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Desription Logis with Conrete

Domains|A Survey

Carsten Lutz

abstrat. Desription logis (DLs) are a family of logial for-

malisms that have initially been designed for the representation of

oneptual knowledge in arti�ial intelligene and are losely related

to modal logis. In the last two deades, DLs have been suessfully

applied in a wide range of interesting appliation areas. In most of

these appliations, it is important to equip DLs with expressive means

that allow to desribe \onrete qualities" of real-world objets suh

as their weight, temperature, and spatial extension. The standard

approah is to augment desription logis with so-alled onrete do-

mains, whih onsist of a set (say, the rational numbers), and a set

of n-ary prediates with a �xed extension over this set. The \inter-

fae" between the DL and the onrete domain is then provided by

a new logial onstrutor that has, to the best of our knowledge, no

ounterpart in modal logis. In this paper, we give an overview over

desription logis with onrete domains and summarize deidability

and omplexity results from the literature.

1 Introdution

Desription logis (DLs) are a family of logial formalisms that originated in

the �eld of arti�ial intelligene as a tool for the representation of oneptual

knowledge. Sine then, DLs have been suessfully used in a wide range of

appliation areas suh as knowledge representation, reasoning about lass-

based formalisms (e.g. oneptual database models and UML diagrams),

and ontology engineering in the ontext of the semanti web

[

Baader 1999;

Calvanese et al. 1998; Baader et al. 2002a

℄

. The basi syntati entity of

desription logis are onepts, whih are onstruted from onept names

(unary prediates) and role names (binary relations) using the set of onept

and role onstrutors provided by a partiular DL. For example, the follow-

ing onept is formulated in the basi propositionally losed desription

logi ALC and ould be used, e.g., in a knowledge-based proess engineer-

ing appliation (as in

[

Sattler 1998; Molitor 2000

℄

) to desribe a prodution

proess that has an expensive (speially trained) operator:

Proess u 8subpro:Proess u 9operator:(Human u Expensive)
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In this example, Proess, Human, and Expensive are onept names while

subpro and operator are role names.

Viewed from a logial perspetive, desription logis are losely related

to modal logis

[

Shild 1991; Giaomo&Lenzerini 1994

℄

. For example, the

DL ALC an be viewed as a notational variant of the modal logi K

!

, i.e.,

multimodal K with in�nitely many aessibility relations: onept names

orrespond to propositional variables, role names orrespond to (names for)

aessibility relations, the 8 onstrutor of ALC an be read as a modal

box operator, and 9 an be read as a diamond. However, there also exist

several means of expressivity that are frequently used in desription logis,

but usually not onsidered in modal logis.

An important example are so-alled onrete domains, whih allow the in-

tegration of \onrete qualities" suh as numbers, time intervals, and strings

into desription logi onepts. Suppose, for example, that we want to re-

�ne the desription of a proess given above by replaing the onept name

Expensive with a onept expressing that the proess operator earns at least

20 euro per hour. Then we need a proper way to talk about numbers suh

as \20" and omparisons between numbers suh as \at least 20 euro". As

another example, we may want to express that the time interval desribing

the working time of the operator should ontain the time interval desribing

the exeution time of the proess. Here we obviously need to represent time

intervals and relations between them.

The need for extending the expressive power of DLs in the desribed

diretion arises in almost all relevant appliation areas, let us review two

(more) examples:

1. Semanti web. In this appliation, DLs are used to desribe the on-

tents of web pages in order to failitate the development of more pow-

erful web servies suh as advaned searh engines

[

Baader et al. 2002a;

Berners-Lee et al. 2001

℄

. It is obvious and has always been emphasized

that the representation of \onrete datatypes" suh as numbers and strings

is an important issue

[

Fensel et al. 2000; Horroks&Patel-Shneider 2001

℄

:

if, for example, we want to desribe the web page of a wine seller, then we

need numbers to represent vintages and pries, and strings to represent the

names of regions and wine produers. It should be lear that suh onrete

datatypes are preisely what we have desribed as \onrete qualities".

2. Coneptual database models. Entity Relationship (ER) diagrams are

the predominant formalism for onstruting oneptual models of relational

databases

[

Chen 1976; Teorey 1990

℄

. For example, an ER diagram ould de-

sribe two entities Employee and Company related by a relationship employs

suh that eah Employee is employed by exatly one Company, and eah
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Company employs at least one Employee. DLs an be used to enode and

reason about ER diagrams, whih allows to detet inonsistenies and im-

pliations that are only impliitly represented in the diagram

[

Calvanese et

al. 1998; Franoni&Ng 2000

℄

. However, the standard translation of ER di-

agrams into DLs does not take into aount so-alled \numerial attribute

dependenies", whih an e.g. be used to express that no Employee was

hired prior to his Company's founding. As argued in

[

Lutz 2002e

℄

, it is im-

portant to inlude these dependenies when using DLs for reasoning about

ER diagrams sine they an be an (additional) soure for inonsistenies

and unnotied rami�ations. In order to do this, the target DL must be

able to represent \onrete" objets suh as numbers and omparisons be-

tween numbers.

The neessity of representing onrete qualities in desription logis has been

realized almost sine the beginnings of the �eld, and, indeed, many early

desription logi reasoners suh as meson

[

Edelmann&Owsniki 1986

℄

and

lassi

[

Brahman et al. 1991

℄

provided for \ad ho" solutions of this prob-

lem. The �rst formal treatment of the issue was presented by Baader and

Hanshke in

[

1991

℄

, who proposed to extend the desription logi ALC with

onrete domains. Formally, a onrete domain onsists of a set suh as

the natural numbers and a set of prediates suh as the binary \<" and

the ternary \+" with a �xed extension over this set. Enrihing ALC with

suh a onrete domain D, we obtain the basi DL with onrete domains

ALC(D). More preisely, ALC(D) is obtained from ALC by augmenting it

with

{ abstrat features, i.e. roles interpreted as funtional relations;

{ onrete features : a new syntati type that is interpreted as a partial

funtion from the logial domain into the onrete domain;

{ a new onept onstrutor that allows to desribe onstraints on on-

rete values using prediates from the onrete domain.

Let us view two example ALC(D)-onepts: the onept

Proess u 8subpro:Proess u 9operator:(Human u 9wage:�

20

)

re�nes the proess desription from above by replaing the onept name

Expensive with a onrete domain-based desription of the operator's wage|

whih is at least 20 euro per hour. In this example, operator is an abstrat

feature while wage is a onrete feature. We use a onrete domain based

on the natural numbers and assume that �

20

is a unary prediate with the

obvious extension. The (sub)onept 9wage:�

20

is an instantiation of the
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onrete domain onstrutor and must not be onfused with the existential

restrition as used in 9operator:Human. Observe that onrete features suh

as wage are the \link" between the desription logi and the onrete do-

main: they allow to assoiate onrete values suh as numbers with logial

objets suh as the one representing the operator in the above example.

In the seond onept, we use a onrete domain based on time intervals

to desribe a onstraint on the exeution time of proesses as proposed

above:

Proess u 8subpro:Proess u 9(operator worktime); (exetime):ontains

Here, worktime and exetime (for \exeution time") are onrete features,

and ontains is a binary onrete domain prediate. The last onjunt is

an instantiation of the onrete domain onstrutor expressing that the

time interval desribing the working time of the operator ontains the time

interval desribing the exeution time of the proess.

Sine their �rst appearane in 1991, desription logis with onrete do-

mains have been extensively studied. The purpose of this paper is to survey

the proposed logis and available results, fousing on deidability and om-

putational omplexity. It is organized as follows: in Setion 2, we formally

introdue onrete domains and the desription logi ALC(D). Setion 3

disusses results that have been obtained for ALC(D) and several of its ex-

tensions: in Setion 3.1, we treat ALC(D) itself, Setion 3.2 is onerned

with extensions onsidered \standard" in the area of desription logis, and

Setion 3.3 fouses on spei�ally onrete-domain related extensions. Most

of the disussed results do not onsider a partiular onrete domain, but are

of a general nature. Finally, Setion 4 gives a brief overview over onrete

domains that have been proposed in the literature.

2 The Desription Logi ALC(D)

In this setion, we formally introdue Baader and Hanshke's basi desrip-

tion logi with onrete domains ALC(D)

[

1991

℄

. To do this, we must �rst

de�ne the underlying notion of onrete domains.

DEFINITION 1 (Conrete Domain) A onrete domain D is a pair

(�

D

;�

D

), where �

D

is a set and �

D

a set of prediate names. Eah pred-

iate name P 2 �

D

is assoiated with an arity n and an n-ary prediate

P

D

� �

n

D

.

For many appliation areas, the most interesting onrete domains are nu-

merial ones. Hene, let us introdue a typial numerial onrete domain

Q to illustrate De�nition 1: as the set �

Q

, we use the rational numbers Q.

The following prediates are available:
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{ unary prediates P

q

for eah P 2 f<;�;=; 6=;�; >g and eah q 2 Q

with (P

q

)

Q

= fq

0

2 Q j q

0

P qg;

{ binary prediates <;�;=; 6=;�; > with the obvious extension;

{ ternary prediates + and + with (+)

Q

= f(q; q

0

; q

00

) 2 Q

3

j q+q

0

= q

00

g

and (+)

Q

= Q

3

n (+)

Q

;

{ a unary prediate >

Q

with (>

Q

)

Q

= Q and a unary prediate ?

Q

with

(?

Q

)

Q

= ;.

The presene of the prediates >

Q

and ?

Q

and of the negation of the \+"

prediate is related to the admissibility of onrete domains and will be

disussed in Setion 3.1. We will further disuss the onrete domain Q and

its relatives in Setion 4.

DEFINITION 2 (ALC(D) Syntax) Let N

C

, N

R

, and N

F

be pairwise disjoint

and ountably in�nite sets of onept names, role names, and onrete

features. Furthermore, let N

aF

be a ountably in�nite subset of N

R

. The

elements of N

aF

are alled abstrat features. A path u is a omposition

f

1

� � � f

n

g of n abstrat features f

1

; : : : ; f

n

(n � 0) and a onrete feature g.

For D a onrete domain, the set of ALC(D)-onepts is the smallest set

suh that

{ every onept name is a onept, and

{ if C and D are onepts, R is a role name, g is a onrete feature,

u

1

; : : : ; u

n

are paths, and P 2 �

D

is a prediate of arity n, then the

following expressions are also onepts: :C, C u D ,C t D, 9R:C,

8R:C, 9u

1

; : : : ; u

n

:P , and g".

As usual, we use > as abbreviation for an arbitrary propositional tautology

and ? as abbreviation for :>. Additionally, if u = f

1

� � � f

k

g is a path then

u" is used as abbreviation for 8f

1

: � � � :8f

k

:g". As an example ALC(Q)-

onept, onsider the proess desription

Proess u 8subpro:Proess u 9operator:(Human u 9wage:�

20

)

u 9(operator wage); (ost):�;

where the seond line states that the hourly ost of the proess is at least

as high as the hourly wage of its operator. We now introdue the semantis

of ALC(D)-onepts and the relevant reasoning problems.

DEFINITION 3 (ALC(D) Semantis)An interpretation I is a pair (�

I

; �

I

),

where �

I

is a set alled the domain and �

I

is the interpretation funtion.

The interpretation funtion maps
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{ eah onept name C to a subset C

I

of �

I

,

{ eah role name R to a subset R

I

of �

I

��

I

,

{ eah abstrat feature f to a partial funtion f

I

from �

I

to �

I

, and

{ eah onrete feature g to a partial funtion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � � ).

The interpretation funtion is extended to arbitrary onepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(9u

1

; : : : ; u

n

:P )

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

for 1 � i � n

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg

Let I be an interpretation. Then I is a model of a onept C i� C

I

6= ;.

A onept C is satis�able i� C has a model. A onept C is subsumed by

a onept D (written C v D) i� C

I

� D

I

for all interpretations I.

While satis�ability is familiar from modal and lassial logis, subsumption

deserves a brief omment: this reasoning task is rather important in de-

sription logis sine DLs are frequently used to apture the terminologial

knowledge of an appliation domain, and subsumption an then be used

to arrange the de�ned notions (represented by onepts) in a taxonomy.

Logially, subsumption an obviously be understood as the validity of im-

pliations. It should thus be lear that, in ALC(D), onept subsumption

an be redued to onept (un)satis�ability and vie versa: C v D i� Cu:D

is unsatis�able and C is satis�able i� C 6v ?.

It is not hard to see that \the ALC part" of ALC(D) is a syntati-

al variant of multimodal K (see Setion 1). However, to the best of

our knowledge, the onrete domain onstrutor has no ounterpart in

modal logi. Moreover, even for very simple onrete domains D there

does not exist a translation from ALC(D)-onepts into formulas of the

two-variable fragment of �rst-order logi or of the guarded fragment|a

property enjoyed by most modal and desription logis

[

van Benthem 1983;

Borgida 1996

℄

. The reason for this is that we admit paths of length greater

one inside the onrete domain onstrutor.
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For most appliation areas, the reasoning tasks \onept satis�ability"

and \subsumption" have to take into aount so-alled TBoxes. Suh TBoxes

are sets of onept equations, whih are used to store terminologial knowl-

edge and bakground knowledge about the appliation domain. For ex-

ample, we ould use a TBox to de�ne the notion \expensive proess" by

writing

ExpensiveProess

:

= Proess u 9ost:�

20

Moreover, we ould apture the \bakground knowledge" that every proess

ontrolled by an expensive operator is an expensive proess:

>

:

= (Proess u 9operator:9wage:�

20

)! ExpensiveProess

In the DL literature, there exist various TBox formalisms with vast di�er-

enes in expressive power. In this paper, we will only onsider the two TBox

formalisms that are used most frequently.

DEFINITION 4 (TBox) A onept equation is an expression C

:

= D, where

C and D are onepts. A general TBox is a �nite set of onept equations.

A onept equation C

:

= D is alled a onept de�nition if C is a onept

name. A �nite set of onept de�nitions T is alled an ayli TBox if the

following onditions are satis�ed:

1. the left-hand sides of onept de�nitions are unique, i.e., if fA

:

=

C; A

0

:

= C

0

g � T , then C 6= C

0

implies A 6= A

0

;

2. T is ayli: there are no onept de�nitions fA

0

:

= C

0

; : : : ; A

k�1

:

=

C

k�1

g � T suh that the onept name A

i

ours in C

i+1 mod k

for

i < k.

An interpretation I is a model of a (general or ayli) TBox T if C

I

= D

I

for all C

:

= D 2 T . A onept C is satis�able w.r.t. a TBox T i� C and T

have a ommon model. A onept C is subsumed by a onept D w.r.t. a

TBox T (written C v

T

D) i� C

I

� D

I

for all models I of T .

From a modal logi perspetive, the expressive power provided by general

TBoxes is losely related to the expressiveness of the universal modality|see

e.g. Setion 2.2.1 of

[

Lutz 2002b

℄

for a thorough disussion. While general

TBoxes are a rather powerful tool, the expressive power provided by ayli

TBoxes is relatively weak: due to ayliity, they an be viewed as maro

de�nitions, i.e., as providing a set of abbreviations for onepts. As we will

see in Setion 3.2, ayli TBoxes an also be expanded like maros. Note,

however, that ayli TBoxes are still powerful enough to de�ne terminolo-

gies as in the �rst example presented above.
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To distinguish onept satis�ability without TBoxes from onept satis�-

ability with TBoxes, we will in the following sometimes use the term \pure

onept satis�ability" to refer to the former.

3 Desription Logis with Conrete Domains

In this setion, we onsider the basi desription logi with onrete domains

ALC(D) and several of its extensions. We start with ALC(D) itself and then

disuss \standard extensions" that are frequently onsidered in desription

logis and, in priniple, independent of onrete domains. Finally, we give

an overview over extensions of ALC(D) that onern the \onrete domain

part" of this logi.

3.1 The Basi Formalism

In their original 1991 paper, Baader and Hanshke present a tableau al-

gorithm that is apable of deiding (pure) ALC(D)-onept satis�ability.

Using the redution from the previous setion, this algorithm also yields a

deision proedure for onept subsumption. Baader and Hanshke's deid-

ability result is a rather general one sine it does not onern a partiular

onrete domain, but applies to any onrete domain that satis�es some

weak onditions. These onditions are derived from the fat that any satis�-

ability algorithm not ommitting itself to a partiular onrete domain must

all some onrete domain reasoner as a subproedure via a well-de�ned \in-

terfae". In the ase of Baader and Hanshke's tableau algorithm, suh a

onrete domain reasoner is required to deide the satis�ability of �nite

onjuntions of onrete domain prediates. This leads to the notion of

admissibility.

DEFINITION 5 (Admissible) Let D be a onrete domain and V a set of

variables. A D-onjuntion is a prediate onjuntion of the form

 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary prediate for i < k and the x

(i)

j

are variables from

V. A D-onjuntion  is satis�able i� there exists a funtion Æ mapping

the variables in  to elements of �

D

suh that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for eah i < k. Suh a funtion is alled a solution for . We say that the

onrete domain D is admissible i�

1. its set of prediate names is losed under negation and ontains a

name >

D

for �

D

and

2. the satis�ability of D-onjuntions is deidable.
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We refer to the satis�ability of D-onjuntions as D-satis�ability.

Property 1 of admissibility has to be satis�ed sine the desription logi

ALC(D) provides for negation. For example, the onept

:(g

1

") u :(g

2

") u :(9g

1

; g

2

:<)

expresses that g

I

1

� g

I

2

without expliitly using a \�" prediate, and

suh information must be passed to the onrete domain reasoner. Note

that the onrete domain Q presented in Setion 2 satis�es Property 1 of

admissibility|in Setion 4, we will see that Property 2 is also satis�ed.

The result obtained in

[

Baader&Hanshke 1991

℄

an now be formulated as

follows:

THEOREM 6 (Baader, Hanshke) Pure ALC(D)-onept satis�ability and

subsumption are deidable if D is admissible.

We should briey omment on a minor di�erene between the logi ALC(D)

as de�ned in

[

Baader&Hanshke 1991

℄

and in Setion 2: Baader and Han-

shke's variant of ALC(D) uses only a single type of feature that is inter-

preted in partial funtions from �

I

to �

I

� �

D

and thus ombines our

abstrat and onrete features. It is not very hard to see that the di�erene

in expressivity is negligible. However, the separation of abstrat and on-

rete features neessitates the presene of the g" onstrutor: without this

onstrutor, we would not be able to remove negations in front of the on-

rete domain onstrutor when onverting ALC(D)-onepts into equivalent

ones in negation normal form (NNF), for details see Setion 3.3.

�

The omplexity of reasoning with ALC(D) has been analyzed in

[

Lutz

2002d

℄

. There, the tableau algorithm of Baader and Hanshke is re�ned

by using the so-alled traing tehnique: instead of keeping entire tableaux

in memory (whih may beome exponentially large), a tree-shaped tableau

is onstruted in a depth-�rst manner keeping only paths of the tree in

memory. Sine suh paths are of at most polynomial length, this allows

to devise a PSpae algorithm. However, the omplexity of reasoning with

ALC(D) learly depends on the omplexity of D-satis�ability:

THEOREM 7 Pure ALC(D)-onept satis�ability and subsumption are

PSpae-omplete if D is admissible and D-satis�ability is in PSpae.

�

A onept is in NNF if negation does only our in front of onept names. This

normal form is frequently used to devise deision proedures for DLs.
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Thus, reasoning with ALC(D) is not harder than reasoning with ALC. As

we will see in Setion 4, Q-satis�ability an be deided in PTime, and

thus Theorem 7 yields a tight omplexity bound for (pure) reasoning with

ALC(Q).

3.2 Standard Extensions

We now disuss the extension of ALC(D) with several means of expressivity

that an be onsidered \standard" in the area of desription logis. Let us

start with general TBoxes.

General TBoxes

In

[

Baader&Hanshke 1992

℄

, it is proved that ALC(R) extended with a

transitive losure onstrutor on roles (similar to the star-operator of propo-

sitional dynami logi) is undeidable, where R is a onrete domain based

on Tarski algebra. The undeidability proof, whih uses a redution of the

Post Correspondene Problem (PCP), an easily be adapted to ALC(R) ex-

tended with general TBoxes, whih is thus also undeidable. This adaption

is performed in

[

Lutz 2001b; 2002

℄

, where not only R is onsidered, but

a more general result is obtained that applies to a large lass of onrete

domains.

THEOREM 8 For onrete domains D suh that (i) N � �

D

and (ii) �

D

provides a unary prediate for equality with 0, a binary equality prediate,

and a binary prediate for inrementation, ALC(D)-onept satis�ability

and subsumption w.r.t. general TBoxes are undeidable.

Note that there exist rather simple (and admissible) onrete domains sat-

isfying the onditions listed in the theorem, an example being the onrete

domain Q.

y

Sine Q-satis�ability an be deided in PTime (Setion 4), it

should be lear that the reason for undeidability is an interation between

general TBoxes and onrete domains and not reasoning with arithmeti

onrete domains themselves.

Sine general TBoxes play a very important role in most appliation areas

and are provided by almost all state-of-the-art desription logis, the above

result is rather disouraging. There are two ways for regaining deidability:

either use a less powerful onrete domain onstrutor or very arefully

hoose the onrete domains used.

The �rst approah was adopted in

[

Haarslev et al. 2001

℄

and

[

Horroks&

Sattler 2001

℄

. In the former artile, Haarslev et al. propose to allow only

onrete features inside the onrete domain onstrutor instead of paths

y

Stritly speaking, Q does not ontain a prediate for addition with 1, but this is

ompensated by the prediates \=

1

" and +.
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of arbitrary length. In the following, we all onepts satisfying this ondi-

tion path-free. More preisely, Haarslev et al. introdue the rather powerful

desription logi SHN (D)

z

, whih extends ALC(D) with expressive means

suh as unquali�ed number restritions (a weak form of graded modalities)

and role hierarhies (TBox-like assertions that allow to state inlusions be-

tween roles). If path-freeness is not assumed, then SHN (D)-onept satis�-

ability and subsumption is undeidable sine reasoning with general TBoxes

an be redued to reasoning without general TBoxes|the so-alled \inter-

nalization of TBoxes", .f.

[

Shild 1991; Horroks&Sattler 1999

℄

. However,

using a tableau algorithm Haarslev et al.

[

2001

℄

were able to show the fol-

lowing:

THEOREM 9 (Haarslev et al.) If the onrete domain D is admissible,

then path-free SHN (D)-onept satis�ability and subsumption w.r.t. gen-

eral TBoxes are deidable.

Horroks and Sattler

[

2001

℄

propose to admit only unary onrete domain

prediates to overome undeidability. Under this restrition, they prove de-

idability of reasoning with the very expressive desription logi SHOQ(D)

and general TBoxes by devising an appropriate tableau algorithm. How-

ever, allowing only unary prediates is stritly less expressive than requir-

ing path-freeness: the onept 9f

1

� � � f

k

g:P (with P unary prediate) an

learly be replaed with the equivalent one 9f

1

:9f

2

: � � � :9f

k

:9g:P that does

not use paths of length greater than one. In

[

Pan&Horroks 2002

℄

, the

initial result is strengthened by admitting onrete domain prediates of

arbitrary arity, adopting path-freeness, and adding some additional means

of expressivity (see Setion 3.3). The resulting DL is alled SHOQ(D

n

).

THEOREM 10 (Horroks, Pan, Sattler) If the onrete domain D is ad-

missible, then path-free SHOQ(D

n

)-onept satis�ability and subsumption

w.r.t. general TBoxes are deidable.

A more general result has been obtained in Setion 5.3 of

[

Baader et al.

2002b

℄

, where it is shown that any desription logi L, suh that (i) L-

onept satis�ability w.r.t. general TBoxes is deidable and (ii) L is \losed

under disjoint unions" (see

[

Baader et al. 2002b

℄

for details), an be ex-

tended with the path-free variant of the onrete domain onstrutor with-

out losing deidability of reasoning with general TBoxes. This result gener-

alizes Theorem 9 but not Theorem 10 sine SHOQ does not satisfy Prop-

erty (ii). Indeed, the \harmlessness" of the path-free onrete domain on-

strutor is not very surprising sine dropping paths deprives onrete do-

z

This logi is also alled ALCNH

R

+

(D).
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mains of most of their expressive power: in Setion 2.4.1 of

[

Lutz 2002b

℄

,

it is shown that the path-free variant of the onrete domain onstrutor

an be \simulated" by onept names, whih is not possible for the vari-

ant admitting paths of arbitrary length. In the same setion, it is proved

that path-free ALC(D)-onept satis�ability and subsumption w.r.t. general

TBoxes are ExpTime-omplete if D is admissible and D-satis�ability is in

ExpTime.

We now disuss the seond approah to overome undeidability ofALC(D)

with general TBoxes, namely to keep the original version of the onrete

domain onstrutor and look for onrete domains that are both interesting

and do not destroy deidability of reasoning with general TBoxes. The �rst

positive result following this route was established in

[

Lutz 2001a

℄

, where

a onrete domain C is onsidered that is based on the rational numbers

Q = �

C

, and provides for the binary prediates <;�;=; 6=;�; > with the

obvious extension. Using an automata-based approah, the following result

is obtained:

THEOREM 11 ALC(C)-onept satis�ability and subsumption w.r.t. gen-

eral TBoxes are ExpTime-omplete.

It is then shown that this result an be extended to an interval-based, tem-

poral onrete domain. Theorem 11 has subsequently been generalized in

[

Lutz 2002a

℄

: �rst, the onrete domain C has been extended to C

+

whih,

additionally, admits unary prediates =

q

for eah q 2 Q (with the obvious

extension). Seond, the \desription logi part" is extended from ALC to

the very expressive DL SHIQ that plays an important role in many ap-

pliation areas

[

Horroks et al. 2000

℄

. The following theorem is proved in

[

Lutz 2002a

℄

, also using an automata-theoreti approah:

THEOREM 12 SHIQ(C

+

)-onept satis�ability and subsumption w.r.t.

general TBoxes are ExpTime-omplete.

Note that this logi is alled Q-SHIQ in

[

Lutz 2002a

℄

. It is very unlikely

that C

+

an be extended with any form of arithmetis without losing de-

idability. For example, if ALC(C

+

) is extended with a binary prediate

for inrementation with one, we obtain undeidability of reasoning w.r.t.

general TBoxes from Theorem 8. An interesting open question is whether

a unary prediate int an be added whose extension are the integers. Suh

a prediate would be very useful for many appliations.
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Ayli TBoxes

If we restrit ourselves to ayli TBoxes rather than admitting general

ones, the situation beomes muh simpler: it is well-known that onept

satis�ability w.r.t. ayli TBoxes an be redued to onept satis�ability

without TBoxes by using unfolding

[

Nebel 1990

℄

: given an input onept

C and an ayli TBox T , we an exhaustively replae onept names in

C that appear on the left-hand side of a onept de�nition in T with the

orresponding right-hand side. This proess terminates sine T is ayli.

Moreover, it is not hard to see that the resulting onept is satis�able i�

C is satis�able w.r.t. T . Thus, Theorem 6 implies that ALC(D)-onept

satis�ability and subsumption w.r.t. ayli TBoxes are deidable if D is

admissible|although unfolding involves an exponential blow-up in size.

Conerning omplexity, the results obtained for reasoning with ALC(D)

and ayli TBoxes are muh more surprising: it is well-known that, for

almost all desription logis onsidered in the literature, adding ayli

TBoxes does not inrease the omplexity of reasoning. For example, ALC-

onept satis�ability and subsumption are PSpae-omplete, both with and

without ayli TBoxes

[

Shmidt-Shau�&Smolka 1991; Lutz 1999

℄

. Inter-

estingly, this is not the ase for ALC(D): although pure ALC(D)-onept

satis�ability is PSpae-omplete, in

[

Lutz 2001b; 2002

℄

a large lass of

so-alled arithmeti onrete domains D is identi�ed for whih ALC(D)-

onept satis�ability w.r.t. ayli TBoxes is onsiderably harder, namely

NExpTime-omplete.

DEFINITION 13 (Arithmeti) A onrete domain D is alled arithmeti

i� �

D

ontains the natural numbers and �

D

ontains

{ unary prediates for equality with zero and with one,

{ a binary equality prediate, and

{ ternary prediates expressing addition and multipliation.

ANExpTime-omplete variant of the Post Correspondene Problem is used

to show the following result:

THEOREM 14 For any arithmeti onrete domain D, ALC(D)-onept

satis�ability w.r.t. ayli TBoxes is NExpTime-hard.

Sine onept satis�ability an be redued to non-subsumption, this im-

plies a o-NExpTime lower bound for ALC(D)-onept subsumption if D

is arithmeti. A orresponding upper bound is established using a tableau

algorithm:
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THEOREM 15 ALC(D)-onept satis�ability w.r.t. ayli TBoxes is in

NExpTime if D is admissible and D-satis�ability is in NP.

Again, we have to onsider the omplementary omplexity lass for sub-

sumption. It is interesting that the addition of the seemingly harmless

ayli TBoxes results in a leap of omplexity from PSpae-ompleteness

to NExpTime-ompleteness.

Conept- and Role-Construtors

Interestingly, ayli TBoxes are not the only means of expressivity that

onsiderably inreases the omplexity of reasoning if added to ALC(D). In

[

Lutz 2001b; 2002; Arees&Lutz 2002

℄

, analogues of Theorems 14 and 15

have been proved for the following extensions of ALC(D):

{ Inverse roles. We an now additionally use expressions R

�

inside

the 9R:C and 8R:C onstrutors, where R may also be an abstrat

feature. The interpretation (R

�

)

I

of R

�

is obtained by taking the

onverse of the relation R

I

. Inverses of abstrat (or even onrete)

features inside the onrete domain onstrutor are not allowed sine

the inverse of a feature is not neessarily funtional.

{ Role onjuntion. We admit roles like R

1

u � � � u R

n

inside the 9R:C

and 8R:C onstrutors, where the R

i

may also be abstrat features.

The interpretation (R

1

u � � � u R

n

)

I

of R

I

is obtained by taking the

intersetion of the relations R

I

1

; : : : ; R

I

n

. Conjuntions of abstrat (or

even onrete) features inside the onrete domain onstrutor are not

allowed.

{ Nominals. Nominals (known, e.g., from hybrid logi

[

Arees&de Rijke

2001

℄

) are a new syntati type that is used in the same way as onept

names, but interpreted in singleton sets.

All these means of expressivity (with the possible exeption of nominals) are

usually onsidered \harmless" w.r.t. omplexity, i.e., in most ases they do

not inrease the omplexity of reasoning when added to a desription logi.

The above results thus show that the PSpae upper omplexity bound

for reasoning with ALC(D) is not robust, but rather quite unstable w.r.t.

extensions of the language.

Although formal proofs are missing, most other standard means of expres-

sivity are very likely to preserve deidability and the PSpae upper bound

when added to ALC(D). Suh means of expressivity are, e.g., quali�ed num-

ber restritions (the DL ounterpart of graded modalities) and transitive

roles (i.e., a new sort of role names interpreted in transitive relations|not
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to be onfused with the transitive losure role onstrutor). Conerning

deidability, some results an be obtained by using the transfer results for

fusions of desription logis presented in

[

Baader et al. 2002b

℄

. This is to

some extent disussed in Setion 5.6 of

[

Lutz 2002b

℄

, where the following

result is obtained:

THEOREM 16 If D is admissible, then pure ALCQ

�

R

+

(D)-onept satis�-

ability is deidable.

Here, ALCQ

�

R

+

(D) is ALC(D) extended with inverse roles, qualifying num-

ber restritions, and transitive roles. It should also be noted that onrete

domains an be ombined with so-alled feature agreements and disagree-

ments without spoiling the PSpae upper omplexity bound

[

Lutz 2002d

℄

.

3.3 Conrete Domain-Related Extensions

We now review various proposals for enhaning the expressive power of

ALC(D) by extending the \onrete domain part" of this logi.

Generalized Conrete Domain Construtor

In the original version of ALC(D) as de�ned in Setion 2, we only allow

abstrat features to be used in the onrete domain onept onstrutor

instead of admitting arbitrary role names. This observation leads to a nat-

ural generalization of the onrete domain onstrutor that has �rst been

proposed by Hanshke

[

1992

℄

.

DEFINITION 17 (ALCP(D)) A sequene U = R

1

� � �R

k

g where R

1

; : : : ; R

k

2 N

R

(k � 0) and g 2 N

F

is alled a role path. For an interpretation I,

U

I

is de�ned as

f(d; x) � �

I

��

D

j9d

1

; : : : ; d

k+1

: d = d

1

;

(d

i

; d

i+1

) 2 R

I

i

for 1 � i � k; and g

I

(d

k+1

) = xg:

ALCP(D) is obtained from ALC(D) by allowing the use of onepts of the

form 8U

1

; : : : ; U

n

:P and 9U

1

; : : : ; U

n

:P in plae of onept names, where

P 2 �

D

is of arity n and U

1

; : : : ; U

n

are role paths. The semantis of the

generalized onrete domain onstrutors is de�ned as follows:

(8U

1

; : : : ; U

n

:P )

I

:= fd 2 �

I

j For all x

1

; : : : ; x

n

with (d; x

i

) 2 U

I

i

;

we have (x

1

; : : : ; x

n

) 2 P

D

g

(9U

1

; : : : ; U

n

:P )

I

:= fd 2 �

I

j There exist x

1

; : : : ; x

n

with (d; x

i

) 2 U

I

i

and (x

1

; : : : ; x

n

) 2 P

D

g
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Obviously, every path is also a role path. Hene, the 9U

1

; : : : ; U

n

:P on-

strutor of ALCP(D) is a generalization of the 9u

1

; : : : ; u

n

:P onstrutor

of ALC(D). For paths u

1

; : : : ; u

n

, the ALCP(D)-onept 8u

1

; : : : ; u

n

:P is

equivalent to the ALC(D)-onept u

1

"t� � �tu

n

"t9u

1

; : : : ; u

n

:P . This is the

reason why ALC(D) does not provide for a ounterpart of the 8U

1

; : : : ; U

n

:P

onstrutor.

Using the generalized onstrutors, we an, for example, express that the

duration of subproesses is bounded by the duration of the mother proess

without ommitting to a partiular number of subproesses :

Proess u 8(duration); (subpro duration):�;

where duration is a onrete feature. The existential version of the gener-

alized onrete domain onstrutor an then be used to express that there

exists a subproess whose duration is stritly shorter than the duration of

the mother proess:

Proess u 9(duration); (subpro duration):<: (�)

Note, however, that it is now impossible to state that the subproess with

the shorter duration is a DangerousProess. This observation suggests that

role hierarhies are a useful extension of ALCP(D): in the resulting DL,

we an modify (�) by replaing the role subpro with an abstrat feature

speialSubproess, adding the onjunt 9speialSubproess:DangerousProess,

and �nally using a role hierarhy to state that speialSubproess is a subrole

of subpro, i.e. that we have speialSubProess

I

� subpro

I

. In the following,

however, we will stik with the original variant of ALCP(D) that does not

admit role hierarhies.

As shown in

[

Hanshke 1992

℄

, satis�ability and subsumption ofALCP(D)-

onepts are deidable if D is admissible. However, when investigating the

omplexity of ALCP(D), it beomes lear that initially restriting ourselves

to abstrat features inside the onrete domain onstrutor is a sensible idea

sine it allows a more �ne-grained omplexity analysis: it is shown in

[

Lutz

2002b

℄

that, while reasoning with ALC(D) is PSpae-omplete, reasoning

with ALCP(D) is muh harder. Indeed, the omplexity of (pure) reason-

ing with ALCP(D) parallels the omplexity of reasoning with ALC(D) ex-

tended with ayli TBoxes. The lower bound is determined by redution

of a NExpTime-omplete variant of the PCP:

THEOREM 18 For any arithmeti onrete domain D, pure ALCP(D)-

onept satis�ability is NExpTime-hard.

It is interesting to note that this lower bound does even hold if abstrat fea-

tures are dropped from the language. As in the ase of ayli TBoxes, there
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exists a orresponding upper bound whih is established using a tableau al-

gorithm:

THEOREM 19 Pure ALCP(D)-onept satis�ability is in NExpTime if D

is admissible and D-satis�ability is in NP.

We obtain orresponding o-NExpTime omplexity bounds for onept sub-

sumption. Another generalization of the onrete domain onstrutor has

been proposed in

[

Pan&Horroks 2002

℄

: the authors replae onrete fea-

tures by onrete roles, whih are not required to be funtional. Addi-

tionally, they allow the appliation of number restritions to onrete roles.

This allows, for example, to state that eah person has exatly one age (at-

tahed via a onrete role age) while being allowed to have many telephone

numbers (attahed via a onrete role tel).

A Conrete Domain Role Construtor

Another natural extension of the original variant of ALC(D) is obtained by

using the onrete domain not only to de�ne onepts, but by additionally

allowing the de�nition of omplex roles with referene to onrete domain

prediates. Suh an extension has �rst been proposed in

[

Haarslev et al.

1999

℄

.

DEFINITION 20 (ALCRP(D)) A onrete domain role is an expression of

the form

9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P

where u

1

; : : : ; u

n

and v

1

; : : : ; v

m

are paths and P is an n+m-ary prediate.

The semantis is given as follows:

(9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P )

I

:=

f(d; e) 2 �

I

��

I

j There exist x

1

; : : : ; x

n

and y

1

; : : : ; y

m

suh that u

I

i

(d) = x

i

for 1 � i � n; v

I

i

(e) = y

i

for 1 � i � m; and

(x

1

; : : : ; x

n

; y

1

; : : : ; y

m

) 2 P

D

g

ALCRP(D) is obtained from ALC(D) by allowing the use of onrete do-

main roles inside the 9R:C and 8R:C onstrutors.

Note that onrete domain roles are not allowed inside the onrete domain

onept onstrutor. Let us view an example ALCRP(D)-onept. Assume

that we use a onrete domain based on temporal intervals and binary pred-

iates desribing the possible relationships between suh intervals. Then the

onept

Proess u 8(9(exetime); (exetime):overlaps)::DangerousProess;
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desribes proesses that are not temporally overlapping with dangerous pro-

esses. Note that 9(exetime); (exetime):overlaps is a onrete domain role

de�ned in terms of the binary prediate overlaps and the onrete feature

exetime whih assoiates proesses with the time interval in whih they are

exeuted.

In

[

Lutz&M�oller 1997

℄

, a redution of the Post Correspondene Prob-

lem is used to prove that there exist onrete domains D suh that the

satis�ability of ALCRP(D)-onepts is undeidable. It is straightforward

to generalize this result to the lass of onrete domains identi�ed in The-

orem 8:

THEOREM 21 (Lutz, M�oller) For onrete domains D suh that (i) N �

�

D

and (ii) �

D

provides a unary prediate for equality with 0, a binary

equality prediate, and a binary prediate for inrementation, pure

ALCRP(D)-onept satis�ability and subsumption are undeidable.

In

[

Haarslev et al. 1999

℄

a fragment of ALCRP(D) is identi�ed that is losed

under negation, stritly extends ALC(D), and is deidable for all admissible

onrete domains. To introdue this fragment, we need a way to onvert

ALCRP(D)-onepts into equivalent ones in NNF. Assuming that D is ad-

missible, this onversion an be done by eliminating double negation and

using de Morgan's rules, the duality between 9R:C and 8R:C, and the

equivalenes

:(9u

1

; : : : ; u

n

:P ) � 9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g") � 9g:>

D

where, for P an n-ary prediate, P denotes the prediate satisfying P

D

=

�

n

D

nP

D

, whih exists sine D is admissible. In the following, sub(C) refers

to the set of subonepts of the onept C (inluding C itself).

DEFINITION 22 (Restrited ALCRP(D)-onept)An ALCRP(D)-onept

C is alled restrited i� the result C

0

of onverting C to NNF satis�es the

following onditions:

1. For any 8R:D 2 sub(C

0

), where R is a onrete domain role,

(a) sub(D) does not ontain any onepts 9S:E with S a onrete

domain role, and

(b) if sub(D) ontains a onept 9u

1

; : : : ; u

n

:P , then u

1

; : : : ; u

n

2

N

F

.

2. For any 9R:D 2 sub(C

0

), where R is a onrete domain role,
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(a) sub(D) does not ontain any onepts 8S:E with S a onrete

domain role, and

(b) if sub(D) ontains a onept 9u

1

; : : : ; u

n

:P , then u

1

; : : : ; u

n

2

N

F

.

It is easily seen that the set of restrited ALCRP(D)-onepts is losed

under negation. Hene, subsumption of restrited ALCRP(D)-onepts

an still be redued to satis�ability of restrited ALCRP(D)-onepts (and

vie versa). Deidability of restrited ALCRP(D)-onept satis�ability and

subsumption has been shown in

[

Haarslev et al. 1999

℄

, where it is also illus-

trated that this fragment of ALCRP(D) is still useful for reasoning about

spatio-terminologial knowledge. The omplexity of reasoning has been in-

vestigated in

[

Lutz 2002b

℄

, where it is shown that, one more, we an use a

NExpTime-omplete variant of the PCP and a tableau algorithm to prove

the following:

THEOREM 23 Let D be a onrete domain. If D is arithmeti, then (pure)

satis�ability of restrited ALCP(D)-onepts is NExpTime-hard. If D is

admissible and D-satis�ability is in NP, then (pure) satis�ability of re-

strited ALCRP(D)-onepts an be deided in NExpTime.

Again, we obtain orresponding o-NExpTime bounds for onept sub-

sumption.

Aggregation Funtions

Aggregation is a useful mehanism available in many expressive represen-

tation formalisms suh as database shema and query languages. It is thus

a natural idea to extend desription logis providing for onrete domains

with aggregation as proposed in

[

Baader&Sattler 2002

℄

. Consider, for ex-

ample, a proess desription

Proess u 9duration:>

0

u 8subpro:(Proess u 9duration:>

0

):

The aggregation funtion \sum" is needed if we want to express that the

duration of the mother proess is idential to the sum of the durations of

all its subproesses (of whih there may be arbitrarily many).

DEFINITION 24 (Aggregation) A onrete domain with aggregation is a

onrete domain that, additionally, provides for a set of aggregation fun-

tions agg(D), where eah � 2 agg(D) is assoiated with a partial funtion

�

D

from the set of �nite multisets of dom(D) into dom(D).

x

x

Intuitively, a multiset is a set that may ontain the same element multiple (but only

�nitely many) times.
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To distinguish onrete domains with aggregation from those without, we

denote the former with �. Typial aggregation funtions are min, max, sum,

ount, and average (with the obvious extensions).

ALC(�)-onepts are now de�ned in the same way as ALC(D)-onepts

exept that aggregated features may be substituted for onrete features,

where an aggregated feature is an expression �(RÆg) with R role, g onrete

feature, and � an aggregation funtion from �. The semantis of aggregated

features is de�ned via multisets:

DEFINITION 25 (Semantis of ALC(�)) Let I be an interpretation. For

eah d 2 �

I

suh that the set fe j (d; e) 2 R

I

g is �nite, we use M

RÆg

d

to

denote the multiset that, for eah z 2 �

D

, ontains z exatly jfe j (d; e) 2

R

I

and g

I

(e) = zgj times. The semantis of aggregated features is now

de�ned as follows:

�(R Æ g))

I

(d) :=

(

�

�

(M

RÆg

d

) if fe j (d; e) 2 R

I

g is �nite

unde�ned otherwise:

Returning to the initial example, we an now express the fat that the

duration of the mother proess is idential to the sum of the durations of

all its subproesses by writing

9duration; sum(subpro Æ duration):=:

The investigations performed by Baader and Sattler

[

2002

℄

reveal that the

expressive power provided by aggregation funtions is hard to tame. The

following result is proved by a redution of Hilbert's 10-th problem.

THEOREM 26 (Baader, Sattler) For onrete domains with aggregation �

where (i) dom(�) inludes the non-negative integers, (ii) �

�

ontains a

(unary) prediate for equality with 1 and a (binary) equality prediate, and

(iii) agg(�) ontains min, max, and sum, pure ALC(�)-onept satis�ability

and subsumption are undeidable.

This lower bound does even apply if we admit only onjuntion, the 8R:C

onstrutor, and the onrete domain onstrutor, but drop all other on-

ept onstrutors. Rather strong measures have to be taken in order to

regain deidability: either, we have to drop the 8R:C onstrutor from

the language or we have to on�ne ourselves with \well-behaved" aggre-

gation funtions. Following the �rst approah, one may replae the logi

ALC(�) with the DL EL(�) that only provides for the following onept
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onstrutors: atomi negation (i.e. restrited to onept names), onjun-

tion, disjuntion, the 9R:C onstrutor, and the onrete domain onstru-

tor. When devising deision proedures for EL(�), requiring onrete do-

mains to be admissible is no longer suÆient sine the multisets underlying

aggregation funtions need to be dealt with: �-onjuntions may, addition-

ally, ontain multiset variables and inlusion statements between multisets

(for a preise de�nition see

[

Baader&Sattler 2002

℄

). If the satis�ability of

suh extended �-onjuntions is deidable, we all � aggregation-admissible.

Baader and Sattler

[

2002

℄

prove the following result by devising a tableau

algorithm:

THEOREM 27 (Baader, Sattler) For onrete domains with aggregation �

that are aggregation-admissible, pure EL(�)-onept satis�ability is deid-

able.

However, subsumption of EL(�)-onepts is, in general, still undeidable.

Following the seond approah, Baader and Sattler found out that only min

and max an be onsidered well-behaved, obtaining the following result also

by onstrution of a tableau algorithm:

THEOREM 28 (Baader, Sattler) For onrete domains with aggregation �

suh that (i) � is admissible, (ii) �

�

ontains a binary equality predi-

ate and a binary prediate for a linear ordering on �

�

, and (iii) agg(�) =

fmin;maxg, pure ALC(�)-onept satis�ability and subsumption are deid-

able.

Keys

In several appliations, it is useful to identify a set of onrete features

whose values uniquely determine logial objets. Say, for example, that

there exists a onrete feature sonum assoiating humans with their soial

seurity number. Then, if a human is Amerian, she should be uniquely

identi�ed by this number. In other words, there should be no two distint

domain elements that are both in the extension of Amerian and share the

same value of the onrete feature sonum. This idea leads to the de�nition

of key boxes, whih have been proposed in

[

Arees et al. 2002

℄

.

DEFINITION 29 (Key box) A key box is a �nite set of key de�nitions

(u

1

; : : : ; u

n

keyfor C);

where u

1

; : : : ; u

n

are paths and C is a onept. An interpretation I satis�es

a key de�nition (u

1

; : : : ; u

n

keyfor C) i�, for any a; b 2 C

I

,

u

I

i

(a) = u

I

i

(b) for 1 � i � n implies a = b:
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I is a model of a key box K i� I satis�es all key de�nitions in K.

Clearly, key boxes are a natural hoie in database appliations suh as

the one desribed in Setion 1: they orrespond to so-alled funtional de-

pendenies whih are the most popular type of onstraint for relational

databases. For this reason, keys for desription logis have also been onsid-

ered in a non-onrete domain ontext

[

Borgida&Weddell 1997; Calvanese

et al. 2000; Khizder et al. 2001

℄

.

From a logial perspetive, there exists a lose relationship between nom-

inals and key boxes. For example, if used together with the key de�nition

(g keyfor >), then the ALC(Q)-onept 9g:=

q

\behaves" like a nominal for

eah q 2 Q: it is interpreted either in the empty set or in a singleton set.

Indeed, key boxes are a quite powerful expressive means. This is reeted

by the omputational omplexity of ALCK(D), the extension of ALC(D)

with key boxes, whih is investigated in

[

Arees et al. 2002

℄

. The following

undeidability result is proved by a redution of the PCP:

THEOREM 30 (Arees et al.) For any arithmeti onrete domain D, pure

ALCK(D)-onept satis�ability and subsumption w.r.t. key boxes are unde-

idable.

Deidability an be regained by allowing only Boolean ombinations of on-

ept names on the right-hand side of key de�nitions. Key boxes satisfying

this property are alled Boolean. Pure ALCK(D)-onept satis�ability and

subsumption w.r.t. Boolean key boxes are NExpTime-hard for arithmeti

onrete domains D. Surprisingly,

[

Arees et al. 2002

℄

an even show that

this high omplexity annot be redued if paths are restrited to length

one inside ALCK(D)-onepts and key boxes. In analogy to Setion 3.2,

where this approah helped to overome undeidability in the presene of

general TBoxes, we all suh onepts and key boxes path-free. The follow-

ing theorem is proved by redution of a NExpTime-omplete variant of the

PCP:

THEOREM 31 (Arees et al.) For any arithmeti onrete domain D, pure

path-free ALCK(D)-onept satis�ability and subsumption w.r.t. Boolean

and path-free key boxes are NExpTime-hard.

To devise a deision proedure for reasoning with key boxes, it does not

suÆe to assume admissibility of onrete domains: the onrete domain

reasoner should not only tell us whether a given D-onjuntion is satis�able,

but also whih variables in it must take the same value in solutions.
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DEFINITION 32 (key-admissible) A onrete domain D is alled key-

admissible i� there exists an algorithm that takes as input a D-onjuntion

, returns lash if  is unsatis�able, and otherwise non-deterministially out-

puts an equivalene relation � on the set of variables V used in  suh that

there exists a solution Æ for  with the following property:

Æ(v) = Æ(v

0

) i� v � v

0

for all v; v

0

2 V:

We say that extended D-satis�ability is in NP if there exists an algorithm

as above running in polynomial time.

This property is muh less esoteri than it seems: as noted in

[

Arees et al.

2002

℄

, any onrete domain that is admissible and provides for an equality

prediate is also key-admissible. This rather weak ondition is satis�ed

by almost all (admissible) onrete domains proposed in the literature, .f.

Setion 4. Using a tableau algorithm, Arees et al.

[

2002

℄

obtain a mathing

upper bound for Theorem 31:

THEOREM 33 (Arees et al.) Let D be a onrete domain that is key-

admissible. If extended D-satis�ability is in NP, then pure ALCOK(D)-

onept satis�ability w.r.t. Boolean key boxes is in NExpTime.

Note that, in ontrast to Theorem 31, onepts do not have to be path-free.

As usual, orresponding o-NExpTime results are obtained for onept

subsumption.

Arees et al. also onsider the extension of the desription logi SHOQ(D

n

)

(see Setion 3.2) with key boxes. Sine SHOQ(D

n

) provides only for the

path-free variant of the onrete domain onstrutor, it is natural to re-

quire key boxes to also be path-free. Due to the fat that eah path-free

ALCK(D)-onept is also a path-free SHOQ(D

n

)-onept, Theorem 31 pro-

vides us with a lower NExpTime omplexity bound. In

[

Arees et al.

2002

℄

, the orresponding upper bound is obtained by devising an appro-

priate tableau algorithm:

THEOREM 34 (Arees et al.) Let D be a onrete domain that is key-

admissible. If extended D-satis�ability is in NP, then path-free SHOQ(D

n

)-

onept satis�ability w.r.t. path-free key boxes is in NExpTime.

Note that the key boxes in Theorem 34 are not required to be Boolean! We

obtain a orresponding o-NExpTime bound for onept subsumption.
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4 Conrete Domains

In this setion, we disuss several onrete domains that have been proposed

in the literature. We start with numerial onrete domains, whih are

useful in a wide range of appliation areas, and then onsider more spei�

onrete domains suh as temporal and spatial ones.

4.1 Numerial Conrete Domains

Let us start with reonsidering the onrete domain Q introdued in Se-

tion 2. It is based on the rational numbers Q and provides for the following

prediates:

� (unary) prediates <

q

, �

q

, =

q

, 6=

q

, �

q

, and >

q

for omparisons with

rational numbers q;

� binary omparison prediates <, �, =, 6=, �, and >;

� a ternary addition prediate + and its negation +;

� unary prediates >

Q

and ?

Q

(for admissibility).

Note that we ould drop some of the prediates sine, e.g., 9u:<

7

an be

written as 9g:=

7

u 9u; g:<, and 9u

1

; u

2

:� an be written as 9u

1

; u

2

:= t

9u

2

; u

1

:<.

{

It is not very hard to prove that Q-satis�ability is in PTime

using a redution to linear programming (LP). More preisely, a linear pro-

gramming problem has the form Ax = b, where A is an m � n-matrix of

rational numbers, x is an n-vetor of variables, and b is an m-vetor of

rational numbers (see, e.g.

[

Shrijver 1986

℄

). A solution of Ax = b is a

mapping Æ that assigns a rational number to eah variable suh that the

equality Ax = b holds. Deiding whether a given LP problem has a solution

is well known to be in PTime

[

Shrijver 1986

℄

. Details on the redution of

Q-satis�ability to linear programming an be found in

[

Lutz 2002d

℄

.

There exist several interesting prediates that an be added to Q in order

to extend its expressive power. From the viewpoint of many appliations,

the most useful ones are the following:

{ ternary prediates � and � with (�)

Q

= f(q; q

0

; q

00

) 2 Q

3

j q � q

0

= q

00

g

and (�)

Q

= Q

3

n (�)

Q

;

{ unary prediates int and int with (int)

Q

= Z (where Z denotes the

integers) and (int)

Q

= Q n Z.

{

It is suÆient to provide, for example, the prediates f=

q

j q 2 Qg [ f<, +g: all

other prediates an be de�ned in terms of these. The orresponding onrete domain is,

however, not losed under negation and thus not admissible.
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Complexity of Complexity of (pure)

D-satis�ability ALC(D)-onept satis�ability

Q + `�' + `int' undeidable undeidable

Q + `�' in ExpTime in NExpTime

Q + `int' NP-omplete PSpae-omplete

Q in PTime PSpae-omplete

Figure 1. Numerial onrete domains and their omplexity.

Adding di�erent ombinations of these prediates, we obtain three exten-

sions of the onrete domain Q, whih are listed in Figure 1, together with

known omplexity bounds on D-satis�ability and pure ALC(D)-onept sat-

is�ability. Note that, sine the obtained onrete domains should be admis-

sible, we assume that the addition of the prediates `�' and `int' implies the

addition of their negations. Let us disuss the given bounds in some more

detail:

{ It is easily proved that the onrete domain Q + `�' + `int' is un-

deidable using a redution of Hilbert's 10-th problem. Clearly, the

undeidability is inherited by ALC(D)-onept satis�ability.

{ The ExpTime upper bound for Q + `�' stems from the fat that, for

this onrete domains, �nite prediate onjuntions an be translated

into formulas of Tarski algebra (also known as the theory of real losed

�elds) without quanti�er alternation. The satis�ability of suh formu-

las has been proved to be deidable in ExpTime

[

Mayr&Meyer 1982;

Grigorev 1988

℄

. The NExpTime upper bound for ALC(D)-onept

satis�ability stems from a more general variant of Theorem 7 that is

proved in

[

Lutz 2002d

℄

.

In

[

Baader&Hanshke 1992

℄

, it has even been proposed to use all

formulas of Tarski algebra (also those with quanti�ers) as onrete

domain prediates. For the onrete domain obtained in this way,

D-satis�ability is ExpSpae-omplete

[

Mayr&Meyer 1982

℄

.

{ Finally, NP-ompleteness of the onrete domain Q + `int' an be

shown via mutual redutions to and from mixed integer programming

(MIP), i.e., linear programming with an additional type of variables

that must take integer values in solutions. Deiding the existene of a

solution for MIP problems is known to be NP-omplete. More details

on the redutions an be found in

[

Lutz 2002d

℄

. The omplexity of

ALC(D)-onept satis�ability is then obtained from Theorem 7.
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blak before gray after blak

blak meets gray met-by blak

blak overlaps gray overlapped-by blak

blak during gray ontains blak

blak starts gray started-by blak

blak �nishes gray �nished-by blak

Figure 2. The Allen relations (without equal).

Note that some fragments of the onrete domain Q are also interesting,

examples being the onrete domains C and C

+

disussed in Setion 3.2:

in ontrast to Q itself, they an be ombined with general TBoxes without

losing deidability.

4.2 Other Conrete Domains

In this setion, we present two examples for non-numerial onrete do-

mains that have been proposed in the literature. The �rst example is on-

erned with representing time: sine it is a natural idea to take into aount

temporal aspets when reasoning about oneptual knowledge, many tem-

poral extensions of desription logis have been proposed, see e.g.

[

Shild

1993; Artale&Franoni 1998; Wolter&Zakharyashev 1999

℄

and the sur-

vey

[

Artale&Franoni 2001

℄

. As disussed in

[

Lutz 2002d; 2002b

℄

, one

possible approah for suh an extension is to use an appropriate, temporal

onrete domain whih we introdue in the following.

In temporal reasoning, one of the most fundamental deisions to be made

is whether to use time points or time intervals as the atomi temporal

entity. Time points an obviously be represented using numerial onrete

domains suh as those from Setion 4.1. If we hoose time intervals as our

atomi temporal entity, it seems appropriate to de�ne an interval-based,

temporal onrete domain. Usually, suh onrete domains are based on

the 13 Allen relations, whih desribe the possible relationships between

any two intervals over some temporal struture. We refer to

[

Allen 1983

℄

for an exat de�nition and on�ne ourselves with the graphial presentation

of the relations given in Figure 2. The most important property of the

Allen relations is that they are jointly exhaustive and pairwise disjoint, i.e.,

for eah temporal struture (T;�) and t

1

; t

2

2 T , there exists exatly one

relation r suh that t

1

r

t

2

. We now de�ne a onrete domain I that is based
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on the temporal struture (Q; <):

{ �

I

:= f(t

1

; t

2

) j t

1

; t

2

2 Q and t

1

< t

2

g;

{ �

I

ontains unary prediates >

I

and ?

I

(with the obvious extension)

and binary prediates rel and rel for eah Allen relation rel suh that

(rel)

I

= f(i

1

; i

2

) 2 �

I

��

I

j i

1

rel i

2

g and (rel)

I

= �

2

I

n (rel)

I

.

It is easily veri�ed that I satis�es Property 1 of admissibility. Moreover,

it follows from standard results in temporal reasoning that I-satis�ability

is NP-omplete|more details an be found in Setion 2.4.3 of

[

Lutz 2002b

℄

.

Thus, from Theorem 7 we obtain that ALC(I)-onept satis�ability is

PSpae-omplete.

Interestingly, there exists a polynomial redution of ALC(I)-onept sat-

is�ability to ALC(C)-onept satis�ability, where C is the onrete domain

based on Q and the binary omparisons <;�;=; 6=;�; > introdued in Se-

tion 3.2: intuitively, it is possible to represent intervals in terms of their

endpoints and Allen relations in terms of omparisons between interval

endpoints|details an again be found in Setion 2.4.3 of

[

Lutz 2002b

℄

.

Sine this redution also works in the presene of general TBoxes, Theo-

rem 11 implies that ALC(I)-onept satis�ability w.r.t. general TBoxes is

deidable (and ExpTime-omplete). The usefulness of ALC(I) with general

TBoxes for temporal reasoning is illustrated in

[

Lutz 2001a

℄

in a proess en-

gineering ontext. It should be noted that ALC(I) (without TBoxes) has

been used to obtain omplexity results for an interval-based temporal de-

sription logi that is not based on onrete domains

[

Artale&Lutz 1999

℄

.

Although spatial aspets are as important for oneptual reasoning as are

temporal aspets, until now only rather few spatial desription logis have

been proposed, see e.g.

[

Haarslev et al. 1999; Kutz et al. 2001; 2002

℄

. This

is partiularly surprising sine, in the spatial ase, the number of hoies for

atomi entities and relations/prediates is muh larger than in the temporal

ase: as spatial primitives, we may use points in a metri, Eulidean, or

topologial spae, sets of suh points (to represent regions), or sets of suh

points with ertain harateristis suh as onnetedness or de�nability by

polytopes. For the prediates, we may for example hoose distane relations,

orientation relations, or the so-alled RCC-8 relations. In the following, we

take a loser look at the last possibility sine this approah has been used in

the only spatial desription logi based on onrete domains that has been

proposed in the literature

[

Haarslev et al. 1999

℄

.

The set of so-alled RCC-8 relations is well-known from the area of qual-

itative spatial reasoning

[

Randell et al. 1992; Bennett 1997; Renz&Nebel

1999

℄

. RCC-8 onsists of eight jointly exhaustive and pairwise disjoint rela-

tions that desribe the possible relationships between any two regular losed
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r

1

d r

2

r

1

e r

2

r

1

po r

2

r

1

tpp r

2

r

1

r

2

r

1

r

2

r

1

r

2

r

1

r

2

r

1

r

2

r

1

ntpp r

2

Figure 3. The RCC-8 relations in two-dimensional spae.

regions in a topologial spae.

k

For 2D spae, the relations are illustrated

in Figure 3, where the equality relation eq, the inverse tppi of tpp, and the

inverse ntppi of ntpp have been omitted. We now de�ne a spatial onrete

domain S based on the standard topology of two-dimensional spae:

{ �

S

is the set RC

R

2

of all regular losed subsets of R

2

;

{ �

S

ontains unary prediates >

S

and ?

S

and binary prediates rel

and rel for eah topologial relation rel suh that (rel)

S

= f(r

1

; r

2

) 2

RC

R

2

�RC

R

2

j r

1

rel r

2

g and (rel)

S

= �

2

S

n (rel)

S

..

The onrete domain S obviously satis�es Condition 1 of admissibility. Us-

ing standard results from qualitative spatial reasoning, it is straightforward

to show that S-satis�ability is in NP|details an be found in

[

Lutz 2002d

℄

.

Thus, ALC(S)-onept satis�ability is PSpae-omplete by Theorem 7. In

[

Haarslev et al. 1999

℄

, the onrete domain S has been used in the desrip-

tion logi ALCRP(S), i.e. ALC(S) extended with the onrete domain role

onstrutor from Setion 3.3, to reason about spatio-terminologial knowl-

edge. By Theorem 23, ALCRP(S)-onept satis�ability is in NExpTime|

the orresponding lower bound does not apply sine S is not arithmeti. It

is an interesting open question whether the desription logi ALC(S) an

be ombined with general TBoxes without losing deidability.

Other sets of relations from the area of qualitative spatial reasoning (see

e.g.

[

Stok 1997

℄

) may be used to de�ne di�erent spatial onrete domains.

Interesting related work has been presented in

[

Kutz et al. 2001; 2002

℄

: the

authors propose to ombine desription logis with modal logis for metri

spaes. The expressive power of the resulting spatial desription logis seems

to be orthogonal to the expressive power of spatial desription logis based

on onrete domains.

5 Final Remarks

In this paper, we have given an overview over the researh on desription

logis with onrete domains, foussing on deidability and omplexity re-

k

A region r is regular losed if it satis�es ICr = r, where C is the topologial losure

operator and I is the topologial interior operator.
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sults. We have tried to over most relevant results, but had to drop a few

issues due to spae limitation. For example, one omission onerns so-alled

ABoxes whih are frequently used to desribe states of the world. ABoxes

are not an extension of the onept language but rather situated \outside of

it", similar to TBoxes (nevertheless, ABoxes are losely related to nominals,

though muh weaker). It seems that there exists no natural desription logi

with onrete domains for whih reasoning with ABoxes is of a di�erent om-

plexity than reasoning without ABoxes. Some results on the ombination of

ABoxes and onrete domains an be found in, e.g.,

[

Haarslev et al. 2001;

Lutz 2002d; 2002b

℄

.

We should like to note that the researh on desription logis with on-

rete domains has already led to �rst reasoning systems that are equipped

with onrete domains: the RACER system o�ers a onrete domain based

on linear equations and inequalities resembling the onrete domain Q dis-

ussed in Setion 4.1

[

Haarslev&M�oller 2002

℄

. Moreover, there exist plans

to extend the FaCT system

[

Horroks 1998

℄

with onrete domains. Sine

both RACER and FaCT provide for general TBoxes, they only o�er the path-

free variant of the onrete domain onstrutor disussed in Setion 3.2.

Serious implementations of desription logis that provide for the full on-

strutor remain yet to be seen.
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