Description Logics for Ontologies

Ulrike Sattler

TU Dresden

1 Introduction to Description Logics

Description logics (DLs) [6,8,21] are a family of logic-based knowledge repre-
sentation formalisms designed to represent and reason about the knowledge of
an application domain in a structured and well-understood way.

The basic notions in DLs are concepts (unary predicates) and roles (binary
relations), and a specific DL is mainly characterised by the constructors it pro-
vides to form complex concepts and roles from atomic ones. Intuitively, the
following concept describes “A cooler connected to a reactor which, in turn, has
a part that is a stirrer and whose functionality is to stir or to cool (or both)”:

Cooler M dconnectedTo.(Reactor M (FhasPart.Stirrer M (1)
Vfunctionality.(Cooling LI Stirring)))

In addition to such a set of constructors, DLs are usually equipped with a ter-
minological component, often called a TBoz. In its simplest form, a TBox can
be used to introduce names (abbreviations) for complex concepts. For exam-
ple, we could introduce the abbreviation CooledStirringReactor for the concept
in Concept 1 from above. More expressive TBox formalisms allow the statement
of general concepts inclusion azioms (GCIs) such as

JhasPart.Stirrer C Reactor M Ifunctionality.Stirring,

which says that only stirring reactors can have stirrers.

Description logic systems provide their users with various reasoning capabil-
ities that deduce implicit knowledge from the one explicitly stated in the TBox.
The subsumption algorithm determines subconcept-superconcept relationships:
a concept C' is subsumed by a concept D w.r.t. a TBox if, in each model of
the TBox, each instance of C' is also an instance of D. Such an algorithm can
be used to compute the tazonomy of a TBox, i.e., the subsumption hierarchy
of all those concepts introduced in the TBox. The satisfiability algorithm tests
whether a given concept can ever be instantiated.

Unsurprisingly, the higher the expressive power of a DL is, the more complex
are the subsumption and the satisfiability problem. To use a DL for a certain
application, it has to provide enough expressive power to describe the relevant
properties of the objects in this application. On the other hand, the system ser-
vices should be “practical” in that they run in realistic time and space. Thus,
we are confronted with the well-known trade-off between expressivity and com-
plexity, as in many other areas of computer science.

In the last decade, a lot of work was devoted to investigate DLs w.r.t. their
expressive power and computational complexity. It turned out that the first DL
systems were based on undecidable logics [74,61]. As a reaction, the expressive
power was restricted severely, thus yielding a DL with polynomial reasoning
problems. Then, in parallel with the discovery of the close relation between de-
scription and modal logics [73,23], PSPACE-complete DLs were specified [75]
and a tableau-based reasoning algorithm was implemented for such a DL [7]. Af-
ter certain optimisation, it turned out that this implementation behaves much
better than the high worst-case complexity of the underlying reasoning prob-
lem suggests. As a reaction, tableau-based reasoning algorithms for EXPTIME-
complete DLs were implemented [41,37]. Again, these implementations proved
to be amenable to optimisation and behave surprisingly well in practice. This
fostered the design and investigation of other EXPTIME-complete DLs together
with tableau-based, “practicable” reasoning algorithms. In parallel, the investi-
gation of the complexity of description logics continued successfully such that,
today, we have a good understanding of the effects of the combination of concept
and role constructors on the computational complexity and the expressive power
of DLs; see, e.g., [26,18,24,21,20,84, 54,57, 56].

Today, industrial strength DL systems are being developed for very expressive
DLs with system services being based on highly optimised tableau algorithms
and with applications like the Semantic Web or knowledge representation and
integration in bio-informatics in mind.

1.1 Preliminaries

In this section, we define the basic description logic ALC, TBox formalisms, and
reasoning problems.

Definition 1. Let C and R be disjoint sets of concept and role name. The set
of ALC-concepts is the smallest set such that each concept name A € C is an
ALC-concept and, if C and D are ALC-concepts and r is a role name, then

-C,CnD,CUD, ar.C, and Vr.C are also ALC-concepts.

A general concept inclusion axiom (GCI) is of the form C T D for C, D
ALC-concepts. A TBox is a finite set of GCIs.

An interpretation T = (AT, -T) consists of a non-empty set AT, the interpre-
tation domain, and a mapping T which associates, with each concept name A,
a set AT C AT and, with each role name r, a binary relation r* C AT x AT,
The interpretation of complex concepts is defined as follows:

(cnbDY=cTnD?, (CubD)f=cCcTuD? -CT=AT\C(C?,
(Fr.0)T = {d € AT | There exists an e € AT with (d,e) € r* and e € CT},
(Vr.C) = {d € AT | For alle € AT, if (d,e) € rT, then e € CT}.

An interpretation T satisfies o GCI C C D if C* C D%; T satisfies o TBox
T if T satisfies all GCIs in T —in this case, T is called a model of T. An

element d € O is called an instance of C' and, if (d,e) € rT, then e is called an
r-successor of d.

A concept C is satisfiable w.r.t. a TBox T if there is a model T of T with
CT #0. A concept C is subsumed by a concept D w.r.t. T (written C Tt D) if,
for each model T of T, CT C D*. Two concepts are equivalent if they mutually
subsume each other.

As usual, we use T as an abbreviation for A LI A, L for =T, C = D for
-CUD, and C & D for (C = D)MN (D = C). Moreover, we use C = D as an
abbreviation for C' C D and D C C.

Some remarks are in order here. Firstly, in ALC, the two reasoning prob-
lems satisfiability and subsumption can be mutually reduced to each other: C'
is satisfiable w.r.t. 7 iff C' is not subsumed by 1L w.r.t. 7. And C Cy+ D iff
C M =D is not satisfiable w.r.t. 7. Secondly, it can be shown that satisfiabil-
ity (and thus subsumption) w.r.t. a general TBox is EXPTIME-complete [73],
whereas these problems become PSPACE-complete when considered w.r.t. the
empty TBox [75].

2 Description logics as ontology languages

A well-known attempt to define what constitutes an ontology is due to Gruber
[35]: an ontology is an explicit specification of a conceptualisation, where “a
conceptualisation” means an abstract model of some aspect of the world. This
was later elaborated to “a formal specification of a shared conceptualisation”
[16]. In this abstract model, relevant concepts of the aspect in question are
defined, including a description of the interesting properties of their instances.

In the last decade, ontologies became rather popular through applications
like the Semantic Web [15], enterprise knowledge management systems [85], and
medical terminology systems [80, 66, 79] and through the growing amount of data
available electronically.

An ontology is built—possibly by a group of domain experts—and evolves
over time in any application that changes over time. Moreover, it is advisable
to integrate existing ontologies if a larger aspect of the world is to be covered—
instead of building a new one from scratch. Finally, if an ontology is deployed,
knowledge is shared using the concepts defined in the ontology, e.g., concrete
objects are described using the vocabulary defined in an ontology. Each of these
tasks is rather complex: e.g. building and evolution involves a huge amount of
creativity, integration requires knowledge in a large aspect, and all three tasks
involve co-operation, thus risking misunderstanding, redundancy, etc.

The increasing importance of ontologies and their processing in computers
has led to the development of ontology editors [64, 22, 12]. Due to the above men-
tioned complexity of ontology engineering tasks, it is highly desirable that these
editors support the user in the design, evolution, integration, and deployment
of ontologies through corresponding, intelligent system services. Moreover, an
unambiguous language, e.g., a logic-based language, not only decreases the risk

of misunderstandings among the domain experts, but also enables the design of
provably correct or optimal such services. Now description logics are such a class
of logic-based knowledge representation languages that come with a knowledge
base formalism which makes DLs good candidates for ontology languages: an
ontology can be formalised in a TBox, which can be divided into the following
two, disjoint parts.

Background Knowledge GCIs of the form ¢’ T D for C and D complex
concepts can be used to formalise background knowledge of the application
domain and thus to constrain the set of models.

For example, we can express that two concepts A and B are disjoint by
A C =B and that each individual having an r-successor which is an instance
of B is an instance of A by 3r.B C A.

Definitiorial Part For each concept relevant in the application domain, we can
introduce a concept name A and a concept definition AT C or A = C for C
a complex concept describing necessary or necessary and sufficient conditions
for individuals to be an instance of A. We say that A is a primitively defined
or a defined concept.

For example, we can primitively define connections as being devices having
some input and some output, and then define a hose as a flexible connection:

Connection E Device M JhasComp.Output M FhasComp.Input
Hose = Connection[1Flexible

System services provided by DL-based knowledge representation systems include

— a satisfiability test for each concept defined in a TBox.

— the computation of the tazonomy: for each pair A;, As of concepts defined
in the definitorial part of the TBox 7, we test whether A; ET A, and
As T A;. A taxonomy is the partial order of the defined concepts w.r.t.
C+, and is often presented as the corresponding Hasse-diagram.

Clearly, unsatisfiable defined concepts and unintended or missing subsump-
tion relationships are signs of modelling flaws, and thus these system services can
be used to support the engineering of ontologies: in the design phase and when
modifying or integrating an ontology, we can repeatedly use both system services
to ensure that the TBox is consistent, that it reflects our intuition, and that it
does not contain unintended redundancies, i.e., equivalent defined concepts. Un-
surprisingly, it turned out that, in applications where the knowledge engineer
is no description logic expert, ontology engineering requires more support [69,
58], e.g., the domain expert wants to see automatically generated suggestions
for a new concept definition as a generalisation of a set of example instances.
This observation lead to the investigation of non-standard inferences in descrip-
tion logics such as computing the least common subsumer of several concepts,
matching a concept that contains concept variables to concept expressions, or
computing the approximation of a concept expressed in a more expressive logic
in a less expressive logic [52,5,9,17].

State-of-the-art DL-based systems such as FaCT or Racer [41, 37] provide the
above standard system services such as deciding the satisfiability and comput-
ing the taxonomy, and are based on the DL SHZQ [49] that is an extension of
ALC with a variety of expressive means that turned out to be quite useful [70];
SHIQ is discussed in detail in Section 5. Despite these additional expressive
means, SHZQ is of the the same worst-case complexity as ALC, namely Ex-
PTIME-complete [83]. This high complexity implies that, in the worst-case, the
computation might take far too much time. However, the algorithms in these
DL-based systems proved to be amenable to a wide range of optimisations, as
a consequence of which these systems behave surprisingly well in many realistic
applications [40,41,37,48].

The suitability of DLs as ontology languages has been highlighted by their
role as the foundation for several web ontology languages, including OIL [28§],
DAML+4OIL [43], and OWL, a newly emerging ontology language standard be-
ing developed by the W3C Web-Ontology Working Group.! All of these lan-
guages have a syntax based on RDF Schema, but the basis for their design is
a combination of the DLs SHZQ (mentioned above) and SHOQ(D) [46]. Both
are DLs that were designed with the goal to find a good compromise between
expressiveness and the complexity of reasoning.

3 Standard expressive means in DLs

To give the reader an impression of what DLs are, we present a variety of ex-
pressive means that are commonly used in DLs and discuss, if appropriate, their
modal logic equivalent and their influence on the computational complexity. For
a detailed description of the relationship between modal and description logics,
see [73,23]: ALC (without TBoxes) is a notational variant of the multi modal
logic K, [38]. To see the connection between K, and ALC, it suffices to view
elements of a DL interpretation domain as worlds in a Kripke structure, roles as
modal parameters, universal value restrictions as box formulae, and existential
restrictions as diamond formulae. Then, for example, it can be easily seen that
AMN3Jr.(CUVs.D) is equivalent to A A (ry(C V [s]D).

TBozxes were introduced in Section 1.1, and it was mentioned in Section 2 that
they are divided into a background knowledge part and a definitorial part. Some
DLs only allow for the definitorial part and possibly require this part to be free
of “definitorial cycles”. Now reasoning w.r.t. acyclic concept definitions can be
reduced to pure concept reasoning: one can either use a (sub-optimal) technique,
called unfolding, which reduces reasoning w.r.t. acyclic concept definition to pure
concept, reasoning [59], or use more direct techniques [54]. As a result of the
latter, it turned out that, for a variety of logics, reasoning w.r.t. acyclic concept
definitions is as complex as pure concept reasoning [54].

In modal logics, the closest relative to a TBox is the universal role, a role
that is interpreted as AT x AT; for more details about this relationship, see [55].

! http://www.w3.org/2001/sw/WebOnt/

Number Restrictions are an expressive means rather popular in DLs: they are
present in almost all implemented DL systems. They are concepts of the form
(>nr.C) (atleast restriction) or (<nr.C') (atmost restriction), for n a non-negative
integer, r a role, and C' a (possibly complex) concept, and are interpreted as fol-
lows:

(>nr.C)f ={de A" | #{e € C | (d,e) €r'} > n},

(<nr.C)F ={d e A" [#{e € C" | (d,e) €r} <n},

where #M denotes the cardinality of a set M. They can be used, e.g., to de-
scribed pipes as those connections having exactly one input and one output (we
use (= nr.C) as an abbreviation for (=nr.C') 1 (<nr.C)):

Connection (= lhasComp.Input) M (= lhasComp.Output)

In their simpler form, number restrictions only allow for the concept T in the
place of C' above. A further restrictions only allows for 2 in atleast restrictions
and 1 in atmost restrictions. Finally, features are role names that are to be
interpreted as partial functions—they can be viewed as a “globalised” version of
a simple form of number restrictions. Number restrictions rarely seem to have
effects on the complexity of DLs: for a variety of logics, extending them with
number restrictions does not change their complexity, even if such an extension
yields the loss of the finite model property (see Section 5.4 for a more detailed
discussion). For example, when extended with number restrictions, ALC remains
in PspACE [84] and ALC with TBoxes remains in EXPTIME, even if further
extended with other expressive means such as inverse roles (see below) [83].

Number restrictions are known in modal logics as graded modalities [29],
whereas features play an important role in dynamic logic: they are syntactic
variants of deterministic programs [13].

Nominals are, in their simplest form, special concept names that are to be in-
terpreted as singleton sets. For example, the concept Jpart0f.BrentSpar de-
scribes those objects that are part of the oil platform Brent Spar provided that
BrentSpar is a nominal. In DLs, a weak form of nominals, ABoxes (“A” for
assertional), are widely known and used: using individual names a,b, ..., we
can assert that an an individual is an instance of a concept C' by a : C and
that two individuals are related via a role r by (a,b) : r. Interpretations asso-
ciate, additionally, an element of the interpretation domain with each individual
name. Please note that individual names are only to be used in assertions, in
contrast to nominals that can be used in the place of concepts in concepts.
Whereas ABox consistency is often as complex as satisfiability of concepts [72],
extending a description logic with nominals often increases its complexity. For
example, ALC with inverse roles (see below) is PSPACE-complete, but becomes
EXPTIME-complete when extended with inverse roles [1]. If, additionally, num-
ber restrictions are present, the complexity leaps from EXPTIME-completeness
to NEXPTIME-completeness [83]. A reason for this increase in complexity might
be that nominals destroy the tree model property [87]: a logic enjoys the tree
model property if every satisfiable concept/formula has a model whose rela-

tional structure forms a tree. For example, for nominals N; and N,, the concept
Nj M 3r. (N2 M 3r.Ny) only has models with a cycle of length two.

Nominals originate in hybrid logic [63,1,2], and are known in DLs as an
elegant and powerful generalisation of ABoxes.

Inverse Roles In various applications, one wants to use both “directions” of a
role, e.g., one wants to use both hasPart and isPart0f. To model these roles
adequately, i.e., to ensure that (z,y) € hasPart” iff (y,z) € isPartof’?, some
description logics provide inverse roles: for r a role name, r~ is an inverse role,
which is interpreted as (r~)% = {{(y,z) | (z,y) € r~}.

A variety of DLs can be extended with inverse roles without affecting their
computational complexity: examples are ALC with or without TBoxes and pos-
sibly with number restrictions [21, 83]. However, there are counter-examples such
as ALC with concrete domains, which becomes NEXPTIME-complete when ex-
tended with inverse roles [56] or ALC with nominals and without TBoxes, which
becomes EXPTIME-complete when extended with inverse roles [1].

Inverse roles are closely related to the tense logic “past” modality [67,78, 88]
and are syntactic variants of converse programs in dynamic logics [81, 86].

Transitive Roles are special role names r € R, C R that are to be interpreted as
transitive relations [68]. Transitive roles can be used to model transitive relations
such as isAncestor0f or isPart0f. Another way to extend DLs with transitivity
is to allow for the transitive closure operator on roles, i.e., to allow for roles r*
in the place of roles [3,24], where (r*)T is to be interpreted as the transitive
closure of . We will discuss the expressiveness of transitive roles in more detail
in Section 5.1.

Adding transitive roles to ALC without TBoxes yields a DL whose reasoning
problems are still PSPACE-complete [68], whereas adding the transitive closure
operator on roles yields an EXPTIME-complete logics [30]. Transitive roles are no-
tational variants of transitive accessibility relations in modal logics [38], whereas
a transitive closure operator is also present in the dynamic logic PDL [30], which
is a notational variant of ALC with regular role expressions [73].

Boolean Operator on Roles So far, we considered DLs with full Boolean opera-
tors on concepts, but no Boolean operators on roles. In DLs, Boolean operators
on roles are mostly restricted to intersection [26], or to union and difference
[24,19]. They are interpreted in the obvious way, i.e., (r Ms)? = rZ N st etc.,
and are an interesting expressive means. For example, role negation allows to
express the so-called window operator from modal logic [32]. The window op-
erator can be viewed as the dual of universal value restrictions: an instance of
VconnectedTo.Pipe is connected only to pipes, whereas an instance of the con-
cept VPipe.connectedTo using the window operator is connected to all pipes. It
can be easily seen that the concept V—connectedTo.—Pipe using role negation
is equivalent to VPipe.connectedTo. For a complete description of the (mostly
dramatic) effects of adding Boolean operators on roles to the computational
complexity of ALC, see [57].

In dynamic logic, union of programs is present in all logics allowing for regular
programs [30], and Boolean operators on modilities are discussed, e.g., in [32].

Role Inclusion Azioms Another expressive means on roles are role inclusion
axioms, which are of the form r C s for r, s roles, and force interpretations to map
r to a sub-relation of s. Such axioms can be used, for example, to introduce a sub-
role hasComponent of hasPart. In the presence of inverse roles, role hierarchies
can be used to enforce symmetric roles using r~ CrandrCr.

It should be noted that role hierarchies are a weak form of role intersection:
replacing each role expression r1 Mry with a new role name 7 » and adding 71 » C
ry and 72 C 7, to the role hierarchy yields a “weakened” form of intersection
since 7’117 » Crinrl. Moreover, for s a transitive role, the role inclusion axioms
r C s yields a weakened form of the transitive closure: s is interpreted as some
transitive role containing r, whereas r* is interpreted as the smallest transitive
role containing r. The latter observation implies that pure concept satisfiability
of ALC, when extended with both transitive roles and role inclusion axioms,
becomes EXPTIME-hard [68].

General Role Inclusion Azioms (g-RIAs) are a generalisation of the above role
inclusion axioms to the form 7y ...7rpy, C s1...s, for Ti,S; role names [47]. A
model of such an axiom satisfies 77 o ...o7Z C s¥ o...0 sl where o denotes
the composition of binary relations. Role value maps, i.e., concepts of the form

ri...Tm = S1...5, with the semantics

(ri...tm = s1...8,)" ={x |Vylz,y) €rfo...orl = (v,y) €sTo... 05},
can be viewed as a “local” form of g-RIAs. Both constructors have dramatic
effects on the decidability of a description logic: it was shown in [74] that sub-
sumption of a very weak DL becomes undecidable when extended with role
value maps. DLs with g-RIAs are closely related to grammar logics [25,10,11],
i.e., the multi modal logic K,, with accessibility relations being constrained by
a grammar: a production rule of the form s;...s, — r1...r, can be viewed
as a notational variant of the g-RIA r;...7,, C s1...8, enforcing models to
interpret rq .. .7, as s sub-relation of s; ...s,. Since each context-free grammar
can be transformed into an equivalent one in Chomsky normal form, and ALC
becomes undecidable with context-free grammars [10,11], the satisfiability of
ALC-concepts w.r.t. g-RIAs of the form r17; C s is undecidable.

Fizpoint Operators are the first expressive means mentioned here that are not
first order definable, and they are known in DLs in at least three forms: a re-
stricted form includes the transitive closure operator on roles [3,24] (see above)
and an operator that allows to enforce that a role is interpreted as a well-founded
relation [19]. Secondly, general least and greatest fixpoints operators in DLs [20]
are notational variants of the fixpoint operators in the p-calculus [51]. Thirdly,
cyclic concept definitions such as

Device = TechThing M —Connection M VconnectedTo.Connection
Connection = TechThing M —Device M VconnectedTo.Device

can be read with least or greatest fizpoint semantics [59,4]: in contrast to the
descriptive semantics, which takes into account all fixpoints of such GCIs, one
might chose to take into account only the least or the greatest fixpoints.

A variety of EXPTIME-complete description and modal logics exist that have
some form of fixpoints, e.g. the dynamic logic PDL [30,62] or DLR,,, a general-
isation of the p-calculus with n-ary relations [20].

4 Introduction to tableau algorithms for DLs

For several expressive DLs, there exist efficient tableau-based implementations
that decide satisfiability of concepts w.r.t. a TBox [41,37]. In the following, we
will give an intuitive description of description logic tableau algorithms; for an
extensive survey of tableau algorithms for description logics, see, e.g., [8]. In gen-
eral, they work on trees whose nodes stand for individuals of an interpretation.
Nodes are labelled with sets of concepts, namely those they are assumed to be
an instance of. Edges between nodes are labelled with role names or sets of role
names, namely those that hold between the corresponding individuals.

Intuitively, to decide the satisfiability of a concept C, a tableau algorithm
starts with an instance xg of C, i.e., a tree consisting of a root node xo with C as
its node label (written L(zg) = {C}). Then the algorithm breaks down concepts
in node labels syntactically, thus inferring new constraints on the model of C' to
be built, and possibly generating new individuals, i.e., new nodes. For example,
if (DN E) € L(y) has already been inferred, it adds D and E to L(y). For
Ir.F € L(y), it generates a new r-successor node of y, say z, and sets L(z) = {F'}.
If a node y has some r-successor z and it finds Vr.G € L(y), then G is added to
L(z). Finally, in the presence of a TBox 7, it adds, for each GCI C; C D; € T,
and for each node y, the concept (—C; U D;) to L(y). Now, for logics with
disjunctions, various tableau algorithms non-deterministically choose whether
to add D or E to L(y) for (D U E) € L(y). The answer behaviour is as follows:
if this “completion” can be carried out exhaustively without encountering a
node with both a concept and its negation in its label—a so-called clash,? then
the algorithm answers that the input concept was satisfiable, and unsatisfiable,
otherwise.

Thus, disjunctions are often treated non-deterministically. Avoiding this non-
determinism in a way that is more efficient than naive back-tracking proves to be
a complicated task for many logics—to the best of our knowledge, the algorithm
in [27] is the only known worst-case optimal tableau algorithm for an EXPTIME-
complete description logic. In contrast, the tableau algorithm implemented in
state-of-the-art DL systems such as FaCT and Racer is 2NEXPTIME even though
the underlying logic is EXPTIME-complete [49,83]. Despite this sub-optimality,
these tableau algorithms allow for a set of well-known efficient optimisations,
so that they perform much better in practice than their worst-case complex-
ity suggests; see [41,49,36,37,48] for descriptions of these optimisations. An
interesting open question is whether an implementation of a worst-case opti-
mal algorithm would behave better in practice—so far, only implementations of
worst-case sub-optimal algorithms exist.

2 We assume that the description logic in question is propositionally closed, and we
can thus work on concepts in negation normal form.

Since we are talking about decision procedures, termination is an important
issue. Even though tableau algorithms for some inexpressive DLs terminate “au-
tomatically”, this is not the case for more expressive ones. For example, consider
the algorithm sketched above on the input concept A and TBox {A T 3r.A}:
it would create an infinite r-chain of nodes with labels {A,3r.A}. To guarantee
termination, the tableau algorithm needs to be stopped explicitly. Intuitively,
the processing of an element z is stopped if all “relevant” concepts in the label
of z are also present in the label of an “older” element z’. In this case, 2z’ is
said to block z. The definition of “relevant” has to be chosen carefully since it
is crucial for the correctness of the algorithm [3,49] and for the efficiency of the
implementation [48, 39].

Correctness of DL tableau algorithms are often proved as follows: first, termi-
nation is proved by, roughly spoken, showing that the algorithm builds a (tree)
structure of bounded size in a monotonic manner. Soundness is proved by con-
structing a model (or an abstraction of a model) of the input concept (and TBox)
in case that the algorithm stops without having generated a clash. Completeness
can be proved by using a model of the input concept (and TBox) to steer the
application of the non-deterministic rules and proving that no clash occurs using
this control.

Summing up, tableau algorithms are successfully used in state-of-the-art im-
plementations, and many well-understood optimisations are available. However,
they involve special techniques to ensure termination and avoid non-determinism,
and are thus rarely optimal for logics complete for deterministic complexity
classes.

4.1 Other reasoning techniques

For several expressive description and modal logics, there exist optimal auto-
mata-based algorithms that decide satisfiability (and thus subsumption) of con-
cepts w.r.t. a TBox [89,82,88,20,57,71]: for a concept C' and a TBox T, we
define an automaton Ac 7 which accepts exactly the (abstractions of) models of
C and 7. Thus, the satisfiability problem is reduced to the emptiness problem
of automata. In summary, automata-based approaches often allow for a very ele-
gant and natural translation of a logic and provide EXPTIME upper complexity
bounds and are thus optimal for ExpTiME-hard logics. Equally important, they
handle infinite structures and non-determinism implicitly.

For certain DLs that are not propositionally closed such as the one used
in the system CLASSIC [60], one can use a reasoning technique called structural
subsumption: roughly speaking, to decide the subsumption between two concepts
C and D, both concepts are transformed into a certain normal form C’ and D’,
and then subsumption can be decided by a syntactic comparison of C’ and D', see
Section 2.3.1 of [6]. This technique yields a polynomial time decision procedure
for a sub-Boolean fragment of ALC with number restrictions, but seems to be
applicable only to DLs without disjunction and existential restrictions.

Finally, the successful resolution-based theorem prover SPASS was modified
into a decision procedure for expressive modal and description logics, then called

10

MSPASS [50]. Interestingly, it is well-suited for DLs extending ALC with Boolean
operators on roles and can be extended to n-ary description logics [33].

5 DLs with expressive operators on roles

In various ontology applications such as engineering or medicine, aggregated ob-
jects play a central role, that is, objects that are composed of various parts,
which again can be composite, etc. It is natural to describe an aggregated object
by means of its parts and, vice versa, to describe parts by means of the aggregate
they belong to. For example, the following statements describe a control rod and
a reactor core by means of their parts and wholes:

ControlRod E Device N dpart0f.ReactorCore
ReactorCore L Device N JhasPart.ControlRod M Jpart0f.NuclReactor

In contrast to, for example, the relation likes, the part-whole relation has a
variety of properties; for a complete collection of these properties, we refer to [77].
Most importantly, the general part-whole relation is a strict partial order, i.e.,
it is transitive and asymmetric (and hence irreflexive). Moreover, an aggregated
object has at least two parts where none is a part of the other. Next, we might
consider to agssume that two objects consisting of the same parts are identical. As
a last example, we might assume the existence of atoms, i.e., indivisible objects
of which all other objects are composed. This is equivalent to assuming that
hasPart is well-founded.

Besides the properties mentioned above, it might be useful to distinguish
various sub-relations of the part-whole relation such as, for example, the relation
between a component and its composite (e.g. between a motor and the car the
motor is in), the relation between stuff and an object containing this stuff (e.g.
between metal and a car), or the relation between a member and a collection it
belongs to (e.g. between a tree and the forest this tree belongs to) [91, 34].

In this section, we describe expressive means relevant for the representation
of aggregated objects and the development of the DLs SHZQ and RZQ.

5.1 Adding transitivity

Coming back to representing aggregated objects in ontologies using DLs, we ob-
serve that the DL ALC provides no means to express that a relation is transitive.
For example, in ALC, the concept

Device M JhasPart.(ReactorCore M JhasPart.ControlRod)

is not subsumed by Device N JFhasPart.ControlRod, although the first concept
is a specialisation of the second one under the assumption that hasPart is in-
terpreted as a transitive relation.

Thus the adequate modelling of aggregated objects asks for the extension
of ALC with some form of transitivity. As mentioned in Section 3, there are

11

at least two such possible extensions. After investigating their expressive power
and complexity, we have chosen the “cheaper” possibility: by S, we refer to the
description logic ALC extended with transitive roles.> Obviously, S provides the
means to represent the general part-whole relation as a transitive relation by
asserting that part0f is a transitive role. Additionally, since S has a tree model
property, all satisfiable concepts and TBoxes have a model in which part0f is
interpreted as a strict partial order.

Tableau algorithm for S A naive extension of the tableau algorithm for ALC
sketched in Section 4 to transitive roles does not necessarily terminate: assume
the algorithm is started with the concept Cy := C' 1 3Ir.C N Vr.(Ir.C) for r a
transitive role. After some rule applications, the algorithm has generated three
nodes, x, ¥, and z where y is an r-successor of x, z is an r-successor of y, and
Co,Vr.(Fr.C) € L(x), Ir.C € L(y), and C € L(z). Since r is a transitive role,
we could make z an r-successor of z, but this would destroy the tree structure
that turned out to be quite useful. Instead, we do something which has the
same effect: we add Vr.(Ir.C') to L(y). More precisely, if Vr.C' € L(z) and =
has an r-successor y, we add both C' and Vr.C' to y’s label. In this case, this
yields 3r.C' € L(z). Tt can easily be seen that the repeated application of this
modification builds an infinite r-chain, and thus leads to non-termination. To re-
gain termination without corrupting soundness or completeness of the algorithm,
we use the blocking technique mentioned in Section 4: we stop generating new
successors of a node z in case there is another node 2z’ with L(z) C L(z'). In
this case, we say that 2z’ blocks z, and we can build a model by “merging” z and
2" (and all other nodes which 2" blocks), thus building a finite, possibly cyclic
model.

5.2 Further adding inverse roles

When modelling aggregated objects using S and using both part0fand hasPart,
we might end up with an inadequate representation in the following sense: for
example, extending the TBox in the beginning of Section 5 with

NuclReactor N JhasPart.Faulty E Dangerous,

we would assume that ControlRodMFaulty is subsumed by dpart0f.Dangerous
w.r.t. to this TBox—which is only the case if part0f were the inverse of hasPart,
ie., if (v,y) € hasPart? iff (y,z) € part0f’. Thus we extend S with inverse
roles, which yields the DL called SZ and allows to describe both objects by means
of the wholes they belong to and by means of the parts they have. Substituting
hasPart by part0f~ in the last example yields a TBox with respect to which
ControlRod M Faulty is indeed subsumed by Jdpart0f.Dangerous.

Tableaw algorithm for ST Intuitively, we can extend the tableau algorithm for
S as follows to yield a decision procedure for satisfiability of SZ-concepts: if

% The logic S has previously been called ALC g+, but this becomes too cumbersome
when adding letters to represent additional features.

12

Vr.C' € L(w), instead of adding C only to r-successors, we also add C to Inv(r)-
predecessors.* For example, for the concept 3r~.(CTVr.B) € L(z), we would first
create an r~-successor y of x with CMVr.B € L(y). For Vr.B € L(y), we would
then add B to L(zx) since z is an r-predecessor of y. Moreover, the blocking
condition has to be more strict: for 2z’ to block z, they must have identical
labels, i.e., L(z) = L(z'). Finally, blocking becomes necessarily “dynamic”: in
the presence of inverse roles, node labels influence each other up and down the
completion tree. Thus the label of a node x blocking some node y further down
the tree can change due to some of its other predecessors, the node labels of z
and y become different, and we must “unblock” them.

This tableau algorithm decides satisfiability (and thus subsumption) of SZ-
concepts w.r.t. TBoxes. Moreover, we were able to prove that, in the absence of a
TBox and employing a certain strategy and a more intricate blocking condition,
it uses polynomial space only. This is one example for the fact that the definition
of the blocking condition is not only crucial for the correctness of the algorithm,
but also for its complexity. As a consequence, ALC without TBoxes and with
transitive and inverse roles is of the same complexity as pure ALC, namely
PSPACE-complete [49].

5.3 Further adding role inclusion axioms

To represent, beside the general part-whole relation, certain sub-part-whole re-
lations such as “is a component of” or “is an ingredient of”, we can use role
inclusion axioms [42].

A role inclusion aziom is an expression of the form r C s, where r and s are
(possibly inverse) roles. A role hierarchy is a finite set of role inclusion axioms.
An interpretation 7 satisfies a role hierarchy R iff 2 C sT for each r C s in
R. Such an interpretation is called a model of R. Satisfiability and subsumption
w.r.t. role hierarchies are defined in the obvious way. SHZ is the extension of
ST with role hierarchies.

Adding role hierarchies to S7 has mainly two consequences: firstly, we can
introduce (possibly transitive—depending on the additional relation) role names
such as hasComp or hasIngredient and add role inclusion axioms hasComp T
hasPart and hasIngredient T hasPart. This turns out to be quite useful in
various applications since it allows for a concise and natural description not only
of aggregated objects.

Secondly, SHZ (as well as SH and SHZQ) has the expressive power for the
internalisation of TBoxes [3,45]. This technique polynomially reduces reasoning
w.r.t. a general TBox to pure concept reasoning as follows. We introduce a
new transitive role name u € R, and specify that u is a super-role of all roles
and their respective inverses. This implies that, in connected models, u behaves
like a universal role, i.e., u relates all elements of the interpretation domain; cf.
Section 3. Since each satisfiable SHT concept is satisfiable in a connected model,

* To avoid considering roles such as r~ , we use Inv(r) to denote r™ if r is a role name
and s if r = s~ for a role name s.

13

it can be shown that a concept C is satisfiable w.r.t. {C; C D; | 1 < i < n} iff

Ju.CNYu. [1 (C; = D;) is satisfiable.
1<i<n

Tableaw algorithm for SHZ Basically, the extension of the ST tableau algo-
rithm to SHZ involves an adaption of the notion of an “r-successor” to take
into account role hierarchies [45]: if y is an r-successor of # and r C s is in
the role hierarchy, then y is also an s-successor of z. An analogous adaption
for predecessors is also required in the presence of inverse roles, and transitive
roles require a further, rather complex adaption of the propagation of universal
value restrictions Vr.C'. Moreover, the correctness proof of the tableau algorithm
becomes more complex since the tree structure the algorithm works on does no
longer correspond to the relational structure that is to be built in case that the
algorithm answers “satisfiable”: this is already the case in the presence of tran-
sitive roles, but becomes more notable if, additionally, role hierarchies are taken
into account.

5.4 Further adding number restrictions

In general, when describing the relevant concepts of an application domain, it
seems to be natural to describe an object by restricting the number of objects
it is related to via a certain relation. For example, the following are concept
definitions for pipes and forks:

Pipe = Connectionll (= 1 part0f~ Input) M (= 1 part0f~ Output)
Fork = Connectionl (= 1 part0f~ Input) M (> 2 part0f Output)

Before adding number restriction to SHZ, we have to define simple roles since
only simple roles are allowed in number restrictions—without that restriction,
satisfiability of SHZ extended with number restrictions is undecidable [49].

A (possibly inverse) role is called simple if it is neither transitive nor has a
transitive sub-role. SHZQ is obtained from SHZ by allowing, additionally, for
concepts of the form (>ns.C’) and (<ns.C') for n a non-negative integer, s a
simple role, and C' a SHZQ-concept. The semantics of number restrictions is
given in Section 3.

In contrast to SHZ, SHZQ lacks the finite model property. That is, there
are concepts that are satisfiable, but only in infinite models. For example, for
r a transitive role and s C r, each model of the following concept contains an
infinite, acyclic s-chain: ~A M 3s. ANVr.((3s.4) N (=1s~.T)).

As mentioned in Section 2, state-of-the-art DL reasoners such as FaCT and
Racer implement tableau algorithms for SHZQ [41,37]. Thus, SHZQ forms the
logical basis of ontology editors Rice and Oiled [22,12], and of the intelligent
conceptual modelling tool Icom [31].

Tableaw algorithm for SHZQ Tt is not difficult to see that, in the presence of
number restrictions, we have to add two new rules to our tableau algorithm:

1. if (>nr.C) € L(z) and 2 has less than n r-neighbours with C in their label,
then generate these missing r-neighbours and set their labels to {C'}.

14

2. if (<nr.C) € L(z) and has more than n r-neighbours with C' in their label,
then merge some of them, so that only n remain.

However, this is not sufficient. Firstly, such a naive extension might easily yield a
“yo-yo” effect: for example, if applied to a node z with (=3r.C M D), (<2r.C) €
L(x), the above tableau algorithm would generate three r-successors y; with
C D € L(y;), break down the conjunctions in C' M D € L(y;), and then notice
that there are too many r-successors y; of x with C' € L(y;) for (<2r.C') € L(z).
Thus two of them would be merged into a single one. Now there are not enough
r-successors for (=3r.C'M D), so one would be generated, and so on, thus leading
to non-termination. To re-gain termination, we can use, for example, an explicit
inequality relation # that prevents nodes that were introduced for one (=nr.C')
from being merged again later. Moreover, we extend the notion of a “clash” to
cases where (<nr.C') € L(z) and z has more than n #-distinct r-successors with
C in their label.

Secondly, consider the concept C' := (=3r.B) N (<1r.4) M (<1r.-A). So far,
for C' € L(z), the tableau algorithm would generate three r-successors y; of x
with {B} = L(y;), and stop with the answer “C is satisfiable”. However, the
concept C' is obviously unsatisfiable: the algorithm’s unsoundness is due to its
ignorance of which of the y; are instances of A and which are instances of —A.
To overcome this problem, we add a third rule

3. if (<nr.C) € L(z) and y is an r-neighbour of z, then non-deterministically
add C or =C to L(y).

Thirdly, one also needs to modify the blocking condition—otherwise, the
algorithm would still be unsound. Roughly spoken, the SHZQ blocking condition
involves two pairs of subsequent nodes whose labels must coincide pairwise.
Together, these three modifications indeed yield a decision procedure for the
satisfiability of SHZQ [49].

Interestingly, the first proposal of the SHZQ blocking condition was so strict
that it delayed blocking severely, thus enlarging the search space for a model dra-
matically and degrading the performance of FaCT. Investigating the soundness
and completeness proof of the SHZQ tableau algorithm more closely, we were
able to devise an new blocking condition which still ensures soundness, com-
pleteness, and termination, but was less strict [48]. Intuitively, node labels have
only to be equal for “relevant concepts” in the respective nodes, a fact that made
the formulation of the new blocking condition rather intricate. However, an em-
pirical evaluation of the new tableau algorithm in FaCT showed that this more
intricate but less strict blocking condition payes off: it improves performance up
to two orders of magnitude.

Concerning worst-case complexity, both the original and the optimised SHZQ
tableau algorithm are far from being optimal: in the worst case, they run in
2NExptime, whereas satisfiability of SHZQ-concepts is known to be in Exp-
Time, even with numbers in number restrictions coded in binary [83]. Despite
this worst-case sub-optimality, its implementation in the FaCT and Racer sys-
tems behave surprisingly well in practice [48, 37]. However, the worst-case com-

15

plexity implies that there exist rather small example inputs for which these
systems need so much time that they are practically not terminating [14].

5.5 Further adding more expressive role inclusion axioms

Although SHTQ is rather expressive, there is a common phenomenon that
SHTQ is not able to express, and that would be useful in many applications,
especially for those involving aggregated objects. This phenomenon is sometimes
coined propagation of properties: for example, one wants to express that a frac-
ture located in the shaft of the femur (which is a division of the femur) is a
fracture located in the femur. Or one might want to express that the owner of a
thing also owns the parts of this thing. The importance of this expressive means
is illustrated by the fact that the Grail DL [44, 66], which was designed for medi-
cal terminologies, is able to express these propagations (although it is quite weak
in other respects). In two other medical terminology applications, rather complex
work arounds to represent propagations can be found: SEP-triplets® in [76] and
right-identities in [79]. Finally, the CycL language provides the transfersThro
statement for similar propagations [53]. So far and to the best of our knowledge,
none of these systems were proven to handle these propagations in a sound and
complete way.

It is rather straightforward to extend SHZQ to allow for the propagation
of properties: obviously, it suffices to extend role hierarchies to the general role
inclusion axioms, see Section 3. For the first example, one would introduce an
axiom hasLocationodivision0f [hasLocation and, indeed, w.r.t. this axiom,

Fracturell JhasLocation.(Shaft 1 3division0f.Femur)

is subsumed by Fracture N dhasLocation.Femur. For the second example, one
would introduce an axiom owns o hasPart C owns and, w.r.t. this axiom,

Jowns.(Bicycle M JhasPart.SuspensionFork)

is subsumed by Jowns.SuspensionFork.

As mentioned in Section 3, results in grammar and description logics imply
that extending ALC with role inclusion axioms of the form ros T t yields a logic
for which satisfiability and subsumption are undecidable [10, 11, 90]. However, for
expressing propagation of properties, we only need axioms of the form r o s Cs
or sor s [44,65]. Unfortunately, extending SHZQ with this restricted form
of axioms still yields an undecidable logic [47].

One way to re-gain decidability would be to restrict the underlying logic
SHTQ. Since we have argued that, especially for the representation of aggregated
objects, the concept- and role-forming operators of SHZQ are crucial, we have
chosen a different approach, namely to further restrict the role inclusion axioms:
further restricting role hierarchies to not contain “affecting cycles” of length

5 SEP-triplets are used both to compensate for the absence of transitive roles in ALC,
and to express the propagation of properties across a distinguished “part-of” role.

16

greater than one finally yields a decidable logic. Roughly speaking, “affecting” is
the transitive closure of the relation “directly affecting”, and r directly affects s
ifrosCs,sor Cs,orrC sis contained in the role hierarchy. A role hierarchy
containing no “affecting” cycles of length greater than one is called acyclic, and
the extension of SHZQ with acyclic role hierarchies is called RZQ.

In RZQ, we can model the propagation of properties as mentioned above,
and the restriction to acyclicity does not seem to be too severe since non-trivial
cycles seem to indicate modelling flaws [65].

Tableau algorithm for RIQ The tableau algorithm for RZQ [47] involves two
pre-processing steps that transform the role hierarchy into a more explicit and
manageable structure. Firstly, acyclic role hierarchies are unfolded in a similar
way as acyclic TBoxes can be unfolded [59], thus making all implicit implica-
tions explicit. As a result of this unfolding, we obtain, for each role name r,
a regular expressions 7, on role names. Secondly, we construct, for each 7., a
non-deterministic finite automata A4, which accepts L(7).
Then, in the tableau rules, we add three rules

1. if Vr.C € L(x), then we add VA,.C.

2. if VA.C' € L(x) and z has an s-successor y, then we add VA'.C' to L(y) for
each automaton A’ that is the result of A reading s, i.e., A’ is obtained from
A by simply changing the initial state to a state that is reachable from A’s
initial state by an s transition.

3. if VA.C' € L(z) and ¢ € L(A), then add C' to L(z).

The pre-processing together with these three rules can be shown to yield a
decision procedure for RZQ.

This tableau algorithm for RZQ is implemented successfully in FaCT. The
additional overhead introduced by using automata in tableau rules seems to pay
off since it does not degrade the performance of FaCT, yields a more readable
algorithm, and can draw additional inferences like the medical one above [47].

References

1. C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. In Proc. of CSL’99, vol. 1683 of LNCS. Springer-Verlag, 1999.

2. C. Areces, P. Blackburn, and M. Marx. The computational complexity of hybrid
temporal logics. Logic Journal of the IGPL, 8(5), 2000.

3. F. Baader. Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In Proc. of IJCAI-91, Sydney, 1991.

4. F. Baader. Using automata theory for characterizing the semantics of termino-
logical cycles. Annals of Mathematics and Artificial Intelligence, 18(2-4):175-219,
1996.

5. F. Baader, S. Brandt, and R. Kiisters. Matching under side conditions in descrip-
tion logics. In B. Nebel, ed., Proc. of IJCAI-01. Morgan Kaufmann, 2001.

6. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
eds. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems, or:
Making KRIS get a move on. Applied Artificial Intelligence, 4:109-132, 1994.

F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5-40, 2001. An abridged version appeared in Tableauz 2000, vol.
1847 of LNAI, 2000. Springer-Verlag.

F. Baader and A.-Y. Turhan. On the problem of computing small representations of
least common subsumers. In Proc. of KT 2002, vol. 2479 of LNAI Springer-Verlag,
2002.

M. Baldoni. Normal Multimodal Logics: Automatic Deduction and Logic Program-
ming Frxtension. PhD thesis, Dipartimento di Informatica, Universita degli Studi
di Torino, Italy, 1998.

M. Baldoni, L. Giordano, and A. Martelli. A tableau calculus for multimodal logics
and some (un)decidability results. In Proc. of TABLEAUX-98, vol. 1397 of LNAL
Springer-Verlag, 1998.

S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able ontology
editor for the semantic web. In Proc. of DL 2001. CEUR (http://ceur-ws.org/),
2001.

M. Ben-Ari, J.Y. Halpern, and A. Pnueli. Deterministic propositional dynamic
logic: finite models, complexity and completeness. J. of Computer and System
Science, 25:402—-417, 1982.

D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML Class Diagrams
using Description Logic Based Systems. In Proc. of the KI'2001 Workshop on
Applications of Description Logics. CEUR (http://ceur-ws.org/), 2001.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American,
284(5):34-43, 2001.

P. Borst, H. Akkermans, and J. Top. Engineering ontologies. International Journal
of Human-Computer Studies, 46:365—-406, 1997.

S. Brandt, R. Kiisters, and A.-Y. Turhan. Approximation and difference in de-
scription logics. In Proc. of KR-02. Morgan Kaufmann, 2002.

D. Calvanese. Unrestricted and Finite Model Reasoning in Class-Based Represen-
tation Formalisms. PhD thesis, Dip. di Inf. e Sist., Univ. di Roma “La Sapienza”,
1996.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Structured objects: Modeling
and reasoning. In Proc. of DOOD-95, vol. 1013 of LNCS, pages 229-246, 1995.
D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive descrip-
tion logics with fixpoints based on automata on infinite trees. In Proc. of IJCAI-99.
Morgan Kaufmann, 1999.

D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expressive
description logics. In A. Robinson and A. Voronkov, eds., Handbook of Automated
Reasoning. Elsevier Science Publishers, 1999.

R. Cornet. Rice ontology editor. Homepage at http://www.blg-systems.com/
ronald/rice/.

G. De Giacomo and M. Lenzerini. Boosting the correspondence between description
logics and propositional dynamic logics (extended abstract). In Proc. of AAAI-9).
AAAT Press, 1994.

G. De Giacomo and M. Lenzerini. Thox and Abox reasoning in expressive descrip-
tion logics. In Proc. of KR-96. Morgan Kaufmann, 1996.

S. Demri. The complexity of regularity in grammar logics and related modal logics.
J. of Logic and Computation, 11(6), 2001.

18

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proc. of KR-91, Boston, MA, USA, 1991.

F. M. Donini and F. Massacci. Exptime tableaux for ALC. Artificial Intelligence,
124(1):87-138, 2000.

D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider.
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems,
16(2):38-45, 2001.

K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logics,
13:516-520, 1972.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
J. of Computer and System Science, 18:194-211, 1979.

E. Franconi and G. Ng. The i.com tool for intelligent conceptual modelling.
In Working Notes of the ECAI2000 Workshop KRDB2000. CEUR. (http://ceur-
ws.org/), 2000.

G. Gargov, S. Passy, and T. Tinchev. Modal environment for Boolean speculations.
In D. Skordev, ed., Mathematical Logic and Applications, pages 253-263. Plenum
Publ. Co., New York, 1987.

L. Georgieva, U. Hustadt, and R. A. Schmidt. Hyperresolution for guarded formu-
lae. J. of Symbolic Logic, 2003. To appear.

P. Gerstl and S. Pribbenow. Midwinters, end games and bodyparts. International
Journal of Human-Computer Studies, 43:847-864, 1995.

T. R. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. In N. Guarino and R. Poli, eds., Formal Ontology in Conceptual Analysis
and Knowledge Representation, 1993. Kluwer Academic Publishers.

V. Haarslev and R. Moller. Consistency testing: The RACE experience. In Proc.
TABLEAUX 2000, vol. 1847 of LNAI. Springer-Verlag, 2000.

V. Haarslev and R. Mdller. RACER system description. In IJCAR-01, vol. 2083
of LNAI Springer-Verlag, 2001.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logic of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.

J. Hladik. Implementation and optimisation of a tableau algorithm for the guarded
frament. In Proc. TABLEAUX 2002, vol. 2381 of LNAI Springer-Verlag, 2002.

I. Horrocks. Optimising Tableaur Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc. of
KR-98. Morgan Kaufmann, 1998.

I. Horrocks and G. Gough. Description logics with transitive roles. In M.-C.
Rousset, R. Brachmann, F. Donini, E. Franconi, I. Horrocks, and A. Levy, eds.,
Proc. of DL’97, pages 2528, 1997.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design of
DAML+4OIL: An ontology language for the semantic web. In Proc. of AAAI-02,
2002.

I. Horrocks, A. Rector, and C. Goble. A description logic based schema for the
classification of medical data. In Working Notes of the ECAI-96 Workshop KRDB-
96. CEUR (http://ceur-ws.org/), 1996.

I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. J. of Logic and Computation, 1999.

I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In B. Nebel, ed., Proc. of IJCAI-01. Morgan Kaufmann, 2001.

I. Horrocks and U. Sattler. Decidability of SHZQ with complex role inclusion
axioms. In Proc. of CADE-19. LNAI, Springer-Verlag, 2003 (to appear).

19

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.
62.
63.

64.
65.

66.

67.

68.

69.

70.

71.

I. Horrocks and U. Sattler. Optimised reasoning for SHZQ. In Proc. of ECAI
2002, 2002.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proc. of LPAR’99, vol. 1705 of LNAI Springer-Verlag, 1999.

U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and
first-order resolution. In Proc. TABLEAUX 2000, vol. 1847 of LNAI, pages 67-71.
Springer-Verlag, 2000.

D. Kozen. Results on the propositional p-calculus. In Automata, Languages and
Programming, 9th Colloquium, vol. 140 of LNCS. Springer-Verlag, 1982.

R. Kiisters. Non-Standard Inferences in Description Logics, vol. 2100 of LNAL
Springer-Verlag, 2001.

D. B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems. Addison
Wesley Publ. Co., Reading, Massachussetts, 1989.

C. Lutz. Complexity of terminological reasoning revisited. In Proc. of LPAR’99,
LNAI, pages 181-200. Springer-Verlag, 1999.

C. Lutz. The Complexity of Description Logics with Concrete Domains. PhD
thesis, RWTH Aachen, 2002.

C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal
Logics Vol. 4. World Scientific Publishing Co. Pte. Ltd., 2003.

C. Lutz and U. Sattler. The complexity of reasoning with boolean modal logics.
In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, eds., Advances in
Modal Logics 3. CSLI Publications, Stanford, 2001.

R. Molitor. Unterstiitzung der Modellierung verfahrenstechnischer Prozesse durch
Nicht-Standardinferenzen in Beschreibungslogiken. PhD thesis, RWTH Aachen,
2000.

B. Nebel. Reasoning and Revision in Hybrid Representation Systems, vol. 422 of
LNATI Springer-Verlag, 1990.

P. Patel-Schneider, D. McGuinness, R. Brachman, L. Resnick, and A. Borgida. The
CLASSIC knowledge representation system: Guiding principles and implementa-
tion rationale. SIGART Bulletin, 2(3):108-113, 1991.

P. F. Patel-Schneider. Undecidability of subsumption in NIKL. Artificial Intelli-
gence, 39:263-272, 1989.

V. R. Pratt. Models of program logics. In Proceedings of the 20th Annual Sympo-
stum on Foundations of Computer Science, San Juan, Puerto Rico, 1979.

A. Prior. Past, Present and Future. Oxford University Press, 1967.

Protégé. Homepage at http://protege.stanford.edu/, 2003.

A. Rector. Analysis of propagation along transitive roles: Formalisation of the
galen experience with medical ontologies. In Proc. of DL 2002. CEUR (http://ceur-
ws.org/), 2002.

A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A. Nowlan, and W. D.
Solomon. The GRAIL concept modelling language for medical terminology. Al in
Medicine, 9:139-171, 1997.

N. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, 1971.

U. Sattler. A concept language extended with different kinds of transitive roles.
In Proc. of KI’96, vol. 1137 of LNAI Springer-Verlag, 1996.

U. Sattler. Terminological knowledge representation systems in a process engineer-
ing application. PhD thesis, RWTH Aachen, 1998.

U. Sattler. Description logics for the representation of aggregated objects. In
W. Horn, ed., Proc. of ECAI-2000. TOS Press, Amsterdam, 2000.

U. Sattler and M. Y. Vardi. The hybrid p-calculus. In IJCAR-01, vol. 2083 of
LNAI Springer-Verlag, 2001.

20

72

73.

74.

75.

76.

T7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

A. Schaerf. Reasoning with individuals in concept languages. Data and Knowledge
Engineering, 13(2):141-176, 1994.

K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of IJCAI-91. Morgan Kaufmann, 1991.

M. Schmidt-Schauss. Subsumption in KL.-ONE is undecidable. In Proc. of KR-89,
Boston (USA), 1989.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1):1-26, 1991.

S. Schulz and U. Hahn. Parts, locations, and holes - formal reasoning about
anatomical structures. In Proc. of AIME 2001, vol. 2101 of LNAI Springer-Verlag,
2001.

P. M. Simons. Parts. A study in Ontology. Oxford: Clarendon, 1987.

E. Spaan. The complexity of propositional tense logics. In M. de Rijke, ed.,
Diamonds and Defaults. Kluwer Academic Publishers, 1993.

K.A. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass., 2000. Fall Symposium Special Tssue.

R. Stevens, I. Horrocks, C. Goble, and S. Bechhofer. Building a bioinformatics
ontology using OIL. IEEE Inf. Techn. in Biomedicine., 6(2):135-141, 2002.

R. S. Streett. Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Computation, 54:121-141, 1982.

Robert S. Streett and E. Allen Emerson. An automata theoretic decision procedure
for the propositional p-calculus. Information and Computation, 81:249-264, 1989.
S. Tobies. Complezity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001.

S. Tobies. PSPACE reasoning for graded modal logics. J. of Logic and Computa-
tion, 11(1):85-106, 2001.

M. Uschold, M. King, S. Moralee, and Y. Zorgios. The enterprise ontology. The
Knowledge Engineering Review, 13, 1998.

M. Y. Vardi. The taming of converse: Reasoning about two-way computations.
In Proc. of the 4th Workshop on Logics of Programs, vol. 193 of LNCS. Springer-
Verlag, 1985.

M. Y. Vardi. Why is modal logic so robustly decidable? In N. Immerman and P. G.
Kolaitis, eds., Descriptive Complezity and Finite Models, volume 31 of DIMACS.
American Mathematical Society, 1997.

M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. of
ICALP’98, vol. 1443 of LNCS. Springer-Verlag, 1998.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. J. of Computer and System Science, 32:183-221, 1986.

M. Wessel. Obstacles on the way to qualitative spatial reasoning with description
logics: Some undecidability results. In Proc. of DL 2001. CEUR (http://ceur-
ws.org/), 2001.

M.E. Winston, R. Chaffin, and D. Herrmann. A taxonomy of part whole relations.
Cognitive Science, 11:417-444, 1987.

21

