1

Description Logics with Concrete
Domains—A Survey

CARSTEN LuTz

ABSTRACT. Description logics (DLs) are a family of logical for-
malisms that have initially been designed for the representation of
conceptual knowledge in artificial intelligence and are closely related
to modal logics. In the last two decades, DLs have been successfully
applied in a wide range of interesting application areas. In most of
these applications, it is important to equip DLs with expressive means
that allow to describe “concrete qualities” of real-world objects such
as their weight, temperature, and spatial extension. The standard
approach is to augment description logics with so-called concrete do-
mains, which consist of a set (say, the rational numbers), and a set
of n-ary predicates with a fixed extension over this set. The “inter-
face” between the DL and the concrete domain is then provided by
a new logical constructor that has, to the best of our knowledge, no
counterpart in modal logics. In this paper, we give an overview over
description logics with concrete domains and summarize decidability
and complexity results from the literature.

1 Introduction

Description logics (DLs) are a family of logical formalisms that originated in
the field of artificial intelligence as a tool for the representation of conceptual
knowledge. Since then, DLs have been successfully used in a wide range of
application areas such as knowledge representation, reasoning about class-
based formalisms (e.g. conceptual database models and UML diagrams),
and ontology engineering in the context of the semantic web [Baader 1999;
Calvanese et al. 1998; Baader et al. 2002a). The basic syntactic entity of
description logics are concepts, which are constructed from concept names
(unary predicates) and role names (binary relations) using the set of concept
and role constructors provided by a particular DL. For example, the follow-
ing concept is formulated in the basic propositionally closed description
logic ALC and could be used, e.g., in a knowledge-based process engineer-
ing application (as in [Sattler 1998; Molitor 2000]) to describe a production
process that has an expensive (specially trained) operator:

Process M Vsubproc.Process M Joperator.(Human M Expensive)

Advances in Modal Logic, Volume 4, 1-77.
© 2002, by World Scientific Publishing Co. Pte. Ltd.

2 Carsten Lutz

In this example, Process, Human, and Expensive are concept names while
subproc and operator are role names.

Viewed from a logical perspective, description logics are closely related
to modal logics [Schild 1991; Giacomo & Lenzerini 1994]. For example, the
DL ALC can be viewed as a notational variant of the modal logic K, i.e.,
multimodal K with infinitely many accessibility relations: concept names
correspond to propositional variables, role names correspond to (names for)
accessibility relations, the V constructor of ALC can be read as a modal
box operator, and 3 can be read as a diamond. However, there also exist,
several means of expressivity that are frequently used in description logics,
but usually not considered in modal logics.

An important example are so-called concrete domains, which allow the in-
tegration of “concrete qualities” such as numbers, time intervals, and strings
into description logic concepts. Suppose, for example, that we want to re-
fine the description of a process given above by replacing the concept name
Expensive with a concept expressing that the process operator earns at least
20 euro per hour. Then we need a proper way to talk about numbers such
as “20” and comparisons between numbers such as “at least 20 euro”. As
another example, we may want to express that the time interval describing
the working time of the operator should contain the time interval describing
the execution time of the process. Here we obviously need to represent time
intervals and relations between them.

The need for extending the expressive power of DLs in the described
direction arises in almost all relevant application areas, let us review two
(more) examples:

1. Semantic web. In this application, DLs are used to describe the con-
tents of web pages in order to facilitate the development of more pow-
erful web services such as advanced search engines [Baader et al. 2002a;
Berners-Lee et al. 2001]. It is obvious and has always been emphasized
that the representation of “concrete datatypes” such as numbers and strings
is an important issue [Fensel et al. 2000; Horrocks & Patel-Schneider 2001]:
if, for example, we want to describe the web page of a wine seller, then we
need numbers to represent vintages and prices, and strings to represent the
names of regions and wine producers. It should be clear that such concrete
datatypes are precisely what we have described as “concrete qualities”.

2. Conceptual database models. Entity Relationship (ER) diagrams are
the predominant formalism for constructing conceptual models of relational
databases [Chen 1976; Teorey 1990]. For example, an ER diagram could de-
scribe two entities Employee and Company related by a relationship employs
such that each Employee is employed by exactly one Company, and each

Description Logics with Concrete Domains—A Survey 3

Company employs at least one Employee. DLs can be used to encode and
reason about ER diagrams, which allows to detect inconsistencies and im-
plications that are only implicitly represented in the diagram [Calvanese et
al. 1998; Franconi & Ng 2000]. However, the standard translation of ER. di-
agrams into DLs does not take into account so-called “numerical attribute
dependencies”, which can e.g. be used to express that no Employee was
hired prior to his Company’s founding. As argued in [Lutz 2002e], it is im-
portant to include these dependencies when using DLs for reasoning about
ER diagrams since they can be an (additional) source for inconsistencies
and unnoticed ramifications. In order to do this, the target DL must be
able to represent “concrete” objects such as numbers and comparisons be-
tween numbers.

The necessity of representing concrete qualities in description logics has been
realized almost since the beginnings of the field, and, indeed, many early
description logic reasoners such as MESON [Edelmann & Owsnicki 1986] and
CLASSIC [Brachman et al. 1991] provided for “ad hoc” solutions of this prob-
lem. The first formal treatment of the issue was presented by Baader and
Hanschke in [1991], who proposed to extend the description logic ALC with
concrete domains. Formally, a concrete domain consists of a set such as
the natural numbers and a set of predicates such as the binary “<” and
the ternary “+” with a fized extension over this set. Enriching ALC with
such a concrete domain D, we obtain the basic DL with concrete domains
ALC(D). More precisely, ALC(D) is obtained from ALC by augmenting it
with

— abstract features, i.e. roles interpreted as functional relations;

— concrete features: a new syntactic type that is interpreted as a partial
function from the logical domain into the concrete domain;

— a new concept constructor that allows to describe constraints on con-
crete values using predicates from the concrete domain.

Let us view two example ALC(D)-concepts: the concept
Process M Vsubproc.Process M Joperator.(Human M Jwage.>»()

refines the process description from above by replacing the concept name
Expensive with a concrete domain-based description of the operator’s wage—
which is at least 20 euro per hour. In this example, operator is an abstract
feature while wage is a concrete feature. We use a concrete domain based
on the natural numbers and assume that >, is a unary predicate with the
obvious extension. The (sub)concept Jwage.>q is an instantiation of the

4 Carsten Lutz

concrete domain constructor and must not be confused with the existential
restriction as used in Joperator.Human. Observe that concrete features such
as wage are the “link” between the description logic and the concrete do-
main: they allow to associate concrete values such as numbers with logical
objects such as the one representing the operator in the above example.

In the second concept, we use a concrete domain based on time intervals
to describe a constraint on the execution time of processes as proposed
above:

Process M Vsubproc.Process M 3(operator worktime), (exectime).contains

Here, worktime and exectime (for “execution time”) are concrete features,
and contains is a binary concrete domain predicate. The last conjunct is
an instantiation of the concrete domain constructor expressing that the
time interval describing the working time of the operator contains the time
interval describing the execution time of the process.

Since their first appearance in 1991, description logics with concrete do-
mains have been extensively studied. The purpose of this paper is to survey
the proposed logics and available results, focusing on decidability and com-
putational complexity. It is organized as follows: in Section 2, we formally
introduce concrete domains and the description logic ALC(D). Section 3
discusses results that have been obtained for ALC(D) and several of its ex-
tensions: in Section 3.1, we treat ALC(D) itself, Section 3.2 is concerned
with extensions considered “standard” in the area of description logics, and
Section 3.3 focuses on specifically concrete-domain related extensions. Most
of the discussed results do not consider a particular concrete domain, but are
of a general nature. Finally, Section 4 gives a brief overview over concrete
domains that have been proposed in the literature.

2 The Description Logic ALC(D)

In this section, we formally introduce Baader and Hanschke’s basic descrip-
tion logic with concrete domains ALC(D) [1991]. To do this, we must first
define the underlying notion of concrete domains.

DEFINITION 1 (Concrete Domain) A concrete domain D is a pair
(Ap,®p), where Ap is a set and ®p a set of predicate names. Each pred-

icate name P € ®p is associated with an arity n and an n-ary predicate
PP C AL

For many application areas, the most interesting concrete domains are nu-
merical ones. Hence, let us introduce a typical numerical concrete domain
Q to illustrate Definition 1: as the set Aq, we use the rational numbers Q.
The following predicates are available:

Description Logics with Concrete Domains—A Survey 5

— unary predicates P, for each P € {<,<,=,#,>,>} and each ¢ € Q
with (P))?={¢' € Q| ¢ P q};

— binary predicates <, <,=,#, >, > with the obvious extension;

~ ternary predicates + and + with (+)® = {(¢,¢',¢") € Q® | ¢+¢' = ¢"}
and ()2 = Q*\ ()%

— aunary predicate Tq with (Tq)® = Q and a unary predicate 1q with
(Lo)¥=0.

The presence of the predicates Tq and Lg and of the negation of the “+”
predicate is related to the admissibility of concrete domains and will be
discussed in Section 3.1. We will further discuss the concrete domain Q and
its relatives in Section 4.

DEFINITION 2 (ALC(D) Syntax) Let N¢, Nr, and Ncg be pairwise disjoint
and countably infinite sets of concept names, role names, and concrete
features. Furthermore, let Nap be a countably infinite subset of Ng. The
elements of Nap are called abstract features. A path w is a composition
f1++ fug of n abstract features f1,..., fn (n >0) and a concrete feature g.
For D a concrete domain, the set of ALC(D)-concepts is the smallest set
such that

— every concept name is a concept, and

- if C' and D are concepts, R is a role name, g is a concrete feature,
U, .- ., Uy are paths, and P € ®p is a predicate of arity n, then the
following expressions are also concepts: ~C', C 1D ,C U D, dR.C,
VR.C, Juy,...,un.P, and g7.

As usual, we use T as abbreviation for an arbitrary propositional tautology
and L as abbreviation for = T. Additionally, if u = f; - -+ frg is a path then
ut is used as abbreviation for Vfi. -+ .Vfr.gt. As an example ALC(Q)-
concept, consider the process description

Process M Vsubproc.Process M Joperator.(Human M Jwage.>»()
M J(operator wage), (cost).<,
where the second line states that the hourly cost of the process is at least

as high as the hourly wage of its operator. We now introduce the semantics
of ALC(D)-concepts and the relevant reasoning problems.

DEFINITION 3 (ALC(D) Semantics) An interpretation Z is a pair (Az, 1),
where A7 is a set called the domain and -T is the interpretation function.
The interpretation function maps

6 Carsten Lutz

— each concept name C to a subset CT of Az,

each role name R to a subset RT of Az x Az,

— each abstract feature f to a partial function f* from Az to Az, and

— each concrete feature g to a partial function g* from Az to Ap.

If u = fi- - fng is a path, then u’(d) is defined as g*(fX---(fL(d)) --).
The interpretation function is extended to arbitrary concepts as follows:

(-C) == A\ C7
(cnD) .=ctnpD*
(cuD)t.=cTuD”
(AR.CY! :={d e Az | {e|(d,e) € RE} nCT # 0}
(VR.C)T :={d e Az |{e|(d,e) e R} Cc CT}
(Fui,...,up.P)Y={de€ Az |Fxy,... .0, € Ap:ul(d) =x; for 1<i<n

and (21,...,1,) € PP}
(gD :={d € Az | g"(d) undefined}

Let T be an interpretation. Then T is a model of a concept C iff CT # §.
A concept C is satisfiable iff C' has a model. A concept C' is subsumed by
a concept D (written C' C D) iff CT C D for all interpretations .

While satisfiability is familiar from modal and classical logics, subsumption
deserves a brief comment: this reasoning task is rather important in de-
scription logics since DLs are frequently used to capture the terminological
knowledge of an application domain, and subsumption can then be used
to arrange the defined notions (represented by concepts) in a taxonomy.
Logically, subsumption can obviously be understood as the validity of im-
plications. It should thus be clear that, in ALC(D), concept subsumption
can be reduced to concept (un)satisfiability and vice versa: C' C D iff C1=D
is unsatisfiable and C' is satisfiable iff C' Z L.

It is not hard to see that “the ALC part” of ALC(D) is a syntacti-
cal variant of multimodal K (see Section 1). However, to the best of
our knowledge, the concrete domain constructor has no counterpart in
modal logic. Moreover, even for very simple concrete domains D there
does not exist a translation from ALC(D)-concepts into formulas of the
two-variable fragment of first-order logic or of the guarded fragment—a
property enjoyed by most modal and description logics [van Benthem 1983;
Borgida 1996]. The reason for this is that we admit paths of length greater
one inside the concrete domain constructor.

Description Logics with Concrete Domains—A Survey 7

For most application areas, the reasoning tasks “concept satisfiability”
and “subsumption” have to take into account so-called TBoxes. Such TBoxes
are sets of concept equations, which are used to store terminological knowl-
edge and background knowledge about the application domain. For ex-
ample, we could use a TBox to define the notion “expensive process” by
writing

ExpensiveProcess = Process M Jcost.>»

Moreover, we could capture the “background knowledge” that every process
controlled by an expensive operator is an expensive process:

T = (Process M Joperator.Iwage.>,q) — ExpensiveProcess

In the DL literature, there exist various TBox formalisms with vast differ-
ences in expressive power. In this paper, we will only consider the two TBox
formalisms that are used most frequently.

DEFINITION 4 (TBox) A concept equation is an expression C' = D, where
C and D are concepts. A general TBox is a finite set of concept equations.

A concept equation C = D is called a concept definition if C' is a concept
name. A finite set of concept definitions T is called an acyclic TBox if the
following conditions are satisfied:

1. the left-hand sides of concept definitions are unique, i.e., if {A =
C, A'=C'"} CT, then C # C" implies A # A';

2. T is acyclic: there are no concept definitions {Ag = Co, ..., Ay—1 =
Cr—1} C T such that the concept name A; occurs in Ciy1 mod k for
1 < k.

An interpretation T is a model of a (general or acyclic) TBox T if CT = DT
for allC =D € T. A concept C is satisfiable w.r.t. a TBox T iff C' and T
have a common model. A concept C' is subsumed by a concept D w.r.t. a
TBox T (written C T+ D) iff CT C DT for all models T of T.

From a modal logic perspective, the expressive power provided by general
TBoxes is closely related to the expressiveness of the universal modality—see
e.g. Section 2.2.1 of [Lutz 2002b] for a thorough discussion. While general
TBoxes are a rather powerful tool, the expressive power provided by acyclic
TBoxes is relatively weak: due to acyclicity, they can be viewed as macro
definitions, i.e., as providing a set of abbreviations for concepts. As we will
see in Section 3.2, acyclic TBoxes can also be expanded like macros. Note,
however, that acyclic TBoxes are still powerful enough to define terminolo-
gies as in the first example presented above.

8 Carsten Lutz

To distinguish concept satisfiability without TBoxes from concept satisfi-
ability with TBoxes, we will in the following sometimes use the term “pure
concept, satisfiability” to refer to the former.

3 Description Logics with Concrete Domains

In this section, we consider the basic description logic with concrete domains
ALC (D) and several of its extensions. We start with ALC(D) itself and then
discuss “standard extensions” that are frequently considered in description
logics and, in principle, independent of concrete domains. Finally, we give
an overview over extensions of ALC(D) that concern the “concrete domain
part” of this logic.

3.1 The Basic Formalism

In their original 1991 paper, Baader and Hanschke present a tableau al-
gorithm that is capable of deciding (pure) ALC(D)-concept satisfiability.
Using the reduction from the previous section, this algorithm also yields a
decision procedure for concept subsumption. Baader and Hanschke’s decid-
ability result is a rather general one since it does not concern a particular
concrete domain, but applies to any concrete domain that satisfies some
weak conditions. These conditions are derived from the fact that any satisfi-
ability algorithm not committing itself to a particular concrete domain must
call some concrete domain reasoner as a subprocedure via a well-defined “in-
terface”. In the case of Baader and Hanschke’s tableau algorithm, such a
concrete domain reasoner is required to decide the satisfiability of finite
conjunctions of concrete domain predicates. This leads to the notion of
admissibility.

DEFINITION 5 (Admissible) Let D be a concrete domain and V a set of
variables. A D-conjunction is a predicate conjunction of the form

c= /\(xél),...,xsz?) : P,
i<k
where P; is an n;-ary predicate for i < k and the xy) are variables from
V. A D-conjunction ¢ is satisfiable iff there exists a function 6 mapping
the variables in ¢ to elements of Ap such that (5(acél)), e ,5($$:))) e pP
for each i < k. Such a function is called a solution for c. We say that the
concrete domain D is admissible iff

1. its set of predicate names is closed under negation and contains a
name Tp for Ap and

2. the satisfiability of D-conjunctions is decidable.

Description Logics with Concrete Domains—A Survey 9

We refer to the satisfiability of D-conjunctions as D-satisfiability.

Property 1 of admissibility has to be satisfied since the description logic
ALC(D) provides for negation. For example, the concept

(1) M =(g21) M —(3g1, 92.<)

expresses that gf > g7 without explicitly using a “>” predicate, and
such information must be passed to the concrete domain reasoner. Note
that the concrete domain Q presented in Section 2 satisfies Property 1 of
admissibility—in Section 4, we will see that Property 2 is also satisfied.
The result obtained in [Baader & Hanschke 1991] can now be formulated as
follows:

THEOREM 6 (Baader, Hanschke) Pure ALC(D)-concept satisfiability and
subsumption are decidable if D is admissible.

We should briefly comment on a minor difference between the logic ALC(D)
as defined in [Baader & Hanschke 1991] and in Section 2: Baader and Han-
schke’s variant of ALC(D) uses only a single type of feature that is inter-
preted in partial functions from Az to A7z X Ap and thus combines our
abstract and concrete features. It is not very hard to see that the difference
in expressivity is negligible. However, the separation of abstract and con-
crete features necessitates the presence of the g1 constructor: without this
constructor, we would not be able to remove negations in front of the con-
crete domain constructor when converting ALC(D)-concepts into equivalent
ones in negation normal form (NNF), for details see Section 3.3.*

The complexity of reasoning with ALC(D) has been analyzed in [Lutz
2002d]. There, the tableau algorithm of Baader and Hanschke is refined
by using the so-called tracing technique: instead of keeping entire tableaux
in memory (which may become exponentially large), a tree-shaped tableau
is constructed in a depth-first manner keeping only paths of the tree in
memory. Since such paths are of at most polynomial length, this allows
to devise a PSPACE algorithm. However, the complexity of reasoning with
ALC(D) clearly depends on the complexity of D-satisfiability:

THEOREM 7 Pure ALC(D)-concept satisfiability and subsumption are
PSPACE-complete if D is admissible and D-satisfiability is in PSPACE.

*A concept is in NNF if negation does only occur in front of concept names. This
normal form is frequently used to devise decision procedures for DLs.

10 Carsten Lutz

Thus, reasoning with ALC(D) is not harder than reasoning with ALC. As
we will see in Section 4, Q-satisfiability can be decided in PTIME, and
thus Theorem 7 yields a tight complexity bound for (pure) reasoning with

ALC(Q).
3.2 Standard Extensions

We now discuss the extension of ALC(D) with several means of expressivity
that can be considered “standard” in the area of description logics. Let us
start with general TBoxes.

General TBoxes

In [Baader & Hanschke 1992], it is proved that ALC(R) extended with a
transitive closure constructor on roles (similar to the star-operator of propo-
sitional dynamic logic) is undecidable, where R is a concrete domain based
on Tarski algebra. The undecidability proof, which uses a reduction of the
Post Correspondence Problem (PCP), can easily be adapted to ALC(R) ex-
tended with general TBoxes, which is thus also undecidable. This adaption
is performed in [Lutz 2001b; 2002c], where not only R is considered, but
a more general result is obtained that applies to a large class of concrete
domains.

THEOREM 8 For concrete domains D such that (i) N C Ap and (i) ®p
provides a unary predicate for equality with 0, a binary equality predicate,
and a binary predicate for incrementation, ALC(D)-concept satisfiability
and subsumption w.r.t. general TBoxes are undecidable.

Note that there exist rather simple (and admissible) concrete domains sat-
isfying the conditions listed in the theorem, an example being the concrete
domain Q." Since Q-satisfiability can be decided in PTIME (Section 4), it
should be clear that the reason for undecidability is an interaction between
general TBoxes and concrete domains and not reasoning with arithmetic
concrete domains themselves.

Since general TBoxes play a very important role in most application areas
and are provided by almost all state-of-the-art description logics, the above
result is rather discouraging. There are two ways for regaining decidability:
either use a less powerful concrete domain constructor or very carefully
choose the concrete domains used.

The first approach was adopted in [Haarslev et al. 2001] and [Horrocks &
Sattler 2001]. In the former article, Haarslev et al. propose to allow only
concrete features inside the concrete domain constructor instead of paths

TStrictly speaking, Q does not contain a predicate for addition with 1, but this is
compensated by the predicates “=1” and +.

Description Logics with Concrete Domains—A Survey 11

of arbitrary length. In the following, we call concepts satisfying this condi-
tion path-free. More precisely, Haarslev et al. introduce the rather powerful
description logic SHAN (D)¥, which extends ALC(D) with expressive means
such as unqualified number restrictions (a weak form of graded modalities)
and role hierarchies (TBox-like assertions that allow to state inclusions be-
tween roles). If path-freeness is not assumed, then SHN (D)-concept satisfi-
ability and subsumption is undecidable since reasoning with general TBoxes
can be reduced to reasoning without general TBoxes—the so-called “inter-
nalization of TBoxes”, c.f. [Schild 1991; Horrocks & Sattler 1999]. However,
using a tableau algorithm Haarslev et al. [2001] were able to show the fol-
lowing;:

THEOREM 9 (Haarslev et al.) If the concrete domain D is admissible,
then path-free SHN (D)-concept satisfiability and subsumption w.r.t. gen-
eral TBozes are decidable.

Horrocks and Sattler [2001] propose to admit only unary concrete domain
predicates to overcome undecidability. Under this restriction, they prove de-
cidability of reasoning with the very expressive description logic SHOQ(D)
and general TBoxes by devising an appropriate tableau algorithm. How-
ever, allowing only unary predicates is strictly less expressive than requir-
ing path-freeness: the concept Af; - - frg.P (with P unary predicate) can
clearly be replaced with the equivalent one 3f;.3f5.--- .f;.3g.P that does
not use paths of length greater than one. In [Pan & Horrocks 2002], the
initial result is strengthened by admitting concrete domain predicates of
arbitrary arity, adopting path-freeness, and adding some additional means
of expressivity (see Section 3.3). The resulting DL is called SHOQ(D,,).

THEOREM 10 (Horrocks, Pan, Sattler) If the concrete domain D is ad-
missible, then path-free SHOQ(Dy,)-concept satisfiability and subsumption
w.r.t. general TBoxes are decidable.

A more general result has been obtained in Section 5.3 of [Baader et al.
2002b], where it is shown that any description logic £, such that (i) £-
concept satisfiability w.r.t. general TBoxes is decidable and (ii) £ is “closed
under disjoint unions” (see [Baader et al. 2002b] for details), can be ex-
tended with the path-free variant of the concrete domain constructor with-
out losing decidability of reasoning with general TBoxes. This result gener-
alizes Theorem 9 but not Theorem 10 since SHOQ does not satisfy Prop-
erty (ii). Indeed, the “harmlessness” of the path-free concrete domain con-
structor is not very surprising since dropping paths deprives concrete do-

¥This logic is also called ALCNH g+ (D).

12 Carsten Lutz

mains of most of their expressive power: in Section 2.4.1 of [Lutz 2002b],
it is shown that the path-free variant of the concrete domain constructor
can be “simulated” by concept names, which is not possible for the vari-
ant admitting paths of arbitrary length. In the same section, it is proved
that path-free ALC(D)-concept satisfiability and subsumption w.r.t. general
TBoxes are EXPTIME-complete if D is admissible and D-satisfiability is in
ExpPTIME.

We now discuss the second approach to overcome undecidability of ALC (D)
with general TBoxes, namely to keep the original version of the concrete
domain constructor and look for concrete domains that are both interesting
and do not destroy decidability of reasoning with general TBoxes. The first
positive result following this route was established in [Lutz 2001al], where
a concrete domain C is considered that is based on the rational numbers
Q = Ac, and provides for the binary predicates <, <,=,#,>,> with the
obvious extension. Using an automata-based approach, the following result
is obtained:

THEOREM 11 ALC(C)-concept satisfiability and subsumption w.r.t. gen-
eral TBozes are EXPTIME-complete.

It is then shown that this result can be extended to an interval-based, tem-
poral concrete domain. Theorem 11 has subsequently been generalized in
[Lutz 2002a]: first, the concrete domain C has been extended to C* which,
additionally, admits unary predicates =, for each ¢ € Q (with the obvious
extension). Second, the “description logic part” is extended from ALC to
the very expressive DL SHZQ that plays an important role in many ap-
plication areas [Horrocks et al. 2000]. The following theorem is proved in
[Lutz 2002a], also using an automata-theoretic approach:

THEOREM 12 SHTQ(Ch)-concept satisfiability and subsumption w.r.t.
general TBoxes are EXPTIME-complete.

Note that this logic is called Q-SHZQ in [Lutz 2002al. It is very unlikely
that CT can be extended with any form of arithmetics without losing de-
cidability. For example, if ALC(CT) is extended with a binary predicate
for incrementation with one, we obtain undecidability of reasoning w.r.t.
general TBoxes from Theorem 8. An interesting open question is whether
a unary predicate int can be added whose extension are the integers. Such
a predicate would be very useful for many applications.

Description Logics with Concrete Domains—A Survey 13

Acyclic TBoxes

If we restrict ourselves to acyclic TBoxes rather than admitting general
ones, the situation becomes much simpler: it is well-known that concept
satisfiability w.r.t. acyclic TBoxes can be reduced to concept satisfiability
without TBoxes by using unfolding [Nebel 1990]: given an input concept
C and an acyclic TBox T, we can exhaustively replace concept names in
C' that appear on the left-hand side of a concept definition in 7 with the
corresponding right-hand side. This process terminates since 7T is acyclic.
Moreover, it is not hard to see that the resulting concept is satisfiable iff
C' is satisfiable w.r.t. 7. Thus, Theorem 6 implies that ALC(D)-concept
satisfiability and subsumption w.r.t. acyclic TBoxes are decidable if D is
admissible—although unfolding involves an exponential blow-up in size.

Concerning complexity, the results obtained for reasoning with ALC (D)
and acyclic TBoxes are much more surprising: it is well-known that, for
almost all description logics considered in the literature, adding acyclic
TBoxes does not increase the complexity of reasoning. For example, ALC-
concept satisfiability and subsumption are PSPACE-complete, both with and
without acyclic TBoxes [Schmidt-Schaufl & Smolka 1991; Lutz 1999]. Inter-
estingly, this is not the case for ALC(D): although pure ALC(D)-concept
satisfiability is PSPACE-complete, in [Lutz 2001b; 2002c] a large class of
so-called arithmetic concrete domains D is identified for which ALC(D)-
concept, satisfiability w.r.t. acyclic TBoxes is considerably harder, namely
NExpPTIME-complete.

DEFINITION 13 (Arithmetic) A concrete domain D is called arithmetic
iff Ap contains the natural numbers and ®p contains

— unary predicates for equality with zero and with one,

— a binary equality predicate, and

— ternary predicates expressing addition and multiplication.

A NExPTIME-complete variant of the Post Correspondence Problem is used
to show the following result:

THEOREM 14 For any arithmetic concrete domain D, ALC(D)-concept
satisfiability w.r.t. acyclic TBozes is NEXPTIME-hard.

Since concept satisfiability can be reduced to non-subsumption, this im-
plies a co-NEXPTIME lower bound for ALC(D)-concept subsumption if D
is arithmetic. A corresponding upper bound is established using a tableau
algorithm:

14 Carsten Lutz

THEOREM 15 ALC(D)-concept satisfiability w.r.t. acyclic TBozes is in
NEXPTIME if D is admissible and D-satisfiability is in NP.

Again, we have to consider the complementary complexity class for sub-
sumption. It is interesting that the addition of the seemingly harmless
acyclic TBoxes results in a leap of complexity from PSPACE-completeness
to NExpTIME-completeness.

Concept- and Role-Constructors

Interestingly, acyclic TBoxes are not the only means of expressivity that
considerably increases the complexity of reasoning if added to ALC(D). In
[Lutz 2001b; 2002c; Areces & Lutz 2002], analogues of Theorems 14 and 15
have been proved for the following extensions of ALC(D):

— Inverse roles. We can now additionally use expressions R~ inside
the dR.C and VR.C' constructors, where R may also be an abstract
feature. The interpretation (R™)7 of R~ is obtained by taking the
converse of the relation RT. Inverses of abstract (or even concrete)
features inside the concrete domain constructor are not allowed since
the inverse of a feature is not necessarily functional.

— Role conjunction. We admit roles like Ry M ---M R,, inside the AR.C
and VR.C constructors, where the R; may also be abstract features.
The interpretation (Ry M--- M R,)T of R is obtained by taking the

intersection of the relations R7, ..., RL. Conjunctions of abstract (or
even concrete) features inside the concrete domain constructor are not
allowed.

— Nominals. Nominals (known, e.g., from hybrid logic [Areces & de Rijke
2001]) are a new syntactic type that is used in the same way as concept
names, but interpreted in singleton sets.

All these means of expressivity (with the possible exception of nominals) are
usually considered “harmless” w.r.t. complexity, i.e., in most cases they do
not increase the complexity of reasoning when added to a description logic.
The above results thus show that the PSPACE upper complexity bound
for reasoning with ALC(D) is not robust, but rather quite unstable w.r.t.
extensions of the language.

Although formal proofs are missing, most other standard means of expres-
sivity are very likely to preserve decidability and the PSPACE upper bound
when added to ALC(D). Such means of expressivity are, e.g., qualified num-
ber restrictions (the DL counterpart of graded modalities) and transitive
roles (i.e., a new sort of role names interpreted in transitive relations—not

Description Logics with Concrete Domains—A Survey 15

to be confused with the transitive closure role constructor). Concerning
decidability, some results can be obtained by using the transfer results for
fusions of description logics presented in [Baader et al. 2002b]. This is to
some extent discussed in Section 5.6 of [Lutz 2002b], where the following
result is obtained:

THEOREM 16 If D is admissible, then pure ALCQp, (D)-concept satisfi-
ability is decidable.

Here, ALCQ%, (D) is ALC(D) extended with inverse roles, qualifying num-
ber restrictions, and transitive roles. It should also be noted that concrete
domains can be combined with so-called feature agreements and disagree-
ments without spoiling the PSPACE upper complexity bound [Lutz 2002d].

3.3 Concrete Domain-Related Extensions

We now review various proposals for enhancing the expressive power of
ALC(D) by extending the “concrete domain part” of this logic.

Generalized Concrete Domain Constructor

In the original version of ALC(D) as defined in Section 2, we only allow
abstract features to be used in the concrete domain concept constructor
instead of admitting arbitrary role names. This observation leads to a nat-
ural generalization of the concrete domain constructor that has first been
proposed by Hanschke [1992].

DEFINITION 17 (ALCP(D)) A sequenceU = Ry --- Rig where Ry, ..., Ry,
€ Ngr (k> 0) and g € N is called a role path. For an interpretation T,
UT is defined as

{(d,x) g AI X AD |E|d1,...,dk+1 cd = dl,
(diydir1) € RE for 1 <i <k, and g*(dy+1) = z}.

ALCP(D) is obtained from ALC(D) by allowing the use of concepts of the
form YUy, ..., U,.P and 3Uy,...,U,.P in place of concept names, where
P € ®p is of arity n and Uy, ..., U, are role paths. The semantics of the
generalized concrete domain constructors is defined as follows:

(VUy,...,Un.PYE:={d € Az | Forall zy,...,x, with (d,z;) € U,
we have (21,...,7,) € PP}

(AUy,...,U,.P)E :={d € Az | There exist x1,...,7, with (d,x;) € UL
and (z1,...,z,) € PP}

16 Carsten Lutz

Obviously, every path is also a role path. Hence, the 3Uy,...,U,.P con-
structor of ALCP(D) is a generalization of the Juy, ..., u,.P constructor
of ALC(D). For paths uy,...,u,, the ALCP(D)-concept Yuy,...,u,.P is
equivalent to the ALC(D)-concept uy tU- - -Uu, TUTuy, . . ., uy, . P. This is the
reason why ALC(D) does not provide for a counterpart of the VU, ..., U,.P
constructor.

Using the generalized constructors, we can, for example, express that the
duration of subprocesses is bounded by the duration of the mother process
without committing to a particular number of subprocesses:

Process M V(duration), (subproc duration).<,

where duration is a concrete feature. The existential version of the gener-
alized concrete domain constructor can then be used to express that there
exists a subprocess whose duration is strictly shorter than the duration of
the mother process:

Process M A(duration), (subproc duration).<. (%)

Note, however, that it is now impossible to state that the subprocess with
the shorter duration is a DangerousProcess. This observation suggests that
role hierarchies are a useful extension of ALCP(D): in the resulting DL,
we can modify (x) by replacing the role subproc with an abstract feature
specialSubprocess, adding the conjunct dspecialSubprocess.DangerousProcess,
and finally using a role hierarchy to state that specialSubprocess is a subrole
of subproc, i.e. that we have specialSubProcess” C subproc”. In the following,
however, we will stick with the original variant of ALCP(D) that does not
admit role hierarchies.

As shown in [Hanschke 1992], satisfiability and subsumption of ALCP(D)-
concepts are decidable if D is admissible. However, when investigating the
complexity of ALCP(D), it becomes clear that initially restricting ourselves
to abstract features inside the concrete domain constructor is a sensible idea
since it allows a more fine-grained complexity analysis: it is shown in [Lutz
2002b] that, while reasoning with ALC(D) is PSPACE-complete, reasoning
with ALCP(D) is much harder. Indeed, the complexity of (pure) reason-
ing with ALCP (D) parallels the complexity of reasoning with ALC (D) ex-
tended with acyclic TBoxes. The lower bound is determined by reduction
of a NExXPTIME-complete variant of the PCP:

THEOREM 18 For any arithmetic concrete domain D, pure ALCP(D)-
concept satisfiability is NEXPTIME-hard.

It is interesting to note that this lower bound does even hold if abstract fea-
tures are dropped from the language. As in the case of acyclic TBoxes, there

Description Logics with Concrete Domains—A Survey 17

exists a corresponding upper bound which is established using a tableau al-
gorithm:

THEOREM 19 Pure ALCP(D)-concept satisfiability is in NEXPTIME if D
1s admissible and D-satisfiability is in NP.

We obtain corresponding co-NEXPTIME complexity bounds for concept sub-
sumption. Another generalization of the concrete domain constructor has
been proposed in [Pan & Horrocks 2002]: the authors replace concrete fea-
tures by concrete roles, which are not required to be functional. Addi-
tionally, they allow the application of number restrictions to concrete roles.
This allows, for example, to state that each person has exactly one age (at-
tached via a concrete role age) while being allowed to have many telephone
numbers (attached via a concrete role tel).

A Concrete Domain Role Constructor

Another natural extension of the original variant of ALC(D) is obtained by
using the concrete domain not only to define concepts, but by additionally
allowing the definition of complex roles with reference to concrete domain

predicates. Such an extension has first been proposed in [Haarslev et al.
1999].

DEFINITION 20 (ALCRP(D)) A concrete domain role is an expression of
the form
ur, .. up), (v, ..., om).P

where Uy, ..., Uy and V1, ...,y are paths and P is an n+ m-ary predicate.
The semantics is given as follows:

Aty .. stn), (V1. vm).P)E =
{(d,e) € Az x Az | There exist x1,...,xy and y1,...,Yn
such that ul (d) = x; for 1 <i <n,vl(e) =y; for 1 <i<m, and
($1,...,$n,y1,...,ym)EPD}

ALCRP(D) is obtained from ALC(D) by allowing the use of concrete do-
main roles inside the AR.C' and VR.C' constructors.

Note that concrete domain roles are not allowed inside the concrete domain
concept constructor. Let us view an example ALCRP(D)-concept. Assume
that we use a concrete domain based on temporal intervals and binary pred-
icates describing the possible relationships between such intervals. Then the
concept

Process M V(3(exectime), (exectime).overlaps).—DangerousProcess,

18 Carsten Lutz

describes processes that are not temporally overlapping with dangerous pro-
cesses. Note that J(exectime), (exectime).overlaps is a concrete domain role
defined in terms of the binary predicate overlaps and the concrete feature
exectime which associates processes with the time interval in which they are
executed.

In [Lutz & Moller 1997], a reduction of the Post Correspondence Prob-
lem is used to prove that there exist concrete domains D such that the
satisfiability of ALCRP(D)-concepts is undecidable. It is straightforward
to generalize this result to the class of concrete domains identified in The-
orem 8§:

THEOREM 21 (Lutz, Moéller) For concrete domains D such that (i) N C
Ap and (i) ®p provides a unary predicate for equality with 0, a binary
equality predicate, and a binary predicate for incrementation, pure
ALCRP(D)-concept satisfiability and subsumption are undecidable.

In [Haarslev et al. 1999] a fragment of ALCRP(D) is identified that is closed
under negation, strictly extends ALC (D), and is decidable for all admissible
concrete domains. To introduce this fragment, we need a way to convert
ALCRP(D)-concepts into equivalent ones in NNF. Assuming that D is ad-
missible, this conversion can be done by eliminating double negation and
using de Morgan’s rules, the duality between dR.C' and VR.C, and the
equivalences

=(Juy, ..., up.P) Juq, ..., up PUu U - Uyt

Hg.TD

where, for P an n-ary predicate, P denotes the predicate satisfying ﬁD =
A%\ PP which exists since D is admissible. In the following, sub(C) refers
to the set of subconcepts of the concept C' (including C itself).

DEFINITION 22 (Restricted ALCRP(D)-concept) An ALCRP(D)-concept
C' is called restricted iff the result C' of converting C' to NNF satisfies the
following conditions:

1. For any VR.D € sub(C"), where R is a concrete domain role,

(a) sub(D) does not contain any concepts 3S.E with S a concrete
domain role, and

(b) if sub(D) contains a concept Juy,...,u,.P, then uy,...,u, €
Ner.

2. For any 3R.D € sub(C"), where R is a concrete domain role,

Description Logics with Concrete Domains—A Survey 19

(a) sub(D) does not contain any concepts VS.E with S a concrete
domain role, and

(b) if sub(D) contains a concept Juy, ..., un.P, then ui,...,u, €
Ner .

It is easily seen that the set of restricted ALCRP(D)-concepts is closed
under negation. Hence, subsumption of restricted ALCRP(D)-concepts
can still be reduced to satisfiability of restricted ALCRP(D)-concepts (and
vice versa). Decidability of restricted ALCRP(D)-concept satisfiability and
subsumption has been shown in [Haarslev et al. 1999], where it is also illus-
trated that this fragment of ALCRP(D) is still useful for reasoning about
spatio-terminological knowledge. The complexity of reasoning has been in-
vestigated in [Lutz 2002b], where it is shown that, once more, we can use a
NExpPTIME-complete variant of the PCP and a tableau algorithm to prove
the following;:

THEOREM 23 Let D be a concrete domain. If D is arithmetic, then (pure)
satisfiability of restricted ALCP(D)-concepts is NEXPTIME-hard. If D is
admissible and D-satisfiability is in NP, then (pure) satisfiability of re-
stricted ACLCRP(D)-concepts can be decided in NEXPTIME.

Again, we obtain corresponding co-NEXPTIME bounds for concept sub-
sumption.

Aggregation Functions

Aggregation is a useful mechanism available in many expressive represen-
tation formalisms such as database schema and query languages. It is thus
a natural idea to extend description logics providing for concrete domains
with aggregation as proposed in [Baader & Sattler 2002]. Consider, for ex-
ample, a process description

Process M Iduration.>q M Vsubproc.(Process M Jduration.>).

The aggregation function “sum” is needed if we want to express that the
duration of the mother process is identical to the sum of the durations of
all its subprocesses (of which there may be arbitrarily many).

DEFINITION 24 (Aggregation) A concrete domain with aggregation is a
concrete domain that, additionally, provides for a set of aggregation func-
tions agg(D), where each T' € agg(D) is associated with a partial function
I'P from the set of finite multisets of dom(D) into dom(D).5

§Intuitively, a multiset is a set that may contain the same element multiple (but only
finitely many) times.

20 Carsten Lutz

To distinguish concrete domains with aggregation from those without, we
denote the former with ¥. Typical aggregation functions are min, max, sum,
count, and average (with the obvious extensions).

ALC(X)-concepts are now defined in the same way as ALC(D)-concepts
except that aggregated features may be substituted for concrete features,
where an aggregated feature is an expression ['(Rog) with R role, g concrete
feature, and I' an aggregation function from X. The semantics of aggregated
features is defined via multisets:

DEFINITION 25 (Semantics of ALC(X)) Let T be an interpretation. For
each d € Az such that the set {e | (d,e) € R} is finite, we use Mfog to
denote the multiset that, for each z € Ap, contains z exactly |{e | (d,e) €

RT and g*(e) = z}| times. The semantics of aggregated features is now
defined as follows:

Ro . . .
I(Ro g)¥(d) = (M%) if {e] (.d,e)ERI} is finite
undefined otherwise.
Returning to the initial example, we can now express the fact that the

duration of the mother process is identical to the sum of the durations of
all its subprocesses by writing

duration, sum(subproc o duration).=.

The investigations performed by Baader and Sattler [2002] reveal that the
expressive power provided by aggregation functions is hard to tame. The
following result is proved by a reduction of Hilbert’s 10-th problem.

THEOREM 26 (Baader, Sattler) For concrete domains with aggregation X
where (1) dom(X) includes the non-negative integers, (ii) ®x; contains a
(unary) predicate for equality with 1 and a (binary) equality predicate, and
(111) agg(X) contains min, max, and sum, pure ALC(XZ)-concept satisfiability
and subsumption are undecidable.

This lower bound does even apply if we admit only conjunction, the YR.C'
constructor, and the concrete domain constructor, but drop all other con-
cept constructors. Rather strong measures have to be taken in order to
regain decidability: either, we have to drop the VR.C' constructor from
the language or we have to confine ourselves with “well-behaved” aggre-
gation functions. Following the first approach, one may replace the logic
ALC(E) with the DL ££(X) that only provides for the following concept

Description Logics with Concrete Domains—A Survey 21

constructors: atomic negation (i.e. restricted to concept names), conjunc-
tion, disjunction, the AR.C' constructor, and the concrete domain construc-
tor. When devising decision procedures for ££(X), requiring concrete do-
mains to be admissible is no longer sufficient since the multisets underlying
aggregation functions need to be dealt with: ¥-conjunctions may, addition-
ally, contain multiset variables and inclusion statements between multisets
(for a precise definition see [Baader & Sattler 2002]). If the satisfiability of
such extended X-conjunctions is decidable, we call ¥ aggregation-admissible.
Baader and Sattler [2002] prove the following result by devising a tableau
algorithm:

THEOREM 27 (Baader, Sattler) For concrete domains with aggregation &

that are aggregation-admissible, pure EL(X)-concept satisfiability is decid-
able.

However, subsumption of ££(X)-concepts is, in general, still undecidable.
Following the second approach, Baader and Sattler found out that only min
and max can be considered well-behaved, obtaining the following result also
by construction of a tableau algorithm:

THEOREM 28 (Baader, Sattler) For concrete domains with aggregation X
such that (i) X is admissible, (ii) ®x contains a binary equality predi-
cate and a binary predicate for a linear ordering on As:, and (iii) agg(X) =

{min, max}, pure ALC(X)-concept satisfiability and subsumption are decid-
able.

Keys

In several applications, it is useful to identify a set of concrete features
whose values uniquely determine logical objects. Say, for example, that
there exists a concrete feature socnum associating humans with their social
security number. Then, if a human is American, she should be uniquely
identified by this number. In other words, there should be no two distinct
domain elements that are both in the extension of American and share the
same value of the concrete feature socnum. This idea leads to the definition
of key boxes, which have been proposed in [Areces et al. 2002].

DEFINITION 29 (Key box) A key box is a finite set of key definitions
(ur, ..., up keyfor C),

where uy, ..., u, are paths and C is a concept. An interpretation T satisfies
a key definition (uy,...,u, keyfor C) iff, for any a,b € C7,

ul (a) = ul (b) for 1 <i <mn implies a = b.

2

22 Carsten Lutz

T is a model of a key box KC iff T satisfies all key definitions in K.

Clearly, key boxes are a natural choice in database applications such as
the one described in Section 1: they correspond to so-called functional de-
pendencies which are the most popular type of constraint for relational
databases. For this reason, keys for description logics have also been consid-
ered in a non-concrete domain context [Borgida & Weddell 1997; Calvanese
et al. 2000; Khizder et al. 2001].

From a logical perspective, there exists a close relationship between nom-
inals and key boxes. For example, if used together with the key definition
(g keyfor T), then the ALC(Q)-concept 3g.=, “behaves” like a nominal for
each ¢ € QQ: it is interpreted either in the empty set or in a singleton set.

Indeed, key boxes are a quite powerful expressive means. This is reflected
by the computational complexity of ALCK(D), the extension of ALC(D)
with key boxes, which is investigated in [Areces et al. 2002]. The following
undecidability result is proved by a reduction of the PCP:

THEOREM 30 (Areces et al.) For any arithmetic concrete domain D, pure
ALCK(D)-concept satisfiability and subsumption w.r.t. key bozes are unde-
cidable.

Decidability can be regained by allowing only Boolean combinations of con-
cept names on the right-hand side of key definitions. Key boxes satisfying
this property are called Boolean. Pure ALCK(D)-concept satisfiability and
subsumption w.r.t. Boolean key boxes are NEXpPTiME-hard for arithmetic
concrete domains D. Surprisingly, [Areces et al. 2002] can even show that
this high complexity cannot be reduced if paths are restricted to length
one inside ALCK(D)-concepts and key boxes. In analogy to Section 3.2,
where this approach helped to overcome undecidability in the presence of
general TBoxes, we call such concepts and key boxes path-free. The follow-
ing theorem is proved by reduction of a NEXPTIME-complete variant of the
PCP:

THEOREM 31 (Areces et al.) For any arithmetic concrete domain D, pure
path-free. ALCK(D)-concept satisfiability and subsumption w.r.t. Boolean
and path-free key bozes are NEXPTIME-hard.

To devise a decision procedure for reasoning with key boxes, it does not
suffice to assume admissibility of concrete domains: the concrete domain
reasoner should not only tell us whether a given D-conjunction is satisfiable,
but also which variables in it must take the same value in solutions.

Description Logics with Concrete Domains—A Survey 23

DEFINITION 32 (key-admissible) A concrete domain D is called key-
admissible iff there exists an algorithm that takes as input a D-conjunction
¢, returns clash if ¢ is unsatisfiable, and otherwise non-deterministically out-
puts an equivalence relation ~ on the set of variables V' used in ¢ such that
there exists a solution & for ¢ with the following property:

() =6(") iff v~ forallv,v" € V.

We say that extended D-satisfiability is in NP if there exists an algorithm
as above running in polynomial time.

This property is much less esoteric than it seems: as noted in [Areces et al.
2002], any concrete domain that is admissible and provides for an equality
predicate is also key-admissible. This rather weak condition is satisfied
by almost all (admissible) concrete domains proposed in the literature, c.f.
Section 4. Using a tableau algorithm, Areces et al. [2002] obtain a matching
upper bound for Theorem 31:

THEOREM 33 (Areces et al.) Let D be a concrete domain that is key-
admissible. If extended D-satisfiability is in NP, then pure ALCOK(D)-
concept satisfiability w.r.t. Boolean key boxes is in NEXPTIME.

Note that, in contrast to Theorem 31, concepts do not have to be path-free.
As usual, corresponding co-NEXPTIME results are obtained for concept
subsumption.

Areces et al. also consider the extension of the description logic SHOQ(D,,)
(see Section 3.2) with key boxes. Since SHOQ(D,,) provides only for the
path-free variant of the concrete domain constructor, it is natural to re-
quire key boxes to also be path-free. Due to the fact that each path-free
ALCK(D)-concept is also a path-free SHOQ(D,,)-concept, Theorem 31 pro-
vides us with a lower NEXPTIME complexity bound. In [Areces et al.
2002], the corresponding upper bound is obtained by devising an appro-
priate tableau algorithm:

THEOREM 34 (Areces et al.) Let D be a concrete domain that is key-
admissible. If extended D-satisfiability is in NP, then path-free SHOQ(D,,)-
concept satisfiability w.r.t. path-free key bozes is in NEXPTIME.

Note that the key boxes in Theorem 34 are not required to be Boolean! We
obtain a corresponding co-NEXPTIME bound for concept subsumption.

24 Carsten Lutz

4 Concrete Domains

In this section, we discuss several concrete domains that have been proposed
in the literature. We start with numerical concrete domains, which are
useful in a wide range of application areas, and then consider more specific
concrete domains such as temporal and spatial ones.

4.1 Numerical Concrete Domains

Let us start with reconsidering the concrete domain Q introduced in Sec-
tion 2. It is based on the rational numbers Q) and provides for the following
predicates:

e (unary) predicates <,, <g, =4, #4, >4, and >, for comparisons with
rational numbers ¢;

e binary comparison predicates <, <, =, #, >, and >;
e a ternary addition predicate + and its negation +;
e unary predicates Tq and Lq (for admissibility).

Note that we could drop some of the predicates since, e.g., Ju.<; can be
written as dg.=7 M Ju, g.<, and Juy,us.> can be written as Juy,us.= U
Jug, u1.<.T Tt is not very hard to prove that Q-satisfiability is in PTIME
using a reduction to linear programming (LP). More precisely, a linear pro-
gramming problem has the form Axr = b, where A is an m X n-matrix of
rational numbers, z is an n-vector of variables, and b is an m-vector of
rational numbers (see, e.g. [Schrijver 1986]). A solution of Az = b is a
mapping J that assigns a rational number to each variable such that the
equality Az = b holds. Deciding whether a given LP problem has a solution
is well known to be in PTIME [Schrijver 1986]. Details on the reduction of
Q-satisfiability to linear programming can be found in [Lutz 2002d].

There exist several interesting predicates that can be added to Q in order
to extend its expressive power. From the viewpoint of many applications,
the most useful ones are the following:

~ ternary predicates * and ¥ with ()@ = {(¢,¢,¢") € Q® | ¢-¢ ="}
and (%)% = Q*\ ()%

— unary predicates int and int with (int)? = Z (where Z denotes the
integers) and (int)? = Q \ Z.

91t is sufficient to provide, for example, the predicates {=,| ¢ € Q} U {<, +}: all
other predicates can be defined in terms of these. The corresponding concrete domain is,
however, not closed under negation and thus not admissible.

Description Logics with Concrete Domains—A Survey

Complexity of Complexity of (pure)
D-satisfiability | ALC(D)-concept satisfiability
Q + %" + ‘int’ undecidable undecidable
Q + ‘«’ in EXPTIME in NExrPTIME
Q + ‘int’ NP-complete PSPACE-complete
Q in PTIME PSpPACE-complete

Figure 1. Numerical concrete domains and their complexity.

25

Adding different combinations of these predicates, we obtain three exten-
sions of the concrete domain Q, which are listed in Figure 1, together with
known complexity bounds on D-satisfiability and pure ALC(D)-concept sat-
isfiability. Note that, since the obtained concrete domains should be admis-
sible, we assume that the addition of the predicates ‘*’ and ‘int” implies the
addition of their negations. Let us discuss the given bounds in some more

detail:

— It is easily proved that the concrete domain Q + ‘x’ + ‘int’ is un-
decidable using a reduction of Hilbert’s 10-th problem. Clearly, the

undecidability is inherited by ALC(D)-concept satisfiability.

— The ExpTIME upper bound for Q + ‘x’ stems from the fact that, for
this concrete domains, finite predicate conjunctions can be translated
into formulas of Tarski algebra (also known as the theory of real closed
fields) without quantifier alternation. The satisfiability of such formu-
las has been proved to be decidable in EXPTIME [Mayr & Meyer 1982;
Grigorev 1988]. The NExPTIME upper bound for ALC(D)-concept
satisfiability stems from a more general variant of Theorem 7 that is

proved in [Lutz 2002d].

In [Baader & Hanschke 1992], it has even been proposed to use all
formulas of Tarski algebra (also those with quantifiers) as concrete
domain predicates. For the concrete domain obtained in this way,

D-satisfiability is EXPSPACE-complete [Mayr & Meyer 1982].

— Finally, NP-completeness of the concrete domain Q + ‘int’ can be
shown via mutual reductions to and from mixed integer programming
(MIP), i.e., linear programming with an additional type of variables
that must take integer values in solutions. Deciding the existence of a
solution for MIP problems is known to be NP-complete. More details

on the reductions can be found in [Lutz 2002d]. The complexity of

ALC(D)-concept satisfiability is then obtained from Theorem 7.

26 Carsten Lutz

1 1 1 | black before gray after black

1 1 1 black meets gray met-by black

—
L — black overlaps gray overlapped-by black
| | black during gray contains black
. black starts gray started-by black

| black finishes gray finished-by black

Figure 2. The Allen relations (without equal).

Note that some fragments of the concrete domain Q are also interesting,
examples being the concrete domains C and C* discussed in Section 3.2:
in contrast to Q itself, they can be combined with general TBoxes without
losing decidability.

4.2 Other Concrete Domains

In this section, we present two examples for non-numerical concrete do-
mains that have been proposed in the literature. The first example is con-
cerned with representing time: since it is a natural idea to take into account
temporal aspects when reasoning about conceptual knowledge, many tem-
poral extensions of description logics have been proposed, see e.g. [Schild
1993; Artale & Franconi 1998; Wolter & Zakharyaschev 1999] and the sur-
vey [Artale & Franconi 2001]. As discussed in [Lutz 2002d; 2002b], one
possible approach for such an extension is to use an appropriate, temporal
concrete domain which we introduce in the following.

In temporal reasoning, one of the most fundamental decisions to be made
is whether to use time points or time intervals as the atomic temporal
entity. Time points can obviously be represented using numerical concrete
domains such as those from Section 4.1. If we choose time intervals as our
atomic temporal entity, it seems appropriate to define an interval-based,
temporal concrete domain. Usually, such concrete domains are based on
the 13 Allen relations, which describe the possible relationships between
any two intervals over some temporal structure. We refer to [Allen 1983]
for an exact definition and confine ourselves with the graphical presentation
of the relations given in Figure 2. The most important property of the
Allen relations is that they are jointly exhaustive and pairwise disjoint, i.e.,
for each temporal structure (7', <) and t1,t> € T, there exists exactly one
relation r such that ¢; rto. We now define a concrete domain I that is based

Description Logics with Concrete Domains—A Survey 27

on the temporal structure (Q, <):

— A[= {(tl,tg) | t1,12 € Q and t; < tg};
— @1 contains unary predicates Tr and Ly (with the obvious extension)

and binary predicates rel and rel for each Allen relation rel such that
(re)t = {(i1,i2) € A1 x Ay | dq rel io} and (rel)l = A2\ (rel)!.

It is easily verified that I satisfies Property 1 of admissibility. Moreover,
it follows from standard results in temporal reasoning that I-satisfiability
is NP-complete—more details can be found in Section 2.4.3 of [Lutz 2002b].
Thus, from Theorem 7 we obtain that ALC(I)-concept satisfiability is
PSPACE-complete.

Interestingly, there exists a polynomial reduction of ALC(I)-concept sat-
isfiability to ALC(C)-concept satisfiability, where C is the concrete domain
based on @@ and the binary comparisons <, <, =, #,>,> introduced in Sec-
tion 3.2: intuitively, it is possible to represent intervals in terms of their
endpoints and Allen relations in terms of comparisons between interval
endpoints—details can again be found in Section 2.4.3 of [Lutz 2002b].
Since this reduction also works in the presence of general TBoxes, Theo-
rem 11 implies that ALC(I)-concept satisfiability w.r.t. general TBoxes is
decidable (and ExpT1ME-complete). The usefulness of ALC(I) with general
TBoxes for temporal reasoning is illustrated in [Lutz 2001a] in a process en-
gineering context. It should be noted that ALC(I) (without TBoxes) has
been used to obtain complexity results for an interval-based temporal de-
scription logic that is not based on concrete domains [Artale & Lutz 1999].

Although spatial aspects are as important for conceptual reasoning as are
temporal aspects, until now only rather few spatial description logics have
been proposed, see e.g. [Haarslev et al. 1999; Kutz et al. 2001; 2002]. This
is particularly surprising since, in the spatial case, the number of choices for
atomic entities and relations/predicates is much larger than in the temporal
case: as spatial primitives, we may use points in a metric, Euclidean, or
topological space, sets of such points (to represent regions), or sets of such
points with certain characteristics such as connectedness or definability by
polytopes. For the predicates, we may for example choose distance relations,
orientation relations, or the so-called RCC-8 relations. In the following, we
take a closer look at the last possibility since this approach has been used in
the only spatial description logic based on concrete domains that has been
proposed in the literature [Haarslev et al. 1999].

The set of so-called RCC-8 relations is well-known from the area of qual-
itative spatial reasoning [Randell et al. 1992; Bennett 1997; Renz & Nebel
1999]. RCC-8 consists of eight jointly exhaustive and pairwise disjoint rela-
tions that describe the possible relationships between any two regular closed

28 Carsten Lutz

ridc ro riec ro r1pO T2 ritpp r2 rintpp ra

Figure 3. The RCC-8 relations in two-dimensional space.

regions in a topological space.ll For 2D space, the relations are illustrated
in Figure 3, where the equality relation eq, the inverse tppi of tpp, and the
inverse ntppi of ntpp have been omitted. We now define a spatial concrete
domain S based on the standard topology of two-dimensional space:

— Ag is the set RCp2 of all regular closed subsets of R?;

— ®s contains unary predicates Ts and Ls and binary predicates rel
and rel for each topological relation rel such that (re)s = {(r1,7ms) €
RCpr2 X RCRz | r1 rel ro} and (rel)S = AZ\ (rel)S..

The concrete domain S obviously satisfies Condition 1 of admissibility. Us-
ing standard results from qualitative spatial reasoning, it is straightforward
to show that S-satisfiability is in NP—details can be found in [Lutz 2002d].
Thus, ALC(S)-concept satisfiability is PSPACE-complete by Theorem 7. In
[Haarslev et al. 1999], the concrete domain S has been used in the descrip-
tion logic ALCRP(S), i.e. ALC(S) extended with the concrete domain role
constructor from Section 3.3, to reason about spatio-terminological knowl-
edge. By Theorem 23, ALCRP(S)-concept satisfiability is in NEXPTIME—
the corresponding lower bound does not apply since S is not arithmetic. It
is an interesting open question whether the description logic ALC(S) can
be combined with general TBoxes without losing decidability.

Other sets of relations from the area of qualitative spatial reasoning (see
e.g. [Stock 1997]) may be used to define different spatial concrete domains.
Interesting related work has been presented in [Kutz et al. 2001; 2002]: the
authors propose to combine description logics with modal logics for metric
spaces. The expressive power of the resulting spatial description logics seems
to be orthogonal to the expressive power of spatial description logics based
on concrete domains.

5 Final Remarks

In this paper, we have given an overview over the research on description
logics with concrete domains, focussing on decidability and complexity re-

A region r is regular closed if it satisfies ICr = r, where C' is the topological closure
operator and I is the topological interior operator.

Description Logics with Concrete Domains—A Survey 29

sults. We have tried to cover most relevant results, but had to drop a few
issues due to space limitation. For example, one omission concerns so-called
ABoxes which are frequently used to describe states of the world. ABoxes
are not an extension of the concept language but rather situated “outside of
it”, similar to TBoxes (nevertheless, ABoxes are closely related to nominals,
though much weaker). It seems that there exists no natural description logic
with concrete domains for which reasoning with ABoxes is of a different com-
plexity than reasoning without ABoxes. Some results on the combination of
ABoxes and concrete domains can be found in, e.g., [Haarslev et al. 2001;
Lutz 2002d; 2002b).

We should like to note that the research on description logics with con-
crete domains has already led to first reasoning systems that are equipped
with concrete domains: the RACER system offers a concrete domain based
on linear equations and inequalities resembling the concrete domain Q dis-
cussed in Section 4.1 [Haarslev & Msller 2002]. Moreover, there exist plans
to extend the FaCT system [Horrocks 1998] with concrete domains. Since
both RACER and FaCT provide for general TBoxes, they only offer the path-
free variant of the concrete domain constructor discussed in Section 3.2.
Serious implementations of description logics that provide for the full con-
structor remain yet to be seen.

BIBLIOGRAPHY

[Allen 1983] J. Allen. Maintaining knowledge about temporal intervals. Communica-
tions of the ACM, 26(11), 1983.

[Areces et al. 2002] C. Areces, I. Horrocks, C. Lutz, and U. Sattler. Keys, nominals,
and concrete domains. LTCS-Report 02-04, Technical University Dresden, 2002. To
appear.

[Areces & de Rijke 2001] C. Areces and M. de Rijke. From description logics to hybrid
logics, and back. In Advances in Modal Logics Volume 3. CSLI Publications, Stanford,
CA, USA, 2001.

[Areces & Lutz 2002] C. Areces and C. Lutz. Concrete domains and nominals united. In
Proceedings of the fourth Workshop on Hybrid Logics (HyLo’02), 2002.

[Artale & Franconi 1998] A. Artale and E. Franconi. A temporal description logic for
reasoning about actions and plans. Journal of Artificial Intelligence Research (JAIR),
9:463-506, 1998.

[Artale & Franconi 2001] A. Artale and E. Franconi. Temporal description logics. In
Handbook of Time and Temporal Reasoning in Artificial Intelligence. MIT Press,
2001. To appear.

[Artale & Lutz 1999] A. Artale and C. Lutz. A correspondence between temporal de-
scription logics. In Proceedings of the International Workshop on Description Logics
(DL’99), number 22 in CEUR-WS (http://ceur-ws.org/), pages 145-149, 1999.

[Baader et al. 2002a] F. Baader, I. Horrocks, and U. Sattler. Description logics for the
semantic web. KI — Kiinstliche Intelligenz, 3, 2002. To appear.

[Baader et al. 2002b] F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of de-
scription logics and abstract description systems. Journal of Artificial Intelligence
Research (JAIR), 16:1-58, 2002.

30 Carsten Lutz

[Baader 1999] F. Baader. Logic-based knowledge representation. In Artificial Intelli-
gence Today, Recent Trends and Developments, number 1600 in Lecture Notes in
Computer Science, pages 13—-41. Springer-Verlag, 1999.

[Baader & Hanschke 1991] F. Baader and P. Hanschke. A scheme for integrating concrete
domains into concept languages. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), pages 452-457, Sydney, Australia,
1991.

[Baader & Hanschke 1992] F. Baader and P. Hanschke. Extensions of concept languages
for a mechanical engineering application. In Proceedings of the 16th German Al-
Conference (GWAI-92), vol. 671 of Lecture Notes in Computer Science, pages 132—
143. Springer-Verlag, 1992.

[Baader & Sattler 2002] F. Baader and U. Sattler. Description logics with aggregates
and concrete domains. Information Systems, 2002. To appear.

[Bennett 1997] B. Bennett. Modal logics for qualitative spatial reasoning. Journal of
the Interest Group in Pure and Applied Logic, 4(1), 1997.

[Berners-Lee et al. 2001] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, 284(5):34-43, 2001.

[Borgida 1996] A. Borgida. On the relative expressiveness of description logics and pred-
icate logics. Artificial Intelligence, 82(1 - 2):353-367, 1996.

[Borgida & Weddell 1997] A. Borgida and G. E. Weddell. Adding uniqueness constraints
to description logics (preliminary report). In Proceedings of the 5th International
Conference on Deductive and Object-Oriented Databases (DOODY7), vol. 1341 of
LNCS, pages 85-102. Springer, 1997.

[Brachman et al. 1991] R. J. Brachman, D. .. McGuinness, P. F. Patel-Schneider, T.. A.
Resnick, and A. Borgida. Living with classic: When and how to use a KL-ONE-like
language. In J. F. Sowa, editor, Principles of Semantic Networks — Exzplorations in the
Representation of Knowledge, chapter 14, pages 401-456. Morgan Kaufmann, 1991.

[Calvanese et al. 1998] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for
conceptual data modeling. In Logics for Databases and Information Systems, pages
229-263. Kluwer Academic Publisher, 1998.

[Calvanese et al. 2000] D. Calvanese, G. De Giacomo, and M. Lenzerini. Keys for free in
description logics. In Proceedings of the 2000 International Workshop in Description
Logics (DL2000), number 33 in CEUR-WS (http://ceur-ws.org/), pages 7988, 2000.

[Chen 1976] P. P.-S. Chen. The entity-relationship model-toward a unified view of data.
ACM Transactions on Database Systems, 1(1):9-36, 1976.

[Edelmann & Owsnicki 1986] J. Edelmann and B. Owsnicki. Data models in knowledge
representation systems: A case study. In Proceedings of the Tenth German Work-
shop on Artificial Intelligence (GWAI'86) and the Second Austrian Symposium on
Artificial Intelligence (OGAI’86), vol. 124 of Informatik-Fachberichte, pages 69-74.
Springer Verlag, 1986.

[Fensel et al. 2000] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann,
and M. Klein. OIL in a nutshell. In Proceedings of the European Knowledge Acquisi-
tion Conference (EKAW 2000), vol. 1937 of Lecture Notes In Artificial Intelligence.
Springer-Verlag, 2000.

[Franconi & Ng 2000] E. Franconi and G. Ng. The i.com tool for intelligent conceptual
modeling. In Proceedings of the Seventh International Workshop on Knowledge Rep-
resentation Meets Databases (KRDB2000), number 29 in CEUR-WS (http://ceur-
ws.org/), pages 45-53, 2000.

[Giacomo & Tenzerini 1994] G. D. Giacomo and M. Lenzerini. Boosting the correspon-
dence between description logics and propositional dynamic logics. In Proceedings
of the Twelfth National Conference on Artificial Intelligence (AAAI’94). Volume 1,
pages 205-212. AAAI Press, 1994.

[Grigorev 1988] D. Y. Grigorev. The complexity of deciding Tarski algebra. Journal of
Symbolic Computation, 5(1,2):65-108, 1988.

Description Logics with Concrete Domains—A Survey 31

[Haarslev et al. 1999] V. Haarslev, C. Lutz, and R. Moéller. A description logic with
concrete domains and role-forming predicates. Journal of Logic and Computation,
9(3):351-384, 1999.

[Haarslev et al. 2001] V. Haarslev, R. Méller, and M. Wessel. The description logic
ALCNH p+ extended with concrete domains: A practically motivated approach. In
Proceedings of the First International Joint Conference on Automated Reasoning IJ-
CAR’01, number 2083 in Lecture Notes in Artifical Intelligence, pages 29-44. Springer-
Verlag, 2001.

[Haarslev & Méller 2002] V. Haarslev and R. Méller. Practical reasoning in racer with a
concrete domain for linear inequations. In Proceedings of the International Workshop
in Description Logics 2002 (DL2002), number 53 in CEUR-WS (http://ceur-ws.org/),
2002.

[Hanschke 1992] P. Hanschke. Specifying role interaction in concept languages. In
W. Nebel, Bernhard; Rich, Charles; Swartout, editor, Proceedings of the Third In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR’92), pages 318-329. Morgan Kaufmann, 1992.

[Horrocks et al. 2000] T. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very
expressive description logics. Logic Journal of the IGPL, 8(3):239-264, 2000.

[Horrocks 1998] 1. Horrocks. Using an expressive description logic: Fact or fiction? Tn
Proceedings of the Sizth International Conference on the Principles of Knowledge
Representation and Reasoning (KR98), pages 636—647, 1998.

[Horrocks & Patel-Schneider 2001] I. Horrocks and P. Patel-Schneider. The generation
of DAML+4OIL. In Proceedings of the International Workshop in Description Logics
2001 (DL2001), number 49 in CEUR-WS (http://ceur-ws.org/), pages 30-35, 2001.

[Horrocks & Sattler 1999] I. Horrocks and U. Sattler. A description logic with transitive
and inverse roles and role hierarchies. Journal of Logic and Computation, 9(3), 1999.

[Horrocks & Sattler 2001] I. Horrocks and U. Sattler. Ontology reasoning in the
SHOQ(D) description logic. In B. Nebel, editor, Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI’01), pages 199-204.
Morgan-Kaufmann, 2001.

[Khizder et al. 2001] V. L. Khizder, D. Toman, and G. E. Weddell. On decidability and
complexity of description logics with uniqueness constraints. In Proceedings of the 8th
International Conference on Database Theory (ICDT2001), vol. 1973 of LNCS, pages
54—-67. Springer, 2001.

[Kutz et al. 2001] O. Kutz, F. Wolter, and M. Zakharyaschev. A note on concepts and
distances. In Proceedings of the 2001 International Workshop in Description Logics
(DL’01), number 49 in CEUR-WS (http://ceur-ws.org/), pages 113-121, 2001.

[Kutz et al. 2002] O. Kutz, F. Wolter, and M. Zakharyaschev. Connecting abstract
description systems. In Proceedings of the Eighth International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR2002), pages 215-226. Morgan
Kaufman, 2002.

[Lutz 1999] C. Lutz. Complexity of terminological reasoning revisited. In Proceedings
of the 6th International Conference on Logic for Programming and Automated Rea-
soning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages
181-200. Springer-Verlag, 1999.

[Lutz 2001a] C. Lutz. Interval-based temporal reasoning with general TBoxes. In
B. Nebel, editor, Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI'01), pages 89-94. Morgan-Kaufmann, 2001.

[Lutz 2001b] C. Lutz. NExpTime-complete description logics with concrete domains.
In Proceedings of the First International Joint Conference on Automated Reasoning
(IJCAR’01), number 2083 in Lecture Notes in Artifical Intelligence, pages 45-60.
Springer-Verlag, 2001.

[Lutz 2002a] C. Lutz. Adding numbers to the SHZQ description logic—First results.
In Proceedings of the Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), pages 191-202. Morgan Kaufman, 2002.

32 Carsten Lutz

[Lutz 2002b] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD
thesis, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2002.

[Lutz 2002c] C. Lutz. NExpTime-complete description logics with concrete domains.
ACM Transactions on Computational Logic, 2002. to appear.

[Lutz 2002d] C. Lutz. PSPACE reasoning with the description logic ALCF(D). Logic
Journal of the IGPL, 10(5):535-568, 2002.

[Lutz 2002e] C. Lutz. Reasoning about entity relationship diagrams with complex at-
tribute dependencies. In Proceedings of the International Workshop in Description
Logics 2002 (DL2002), number 53 in CEUR-WS (http://ceur-ws.org/), pages 185—
194, 2002.

[Lutz & Méller 1997] C. Lutz and R. Moéller. Defined topological relations in descrip-
tion logics. In Proceedings of the International Workshop on Description Logics
(DL’97), pages 15-19, Gif sur Yvette (Paris), France, 1997. Université Paris-Sud,
Centre d’Orsay.

[Mayr & Meyer 1982] E. W. Mayr and A. R. Meyer. The complexity of the word problem
for commutative semigroups and polynomial ideals. Advanced Mathematics, 46:305—
329, 1982.

[Molitor 2000] R. Molitor. Unterstitzung der Modellierung wverfahrenstechnischer
Prozesse durch Nicht-Standardinferenzen in Beschreibungslogiken. PhD thesis, LuFG
Theoretical Computer Science, RWTH Aachen, Germany, 2000.

[Nebel 1990] B. Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43:235-249, 1990.

[Pan & Horrocks 2002] J. Z. Pan and T. Horrocks. Reasoning in the SHOQ(D,,) descrip-
tion logic. In Proceedings of the International Workshop in Description Logics 2002
(DL2002), number 53 in CEUR-WS (http://ceur-ws.org/), pages 5362, 2002.

[Randell et al. 1992] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based
on regions and connection. In Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning (KR’92), pages 165-176.
Morgan Kaufman, 1992.

[Renz & Nebel 1999] J. Renz and B. Nebel. On the complexity of qualitative spatial
reasoning: A maximal tractable fragment of the region connection calculus. Artificial
Intelligence, 108(1-2):69-123, 1999.

[Sattler 1998] U. Sattler. Terminological knowledge representation systems in a process
engineering application. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, 1998.

[Schild 1991] K. D. Schild. A correspondence theory for terminological logics: Prelimi-
nary report. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence (IJCAI-91), pages 466-471. Morgan Kaufmann, 1991.

[Schild 1993] K. D. Schild. Combining terminological logics with tense logic. TIn
Progress in Artificial Intelligence — 6th Portuguese Conference on Artificial Intel-
ligence, EPIA’93, vol. 727 of Lecture Notes in Artificial Intelligence, pages 105-120.
Springer-Verlag, 1993.

[Schmidt-Schau & Smolka 1991] M. Schmidt-Schau and G. Smolka. Attributive con-
cept descriptions with complements. Artificial Intelligence, 48(1):1-26, 1991.

[Schrijver 1986] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chich-
ester, UK, 1986.

[Stock 1997] O. Stock, editor. Spatial and Temporal Reasoning. Kluwer Academic Pub-
lishers, Dordrecht, Holland, 1997.

[Teorey 1990] T. J. Teorey. Database Modeling and Design - the Entity-Relationship
Approach. Morgan Kaufmann, 1990.

[van Benthem 1983] J. F. A. K. van Benthem. Modal Logic and Classical Logic. Bib-
liopolis, Naples, Ttaly, 1983.

[Wolter & Zakharyaschev 1999] F. Wolter and M. Zakharyaschev. Temporalizing de-
scription logic. In Frontiers of Combining Systems, pages 379 — 402. Studies
Press/Wiley, 1999.

