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1 Motivation

Most desription logis (DLs) enjoy the �nite model property (FMP). This is, for

example, the ase for ALC [14℄ and many of its extensions suh as ALCI (ALC

with inverse roles) and ALCQ (ALC with qualifying number restritions): for any

of these logis L, eah satis�able L-onept has a �nite model. This even holds if

we onsider onept satis�ability w.r.t. general TBoxes. However, there also exist

natural desription logis that do not enjoy FMP. A rather prominent example is

ALCQI, whih is obtained from ALC by adding both inverse roles and qualifying

number restritions. While ALCQI without TBoxes still has the FMP, this is no

longer the ase in the presene of general TBoxes: for example, the onept :Au9R:A

is satis�able w.r.t. the TBox

fA

:

= 9R:A u (6 1 R

�

>)g;

but eah of its models ontains an in�nite R-hain.

The fat that ALCQI laks FMP beomes partiularly important if we onsider

this logi's most prominent appliation, whih is reasoning about oneptual database

models as proposed by Calvanese et al. [4℄: if suh a model is desribed by an ER

diagram or a UML diagram, then it an be translated into a DL TBox, and DL

reasoners suh as FaCT and RACER an be used to detet inonsistenies and to

infer impliit IS-A relationships between entities/lasses. This useful and original

appliation has led to the implementation of I.om, a tool that provides a GUI for

speifying oneptual models, automatizing the translation into DLs, and displaying

the information returned by the reasoner [7℄. However, it is well-known that there exist

quite simple ER and UML diagrams that are satis�able only in in�nite models, but not

in �nite ones [15℄. Sine all available DL reasoning systems are performing reasoning

in arbitrary (as opposed to �nite) models, this means that some inonsistenies and

IS-A relationships will go unnotied if standard reasoners are used, e.g. in onjuntion

with I.om.



The main reason for existing DL reasoners to perform only reasoning w.r.t. arbi-

trary models is that �nite model reasoning in desription logis suh as ALCQI is

not yet well-understood. The only known algorithm is presented by Calvanese in [2℄,

where he proves that reasoning in ALCQI is deidable in 2-ExpTime. The purpose

of this paper is to establish tight ExpTime omplexity bounds for �nite model reason-

ing in ALCQI. More preisely, we develop an algorithm that is apable of deiding

�nite satis�ability of ALCQI-onepts w.r.t. general TBoxes. Similar to Calvanese's

approah, the ore idea behind our algorithm is to translate a given satis�ability prob-

lem into a set of linear inequalities that an then be solved by linear programming

methods. The main di�erene to Calvanese's approah is that our equation systems

talk about di�erent omponents of models, mosais, whih allows us to keep the size

of equation systems exponential in the size of the input. In this way, we improve the

best-known 2-ExpTime upper bound to a tight ExpTime one.

Sine our algorithm presupposes unary oding of the numbers ourring in quali-

fying number restritions, it does not immediately yield an ExpTime-upper bound for

the binary oding ase. Therefore, we use a di�erent approah to establish this bound,

namely a redution of ALCQI-onept satis�ability w.r.t. TBoxes to ALCFI-onept

satis�ability w.r.t. TBoxes (ALCFI is obtained from ALCQI by allowing only the

numbers 0 and 1 to be used in number restritions). Sine the latter problem is in

ExpTime due to our initial result for ALCQI with unary oding, we obtain the de-

sired bound. Finally, we show how to extend our ExpTime-upper bound to �nite

ALCQI-ABox onsisteny w.r.t. general TBoxes (with numbers oded in binary).

All details and proofs an be found in the aompanying tehnial report [11℄.

2 The Algorithm for Unary Coding

We use the standard syntax and semantis for ALCQI, assuming that 9R:C and

8R:C are just abbreviations for (> 1 R C) and (6 0 R :C), respetively. By \unary

oding", we mean that j(>nR:C)j = j(6nR:C)j = n+ jCj+ 1.

As observed by Calvanese in [2℄, ombinatoris is an important issue when deiding

�nite satis�ability of ALCQI-onepts. To illustrate this, onsider the TBox

T := fA

:

= (> 2 R B); B

:

= (6 1 R

�

A)g:

It should be lear that, in any model of T , there are at least twie as many objets

satisfying B u (6 1 R

�

A) as there are objets satisfying A u (> 2 R B). This

simple example suggests that (i) types (i.e., sets of onepts satis�ed by a partiular

objet in a partiular model) suh as fA; (> 2 R B)g are a natural notion for dealing

with �nite satis�ability, and (ii) the ombinatoris introdued by �nite domains an

be addressed with inequalities like 2 � x

T

� x

T

0

, where the variable x

T

desribes the

number of instane of a type T (e.g. fA; (> 2 R B)g), while x

T

0

desribes the number

of instanes of another type T

0

(e.g. fB; (6 1 R

�

A)g).

Considering the above two points, a �rst idea to devise a deision proedure for

�nite satis�ability of ALCQI-onepts w.r.t. TBoxes is to translate an input onept

and TBox into a system of inequalities with one variable for eah type, and then to

use linear programming algorithms to hek whether the equation system has a non-

negative integer solution. For example, the satis�ability problem of the onept A



w.r.t. the TBox T above an be translated into the two inequalities

X

fT j(>2 R B)2Tg

2 � x

T

�

X

fT j(61 Inv(R) A)2Tg

x

T

and

X

fT jA2Tg

x

T

> 0

where the sums range over all types indued by the input onept A and TBox T . It

is not hard to see that any non-negative integer solution to this equation system an

be used to onstrut a �nite model for A and T and vie versa.

Unfortunately, there is a problem with this approah: assume that the input

onept and TBox indue types T

1

to T

5

as follows: (> 1 R C) 2 T

1

, (> 1 R D) 2 T

2

,

(6 1 Inv(R) >) 2 T

3

\T

4

\T

5

, C 2 T

3

\T

4

, and D 2 T

4

\T

5

. The translation desribed

above yields the inequalities

x

T

1

� x

T

3

+ x

T

4

and x

T

2

� x

T

4

+ x

T

5

;

whih have x

T

1

= x

T

2

= x

T

4

= 1 and x

T

3

= x

T

5

= 0 as an integer solution. Trying

to onstrut a model with a

1

, a

2

, and a

4

instanes of T

1

, T

2

, and T

4

, respetively,

we have to use a

4

as a witness of a

1

being an instane of (> 1 R C) and a

2

being an

instane of (> 1 R D). However, this violates the (6 1 Inv(R) >) onept in T

4

.

This example illustrates that \ounting types" does not suÆe: onits may arise

if a type ontaining an at-most restrition (T

4

) an be used as a witness for at-least

restritions in more than one type (T

1

and T

2

). It is thus neessary to (additionally)

�x the types that are atually used as witnesses for at-least restritions. We ahieve

this by de�ning systems of inequalities that are based on hunks of models alled

mosais, rather than being based diretly on types. Intuitively, a mosai desribes the

type of an objet and �xes the type of \important" witnesses.

Before de�ning mosais, we introdue some preliminaries. In the remainder of

this paper, w.l.o.g. we assume onepts (also those appearing inside TBoxes) to be in

negation normal form (NNF), i.e. negation is only allowed in front of onept names.

We use _:C to denote the NNF of :C. Moreover, we will only onsider TBoxes of

the form f>

:

= Cg. This an be done w.l.o.g. sine every TBox T = fC

i

:

= D

i

j 1 �

i � ng an be rewritten as f>

:

= u

1�i�n

(C

i

$ D

i

)g. For a onept C

0

and a TBox

T = f>

:

= C

T

g, l(C

0

;T ) is the smallest set ontaining all sub-onepts of C

0

and C

T

that is losed under _:. We use rol(C

0

;T ) to denote the set of role names R and their

inverses R

�

ourring in C

0

or T . Finally, we de�ne a funtion Inv on roles suh that

Inv(R) = R

�

if R is a role name, and Inv(R) = S if R = S

�

.

De�nition 1 (Types and Mosais) A type T for C

0

;T = f>

:

= C

T

g is a set

T � l(C

0

;T ) suh that, for eah D;E 2 l(C

0

;T ), we have

(T1) D 2 T i� _:D 62 T ,

(T2) if D uE 2 l(C

0

;T ), then D uE 2 T i� D 2 T and E 2 T ,

(T3) if D tE 2 l(C

0

;T ), then D tE 2 T i� D 2 T or E 2 T , and

(T4) C

T

2 T .



We use type(C

0

;T ) to denote the set of all types for C

0

;T . Let T be a type and

./ 2 f6;>g. Then we use the following abbreviations:

max

./

(T ) := maxfn j (./ n R C) 2 Tg and sum

./

(T ) :=

X

(./ n R C)2T

n:

For types T

1

; T

2

and a role R, we write lim

R

(T

1

; T

2

) (T

2

is a limited ressoure for T

1

w.r.t. R) if C 2 T

1

and (6 n Inv(R) C) 2 T

2

for some C 2 l(C

0

;T ) and n 2 N.

A mosai for C

0

;T is a triple M = (T

M

; L

M

; E

M

) where

� T

M

2 type(C

0

;T ),

� L

M

is a funtion from rol(C

0

;T )� type(C

0

;T ) to N, and

� E

M

is a funtion from rol(C

0

;T )� type(C

0

;T ) to N

suh that the following onditions are satis�ed:

(M1) if L

M

(R;T ) > 0, then lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

),

(M2) if E

M

(R;T ) > 0, then lim

Inv(R)

(T; T

M

),

(M3) if (6 n R C) 2 T

M

, then n �

P

fT jC2Tg

E

M

(R;T );

(M4) #f(R;T ) j L

M

(R;T ) > 0g � sum

>

(T

M

) and max(range(L

M

)) � max

>

(T

M

).

Consider a mosai M and one of its \instanes" d in some interpretation. While T

M

is simply the type of d, L

M

and E

M

are used to desribe ertain \neighbors" of d, i.e.

objets e reahable from d via a role. For a role R, there are three possibilities for the

relationship between T

M

and T , the type of e:

1. Not lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary num-

ber of R-neighbors of type T and every instane of T may have an arbitrary

number of Inv(R)-neighbors of type T

M

. Intuitively, R-neighbors of type T are

\unritial" and not reorded in the mosai.

2. lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary number of

R-neighbors of type T , but every instane of T may only have a limited number

of Inv(R)-neighbors of type T

M

. Thus, R-neighbors of type T are a limited

ressoure and we reord in L

M

the minimal number of R-neighbors of type T

that d needs (\L" for \lower bound").

3. lim

Inv(R)

(T; T

M

). Then d may only have a limited number of R-neighbors of type

T . To prevent the violation of at-most restritions in T

M

, we reord the exat

number of d's R-neighbors of type T in E

M

.

(M1) and (M2) ensure that L

M

and E

M

reord information for the \orret" types as

desribed above; (M3) ensures that at-most restritions are not violated: by de�nition,

this onerns only neighbors with E

M

-types; �nally, (M4) puts upper bounds on L

M

to ensure that there exist only exponentially many mosais (see below). At-least

restritions are not mentioned in the de�nition of mosais and will be treated by the

systems of inequalities to be de�ned later.



Now for the number of mosais. First, the ardinality of type(C

0

;T ) is exponen-

tial in the size of C

0

and T . Next, (M2) and (M3) imply #f(R;T ) j E

M

(R;T ) >

0g � sum

6

(T

M

) and max(range(E

M

)) � max

6

(T

M

). Analogous bounds for L

M

are

enfored by (M4). Now max

./

(T ) and sum

./

(T ) are linear in the size of C

0

and T for

./ 2 f6;>g sine numbers are oded in unary, and thus the number of mosais is

bounded exponentially in the size of C

0

and T .

We now de�ne a system of inequalities for a onept C

0

and a TBox T .

De�nition 2 (Equation System) Let C

0

be an ALCQI-onept and T a TBox.

We introdue a variable x

M

for eah mosai M for C

0

;T and de�ne the equation

system E

C

0

;T

by taking (i) the equation

X

fM jC

0

2T

M

g

x

M

� 1; (E1)

(ii) for eah pair of types T; T

0

2 type(C

0

;T ) and role R suh that lim

R

(T; T

0

) and

not lim

Inv(R)

(T

0

; T ), the equation

X

fM jT

M

=Tg

L

M

(R;T

0

) � x

M

�

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

; (E2)

and (iii) for eah pair of types T; T

0

2 type(C

0

;T ) and role R suh that lim

R

(T; T

0

)

and lim

Inv(R)

(T

0

; T ), the equation

X

fM jT

M

=Tg

E

M

(R;T

0

) � x

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

: (E3)

A solution of E

C

0

;T

is admissible if it is a non-negative integer solution and satis�es

the following onditions: (i) for eah pair of types T; T

0

2 type(C

0

;T ) and role R

suh that lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ),

if

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

> 0; then

X

fM jT

M

=Tg

x

M

> 0; (A1)

(ii) for eah mosai M and eah role R, if (> n R C) 2 T

M

,

x

M

> 0, and

X

fT jC2Tg

L

M

(R;T ) +

X

fT jC2Tg

E

M

(R;T ) < n;

then

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x

M

0

> 0 (A2)

While inequality (E1) guarantees the existene of an instane of C

0

, inequalities (E2)

and (E3) enfore the lower and exat bounds on the number of neighbors as desribed

by L

M

and E

M

. A speial ase is treated by ondition (A1): in inequality (E2), it

may happen that the left-hand side is zero while the right-hand side is non-zero. In

this ase, there is an instane of a mosai M

0

with T

M

0

= T

0

and E

M

(Inv(R); T ) > 0

(ounted on the right-hand side), but there is no instane of a mosaiM with T

M

= T



(ounted on the left-hand side)|thus we annot �nd any neighbors as required by

E

M

(Inv(R); T ). To ure this defet, ondition (A1) ensures that, if the right-hand

side of (E2) is non-zero, then there is at least one instane of a mosai M with

T

M

= T .

1

Finally, (A2) takes are of at-least restritions in types T

M

: if the number

of R-neighbors enfored by L

M

and E

M

is not enough for some (> n R C) 2 T

M

, then

we make sure that there is at least one instane of a mosai M

0

suh that C 2 T

M

0

and, for instanes of M (M

0

), the number of R-neighbors (Inv(R)-neighbors) that are

instanes of M

0

(M) is not limited:

1

Lemma 1 C

0

is �nitely satis�able w.r.t. T i� the equation system E

C

0

;T

has an ad-

missible solution.

The proof of this lemma an be found in [11℄.

Sine the number of mosais is exponential in the size of C

0

and T , the size of

E

C

0

;T

and of the admissibility ondition is also exponential in the size of C

0

and T .

To prove an ExpTime upper bound for the �nite satis�ability of ALCQI-onepts,

it thus remains to show that the existene of an admissible solution for the equation

systems E

C

0

;T

an be deided in deterministi polynomial time.

We assume linear inequalities to be of the form �

i



i

x

i

� b. A system of linear

inequalities is desribed by a tuple (V; E), where V is a set of variables and E a set of

inequalities using variables from V . Suh a system is alled simple if only non-negative

integers our on the right-hand side of inequalities and all oeÆients are (possibly

negative) integers. A side ondition for an inequality system (V; E) is a onstraint

of the form x > 0 =) x

1

+ � � � + x

`

> 0; where x; x

1

; : : : x

`

2 V: It is not hard to

hek that the inequalities (Ei) an be polynomially transformed into simple ones,

and that the onditions (Ai) an be polynomially transformed into side onditions;

more details are given in [11℄. The proof of the following lemma is by redution to

linear programming and an be found in [11℄.

Lemma 2 Let (V; E) be a simple equation system and I a set of side onditions for

(V; E). Then the existene of a non-negative integer solution for (V; E) satisfying all

onstraints from I an be deided in (deterministi) time polynomial in #V +#E+#I.

Sine satis�ability of ALC w.r.t. TBoxes in arbitrary models is ExpTime-hard [13℄

and this DL has the �nite model property, ombining Lemmas 1 and 2 yields the

following theorem:

Theorem 1 Finite satis�ability of ALCQI-onepts w.r.t. TBoxes is Exptime-om-

plete if numbers are oded in unary.

3 Binary Coding

If numbers in number restritions are oded binarily (i.e. j(>nR:C)j = j(6nR:C)j =

log(n)+ jCj+1), Theorem 1 does no longer apply: in this ase, the number of mosais

is double exponential in the size of the input, and thus the algorithm used in Setion 2

yields only a 2-ExpTime upper bound. For reasoning w.r.t arbitrary models, a variety

1

To see why a single instane suÆes, onsult the proof sketh of Lemma 1 in [11℄.
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Figure 1: Representing role suessor relationships.

of results are known that suggest that the oding of numbers in number restritions is

usually irrelevant for the omplexity of reasoning, see e.g. [16, 10℄. However, for �nite

model reasoning, similar results do not seem to be known. Indeed, it is a non-trivial

problem whether the algorithm used in Setion 2 an be adapted to binary oding.

We have to leave this problem open and hoose an alternative tehnique: a redution

of �nite ALCQI-onept satis�ability to the �nite satis�ability of ALCFI-onepts.

This redution is polynomial even for binary oding of numbers, and �nite satis�ability

in the target logi is in ExpTime due to Theorem 1 (sine number restritions in

ALCFI are restrited to the numbers 0 and 1, the oding is not an issue). Note that

we annot use existing redutions of ALCQI to ALCFI suh as the one presented in

[5℄ beause these work only on potentially in�nite, tree-shaped models.

The entral idea behind our redution is to replae ounting via quali�ed number

restritions with ounting via onept names: to ount up to a number n, we reserve

onept names B

0

; : : : ; B

dlog(n)e

representing the bits of the binary oding of numbers

between 0 and n. For the atual ounting, we an then use well-known (propositional

logi) formulas that enode inrementation. We use a TBox involving auxiliary on-

ept names and roles L

R

to re-arrange R-neighbors as shown in Figure 1: exept for the

root, eah node on the auxiliary L

R

-path attahed to x has preisely one R-neighbor.

Ignoring the root for a seond, this means that we an ount via onept names along

the auxiliary objets on L

R

-paths. However, we annot gather all original R-neighbors

of x on the L

R

-path sine we only ount up to the sum of numbers ourring in the

input onept and TBox. Sine an objet may have more R-neighbors than this, these

\unrestrited" R-neighbors are not re-arranged, but attahed to the root as shown

in the upper right part of Figure 1. To obtain an ALCFI-onept from an ALCQI-

onept, we replae, in the input onept and TBox, number restritions (./ nRC)

with new onept names A

(./nRC)

, and then use additional TBox axioms to ensure

that, e.g., if x is an instane of A

(6nR:C)

, then there are at most n R-suessors in C

along the L

R

-path starting at x and no R-suessor of x is in C. Moreover, we have to

take are that the \auxiliary" objets introdued as intermediate points on L

R

-paths

and the \real" objets are distinguished properly.

The redution with a proof of its orretness an be found in [11℄.

Theorem 2 Finite satis�ability of ALCQI-onepts w.r.t. TBoxes is Exptime-om-

plete if numbers are oded in binary.

4 ABox Consisteny

Finally, we extend the omplexity bounds obtained in Setions 2 and 3 to a more

general reasoning task: �nite ALCQI-ABox onsisteny. It is well known that (�-



nite) ALCQI-ABox onsisteny has important appliations: whereas �nite ALCQI-

onept satis�ability algorithms an be used to deide the onsisteny of oneptual

database models and infer impliit IS-A relationships as desribed in the introdution,

ALCQI-ABox onsisteny an be used as the ore omponent of algorithms deiding

ontainment of onjuntive queries w.r.t. oneptual database models|a task that

DLs have suesfully been used for and that alls for �nite model reasoning [3, 9℄.

ABoxes are de�ned as usual, i.e., for O a ountably in�nite set of objet names,

an ABox is a �nite set of ABox assertions of the form a : C or (a; b) : R, where a and

b are objet names, C is a onept, and R a role. Semantis is de�ned in the usual

way. Even though irrelevant for the result, we employ the unique name assumption,

i.e., a 6= b implies that a

I

6= b

I

. In the following, we will polynomially redue �nite

ALCQI-ABox onsisteny to �nite ALCQI-onept satis�ability.

Let A be an ABox and T a TBox. For eah objet name a used in A, re

A

(a)

denotes the set of role names R suh that f(a; a) : R; (a; a) : R

�

g \ A 6= ;: For eah

objet a and role R 2 rol(A;T ), N

A

(a;R) denotes the set of objet names b suh that

b 6= a and f(a; b) : R; (b; a) : Inv(R)g \ A 6= ;:

We use l(A;T ) to denote the smallest set ontaining all sub-onepts of onepts

appearing in A and T that is losed under _:. It an be easily shown that the ardi-

nality of l(A;T ) is linear in the size of A and T . Moreover, rol(A;T ) denotes the set

of all roles (i.e., role names or inverses of role names) used in A or T .

A type T for an ABox A and a TBox T is de�ned as in De�nition 1 with the

only exeption that l(C

0

;T ) is replaed with l(A;T ). In what follows, we will

sometimes identify types T with the onjuntion u

C2T

C and write, e.g., d 2 T

I

for

d 2 (u

C2T

C)

I

. It is easily seen that the number of types for an ABox A and a TBox

T is exponential in the size of A and T .

A entral notion for the redution of �nite ALCQI-ABox onsisteny to �nite

ALCQI-onept satis�ability is that of a redution andidate: a mapping t that asso-

iates a type t(a) with eah objet name a ourring in A suh that a : C 2 A implies

C 2 t(a). For eah redution andidate t, objet name a, role R 2 rol(A;T ), and

type T 2 range(t), we use #

A

t

(a;R; T ) to denote the number of objets b suh that

b 2 N

A

(a;R) and t(b) = T . Then, for eah objet name a used in A, we de�ne its

t-redution onept C

A

t

(a) as follows:

C

A

t

(a) := t(a) uX u u

R2re

A

(a)

9R:(t(a) uX) u

u

R2rol(A;T )

u

T2range(t)

(> #

A

t

(a;R; T ) R (T u :X));

whereX is a fresh onept name not used in A and T . Finally, the redution andidate

t is alled realizable i�, for every objet a used in A, the redution onept C

A

t

(a) is

�nitely satis�able w.r.t. T . The following lemma desribes the relationship between

ABoxes and redution andidates:

Lemma 3 Let A be an ABox and T a TBox. A is �nitely onsistent w.r.t. T i� there

exists a realizable redution andidate for A and T .

Sine the number of types for A and T is exponential in the size of A and T , and

the number of objet names used inA is linear in the size ofA, the number of redution



andidates for A and T is exponential in the size of A and T . Thus, to deide �nite

onsisteny of A w.r.t. T , we may simply enumerate all redution andidates for A

and T and hek them for realizability: by Lemma 3, A is �nitely onsistent w.r.t.

T i� we �nd a realizable redution type. Sine the size of the redution onepts is

learly polynomial in the size of A and T , by Theorem 2 the resulting algorithm an

be exeuted in deterministi time exponential in A and T .

Theorem 3 Finite ALCQI-ABox onsisteny w.r.t. TBoxes is ExpTime-omplete

if numbers are oded in binary.

5 Disussion

In this paper, we have determined �nite model reasoning in the desription logi

ALCQI to be ExpTime-omplete. This shows that reasoning w.r.t. �nite models is

not harder than reasoning w.r.t. arbitrary models, whih is known to be also ExpTime-

omplete [6, 5℄. We hope that, ultimately, this researh will lead to the development

of �nite model reasoning systems that behave equally well as existing DL reasoners

doing reasoning w.r.t. arbitrary models. Note, however, that the urrent algorithm

is best-ase ExpTime sine it onstruts an exponentially large equation system. It

an thus not be expeted to have an aeptable runtime behaviour if implemented

in a naive way. Nevertheless, we believe that the use of equation systems and linear

programming is indispensable for �nite model reasoning in ALCQI. Thus, e�orts

to obtain eÆient reasoners should perhaps onentrate on methods to avoid best-

ase exponentiality suh as on-the-y onstrution of equation systems. Finally, the

redutions presented in [11℄ an also not be expeted to exhibit an aeptable run-time

behaviour and it would thus be interesting to try to replae them by more \diret"

methods for dealing with binary oding of numbers and with ABoxes.

It is interesting to relate our results to formalisms from other areas where �nite

model reasoning is an issue. Take for example the full �-alulus, i.e. the extension of

ALC with �xpoints and inverse roles. For the ��-fragment of this logi, satis�ability

in arbitrary models is ExpTime-omplete [17℄ while the best known upper bound

for �nite satis�ability is 2-ExpTime [1℄. The situation is similar for the two-variable

fragment of �rst-order logi with ounting quanti�ers [8℄. Whereas reasoning in arbi-

trary models is NExpTime-omplete [12℄ (with unary oding), the best known upper

bound for �nite model reasoning is 2-NExpTime (this follows from results in [8℄). As

future work, it would be interesting to try and push our results to more expressive

logis suh as the ones mentioned above, in order to obtain tight omplexity results

for reasoning in �nite models.

Referenes

[1℄ M. Bojanzyk. Two-way alternating automata and �nite models. In Pro. of

ICALP2002, volume 2380 of LNCS. Springer-Verlag, 2002.

[2℄ D. Calvanese. Finite model reasoning in desription logis. In Pro. of KR-96.

Morgan Kaufmann, 1996.



[3℄ D. Calvanese, G. De Giaomo, and M. Lenzerini. On the deidability of query

ontainment under onstraints. In Pro. of PODS-98, pages 149{158, 1998.

[4℄ D. Calvanese, M. Lenzerini, and D. Nardi. Desription logis for oneptual

data modeling. In J. Chomiki and G. Saake, editors, Logis for Databases and

Information Systems, pages 229{263. Kluwer Aademi Publisher, 1998.

[5℄ G. De Giaomo. Deidability of Class-Based Knowledge Representation For-

malisms. PhD thesis, Universit�a degli Studi di Roma \La Sapienza", 1995.

[6℄ G. De Giaomo and M. Lenzerini. Tbox and Abox reasoning in expressive de-

sription logis. In Pro. of KR-96, pages 316{327. Morgan Kaufmann, 1996.

[7℄ E. Franoni and G. Ng. The i.om tool for intelligent oneptual modelling.

In Working Notes of the ECAI2000 Workshop KRDB2000. CEUR (http://

eur-ws.org/), 2000.

[8℄ E. Gr�adel, M. Otto, and E. Rosen. Two-Variable Logi with Counting is Deid-

able. In Proeedings of Twelfth IEEE Symposium on Logi in Computer Siene

(LICS'97), 1997.

[9℄ I. Horroks, U. Sattler, S. Tessaris, and S. Tobies. How to deide query ontain-

ment under onstraints using a desription logi. In A. Voronkov, editor, Pro.

of LPAR 2000, number 1955 in LNAI. Springer-Verlag, 2000.

[10℄ O. Kupferman, U. Sattler, and M. Y. Vardi. The omplexity of the graded mu-

alulus. In Pro. of CADE-18, volume 2392 of LNAI. Springer-Verlag, 2002.

[11℄ C. Lutz, U. Sattler, and L. Tendera. The omplexity of �nite model reasoning

in desription logis. LTCS-Report 02-05, Tehnial University Dresden, 2002.

Available from http://lat.inf.tu-dresden.de/researh/reports.html.

[12℄ L. Paholski, W. Szwast, and L. Tendera. Complexity results for �rst-order two-

variable logi with ounting. SIAM Journal on Computing, 29(4):1083{1117,

August 2000.

[13℄ K. Shild. A orrespondene theory for terminologial logis: Preliminary report.

In Pro. of IJCAI-91, pages 466{471, Sydney, 1991.

[14℄ M. Shmidt-Shau� and G. Smolka. Attributive onept desriptions with om-

plements. Arti�ial Intelligene, 48(1):1{26, 1991.

[15℄ B. Thalheim. Fundamentals of ardinality onstraints. In Proeedings of the Con-

ferene on Entity-Relationship-Approahes 1992 (ER92), number 645 in LNCS,

pages 7{23. Springer Verlag, 1992.

[16℄ S. Tobies. Complexity Results and Pratial Algorithms for Logis in Knowledge

Representation. PhD thesis, RWTH Aahen, 2001. eletronially available at

http://www.bth.rwth-aahen.de/ediss/ediss.html.

[17℄ M. Y. Vardi. Reasoning about the past with two-way automata. In Pro. of

ICALP'98, volume 1443 of LNCS, pages 628{641. Springer-Verlag, 1998.


