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1 Motivation

Most des
ription logi
s (DLs) enjoy the �nite model property (FMP). This is, for

example, the 
ase for ALC [14℄ and many of its extensions su
h as ALCI (ALC

with inverse roles) and ALCQ (ALC with qualifying number restri
tions): for any

of these logi
s L, ea
h satis�able L-
on
ept has a �nite model. This even holds if

we 
onsider 
on
ept satis�ability w.r.t. general TBoxes. However, there also exist

natural des
ription logi
s that do not enjoy FMP. A rather prominent example is

ALCQI, whi
h is obtained from ALC by adding both inverse roles and qualifying

number restri
tions. While ALCQI without TBoxes still has the FMP, this is no

longer the 
ase in the presen
e of general TBoxes: for example, the 
on
ept :Au9R:A

is satis�able w.r.t. the TBox

fA

:

= 9R:A u (6 1 R

�

>)g;

but ea
h of its models 
ontains an in�nite R-
hain.

The fa
t that ALCQI la
ks FMP be
omes parti
ularly important if we 
onsider

this logi
's most prominent appli
ation, whi
h is reasoning about 
on
eptual database

models as proposed by Calvanese et al. [4℄: if su
h a model is des
ribed by an ER

diagram or a UML diagram, then it 
an be translated into a DL TBox, and DL

reasoners su
h as FaCT and RACER 
an be used to dete
t in
onsisten
ies and to

infer impli
it IS-A relationships between entities/
lasses. This useful and original

appli
ation has led to the implementation of I.
om, a tool that provides a GUI for

spe
ifying 
on
eptual models, automatizing the translation into DLs, and displaying

the information returned by the reasoner [7℄. However, it is well-known that there exist

quite simple ER and UML diagrams that are satis�able only in in�nite models, but not

in �nite ones [15℄. Sin
e all available DL reasoning systems are performing reasoning

in arbitrary (as opposed to �nite) models, this means that some in
onsisten
ies and

IS-A relationships will go unnoti
ed if standard reasoners are used, e.g. in 
onjun
tion

with I.
om.



The main reason for existing DL reasoners to perform only reasoning w.r.t. arbi-

trary models is that �nite model reasoning in des
ription logi
s su
h as ALCQI is

not yet well-understood. The only known algorithm is presented by Calvanese in [2℄,

where he proves that reasoning in ALCQI is de
idable in 2-ExpTime. The purpose

of this paper is to establish tight ExpTime 
omplexity bounds for �nite model reason-

ing in ALCQI. More pre
isely, we develop an algorithm that is 
apable of de
iding

�nite satis�ability of ALCQI-
on
epts w.r.t. general TBoxes. Similar to Calvanese's

approa
h, the 
ore idea behind our algorithm is to translate a given satis�ability prob-

lem into a set of linear inequalities that 
an then be solved by linear programming

methods. The main di�eren
e to Calvanese's approa
h is that our equation systems

talk about di�erent 
omponents of models, mosai
s, whi
h allows us to keep the size

of equation systems exponential in the size of the input. In this way, we improve the

best-known 2-ExpTime upper bound to a tight ExpTime one.

Sin
e our algorithm presupposes unary 
oding of the numbers o

urring in quali-

fying number restri
tions, it does not immediately yield an ExpTime-upper bound for

the binary 
oding 
ase. Therefore, we use a di�erent approa
h to establish this bound,

namely a redu
tion of ALCQI-
on
ept satis�ability w.r.t. TBoxes to ALCFI-
on
ept

satis�ability w.r.t. TBoxes (ALCFI is obtained from ALCQI by allowing only the

numbers 0 and 1 to be used in number restri
tions). Sin
e the latter problem is in

ExpTime due to our initial result for ALCQI with unary 
oding, we obtain the de-

sired bound. Finally, we show how to extend our ExpTime-upper bound to �nite

ALCQI-ABox 
onsisten
y w.r.t. general TBoxes (with numbers 
oded in binary).

All details and proofs 
an be found in the a

ompanying te
hni
al report [11℄.

2 The Algorithm for Unary Coding

We use the standard syntax and semanti
s for ALCQI, assuming that 9R:C and

8R:C are just abbreviations for (> 1 R C) and (6 0 R :C), respe
tively. By \unary


oding", we mean that j(>nR:C)j = j(6nR:C)j = n+ jCj+ 1.

As observed by Calvanese in [2℄, 
ombinatori
s is an important issue when de
iding

�nite satis�ability of ALCQI-
on
epts. To illustrate this, 
onsider the TBox

T := fA

:

= (> 2 R B); B

:

= (6 1 R

�

A)g:

It should be 
lear that, in any model of T , there are at least twi
e as many obje
ts

satisfying B u (6 1 R

�

A) as there are obje
ts satisfying A u (> 2 R B). This

simple example suggests that (i) types (i.e., sets of 
on
epts satis�ed by a parti
ular

obje
t in a parti
ular model) su
h as fA; (> 2 R B)g are a natural notion for dealing

with �nite satis�ability, and (ii) the 
ombinatori
s introdu
ed by �nite domains 
an

be addressed with inequalities like 2 � x

T

� x

T

0

, where the variable x

T

des
ribes the

number of instan
e of a type T (e.g. fA; (> 2 R B)g), while x

T

0

des
ribes the number

of instan
es of another type T

0

(e.g. fB; (6 1 R

�

A)g).

Considering the above two points, a �rst idea to devise a de
ision pro
edure for

�nite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is to translate an input 
on
ept

and TBox into a system of inequalities with one variable for ea
h type, and then to

use linear programming algorithms to 
he
k whether the equation system has a non-

negative integer solution. For example, the satis�ability problem of the 
on
ept A



w.r.t. the TBox T above 
an be translated into the two inequalities

X

fT j(>2 R B)2Tg

2 � x

T

�

X

fT j(61 Inv(R) A)2Tg

x

T

and

X

fT jA2Tg

x

T

> 0

where the sums range over all types indu
ed by the input 
on
ept A and TBox T . It

is not hard to see that any non-negative integer solution to this equation system 
an

be used to 
onstru
t a �nite model for A and T and vi
e versa.

Unfortunately, there is a problem with this approa
h: assume that the input


on
ept and TBox indu
e types T

1

to T

5

as follows: (> 1 R C) 2 T

1

, (> 1 R D) 2 T

2

,

(6 1 Inv(R) >) 2 T

3

\T

4

\T

5

, C 2 T

3

\T

4

, and D 2 T

4

\T

5

. The translation des
ribed

above yields the inequalities

x

T

1

� x

T

3

+ x

T

4

and x

T

2

� x

T

4

+ x

T

5

;

whi
h have x

T

1

= x

T

2

= x

T

4

= 1 and x

T

3

= x

T

5

= 0 as an integer solution. Trying

to 
onstru
t a model with a

1

, a

2

, and a

4

instan
es of T

1

, T

2

, and T

4

, respe
tively,

we have to use a

4

as a witness of a

1

being an instan
e of (> 1 R C) and a

2

being an

instan
e of (> 1 R D). However, this violates the (6 1 Inv(R) >) 
on
ept in T

4

.

This example illustrates that \
ounting types" does not suÆ
e: 
on
i
ts may arise

if a type 
ontaining an at-most restri
tion (T

4

) 
an be used as a witness for at-least

restri
tions in more than one type (T

1

and T

2

). It is thus ne
essary to (additionally)

�x the types that are a
tually used as witnesses for at-least restri
tions. We a
hieve

this by de�ning systems of inequalities that are based on 
hunks of models 
alled

mosai
s, rather than being based dire
tly on types. Intuitively, a mosai
 des
ribes the

type of an obje
t and �xes the type of \important" witnesses.

Before de�ning mosai
s, we introdu
e some preliminaries. In the remainder of

this paper, w.l.o.g. we assume 
on
epts (also those appearing inside TBoxes) to be in

negation normal form (NNF), i.e. negation is only allowed in front of 
on
ept names.

We use _:C to denote the NNF of :C. Moreover, we will only 
onsider TBoxes of

the form f>

:

= Cg. This 
an be done w.l.o.g. sin
e every TBox T = fC

i

:

= D

i

j 1 �

i � ng 
an be rewritten as f>

:

= u

1�i�n

(C

i

$ D

i

)g. For a 
on
ept C

0

and a TBox

T = f>

:

= C

T

g, 
l(C

0

;T ) is the smallest set 
ontaining all sub-
on
epts of C

0

and C

T

that is 
losed under _:. We use rol(C

0

;T ) to denote the set of role names R and their

inverses R

�

o

urring in C

0

or T . Finally, we de�ne a fun
tion Inv on roles su
h that

Inv(R) = R

�

if R is a role name, and Inv(R) = S if R = S

�

.

De�nition 1 (Types and Mosai
s) A type T for C

0

;T = f>

:

= C

T

g is a set

T � 
l(C

0

;T ) su
h that, for ea
h D;E 2 
l(C

0

;T ), we have

(T1) D 2 T i� _:D 62 T ,

(T2) if D uE 2 
l(C

0

;T ), then D uE 2 T i� D 2 T and E 2 T ,

(T3) if D tE 2 
l(C

0

;T ), then D tE 2 T i� D 2 T or E 2 T , and

(T4) C

T

2 T .



We use type(C

0

;T ) to denote the set of all types for C

0

;T . Let T be a type and

./ 2 f6;>g. Then we use the following abbreviations:

max

./

(T ) := maxfn j (./ n R C) 2 Tg and sum

./

(T ) :=

X

(./ n R C)2T

n:

For types T

1

; T

2

and a role R, we write lim

R

(T

1

; T

2

) (T

2

is a limited ressour
e for T

1

w.r.t. R) if C 2 T

1

and (6 n Inv(R) C) 2 T

2

for some C 2 
l(C

0

;T ) and n 2 N.

A mosai
 for C

0

;T is a triple M = (T

M

; L

M

; E

M

) where

� T

M

2 type(C

0

;T ),

� L

M

is a fun
tion from rol(C

0

;T )� type(C

0

;T ) to N, and

� E

M

is a fun
tion from rol(C

0

;T )� type(C

0

;T ) to N

su
h that the following 
onditions are satis�ed:

(M1) if L

M

(R;T ) > 0, then lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

),

(M2) if E

M

(R;T ) > 0, then lim

Inv(R)

(T; T

M

),

(M3) if (6 n R C) 2 T

M

, then n �

P

fT jC2Tg

E

M

(R;T );

(M4) #f(R;T ) j L

M

(R;T ) > 0g � sum

>

(T

M

) and max(range(L

M

)) � max

>

(T

M

).

Consider a mosai
 M and one of its \instan
es" d in some interpretation. While T

M

is simply the type of d, L

M

and E

M

are used to des
ribe 
ertain \neighbors" of d, i.e.

obje
ts e rea
hable from d via a role. For a role R, there are three possibilities for the

relationship between T

M

and T , the type of e:

1. Not lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary num-

ber of R-neighbors of type T and every instan
e of T may have an arbitrary

number of Inv(R)-neighbors of type T

M

. Intuitively, R-neighbors of type T are

\un
riti
al" and not re
orded in the mosai
.

2. lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary number of

R-neighbors of type T , but every instan
e of T may only have a limited number

of Inv(R)-neighbors of type T

M

. Thus, R-neighbors of type T are a limited

ressour
e and we re
ord in L

M

the minimal number of R-neighbors of type T

that d needs (\L" for \lower bound").

3. lim

Inv(R)

(T; T

M

). Then d may only have a limited number of R-neighbors of type

T . To prevent the violation of at-most restri
tions in T

M

, we re
ord the exa
t

number of d's R-neighbors of type T in E

M

.

(M1) and (M2) ensure that L

M

and E

M

re
ord information for the \
orre
t" types as

des
ribed above; (M3) ensures that at-most restri
tions are not violated: by de�nition,

this 
on
erns only neighbors with E

M

-types; �nally, (M4) puts upper bounds on L

M

to ensure that there exist only exponentially many mosai
s (see below). At-least

restri
tions are not mentioned in the de�nition of mosai
s and will be treated by the

systems of inequalities to be de�ned later.



Now for the number of mosai
s. First, the 
ardinality of type(C

0

;T ) is exponen-

tial in the size of C

0

and T . Next, (M2) and (M3) imply #f(R;T ) j E

M

(R;T ) >

0g � sum

6

(T

M

) and max(range(E

M

)) � max

6

(T

M

). Analogous bounds for L

M

are

enfor
ed by (M4). Now max

./

(T ) and sum

./

(T ) are linear in the size of C

0

and T for

./ 2 f6;>g sin
e numbers are 
oded in unary, and thus the number of mosai
s is

bounded exponentially in the size of C

0

and T .

We now de�ne a system of inequalities for a 
on
ept C

0

and a TBox T .

De�nition 2 (Equation System) Let C

0

be an ALCQI-
on
ept and T a TBox.

We introdu
e a variable x

M

for ea
h mosai
 M for C

0

;T and de�ne the equation

system E

C

0

;T

by taking (i) the equation

X

fM jC

0

2T

M

g

x

M

� 1; (E1)

(ii) for ea
h pair of types T; T

0

2 type(C

0

;T ) and role R su
h that lim

R

(T; T

0

) and

not lim

Inv(R)

(T

0

; T ), the equation

X

fM jT

M

=Tg

L

M

(R;T

0

) � x

M

�

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

; (E2)

and (iii) for ea
h pair of types T; T

0

2 type(C

0

;T ) and role R su
h that lim

R

(T; T

0

)

and lim

Inv(R)

(T

0

; T ), the equation

X

fM jT

M

=Tg

E

M

(R;T

0

) � x

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

: (E3)

A solution of E

C

0

;T

is admissible if it is a non-negative integer solution and satis�es

the following 
onditions: (i) for ea
h pair of types T; T

0

2 type(C

0

;T ) and role R

su
h that lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ),

if

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

> 0; then

X

fM jT

M

=Tg

x

M

> 0; (A1)

(ii) for ea
h mosai
 M and ea
h role R, if (> n R C) 2 T

M

,

x

M

> 0, and

X

fT jC2Tg

L

M

(R;T ) +

X

fT jC2Tg

E

M

(R;T ) < n;

then

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x

M

0

> 0 (A2)

While inequality (E1) guarantees the existen
e of an instan
e of C

0

, inequalities (E2)

and (E3) enfor
e the lower and exa
t bounds on the number of neighbors as des
ribed

by L

M

and E

M

. A spe
ial 
ase is treated by 
ondition (A1): in inequality (E2), it

may happen that the left-hand side is zero while the right-hand side is non-zero. In

this 
ase, there is an instan
e of a mosai
 M

0

with T

M

0

= T

0

and E

M

(Inv(R); T ) > 0

(
ounted on the right-hand side), but there is no instan
e of a mosai
M with T

M

= T



(
ounted on the left-hand side)|thus we 
annot �nd any neighbors as required by

E

M

(Inv(R); T ). To 
ure this defe
t, 
ondition (A1) ensures that, if the right-hand

side of (E2) is non-zero, then there is at least one instan
e of a mosai
 M with

T

M

= T .

1

Finally, (A2) takes 
are of at-least restri
tions in types T

M

: if the number

of R-neighbors enfor
ed by L

M

and E

M

is not enough for some (> n R C) 2 T

M

, then

we make sure that there is at least one instan
e of a mosai
 M

0

su
h that C 2 T

M

0

and, for instan
es of M (M

0

), the number of R-neighbors (Inv(R)-neighbors) that are

instan
es of M

0

(M) is not limited:

1

Lemma 1 C

0

is �nitely satis�able w.r.t. T i� the equation system E

C

0

;T

has an ad-

missible solution.

The proof of this lemma 
an be found in [11℄.

Sin
e the number of mosai
s is exponential in the size of C

0

and T , the size of

E

C

0

;T

and of the admissibility 
ondition is also exponential in the size of C

0

and T .

To prove an ExpTime upper bound for the �nite satis�ability of ALCQI-
on
epts,

it thus remains to show that the existen
e of an admissible solution for the equation

systems E

C

0

;T


an be de
ided in deterministi
 polynomial time.

We assume linear inequalities to be of the form �

i




i

x

i

� b. A system of linear

inequalities is des
ribed by a tuple (V; E), where V is a set of variables and E a set of

inequalities using variables from V . Su
h a system is 
alled simple if only non-negative

integers o

ur on the right-hand side of inequalities and all 
oeÆ
ients are (possibly

negative) integers. A side 
ondition for an inequality system (V; E) is a 
onstraint

of the form x > 0 =) x

1

+ � � � + x

`

> 0; where x; x

1

; : : : x

`

2 V: It is not hard to


he
k that the inequalities (Ei) 
an be polynomially transformed into simple ones,

and that the 
onditions (Ai) 
an be polynomially transformed into side 
onditions;

more details are given in [11℄. The proof of the following lemma is by redu
tion to

linear programming and 
an be found in [11℄.

Lemma 2 Let (V; E) be a simple equation system and I a set of side 
onditions for

(V; E). Then the existen
e of a non-negative integer solution for (V; E) satisfying all


onstraints from I 
an be de
ided in (deterministi
) time polynomial in #V +#E+#I.

Sin
e satis�ability of ALC w.r.t. TBoxes in arbitrary models is ExpTime-hard [13℄

and this DL has the �nite model property, 
ombining Lemmas 1 and 2 yields the

following theorem:

Theorem 1 Finite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is Exptime-
om-

plete if numbers are 
oded in unary.

3 Binary Coding

If numbers in number restri
tions are 
oded binarily (i.e. j(>nR:C)j = j(6nR:C)j =

log(n)+ jCj+1), Theorem 1 does no longer apply: in this 
ase, the number of mosai
s

is double exponential in the size of the input, and thus the algorithm used in Se
tion 2

yields only a 2-ExpTime upper bound. For reasoning w.r.t arbitrary models, a variety

1

To see why a single instan
e suÆ
es, 
onsult the proof sket
h of Lemma 1 in [11℄.
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Figure 1: Representing role su

essor relationships.

of results are known that suggest that the 
oding of numbers in number restri
tions is

usually irrelevant for the 
omplexity of reasoning, see e.g. [16, 10℄. However, for �nite

model reasoning, similar results do not seem to be known. Indeed, it is a non-trivial

problem whether the algorithm used in Se
tion 2 
an be adapted to binary 
oding.

We have to leave this problem open and 
hoose an alternative te
hnique: a redu
tion

of �nite ALCQI-
on
ept satis�ability to the �nite satis�ability of ALCFI-
on
epts.

This redu
tion is polynomial even for binary 
oding of numbers, and �nite satis�ability

in the target logi
 is in ExpTime due to Theorem 1 (sin
e number restri
tions in

ALCFI are restri
ted to the numbers 0 and 1, the 
oding is not an issue). Note that

we 
annot use existing redu
tions of ALCQI to ALCFI su
h as the one presented in

[5℄ be
ause these work only on potentially in�nite, tree-shaped models.

The 
entral idea behind our redu
tion is to repla
e 
ounting via quali�ed number

restri
tions with 
ounting via 
on
ept names: to 
ount up to a number n, we reserve


on
ept names B

0

; : : : ; B

dlog(n)e

representing the bits of the binary 
oding of numbers

between 0 and n. For the a
tual 
ounting, we 
an then use well-known (propositional

logi
) formulas that en
ode in
rementation. We use a TBox involving auxiliary 
on-


ept names and roles L

R

to re-arrange R-neighbors as shown in Figure 1: ex
ept for the

root, ea
h node on the auxiliary L

R

-path atta
hed to x has pre
isely one R-neighbor.

Ignoring the root for a se
ond, this means that we 
an 
ount via 
on
ept names along

the auxiliary obje
ts on L

R

-paths. However, we 
annot gather all original R-neighbors

of x on the L

R

-path sin
e we only 
ount up to the sum of numbers o

urring in the

input 
on
ept and TBox. Sin
e an obje
t may have more R-neighbors than this, these

\unrestri
ted" R-neighbors are not re-arranged, but atta
hed to the root as shown

in the upper right part of Figure 1. To obtain an ALCFI-
on
ept from an ALCQI-


on
ept, we repla
e, in the input 
on
ept and TBox, number restri
tions (./ nRC)

with new 
on
ept names A

(./nRC)

, and then use additional TBox axioms to ensure

that, e.g., if x is an instan
e of A

(6nR:C)

, then there are at most n R-su

essors in C

along the L

R

-path starting at x and no R-su

essor of x is in C. Moreover, we have to

take 
are that the \auxiliary" obje
ts introdu
ed as intermediate points on L

R

-paths

and the \real" obje
ts are distinguished properly.

The redu
tion with a proof of its 
orre
tness 
an be found in [11℄.

Theorem 2 Finite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is Exptime-
om-

plete if numbers are 
oded in binary.

4 ABox Consisten
y

Finally, we extend the 
omplexity bounds obtained in Se
tions 2 and 3 to a more

general reasoning task: �nite ALCQI-ABox 
onsisten
y. It is well known that (�-



nite) ALCQI-ABox 
onsisten
y has important appli
ations: whereas �nite ALCQI-


on
ept satis�ability algorithms 
an be used to de
ide the 
onsisten
y of 
on
eptual

database models and infer impli
it IS-A relationships as des
ribed in the introdu
tion,

ALCQI-ABox 
onsisten
y 
an be used as the 
ore 
omponent of algorithms de
iding


ontainment of 
onjun
tive queries w.r.t. 
on
eptual database models|a task that

DLs have su

esfully been used for and that 
alls for �nite model reasoning [3, 9℄.

ABoxes are de�ned as usual, i.e., for O a 
ountably in�nite set of obje
t names,

an ABox is a �nite set of ABox assertions of the form a : C or (a; b) : R, where a and

b are obje
t names, C is a 
on
ept, and R a role. Semanti
s is de�ned in the usual

way. Even though irrelevant for the result, we employ the unique name assumption,

i.e., a 6= b implies that a

I

6= b

I

. In the following, we will polynomially redu
e �nite

ALCQI-ABox 
onsisten
y to �nite ALCQI-
on
ept satis�ability.

Let A be an ABox and T a TBox. For ea
h obje
t name a used in A, re


A

(a)

denotes the set of role names R su
h that f(a; a) : R; (a; a) : R

�

g \ A 6= ;: For ea
h

obje
t a and role R 2 rol(A;T ), N

A

(a;R) denotes the set of obje
t names b su
h that

b 6= a and f(a; b) : R; (b; a) : Inv(R)g \ A 6= ;:

We use 
l(A;T ) to denote the smallest set 
ontaining all sub-
on
epts of 
on
epts

appearing in A and T that is 
losed under _:. It 
an be easily shown that the 
ardi-

nality of 
l(A;T ) is linear in the size of A and T . Moreover, rol(A;T ) denotes the set

of all roles (i.e., role names or inverses of role names) used in A or T .

A type T for an ABox A and a TBox T is de�ned as in De�nition 1 with the

only ex
eption that 
l(C

0

;T ) is repla
ed with 
l(A;T ). In what follows, we will

sometimes identify types T with the 
onjun
tion u

C2T

C and write, e.g., d 2 T

I

for

d 2 (u

C2T

C)

I

. It is easily seen that the number of types for an ABox A and a TBox

T is exponential in the size of A and T .

A 
entral notion for the redu
tion of �nite ALCQI-ABox 
onsisten
y to �nite

ALCQI-
on
ept satis�ability is that of a redu
tion 
andidate: a mapping t that asso-


iates a type t(a) with ea
h obje
t name a o

urring in A su
h that a : C 2 A implies

C 2 t(a). For ea
h redu
tion 
andidate t, obje
t name a, role R 2 rol(A;T ), and

type T 2 range(t), we use #

A

t

(a;R; T ) to denote the number of obje
ts b su
h that

b 2 N

A

(a;R) and t(b) = T . Then, for ea
h obje
t name a used in A, we de�ne its

t-redu
tion 
on
ept C

A

t

(a) as follows:

C

A

t

(a) := t(a) uX u u

R2re


A

(a)

9R:(t(a) uX) u

u

R2rol(A;T )

u

T2range(t)

(> #

A

t

(a;R; T ) R (T u :X));

whereX is a fresh 
on
ept name not used in A and T . Finally, the redu
tion 
andidate

t is 
alled realizable i�, for every obje
t a used in A, the redu
tion 
on
ept C

A

t

(a) is

�nitely satis�able w.r.t. T . The following lemma des
ribes the relationship between

ABoxes and redu
tion 
andidates:

Lemma 3 Let A be an ABox and T a TBox. A is �nitely 
onsistent w.r.t. T i� there

exists a realizable redu
tion 
andidate for A and T .

Sin
e the number of types for A and T is exponential in the size of A and T , and

the number of obje
t names used inA is linear in the size ofA, the number of redu
tion




andidates for A and T is exponential in the size of A and T . Thus, to de
ide �nite


onsisten
y of A w.r.t. T , we may simply enumerate all redu
tion 
andidates for A

and T and 
he
k them for realizability: by Lemma 3, A is �nitely 
onsistent w.r.t.

T i� we �nd a realizable redu
tion type. Sin
e the size of the redu
tion 
on
epts is


learly polynomial in the size of A and T , by Theorem 2 the resulting algorithm 
an

be exe
uted in deterministi
 time exponential in A and T .

Theorem 3 Finite ALCQI-ABox 
onsisten
y w.r.t. TBoxes is ExpTime-
omplete

if numbers are 
oded in binary.

5 Dis
ussion

In this paper, we have determined �nite model reasoning in the des
ription logi


ALCQI to be ExpTime-
omplete. This shows that reasoning w.r.t. �nite models is

not harder than reasoning w.r.t. arbitrary models, whi
h is known to be also ExpTime-


omplete [6, 5℄. We hope that, ultimately, this resear
h will lead to the development

of �nite model reasoning systems that behave equally well as existing DL reasoners

doing reasoning w.r.t. arbitrary models. Note, however, that the 
urrent algorithm

is best-
ase ExpTime sin
e it 
onstru
ts an exponentially large equation system. It


an thus not be expe
ted to have an a

eptable runtime behaviour if implemented

in a naive way. Nevertheless, we believe that the use of equation systems and linear

programming is indispensable for �nite model reasoning in ALCQI. Thus, e�orts

to obtain eÆ
ient reasoners should perhaps 
on
entrate on methods to avoid best-


ase exponentiality su
h as on-the-
y 
onstru
tion of equation systems. Finally, the

redu
tions presented in [11℄ 
an also not be expe
ted to exhibit an a

eptable run-time

behaviour and it would thus be interesting to try to repla
e them by more \dire
t"

methods for dealing with binary 
oding of numbers and with ABoxes.

It is interesting to relate our results to formalisms from other areas where �nite

model reasoning is an issue. Take for example the full �-
al
ulus, i.e. the extension of

ALC with �xpoints and inverse roles. For the ��-fragment of this logi
, satis�ability

in arbitrary models is ExpTime-
omplete [17℄ while the best known upper bound

for �nite satis�ability is 2-ExpTime [1℄. The situation is similar for the two-variable

fragment of �rst-order logi
 with 
ounting quanti�ers [8℄. Whereas reasoning in arbi-

trary models is NExpTime-
omplete [12℄ (with unary 
oding), the best known upper

bound for �nite model reasoning is 2-NExpTime (this follows from results in [8℄). As

future work, it would be interesting to try and push our results to more expressive

logi
s su
h as the ones mentioned above, in order to obtain tight 
omplexity results

for reasoning in �nite models.
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