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1 Introdu
tion to Des
ription Logi
s

Des
ription logi
s (DLs) [6, 8, 21℄ are a family of logi
-based knowledge repre-

sentation formalisms designed to represent and reason about the knowledge of

an appli
ation domain in a stru
tured and well-understood way.

The basi
 notions in DLs are 
on
epts (unary predi
ates) and roles (binary

relations), and a spe
i�
 DL is mainly 
hara
terised by the 
onstru
tors it pro-

vides to form 
omplex 
on
epts and roles from atomi
 ones. Intuitively, the

following 
on
ept des
ribes \A 
ooler 
onne
ted to a rea
tor whi
h, in turn, has

a part that is a stirrer and whose fun
tionality is to stir or to 
ool (or both)":

Cooler u 9
onne
tedTo:(Rea
tor u (9hasPart:Stirrer u

8fun
tionality:(Cooling t Stirring)))

(1)

In addition to su
h a set of 
onstru
tors, DLs are usually equipped with a ter-

minologi
al 
omponent, often 
alled a TBox. In its simplest form, a TBox 
an

be used to introdu
e names (abbreviations) for 
omplex 
on
epts. For exam-

ple, we 
ould introdu
e the abbreviation CooledStirringRea
tor for the 
on
ept

in Con
ept 1 from above. More expressive TBox formalisms allow the statement

of general 
on
epts in
lusion axioms (GCIs) su
h as

9hasPart:Stirrer

_

v Rea
tor u 9fun
tionality:Stirring;

whi
h says that only stirring rea
tors 
an have stirrers.

Des
ription logi
 systems provide their users with various reasoning 
apabil-

ities that dedu
e impli
it knowledge from the one expli
itly stated in the TBox.

The subsumption algorithm determines sub
on
ept-super
on
ept relationships:

a 
on
ept C is subsumed by a 
on
ept D w.r.t. a TBox if, in ea
h model of

the TBox, ea
h instan
e of C is also an instan
e of D. Su
h an algorithm 
an

be used to 
ompute the taxonomy of a TBox, i.e., the subsumption hierar
hy

of all those 
on
epts introdu
ed in the TBox. The satis�ability algorithm tests

whether a given 
on
ept 
an ever be instantiated.

Unsurprisingly, the higher the expressive power of a DL is, the more 
omplex

are the subsumption and the satis�ability problem. To use a DL for a 
ertain

appli
ation, it has to provide enough expressive power to des
ribe the relevant

properties of the obje
ts in this appli
ation. On the other hand, the system ser-

vi
es should be \pra
ti
al" in that they run in realisti
 time and spa
e. Thus,

we are 
onfronted with the well-known trade-o� between expressivity and 
om-

plexity, as in many other areas of 
omputer s
ien
e.



In the last de
ade, a lot of work was devoted to investigate DLs w.r.t. their

expressive power and 
omputational 
omplexity. It turned out that the �rst DL

systems were based on unde
idable logi
s [74, 61℄. As a rea
tion, the expressive

power was restri
ted severely, thus yielding a DL with polynomial reasoning

problems. Then, in parallel with the dis
overy of the 
lose relation between de-

s
ription and modal logi
s [73, 23℄, Pspa
e-
omplete DLs were spe
i�ed [75℄

and a tableau-based reasoning algorithm was implemented for su
h a DL [7℄. Af-

ter 
ertain optimisation, it turned out that this implementation behaves mu
h

better than the high worst-
ase 
omplexity of the underlying reasoning prob-

lem suggests. As a rea
tion, tableau-based reasoning algorithms for Exptime-


omplete DLs were implemented [41, 37℄. Again, these implementations proved

to be amenable to optimisation and behave surprisingly well in pra
ti
e. This

fostered the design and investigation of other Exptime-
omplete DLs together

with tableau-based, \pra
ti
able" reasoning algorithms. In parallel, the investi-

gation of the 
omplexity of des
ription logi
s 
ontinued su

essfully su
h that,

today, we have a good understanding of the e�e
ts of the 
ombination of 
on
ept

and role 
onstru
tors on the 
omputational 
omplexity and the expressive power

of DLs; see, e.g., [26, 18, 24, 21, 20, 84, 54, 57, 56℄.

Today, industrial strength DL systems are being developed for very expressive

DLs with system servi
es being based on highly optimised tableau algorithms

and with appli
ations like the Semanti
 Web or knowledge representation and

integration in bio-informati
s in mind.

1.1 Preliminaries

In this se
tion, we de�ne the basi
 des
ription logi
 ALC, TBox formalisms, and

reasoning problems.

De�nition 1. Let C and R be disjoint sets of 
on
ept and role name. The set

of ALC-
on
epts is the smallest set su
h that ea
h 
on
ept name A 2 C is an

ALC-
on
ept and, if C and D are ALC-
on
epts and r is a role name, then

:C, C uD, C tD, 9r:C, and 8r:C are also ALC-
on
epts.

A general 
on
ept in
lusion axiom (GCI) is of the form C

_

v D for C, D

ALC-
on
epts. A TBox is a �nite set of GCIs.

An interpretation I = (�

I

; �

I

) 
onsists of a non-empty set �

I

, the interpre-

tation domain, and a mapping �

I

whi
h asso
iates, with ea
h 
on
ept name A,

a set A

I

� �

I

and, with ea
h role name r, a binary relation r

I

� �

I

� �

I

.

The interpretation of 
omplex 
on
epts is de�ned as follows:

(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

; :C

I

= �

I

n C

I

;

(9r:C)

I

= fd 2 �

I

j There exists an e 2 �

I

with hd; ei 2 r

I

and e 2 C

I

g;

(8r:C)

I

= fd 2 �

I

j For all e 2 �

I

, if hd; ei 2 r

I

, then e 2 C

I

g:

An interpretation I satis�es a GCI C

_

v D if C

I

� D

I

; I satis�es a TBox

T if I satis�es all GCIs in T|in this 
ase, I is 
alled a model of T . An
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element d 2 C

I

is 
alled an instan
e of C and, if hd; ei 2 r

I

, then e is 
alled an

r-su

essor of d.

A 
on
ept C is satis�able w.r.t. a TBox T if there is a model I of T with

C

I

6= ;. A 
on
ept C is subsumed by a 
on
ept D w.r.t. T (written C v

T

D) if,

for ea
h model I of T , C

I

� D

I

. Two 
on
epts are equivalent if they mutually

subsume ea
h other.

As usual, we use > as an abbreviation for A t :A, ? for :>, C ) D for

:C tD, and C , D for (C ) D) u (D ) C). Moreover, we use C

:

= D as an

abbreviation for C

_

v D and D

_

v C.

Some remarks are in order here. Firstly, in ALC, the two reasoning prob-

lems satis�ability and subsumption 
an be mutually redu
ed to ea
h other: C

is satis�able w.r.t. T i� C is not subsumed by ? w.r.t. T . And C v

T

D i�

C u :D is not satis�able w.r.t. T . Se
ondly, it 
an be shown that satis�abil-

ity (and thus subsumption) w.r.t. a general TBox is Exptime-
omplete [73℄,

whereas these problems be
ome Pspa
e-
omplete when 
onsidered w.r.t. the

empty TBox [75℄.

2 Des
ription logi
s as ontology languages

A well-known attempt to de�ne what 
onstitutes an ontology is due to Gruber

[35℄: an ontology is an expli
it spe
i�
ation of a 
on
eptualisation, where \a


on
eptualisation" means an abstra
t model of some aspe
t of the world. This

was later elaborated to \a formal spe
i�
ation of a shared 
on
eptualisation"

[16℄. In this abstra
t model, relevant 
on
epts of the aspe
t in question are

de�ned, in
luding a des
ription of the interesting properties of their instan
es.

In the last de
ade, ontologies be
ame rather popular through appli
ations

like the Semanti
 Web [15℄, enterprise knowledge management systems [85℄, and

medi
al terminology systems [80, 66, 79℄ and through the growing amount of data

available ele
troni
ally.

An ontology is built|possibly by a group of domain experts|and evolves

over time in any appli
ation that 
hanges over time. Moreover, it is advisable

to integrate existing ontologies if a larger aspe
t of the world is to be 
overed|

instead of building a new one from s
rat
h. Finally, if an ontology is deployed,

knowledge is shared using the 
on
epts de�ned in the ontology, e.g., 
on
rete

obje
ts are des
ribed using the vo
abulary de�ned in an ontology. Ea
h of these

tasks is rather 
omplex: e.g. building and evolution involves a huge amount of


reativity, integration requires knowledge in a large aspe
t, and all three tasks

involve 
o-operation, thus risking misunderstanding, redundan
y, et
.

The in
reasing importan
e of ontologies and their pro
essing in 
omputers

has led to the development of ontology editors [64, 22, 12℄. Due to the above men-

tioned 
omplexity of ontology engineering tasks, it is highly desirable that these

editors support the user in the design, evolution, integration, and deployment

of ontologies through 
orresponding, intelligent system servi
es. Moreover, an

unambiguous language, e.g., a logi
-based language, not only de
reases the risk
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of misunderstandings among the domain experts, but also enables the design of

provably 
orre
t or optimal su
h servi
es. Now des
ription logi
s are su
h a 
lass

of logi
-based knowledge representation languages that 
ome with a knowledge

base formalism whi
h makes DLs good 
andidates for ontology languages: an

ontology 
an be formalised in a TBox, whi
h 
an be divided into the following

two, disjoint parts.

Ba
kground Knowledge GCIs of the form C

_

v D for C and D 
omplex


on
epts 
an be used to formalise ba
kground knowledge of the appli
ation

domain and thus to 
onstrain the set of models.

For example, we 
an express that two 
on
epts A and B are disjoint by

A

_

v :B and that ea
h individual having an r-su

essor whi
h is an instan
e

of B is an instan
e of A by 9r:B

_

v A.

De�nitiorial Part For ea
h 
on
ept relevant in the appli
ation domain, we 
an

introdu
e a 
on
ept name A and a 
on
ept de�nition A

_

v C or A

:

= C for C

a 
omplex 
on
ept des
ribing ne
essary or ne
essary and suÆ
ient 
onditions

for individuals to be an instan
e of A. We say that A is a primitively de�ned

or a de�ned 
on
ept.

For example, we 
an primitively de�ne 
onne
tions as being devi
es having

some input and some output, and then de�ne a hose as a 
exible 
onne
tion:

Conne
tion

_

v Devi
eu 9hasComp:Outputu 9hasComp:Input

Hose

:

= Conne
tionu Flexible

System servi
es provided by DL-based knowledge representation systems in
lude

{ a satis�ability test for ea
h 
on
ept de�ned in a TBox.

{ the 
omputation of the taxonomy : for ea
h pair A

1

; A

2

of 
on
epts de�ned

in the de�nitorial part of the TBox T , we test whether A

1

_

v

T

A

2

and

A

2

_

v

T

A

1

. A taxonomy is the partial order of the de�ned 
on
epts w.r.t.

_

v

T

, and is often presented as the 
orresponding Hasse-diagram.

Clearly, unsatis�able de�ned 
on
epts and unintended or missing subsump-

tion relationships are signs of modelling 
aws, and thus these system servi
es 
an

be used to support the engineering of ontologies: in the design phase and when

modifying or integrating an ontology, we 
an repeatedly use both system servi
es

to ensure that the TBox is 
onsistent, that it re
e
ts our intuition, and that it

does not 
ontain unintended redundan
ies, i.e., equivalent de�ned 
on
epts. Un-

surprisingly, it turned out that, in appli
ations where the knowledge engineer

is no des
ription logi
 expert, ontology engineering requires more support [69,

58℄, e.g., the domain expert wants to see automati
ally generated suggestions

for a new 
on
ept de�nition as a generalisation of a set of example instan
es.

This observation lead to the investigation of non-standard inferen
es in des
rip-

tion logi
s su
h as 
omputing the least 
ommon subsumer of several 
on
epts,

mat
hing a 
on
ept that 
ontains 
on
ept variables to 
on
ept expressions, or


omputing the approximation of a 
on
ept expressed in a more expressive logi


in a less expressive logi
 [52, 5, 9, 17℄.
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State-of-the-art DL-based systems su
h as FaCT or Ra
er [41, 37℄ provide the

above standard system servi
es su
h as de
iding the satis�ability and 
omput-

ing the taxonomy, and are based on the DL SHIQ [49℄ that is an extension of

ALC with a variety of expressive means that turned out to be quite useful [70℄;

SHIQ is dis
ussed in detail in Se
tion 5. Despite these additional expressive

means, SHIQ is of the the same worst-
ase 
omplexity as ALC, namely Ex-

ptime-
omplete [83℄. This high 
omplexity implies that, in the worst-
ase, the


omputation might take far too mu
h time. However, the algorithms in these

DL-based systems proved to be amenable to a wide range of optimisations, as

a 
onsequen
e of whi
h these systems behave surprisingly well in many realisti


appli
ations [40, 41, 37, 48℄.

The suitability of DLs as ontology languages has been highlighted by their

role as the foundation for several web ontology languages, in
luding OIL [28℄,

DAML+OIL [43℄, and OWL, a newly emerging ontology language standard be-

ing developed by the W3C Web-Ontology Working Group.

1

All of these lan-

guages have a syntax based on RDF S
hema, but the basis for their design is

a 
ombination of the DLs SHIQ (mentioned above) and SHOQ(D) [46℄. Both

are DLs that were designed with the goal to �nd a good 
ompromise between

expressiveness and the 
omplexity of reasoning.

3 Standard expressive means in DLs

To give the reader an impression of what DLs are, we present a variety of ex-

pressive means that are 
ommonly used in DLs and dis
uss, if appropriate, their

modal logi
 equivalent and their in
uen
e on the 
omputational 
omplexity. For

a detailed des
ription of the relationship between modal and des
ription logi
s,

see [73, 23℄: ALC (without TBoxes) is a notational variant of the multi modal

logi
 K

n

[38℄. To see the 
onne
tion between K

n

and ALC, it suÆ
es to view

elements of a DL interpretation domain as worlds in a Kripke stru
ture, roles as

modal parameters, universal value restri
tions as box formulae, and existential

restri
tions as diamond formulae. Then, for example, it 
an be easily seen that

A u 9r:(C t 8s:D) is equivalent to A ^ hri(C _ [s℄D).

TBoxes were introdu
ed in Se
tion 1.1, and it was mentioned in Se
tion 2 that

they are divided into a ba
kground knowledge part and a de�nitorial part. Some

DLs only allow for the de�nitorial part and possibly require this part to be free

of \de�nitorial 
y
les". Now reasoning w.r.t. a
y
li
 
on
ept de�nitions 
an be

redu
ed to pure 
on
ept reasoning: one 
an either use a (sub-optimal) te
hnique,


alled unfolding, whi
h redu
es reasoning w.r.t. a
y
li
 
on
ept de�nition to pure


on
ept reasoning [59℄, or use more dire
t te
hniques [54℄. As a result of the

latter, it turned out that, for a variety of logi
s, reasoning w.r.t. a
y
li
 
on
ept

de�nitions is as 
omplex as pure 
on
ept reasoning [54℄.

In modal logi
s, the 
losest relative to a TBox is the universal role, a role

that is interpreted as �

I

��

I

; for more details about this relationship, see [55℄.

1

http://www.w3.org/2001/sw/WebOnt/
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Number Restri
tions are an expressive means rather popular in DLs: they are

present in almost all implemented DL systems. They are 
on
epts of the form

(>nr:C) (atleast restri
tion) or (6nr:C) (atmost restri
tion), for n a non-negative

integer, r a role, and C a (possibly 
omplex) 
on
ept, and are interpreted as fol-

lows:

(>nr:C)

I

= fd 2 �

I

j #fe 2 C

I

j (d; e) 2 r

I

g � ng;

(6nr:C)

I

= fd 2 �

I

j #fe 2 C

I

j (d; e) 2 r

I

g � ng;

where #M denotes the 
ardinality of a set M . They 
an be used, e.g., to de-

s
ribed pipes as those 
onne
tions having exa
tly one input and one output (we

use (= nr:C) as an abbreviation for (>nr:C) u (6nr:C)):

Conne
tionu (= 1hasComp:Input) u (= 1hasComp:Output)

In their simpler form, number restri
tions only allow for the 
on
ept > in the

pla
e of C above. A further restri
tions only allows for 2 in atleast restri
tions

and 1 in atmost restri
tions. Finally, features are role names that are to be

interpreted as partial fun
tions|they 
an be viewed as a \globalised" version of

a simple form of number restri
tions. Number restri
tions rarely seem to have

e�e
ts on the 
omplexity of DLs: for a variety of logi
s, extending them with

number restri
tions does not 
hange their 
omplexity, even if su
h an extension

yields the loss of the �nite model property (see Se
tion 5.4 for a more detailed

dis
ussion). For example, when extended with number restri
tions, ALC remains

in Pspa
e [84℄ and ALC with TBoxes remains in Exptime, even if further

extended with other expressive means su
h as inverse roles (see below) [83℄.

Number restri
tions are known in modal logi
s as graded modalities [29℄,

whereas features play an important role in dynami
 logi
: they are synta
ti


variants of deterministi
 programs [13℄.

Nominals are, in their simplest form, spe
ial 
on
ept names that are to be in-

terpreted as singleton sets. For example, the 
on
ept 9partOf:BrentSpar de-

s
ribes those obje
ts that are part of the oil platform Brent Spar provided that

BrentSpar is a nominal. In DLs, a weak form of nominals, ABoxes (\A" for

assertional), are widely known and used: using individual names a; b; : : :, we


an assert that an an individual is an instan
e of a 
on
ept C by a : C and

that two individuals are related via a role r by ha; bi : r. Interpretations asso-


iate, additionally, an element of the interpretation domain with ea
h individual

name. Please note that individual names are only to be used in assertions, in


ontrast to nominals that 
an be used in the pla
e of 
on
epts in 
on
epts.

Whereas ABox 
onsisten
y is often as 
omplex as satis�ability of 
on
epts [72℄,

extending a des
ription logi
 with nominals often in
reases its 
omplexity. For

example, ALC with inverse roles (see below) is Pspa
e-
omplete, but be
omes

Exptime-
omplete when extended with inverse roles [1℄. If, additionally, num-

ber restri
tions are present, the 
omplexity leaps from Exptime-
ompleteness

to NExptime-
ompleteness [83℄. A reason for this in
rease in 
omplexity might

be that nominals destroy the tree model property [87℄: a logi
 enjoys the tree

model property if every satis�able 
on
ept/formula has a model whose rela-
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tional stru
ture forms a tree. For example, for nominals N

1

and N

2

, the 
on
ept

N

1

u 9r:(N

2

u 9r:N

1

) only has models with a 
y
le of length two.

Nominals originate in hybrid logi
 [63, 1, 2℄, and are known in DLs as an

elegant and powerful generalisation of ABoxes.

Inverse Roles In various appli
ations, one wants to use both \dire
tions" of a

role, e.g., one wants to use both hasPart and isPartOf. To model these roles

adequately, i.e., to ensure that hx; yi 2 hasPart

I

i� hy; xi 2 isPartof

I

, some

des
ription logi
s provide inverse roles : for r a role name, r

�

is an inverse role,

whi
h is interpreted as (r

�

)

I

= fhy; xi j hx; yi 2 r

�

g.

A variety of DLs 
an be extended with inverse roles without a�e
ting their


omputational 
omplexity: examples are ALC with or without TBoxes and pos-

sibly with number restri
tions [21, 83℄. However, there are 
ounter-examples su
h

as ALC with 
on
rete domains, whi
h be
omes NExptime-
omplete when ex-

tended with inverse roles [56℄ or ALC with nominals and without TBoxes, whi
h

be
omes Exptime-
omplete when extended with inverse roles [1℄.

Inverse roles are 
losely related to the tense logi
 \past" modality [67, 78, 88℄

and are synta
ti
 variants of 
onverse programs in dynami
 logi
s [81, 86℄.

Transitive Roles are spe
ial role names r 2 R

+

� R that are to be interpreted as

transitive relations [68℄. Transitive roles 
an be used to model transitive relations

su
h as isAn
estorOf or isPartOf. Another way to extend DLs with transitivity

is to allow for the transitive 
losure operator on roles, i.e., to allow for roles r

�

in the pla
e of roles [3, 24℄, where (r

�

)

I

is to be interpreted as the transitive


losure of r

I

. We will dis
uss the expressiveness of transitive roles in more detail

in Se
tion 5.1.

Adding transitive roles to ALC without TBoxes yields a DL whose reasoning

problems are still Pspa
e-
omplete [68℄, whereas adding the transitive 
losure

operator on roles yields an Exptime-
omplete logi
s [30℄. Transitive roles are no-

tational variants of transitive a

essibility relations in modal logi
s [38℄, whereas

a transitive 
losure operator is also present in the dynami
 logi
 PDL [30℄, whi
h

is a notational variant of ALC with regular role expressions [73℄.

Boolean Operator on Roles So far, we 
onsidered DLs with full Boolean opera-

tors on 
on
epts, but no Boolean operators on roles. In DLs, Boolean operators

on roles are mostly restri
ted to interse
tion [26℄, or to union and di�eren
e

[24, 19℄. They are interpreted in the obvious way, i.e., (r u s)

I

= r

I

\ s

I

, et
.,

and are an interesting expressive means. For example, role negation allows to

express the so-
alled window operator from modal logi
 [32℄. The window op-

erator 
an be viewed as the dual of universal value restri
tions: an instan
e of

8
onne
tedTo:Pipe is 
onne
ted only to pipes, whereas an instan
e of the 
on-


ept 8Pipe:
onne
tedTo using the window operator is 
onne
ted to all pipes. It


an be easily seen that the 
on
ept 8:
onne
tedTo::Pipe using role negation

is equivalent to 8Pipe:
onne
tedTo. For a 
omplete des
ription of the (mostly

dramati
) e�e
ts of adding Boolean operators on roles to the 
omputational


omplexity of ALC, see [57℄.

In dynami
 logi
, union of programs is present in all logi
s allowing for regular

programs [30℄, and Boolean operators on modilities are dis
ussed, e.g., in [32℄.
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Role In
lusion Axioms Another expressive means on roles are role in
lusion

axioms, whi
h are of the form r

_

v s for r, s roles, and for
e interpretations to map

r to a sub-relation of s. Su
h axioms 
an be used, for example, to introdu
e a sub-

role hasComponent of hasPart. In the presen
e of inverse roles, role hierar
hies


an be used to enfor
e symmetri
 roles using r

�

_

v r and r

_

v r

�

.

It should be noted that role hierar
hies are a weak form of role interse
tion:

repla
ing ea
h role expression r

1

ur

2

with a new role name r

1;2

and adding r

1;2

_

v

r

1

and r

1;2

_

v r

2

to the role hierar
hy yields a \weakened" form of interse
tion

sin
e r

I

1;2

� r

I

1

\ r

I

2

. Moreover, for s a transitive role, the role in
lusion axioms

r

_

v s yields a weakened form of the transitive 
losure: s is interpreted as some

transitive role 
ontaining r, whereas r

�

is interpreted as the smallest transitive

role 
ontaining r. The latter observation implies that pure 
on
ept satis�ability

of ALC, when extended with both transitive roles and role in
lusion axioms,

be
omes Exptime-hard [68℄.

General Role In
lusion Axioms (g-RIAs) are a generalisation of the above role

in
lusion axioms to the form r

1

: : : r

m

_

v s

1

: : : s

n

for r

i

; s

j

role names [47℄. A

model of su
h an axiom satis�es r

I

1

Æ : : : Æ r

I

m

� s

I

1

Æ : : : Æ s

I

n

; where Æ denotes

the 
omposition of binary relations. Role value maps, i.e., 
on
epts of the form

r

1

: : : r

m

) s

1

: : : s

n

with the semanti
s

(r

1

: : : r

m

) s

1

: : : s

n

)

I

= fx j 8y:hx; yi 2 r

I

1

Æ : : : Æ r

I

m

) hx; yi 2 s

I

1

Æ : : : Æ s

I

n

g;


an be viewed as a \lo
al" form of g-RIAs. Both 
onstru
tors have dramati


e�e
ts on the de
idability of a des
ription logi
: it was shown in [74℄ that sub-

sumption of a very weak DL be
omes unde
idable when extended with role

value maps. DLs with g-RIAs are 
losely related to grammar logi
s [25, 10, 11℄,

i.e., the multi modal logi
 K

n

with a

essibility relations being 
onstrained by

a grammar: a produ
tion rule of the form s

1

: : : s

n

! r

1

: : : r

m


an be viewed

as a notational variant of the g-RIA r

1

: : : r

m

_

v s

1

: : : s

n

enfor
ing models to

interpret r

1

: : : r

m

as s sub-relation of s

1

: : : s

n

. Sin
e ea
h 
ontext-free grammar


an be transformed into an equivalent one in Chomsky normal form, and ALC

be
omes unde
idable with 
ontext-free grammars [10, 11℄, the satis�ability of

ALC-
on
epts w.r.t. g-RIAs of the form r

1

r

2

_

v s is unde
idable.

Fixpoint Operators are the �rst expressive means mentioned here that are not

�rst order de�nable, and they are known in DLs in at least three forms: a re-

stri
ted form in
ludes the transitive 
losure operator on roles [3, 24℄ (see above)

and an operator that allows to enfor
e that a role is interpreted as a well-founded

relation [19℄. Se
ondly, general least and greatest �xpoints operators in DLs [20℄

are notational variants of the �xpoint operators in the �-
al
ulus [51℄. Thirdly,


y
li
 
on
ept de�nitions su
h as

Devi
e

:

= Te
hThingu :Conne
tionu 8
onne
tedTo:Conne
tion

Conne
tion

:

= Te
hThingu :Devi
eu 8
onne
tedTo:Devi
e


an be read with least or greatest �xpoint semanti
s [59, 4℄: in 
ontrast to the

des
riptive semanti
s, whi
h takes into a

ount all �xpoints of su
h GCIs, one

might 
hose to take into a

ount only the least or the greatest �xpoints.
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A variety of Exptime-
omplete des
ription and modal logi
s exist that have

some form of �xpoints, e.g. the dynami
 logi
 PDL [30, 62℄ or DLR

�

, a general-

isation of the �-
al
ulus with n-ary relations [20℄.

4 Introdu
tion to tableau algorithms for DLs

For several expressive DLs, there exist eÆ
ient tableau-based implementations

that de
ide satis�ability of 
on
epts w.r.t. a TBox [41, 37℄. In the following, we

will give an intuitive des
ription of des
ription logi
 tableau algorithms; for an

extensive survey of tableau algorithms for des
ription logi
s, see, e.g., [8℄. In gen-

eral, they work on trees whose nodes stand for individuals of an interpretation.

Nodes are labelled with sets of 
on
epts, namely those they are assumed to be

an instan
e of. Edges between nodes are labelled with role names or sets of role

names, namely those that hold between the 
orresponding individuals.

Intuitively, to de
ide the satis�ability of a 
on
ept C, a tableau algorithm

starts with an instan
e x

0

of C, i.e., a tree 
onsisting of a root node x

0

with C as

its node label (written L(x

0

) = fCg). Then the algorithm breaks down 
on
epts

in node labels synta
ti
ally, thus inferring new 
onstraints on the model of C to

be built, and possibly generating new individuals, i.e., new nodes. For example,

if (D u E) 2 L(y) has already been inferred, it adds D and E to L(y). For

9r:F 2 L(y), it generates a new r-su

essor node of y, say z, and sets L(z) = fFg.

If a node y has some r-su

essor z and it �nds 8r:G 2 L(y), then G is added to

L(z). Finally, in the presen
e of a TBox T , it adds, for ea
h GCI C

i

_

v D

i

2 T ,

and for ea
h node y, the 
on
ept (:C

i

t D

i

) to L(y). Now, for logi
s with

disjun
tions, various tableau algorithms non-deterministi
ally 
hoose whether

to add D or E to L(y) for (D t E) 2 L(y). The answer behaviour is as follows:

if this \
ompletion" 
an be 
arried out exhaustively without en
ountering a

node with both a 
on
ept and its negation in its label|a so-
alled 
lash,

2

then

the algorithm answers that the input 
on
ept was satis�able, and unsatis�able,

otherwise.

Thus, disjun
tions are often treated non-deterministi
ally. Avoiding this non-

determinism in a way that is more eÆ
ient than naive ba
k-tra
king proves to be

a 
ompli
ated task for many logi
s|to the best of our knowledge, the algorithm

in [27℄ is the only known worst-
ase optimal tableau algorithm for an Exptime-


omplete des
ription logi
. In 
ontrast, the tableau algorithm implemented in

state-of-the-art DL systems su
h as FaCT and Ra
er is 2NExptime even though

the underlying logi
 is Exptime-
omplete [49, 83℄. Despite this sub-optimality,

these tableau algorithms allow for a set of well-known eÆ
ient optimisations,

so that they perform mu
h better in pra
ti
e than their worst-
ase 
omplex-

ity suggests; see [41, 49, 36, 37, 48℄ for des
riptions of these optimisations. An

interesting open question is whether an implementation of a worst-
ase opti-

mal algorithm would behave better in pra
ti
e|so far, only implementations of

worst-
ase sub-optimal algorithms exist.

2

We assume that the des
ription logi
 in question is propositionally 
losed, and we


an thus work on 
on
epts in negation normal form.

9



Sin
e we are talking about de
ision pro
edures, termination is an important

issue. Even though tableau algorithms for some inexpressive DLs terminate \au-

tomati
ally", this is not the 
ase for more expressive ones. For example, 
onsider

the algorithm sket
hed above on the input 
on
ept A and TBox fA

_

v 9r:Ag:

it would 
reate an in�nite r-
hain of nodes with labels fA; 9r:Ag. To guarantee

termination, the tableau algorithm needs to be stopped expli
itly. Intuitively,

the pro
essing of an element z is stopped if all \relevant" 
on
epts in the label

of z are also present in the label of an \older" element z

0

. In this 
ase, z

0

is

said to blo
k z. The de�nition of \relevant" has to be 
hosen 
arefully sin
e it

is 
ru
ial for the 
orre
tness of the algorithm [3, 49℄ and for the eÆ
ien
y of the

implementation [48, 39℄.

Corre
tness of DL tableau algorithms are often proved as follows: �rst, termi-

nation is proved by, roughly spoken, showing that the algorithm builds a (tree)

stru
ture of bounded size in a monotoni
 manner. Soundness is proved by 
on-

stru
ting a model (or an abstra
tion of a model) of the input 
on
ept (and TBox)

in 
ase that the algorithm stops without having generated a 
lash. Completeness


an be proved by using a model of the input 
on
ept (and TBox) to steer the

appli
ation of the non-deterministi
 rules and proving that no 
lash o

urs using

this 
ontrol.

Summing up, tableau algorithms are su

essfully used in state-of-the-art im-

plementations, and many well-understood optimisations are available. However,

they involve spe
ial te
hniques to ensure termination and avoid non-determinism,

and are thus rarely optimal for logi
s 
omplete for deterministi
 
omplexity


lasses.

4.1 Other reasoning te
hniques

For several expressive des
ription and modal logi
s, there exist optimal auto-

mata-based algorithms that de
ide satis�ability (and thus subsumption) of 
on-


epts w.r.t. a TBox [89, 82, 88, 20, 57, 71℄: for a 
on
ept C and a TBox T , we

de�ne an automaton A

C;T

whi
h a

epts exa
tly the (abstra
tions of) models of

C and T . Thus, the satis�ability problem is redu
ed to the emptiness problem

of automata. In summary, automata-based approa
hes often allow for a very ele-

gant and natural translation of a logi
 and provide Exptime upper 
omplexity

bounds and are thus optimal for Exptime-hard logi
s. Equally important, they

handle in�nite stru
tures and non-determinism impli
itly.

For 
ertain DLs that are not propositionally 
losed su
h as the one used

in the system Classi
 [60℄, one 
an use a reasoning te
hnique 
alled stru
tural

subsumption: roughly speaking, to de
ide the subsumption between two 
on
epts

C and D, both 
on
epts are transformed into a 
ertain normal form C

0

and D

0

,

and then subsumption 
an be de
ided by a synta
ti
 
omparison of C

0

andD

0

, see

Se
tion 2.3.1 of [6℄. This te
hnique yields a polynomial time de
ision pro
edure

for a sub-Boolean fragment of ALC with number restri
tions, but seems to be

appli
able only to DLs without disjun
tion and existential restri
tions.

Finally, the su

essful resolution-based theorem prover SPASS was modi�ed

into a de
ision pro
edure for expressive modal and des
ription logi
s, then 
alled

10



MSPASS [50℄. Interestingly, it is well-suited for DLs extendingALC with Boolean

operators on roles and 
an be extended to n-ary des
ription logi
s [33℄.

5 DLs with expressive operators on roles

In various ontology appli
ations su
h as engineering or medi
ine, aggregated ob-

je
ts play a 
entral role, that is, obje
ts that are 
omposed of various parts,

whi
h again 
an be 
omposite, et
. It is natural to des
ribe an aggregated obje
t

by means of its parts and, vi
e versa, to des
ribe parts by means of the aggregate

they belong to. For example, the following statements des
ribe a 
ontrol rod and

a rea
tor 
ore by means of their parts and wholes:

ControlRod

_

v Devi
eu 9partOf:Rea
torCore

Rea
torCore

_

v Devi
eu 9hasPart:ControlRodu 9partOf:Nu
lRea
tor

In 
ontrast to, for example, the relation likes, the part-whole relation has a

variety of properties; for a 
omplete 
olle
tion of these properties, we refer to [77℄.

Most importantly, the general part-whole relation is a stri
t partial order, i.e.,

it is transitive and asymmetri
 (and hen
e irre
exive). Moreover, an aggregated

obje
t has at least two parts where none is a part of the other. Next, we might


onsider to assume that two obje
ts 
onsisting of the same parts are identi
al. As

a last example, we might assume the existen
e of atoms, i.e., indivisible obje
ts

of whi
h all other obje
ts are 
omposed. This is equivalent to assuming that

hasPart is well-founded.

Besides the properties mentioned above, it might be useful to distinguish

various sub-relations of the part-whole relation su
h as, for example, the relation

between a 
omponent and its 
omposite (e.g. between a motor and the 
ar the

motor is in), the relation between stu� and an obje
t 
ontaining this stu� (e.g.

between metal and a 
ar), or the relation between a member and a 
olle
tion it

belongs to (e.g. between a tree and the forest this tree belongs to) [91, 34℄.

In this se
tion, we des
ribe expressive means relevant for the representation

of aggregated obje
ts and the development of the DLs SHIQ and RIQ.

5.1 Adding transitivity

Coming ba
k to representing aggregated obje
ts in ontologies using DLs, we ob-

serve that the DL ALC provides no means to express that a relation is transitive.

For example, in ALC, the 
on
ept

Devi
eu 9hasPart:(Rea
torCoreu 9hasPart:ControlRod)

is not subsumed by Devi
eu 9hasPart:ControlRod, although the �rst 
on
ept

is a spe
ialisation of the se
ond one under the assumption that hasPart is in-

terpreted as a transitive relation.

Thus the adequate modelling of aggregated obje
ts asks for the extension

of ALC with some form of transitivity. As mentioned in Se
tion 3, there are

11



at least two su
h possible extensions. After investigating their expressive power

and 
omplexity, we have 
hosen the \
heaper" possibility: by S, we refer to the

des
ription logi
 ALC extended with transitive roles.

3

Obviously, S provides the

means to represent the general part-whole relation as a transitive relation by

asserting that partOf is a transitive role. Additionally, sin
e S has a tree model

property, all satis�able 
on
epts and TBoxes have a model in whi
h partOf is

interpreted as a stri
t partial order.

Tableau algorithm for S A naive extension of the tableau algorithm for ALC

sket
hed in Se
tion 4 to transitive roles does not ne
essarily terminate: assume

the algorithm is started with the 
on
ept C

0

:= C u 9r:C u 8r:(9r:C) for r a

transitive role. After some rule appli
ations, the algorithm has generated three

nodes, x, y, and z where y is an r-su

essor of x, z is an r-su

essor of y, and

C

0

;8r:(9r:C) 2 L(x), 9r:C 2 L(y), and C 2 L(z). Sin
e r is a transitive role,

we 
ould make z an r-su

essor of x, but this would destroy the tree stru
ture

that turned out to be quite useful. Instead, we do something whi
h has the

same e�e
t: we add 8r:(9r:C) to L(y). More pre
isely, if 8r:C 2 L(x) and x

has an r-su

essor y, we add both C and 8r:C to y's label. In this 
ase, this

yields 9r:C 2 L(z). It 
an easily be seen that the repeated appli
ation of this

modi�
ation builds an in�nite r-
hain, and thus leads to non-termination. To re-

gain termination without 
orrupting soundness or 
ompleteness of the algorithm,

we use the blo
king te
hnique mentioned in Se
tion 4: we stop generating new

su

essors of a node z in 
ase there is another node z

0

with L(z) � L(z

0

). In

this 
ase, we say that z

0

blo
ks z, and we 
an build a model by \merging" z and

z

0

(and all other nodes whi
h z

0

blo
ks), thus building a �nite, possibly 
y
li


model.

5.2 Further adding inverse roles

When modelling aggregated obje
ts using S and using both partOfand hasPart,

we might end up with an inadequate representation in the following sense: for

example, extending the TBox in the beginning of Se
tion 5 with

Nu
lRea
toru 9hasPart:Faulty

_

v Dangerous;

we would assume that ControlRoduFaulty is subsumed by 9partOf:Dangerous

w.r.t. to this TBox|whi
h is only the 
ase if partOfwere the inverse of hasPart,

i.e., if hx; yi 2 hasPart

I

i� hy; xi 2 partOf

I

. Thus we extend S with inverse

roles, whi
h yields the DL 
alled SI and allows to des
ribe both obje
ts by means

of the wholes they belong to and by means of the parts they have. Substituting

hasPart by partOf

�

in the last example yields a TBox with respe
t to whi
h

ControlRodu Faulty is indeed subsumed by 9partOf:Dangerous.

Tableau algorithm for SI Intuitively, we 
an extend the tableau algorithm for

S as follows to yield a de
ision pro
edure for satis�ability of SI-
on
epts: if

3

The logi
 S has previously been 
alled ALC

R

+

, but this be
omes too 
umbersome

when adding letters to represent additional features.
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8r:C 2 L(w), instead of adding C only to r-su

essors, we also add C to Inv(r)-

prede
essors.

4

For example, for the 
on
ept 9r

�

:(Cu8r:B) 2 L(x), we would �rst


reate an r

�

-su

essor y of x with C u 8r:B 2 L(y). For 8r:B 2 L(y), we would

then add B to L(x) sin
e x is an r-prede
essor of y. Moreover, the blo
king


ondition has to be more stri
t: for z

0

to blo
k z, they must have identi
al

labels, i.e., L(z) = L(z

0

). Finally, blo
king be
omes ne
essarily \dynami
": in

the presen
e of inverse roles, node labels in
uen
e ea
h other up and down the


ompletion tree. Thus the label of a node x blo
king some node y further down

the tree 
an 
hange due to some of its other prede
essors, the node labels of x

and y be
ome di�erent, and we must \unblo
k" them.

This tableau algorithm de
ides satis�ability (and thus subsumption) of SI-


on
epts w.r.t. TBoxes. Moreover, we were able to prove that, in the absen
e of a

TBox and employing a 
ertain strategy and a more intri
ate blo
king 
ondition,

it uses polynomial spa
e only. This is one example for the fa
t that the de�nition

of the blo
king 
ondition is not only 
ru
ial for the 
orre
tness of the algorithm,

but also for its 
omplexity. As a 
onsequen
e, ALC without TBoxes and with

transitive and inverse roles is of the same 
omplexity as pure ALC, namely

Pspa
e-
omplete [49℄.

5.3 Further adding role in
lusion axioms

To represent, beside the general part-whole relation, 
ertain sub-part-whole re-

lations su
h as \is a 
omponent of" or \is an ingredient of", we 
an use role

in
lusion axioms [42℄.

A role in
lusion axiom is an expression of the form r

_

v s, where r and s are

(possibly inverse) roles. A role hierar
hy is a �nite set of role in
lusion axioms.

An interpretation I satis�es a role hierar
hy R i� r

I

� s

I

for ea
h r

_

v s in

R. Su
h an interpretation is 
alled a model of R. Satis�ability and subsumption

w.r.t. role hierar
hies are de�ned in the obvious way. SHI is the extension of

SI with role hierar
hies.

Adding role hierar
hies to SI has mainly two 
onsequen
es: �rstly, we 
an

introdu
e (possibly transitive|depending on the additional relation) role names

su
h as hasComp or hasIngredient and add role in
lusion axioms hasComp

_

v

hasPart and hasIngredient

_

v hasPart. This turns out to be quite useful in

various appli
ations sin
e it allows for a 
on
ise and natural des
ription not only

of aggregated obje
ts.

Se
ondly, SHI (as well as SH and SHIQ) has the expressive power for the

internalisation of TBoxes [3, 45℄. This te
hnique polynomially redu
es reasoning

w.r.t. a general TBox to pure 
on
ept reasoning as follows. We introdu
e a

new transitive role name u 2 R

+

and spe
ify that u is a super-role of all roles

and their respe
tive inverses. This implies that, in 
onne
ted models, u behaves

like a universal role, i.e., u relates all elements of the interpretation domain; 
f.

Se
tion 3. Sin
e ea
h satis�able SHI 
on
ept is satis�able in a 
onne
ted model,

4

To avoid 
onsidering roles su
h as r

�

�

, we use Inv(r) to denote r

�

if r is a role name

and s if r = s

�

for a role name s.
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it 
an be shown that a 
on
ept C is satis�able w.r.t. fC

i

v D

i

j 1 � i � ng i�

9u:C u 8u: u

1�i�n

(C

i

) D

i

) is satis�able.

Tableau algorithm for SHI Basi
ally, the extension of the SI tableau algo-

rithm to SHI involves an adaption of the notion of an \r-su

essor" to take

into a

ount role hierar
hies [45℄: if y is an r-su

essor of x and r

_

v s is in

the role hierar
hy, then y is also an s-su

essor of x. An analogous adaption

for prede
essors is also required in the presen
e of inverse roles, and transitive

roles require a further, rather 
omplex adaption of the propagation of universal

value restri
tions 8r:C. Moreover, the 
orre
tness proof of the tableau algorithm

be
omes more 
omplex sin
e the tree stru
ture the algorithm works on does no

longer 
orrespond to the relational stru
ture that is to be built in 
ase that the

algorithm answers \satis�able": this is already the 
ase in the presen
e of tran-

sitive roles, but be
omes more notable if, additionally, role hierar
hies are taken

into a

ount.

5.4 Further adding number restri
tions

In general, when des
ribing the relevant 
on
epts of an appli
ation domain, it

seems to be natural to des
ribe an obje
t by restri
ting the number of obje
ts

it is related to via a 
ertain relation. For example, the following are 
on
ept

de�nitions for pipes and forks:

Pipe

:

= Conne
tionu (= 1 partOf

�

Input) u (= 1 partOf

�

Output)

Fork

:

= Conne
tionu (= 1 partOf

�

Input) u (� 2 partOf

�

Output)

Before adding number restri
tion to SHI , we have to de�ne simple roles sin
e

only simple roles are allowed in number restri
tions|without that restri
tion,

satis�ability of SHI extended with number restri
tions is unde
idable [49℄.

A (possibly inverse) role is 
alled simple if it is neither transitive nor has a

transitive sub-role. SHIQ is obtained from SHI by allowing, additionally, for


on
epts of the form (>ns:C) and (6ns:C) for n a non-negative integer, s a

simple role, and C a SHIQ-
on
ept. The semanti
s of number restri
tions is

given in Se
tion 3.

In 
ontrast to SHI , SHIQ la
ks the �nite model property. That is, there

are 
on
epts that are satis�able, but only in in�nite models. For example, for

r a transitive role and s

_

v r, ea
h model of the following 
on
ept 
ontains an

in�nite, a
y
li
 s-
hain: :A u 9s:A u 8r:((9s:A) u (>1s

�

:>)):

As mentioned in Se
tion 2, state-of-the-art DL reasoners su
h as FaCT and

Ra
er implement tableau algorithms for SHIQ [41, 37℄. Thus, SHIQ forms the

logi
al basis of ontology editors Ri
e and Oiled [22, 12℄, and of the intelligent


on
eptual modelling tool I
om [31℄.

Tableau algorithm for SHIQ It is not diÆ
ult to see that, in the presen
e of

number restri
tions, we have to add two new rules to our tableau algorithm:

1. if (>nr:C) 2 L(x) and x has less than n r-neighbours with C in their label,

then generate these missing r-neighbours and set their labels to fCg.
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2. if (6nr:C) 2 L(x) and x has more than n r-neighbours with C in their label,

then merge some of them, so that only n remain.

However, this is not suÆ
ient. Firstly, su
h a naive extension might easily yield a

\yo-yo" e�e
t: for example, if applied to a node x with (>3r:C uD); (62r:C) 2

L(x), the above tableau algorithm would generate three r-su

essors y

i

with

C uD 2 L(y

i

), break down the 
onjun
tions in C uD 2 L(y

i

), and then noti
e

that there are too many r-su

essors y

i

of x with C 2 L(y

i

) for (62r:C) 2 L(x).

Thus two of them would be merged into a single one. Now there are not enough

r-su

essors for (>3r:CuD), so one would be generated, and so on, thus leading

to non-termination. To re-gain termination, we 
an use, for example, an expli
it

inequality relation 6

:

= that prevents nodes that were introdu
ed for one (>nr:C)

from being merged again later. Moreover, we extend the notion of a \
lash" to


ases where (6nr:C) 2 L(x) and x has more than n 6

:

=-distin
t r-su

essors with

C in their label.

Se
ondly, 
onsider the 
on
ept C := (>3r:B) u (61r:A) u (61r::A): So far,

for C 2 L(x), the tableau algorithm would generate three r-su

essors y

i

of x

with fBg = L(y

i

), and stop with the answer \C is satis�able". However, the


on
ept C is obviously unsatis�able: the algorithm's unsoundness is due to its

ignoran
e of whi
h of the y

i

are instan
es of A and whi
h are instan
es of :A.

To over
ome this problem, we add a third rule

3. if (6nr:C) 2 L(x) and y is an r-neighbour of x, then non-deterministi
ally

add C or :C to L(y).

Thirdly, one also needs to modify the blo
king 
ondition|otherwise, the

algorithm would still be unsound. Roughly spoken, the SHIQ blo
king 
ondition

involves two pairs of subsequent nodes whose labels must 
oin
ide pairwise.

Together, these three modi�
ations indeed yield a de
ision pro
edure for the

satis�ability of SHIQ [49℄.

Interestingly, the �rst proposal of the SHIQ blo
king 
ondition was so stri
t

that it delayed blo
king severely, thus enlarging the sear
h spa
e for a model dra-

mati
ally and degrading the performan
e of FaCT. Investigating the soundness

and 
ompleteness proof of the SHIQ tableau algorithm more 
losely, we were

able to devise an new blo
king 
ondition whi
h still ensures soundness, 
om-

pleteness, and termination, but was less stri
t [48℄. Intuitively, node labels have

only to be equal for \relevant 
on
epts" in the respe
tive nodes, a fa
t that made

the formulation of the new blo
king 
ondition rather intri
ate. However, an em-

piri
al evaluation of the new tableau algorithm in FaCT showed that this more

intri
ate but less stri
t blo
king 
ondition payes o�: it improves performan
e up

to two orders of magnitude.

Con
erning worst-
ase 
omplexity, both the original and the optimised SHIQ

tableau algorithm are far from being optimal: in the worst 
ase, they run in

2NExptime, whereas satis�ability of SHIQ-
on
epts is known to be in Exp-

Time, even with numbers in number restri
tions 
oded in binary [83℄. Despite

this worst-
ase sub-optimality, its implementation in the FaCT and Ra
er sys-

tems behave surprisingly well in pra
ti
e [48, 37℄. However, the worst-
ase 
om-
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plexity implies that there exist rather small example inputs for whi
h these

systems need so mu
h time that they are pra
ti
ally not terminating [14℄.

5.5 Further adding more expressive role in
lusion axioms

Although SHIQ is rather expressive, there is a 
ommon phenomenon that

SHIQ is not able to express, and that would be useful in many appli
ations,

espe
ially for those involving aggregated obje
ts. This phenomenon is sometimes


oined propagation of properties : for example, one wants to express that a fra
-

ture lo
ated in the shaft of the femur (whi
h is a division of the femur) is a

fra
ture lo
ated in the femur. Or one might want to express that the owner of a

thing also owns the parts of this thing. The importan
e of this expressive means

is illustrated by the fa
t that the Grail DL [44, 66℄, whi
h was designed for medi-


al terminologies, is able to express these propagations (although it is quite weak

in other respe
ts). In two other medi
al terminology appli
ations, rather 
omplex

work arounds to represent propagations 
an be found: SEP-triplets

5

in [76℄ and

right-identities in [79℄. Finally, the Cy
L language provides the transfersThro

statement for similar propagations [53℄. So far and to the best of our knowledge,

none of these systems were proven to handle these propagations in a sound and


omplete way.

It is rather straightforward to extend SHIQ to allow for the propagation

of properties: obviously, it suÆ
es to extend role hierar
hies to the general role

in
lusion axioms, see Se
tion 3. For the �rst example, one would introdu
e an

axiom hasLo
ationÆdivisionOf

_

v hasLo
ation and, indeed, w.r.t. this axiom,

Fra
tureu 9hasLo
ation:(Shaft u 9divisionOf:Femur)

is subsumed by Fra
tureu 9hasLo
ation:Femur. For the se
ond example, one

would introdu
e an axiom owns Æ hasPart v owns and, w.r.t. this axiom,

9owns:(Bi
y
leu 9hasPart:SuspensionFork)

is subsumed by 9owns:SuspensionFork:

As mentioned in Se
tion 3, results in grammar and des
ription logi
s imply

that extending ALC with role in
lusion axioms of the form rÆs

_

v t yields a logi


for whi
h satis�ability and subsumption are unde
idable [10, 11, 90℄. However, for

expressing propagation of properties, we only need axioms of the form r Æ s

_

v s

or s Æ r

_

v s [44, 65℄. Unfortunately, extending SHIQ with this restri
ted form

of axioms still yields an unde
idable logi
 [47℄.

One way to re-gain de
idability would be to restri
t the underlying logi


SHIQ. Sin
e we have argued that, espe
ially for the representation of aggregated

obje
ts, the 
on
ept- and role-forming operators of SHIQ are 
ru
ial, we have


hosen a di�erent approa
h, namely to further restri
t the role in
lusion axioms:

further restri
ting role hierar
hies to not 
ontain \a�e
ting 
y
les" of length

5

SEP-triplets are used both to 
ompensate for the absen
e of transitive roles in ALC,

and to express the propagation of properties a
ross a distinguished \part-of" role.
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greater than one �nally yields a de
idable logi
. Roughly speaking, \a�e
ting" is

the transitive 
losure of the relation \dire
tly a�e
ting", and r dire
tly a�e
ts s

if r Æ s

_

v s, s Æ r

_

v s, or r

_

v s is 
ontained in the role hierar
hy. A role hierar
hy


ontaining no \a�e
ting" 
y
les of length greater than one is 
alled a
y
li
, and

the extension of SHIQ with a
y
li
 role hierar
hies is 
alled RIQ.

In RIQ, we 
an model the propagation of properties as mentioned above,

and the restri
tion to a
y
li
ity does not seem to be too severe sin
e non-trivial


y
les seem to indi
ate modelling 
aws [65℄.

Tableau algorithm for RIQ The tableau algorithm for RIQ [47℄ involves two

pre-pro
essing steps that transform the role hierar
hy into a more expli
it and

manageable stru
ture. Firstly, a
y
li
 role hierar
hies are unfolded in a similar

way as a
y
li
 TBoxes 
an be unfolded [59℄, thus making all impli
it impli
a-

tions expli
it. As a result of this unfolding, we obtain, for ea
h role name r,

a regular expressions �

r

on role names. Se
ondly, we 
onstru
t, for ea
h �

r

, a

non-deterministi
 �nite automata A

r

whi
h a

epts L(�

r

).

Then, in the tableau rules, we add three rules

1. if 8r:C 2 L(x), then we add 8A

r

:C.

2. if 8A:C 2 L(x) and x has an s-su

essor y, then we add 8A

0

:C to L(y) for

ea
h automaton A

0

that is the result of A reading s, i.e., A

0

is obtained from

A by simply 
hanging the initial state to a state that is rea
hable from A's

initial state by an s transition.

3. if 8A:C 2 L(x) and " 2 L(A), then add C to L(x).

The pre-pro
essing together with these three rules 
an be shown to yield a

de
ision pro
edure for RIQ.

This tableau algorithm for RIQ is implemented su

essfully in FaCT. The

additional overhead introdu
ed by using automata in tableau rules seems to pay

o� sin
e it does not degrade the performan
e of FaCT, yields a more readable

algorithm, and 
an draw additional inferen
es like the medi
al one above [47℄.
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