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ABSTRACTIN this paper, we investigate the relationship between tecidhble interval-based
temporal description logics that have been proposed initeeture, 7 £-ALCF and ALC F(A).
Although many aspects of these two logics are quite sintilartwo logics suggest two rather
different paradigms for representing temporal conceptuawledge. In this paper, we exhibit
a reduction from7 £-ALCF concepts tedLCF(A) concepts that serves two purposes: first,
it nicely illustrates the relationship between the two kiemlge representation paradigms; and
second, it provides a tigh® SPACE upper bound for7 £-ALCF concept satisfiabiliy, whose
complexity was previously unknown.

KEYWORDSdescription logics, temporal logics, computational coextly.

1. Introduction

Description Logics (DLs) are a family of logic-based forisais for representing
and reasoning on conceptual knowledge, which have ovehth&st 20 years been
successfully applied to a large number of application protd [BAA 03b]. Important
characteristics of description logics are high expressiagether with sound, com-
plete and terminating reasoning algorithms. Although egpive DLs typically have a
rather high theoretical complexity (ofterxETIME-complete), highly optimized rea-
soners, such a8aCT [HOR 00], RACER [HAA 01], and DLP [PAT 99], have been
developed and exhibit a quite impressive performance dapgdications [BAA 03b].

0. The first author has been partially supported by the EU ptejSewasie, KnowledgeWeb,
and Interop.
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Temporal extensions of logic formalisms are relevant tdwapthe evolving be-
havior of dynamic domains, and they have been extensivelgidered in both artifi-
cial intelligence and theoretical computer science. Itipalar, temporal logical for-
malisms have been studied and applied in areas such as caimifiand verification
of computer programs [PNU 86, EME 90], temporal informatsystems [GAB 94,
CHO 98, CHO 03], planning and natural language [ALL 91, ALL, &N 95].

Since the incorporation of temporal aspects also plays oitant role in many
application areas of description logics such as reasonogitatemporal database
schemas [ART 99b, ART 02, ART 03] and reasoning about actodglans [ART 98,
ART 99a], in the last years an increasing interest in tenlescription logic (TDL)
could be observed—see [ART 01, BAA 03a] for a survey. Wherstroeting a tem-
poral description logic, one of the most important decisitmbe made is whether time
points or time intervals should be used as the underlyingteai primitive [ART 01].
As known from temporal logic and other areas of artificiaélligence, this decision
has a severe impact on the expressiveness and computaiioparties of the re-
sulting logic [GAB 94, GAB ar, GOR 03b, GOR 03a]. In DL resdarboth routes
haven been taken as witnessed by a series of papers on psied-BDLs [SCH 93,
WOL 98, WOL 99, STU 01, LUT 01, ART 02, GAB 03], and a number oppes on
interval-based ones [SCH 90, ART 94, BET 97, ART 98, LUT ar].

Interval-based TDLs have the advantage that they providetaactive temporal
expressivitiy much richer than the expressivity of poiaséd TDLs. On the other
hand, the computational behavior of interval-based TDLaftisn problematic: even
very basic formalisms often turn out to be undecidable. Apantant example is the
interval-based TDL proposed by Schmiedel [SCH 90], whiafeiy natural but unde-
cidable since it contains Halpern and Shoham'’s (undec#aiterval-based temporal
logic—calledS in the following—as a fragment [VEN 90, HAL 91]. Due to these
computational problems, one of the prime goals of this ne$e@rea has been to iden-
tify decidable TDLs that are expressive enough to allow #peesentation of temporal
conceptual knowledge in relevant application areas.

In this paper, we are concerned with two decidable intelpesled TDLs: 7T L-
ALCF [ART 98], andALCF(D) [LUT 02a]. T L-ALCF is close in spirit to Schmie-
del's undecidable temporal DL, and thus also to the tempogit +S. It was devel-
oped for reasoning about actions and plans [ART 98, ART 9&ad, is well-suited
for application domains in which objects have properties tary over time. For ex-
ample, in7T L-ALCF we can describe the evolution of students using the follgwin
concept:

&(x,y)(y s x).(Student@x M Bachelor-Student@y).

Here,x andy denote time intervals an@ s x) states thak andy begin at the same
time point, buty ends before. Thus, the described persons are students for some time
intervalx and bachelor students for some initial sub-integvaf x (since they become
master’s students or PhD students afterwards, which is ndeted for simplicity).
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TL-ALCF is equipped with a rather rich language for expressing teaipela-
tionships that is based on the-well known Allen relationsdrpressing the possible
relationships between time intervals [ALL 83]. In [ART 98\rtale and Franconi
show that concept satisfiability and subsumption, the foretgal reasoning tasks in
description logics, are both decidable - ALCF. To do this, they use algorithms
that first convert concepts into a certain normal form by nseafna quite complex
syntactic rewriting, and then apply two classical reasgpirocedures, one developed
for temporal constraint networks and one for descriptigids, to reason on the nor-
malized concept.

The second description logic addressed in this papé€ F (D), is not a temporal
DL in its general form. Rather, it is equipped with so-caléeshcrete domains, which
are used for representing qualities of real-world entitias are of a “concrete nature”:
e.g. lengths, weights, temperatures, durations, andasgatiensions [LUT 03]. The
concrete domai® of ALCF(D) is not fixed, but rather cad LC F (D) be “instanti-
ated” with a number of different concrete domains. In [LUT, RUT ar], it is shown
that a concrete domaith based on temporal intervals and the Allen relations yietds a
instantiation4LC F(A) of ALCF(D) that is well-suited for interval-based reasoning
with temporal knowledge.

The paradigm underlying the representation of temporateptual knowledge
with ALCF(A) is quite different from the one of £L-ALCF. While T L-ALCF is
well-suited for reasoning about objects whose properaegover time, inALCF(A)
objects are associated with a fixed temporal extension #rabe understood as their
lifespan, and during which all of their properties remaimstant. It is then possible
to enforce temporal constraints on the lifespans of relatgdcts. For example, we
can define a summer semester as a semester which is propaidynaal in some year
(in contrast to winter semesters, which overlap two years):

Semester M Jin-year.Year M Jtime, (in-year o time).during.

The first conjunct states that the described objects arestersewhereas the second
conjunct states that semesters are related to the year whwvihéy take place via
the functional relatiorin-year. Finally, the last conjunct says that the lifespan of the
semester is properly contained in the lifespan of the aasetiyear. It has been shown
that satisfiability and subsumption gfLC F(A)-concepts is decidable and P& E-
complete [LUT 02c].

Intuitively, the two TDLsST L-ALCF and ALCF(A) are closely related: they
both allow the representation of temporal conceptual kedgt based on time inter-
vals, and they both contain the non-temporal ALCF as a proper fragment. Nev-
ertheless, the different underlying paradigms make itrisirgly hard to relate the
expressive power of the two logics. The purpose of the ctipaper is twofold:

1) Understand the relationship betwegiL- ALCF and ALCF(A) in terms of
their expressivity;

2) Provide a tight PSace complexity bound for concept satisfiability in
TL-ALCF.



4 Journal of Applied Non-Classical Logics. Volume 13242003

More precisely, we start witll £-ALCF and show, on an intuitive level, hoW -
ALCF concepts can be translated indd’C F(A) concepts that have the same mean-
ing. This shows how the gap between the two knowledge repratsen paradigms
of TL-ALCF and ALCF(A) can be bridged. Then, we formalize the translation by
polynomially reducing’ £-ALCF concept satisfiability tod LC F(A) concept satisfi-
ability. Due to the known PSACE complexity of ALC F(A), this yields a PSACE up-

per bound for7 £-ALCF concept satisfiability, which is tight. An additional advan
tage of the reduction is that “practicable” reasoning beepavailable fo £L-ALCF.
Indeed, all modern DL reasoners such as the ones initialiytioreed are based on
tableau-style reasoning procedures [BAA 00]. For the logieC F(A), such a pro-
cedure has been developed in [LUT 02c]. In contrast, no (teatimg) tableau-style
algorithms have yet been found for logics of the- ALCF family. Via our trans-
lation, the ALCF(A) decision procedure can be used fo€-ALCF, thus replacing
the less practicable reasoning methods based on syntawtiting.

This paper is organized as follows: in Section 2, we intredtie syntax and
semantics off £-ALCF, together with a running example. In Section 3, we give the
syntax and semantics ofLCF(A), and show how this logic is able to express the
example introduced in Section 2. Based on this examplel&aos, we discuss how
the different paradigms of temporal-conceptual knowlegdgeesentation underlying
TL-ALCF and ALCF(A) are related. The translation is made precise in Section 4,
where we use the ideas of Section 3 to rediiad. ALCF concept satisfiability to
ALCF(A) concept satisfiability. In this way, we demonstrate theegality of the
translation technique proposed in Section 3 and obtainr@Scompleteness result
for TL-ALCF concept satisfiability. Section 5 makes some conclusiodsshows
future directions.

2. Thelogic T L-ALCF

The temporal description logif £L-ALCF [ART 94, ART 98] can be viewed as a
combination of the non-temporal description logi€CF [HOL 90] with the interval-
based temporal logi&{S of Halpern and Shoham [HAL 91]. However, to obtain de-
cidable reasoning problem$ .- ALCF allows only existential temporal quantifiers,
but no universal temporal quantifiers—thus including onfyagment ofHS. Tech-
nically, 7L-ALCF can be regarded as a decidable fragment of first-order aiterv
temporal logic.

The combinatory character 6f£-ALCF is reflected by its syntax, which is di-
vided into the temporal paffi and the atemporal pardLCF. We fix countably
infinite and pairwise disjoint sets atomic conceptgoles features parametric fea-
tures andtemporal variables Then, T £-ALCF conceptsare built following the
syntax rules in Figure 1. In the figure and throughout thisspape use

— A to denote atomic concepts,
—C, D to denote (temporalj £L-ALCF concepts,
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TC C,D — FE| (non-temporal concept)
CnD| (conjunction)
cax | (qualifier)
ClY]JaXx | (substitutive qualifier)
O(X)1e.C (temporal quantifier)
T = (XrY) (temporal constraint)
T - 1|
rs — r,s]| (disjunction)
s mi|f]... (Allen’s relations)
XY = tlx|y]|-.. (temporal variables)
X - X|XX
ALCF || E,F — A (atomic concept)
-F | (complement)
ENF| (conjunction)
EUF| (disjunction)
VR.E | (universal quantifier)
AR.E | (existential quantifier)
p:E| (selection)
plq | (agreement)
plq | (disagreement)
pT (undefinedness)
g — [ (atomic feature)
*q | (atomic parametric feature
poq (path)

Figurel. Syntax rules for the description logicL-ALCF

5
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— E, F to denote (non-temporall LCF concepts,
— R to denote roles,

— f to denote (non-parametric) features,

— x¢g to denote parametric features,

—p andq to denotepaths i.e. finite sequencesg, o --- o v;, Where eachy; is a
feature or a parametric feature,

— X, Y to denote temporal variables, and
—r, s to denote (Allen’s) interval relations.

The x symbol is not intended as an operator, but only used to disisth paramet-
ric from non-parametric features. For the basic temportairial relations, Allen’s
notation [ALL 83] is used: befored], meets fn), during @), overlaps ¢), starts §),
finishes {), equal €), after @), met-by (ni), contains di), overlapped-bydi), started-
by (si), and finished-byf{).

Due to the wealth of expressive means, a first encounterfnith4d LC F's syntax
can be slightly confusing. We will give some intuitive exdegafter introducing
the semantics. However, an in-depth introduction to kndg#erepresentation with
TL-ALCF is out of the scope of this paper, and we refer the interestader to
[ART 98]. We should also like to note that the purpose of mahy&-ALCF's
operators is to allow an intuitive representation of terap&nowledge. Technically,
they can be viewed as syntactic sugdrC-ALCF concepts can be converted into
equivalent ones in a quite convenient normal form, whichisoiduced in Section 4.

The core of the temporal part 6f£-ALCF is constituted by the temporal exis-
tential quantifier ©” and by the 'Q” operator. Thed operator introduces temporal
variables that stand for time intervals, and relates suctabigs via temporal con-
straints based on the Allen relations. Then theperator allows to specify which
concepts are “true” at intervals denoted by temporal véembThe special tempo-
ral variableg, usually callednow, is intended as the reference interval and cannot
be bound by the temporal quantifieb). Thus,t is a free temporal variable in each
T L-ALCF conceptin which it occurs. In the following, we only admitnoepts that
have no variables excepts their free variable.

TL-ALCF is provided with a two-dimensional semantics, which is dafiin
several steps. We start with assuming a temporal stru¢fute (P, <), whereP
is a set of time points ang is a linear, unbounded, and dense orderfan The
interval setof a structure7 is defined as the séf* of all closed proper intervals
[u,v] = {r € P |u <z <wv,u# v}inT. AninterpretationZ = (7*,AZ,.T)
consists of

—asetT* (theinterval setof the selected temporal structuirg,
— a setA” (thedomainof 7), and

— afunction? (theinterpretation functiorof Z), which gives a meaning to atomic
concepts, roles, features and parametric features:
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() ={([w.v]. [ur,v1]) € T> x T2 Ju=w1 Av < v}
. .(similarly for the other Allen relations)
(r, s) =rf Us®
(X, )=V X T VXrY)eT. V(X),VY)) ert}

A%}t?—[:{QEAIHtva)EAI}

),
),
)
(VR.C)} 42 ={a € AT | Vb.(a,b) € Rf = be CF, 4}
OV} pqy ={ae AT | Tb.(a,b) € READECT, 5}
(p: C)iz}tH_{aedonptI|pI ) € C% 4 a0}
)%tH—{aedonptﬁdoml | pf (a) = ¢f (a)}
)%}t%—{aedonptﬂdomq | pf (a) # af (a)}
)II)tH_A \ domp;
(C@X))I; tH = ng(x)ﬂ-t
)
C)y,

Vi H = CVtHU{Y»—H)(X)}
7—1 oy NOE Cyiot
RtI = {(a,b) € AT x AT | (t,a,b € R7}
fE(a) =10 iff ff(t,a) =10
(yoq)f(a) =0 iff ¢/(7{(a))=b
g =*g*

Figure2. TheT L-ALCF semantics.

AT CTrx AT, RTCTrx AT x AT
fE(Tr x AT P el AT o oxgT AT prtial AT

Note the relationship between roles, features, and paremfieatures: first, features
are simply roles that are required to be functional; secpadametric features dif-
fer from features in being independent from time, i.e., they (temporally)ylobal
functional roles.

The second step in definingL-ALC F's semantics consists of dealing with tem-
poral constraint networks that occur inside the@perator. These networks are one of
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the most common formalisms for temporal reasoning in Al,esge[ALL 83, VIL 90,
NEB 95]. Formally, aemporal constraint networig a labeled directed graght, 7¢),
whereX is a set of variables representing the nodesZrid a set of temporal con-
straints representing the labeled edges as defined in Figurbe semantics of tem-
poral constraint networks is defined usimgriable assignments.e. total functions
V : X — T2 associating an interval to each temporal variable from aXsetAs
defined by theemporal interpretation functiorf in the upper half of Figure 2, an
interpretation of a temporal constraint network is a setarfable assignments that
satisfy the temporal constraints. The notat{on, 7:)¢ .y, used to inter-

{1?p—>t1 ,1:2>—>t2,.

pret concept expressions in the next step, denotes thetsubgE, 7¢)¢ where the
variablex; is mapped to the interval value

We can now perform the last step of definifd - ALCF’s semantics. Theter-
pretationog,tﬂ of a7 L-ALCF concept” with free variables:, ...,z (possibly
includingt) is based on

— avariable assignmemtsuch thatry, . . ., x5, are in the domain of,
—anintervak € 7*, and
— anassignment constraift = {y; — t;,...} with y; variable and; € 7.

The exact details of defining the interpretatiorifof-.ALCF concepts can be found
in the lower part of Figure 2.

Intuitively, the interpretatior©'}, , ,, of a TL-ALCF conceptC is the set of ele-
ments of the domain which are of typéat the time interval, with the assignment for
the free temporal variables ifi given by (c.f. the definition of(C@X)ﬂt,H) and
with the assignment of variables in the scope of the outerteosporal quantifiers
constrained by{. Thenatural interpretation functior©?, being equivalent to the in-
terpretation functiomg’m with anyV such tha®’(§) = ¢, and# = (), is introduced
as an abbreviation. An interpretati@ris amodelfor a concept if, for somet € T,
CI # 0. If a concept has a model, then itdatisfiable otherwise it isunsatisfiable

We will now informally discuss the intendedeaningof 7 £-ALCF concepts. As
already noted, a central role is played by the temporal exiitl quantifier ©” and
the temporal qualification operatof”. For example, to represent all the objects that
satisfy a concepf’ at a time interval that is after the “current interval”, wencarite

O(z)(zat).(CQr).

Here, the® operator introduces the new variabl@nd ensures that the time interval
it denotes is located after the current interiial hen, theQ operator “evaluate” at
x thus ensuring that' holds at the time interval denoted by
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Stack(BLK1, BLK2) -
~ >
Clear-Block (BLK1) _Holding-Block(BLK1) Clear-Block(BLK1)

v W Z
Clear-Block (BLK2) _ ON(BLK1, BLK2)
X Ty

Figure 3. Temporal dependencies in the definition of lheck action.

Let us now consider some more interesting examples from #iiekimown blocks
world domain. First, we define a concept representing theracf stacking a block
on top of another block

Basic-Stack = <O(xy)(x mi)(d my).
((+BLOCK : OnTable)@x MM (xBLOCK : OnBlock)@y)

Basic-Stack denotes any action involving €BL0OCK that was oncé@nTable and
thenOnBlock. The parametric featuseBLOCK plays the role oformal parameter of
the action, mapping any individual action of typesic-Stack to the block to be
stacked, independently from time. Théterval can be understood as the occurring
time of the stacking action. The temporal constraintsn 1) and(f m y) state that
the intervalz should meet the intervdl—the occurrence interval of the action type
Basic-Stack—and that; should meey.

To illustrate the expressive power of otHEIL-ALCF constructors, let us now
refine theBasic-Stack example. Figure 3 shows the temporal configuration induced
by the stacking action in some more detail: a stacking adtieolves two blocks—
BLK1 andBLK2—which should be both clear at the beginning; the centrdl gfathe
action consists of grasping one block; at the end, the black®ne on top of another,
and the bottom one is no longer clear. The formal definitiothefactiorStack is:

Stack = O(zyzovw) (xfif)(y mif)(zmig)(vot)(wft)(w miv).
((*BLOCKQ : Clear-Block)@uz M (*xBLOCK100N | «BLOCK2)@Qy 1
(*xBLOCK1 : Clear-Block)@u M (xBLOCK1 : Holding-Block)@Quw M
(#BLOCK1 : Clear-Block)@z)

Apart from providing a more fain-grained modeling, the nesfinition of stacking
uses the feature agreement construct®BLOCK100N | xBLOCK2)@y indicates that,
at intervaly, the objecON which xBLOCK1 is placed isxBLOCK2. Note that the world
states described at the intervals denoted hy, > are the result of an action gfasp-
ing a previously clear block:

1. In this paper, equalities are used only for introducing earfor complex concepts. Such
equalities are thus not intended to denote so-called TBaxbieh are frequently used with
description logics. Please refer to Section 5 for a briefulision of reasoning under TBoxes.
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Grasp = Oz w 2) (zof)(wff)(w mix)(zmit).
((*BLOCK1 : Clear-Block)@x M (xBLOCK1 : Holding-Block)@w M
(xBLOCK1 : Clear-Block)@z)

TheStack action can be redefined by making use oféresp action:

Stack = Oz yuv) (zfif)(ymif)(uft)(vot).
((*BLUCKQ : Clear-Block)@uz M (xBLOCK100N | xBLOCK2)@y I
(Grasp[z]@uv)@u)

The temporal substitutive qualifi€érasp[z]@Quv) renameswithin the definedsrasp
action the variable: to v. Thus, it is a way of establishing a coreference between two
temporal variables ensuring that the temporal constrpmtsiliar to the renamed vari-
ablex are inherited by the substituting interval Furthermore, the effect of tempo-
rally qualifying the grasping action atis that thej variable associated to the grasping
action—referring to the occurrence time of the action ftsé$ bound to the interval
denoted byu. Because of this binding on the occurrence time of the gnaspttion,
the t variable in the grasping action and theariable in the stacking action denote
different time intervals, so that the grasping action osa@iran interval finishing the
occurrence time of the stacking action.

3. Thelogic ALCF(A)

As noted in the introduction, the temporal description éadiCC F(A) is obtained
by taking the logicALCF (D), which provides for concrete domains, and instantiat-
ing it with a concrete domain that is based on time intervals and the Allen inter-
val relations [LUT 97, LUT 02c, LUT ar]. For the sake of brgyitve do not intro-
duce ALCF(D) in general (see, e.g. [LUT 02c]), but rather define it's splexation
ALCF(A) right away.

The syntax ofALC F(A) is obtained from the syntax of LC F as given in Figure 1
by making the following modifications:

— ALCF(A) does not provide parametric features.

- ALCF(A) is equipped with a new sort of feature, so callechporal features

— The temporal part oALCF(A) is integrated into the language by adding the
temporal concept constructor

E.F — 3p;,p,y.r,

wherer is one of the Allen relations, and , . . ., p,, aretemporal paths-sequences
v10---0q,0hwith v, ..., v, features, and a temporal feature.

In contrast to/ £L-ALCF, the semantics ofl LCF(A) is not a multi-dimensional one,
but rather it is very close to “classical” description loggemantics. To introduce it,
we again fix a linear, unbounded, and dense temporal steigtue (P, <)—this
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structure is assumed to be the same as inftle ALCF case. Then, amMlLCF(A)
interpretationZ = (A”,.T) consists of a sef\”(the domain), and an interpretation
function-” that assigns a meaning to atomic concepts, roles, feammedstemporal
features:

AT c AT, RTC AT x AT
fI . AI pm'_ti>al AI'

BT AT P s

If p = q o his atemporal path, thep? is defined as” (¢Z(-)), where the meaning of
atemporal paths is defined as in Figure 2. Apart from the teatponcept constructor,
the interpretation of complex concepts is also determineBigure 2—just omit the
three temporal indices. The semantics of the new temporateqa constructor is
given as follows:

(Fpy,po.n)T ={ae AT |Jt;,tb € TX: (i) € pE A (ats) € pL A (ti,t2) €6 Y,
wherer? is defined as in Figure 2.

Before discussing the intuitions behint’C F(A), let us adopt two conventions:
first, we will use parametric feature names®EL-ALCF as non-temporal feature
names inALCF(A). Thus, we may write e.g«BLOCK in an ALCF(A) concept to
denote a (non-temporal) feature. Second, in the followiegnill only need a single
temporal feature which will be denoted withne.

Comparing the semantics 6fL-ALCF and ALCF(A), the main difference is
that 7 £-ALCF's semantics is two-dimensional (i.e. based on the prodiithe
domain and the set of time intervals), whileCC F(A)’s semantic is not. The con-
sequences of this difference can be summarized as follows:

—in TL-ALCF, a domain element may be in the extension of a conoept
w.r.t. a given time intervaimoreover, objects are not associated with a “life spant’, bu
rather exist at any given time interval.

—in ALCF(A), concept membership of domain elements is independemnef t
moreover, objects are associated witlmaque life sparvia thetime feature?

The semantic difference induces two different paradignstie representation of
temporal conceptual knowledge. If the aim is to talk abotfieal” objects whose
properties vary over time, then£- ALCF seems like a natural choice. On the other
hand, if we want to reason about temporal entities that esecésted with a unique
temporal extension, then usiogCCF(A) is the better approach.

2. Or with multiple time spans if we admit more than one tempfwature. This can be very
useful: consider e.g. the introduction of distinct tempéeatures for the life time, the youth, the
work time, etc. However, in the context @fL-ALCF we prefer to stick to a single temporal
feature.
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Basic-Stack

*BLOCK : OnTable *BLOCK : OnBlock

time time time

meets meets
Figure4. Model of theALCF(A) Basic-Stack.

Despite these differences, there exists a close and nadletibnship between the
two temporal description logicE L-ALCF and ALCF(A). To get a first idea, let us
represent the basic stack action from Section 2 in the fraomewf ALCF(A) :

Basic-Stack = step,; : (xBLOCK : OnTable) M1
step, : (xBLOCK : OnBlock) I
I(step, o time), (step, o time).m
I(step, o time), (step, o time).m

The concept states that aRysic-Stack is related to three objects via the features

step,, step,, andstepﬂ. These objects describe the basic stack action at different
time intervals — Withstepﬁ representing the occurring time of the action. For each
step, a corresponding time interval is associated bytthe feature. The relation
between these time intervals is described using the terhpanaept constructor and
resembles the temporal network in tfieC-ALCF definition of the basic stack. In
step,, thexBLOCK is OnTable, and instep, it is OnBlock. This situation is illus-
trated in Figure 4.

Comparing the two definitions @8&asic-Stack, their main difference can be char-
acterized as follows: in th& £- ALCF definition, the basic stack is represented by a
single logical object, whose properties are defined seglgrfr each temporal inter-
val. To the contrary, indLCF(A), the basic stack is represented by a logical “meta-
object” (theBasic-Stack object itself in the above concept definition) and a set of
additional logical “temporal-facet” objects (tbeep; successors of tHeasic-Stack
meta-object), each of which has unique properties and septs the basic stack at a
unique time interval.

To reduce satisfiability of £-ALCF concepts to satisfiability ofl LC F(A) con-
cepts, we exploit the idea suggested by this simple exantpke:translation must
be such that one domain element in models of ie ALCF concepts corresponds
to a number of domain elements in models of #£CF(A) translation, i.e. one
meta-object together with a number of temporal-facet dbjiat represent the single
TL-ALCF domain element at different time intervals. An additionifficllty is to
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2T =1 -1l =T
-(CND)—-CuU-D -~(CUD)—=-Cn-D
~(VR.C) = IR~C ~(3R.C) = YR~C
--C = C =(p:C)—=ptd p:=C
-(plg) = ptU ¢tU ptg  =(pTg) — pTU ¢t U plg

a(pt) = p: T

Figure5. NNF rewrite rules

preserve the temporal invariance of parametric featurssliUstrated in the next sec-
tion, this problem is solved by using the feature agreememstcuctor ofALC F(A).

4. Thereduction

This section presents the reductiorVof- ALCF concept satisfiability tod LC F(A)
concept satisfiability. To simplify matters, we will onlyrmsider7 £- ALCF concepts
in so-calledexistential normal form (ENF)In this normal form, the only temporal
operator that may occur is a single™ operator, i.e.7 L-ALCF concepts in ENF are
of the form

C: 0(7)%@0“@1@)(1 ﬂ...ﬂQn@Xn, (*)
whereX = {X,..., X,,} and each); is an (atemporal LCF concept. Addition-
ally, we assume that tHEL- ALCF concept®)o, . . ., @, are innegation normal form

(NNF), i.e. that negation occurs only in front of concept nameghis case, we will
simply say that the concept is in normal form (NF) As the following proposition
shows, normal form can be assumed without loss of generality

PROPOSITION1 (EQUIVALENCE OF NF). — EveryT L-ALCF conceptC' can be
converted in polynomial time into an equivalent conceptammal form.

PROOF. — In[ART 98], itis shown that every £- ALCF concept can be converted
in polynomial time to an equivalent one in ENF. We can therveatitheQy, ..., Q,

to NNF by exhaustively applying the rewrite rules in Figuré\®te that this takes only
polynomial time and the length of the resulting concept iypomial in the length of
the original concept. ]

Let C' be aT L-ALCF concept in NF of the form«). To translateC' into an
equi-satisfiabled £LC F(A) concept¥ (C'), we introduce the new featurds, . . ., f,
(corresponding to thetep, features in Section 3), the new concept names for
all 0 < i,5 < n, and the new concrete featurene. We assume w.l.0.g. that these
features and concept names are not used irVitiedLCF conceptC. For the re-
mainder of this section, we use the symifdb denote features that are distinct from
the reserved features, . . ., f,,, parametric features are denoteddgy and~ denotes
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features that may or may not be parametric, but are distimoan the reserved fea-
tures. To define the concedtC'), we need to define a number of auxiliary concepts.
To start with, we need a mapping framZ-.4ALC F’s temporal constraint networks to
ALCF(A) concepts.

DEFINITION 2 (TRANSLATION OF TEMPORAL NETWORKS). — LetT> be a tem-
poral constraint network for the set of variablés :_{Xo,Xl, ..., X,}, where

X, = §. For each temporal constraintX r Y) € 7¢, we define andLCF(A)
conceptn(X r Y), as follows:

a(X rY) = 3(f; o time), (fj o time).r if X = X; andY = X.
Then, the translation(7¢) of 7¢ is defined as follows:

a):= [1  aXrY).
(XrY)eT

The remaining auxiliary conceptsFe, 2, )'—are defined in Figure 6. In the
definition of "+, we usefeat(C') to denote the set of all features (either non-parametric
or parametric) inC', androl(C') to denote the set of all role namesGh

DEFINITION 3 (TRANSLATION OF T L-ALCF CONCEPTY. — GivenaT L-ALCF
concepiC, its ALCF(A) translation, ¥ (C'), is defined as:

U(C):=a()NTenQnQ.

Before giving a formal proof of the fact thdt(C') andC are equi-satisfiable, let
us briefly discuss the various concepts used in the reducTios concepf) enforces
the existence of. + 1 temporal-facet objects g&-successors of the root object (i.e.
the object that satisfies the reduction conceff')). Thus, this root object is a meta-
object in the sense of the previous section. Furthermforensures that, for each
the temporal facet that is afi-successor must be a membenof@;). The purpose
of the ¥; translation used here is to insert tfiefeatures after each feature and role
name used ii);. This is necessary since not only the root object, but alsotlakr
objects are composed of a meta-object and 1 temporal facets.
The concept(7¢) associates &ime feature to each temporal-facet of the root meta-
object ensuring that the values of su¢he features satisfy all constraints 7. It is
interesting to note thanlythe f; successors of the root meta-object are equipped with
time intervals via theime feature. As we said before, all successors of such temporal-
facet objects implicitly “inherit” the same temporal sttuie via thel; translation.
The concepl'~ serves two purposes. First, the last ro'gfuses feature agreements
to ensure that parametric features are independent from tim if two ALCF(A)
domain elementg; andd, represent two temporal-facet of the same meta-object,
thend; andd, should have the same successor for each parametric fe&ecend,
together with thé)’ concept and translations; andl'.,, I'c ensures that if, for a given
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Q:=fo: ‘IJO(QO) RN \Pn(Qn)

Ql:()gzggq(;l(fl o time), (f] o tlmE) Z) — Ai,j

o= Tl A= filfin

0<i<j<n
0<lg<nA’ 7 (0<|:|<n(’y€feat (fi sy TU S sy s Aig) 1
[l A,
RErol(C) f}” VE. J))

((M7_o f; 0 xg1) L (M7 (fo 0 %) L(f; © %9)))

*g usedin C

Pi(y) =7
Pi(poy):=®i(p)o fiony

Tt(y)=v:T¢
To(vop):=v:(Tcn fi:Th(p))
Ti(A):=A
Ti(—mA)=-A
Ui (DNE):=T;y(D) 1N ¥(E)
U, (DUE):=%,D) U T,(E)
U;(AR.D) :=3R.(Tc N f; : U;(D))
i(VR.D) :=VR.(fi : ¥;(D))
i(p: D) :=®(p) : fi : i(D)NTE(p)
Wi(plq) == @i(p) 1 ®i(q) NTH(p) MTE(q)
Ui (ptq) == ®i(p)1®i(q) NTH(p) NTE(q)
U;(pt) := ®i(p)T

Figure 6. Definition of auxiliary concepts.
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meta-object, two variableX; and X; denote thesametime interval, then for each
successor of such meta-object b@itand f; features coincide. The latter is necessary
since, inT L-ALCF models, a domain element together with a time inteavédjuely
identifies concept membership, role membership, etc.

Proof of correctness

Throughoutthe proofs, we will writeub(C') to denote the set of all subconcepts of
the concept’, includingC itself. We now establish the correctness of our reduction.
For the sake of clarity, it is split into two propositions.

PROPOSITION4. — LetC be aT L-ALCF conceptin normal form. ThedLCF(A)
satisfiability of U (C') impliesT L-ALCF satisfiability ofC'.
PROOF. — Let7 be a model of¢ (), and letd- € ¥(C)”. We defineA* to be the
smallest subset ak satisfying the following properties:
1)dec € A%
2)ifde A*,d € AT,0<i<mn,andIR.(Cc N f; : U;(D)) € sub(¥(C)) such
that
- fH(d) € BR.(Te N f; - Uy (D)))E,
- (ff(d),d’) € R, and
-d' e (Te N fi: Uy(D))”,
thend’ € A*;
)ifd € A*,dy,....d, € AT, 0 < i < n, X € sub(¥(C)), andp* is a path
such that
- d = d11
- X is of the form®;(p) : f; : U;(D )I’l I'L(p), andp* = p,

X is of the form®; (p) | ®;(q) M T (p) NT¢(q), andp™ € {p, ¢}, or
X is of the form®; (p) 1 ®;(¢) N T (p) M Fio(q), andp® € {p,q},

- fH(d) € X7,
_p* =y 0"‘0’Yk—1,and
- (fF(de), desr) € 77 for 1 < £ <k,
thendy, ..., d, € A*.
Obviously, the sub-interpretation @finduced byA* is rooted byd. Moreover, it is
not hard to show thah* C I'Z.:
—dc € T'L by definition of ¥ (C).
—if d € A* due to Property 2, thedl € ' by choice ofd’;

—Letd;,...,d; € A" due to Property 3. Using the definition of the concept
I'L(p) and the fact thayfZ(di) € TL(p*), it is easily verified thatl; € T'L for
1<j<k



Correspondence between temporal DLs 17

We now define & £L-ALCF interpretation7. For convenience, we set
t; .= time* (ff(dc)), for0 <i<n

and use this abbreviation for the remainder of the proof. Netw

AT = A¥

AT = {(t,d)|de A7 t =t;, andf(d) € AL for somei < n}

R7 = {(t,d,d')|d,d € AT t =t;, and(f(d),d") € R* for somei < n}
7 = {t,d,d)|d,d e A t=t;, andfT((fl(d)) = d for somei < n}

g7 = {(dd)]d.d € AT andeg? (fE(d) = d'}

We now prove some important properties6f Note that the first property implies
that the interpretation of non-parametric featureg/ins functional as required (the
interpretation of parametric features is obviously alstctional, but does not depend
on the following property).

1) Foralld € A* and alli, j with t; = t;, we havef/ (d) = f](d).

Proof: By definition ofQ?’, ¢; = t; impliesdc € A; ;. SinceA* is rooted byd¢
andA* C I'Z, the definition ofl'« (second/third line) yields thak* C A{j. Again
by definition of ' (first line) and since\* C T'¢, this impliesf/ (d) = f/ (d) for all
d e A*.

2) Foralld € A*, alli with 1 < i < n, and all parametric featureg, either
*g” (fZ(d)) andxg” (3 (d)) are both undefined, oy (£ (d)) = *g” (7 (d)).

The proof is easy by considering the fact thgt C I'Z, together with the last line
of the definition ofl'.

3) Letd,d’ € A*, p be a path not containing the featurgs. . ., f,, and0 < i <
n. Thend' € (®;(p))X(f£(d)) iff p/ (d) = d'.

The proof is by induction on the length pf For the induction start, let be of
length one, i.ep = . Then®;(p) = ~.

First, assume thag is a non-parametric feature. Theff,= v (f%(d)) implies
(ti,d,d") € v7 by definition of 7, and thus the “only if” direction holds. For the
“if” direction, assume thatt;, d,d’') € v7. Then there is g with 0 < j < n such
thatt; = t; andy”*(f7(d)) = d'. By Property 1, we havg¢’(d) = f7(d) and thus
vE(fE(d)) = d' as required.

Let nowy be a parametric feature. Then?(f(d)) = d' iff (by Property 2)
YH(f3(d) = d'iff y7(d) =d'.

Now for the induction step. Let = g o~. Then®,;(p) = ®,(q) o f; o y. As-
sume that®;(p))Z (fZ(d)) = d'. Then there is & with (®;(¢))*(f(d)) = d" and
YE(fE(d")) = d'. By IH, we obtaing’ (d) = d". To prove thapy (d) = d', itthus re-
mains to show thatg(d”) = d'. In both the non-parametric and the parametric case,
this can be done exactly as in the induction start (usingabethaty” (f7 (d")) = d').

Vice-versa, assume thaf (d) = d’. Then there is & such that;’ (d) = ¢” and
77 (d") = d'. By IH, the former yields(®;(q))* (fZ(d)) = d”. It thus remains to
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show thatyZ (fZ(d")) = d’, which can again be done as in the induction start (using
the fact thaty” (d”) = d').

We now prove the following, central claim:

Claim: Foralld € A7, 0 < i <n,andD € sub(C), we have thaf? (d) € ¥;(D)*
impliesd € Dy’ .

This claim easily yields the desired result: sii¢és in normal form, it is of the form
C=0X)QoNQ.@X, MN...NQ,QX,,

with X = {X;,..., X,}. We define a variable assignmeitfor by setting/V(X;) :=
t; for 1 < i < n. Sincedc € a(7¢)%, we have)y € <X77&>§:—}t0' Using the claim, it
is then readily verified that

de € (QoMQ@x, m...nN Qn@Xn)f\,,w.

Thus,d¢ € C;Z andC is T L-ALCF satisfiable as required. The proof of the claim
is by structural induction:

— D is a concept name. TheW,;(D) = A and(t;,d) € A7 is an immediate
consequence of the definition gf.

—D = —A (A is a concept name singg is in NNF). Then,¥;(D) = —A.
SupposefZ(d) ¢ AT and(t;,d) € A7. Then there is g with 0 < j < n such that
t; =t;andf] (d) € A”. By Property 1, we havg/ (d) = f7(d). Thus,f](d) € A7,
which is a contradiction.

— D = Dy 1 D,. Easy using IH and the semantics.

— D = D; U D,. Easy using IH and the semantics.

—D =3R.E. Then,¥;(D) = 3AR.(T¢c M f; : U,(E)). Sincef’(d) € ¥;(D)*,
there is al’ such that f(d),d') € R andd’ € (Tc 1 f; : ¥;(E))%. By definition
of A*, we thus have’ € A*. Moreover,fZ(d') € ¥;(E)t. By definition of R7, we
obtain(t;,d,d') € R7. By IH and sincef/ (d') € ¥;(E)”, we getd’ € E;/. Thus,
de Dy.

- D =VR.E. Then,¥,;(D) = VR.(f; : V;(E)). Let(t;,d,d') € R7. Then there
is aj with 0 < j < nsuchthat; = t; and(f(d),d’) € R”. By Property 1, we have
f7(d) = f](d) and hencd f/(d),d') € R". Sincef/(d) € ¥;(D)”, we thus have
d € (fi : U,(E))T andff(d') € ¥;(E)T. Thus, IHyields?’ € E; as required.

—-D =p: E. Then,¥;(D) = ®;(p) : f; : ¥;(E) NT4(p). Sincefl(d) €
¥,;(D), there is ad' € AT such that(®;(p))?(f1(d)) = d and fZ(d) € ¥;(E)~.
By Property 3, we thus ha\mf(d) = d', and IH yieldsd’ € Etj Summing up, we
obtaind € Dy’

—D =p g Then,¥;(D) = &;(p) | ®i(q) N TE(p) NT;(q). Sinceff(d) €
T;(D)%, there is al’ € A” such that

(@:(0))" (f7 () = (®i(a)) (f7 (d)) = d.
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By definition of A*, we haved’ € A*. By Property 3, we have/ (d) = ¢/ (d) = d/,
and thusi € Dy as required.

—D =ptq. Then,¥;(D) = &;(p) t ®;(q) NT%(p) NT%(q). Analogous to the
previous case.

—D = pt. Then,¥,;(D) = &;(p)t. Let f(d) € ¥,(D)*, and assume that
dé¢ D;7 Thenthereis @ € A7 such thap{(d) = d'. By Property 3, we thus have
(®;(p)L(f1(d)) = d', which is a contradiction.

n

PROPOSITIONS. — LetC be aT £L-ALCF conceptin normal form. TheRL-ALCF
satisfiability ofC' implies ALC F(A) satisfiability of¥(C').

PROOF. — LetJ be aT £-ALCF model ofC and letd € AT andt, € TX such
thatde € Cy. Let

C=0(X)T.QoNQ1@X; M...NQ,QX,

vﬂh_Y = {X1,..., X, }. By the semantics, there exists a variable assignmeérmt
(X, 1% ,,, such that

do € (QoMQ1OX, M ... MQAX, ), , 4 (%)

In the remainder of this proof, we us&, = §, andt, to denotéV(X;), for1 < i < n.
We now construct aml £LC F-interpretatior? :

AT = AT U{(dt;)|de AT and0 <i < n}
AT = {(d, ) | (t d) € AV andt = t; for somei < n}
= {(d, | (t,d,d") € f7 andt = t; for somei < n}
*xgt = {((d, V| (d,d') € x¢7 and0 < i < n}
RT = {((d, | (t,d,d") € R7 andt = t; for somei < n}
timel = {((do, ),t)|0<i<n}
AT AT ity =t
it 0 otherwise
fro= )) | d e A7 and0 < i < n}

for all concept namesd, A; ;, non-parametric feature§ reserved featuref, para-
metric features.g, role namesk, andj, ¢ € {0,...,n}. We show thatlc € ¥(C)~.
To this end, it is readily verified thak- € (a(72) 1T MQ')Z. It thus remains to show
thatdo € Q. This is obviously an immediate consequence)f T's interpretation
of the f; features, and the following claim:

Claim: Foralld € A7, 0 < i < n, andD € sub(C), we have thatl € D;7 implies
(d, ti) S ‘IH(D)I

Before we prove the claim, let us state three useful propediA”:
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1) A7 C T¢, as itis easily verified by considering the definitions oftbdt’,
andxg?”.

2) For alld € A7, pathsp not containing the featureg,. .., f,, andi €
{0,...,n}, the following holds: if there is @’ with p/(d) = d, then(d,t;) €
Te(p)”

The proof is by induction on the length pf using Property 1. Details are left to
the reader.

3) Letd,d’ € A7, p be a path not containing the featurgs. .., f,, andi €
{0,...,n}. Thenpy (d) = d" iff (®;(p))*((d,t;)) =d'.

The proof is again by induction on the lengthyofDetails are left to the reader.

We now proof the claim by structural induction:

— D is a concept name. Thef,;(D) = A, and(d,t;) € D* is an immediate
consequence of the definition gF.

—D = A (Ais a concept name sineg is in NNF). Then,U;(D) = —A. Itis
an immediate consequence of the definitionddfthat (¢;,d) ¢ A7, which implies
(d,t;) ¢ AL,

— D = D; 1 D,. Easy using IH and the semantics.

— D = D, U Ds. Easy using IH and the semantics.

—D = 3R.E. Then,¥y(D) = JR.(Tc N f; : ¥;(E)). Sinced € Dy, there
isad € A7 suchthat(t;,d,d') € R’ andd’ € E;. By definition of R, we
obtain((d,t;),d") € RT. By IH, we get(d', t;) € E~. By the interpretation of th¢;
features, this yieldg' € (f; : ¥;(F))’. By Property 1, we getd, t;) € ¥,;(D)*.

—D = VR.E. Then, U;(D) = VR.(f; : U;(E)). Let((d,t;),d) € RZ. By
definition of RZ, we haved’ € A7 and(t;,d,d’) € R7. Sinced € D}/, we thus
haved’ € Ey. Thus, IH yields(d',t;) € ¥;(E)’. By the interpretation of th¢;
features, this yieldd’ € (f; : ¥;(E))* as required.

—-D =p: E. Then,¥;(D) = &;(p) : f; : ¥;(E) NT4L(p). Sinced € DY,
there are is @ € A7 such thapy (d) = d’ andd’ € E;/. By Property 3, we have
®;(p)*((d,t;)) = d' and IH yields(d',t;) € ¥;(E)’. Thus, by the interpretation
of the f; features we havéd, t;) € (®;(p) : f; : ¥;(E))’. To verify that(d, t;) €
¥,;(D)Z, it thus remains to show thdtl,#;) € ' (p)?, which is true because of
Property 2.

—-D =plq Then¥;(D) = &(p) | ®;(q) NT4(p) NT%4(q). Sinced € DY,
there are is a’ € A7 such thatpy (d) = ¢/ (d) = d’. By Property 3, we have
®;(p)"((d, ;) = ®i(q)" ((d, t:)) = d'. Thus,(d, t;) € (®;(p) | ®i(q))". To verify
that(d, t;) € ¥,;(D)?, it thus remains to show thét, ;) € (T4 (p) T4 (¢))T, which
is an easy consequence of Property 2.

—D =ptq. Then,¥;(D) = &;(p) t ®;(q) NT%(p) MT%(q). Analogous to the
previous case.
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—D = pt. Then,¥,(D) = &;(p)t. Letd € (pt)7 and assume thdtl,t;) ¢
¥, (D)”. Then thereis @' € A’ such that®;(p)”((d,t;)) = d'. By definition of
®;(p) and ofZ, we haved’ € A7. By Property 3, we obtaipg(d) = d', whichis a
contradiction.

Since satisfiability ofALCF(A) concepts is PSACE-complete [LUT 02c], satis-
fiability of ALC-concepts is PEacE-hard, andALC is a fragment ofl £L-ALCF, we
obtain the following theorem.

THEOREM 6. — Satisfiability of7 £L-ALCF concepts i$ SPACE-complete.

5. Conclusions

We have discussed the relationship between the two intbastd temporal DLs
TL-ALCF and ALCF(A), and found that the gap between the two different knowl-
edge representation paradigms suggested by these logitedaidged by a suitable
translation. Based on this translation, we have presentedietion from7 £-ALCF
concept satisfiability todLCF(A) concept satisfiability that allowed us to determine
the complexity of7 £-ALCF concept satisfiability as a PS&CE-complete problem.
Moreover, the reduction allows to use theCCF(A) tableau algorithm described
in [LUT 02c] to be used for reasoning onC-ALCF concept expressions.

Concerning future work, the described reduction can benebe@ in at least two
interesting directions:

(2) In this paper, we concentrated on the satisfiability ofcspts. In description
logics, an equally important reasoning task is the subsiampf concepts: a concept
C'is subsumed by a conceptif C7 C D7 for all interpretations. In description
logics with all Boolean operators, subsumption can be redte (un)satisfiabilityC'
is subsumed by iff CM—D is unsatisfiable. Clearly, we cannot do thigig-ALCF
since full negation is not available in the temporal gavtoreover, our reduction can-
not be used to decideL-ALCF subsumption. Consider, for example, the concepts

C = <(x)(4 before z).AQx
D = O(x,y)(t before z)(y equals ). AQy

Then(C' is subsumed by (actually, they are equivalent concepts), BU(() is not
subsumed by (D) since¥(C') has only two “reserved featuregy and fi, while
U(D) has three:f,, f1, and fo. It would thus be interesting to extend the corre-
spondence betweeh - ALCF and ALCF(A) developed in this paper to concept
subsumption.

3. Indeed, adding full negation t6£-A4LCF would result in undecidability. Still, it was shown
in [ART 98] that subsumption of £-ALCF-concepts is decidable.
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(2) For the reduction, we consider the satisfiability of agpts without reference
to so-called TBoxes. As modern DLs are usually equipped Whxes [BAA 03b],
it would be worthwhile to add them to both£-ALCF and ALCF(A), and to ex-
tend our reduction accordingly. However, we cannot expecbtain P $ACE-results:
in [LUT 02b], it is proved thatALCF concept satisfiability w.r.t. general TBoxes
(also known as GClIs) is undecidable. Thus, the same holdbdtr 7 £L-ALCF
and ALCF(A). Undecidability may be overcome by resorting to so-ca#egiclic
TBoxes [BAA 03b]. However, as proved in [LUT 994 LCF concept satisfiability
w.r.t. acyclic TBoxes is NEPTIME-hard. Clearly, this lower bound is inherited by
TL-ALCF and ALCF(A). A matching upper bound fod £C F(A) has been proved
in [LUT 02c]. A similar bound for7 £-ALCF is yet to be established.
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