�ned by an expert, or

automatially generated using ertain algorithms). Then, by taking a role name

similar to degree � 1, we ould say, for instane, that tableau-style algorithms

are similar to degree � 1 to at least one of the prototypial tableau algorithms

ta

1

; : : : ; ta

7

. However, this approah is in onit with the expressive apabili-

ties of standard desription logis (DLs) suh as ALC or DAML+OIL beause

usually similarity measures are supposed to satisfy a number of natural axioms

like the axioms of metri spaes, in partiular, a sort of `triangular inequality'

whih is not expressible in standard DLs.

The main idea of this paper is not to extend the family of DLs by intro-

duing a new one, but rather to ombine the existing knowledge representation

formalisms, viz.,

{ the standard desription logi ALCQO|i.e., the basi DL ALC extended

with quali�ed number restritions, nominals and general TBoxes [5℄, and

{ the logi MS [13℄ for reasoning about metri spaes

4

in order to ahieve the desirable expressivity.

To illustrate the expressive power of the resulting `hybrid' logi sim-ALCQO,

we show how one an further `approximate' the de�nition of tableau-style algo-

rithms. First, we add to the right-hand side of (y) the onjunt

E

�1

(ta

1

t � � � t ta

7

)

whih is an MS-formula saying that tableau-style algorithms should be similar

to degree � 1 to at least one of ta

1

; : : : ; ta

7

. If this `positive information' is still

not enough, one an add some `negative' bit. For example, it may be natural to

say that tableau-style algorithms are neither similar to degree � 0:5 to a ertain

Hilbert-style algorithm ha, nor similar to degree � 0:5 to any resolution-based

deision proedure:

:E

�0:5

ha u :E

�0:5

Resolution based algorithm:

Of ourse, the individual algorithms suh as ha an also be desribed by means

of onepts, possibly involving similarity measures:

ha : Algorithm u :9feature:Termination u A

�0:5

(9omprises:Modus ponens)

(i.e., ha does not neessarily terminate and all � 0:5 similar algorithms use a

kind of modus ponens as one of their inferene rules). It may seem more natural

to speify similarity in terms of a �nite set of symboli similarity measures

suh as `lose' and `far' rather than in terms of rational numbers as above. In

4

This metri logi di�ers onsiderably from the metri logis investigated in [9℄. Here

we quantify over open and losed `balls,' while in [9℄ over losed balls and their

omplements. The expressive power of the two languages is, therefore, inomparable.
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our approah, however, the user is free to hoose either option: one may �x a

rational number for eah symboli similarity measure, say, 1 for `lose' and 10

for `far' (or the other way round), and then work with the symboli names.

In this paper, we provide a tableau-style deision proedure for the new logi

sim-ALCQO. Tehnially, this logi is the fusion (or independent join) [8, 3℄ of

ALCQO andMS. We believe that this is a reasonable starting point, sine many

similarity measures are indeed metri, and our approah without any problems

an be adapted to similarity measures whih do not satisfy all of the axioms

of metri spaes. Moreover, we an easily extend sim-ALCQO and the tableau

algorithm with additional similarity measures (say, between inferene rules).

In our opinion, sim-ALCQO provides just the right ompromise between

expressive power and omputational ost:

(1) In sim-ALCQO, we an mix onstrutors of ALCQO and MS in order

to de�ne onepts based on similarity measures as illustrated above. Moreover,

as our tableau algorithm shows, reasoning in sim-ALCQO is deidable. It is of

interest to ontrast this with the fat that a tighter oupling of ALCQO and

MS leads to undeidability: as we also show, the extension ofMS with quali�ed

number restritions suh as `there exists at most 1 point x with property P within

distane � 1' results in an undeidable logi. Therefore, the fusion of the two

formalisms seems to be a good starting point for investigating the interation

between onepts and similarity measures.

(2) Although there exists a number of general results regarding the transfer

of deidability from the omponents of a fusion to the fusion itself [8, 3, 12, 2, 11℄,

these results do not apply to logis with nominals (atomi onepts interpreted

as singleton sets) suh as ALCQO. In fat, no transfer result is available from

whih we ould derive the deidability of sim-ALCQO using the deidability

of both ALCQO and MS. Despite the fat that they are not appliable, it is

of interest to note that our algorithm has an important advantage over general

approahes to proving deidability: struturally, it is very similar to the tableau

algorithms for SHIQ and SHOQ proposed in [6, 5℄. Sine these algorithms have

turned out to be implementable in eÆient reasoning systems, we do hope that

our algorithm shares this attrative property as well.

The paper is organised as follows: in Setion 2, we introdue the desription

logi sim-ALCQO. In Setion 3, we desribe the tableau algorithm for deid-

ing the satis�ability of sim-ALCQO-knowledge bases, whose orretness is then

proved in Setion 4. Setion 5 is onerned with the undeidability of MS ex-

tended with qualifying number restritions. A version of this paper with detailed

proofs is available at http://www.s.liv.a.uk=

�

frank.

2 The logi sim-ALCQO

In this setion, we introdue the ombined logi sim-ALCQO. The alphabet for

forming onepts and assertions onsists of the following elements:

{ a ountably in�nite list of onept names A

1

; A

2

; : : : ;
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{ a ountably in�nite list of objet names `

1

; `

2

; : : : ;

{ binary distane (Æ), equality (=) and membership (:) prediates ;

{ the Boolean operators u, t, :;

{ two distane quanti�ers E

<a

, E

�a

and their duals A

<a

, A

�a

, for every posi-

tive rational number a (i.e., a 2 Q

+

);

{ role names R

1

; R

2

; : : : ;

{ quali�ed number restritions (� nR:C) and (� nR:C), for every natural n,

every role name R, and every onept C.

Using this alphabet, sim-ALCQO-onepts are de�ned by the formation rule:

C ::= A

i

j `

i

j :C j C

1

u C

2

j C

1

t C

2

j E

<a

C j E

�a

C j A

<a

C j

j A

�a

C j (� nR

i

:C) j (� nR

i

:C):

As usual, we write > as an abbreviation for an arbitrary propositional tautology,

? for :>, 9R:C for (� 1R:C), and 8R:C for (� 0R::C). At �rst sight, it

may seem strange to have both strit and non-strit versions of the E and A

onstrutors available for talking about similarity measures. Note, however, that

this allows us to de�ne the onept E

�a

C u :E

<a

C whih states that the most

similar objet from C is loated preisely at distane a. Objet names ourring

in onepts will also be alled nominals.

Now we de�ne sim-ALCQO-assertions as expressions of the following forms:

{ ` : C, where ` is an objet name and C a onept;

{ C

1

= C

2

, where C

1

and C

2

are onepts;

{ Æ(k; `) < a, Æ(k; `) � a, Æ(k; `) > a, Æ(k; `) � a, where k, ` are objet names

and a 2 Q

+

.

Assertions of the third form are alled distane assertions. A sim-ALCQO-

knowledge base is a �nite set of sim-ALCQO-assertions.

Observe that knowledge bases subsume both general TBoxes and ABoxes. In

partiular, the rather ommon ABox assertions of the form (`

1

; `

2

) : R, where `

1

and `

2

are objet names and R a role name, an be viewed as abbreviations for

`

1

: 9R:`

2

.

The semantis of sim-ALCQO-onepts is a blend of the semantis of the

logi of metri spaes [13℄ and the usual set-theoreti semantis of desription

logis. A onept-distane model (a CD-model, for short) is a struture of the

form

B =




W;d;A

B

1

; A

B

2

; : : : ; R

B

1

; R

B

2

; : : : ; `

B

1

; `

B

2

: : :

�

;

where hW;di is a metri spae with a distane funtion d satisfying, for all

x; y; z 2 W , the axioms

d(x; y) = 0 i� x = y; (1)

d(x; z) � d(x; y) + d(y; z); (2)

d(x; y) = d(y; x); (3)



Leture Notes in Computer Siene 5

the A

B

i

are subsets of W , the R

B

i

are binary relations on W , and the `

B

i

are

singleton subsets of W suh that i 6= j implies `

B

i

6= `

B

j

.

The extension C

B

of a sim-ALCQO-onept C is omputed indutively:

(C

1

u C

2

)

B

= C

B

1

\ C

B

2

; (C

1

t C

2

)

B

= C

B

1

[ C

B

2

; (:C)

B

=W � C

B

;

(E

�a

C)

B

= fx 2W j 9y 2 W

�

d(x; y) � a ^ y 2 C

B

�

g;

(E

<a

C)

B

= fx 2W j 9y 2 W

�

d(x; y) < a ^ y 2 C

B

�

g;

(A

�a

C)

B

= fx 2W j 8y 2 W

�

d(x; y) � a ! y 2 C

B

�

g;

(A

<a

C)

B

= fx 2W j 8y 2 W

�

d(x; y) < a ! y 2 C

B

�

g;

(� nR:C)

B

= fx 2W j

�

�

fy 2 W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng;

(� nR:C)

B

= fx 2W j

�

�

fy 2 W j (x; y) 2 R

B

^ y 2 C

B

g

�

�

� ng:

We still have to speify when a CD-model satis�es a sim-ALCQO-assertion: the

truth-relation j= between CD-models B and assertions ' is de�ned as follows:

{ B j= ` : C i� `

B

� C

B

,

{ B j= C

1

:

= C

2

i� C

B

1

= C

B

2

,

{ B j= Æ(k; `) � a i� d(k

B

; `

B

) � a,

{ B j= Æ(k; `) < a i� d(k

B

; `

B

) < a, and similar for � and >.

Finally, a sim-ALCQO-knowledge base � is alled satis�able if there exists a

CD-model B suh that B j= ' for all ' 2 �. In this ase we write B j= �.

Note that we make the unique name assumption (UNA), i.e., di�erent objet

names denote distint domain elements. The sole purpose of this assumption is

to allow a learer presentation of our tableau algorithm. It is, however, easily seen

that the UNA has no inuene on deidability, and that our tableau algorithm

an be extended to deal with sim-ALCQO without UNA.

3 The tableau algorithm

Now we present a sound, omplete and terminating algorithm for heking the

satis�ability of sim-ALCQO-knowledge bases. In fat, it is a (labelled) tableau

algorithm that generalises the existing tableau algorithms for metri logis [13℄

and for the desription logi ALCQO [5℄. Before formulating the algorithm and

proving its orretness, we introdue some notations and auxiliary de�nitions.

Supose we are given a sim-ALCQO-knowledge base �. Denote by on(�)

the set of onepts ourring in � (inluding all subonepts), by rol(�) the set

of role names ourring in �, by par(�) the set of rational numbers ourring in

� (either in E/A onepts or in distane assertions), and by ob(�) we denote the

set of objet names ourring in �. Without loss of generality, we may assume

that neither par(�) nor ob(�) are empty: if this is not the ase, we an always

add an assertion ` : A

<a

> with a fresh objet name `. To simplify presentation,

it is onvenient to make three assumptions:
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(1) A onept C is in negation normal form (NNF ) if negation ours only

in front of onept names and nominals. Eah onept an be transformed into

an equivalent one in NNF by pushing negation inwards: for example, :E

<a

C

is equivalent to A

<a

:C. So, without loss of generality, we may assume that all

onepts are in NNF. In what follows, we use _:C to denote the NNF of :C.

(2) We may also assume that knowledge bases ontain only assertions of the

form ` : C and C

:

= >. To see this, note �rst that distane assertions an be

expressed using nominals and distane quanti�ers:

Æ(k; `) < a is equivalent to k : E

<a

`; Æ(k; `) � a is equivalent to k : E

�a

`;

Æ(k; `) > a is equivalent to k : A

�a

:`; Æ(k; `) � a is equivalent to k : :A

<a

:`:

Assertions of the form C

1

:

= C

2

an be rewritten as (C

1

uC

2

)t( _:C

1

u _:C

2

)

:

= >.

(3) Without loss of generality, we may assume that par(�) ontains only

natural numbers: given a knowledge base � with par (�) � Q

+

, we may replae

every element q of par (�) with q � x, where x is the least ommon multiple of

the denominators of all elements of par (�). It is then straightforward to show

that any CD-model of the resulting knowledge base an be onverted into a

CD-model of � and vie versa.

We use �

�

to denote the largest natural number that ours in par (�) and

M [�℄ to denote the smallest set satisfying the following onditions:

{ par (�) �M [�℄;

{ if a; b 2M [�℄ and a+ b < �

�

, then a+ b 2M [�℄;

{ if a; b 2M [�℄ and a� b > 0, then a� b 2M [�℄.

Having started on the input knowledge base � (in the form desribed above),

the tableau algorithm onsiders only ertain `relevant' onepts. More preisely,

we de�ne the losure l(�) of � to be the (�nite) set of onepts

on(�) [ f _:C j C 2 on(�)g [

fA

<a

C;A

�a

C j a 2M [�℄ and 9b � a fA

�b

C;A

<b

Cg \ on(�) 6= ;g:

Similar to the set l(�) of relevant onepts, M [�℄ desribes the set of relevant

numbers. However, the numbers inM [�℄ are not enough: to distinguish between

`� a' and `< a,' we require some additional symbols that will be used in the same

way as numbers, namely,M [�℄

�

= fa

�

j a 2M [�℄g. De�ne a strit linear order

� on M [�℄ [M [�℄

�

by setting

a

�

1

� a

1

� a

�

2

� a

2

� � � � � a

�

n

� a

n

;

where a

1

< a

2

< � � � < a

n

.

We are in a position now to desribe our tableau algorithm. Starting with

�, it operates on onstraint systems S = hT;<;L; S;Ei, where

{ hT;<i is a forest whose set of roots oinides with ob(�);
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{ S is a node labelling funtion whih assoiates with eah x 2 T a set

S(x) � l(�) [ f(R; `); (a; `); (a

�

; `) j ` 2 ob(�); R 2 rol(�); a 2M [�℄g;

{ L is a labelling funtion whih assoiates with eah pair x; y 2 T suh that

x < y either a role name or a number from M [�℄, or a symbol from M [�℄

�

;

{ E is a set of inequalities between members of T .

Intuitively, we have x < y if either x and y are related by some role R or the

distane between x and y is known to be smaller than some value from M [�℄.

The purpose of the extra elements (R; `) and (a; `) in node labels is to represent

additional edges that lead to nominals (roots in the forest), and whose expliit

representation would destroy the forest struture.

The algorithm starts with S

0

= hT

0

; <

0

; L

0

; S

0

; E

0

i, the initial onstraint

system for �, where

{ T

0

= ob(�),

{ S

0

(`) = f`g [ fC j ` : C 2 �g, for every ` 2 ob(�),

{ E

0

= f` 6= `

0

j ` 6= `

0

; `; `

0

2 ob(�)g, and

{ <

0

= L

0

= ;.

Before desribing the ompletion rules, we introdue some simplifying notation

required to deal with edges represented via node labels. We write L(x; y) = a

to express that either x < y and L(x; y) = a or that a is the �-minimum

of f j (; y) 2 S(x)g.

5

To aount for the fat that, for some rules, it is not

important whether a node is a predeessor or a suessor, we write L

o

(fx; yg) = a

if a is the �-minimum of fL(x; y); L(y; x)g. Finally, for a role name R, we say

that y is an R-suessor of x if either x < y and L(x; y) = R or (R; y) 2 S(x).

The ompletion rules are shown in Fig. 1. Constraint systems obtained by

applying the ompletion rules to the initial onstraint system for � will be

alled onstraint systems for �. The terms `bloked' and `indiretly bloked' in

the rule premises refer to a yle detetion mehanism that is needed to ensure

termination of the algorithm. Before disussing the ompletion rules in more

detail, let us formally introdue this mehanism. The general idea is that we

stop the expansion of node labels if a node is labelled with exatly the same set

of onepts as one of its <-anestors. This simple approah works perfetly well,

but it is not the most sensible thing we an do: the problem is that, due to the

`extra' onepts A

<a

C and A

�a

C, the size of l(�) is exponential in the size of

� rather than polynomial, and thus paths of the forest may grow to a length

doubly exponential in � before the bloking ours. Fortunately, this worst ase

an be avoided. When omparing node labels to hek for a bloking situation, it

is not neessary to take into aount all of the extra A

<a

C and A

�a

C onepts:

if, for example, we �nd A

�a

C 2 S(x), then it is lear that the objet x also

satis�es the onepts A

�b

C for all b � a, even if they do not expliitly appear

in the node label S(x). This observation leads to the following, re�ned variant

of bloking.

5

This gives a well-de�ned value for L(x; y), as (; y) 2 S(x) implies that y is a root.
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For a node x 2 T , we use S

�

(x) to denote the set of onepts C 2 S(x) suh

that one of the following onditions is satis�ed:

1. C is not of the form A

<a

D or A

�a

D;

2. C is of the form A

�a

D and there is no b > a suh that A

�b

D 2 S(x);

3. C is of the form A

<a

D and there is no b > a suh that A

<b

D 2 S(x).

Denote by <

+

the transitive losure of <. We say that a node x 2 T is diretly

bloked by a node y if y <

+

x, S

�

(x) = S

�

(y), but for no distint u <

+

x and

v <

+

x do we have S

�

(u) = S

�

(v). The <

+

-suessors of diretly bloked nodes

are alled indiretly bloked. All diretly or indiretly bloked nodes omprise the

set of bloked nodes. Observe that the elements (R; `) and (a; `) of node labels

are not taken into aount for bloking.

Note that this bloking ondition an be re�ned even further by taking into

aount impliations between A

�a

C and A

<b

C onepts. We prefer to work

with the above variant, sine it suÆes to restrit paths in forests to exponential

length, and the more elaborate version makes proofs rather unreadable due to

many additional ase distintions.

Let us now return to the ompletion rules. In what follows we assume that

a rule an be applied to a tableau only if the tableau is hanged. Suh a rule

will be alled appliable to the tableau. The tableau algorithm applies the rules

until either the obtained onstraint system ontains an obvious ontradition or

no more rules are appliable. To be more preise, say that a onstraint system S

ontains a lash if it ontains a node x suh that one of the following onditions

hold:

1. fA; _:Ag � S(x), for some onept name A;

2. f`;:`g � S(x) for some objet name `;

3. `

0

2 S(`) for some objet names `

0

6= `;

4. (x 6= x) 2 E;

5. for some R, (� nR:C) 2 S(x) and there are n+1 R-suessors y

0

; : : : ; y

n

of

x with C 2 L(y

i

), for eah 0 � i � n and y

i

6= y

j

2 E for eah 0 � i < j � n.

A onstraint system S is omplete if it either ontains a lash or none of the

rules in Fig. 1 is appliable to S.

4 Termination, soundness and ompleteness

We show now that the tableau algorithm above always terminates, is sound

(i.e., if there is a omplete and lash-free onstraint system for �, then � is

satis�able), and omplete (i.e., if � is satis�able, then the tableau algorithm

eventually sueeds in �nding a omplete and lash-free omplete system).

Termination

Theorem 1. Any sequene of appliations of tableau rules to the initial on-

straint system for � terminates after �nitely many steps.
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R

u

If C

1

u C

2

2 S(x) and x is not indiretly bloked,

then set S(x) := S(x) [ fC

1

; C

2

g.

R

t

If C

1

t C

2

2 S(x) and x is not indiretly bloked,

then set either S(x) := S(x) [ fC

1

g or S(x) := S(x) [ fC

2

g.

R

=

If C = > 2 � and x is not indiretly bloked, then set S(x) := S(x) [ fCg.

R

A

If A

<a

C 2 S(x) or A

�a

C 2 S(x) and x is not indiretly bloked,

then set S(x) := S(x) [ fCg.

R

A

< Let A

<a

C 2 S(x) and x is not indiretly bloked. Then:

if L

o

(fy; xg) = a

�

, then set S(y) := fCg [ S(y);

if L

o

(fy; xg) = b < a, then set S(y) := fA

<a�b

Cg [ S(y);

if L

o

(fy; xg) = b

�

with b < a, then set S(y) := fA

�a�b

Cg [ S(y).

R

A

�

Let A

�a

C 2 S(x), L

o

(fy; xg) 2 fb; b

�

g and x is not indiretly bloked. Then:

if b = a, then set S(y) := fCg [ S(y);

if b < a, then set S(y) := fA

�a�b

Cg [ S(y).

R

E

< If E

<a

C 2 S(x), x is not bloked, and

L(x; y) =2 fb j b < ag [ fb

�

j b � ag for any y with C 2 S(y),

then reate a new node y > x and set L(x; y) := a

�

and S(y) := fCg.

R

E

�

If E

�a

C 2 S(x), x is not bloked and

L(x; y) =2 fb j b � ag [ fb

�

j b � ag for any y with C 2 S(y),

then reate a new node y > x and set L(x; y) := a and S(y) := fCg.

R

h

If f(� nR:C); (� nR:C)g \ S(x) 6= ;, x is not bloked and y is an

R-suessor of x, then set S(y) := S(y) [ fCg or S(y) = S(y) [ f _:Cg.

R

�

If (� nR:C) 2 S(x), x is not bloked, and there are no R-suessors y

1

; : : : ; y

n

with C 2 S(y

i

) and y

i

6= y

j

2 E, for all i 6= j, then take new y

1

> x; : : : ; y

n

> x

and set L(x; y

i

) := R, S(y

i

) := fCg, E := E [ fy

i

6= y

j

j 1 � i < j � ng.

R

�

If (� nR:C) 2 S(x), x is not bloked, has n+ 1 R-suessors y

0

; : : : ; y

n

with C 2 S(y

i

) for all i, and, for some i; j � n, y

i

6= y

j

62 E and y

j

62 ob(�),

then set E := E [ fy 6= y

i

j y 6= y

j

2 Eg, S(y

i

) := S(y

i

) [ S(y

j

),

S(x) := S(x) [ f(R

0

; `) j R

0

= L(x; y

j

)g, if y

i

= ` 2 ob(�),

and �nally delete y

j

and all z with y

j

<

+

z from T .

R

`

If ` 2 S(x), x 62 ob(�), and x is not indiretly bloked,

Then set S(`) := S(`) [ S(x), and, for every y,

S(y) := S(y) [ f(; `) j  = L(y; x) or  = R a role and x an R-suessor of yg,

E := E [ fy 6= ` j y 6= x 2 Eg, and delete x and all z with x <

+

z from T .

Fig. 1. Tableau rules.
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Proof. Let m

0

= jon(�)j and m

q

be the maximal number ourring in quali�ed

number restritions of �. Termination follows from the following �ve observa-

tions.

(1) Eah rule exept R

�

and R

`

stritly extends the onstraint system. More-

over, neither R

`

nor R

�

removes onepts from nodes.

(2) None of the generating rules R

E

<

, R

E

�

, R

�

an be applied more than one

to a given node and a given onept.

Suppose that R

E

<

is applied to a node x, generates y with x < y and updates

L(x; y) = a

�

and S(y) = fCg. The only reason why R

E

<

ould be applied one

again to x and E

<a

C is that later on y is removed by an appliation of R

�

or

R

`

. However, unless x is removed (in this ase the laim is trivial) y annot be

removed by an appliation of R

�

beause we do not �nd a z and a role R with

R = L(z; y). Suppose y is removed by an appliation of R

`

beause ` 2 S(y).

Then, after the appliation of R

`

, we have (a

�

; `) 2 S(x) and C 2 S(`), sine

a

�

= L(x; y). But then, sine a node of the form ` is never removed, the rule

R

E

<

is not appliable to x and E

<a

C afterwards. The rule R

E

�
is onsidered

analogously.

Suppose that R

�

is applied to a node x, generates y

1

; : : : ; y

n

with x < y

i

and

updates L(x; y

i

) = R, S(y

i

) = fCg, and E = E [ fy

i

6= y

j

j 1 � i < j � ng.

Now, whenever some y

j

is removed by R

�

or R

`

and x is not removed, after the

removal of y

j

we still have n R-suessors z

1

; : : : ; z

n

of x suh that C 2 S(z

i

),

E � fz

i

6= z

j

j 1 � i < j � ng. So, R

�

is not applied to x after suh a removal.

(3) The out-degree of the forest onstruted using the tableaux rules is

bounded by m

0

+ m

q

� m

0

. This follows from (2) and the fat that nodes are

labelled with subsets of the set

l(�) [ f(R; `); (a; `); (a

�

; `) j ` 2 ob(�); R 2 rol(�); a 2M [�℄g:

(4) If a node x is removed, then all z with x <

+

z are removed as well

(5) No <-branh in any onstraint system for � an ever be of length ex-

eeding 2

m

0

� jM [�℄j

2

, sine no node introduing rule an be applied to a node

x suh that S

�

(y) = S

�

(z) for two distint y; z � x.

Soundness

Before proving the soundness of the tableau algorithm, we introdue a relational

semantis for sim-ALCQO. This semantis omprises, for eah a 2 M [�℄, ad-

ditional binary relations R

a

and S

a

suh that, intuitively, we have uR

a

v if the

distane between u and v is at most a, and uS

a

v if the distane between u and

v is less than a. Formally, a Kripke model for � is a struture of the form

M =




W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

satisfying, for all u; v; w 2W and all a; b 2M [�℄, the following onditions:

(S1

R

) if uR

a

v and a � b, then uR

b

v,

(S2

R

) uR

a

v i� vR

a

u,
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(S3

R

) uR

a

u,

(S4

R

) if uR

a

v, vR

b

w and a+ b 2M [�℄, then uR

a+b

w,

(S1

S

) if uS

a

v and a � b, then uS

b

v;

(S2

S

) uS

a

v i� vS

a

u;

(S3

S

) uS

a

u,

(S4

S

) if uS

a

v, vS

b

w and a+ b 2M [�℄, then uS

a+b

w,

(C1) if uS

a

v then uR

a

v,

(C2) if uR

a

v and a < b, then uS

b

v,

(C3) if uR

a

v, vS

b

w and a+ b 2M [�℄, then uS

a+b

w,

(C4) if uS

a

v, vR

b

w and a+ b 2M [�℄, then uS

a+b

w.

The value C

M

of a onept C in M and the truth-relation M j= C

1

:

= C

2

are

de�ned in almost the same way as for CD-models: we only replae B with M

and de�ne the lauses for the distane quanti�ers as follows:

(E

�a

C)

M

= fx 2 W j 9y 2W

�

xR

a

y ^ y 2 C

M

�

g;

(E

<a

C)

M

= fx 2 W j 9y 2W

�

xS

a

y ^ y 2 C

M

�

g;

(A

�a

C)

M

= fx 2 W j 8y 2W

�

xR

a

y ! y 2 C

M

�

g;

(A

<a

C)

M

= fx 2 W j 8y 2W

�

xS

a

y ! y 2 C

M

�

g:

The next theorem ensures that the alternative Kripke semantis is `equivalent'

to the original one.

Theorem 2. The knowledge base � is satis�able in a CD-model i� it is satis-

�able in a Kripke model for �.

Proof. ()) Suppose that � is satis�ed in a CD-model

B =




W;d;A

B

1

; : : : ; R

B

1

; : : : ; `

B

1

; : : :

�

:

De�ne a Kripke model

M =




W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

for � by taking, for a 2M [�℄,

{ A

M

i

= A

B

i

, `

M

i

= `

B

i

, and R

M

i

= R

B

i

;

{ xR

a

y i� d(x; y) � a;

{ xS

a

y i� d(x; y) < a.

It is not diÆult to see thatM is a Kripke model for � and to prove by indution

that C

M

= C

B

, for all C 2 l(�). It follows that M satis�es �.

(() Suppose now that � is satis�ed in a Kripke model

M =




W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

for �. Let M [�℄ = fa

1

; : : : ; a

N

g with 0 < a

1

< a

2

< � � � < a

N

. Choose a

rational number 

�

> a

N

in suh a way that there are no a

1

; a

2

2 M [�℄ with

a

N

< a

1

+ a

2

� 

�

. Let D be the minimal number in the set

M [�℄ [ fa

1

+ a

2

� 

�

j a

1

; a

2

2M [�℄� f

�

g & a

1

+ a

2

> 

�

g:
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Take some positive � <

D

2

N+1

. De�ne a funtion d : W � W ! R by taking

d(u; v) = 0 if u = v and otherwise

d(u; v) =

8

>

<

>

:



�

; if :9a 2M [�℄ uR

a

v,

a; if 9a 2M [�℄ (uR

a

v ^ :uS

a

v),

a

i

� 2

i

� �; if 9a

i

2M [�℄ (uS

a

i

v ^ 8j (0 < j < i! :uR

a

j

v)).

Consider the model

B =




W;d;A

B

1

; : : : ; R

B

1

; : : : ; `

B

1

; : : :

�

:

where A

B

i

= A

M

i

, R

B

i

= R

M

i

, and `

B

i

= `

M

i

for all i. One an show now that B

is a CD-model satisfying �.

Thus, it suÆes to prove soundness with respet to Kripke semantis.

Theorem 3. If there exists a omplete and lash-free onstraint system for �,

then � is satis�able in a Kripke model for �.

Proof. Suppose that S = hT;<; S; L;Ei is a omplete and lash-free onstraint

system for � that is obtained by repeatedly applying ompletion rules from

Fig. 1 to the initial onstraint system hT

0

; <

0

; S

0

; L

0

; E

0

i. We use this onstraint

system to onstrut a Kripke model

M =




W;A

M

1

; : : : ; R

M

1

; : : : ; (R

a

)

a2M [�℄

; (S

a

)

a2M [�℄

; `

M

1

; : : :

�

satisfying �. Denote by T

i

the set of nodes from T that are not indiretly (but

possible diretly) bloked. The domain W of M onsists of all sequenes of the

form h`; x

1

; : : : ; x

k

i, where ` 2 ob(�) and x

1

; : : : ; x

k

2 T

i

(with k � 0) suh that

` < x

1

and, for 1 � i < k, either (i) x

i

is unbloked and x

i

< x

i+1

or (ii) there

is a z suh that z diretly bloks x

i

and z < x

i+1

. Role names R are interpreted

by setting

{ (h`

1

; x

1

; : : : ; x

k

i ; h`

2

i) 2 R

M

i� x

k

is not bloked and (R; `

2

) 2 S(x

k

), or

there exists z whih diretly bloks x

k

suh that (R; `

2

) 2 S(z);

{ (h`; x

1

; : : : ; x

k

i ; h`; x

1

; : : : ; x

k+1

i) 2 R

M

i� one of the following holds:

� x

i

is not bloked, x

k

< x

k+1

, and L(x

k

; x

k+1

) = R;

� there is z whih diretly bloks x

k

, z < x

k+1

and L(z; x

k+1

) = R.

Given x = h`; x

1

; : : : ; x

k

i 2 W , let S(x) denote S(x

k

). We now de�ne the re-

lations R

a

and S

a

. Let R

a

be the set of pairs (x; y) 2 W �W suh that, for

fu; vg = fx; yg, the following onditions are satis�ed:

(a) A

�a

C 2 S(u) implies C 2 S(v);

(b) A

�b

C 2 S(u) and b > a imply that A

�

C 2 S(v) for some  � b� a;

() A

<b

C 2 S(u) and b > a imply that A

<

C 2 S(v) or A

�

C 2 S(v) for some

 � b� a.

Similarly, S

a

is omprised of the pairs (x; y) 2 W �W suh that, for fu; vg =

fx; yg, the following onditions are satis�ed:
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(d) A

<a

C 2 S(u) implies C 2 S(v);

(e) A

�b

C 2 S(u) and b > a imply that A

�

C 2 S(v) for some  � b� a;

(f) A

<b

C 2 S(u) and b > a imply that A

<

C 2 S(v) or A

�

C 2 S(v) for some

 � b� a.

For all ` 2 ob(�), we set `

M

= fh`ig. This is well-de�ned, sine no nominal is

removed from the tableau. Finally, for all onept names A

i

and x 2 W , we set

x 2 A

M

i

i� A

i

2 S(x). M is a Kripke models for � whih �. A proof of this

laim an be found in the full version of this paper.

Completeness

Let us say that a model B =




W;d;A

B

1

; : : : ; `

B

1

; : : :

�

realises a onstraint system

hT;<;L; S;Ei for � if B j= � and there exists a map � : T !W suh that

{ C 2 S(x) implies �(x) 2 C

B

;

{ L

o

(fx; yg) = a 2M [�℄ implies d(�(x); �(y)) � a;

{ L

o

(fx; yg) = a

�

2M [�℄

�

implies d(�(x); �(y)) < a;

{ x 6= y 2 E implies �(x) 6= �(y);

{ if y is an R-suessor of x, then (�(x); �(y)) 2 R

B

.

The following lemma is an immediate onsequene of the de�nitions:

Lemma 1. If a knowledge base � is satis�ed in a CD-model B, then the initial

onstraint system for � is realisable in B.

Lemma 2. Suppose that B realises a onstraint system S = hT;<;L; S;Ei for

� and a ompletion rule R is appliable to S. Then R an be applied in suh

a way that B realises the resulting onstraint system S

0

= hT

0

; <

0

; S

0

; L

0

; E

0

i as

well.

Proof. Let B =




W;d;A

B

1

; : : : ; `

B

1

; : : :

�

realise S by means of a map � : T !W

and let S

0

be obtained from S using some rule R. We onsider only two rules,

R = R

E

�

and R = R

A

<

, and and leave the remaining ases to the reader.

R

E

�
: Suppose that E

�a

C 2 S(x), T

0

= T [fyg, L

0

(fx; yg) = a, <

0

=< [f(x; y)g,

and S(y) = fCg. We know that �(x) 2 (E

�a

C)

B

. So we an �nd v 2W suh that

d(�(x); v) � a and v 2 C

B

. De�ne a map �

0

: T

0

! W by taking �

0

(z) = �(z)

for all z 2 T and �

0

(y) = v. It should be lear that B realises S

0

my means of �

0

.

R

A

<

: Let A

<a

C 2 S(x), x 2 T . Suppose that the rule is applied to some y 2 T .

Consider three possible ases.

(i) If L

o

(fx; yg) = a

�

then d(�(x); �(y)) < a and S(y) = fCg[S(y). We need

to show that �(y) 2 C

B

. But this follows immediately from �(x) 2 (A

<a

C)

B

.

(ii) If L

o

(fy; xg) = b < a then d(�(x); �(y)) � b and S(y) = fA

<a�b

Cg[S(y).

To show that �(y) 2 (A

<a�b

C)

B

, take any v 2 W suh that d(�(y); v) < a� b.

By the triangular inequality, we then have d(�(y); v) < a and so v 2 C

B

.

(iii) The ase of L

o

(fy; xg) = b

�

and b < a is onsidered similarly to (ii).

As a onsequene of these two lemmas and Theorem 1 we obtain

Theorem 4. If � is satis�able, then there exists a omplete lash-free onstraint

system for �.
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5 Undeidability

We show now that a rather natural and loser integration of distane quanti�ers

and quali�ed number restritions results in an undeidable logi. Denote by sim

f

the language with the following onept formation rule:

C ::= A

i

j `

i

j :C j C

1

u C

2

j C

1

t C

2

j E

�a

C j (�

1

a

:C);

where (�

1

a

:C) is interpreted in onept distane models B as follows

(�

1

a

:C)

B

= fx 2W j

�

�

fy j d(x; y) � a; y 2 C

B

g

�

�

� 1g:

Theorem 5. The satis�ability problem for sim

f

-knowledge bases in onept dis-

tane models is undeidable.

Proof. (sketh) We an simulate the undeidable N�N -tiling problem in almost

the same way as in the undeidability proof of [9℄ for the language MS

1

with

the operators A

�a

, A

>0

�a

and their duals: just replae everywhere in the proof of

Theorem 3.1 the onept A

>0

�80

:�

i;j

by the onept (�

1

80

:�

i;j

).

6 Conlusion

We have introdued the desription-metri logi sim-ALCQO for de�ning on-

epts based on similarity measures, and have proposed a tableau algorithm for

deiding the satis�ability of sim-ALCQO-knowledge bases. This algorithm uni-

�es the tableau algorithms for SHOQ (a superlogi of ALCQO) presented in

[5℄ and for the logi of metri spaes MS as de�ned in [13℄. It is of interest

to note that, in ontrast to what is done in [13℄, we need a di�erent soundness

proof, sine the presene of number restritions prohibits the use of �ltration

tehniques.

We regard the presented logi only as a �rst step towards DLs that allow

de�nitions of onepts based on similarity measures. Although we believe that

the expressive power provided by sim-ALCQO is quite natural and useful, an

in-depth investigation of the expressive means that are useful for de�ning vague

onepts are in order. Some possible extensions of sim-ALCQO are the following:

(1) New onstrutors E

<a

R:C and A

<a

R:C, where the former expresses that

there exists an R-suessor at distane smaller than a satisfying C, and the

latter is its dual. Suh onstrutors would, e.g., allow us to say that a person is

very similar to his father: E

<0:5

parent:Male. The presented algorithm should be

extendable to this ase without any problems.

(2) New onstrutors E

>a

C and E

�a

C (and their duals) with the obvious se-

mantis. Although these onstrutors do not seem to be so natural as the vari-

ants based on < and �, they ould, e.g., be used to express that a propo-

typial tableau algorithm pta is very lose to all other tableau algorithms:

pta : A

>0:5

:Tableau algorithm. While [9℄ proves the deidability of the metri

logi with the operators E

�a

C and E

>a

C (and their duals), nothing is urrently

known about the extension of MS with all four possible onstrutors.



Leture Notes in Computer Siene 15

Aknowledgements:

The work of the seond author was supported by Deutshe Forshungsgemein-

shaft (DFG) grant Wo583/3-3. The work of the third author was partially

supported by U.K. EPSRC grants no. GR/R45369/01 and GR/R42474/01.

Referenes

1. F. Baader, D. Calvanese, D. MGuinness, D. Nardi, and P. Patel-Shneider, editors.

The Desription Logi Handbook. Cambridge University Press, 2003.

2. F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of desription logis and

abstrat desription systems. J. of Arti�ial Intelligene Researh, 16:1{58, 2002.

3. K. Fine and G. Shurz. Transfer theorems for strati�ed modal logis. In

J. Copeland, editor, Logi and Reality, Essays in Pure and Applied Logi. In mem-

ory of Arthur Prior, pages 169{213. Oxford University Press, 1996.

4. I. Horroks and P. Patel-Shneider. The generation of DAML+OIL. In C. Goble,

D. MGuinness, R. M�oller, and P. Patel-Shneider, editors, Proeedings of the Inter-

national Workshop in Desription Logis 2001 (DL2001), number 49 in CEUR-WS

(http://eur-ws.org/), pages 30{35, 2001.

5. I. Horroks and U. Sattler. Ontology reasoning in the SHOQ(D) desription

logi. In B. Nebel, editor, Proeedings of the 17th International Joint Conferene

on Arti�ial Intelligene (IJCAI'01), pages 199{204. Morgan Kaufmann, 2001.

6. I. Horroks, U. Sattler, and S. Tobies. Reasoning with individuals for the de-

sription logi SHIQ. In D. MaAllester, editor, Pro. of the 17th International

Conferene on Automated Dedution (CADE-17), number 1831 in LNCS. Springer,

2000.

7. I. Horroks, P. Patel-Shneider, and F. van Harmelen. Reviewing the design of

DAML+OIL: An ontology language for the semanti web. In Proeedings of the

18th National Conferene on Arti�ial Intelligene (AAAI 2002), 2002.

8. M. Kraht and F. Wolter. Properties of independently axiomatizable bimodal

logis. J. Symboli Logi, 56:1469{1485, 1991.

9. O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyashev. Logis of

metri spaes. ACM Transations on Computational Logi, 2003. In print.

10. M. Shmidt-Shau� and G. Smolka. Attributive onept desriptions with omple-

ments. Arti�ial Intelligene, 48:1{26, 1991.

11. E. Spaan. Complexity of Modal Logis. PhD thesis, Department of Mathematis

and Computer Siene, University of Amsterdam, 1993.

12. F. Wolter. Fusions of modal logis revisited. In M. Kraht, M. De Rijke, H. Wans-

ing, and M. Zakharyashev, editors, Advanes in Modal Logi, volume 1, pages

361{379. CSLI, Stanford, 1997.

13. F. Wolter and M. Zakharyashev. Reasoning about distanes. To appear in Pro.

IJCAI 2003.


