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abstra
t. Des
ription logi
s (DLs) are a family of logi
al for-

malisms that have initially been designed for the representation of


on
eptual knowledge in arti�
ial intelligen
e and are 
losely related

to modal logi
s. In the last two de
ades, DLs have been su

essfully

applied in a wide range of interesting appli
ation areas. In most of

these appli
ations, it is important to equip DLs with expressive means

that allow to des
ribe \
on
rete qualities" of real-world obje
ts su
h

as their weight, temperature, and spatial extension. The standard

approa
h is to augment des
ription logi
s with so-
alled 
on
rete do-

mains, whi
h 
onsist of a set (say, the rational numbers), and a set

of n-ary predi
ates with a �xed extension over this set. The \inter-

fa
e" between the DL and the 
on
rete domain is then provided by

a new logi
al 
onstru
tor that has, to the best of our knowledge, no


ounterpart in modal logi
s. In this paper, we give an overview over

des
ription logi
s with 
on
rete domains and summarize de
idability

and 
omplexity results from the literature.

1 Introdu
tion

Des
ription logi
s (DLs) are a family of logi
al formalisms that originated in

the �eld of arti�
ial intelligen
e as a tool for the representation of 
on
eptual

knowledge. Sin
e then, DLs have been su

essfully used in a wide range of

appli
ation areas su
h as knowledge representation, reasoning about 
lass-

based formalisms (e.g. 
on
eptual database models and UML diagrams),

and ontology engineering in the 
ontext of the semanti
 web

[

Baader 1999;

Calvanese et al. 1998; Baader et al. 2002a

℄

. The basi
 synta
ti
 entity of

des
ription logi
s are 
on
epts, whi
h are 
onstru
ted from 
on
ept names

(unary predi
ates) and role names (binary relations) using the set of 
on
ept

and role 
onstru
tors provided by a parti
ular DL. For example, the follow-

ing 
on
ept is formulated in the basi
 propositionally 
losed des
ription

logi
 ALC and 
ould be used, e.g., in a knowledge-based pro
ess engineer-

ing appli
ation (as in

[

Sattler 1998; Molitor 2000

℄

) to des
ribe a produ
tion

pro
ess that has an expensive (spe
ially trained) operator:

Pro
ess u 8subpro
:Pro
ess u 9operator:(Human u Expensive)
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In this example, Pro
ess, Human, and Expensive are 
on
ept names while

subpro
 and operator are role names.

Viewed from a logi
al perspe
tive, des
ription logi
s are 
losely related

to modal logi
s

[

S
hild 1991; Gia
omo&Lenzerini 1994

℄

. For example, the

DL ALC 
an be viewed as a notational variant of the modal logi
 K

!

, i.e.,

multimodal K with in�nitely many a

essibility relations: 
on
ept names


orrespond to propositional variables, role names 
orrespond to (names for)

a

essibility relations, the 8 
onstru
tor of ALC 
an be read as a modal

box operator, and 9 
an be read as a diamond. However, there also exist

several means of expressivity that are frequently used in des
ription logi
s,

but usually not 
onsidered in modal logi
s.

An important example are so-
alled 
on
rete domains, whi
h allow the in-

tegration of \
on
rete qualities" su
h as numbers, time intervals, and strings

into des
ription logi
 
on
epts. Suppose, for example, that we want to re-

�ne the des
ription of a pro
ess given above by repla
ing the 
on
ept name

Expensive with a 
on
ept expressing that the pro
ess operator earns at least

20 euro per hour. Then we need a proper way to talk about numbers su
h

as \20" and 
omparisons between numbers su
h as \at least 20 euro". As

another example, we may want to express that the time interval des
ribing

the working time of the operator should 
ontain the time interval des
ribing

the exe
ution time of the pro
ess. Here we obviously need to represent time

intervals and relations between them.

The need for extending the expressive power of DLs in the des
ribed

dire
tion arises in almost all relevant appli
ation areas, let us review two

(more) examples:

1. Semanti
 web. In this appli
ation, DLs are used to des
ribe the 
on-

tents of web pages in order to fa
ilitate the development of more pow-

erful web servi
es su
h as advan
ed sear
h engines

[

Baader et al. 2002a;

Berners-Lee et al. 2001

℄

. It is obvious and has always been emphasized

that the representation of \
on
rete datatypes" su
h as numbers and strings

is an important issue

[

Fensel et al. 2000; Horro
ks&Patel-S
hneider 2001

℄

:

if, for example, we want to des
ribe the web page of a wine seller, then we

need numbers to represent vintages and pri
es, and strings to represent the

names of regions and wine produ
ers. It should be 
lear that su
h 
on
rete

datatypes are pre
isely what we have des
ribed as \
on
rete qualities".

2. Con
eptual database models. Entity Relationship (ER) diagrams are

the predominant formalism for 
onstru
ting 
on
eptual models of relational

databases

[

Chen 1976; Teorey 1990

℄

. For example, an ER diagram 
ould de-

s
ribe two entities Employee and Company related by a relationship employs

su
h that ea
h Employee is employed by exa
tly one Company, and ea
h
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Company employs at least one Employee. DLs 
an be used to en
ode and

reason about ER diagrams, whi
h allows to dete
t in
onsisten
ies and im-

pli
ations that are only impli
itly represented in the diagram

[

Calvanese et

al. 1998; Fran
oni&Ng 2000

℄

. However, the standard translation of ER di-

agrams into DLs does not take into a

ount so-
alled \numeri
al attribute

dependen
ies", whi
h 
an e.g. be used to express that no Employee was

hired prior to his Company's founding. As argued in

[

Lutz 2002e

℄

, it is im-

portant to in
lude these dependen
ies when using DLs for reasoning about

ER diagrams sin
e they 
an be an (additional) sour
e for in
onsisten
ies

and unnoti
ed rami�
ations. In order to do this, the target DL must be

able to represent \
on
rete" obje
ts su
h as numbers and 
omparisons be-

tween numbers.

The ne
essity of representing 
on
rete qualities in des
ription logi
s has been

realized almost sin
e the beginnings of the �eld, and, indeed, many early

des
ription logi
 reasoners su
h as meson

[

Edelmann&Owsni
ki 1986

℄

and


lassi


[

Bra
hman et al. 1991

℄

provided for \ad ho
" solutions of this prob-

lem. The �rst formal treatment of the issue was presented by Baader and

Hans
hke in

[

1991

℄

, who proposed to extend the des
ription logi
 ALC with


on
rete domains. Formally, a 
on
rete domain 
onsists of a set su
h as

the natural numbers and a set of predi
ates su
h as the binary \<" and

the ternary \+" with a �xed extension over this set. Enri
hing ALC with

su
h a 
on
rete domain D, we obtain the basi
 DL with 
on
rete domains

ALC(D). More pre
isely, ALC(D) is obtained from ALC by augmenting it

with

{ abstra
t features, i.e. roles interpreted as fun
tional relations;

{ 
on
rete features : a new synta
ti
 type that is interpreted as a partial

fun
tion from the logi
al domain into the 
on
rete domain;

{ a new 
on
ept 
onstru
tor that allows to des
ribe 
onstraints on 
on-


rete values using predi
ates from the 
on
rete domain.

Let us view two example ALC(D)-
on
epts: the 
on
ept

Pro
ess u 8subpro
:Pro
ess u 9operator:(Human u 9wage:�

20

)

re�nes the pro
ess des
ription from above by repla
ing the 
on
ept name

Expensive with a 
on
rete domain-based des
ription of the operator's wage|

whi
h is at least 20 euro per hour. In this example, operator is an abstra
t

feature while wage is a 
on
rete feature. We use a 
on
rete domain based

on the natural numbers and assume that �

20

is a unary predi
ate with the

obvious extension. The (sub)
on
ept 9wage:�

20

is an instantiation of the
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on
rete domain 
onstru
tor and must not be 
onfused with the existential

restri
tion as used in 9operator:Human. Observe that 
on
rete features su
h

as wage are the \link" between the des
ription logi
 and the 
on
rete do-

main: they allow to asso
iate 
on
rete values su
h as numbers with logi
al

obje
ts su
h as the one representing the operator in the above example.

In the se
ond 
on
ept, we use a 
on
rete domain based on time intervals

to des
ribe a 
onstraint on the exe
ution time of pro
esses as proposed

above:

Pro
ess u 8subpro
:Pro
ess u 9(operator worktime); (exe
time):
ontains

Here, worktime and exe
time (for \exe
ution time") are 
on
rete features,

and 
ontains is a binary 
on
rete domain predi
ate. The last 
onjun
t is

an instantiation of the 
on
rete domain 
onstru
tor expressing that the

time interval des
ribing the working time of the operator 
ontains the time

interval des
ribing the exe
ution time of the pro
ess.

Sin
e their �rst appearan
e in 1991, des
ription logi
s with 
on
rete do-

mains have been extensively studied. The purpose of this paper is to survey

the proposed logi
s and available results, fo
using on de
idability and 
om-

putational 
omplexity. It is organized as follows: in Se
tion 2, we formally

introdu
e 
on
rete domains and the des
ription logi
 ALC(D). Se
tion 3

dis
usses results that have been obtained for ALC(D) and several of its ex-

tensions: in Se
tion 3.1, we treat ALC(D) itself, Se
tion 3.2 is 
on
erned

with extensions 
onsidered \standard" in the area of des
ription logi
s, and

Se
tion 3.3 fo
uses on spe
i�
ally 
on
rete-domain related extensions. Most

of the dis
ussed results do not 
onsider a parti
ular 
on
rete domain, but are

of a general nature. Finally, Se
tion 4 gives a brief overview over 
on
rete

domains that have been proposed in the literature.

2 The Des
ription Logi
 ALC(D)

In this se
tion, we formally introdu
e Baader and Hans
hke's basi
 des
rip-

tion logi
 with 
on
rete domains ALC(D)

[

1991

℄

. To do this, we must �rst

de�ne the underlying notion of 
on
rete domains.

DEFINITION 1 (Con
rete Domain) A 
on
rete domain D is a pair

(�

D

;�

D

), where �

D

is a set and �

D

a set of predi
ate names. Ea
h pred-

i
ate name P 2 �

D

is asso
iated with an arity n and an n-ary predi
ate

P

D

� �

n

D

.

For many appli
ation areas, the most interesting 
on
rete domains are nu-

meri
al ones. Hen
e, let us introdu
e a typi
al numeri
al 
on
rete domain

Q to illustrate De�nition 1: as the set �

Q

, we use the rational numbers Q.

The following predi
ates are available:
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{ unary predi
ates P

q

for ea
h P 2 f<;�;=; 6=;�; >g and ea
h q 2 Q

with (P

q

)

Q

= fq

0

2 Q j q

0

P qg;

{ binary predi
ates <;�;=; 6=;�; > with the obvious extension;

{ ternary predi
ates + and + with (+)

Q

= f(q; q

0

; q

00

) 2 Q

3

j q+q

0

= q

00

g

and (+)

Q

= Q

3

n (+)

Q

;

{ a unary predi
ate >

Q

with (>

Q

)

Q

= Q and a unary predi
ate ?

Q

with

(?

Q

)

Q

= ;.

The presen
e of the predi
ates >

Q

and ?

Q

and of the negation of the \+"

predi
ate is related to the admissibility of 
on
rete domains and will be

dis
ussed in Se
tion 3.1. We will further dis
uss the 
on
rete domain Q and

its relatives in Se
tion 4.

DEFINITION 2 (ALC(D) Syntax) Let N

C

, N

R

, and N


F

be pairwise disjoint

and 
ountably in�nite sets of 
on
ept names, role names, and 
on
rete

features. Furthermore, let N

aF

be a 
ountably in�nite subset of N

R

. The

elements of N

aF

are 
alled abstra
t features. A path u is a 
omposition

f

1

� � � f

n

g of n abstra
t features f

1

; : : : ; f

n

(n � 0) and a 
on
rete feature g.

For D a 
on
rete domain, the set of ALC(D)-
on
epts is the smallest set

su
h that

{ every 
on
ept name is a 
on
ept, and

{ if C and D are 
on
epts, R is a role name, g is a 
on
rete feature,

u

1

; : : : ; u

n

are paths, and P 2 �

D

is a predi
ate of arity n, then the

following expressions are also 
on
epts: :C, C u D ,C t D, 9R:C,

8R:C, 9u

1

; : : : ; u

n

:P , and g".

As usual, we use > as abbreviation for an arbitrary propositional tautology

and ? as abbreviation for :>. Additionally, if u = f

1

� � � f

k

g is a path then

u" is used as abbreviation for 8f

1

: � � � :8f

k

:g". As an example ALC(Q)-


on
ept, 
onsider the pro
ess des
ription

Pro
ess u 8subpro
:Pro
ess u 9operator:(Human u 9wage:�

20

)

u 9(operator wage); (
ost):�;

where the se
ond line states that the hourly 
ost of the pro
ess is at least

as high as the hourly wage of its operator. We now introdu
e the semanti
s

of ALC(D)-
on
epts and the relevant reasoning problems.

DEFINITION 3 (ALC(D) Semanti
s)An interpretation I is a pair (�

I

; �

I

),

where �

I

is a set 
alled the domain and �

I

is the interpretation fun
tion.

The interpretation fun
tion maps
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{ ea
h 
on
ept name C to a subset C

I

of �

I

,

{ ea
h role name R to a subset R

I

of �

I

��

I

,

{ ea
h abstra
t feature f to a partial fun
tion f

I

from �

I

to �

I

, and

{ ea
h 
on
rete feature g to a partial fun
tion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � � ).

The interpretation fun
tion is extended to arbitrary 
on
epts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(9u

1

; : : : ; u

n

:P )

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

for 1 � i � n

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg

Let I be an interpretation. Then I is a model of a 
on
ept C i� C

I

6= ;.

A 
on
ept C is satis�able i� C has a model. A 
on
ept C is subsumed by

a 
on
ept D (written C v D) i� C

I

� D

I

for all interpretations I.

While satis�ability is familiar from modal and 
lassi
al logi
s, subsumption

deserves a brief 
omment: this reasoning task is rather important in de-

s
ription logi
s sin
e DLs are frequently used to 
apture the terminologi
al

knowledge of an appli
ation domain, and subsumption 
an then be used

to arrange the de�ned notions (represented by 
on
epts) in a taxonomy.

Logi
ally, subsumption 
an obviously be understood as the validity of im-

pli
ations. It should thus be 
lear that, in ALC(D), 
on
ept subsumption


an be redu
ed to 
on
ept (un)satis�ability and vi
e versa: C v D i� Cu:D

is unsatis�able and C is satis�able i� C 6v ?.

It is not hard to see that \the ALC part" of ALC(D) is a synta
ti-


al variant of multimodal K (see Se
tion 1). However, to the best of

our knowledge, the 
on
rete domain 
onstru
tor has no 
ounterpart in

modal logi
. Moreover, even for very simple 
on
rete domains D there

does not exist a translation from ALC(D)-
on
epts into formulas of the

two-variable fragment of �rst-order logi
 or of the guarded fragment|a

property enjoyed by most modal and des
ription logi
s

[

van Benthem 1983;

Borgida 1996

℄

. The reason for this is that we admit paths of length greater

one inside the 
on
rete domain 
onstru
tor.
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For most appli
ation areas, the reasoning tasks \
on
ept satis�ability"

and \subsumption" have to take into a

ount so-
alled TBoxes. Su
h TBoxes

are sets of 
on
ept equations, whi
h are used to store terminologi
al knowl-

edge and ba
kground knowledge about the appli
ation domain. For ex-

ample, we 
ould use a TBox to de�ne the notion \expensive pro
ess" by

writing

ExpensivePro
ess

:

= Pro
ess u 9
ost:�

20

Moreover, we 
ould 
apture the \ba
kground knowledge" that every pro
ess


ontrolled by an expensive operator is an expensive pro
ess:

>

:

= (Pro
ess u 9operator:9wage:�

20

)! ExpensivePro
ess

In the DL literature, there exist various TBox formalisms with vast di�er-

en
es in expressive power. In this paper, we will only 
onsider the two TBox

formalisms that are used most frequently.

DEFINITION 4 (TBox) A 
on
ept equation is an expression C

:

= D, where

C and D are 
on
epts. A general TBox is a �nite set of 
on
ept equations.

A 
on
ept equation C

:

= D is 
alled a 
on
ept de�nition if C is a 
on
ept

name. A �nite set of 
on
ept de�nitions T is 
alled an a
y
li
 TBox if the

following 
onditions are satis�ed:

1. the left-hand sides of 
on
ept de�nitions are unique, i.e., if fA

:

=

C; A

0

:

= C

0

g � T , then C 6= C

0

implies A 6= A

0

;

2. T is a
y
li
: there are no 
on
ept de�nitions fA

0

:

= C

0

; : : : ; A

k�1

:

=

C

k�1

g � T su
h that the 
on
ept name A

i

o

urs in C

i+1 mod k

for

i < k.

An interpretation I is a model of a (general or a
y
li
) TBox T if C

I

= D

I

for all C

:

= D 2 T . A 
on
ept C is satis�able w.r.t. a TBox T i� C and T

have a 
ommon model. A 
on
ept C is subsumed by a 
on
ept D w.r.t. a

TBox T (written C v

T

D) i� C

I

� D

I

for all models I of T .

From a modal logi
 perspe
tive, the expressive power provided by general

TBoxes is 
losely related to the expressiveness of the universal modality|see

e.g. Se
tion 2.2.1 of

[

Lutz 2002b

℄

for a thorough dis
ussion. While general

TBoxes are a rather powerful tool, the expressive power provided by a
y
li


TBoxes is relatively weak: due to a
y
li
ity, they 
an be viewed as ma
ro

de�nitions, i.e., as providing a set of abbreviations for 
on
epts. As we will

see in Se
tion 3.2, a
y
li
 TBoxes 
an also be expanded like ma
ros. Note,

however, that a
y
li
 TBoxes are still powerful enough to de�ne terminolo-

gies as in the �rst example presented above.
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To distinguish 
on
ept satis�ability without TBoxes from 
on
ept satis�-

ability with TBoxes, we will in the following sometimes use the term \pure


on
ept satis�ability" to refer to the former.

3 Des
ription Logi
s with Con
rete Domains

In this se
tion, we 
onsider the basi
 des
ription logi
 with 
on
rete domains

ALC(D) and several of its extensions. We start with ALC(D) itself and then

dis
uss \standard extensions" that are frequently 
onsidered in des
ription

logi
s and, in prin
iple, independent of 
on
rete domains. Finally, we give

an overview over extensions of ALC(D) that 
on
ern the \
on
rete domain

part" of this logi
.

3.1 The Basi
 Formalism

In their original 1991 paper, Baader and Hans
hke present a tableau al-

gorithm that is 
apable of de
iding (pure) ALC(D)-
on
ept satis�ability.

Using the redu
tion from the previous se
tion, this algorithm also yields a

de
ision pro
edure for 
on
ept subsumption. Baader and Hans
hke's de
id-

ability result is a rather general one sin
e it does not 
on
ern a parti
ular


on
rete domain, but applies to any 
on
rete domain that satis�es some

weak 
onditions. These 
onditions are derived from the fa
t that any satis�-

ability algorithm not 
ommitting itself to a parti
ular 
on
rete domain must


all some 
on
rete domain reasoner as a subpro
edure via a well-de�ned \in-

terfa
e". In the 
ase of Baader and Hans
hke's tableau algorithm, su
h a


on
rete domain reasoner is required to de
ide the satis�ability of �nite


onjun
tions of 
on
rete domain predi
ates. This leads to the notion of

admissibility.

DEFINITION 5 (Admissible) Let D be a 
on
rete domain and V a set of

variables. A D-
onjun
tion is a predi
ate 
onjun
tion of the form


 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary predi
ate for i < k and the x

(i)

j

are variables from

V. A D-
onjun
tion 
 is satis�able i� there exists a fun
tion Æ mapping

the variables in 
 to elements of �

D

su
h that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for ea
h i < k. Su
h a fun
tion is 
alled a solution for 
. We say that the


on
rete domain D is admissible i�

1. its set of predi
ate names is 
losed under negation and 
ontains a

name >

D

for �

D

and

2. the satis�ability of D-
onjun
tions is de
idable.
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We refer to the satis�ability of D-
onjun
tions as D-satis�ability.

Property 1 of admissibility has to be satis�ed sin
e the des
ription logi


ALC(D) provides for negation. For example, the 
on
ept

:(g

1

") u :(g

2

") u :(9g

1

; g

2

:<)

expresses that g

I

1

� g

I

2

without expli
itly using a \�" predi
ate, and

su
h information must be passed to the 
on
rete domain reasoner. Note

that the 
on
rete domain Q presented in Se
tion 2 satis�es Property 1 of

admissibility|in Se
tion 4, we will see that Property 2 is also satis�ed.

The result obtained in

[

Baader&Hans
hke 1991

℄


an now be formulated as

follows:

THEOREM 6 (Baader, Hans
hke) Pure ALC(D)-
on
ept satis�ability and

subsumption are de
idable if D is admissible.

We should brie
y 
omment on a minor di�eren
e between the logi
 ALC(D)

as de�ned in

[

Baader&Hans
hke 1991

℄

and in Se
tion 2: Baader and Han-

s
hke's variant of ALC(D) uses only a single type of feature that is inter-

preted in partial fun
tions from �

I

to �

I

� �

D

and thus 
ombines our

abstra
t and 
on
rete features. It is not very hard to see that the di�eren
e

in expressivity is negligible. However, the separation of abstra
t and 
on-


rete features ne
essitates the presen
e of the g" 
onstru
tor: without this


onstru
tor, we would not be able to remove negations in front of the 
on-


rete domain 
onstru
tor when 
onverting ALC(D)-
on
epts into equivalent

ones in negation normal form (NNF), for details see Se
tion 3.3.

�

The 
omplexity of reasoning with ALC(D) has been analyzed in

[

Lutz

2002d

℄

. There, the tableau algorithm of Baader and Hans
hke is re�ned

by using the so-
alled tra
ing te
hnique: instead of keeping entire tableaux

in memory (whi
h may be
ome exponentially large), a tree-shaped tableau

is 
onstru
ted in a depth-�rst manner keeping only paths of the tree in

memory. Sin
e su
h paths are of at most polynomial length, this allows

to devise a PSpa
e algorithm. However, the 
omplexity of reasoning with

ALC(D) 
learly depends on the 
omplexity of D-satis�ability:

THEOREM 7 Pure ALC(D)-
on
ept satis�ability and subsumption are

PSpa
e-
omplete if D is admissible and D-satis�ability is in PSpa
e.

�

A 
on
ept is in NNF if negation does only o

ur in front of 
on
ept names. This

normal form is frequently used to devise de
ision pro
edures for DLs.
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Thus, reasoning with ALC(D) is not harder than reasoning with ALC. As

we will see in Se
tion 4, Q-satis�ability 
an be de
ided in PTime, and

thus Theorem 7 yields a tight 
omplexity bound for (pure) reasoning with

ALC(Q).

3.2 Standard Extensions

We now dis
uss the extension of ALC(D) with several means of expressivity

that 
an be 
onsidered \standard" in the area of des
ription logi
s. Let us

start with general TBoxes.

General TBoxes

In

[

Baader&Hans
hke 1992

℄

, it is proved that ALC(R) extended with a

transitive 
losure 
onstru
tor on roles (similar to the star-operator of propo-

sitional dynami
 logi
) is unde
idable, where R is a 
on
rete domain based

on Tarski algebra. The unde
idability proof, whi
h uses a redu
tion of the

Post Corresponden
e Problem (PCP), 
an easily be adapted to ALC(R) ex-

tended with general TBoxes, whi
h is thus also unde
idable. This adaption

is performed in

[

Lutz 2001b; 2002


℄

, where not only R is 
onsidered, but

a more general result is obtained that applies to a large 
lass of 
on
rete

domains.

THEOREM 8 For 
on
rete domains D su
h that (i) N � �

D

and (ii) �

D

provides a unary predi
ate for equality with 0, a binary equality predi
ate,

and a binary predi
ate for in
rementation, ALC(D)-
on
ept satis�ability

and subsumption w.r.t. general TBoxes are unde
idable.

Note that there exist rather simple (and admissible) 
on
rete domains sat-

isfying the 
onditions listed in the theorem, an example being the 
on
rete

domain Q.

y

Sin
e Q-satis�ability 
an be de
ided in PTime (Se
tion 4), it

should be 
lear that the reason for unde
idability is an intera
tion between

general TBoxes and 
on
rete domains and not reasoning with arithmeti



on
rete domains themselves.

Sin
e general TBoxes play a very important role in most appli
ation areas

and are provided by almost all state-of-the-art des
ription logi
s, the above

result is rather dis
ouraging. There are two ways for regaining de
idability:

either use a less powerful 
on
rete domain 
onstru
tor or very 
arefully


hoose the 
on
rete domains used.

The �rst approa
h was adopted in

[

Haarslev et al. 2001

℄

and

[

Horro
ks&

Sattler 2001

℄

. In the former arti
le, Haarslev et al. propose to allow only


on
rete features inside the 
on
rete domain 
onstru
tor instead of paths

y

Stri
tly speaking, Q does not 
ontain a predi
ate for addition with 1, but this is


ompensated by the predi
ates \=

1

" and +.
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of arbitrary length. In the following, we 
all 
on
epts satisfying this 
ondi-

tion path-free. More pre
isely, Haarslev et al. introdu
e the rather powerful

des
ription logi
 SHN (D)

z

, whi
h extends ALC(D) with expressive means

su
h as unquali�ed number restri
tions (a weak form of graded modalities)

and role hierar
hies (TBox-like assertions that allow to state in
lusions be-

tween roles). If path-freeness is not assumed, then SHN (D)-
on
ept satis�-

ability and subsumption is unde
idable sin
e reasoning with general TBoxes


an be redu
ed to reasoning without general TBoxes|the so-
alled \inter-

nalization of TBoxes", 
.f.

[

S
hild 1991; Horro
ks&Sattler 1999

℄

. However,

using a tableau algorithm Haarslev et al.

[

2001

℄

were able to show the fol-

lowing:

THEOREM 9 (Haarslev et al.) If the 
on
rete domain D is admissible,

then path-free SHN (D)-
on
ept satis�ability and subsumption w.r.t. gen-

eral TBoxes are de
idable.

Horro
ks and Sattler

[

2001

℄

propose to admit only unary 
on
rete domain

predi
ates to over
ome unde
idability. Under this restri
tion, they prove de-


idability of reasoning with the very expressive des
ription logi
 SHOQ(D)

and general TBoxes by devising an appropriate tableau algorithm. How-

ever, allowing only unary predi
ates is stri
tly less expressive than requir-

ing path-freeness: the 
on
ept 9f

1

� � � f

k

g:P (with P unary predi
ate) 
an


learly be repla
ed with the equivalent one 9f

1

:9f

2

: � � � :9f

k

:9g:P that does

not use paths of length greater than one. In

[

Pan&Horro
ks 2002

℄

, the

initial result is strengthened by admitting 
on
rete domain predi
ates of

arbitrary arity, adopting path-freeness, and adding some additional means

of expressivity (see Se
tion 3.3). The resulting DL is 
alled SHOQ(D

n

).

THEOREM 10 (Horro
ks, Pan, Sattler) If the 
on
rete domain D is ad-

missible, then path-free SHOQ(D

n

)-
on
ept satis�ability and subsumption

w.r.t. general TBoxes are de
idable.

A more general result has been obtained in Se
tion 5.3 of

[

Baader et al.

2002b

℄

, where it is shown that any des
ription logi
 L, su
h that (i) L-


on
ept satis�ability w.r.t. general TBoxes is de
idable and (ii) L is \
losed

under disjoint unions" (see

[

Baader et al. 2002b

℄

for details), 
an be ex-

tended with the path-free variant of the 
on
rete domain 
onstru
tor with-

out losing de
idability of reasoning with general TBoxes. This result gener-

alizes Theorem 9 but not Theorem 10 sin
e SHOQ does not satisfy Prop-

erty (ii). Indeed, the \harmlessness" of the path-free 
on
rete domain 
on-

stru
tor is not very surprising sin
e dropping paths deprives 
on
rete do-

z

This logi
 is also 
alled ALCNH

R

+

(D).
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mains of most of their expressive power: in Se
tion 2.4.1 of

[

Lutz 2002b

℄

,

it is shown that the path-free variant of the 
on
rete domain 
onstru
tor


an be \simulated" by 
on
ept names, whi
h is not possible for the vari-

ant admitting paths of arbitrary length. In the same se
tion, it is proved

that path-free ALC(D)-
on
ept satis�ability and subsumption w.r.t. general

TBoxes are ExpTime-
omplete if D is admissible and D-satis�ability is in

ExpTime.

We now dis
uss the se
ond approa
h to over
ome unde
idability ofALC(D)

with general TBoxes, namely to keep the original version of the 
on
rete

domain 
onstru
tor and look for 
on
rete domains that are both interesting

and do not destroy de
idability of reasoning with general TBoxes. The �rst

positive result following this route was established in

[

Lutz 2001a

℄

, where

a 
on
rete domain C is 
onsidered that is based on the rational numbers

Q = �

C

, and provides for the binary predi
ates <;�;=; 6=;�; > with the

obvious extension. Using an automata-based approa
h, the following result

is obtained:

THEOREM 11 ALC(C)-
on
ept satis�ability and subsumption w.r.t. gen-

eral TBoxes are ExpTime-
omplete.

It is then shown that this result 
an be extended to an interval-based, tem-

poral 
on
rete domain. Theorem 11 has subsequently been generalized in

[

Lutz 2002a

℄

: �rst, the 
on
rete domain C has been extended to C

+

whi
h,

additionally, admits unary predi
ates =

q

for ea
h q 2 Q (with the obvious

extension). Se
ond, the \des
ription logi
 part" is extended from ALC to

the very expressive DL SHIQ that plays an important role in many ap-

pli
ation areas

[

Horro
ks et al. 2000

℄

. The following theorem is proved in

[

Lutz 2002a

℄

, also using an automata-theoreti
 approa
h:

THEOREM 12 SHIQ(C

+

)-
on
ept satis�ability and subsumption w.r.t.

general TBoxes are ExpTime-
omplete.

Note that this logi
 is 
alled Q-SHIQ in

[

Lutz 2002a

℄

. It is very unlikely

that C

+


an be extended with any form of arithmeti
s without losing de-


idability. For example, if ALC(C

+

) is extended with a binary predi
ate

for in
rementation with one, we obtain unde
idability of reasoning w.r.t.

general TBoxes from Theorem 8. An interesting open question is whether

a unary predi
ate int 
an be added whose extension are the integers. Su
h

a predi
ate would be very useful for many appli
ations.
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A
y
li
 TBoxes

If we restri
t ourselves to a
y
li
 TBoxes rather than admitting general

ones, the situation be
omes mu
h simpler: it is well-known that 
on
ept

satis�ability w.r.t. a
y
li
 TBoxes 
an be redu
ed to 
on
ept satis�ability

without TBoxes by using unfolding

[

Nebel 1990

℄

: given an input 
on
ept

C and an a
y
li
 TBox T , we 
an exhaustively repla
e 
on
ept names in

C that appear on the left-hand side of a 
on
ept de�nition in T with the


orresponding right-hand side. This pro
ess terminates sin
e T is a
y
li
.

Moreover, it is not hard to see that the resulting 
on
ept is satis�able i�

C is satis�able w.r.t. T . Thus, Theorem 6 implies that ALC(D)-
on
ept

satis�ability and subsumption w.r.t. a
y
li
 TBoxes are de
idable if D is

admissible|although unfolding involves an exponential blow-up in size.

Con
erning 
omplexity, the results obtained for reasoning with ALC(D)

and a
y
li
 TBoxes are mu
h more surprising: it is well-known that, for

almost all des
ription logi
s 
onsidered in the literature, adding a
y
li


TBoxes does not in
rease the 
omplexity of reasoning. For example, ALC-


on
ept satis�ability and subsumption are PSpa
e-
omplete, both with and

without a
y
li
 TBoxes

[

S
hmidt-S
hau�&Smolka 1991; Lutz 1999

℄

. Inter-

estingly, this is not the 
ase for ALC(D): although pure ALC(D)-
on
ept

satis�ability is PSpa
e-
omplete, in

[

Lutz 2001b; 2002


℄

a large 
lass of

so-
alled arithmeti
 
on
rete domains D is identi�ed for whi
h ALC(D)-


on
ept satis�ability w.r.t. a
y
li
 TBoxes is 
onsiderably harder, namely

NExpTime-
omplete.

DEFINITION 13 (Arithmeti
) A 
on
rete domain D is 
alled arithmeti


i� �

D


ontains the natural numbers and �

D


ontains

{ unary predi
ates for equality with zero and with one,

{ a binary equality predi
ate, and

{ ternary predi
ates expressing addition and multipli
ation.

ANExpTime-
omplete variant of the Post Corresponden
e Problem is used

to show the following result:

THEOREM 14 For any arithmeti
 
on
rete domain D, ALC(D)-
on
ept

satis�ability w.r.t. a
y
li
 TBoxes is NExpTime-hard.

Sin
e 
on
ept satis�ability 
an be redu
ed to non-subsumption, this im-

plies a 
o-NExpTime lower bound for ALC(D)-
on
ept subsumption if D

is arithmeti
. A 
orresponding upper bound is established using a tableau

algorithm:
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THEOREM 15 ALC(D)-
on
ept satis�ability w.r.t. a
y
li
 TBoxes is in

NExpTime if D is admissible and D-satis�ability is in NP.

Again, we have to 
onsider the 
omplementary 
omplexity 
lass for sub-

sumption. It is interesting that the addition of the seemingly harmless

a
y
li
 TBoxes results in a leap of 
omplexity from PSpa
e-
ompleteness

to NExpTime-
ompleteness.

Con
ept- and Role-Constru
tors

Interestingly, a
y
li
 TBoxes are not the only means of expressivity that


onsiderably in
reases the 
omplexity of reasoning if added to ALC(D). In

[

Lutz 2001b; 2002
; Are
es&Lutz 2002

℄

, analogues of Theorems 14 and 15

have been proved for the following extensions of ALC(D):

{ Inverse roles. We 
an now additionally use expressions R

�

inside

the 9R:C and 8R:C 
onstru
tors, where R may also be an abstra
t

feature. The interpretation (R

�

)

I

of R

�

is obtained by taking the


onverse of the relation R

I

. Inverses of abstra
t (or even 
on
rete)

features inside the 
on
rete domain 
onstru
tor are not allowed sin
e

the inverse of a feature is not ne
essarily fun
tional.

{ Role 
onjun
tion. We admit roles like R

1

u � � � u R

n

inside the 9R:C

and 8R:C 
onstru
tors, where the R

i

may also be abstra
t features.

The interpretation (R

1

u � � � u R

n

)

I

of R

I

is obtained by taking the

interse
tion of the relations R

I

1

; : : : ; R

I

n

. Conjun
tions of abstra
t (or

even 
on
rete) features inside the 
on
rete domain 
onstru
tor are not

allowed.

{ Nominals. Nominals (known, e.g., from hybrid logi


[

Are
es&de Rijke

2001

℄

) are a new synta
ti
 type that is used in the same way as 
on
ept

names, but interpreted in singleton sets.

All these means of expressivity (with the possible ex
eption of nominals) are

usually 
onsidered \harmless" w.r.t. 
omplexity, i.e., in most 
ases they do

not in
rease the 
omplexity of reasoning when added to a des
ription logi
.

The above results thus show that the PSpa
e upper 
omplexity bound

for reasoning with ALC(D) is not robust, but rather quite unstable w.r.t.

extensions of the language.

Although formal proofs are missing, most other standard means of expres-

sivity are very likely to preserve de
idability and the PSpa
e upper bound

when added to ALC(D). Su
h means of expressivity are, e.g., quali�ed num-

ber restri
tions (the DL 
ounterpart of graded modalities) and transitive

roles (i.e., a new sort of role names interpreted in transitive relations|not
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to be 
onfused with the transitive 
losure role 
onstru
tor). Con
erning

de
idability, some results 
an be obtained by using the transfer results for

fusions of des
ription logi
s presented in

[

Baader et al. 2002b

℄

. This is to

some extent dis
ussed in Se
tion 5.6 of

[

Lutz 2002b

℄

, where the following

result is obtained:

THEOREM 16 If D is admissible, then pure ALCQ

�

R

+

(D)-
on
ept satis�-

ability is de
idable.

Here, ALCQ

�

R

+

(D) is ALC(D) extended with inverse roles, qualifying num-

ber restri
tions, and transitive roles. It should also be noted that 
on
rete

domains 
an be 
ombined with so-
alled feature agreements and disagree-

ments without spoiling the PSpa
e upper 
omplexity bound

[

Lutz 2002d

℄

.

3.3 Con
rete Domain-Related Extensions

We now review various proposals for enhan
ing the expressive power of

ALC(D) by extending the \
on
rete domain part" of this logi
.

Generalized Con
rete Domain Constru
tor

In the original version of ALC(D) as de�ned in Se
tion 2, we only allow

abstra
t features to be used in the 
on
rete domain 
on
ept 
onstru
tor

instead of admitting arbitrary role names. This observation leads to a nat-

ural generalization of the 
on
rete domain 
onstru
tor that has �rst been

proposed by Hans
hke

[

1992

℄

.

DEFINITION 17 (ALCP(D)) A sequen
e U = R

1

� � �R

k

g where R

1

; : : : ; R

k

2 N

R

(k � 0) and g 2 N


F

is 
alled a role path. For an interpretation I,

U

I

is de�ned as

f(d; x) � �

I

��

D

j9d

1

; : : : ; d

k+1

: d = d

1

;

(d

i

; d

i+1

) 2 R

I

i

for 1 � i � k; and g

I

(d

k+1

) = xg:

ALCP(D) is obtained from ALC(D) by allowing the use of 
on
epts of the

form 8U

1

; : : : ; U

n

:P and 9U

1

; : : : ; U

n

:P in pla
e of 
on
ept names, where

P 2 �

D

is of arity n and U

1

; : : : ; U

n

are role paths. The semanti
s of the

generalized 
on
rete domain 
onstru
tors is de�ned as follows:

(8U

1

; : : : ; U

n

:P )

I

:= fd 2 �

I

j For all x

1

; : : : ; x

n

with (d; x

i

) 2 U

I

i

;

we have (x

1

; : : : ; x

n

) 2 P

D

g

(9U

1

; : : : ; U

n

:P )

I

:= fd 2 �

I

j There exist x

1

; : : : ; x

n

with (d; x

i

) 2 U

I

i

and (x

1

; : : : ; x

n

) 2 P

D

g
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Obviously, every path is also a role path. Hen
e, the 9U

1

; : : : ; U

n

:P 
on-

stru
tor of ALCP(D) is a generalization of the 9u

1

; : : : ; u

n

:P 
onstru
tor

of ALC(D). For paths u

1

; : : : ; u

n

, the ALCP(D)-
on
ept 8u

1

; : : : ; u

n

:P is

equivalent to the ALC(D)-
on
ept u

1

"t� � �tu

n

"t9u

1

; : : : ; u

n

:P . This is the

reason why ALC(D) does not provide for a 
ounterpart of the 8U

1

; : : : ; U

n

:P


onstru
tor.

Using the generalized 
onstru
tors, we 
an, for example, express that the

duration of subpro
esses is bounded by the duration of the mother pro
ess

without 
ommitting to a parti
ular number of subpro
esses :

Pro
ess u 8(duration); (subpro
 duration):�;

where duration is a 
on
rete feature. The existential version of the gener-

alized 
on
rete domain 
onstru
tor 
an then be used to express that there

exists a subpro
ess whose duration is stri
tly shorter than the duration of

the mother pro
ess:

Pro
ess u 9(duration); (subpro
 duration):<: (�)

Note, however, that it is now impossible to state that the subpro
ess with

the shorter duration is a DangerousPro
ess. This observation suggests that

role hierar
hies are a useful extension of ALCP(D): in the resulting DL,

we 
an modify (�) by repla
ing the role subpro
 with an abstra
t feature

spe
ialSubpro
ess, adding the 
onjun
t 9spe
ialSubpro
ess:DangerousPro
ess,

and �nally using a role hierar
hy to state that spe
ialSubpro
ess is a subrole

of subpro
, i.e. that we have spe
ialSubPro
ess

I

� subpro


I

. In the following,

however, we will sti
k with the original variant of ALCP(D) that does not

admit role hierar
hies.

As shown in

[

Hans
hke 1992

℄

, satis�ability and subsumption ofALCP(D)-


on
epts are de
idable if D is admissible. However, when investigating the


omplexity of ALCP(D), it be
omes 
lear that initially restri
ting ourselves

to abstra
t features inside the 
on
rete domain 
onstru
tor is a sensible idea

sin
e it allows a more �ne-grained 
omplexity analysis: it is shown in

[

Lutz

2002b

℄

that, while reasoning with ALC(D) is PSpa
e-
omplete, reasoning

with ALCP(D) is mu
h harder. Indeed, the 
omplexity of (pure) reason-

ing with ALCP(D) parallels the 
omplexity of reasoning with ALC(D) ex-

tended with a
y
li
 TBoxes. The lower bound is determined by redu
tion

of a NExpTime-
omplete variant of the PCP:

THEOREM 18 For any arithmeti
 
on
rete domain D, pure ALCP(D)-


on
ept satis�ability is NExpTime-hard.

It is interesting to note that this lower bound does even hold if abstra
t fea-

tures are dropped from the language. As in the 
ase of a
y
li
 TBoxes, there
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exists a 
orresponding upper bound whi
h is established using a tableau al-

gorithm:

THEOREM 19 Pure ALCP(D)-
on
ept satis�ability is in NExpTime if D

is admissible and D-satis�ability is in NP.

We obtain 
orresponding 
o-NExpTime 
omplexity bounds for 
on
ept sub-

sumption. Another generalization of the 
on
rete domain 
onstru
tor has

been proposed in

[

Pan&Horro
ks 2002

℄

: the authors repla
e 
on
rete fea-

tures by 
on
rete roles, whi
h are not required to be fun
tional. Addi-

tionally, they allow the appli
ation of number restri
tions to 
on
rete roles.

This allows, for example, to state that ea
h person has exa
tly one age (at-

ta
hed via a 
on
rete role age) while being allowed to have many telephone

numbers (atta
hed via a 
on
rete role tel).

A Con
rete Domain Role Constru
tor

Another natural extension of the original variant of ALC(D) is obtained by

using the 
on
rete domain not only to de�ne 
on
epts, but by additionally

allowing the de�nition of 
omplex roles with referen
e to 
on
rete domain

predi
ates. Su
h an extension has �rst been proposed in

[

Haarslev et al.

1999

℄

.

DEFINITION 20 (ALCRP(D)) A 
on
rete domain role is an expression of

the form

9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P

where u

1

; : : : ; u

n

and v

1

; : : : ; v

m

are paths and P is an n+m-ary predi
ate.

The semanti
s is given as follows:

(9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P )

I

:=

f(d; e) 2 �

I

��

I

j There exist x

1

; : : : ; x

n

and y

1

; : : : ; y

m

su
h that u

I

i

(d) = x

i

for 1 � i � n; v

I

i

(e) = y

i

for 1 � i � m; and

(x

1

; : : : ; x

n

; y

1

; : : : ; y

m

) 2 P

D

g

ALCRP(D) is obtained from ALC(D) by allowing the use of 
on
rete do-

main roles inside the 9R:C and 8R:C 
onstru
tors.

Note that 
on
rete domain roles are not allowed inside the 
on
rete domain


on
ept 
onstru
tor. Let us view an example ALCRP(D)-
on
ept. Assume

that we use a 
on
rete domain based on temporal intervals and binary pred-

i
ates des
ribing the possible relationships between su
h intervals. Then the


on
ept

Pro
ess u 8(9(exe
time); (exe
time):overlaps)::DangerousPro
ess;
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des
ribes pro
esses that are not temporally overlapping with dangerous pro-


esses. Note that 9(exe
time); (exe
time):overlaps is a 
on
rete domain role

de�ned in terms of the binary predi
ate overlaps and the 
on
rete feature

exe
time whi
h asso
iates pro
esses with the time interval in whi
h they are

exe
uted.

In

[

Lutz&M�oller 1997

℄

, a redu
tion of the Post Corresponden
e Prob-

lem is used to prove that there exist 
on
rete domains D su
h that the

satis�ability of ALCRP(D)-
on
epts is unde
idable. It is straightforward

to generalize this result to the 
lass of 
on
rete domains identi�ed in The-

orem 8:

THEOREM 21 (Lutz, M�oller) For 
on
rete domains D su
h that (i) N �

�

D

and (ii) �

D

provides a unary predi
ate for equality with 0, a binary

equality predi
ate, and a binary predi
ate for in
rementation, pure

ALCRP(D)-
on
ept satis�ability and subsumption are unde
idable.

In

[

Haarslev et al. 1999

℄

a fragment of ALCRP(D) is identi�ed that is 
losed

under negation, stri
tly extends ALC(D), and is de
idable for all admissible


on
rete domains. To introdu
e this fragment, we need a way to 
onvert

ALCRP(D)-
on
epts into equivalent ones in NNF. Assuming that D is ad-

missible, this 
onversion 
an be done by eliminating double negation and

using de Morgan's rules, the duality between 9R:C and 8R:C, and the

equivalen
es

:(9u

1

; : : : ; u

n

:P ) � 9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g") � 9g:>

D

where, for P an n-ary predi
ate, P denotes the predi
ate satisfying P

D

=

�

n

D

nP

D

, whi
h exists sin
e D is admissible. In the following, sub(C) refers

to the set of sub
on
epts of the 
on
ept C (in
luding C itself).

DEFINITION 22 (Restri
ted ALCRP(D)-
on
ept)An ALCRP(D)-
on
ept

C is 
alled restri
ted i� the result C

0

of 
onverting C to NNF satis�es the

following 
onditions:

1. For any 8R:D 2 sub(C

0

), where R is a 
on
rete domain role,

(a) sub(D) does not 
ontain any 
on
epts 9S:E with S a 
on
rete

domain role, and

(b) if sub(D) 
ontains a 
on
ept 9u

1

; : : : ; u

n

:P , then u

1

; : : : ; u

n

2

N


F

.

2. For any 9R:D 2 sub(C

0

), where R is a 
on
rete domain role,
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(a) sub(D) does not 
ontain any 
on
epts 8S:E with S a 
on
rete

domain role, and

(b) if sub(D) 
ontains a 
on
ept 9u

1

; : : : ; u

n

:P , then u

1

; : : : ; u

n

2

N


F

.

It is easily seen that the set of restri
ted ALCRP(D)-
on
epts is 
losed

under negation. Hen
e, subsumption of restri
ted ALCRP(D)-
on
epts


an still be redu
ed to satis�ability of restri
ted ALCRP(D)-
on
epts (and

vi
e versa). De
idability of restri
ted ALCRP(D)-
on
ept satis�ability and

subsumption has been shown in

[

Haarslev et al. 1999

℄

, where it is also illus-

trated that this fragment of ALCRP(D) is still useful for reasoning about

spatio-terminologi
al knowledge. The 
omplexity of reasoning has been in-

vestigated in

[

Lutz 2002b

℄

, where it is shown that, on
e more, we 
an use a

NExpTime-
omplete variant of the PCP and a tableau algorithm to prove

the following:

THEOREM 23 Let D be a 
on
rete domain. If D is arithmeti
, then (pure)

satis�ability of restri
ted ALCP(D)-
on
epts is NExpTime-hard. If D is

admissible and D-satis�ability is in NP, then (pure) satis�ability of re-

stri
ted ALCRP(D)-
on
epts 
an be de
ided in NExpTime.

Again, we obtain 
orresponding 
o-NExpTime bounds for 
on
ept sub-

sumption.

Aggregation Fun
tions

Aggregation is a useful me
hanism available in many expressive represen-

tation formalisms su
h as database s
hema and query languages. It is thus

a natural idea to extend des
ription logi
s providing for 
on
rete domains

with aggregation as proposed in

[

Baader&Sattler 2002

℄

. Consider, for ex-

ample, a pro
ess des
ription

Pro
ess u 9duration:>

0

u 8subpro
:(Pro
ess u 9duration:>

0

):

The aggregation fun
tion \sum" is needed if we want to express that the

duration of the mother pro
ess is identi
al to the sum of the durations of

all its subpro
esses (of whi
h there may be arbitrarily many).

DEFINITION 24 (Aggregation) A 
on
rete domain with aggregation is a


on
rete domain that, additionally, provides for a set of aggregation fun
-

tions agg(D), where ea
h � 2 agg(D) is asso
iated with a partial fun
tion

�

D

from the set of �nite multisets of dom(D) into dom(D).

x

x

Intuitively, a multiset is a set that may 
ontain the same element multiple (but only

�nitely many) times.
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To distinguish 
on
rete domains with aggregation from those without, we

denote the former with �. Typi
al aggregation fun
tions are min, max, sum,


ount, and average (with the obvious extensions).

ALC(�)-
on
epts are now de�ned in the same way as ALC(D)-
on
epts

ex
ept that aggregated features may be substituted for 
on
rete features,

where an aggregated feature is an expression �(RÆg) with R role, g 
on
rete

feature, and � an aggregation fun
tion from �. The semanti
s of aggregated

features is de�ned via multisets:

DEFINITION 25 (Semanti
s of ALC(�)) Let I be an interpretation. For

ea
h d 2 �

I

su
h that the set fe j (d; e) 2 R

I

g is �nite, we use M

RÆg

d

to

denote the multiset that, for ea
h z 2 �

D

, 
ontains z exa
tly jfe j (d; e) 2

R

I

and g

I

(e) = zgj times. The semanti
s of aggregated features is now

de�ned as follows:

�(R Æ g))

I

(d) :=

(

�

�

(M

RÆg

d

) if fe j (d; e) 2 R

I

g is �nite

unde�ned otherwise:

Returning to the initial example, we 
an now express the fa
t that the

duration of the mother pro
ess is identi
al to the sum of the durations of

all its subpro
esses by writing

9duration; sum(subpro
 Æ duration):=:

The investigations performed by Baader and Sattler

[

2002

℄

reveal that the

expressive power provided by aggregation fun
tions is hard to tame. The

following result is proved by a redu
tion of Hilbert's 10-th problem.

THEOREM 26 (Baader, Sattler) For 
on
rete domains with aggregation �

where (i) dom(�) in
ludes the non-negative integers, (ii) �

�


ontains a

(unary) predi
ate for equality with 1 and a (binary) equality predi
ate, and

(iii) agg(�) 
ontains min, max, and sum, pure ALC(�)-
on
ept satis�ability

and subsumption are unde
idable.

This lower bound does even apply if we admit only 
onjun
tion, the 8R:C


onstru
tor, and the 
on
rete domain 
onstru
tor, but drop all other 
on-


ept 
onstru
tors. Rather strong measures have to be taken in order to

regain de
idability: either, we have to drop the 8R:C 
onstru
tor from

the language or we have to 
on�ne ourselves with \well-behaved" aggre-

gation fun
tions. Following the �rst approa
h, one may repla
e the logi


ALC(�) with the DL EL(�) that only provides for the following 
on
ept
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onstru
tors: atomi
 negation (i.e. restri
ted to 
on
ept names), 
onjun
-

tion, disjun
tion, the 9R:C 
onstru
tor, and the 
on
rete domain 
onstru
-

tor. When devising de
ision pro
edures for EL(�), requiring 
on
rete do-

mains to be admissible is no longer suÆ
ient sin
e the multisets underlying

aggregation fun
tions need to be dealt with: �-
onjun
tions may, addition-

ally, 
ontain multiset variables and in
lusion statements between multisets

(for a pre
ise de�nition see

[

Baader&Sattler 2002

℄

). If the satis�ability of

su
h extended �-
onjun
tions is de
idable, we 
all � aggregation-admissible.

Baader and Sattler

[

2002

℄

prove the following result by devising a tableau

algorithm:

THEOREM 27 (Baader, Sattler) For 
on
rete domains with aggregation �

that are aggregation-admissible, pure EL(�)-
on
ept satis�ability is de
id-

able.

However, subsumption of EL(�)-
on
epts is, in general, still unde
idable.

Following the se
ond approa
h, Baader and Sattler found out that only min

and max 
an be 
onsidered well-behaved, obtaining the following result also

by 
onstru
tion of a tableau algorithm:

THEOREM 28 (Baader, Sattler) For 
on
rete domains with aggregation �

su
h that (i) � is admissible, (ii) �

�


ontains a binary equality predi-


ate and a binary predi
ate for a linear ordering on �

�

, and (iii) agg(�) =

fmin;maxg, pure ALC(�)-
on
ept satis�ability and subsumption are de
id-

able.

Keys

In several appli
ations, it is useful to identify a set of 
on
rete features

whose values uniquely determine logi
al obje
ts. Say, for example, that

there exists a 
on
rete feature so
num asso
iating humans with their so
ial

se
urity number. Then, if a human is Ameri
an, she should be uniquely

identi�ed by this number. In other words, there should be no two distin
t

domain elements that are both in the extension of Ameri
an and share the

same value of the 
on
rete feature so
num. This idea leads to the de�nition

of key boxes, whi
h have been proposed in

[

Are
es et al. 2002

℄

.

DEFINITION 29 (Key box) A key box is a �nite set of key de�nitions

(u

1

; : : : ; u

n

keyfor C);

where u

1

; : : : ; u

n

are paths and C is a 
on
ept. An interpretation I satis�es

a key de�nition (u

1

; : : : ; u

n

keyfor C) i�, for any a; b 2 C

I

,

u

I

i

(a) = u

I

i

(b) for 1 � i � n implies a = b:
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I is a model of a key box K i� I satis�es all key de�nitions in K.

Clearly, key boxes are a natural 
hoi
e in database appli
ations su
h as

the one des
ribed in Se
tion 1: they 
orrespond to so-
alled fun
tional de-

penden
ies whi
h are the most popular type of 
onstraint for relational

databases. For this reason, keys for des
ription logi
s have also been 
onsid-

ered in a non-
on
rete domain 
ontext

[

Borgida&Weddell 1997; Calvanese

et al. 2000; Khizder et al. 2001

℄

.

From a logi
al perspe
tive, there exists a 
lose relationship between nom-

inals and key boxes. For example, if used together with the key de�nition

(g keyfor >), then the ALC(Q)-
on
ept 9g:=

q

\behaves" like a nominal for

ea
h q 2 Q: it is interpreted either in the empty set or in a singleton set.

Indeed, key boxes are a quite powerful expressive means. This is re
e
ted

by the 
omputational 
omplexity of ALCK(D), the extension of ALC(D)

with key boxes, whi
h is investigated in

[

Are
es et al. 2002

℄

. The following

unde
idability result is proved by a redu
tion of the PCP:

THEOREM 30 (Are
es et al.) For any arithmeti
 
on
rete domain D, pure

ALCK(D)-
on
ept satis�ability and subsumption w.r.t. key boxes are unde-


idable.

De
idability 
an be regained by allowing only Boolean 
ombinations of 
on-


ept names on the right-hand side of key de�nitions. Key boxes satisfying

this property are 
alled Boolean. Pure ALCK(D)-
on
ept satis�ability and

subsumption w.r.t. Boolean key boxes are NExpTime-hard for arithmeti



on
rete domains D. Surprisingly,

[

Are
es et al. 2002

℄


an even show that

this high 
omplexity 
annot be redu
ed if paths are restri
ted to length

one inside ALCK(D)-
on
epts and key boxes. In analogy to Se
tion 3.2,

where this approa
h helped to over
ome unde
idability in the presen
e of

general TBoxes, we 
all su
h 
on
epts and key boxes path-free. The follow-

ing theorem is proved by redu
tion of a NExpTime-
omplete variant of the

PCP:

THEOREM 31 (Are
es et al.) For any arithmeti
 
on
rete domain D, pure

path-free ALCK(D)-
on
ept satis�ability and subsumption w.r.t. Boolean

and path-free key boxes are NExpTime-hard.

To devise a de
ision pro
edure for reasoning with key boxes, it does not

suÆ
e to assume admissibility of 
on
rete domains: the 
on
rete domain

reasoner should not only tell us whether a given D-
onjun
tion is satis�able,

but also whi
h variables in it must take the same value in solutions.
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DEFINITION 32 (key-admissible) A 
on
rete domain D is 
alled key-

admissible i� there exists an algorithm that takes as input a D-
onjun
tion


, returns 
lash if 
 is unsatis�able, and otherwise non-deterministi
ally out-

puts an equivalen
e relation � on the set of variables V used in 
 su
h that

there exists a solution Æ for 
 with the following property:

Æ(v) = Æ(v

0

) i� v � v

0

for all v; v

0

2 V:

We say that extended D-satis�ability is in NP if there exists an algorithm

as above running in polynomial time.

This property is mu
h less esoteri
 than it seems: as noted in

[

Are
es et al.

2002

℄

, any 
on
rete domain that is admissible and provides for an equality

predi
ate is also key-admissible. This rather weak 
ondition is satis�ed

by almost all (admissible) 
on
rete domains proposed in the literature, 
.f.

Se
tion 4. Using a tableau algorithm, Are
es et al.

[

2002

℄

obtain a mat
hing

upper bound for Theorem 31:

THEOREM 33 (Are
es et al.) Let D be a 
on
rete domain that is key-

admissible. If extended D-satis�ability is in NP, then pure ALCOK(D)-


on
ept satis�ability w.r.t. Boolean key boxes is in NExpTime.

Note that, in 
ontrast to Theorem 31, 
on
epts do not have to be path-free.

As usual, 
orresponding 
o-NExpTime results are obtained for 
on
ept

subsumption.

Are
es et al. also 
onsider the extension of the des
ription logi
 SHOQ(D

n

)

(see Se
tion 3.2) with key boxes. Sin
e SHOQ(D

n

) provides only for the

path-free variant of the 
on
rete domain 
onstru
tor, it is natural to re-

quire key boxes to also be path-free. Due to the fa
t that ea
h path-free

ALCK(D)-
on
ept is also a path-free SHOQ(D

n

)-
on
ept, Theorem 31 pro-

vides us with a lower NExpTime 
omplexity bound. In

[

Are
es et al.

2002

℄

, the 
orresponding upper bound is obtained by devising an appro-

priate tableau algorithm:

THEOREM 34 (Are
es et al.) Let D be a 
on
rete domain that is key-

admissible. If extended D-satis�ability is in NP, then path-free SHOQ(D

n

)-


on
ept satis�ability w.r.t. path-free key boxes is in NExpTime.

Note that the key boxes in Theorem 34 are not required to be Boolean! We

obtain a 
orresponding 
o-NExpTime bound for 
on
ept subsumption.
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4 Con
rete Domains

In this se
tion, we dis
uss several 
on
rete domains that have been proposed

in the literature. We start with numeri
al 
on
rete domains, whi
h are

useful in a wide range of appli
ation areas, and then 
onsider more spe
i�



on
rete domains su
h as temporal and spatial ones.

4.1 Numeri
al Con
rete Domains

Let us start with re
onsidering the 
on
rete domain Q introdu
ed in Se
-

tion 2. It is based on the rational numbers Q and provides for the following

predi
ates:

� (unary) predi
ates <

q

, �

q

, =

q

, 6=

q

, �

q

, and >

q

for 
omparisons with

rational numbers q;

� binary 
omparison predi
ates <, �, =, 6=, �, and >;

� a ternary addition predi
ate + and its negation +;

� unary predi
ates >

Q

and ?

Q

(for admissibility).

Note that we 
ould drop some of the predi
ates sin
e, e.g., 9u:<

7


an be

written as 9g:=

7

u 9u; g:<, and 9u

1

; u

2

:� 
an be written as 9u

1

; u

2

:= t

9u

2

; u

1

:<.

{

It is not very hard to prove that Q-satis�ability is in PTime

using a redu
tion to linear programming (LP). More pre
isely, a linear pro-

gramming problem has the form Ax = b, where A is an m � n-matrix of

rational numbers, x is an n-ve
tor of variables, and b is an m-ve
tor of

rational numbers (see, e.g.

[

S
hrijver 1986

℄

). A solution of Ax = b is a

mapping Æ that assigns a rational number to ea
h variable su
h that the

equality Ax = b holds. De
iding whether a given LP problem has a solution

is well known to be in PTime

[

S
hrijver 1986

℄

. Details on the redu
tion of

Q-satis�ability to linear programming 
an be found in

[

Lutz 2002d

℄

.

There exist several interesting predi
ates that 
an be added to Q in order

to extend its expressive power. From the viewpoint of many appli
ations,

the most useful ones are the following:

{ ternary predi
ates � and � with (�)

Q

= f(q; q

0

; q

00

) 2 Q

3

j q � q

0

= q

00

g

and (�)

Q

= Q

3

n (�)

Q

;

{ unary predi
ates int and int with (int)

Q

= Z (where Z denotes the

integers) and (int)

Q

= Q n Z.

{

It is suÆ
ient to provide, for example, the predi
ates f=

q

j q 2 Qg [ f<, +g: all

other predi
ates 
an be de�ned in terms of these. The 
orresponding 
on
rete domain is,

however, not 
losed under negation and thus not admissible.
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Complexity of Complexity of (pure)

D-satis�ability ALC(D)-
on
ept satis�ability

Q + `�' + `int' unde
idable unde
idable

Q + `�' in ExpTime in NExpTime

Q + `int' NP-
omplete PSpa
e-
omplete

Q in PTime PSpa
e-
omplete

Figure 1. Numeri
al 
on
rete domains and their 
omplexity.

Adding di�erent 
ombinations of these predi
ates, we obtain three exten-

sions of the 
on
rete domain Q, whi
h are listed in Figure 1, together with

known 
omplexity bounds on D-satis�ability and pure ALC(D)-
on
ept sat-

is�ability. Note that, sin
e the obtained 
on
rete domains should be admis-

sible, we assume that the addition of the predi
ates `�' and `int' implies the

addition of their negations. Let us dis
uss the given bounds in some more

detail:

{ It is easily proved that the 
on
rete domain Q + `�' + `int' is un-

de
idable using a redu
tion of Hilbert's 10-th problem. Clearly, the

unde
idability is inherited by ALC(D)-
on
ept satis�ability.

{ The ExpTime upper bound for Q + `�' stems from the fa
t that, for

this 
on
rete domains, �nite predi
ate 
onjun
tions 
an be translated

into formulas of Tarski algebra (also known as the theory of real 
losed

�elds) without quanti�er alternation. The satis�ability of su
h formu-

las has been proved to be de
idable in ExpTime

[

Mayr&Meyer 1982;

Grigorev 1988

℄

. The NExpTime upper bound for ALC(D)-
on
ept

satis�ability stems from a more general variant of Theorem 7 that is

proved in

[

Lutz 2002d

℄

.

In

[

Baader&Hans
hke 1992

℄

, it has even been proposed to use all

formulas of Tarski algebra (also those with quanti�ers) as 
on
rete

domain predi
ates. For the 
on
rete domain obtained in this way,

D-satis�ability is ExpSpa
e-
omplete

[

Mayr&Meyer 1982

℄

.

{ Finally, NP-
ompleteness of the 
on
rete domain Q + `int' 
an be

shown via mutual redu
tions to and from mixed integer programming

(MIP), i.e., linear programming with an additional type of variables

that must take integer values in solutions. De
iding the existen
e of a

solution for MIP problems is known to be NP-
omplete. More details

on the redu
tions 
an be found in

[

Lutz 2002d

℄

. The 
omplexity of

ALC(D)-
on
ept satis�ability is then obtained from Theorem 7.



26 Carsten Lutz

bla
k before gray after bla
k

bla
k meets gray met-by bla
k

bla
k overlaps gray overlapped-by bla
k

bla
k during gray 
ontains bla
k

bla
k starts gray started-by bla
k

bla
k �nishes gray �nished-by bla
k

Figure 2. The Allen relations (without equal).

Note that some fragments of the 
on
rete domain Q are also interesting,

examples being the 
on
rete domains C and C

+

dis
ussed in Se
tion 3.2:

in 
ontrast to Q itself, they 
an be 
ombined with general TBoxes without

losing de
idability.

4.2 Other Con
rete Domains

In this se
tion, we present two examples for non-numeri
al 
on
rete do-

mains that have been proposed in the literature. The �rst example is 
on-


erned with representing time: sin
e it is a natural idea to take into a

ount

temporal aspe
ts when reasoning about 
on
eptual knowledge, many tem-

poral extensions of des
ription logi
s have been proposed, see e.g.

[

S
hild

1993; Artale&Fran
oni 1998; Wolter&Zakharyas
hev 1999

℄

and the sur-

vey

[

Artale&Fran
oni 2001

℄

. As dis
ussed in

[

Lutz 2002d; 2002b

℄

, one

possible approa
h for su
h an extension is to use an appropriate, temporal


on
rete domain whi
h we introdu
e in the following.

In temporal reasoning, one of the most fundamental de
isions to be made

is whether to use time points or time intervals as the atomi
 temporal

entity. Time points 
an obviously be represented using numeri
al 
on
rete

domains su
h as those from Se
tion 4.1. If we 
hoose time intervals as our

atomi
 temporal entity, it seems appropriate to de�ne an interval-based,

temporal 
on
rete domain. Usually, su
h 
on
rete domains are based on

the 13 Allen relations, whi
h des
ribe the possible relationships between

any two intervals over some temporal stru
ture. We refer to

[

Allen 1983

℄

for an exa
t de�nition and 
on�ne ourselves with the graphi
al presentation

of the relations given in Figure 2. The most important property of the

Allen relations is that they are jointly exhaustive and pairwise disjoint, i.e.,

for ea
h temporal stru
ture (T;�) and t

1

; t

2

2 T , there exists exa
tly one

relation r su
h that t

1

r

t

2

. We now de�ne a 
on
rete domain I that is based
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on the temporal stru
ture (Q; <):

{ �

I

:= f(t

1

; t

2

) j t

1

; t

2

2 Q and t

1

< t

2

g;

{ �

I


ontains unary predi
ates >

I

and ?

I

(with the obvious extension)

and binary predi
ates rel and rel for ea
h Allen relation rel su
h that

(rel)

I

= f(i

1

; i

2

) 2 �

I

��

I

j i

1

rel i

2

g and (rel)

I

= �

2

I

n (rel)

I

.

It is easily veri�ed that I satis�es Property 1 of admissibility. Moreover,

it follows from standard results in temporal reasoning that I-satis�ability

is NP-
omplete|more details 
an be found in Se
tion 2.4.3 of

[

Lutz 2002b

℄

.

Thus, from Theorem 7 we obtain that ALC(I)-
on
ept satis�ability is

PSpa
e-
omplete.

Interestingly, there exists a polynomial redu
tion of ALC(I)-
on
ept sat-

is�ability to ALC(C)-
on
ept satis�ability, where C is the 
on
rete domain

based on Q and the binary 
omparisons <;�;=; 6=;�; > introdu
ed in Se
-

tion 3.2: intuitively, it is possible to represent intervals in terms of their

endpoints and Allen relations in terms of 
omparisons between interval

endpoints|details 
an again be found in Se
tion 2.4.3 of

[

Lutz 2002b

℄

.

Sin
e this redu
tion also works in the presen
e of general TBoxes, Theo-

rem 11 implies that ALC(I)-
on
ept satis�ability w.r.t. general TBoxes is

de
idable (and ExpTime-
omplete). The usefulness of ALC(I) with general

TBoxes for temporal reasoning is illustrated in

[

Lutz 2001a

℄

in a pro
ess en-

gineering 
ontext. It should be noted that ALC(I) (without TBoxes) has

been used to obtain 
omplexity results for an interval-based temporal de-

s
ription logi
 that is not based on 
on
rete domains

[

Artale&Lutz 1999

℄

.

Although spatial aspe
ts are as important for 
on
eptual reasoning as are

temporal aspe
ts, until now only rather few spatial des
ription logi
s have

been proposed, see e.g.

[

Haarslev et al. 1999; Kutz et al. 2001; 2002

℄

. This

is parti
ularly surprising sin
e, in the spatial 
ase, the number of 
hoi
es for

atomi
 entities and relations/predi
ates is mu
h larger than in the temporal


ase: as spatial primitives, we may use points in a metri
, Eu
lidean, or

topologi
al spa
e, sets of su
h points (to represent regions), or sets of su
h

points with 
ertain 
hara
teristi
s su
h as 
onne
tedness or de�nability by

polytopes. For the predi
ates, we may for example 
hoose distan
e relations,

orientation relations, or the so-
alled RCC-8 relations. In the following, we

take a 
loser look at the last possibility sin
e this approa
h has been used in

the only spatial des
ription logi
 based on 
on
rete domains that has been

proposed in the literature

[

Haarslev et al. 1999

℄

.

The set of so-
alled RCC-8 relations is well-known from the area of qual-

itative spatial reasoning

[

Randell et al. 1992; Bennett 1997; Renz&Nebel

1999

℄

. RCC-8 
onsists of eight jointly exhaustive and pairwise disjoint rela-

tions that des
ribe the possible relationships between any two regular 
losed
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Figure 3. The RCC-8 relations in two-dimensional spa
e.

regions in a topologi
al spa
e.

k

For 2D spa
e, the relations are illustrated

in Figure 3, where the equality relation eq, the inverse tppi of tpp, and the

inverse ntppi of ntpp have been omitted. We now de�ne a spatial 
on
rete

domain S based on the standard topology of two-dimensional spa
e:

{ �

S

is the set RC

R

2

of all regular 
losed subsets of R

2

;

{ �

S


ontains unary predi
ates >

S

and ?

S

and binary predi
ates rel

and rel for ea
h topologi
al relation rel su
h that (rel)

S

= f(r

1

; r

2

) 2

RC

R

2

�RC

R

2

j r

1

rel r

2

g and (rel)

S

= �

2

S

n (rel)

S

..

The 
on
rete domain S obviously satis�es Condition 1 of admissibility. Us-

ing standard results from qualitative spatial reasoning, it is straightforward

to show that S-satis�ability is in NP|details 
an be found in

[

Lutz 2002d

℄

.

Thus, ALC(S)-
on
ept satis�ability is PSpa
e-
omplete by Theorem 7. In

[

Haarslev et al. 1999

℄

, the 
on
rete domain S has been used in the des
rip-

tion logi
 ALCRP(S), i.e. ALC(S) extended with the 
on
rete domain role


onstru
tor from Se
tion 3.3, to reason about spatio-terminologi
al knowl-

edge. By Theorem 23, ALCRP(S)-
on
ept satis�ability is in NExpTime|

the 
orresponding lower bound does not apply sin
e S is not arithmeti
. It

is an interesting open question whether the des
ription logi
 ALC(S) 
an

be 
ombined with general TBoxes without losing de
idability.

Other sets of relations from the area of qualitative spatial reasoning (see

e.g.

[

Sto
k 1997

℄

) may be used to de�ne di�erent spatial 
on
rete domains.

Interesting related work has been presented in

[

Kutz et al. 2001; 2002

℄

: the

authors propose to 
ombine des
ription logi
s with modal logi
s for metri


spa
es. The expressive power of the resulting spatial des
ription logi
s seems

to be orthogonal to the expressive power of spatial des
ription logi
s based

on 
on
rete domains.

5 Final Remarks

In this paper, we have given an overview over the resear
h on des
ription

logi
s with 
on
rete domains, fo
ussing on de
idability and 
omplexity re-

k

A region r is regular 
losed if it satis�es ICr = r, where C is the topologi
al 
losure

operator and I is the topologi
al interior operator.
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sults. We have tried to 
over most relevant results, but had to drop a few

issues due to spa
e limitation. For example, one omission 
on
erns so-
alled

ABoxes whi
h are frequently used to des
ribe states of the world. ABoxes

are not an extension of the 
on
ept language but rather situated \outside of

it", similar to TBoxes (nevertheless, ABoxes are 
losely related to nominals,

though mu
h weaker). It seems that there exists no natural des
ription logi


with 
on
rete domains for whi
h reasoning with ABoxes is of a di�erent 
om-

plexity than reasoning without ABoxes. Some results on the 
ombination of

ABoxes and 
on
rete domains 
an be found in, e.g.,

[

Haarslev et al. 2001;

Lutz 2002d; 2002b

℄

.

We should like to note that the resear
h on des
ription logi
s with 
on-


rete domains has already led to �rst reasoning systems that are equipped

with 
on
rete domains: the RACER system o�ers a 
on
rete domain based

on linear equations and inequalities resembling the 
on
rete domain Q dis-


ussed in Se
tion 4.1

[

Haarslev&M�oller 2002

℄

. Moreover, there exist plans

to extend the FaCT system

[

Horro
ks 1998

℄

with 
on
rete domains. Sin
e

both RACER and FaCT provide for general TBoxes, they only o�er the path-

free variant of the 
on
rete domain 
onstru
tor dis
ussed in Se
tion 3.2.

Serious implementations of des
ription logi
s that provide for the full 
on-

stru
tor remain yet to be seen.
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