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ABSTRACT.In this paper, we investigate the relationship between two decidable interval-based
temporal description logics that have been proposed in the literature,T L-ALCF andALCF (A).
Although many aspects of these two logics are quite similar,the two logics suggest two rather
different paradigms for representing temporal conceptualknowledge. In this paper, we exhibit
a reduction fromT L-ALCF concepts toALCF(A) concepts that serves two purposes: first,
it nicely illustrates the relationship between the two knowledge representation paradigms; and
second, it provides a tightPSPACE upper bound forT L-ALCF concept satisfiabiliy, whose
complexity was previously unknown.
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1. Introduction

Description Logics (DLs) are a family of logic-based formalisms for representing
and reasoning on conceptual knowledge, which have over the the last 20 years been
successfully applied to a large number of application problems [BAA 03b]. Important
characteristics of description logics are high expressivity together with sound, com-
plete and terminating reasoning algorithms. Although expressive DLs typically have a
rather high theoretical complexity (often EXPTIME-complete), highly optimized rea-
soners, such asFaCT [HOR 00],RACER [HAA 01], andDLP [PAT 99], have been
developed and exhibit a quite impressive performance on real applications [BAA 03b].

0. The first author has been partially supported by the EU projects Sewasie, KnowledgeWeb,
and Interop.
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Temporal extensions of logic formalisms are relevant to capture the evolving be-
havior of dynamic domains, and they have been extensively considered in both artifi-
cial intelligence and theoretical computer science. In particular, temporal logical for-
malisms have been studied and applied in areas such as specification and verification
of computer programs [PNU 86, EME 90], temporal informationsystems [GAB 94,
CHO 98, CHO 03], planning and natural language [ALL 91, ALL 94, BEN 95].

Since the incorporation of temporal aspects also plays an important role in many
application areas of description logics such as reasoning about temporal database
schemas [ART 99b, ART 02, ART 03] and reasoning about actionsand plans [ART 98,
ART 99a], in the last years an increasing interest in temporal description logic (TDL)
could be observed—see [ART 01, BAA 03a] for a survey. When constructing a tem-
poral description logic, one of the most important decisions to be made is whether time
points or time intervals should be used as the underlying temporal primitive [ART 01].
As known from temporal logic and other areas of artificial intelligence, this decision
has a severe impact on the expressiveness and computationalproperties of the re-
sulting logic [GAB 94, GAB ar, GOR 03b, GOR 03a]. In DL research, both routes
haven been taken as witnessed by a series of papers on point-based TDLs [SCH 93,
WOL 98, WOL 99, STU 01, LUT 01, ART 02, GAB 03], and a number of papers on
interval-based ones [SCH 90, ART 94, BET 97, ART 98, LUT ar].

Interval-based TDLs have the advantage that they provide anattractive temporal
expressivitiy much richer than the expressivity of point-based TDLs. On the other
hand, the computational behavior of interval-based TDLs isoften problematic: even
very basic formalisms often turn out to be undecidable. An important example is the
interval-based TDL proposed by Schmiedel [SCH 90], which isvery natural but unde-
cidable since it contains Halpern and Shoham’s (undecidable) interval-based temporal
logic—calledHS in the following—as a fragment [VEN 90, HAL 91]. Due to these
computational problems, one of the prime goals of this research area has been to iden-
tify decidable TDLs that are expressive enough to allow the representation of temporal
conceptual knowledge in relevant application areas.

In this paper, we are concerned with two decidable interval-based TDLs:T L-
ALCF [ART 98], andALCF(D) [LUT 02a]. T L-ALCF is close in spirit to Schmie-
del’s undecidable temporal DL, and thus also to the temporallogicHS. It was devel-
oped for reasoning about actions and plans [ART 98, ART 99a],and is well-suited
for application domains in which objects have properties that vary over time. For ex-
ample, inT L-ALCF we can describe the evolution of students using the following
concept:

3(x; y)(y s x).(Student�x u Bahelor-Student�y):

Here,x andy denote time intervals and(y s x) states thatx andy begin at the same
time point, buty ends beforex. Thus, the described persons are students for some time
intervalx and bachelor students for some initial sub-intervaly of x (since they become
master’s students or PhD students afterwards, which is not modeled for simplicity).
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T L-ALCF is equipped with a rather rich language for expressing temporal rela-
tionships that is based on the-well known Allen relations for expressing the possible
relationships between time intervals [ALL 83]. In [ART 98],Artale and Franconi
show that concept satisfiability and subsumption, the fundamental reasoning tasks in
description logics, are both decidable forT L-ALCF . To do this, they use algorithms
that first convert concepts into a certain normal form by means of a quite complex
syntactic rewriting, and then apply two classical reasoning procedures, one developed
for temporal constraint networks and one for description logics, to reason on the nor-
malized concept.

The second description logic addressed in this paper,ALCF(D), is not a temporal
DL in its general form. Rather, it is equipped with so-calledconcrete domains, which
are used for representing qualities of real-world entitiesthat are of a “concrete nature”:
e.g. lengths, weights, temperatures, durations, and spatial extensions [LUT 03]. The
concrete domainD of ALCF(D) is not fixed, but rather canALCF(D) be “instanti-
ated” with a number of different concrete domains. In [LUT 97, LUT ar], it is shown
that a concrete domainA based on temporal intervals and the Allen relations yields an
instantiationALCF(A) of ALCF(D) that is well-suited for interval-based reasoning
with temporal knowledge.

The paradigm underlying the representation of temporal conceptual knowledge
with ALCF(A) is quite different from the one ofT L-ALCF . While T L-ALCF is
well-suited for reasoning about objects whose properties vary over time, inALCF(A)
objects are associated with a fixed temporal extension that can be understood as their
lifespan, and during which all of their properties remain constant. It is then possible
to enforce temporal constraints on the lifespans of relatedobjects. For example, we
can define a summer semester as a semester which is properly contained in some year
(in contrast to winter semesters, which overlap two years):

Semester u 9in-year:Year u 9time; (in-year Æ time):during:

The first conjunct states that the described objects are semesters, whereas the second
conjunct states that semesters are related to the year in which they take place via
the functional relationin-year. Finally, the last conjunct says that the lifespan of the
semester is properly contained in the lifespan of the associated year. It has been shown
that satisfiability and subsumption ofALCF(A)-concepts is decidable and PSPACE-
complete [LUT 02c].

Intuitively, the two TDLsT L-ALCF andALCF (A) are closely related: they
both allow the representation of temporal conceptual knowledge based on time inter-
vals, and they both contain the non-temporal DLALCF as a proper fragment. Nev-
ertheless, the different underlying paradigms make it surprisingly hard to relate the
expressive power of the two logics. The purpose of the current paper is twofold:

1) Understand the relationship betweenT L-ALCF andALCF(A) in terms of
their expressivity;

2) Provide a tight PSPACE complexity bound for concept satisfiability in
T L-ALCF .
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More precisely, we start withT L-ALCF and show, on an intuitive level, howT L-
ALCF concepts can be translated intoALCF(A) concepts that have the same mean-
ing. This shows how the gap between the two knowledge representation paradigms
of T L-ALCF andALCF(A) can be bridged. Then, we formalize the translation by
polynomially reducingT L-ALCF concept satisfiability toALCF(A) concept satisfi-
ability. Due to the known PSPACEcomplexity ofALCF(A), this yields a PSPACEup-
per bound forT L-ALCF concept satisfiability, which is tight. An additional advan-
tage of the reduction is that “practicable” reasoning becomes available forT L-ALCF .
Indeed, all modern DL reasoners such as the ones initially mentioned are based on
tableau-style reasoning procedures [BAA 00]. For the logicALCF(A), such a pro-
cedure has been developed in [LUT 02c]. In contrast, no (terminating) tableau-style
algorithms have yet been found for logics of theT L-ALCF family. Via our trans-
lation, theALCF(A) decision procedure can be used forT L-ALCF , thus replacing
the less practicable reasoning methods based on syntactic rewriting.

This paper is organized as follows: in Section 2, we introduce the syntax and
semantics ofT L-ALCF , together with a running example. In Section 3, we give the
syntax and semantics ofALCF(A), and show how this logic is able to express the
example introduced in Section 2. Based on this example translation, we discuss how
the different paradigms of temporal-conceptual knowledgerepresentation underlying
T L-ALCF andALCF(A) are related. The translation is made precise in Section 4,
where we use the ideas of Section 3 to reduceT L-ALCF concept satisfiability to
ALCF(A) concept satisfiability. In this way, we demonstrate the generality of the
translation technique proposed in Section 3 and obtain a PSPACE-completeness result
for T L-ALCF concept satisfiability. Section 5 makes some conclusions and shows
future directions.

2. The logic T L-ALCF

The temporal description logicT L-ALCF [ART 94, ART 98] can be viewed as a
combination of the non-temporal description logicALCF [HOL 90] with the interval-
based temporal logicHS of Halpern and Shoham [HAL 91]. However, to obtain de-
cidable reasoning problems,T L-ALCF allows only existential temporal quantifiers,
but no universal temporal quantifiers—thus including only afragment ofHS. Tech-
nically, T L-ALCF can be regarded as a decidable fragment of first-order interval
temporal logic.

The combinatory character ofT L-ALCF is reflected by its syntax, which is di-
vided into the temporal partTL and the atemporal partALCF . We fix countably
infinite and pairwise disjoint sets ofatomic concepts, roles, features, parametric fea-
tures, and temporal variables. Then,T L-ALCF conceptsare built following the
syntax rules in Figure 1. In the figure and throughout this paper, we use

– A to denote atomic concepts,

– C;D to denote (temporal)T L-ALCF concepts,



Correspondence between temporal DLs 5

TL C;D ! E j (non-temporal concept)

C uD j (conjunction)

C�X j (qualifier)

C[Y ℄�X j (substitutive qualifier)

3(X)T.C (temporal quantifier)

T ! (X r Y ) (temporal constraint)

T ! T j T T

r; s ! r , s j (disjunction)

s j mi j f j : : : (Allen’s relations)

X;Y ! ℄ j x j y j : : : (temporal variables)

X ! X j X X

ALCF E;F ! A j (atomic concept)

:E j (complement)

E u F j (conjunction)

E t F j (disjunction)

8R.E j (universal quantifier)

9R.E j (existential quantifier)

p : E j (selection)

p#q j (agreement)

p"q j (disagreement)

p" (undefinedness)

p; q ! f j (atomic feature)

?g j (atomic parametric feature)

p Æ q (path)

Figure 1. Syntax rules for the description logicT L-ALCF
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– E;F to denote (non-temporal)ALCF concepts,

– R to denote roles,

– f to denote (non-parametric) features,

– ?g to denote parametric features,

– p andq to denotepaths, i.e. finite sequences
1

Æ � � � Æ 

k

, where each
i

is a
feature or a parametric feature,

– X;Y to denote temporal variables, and

– r; s to denote (Allen’s) interval relations.

The ? symbol is not intended as an operator, but only used to distinguish paramet-
ric from non-parametric features. For the basic temporal interval relations, Allen’s
notation [ALL 83] is used: before (b), meets (m), during (d), overlaps (o), starts (s),
finishes (f), equal (=), after (a), met-by (mi), contains (di), overlapped-by (oi), started-
by (si), and finished-by (fi).

Due to the wealth of expressive means, a first encounter withT L-ALCF ’s syntax
can be slightly confusing. We will give some intuitive examples after introducing
the semantics. However, an in-depth introduction to knowledge representation with
T L-ALCF is out of the scope of this paper, and we refer the interested reader to
[ART 98]. We should also like to note that the purpose of many of T L-ALCF ’s
operators is to allow an intuitive representation of temporal knowledge. Technically,
they can be viewed as syntactic sugar:T L-ALCF concepts can be converted into
equivalent ones in a quite convenient normal form, which is introduced in Section 4.

The core of the temporal part ofT L-ALCF is constituted by the temporal exis-
tential quantifier “3” and by the “�” operator. The3 operator introduces temporal
variables that stand for time intervals, and relates such variables via temporal con-
straints based on the Allen relations. Then the� operator allows to specify which
concepts are “true” at intervals denoted by temporal variables. The special tempo-
ral variable℄, usually callednow, is intended as the reference interval and cannot
be bound by the temporal quantifier (3). Thus,℄ is a free temporal variable in each
T L-ALCF concept in which it occurs. In the following, we only admit concepts that
have no variables except℄ as their free variable.

T L-ALCF is provided with a two-dimensional semantics, which is defined in
several steps. We start with assuming a temporal structureT = (P ; <), whereP
is a set of time points and< is a linear, unbounded, and dense order onP . The
interval setof a structureT is defined as the setT ?

<

of all closed proper intervals
[u; v℄

:

= fx 2 P j u � x � v; u 6= vg in T . An interpretationI
:

= hT

?

<

;�

I

; �

I

i

consists of

– a setT ?

<

(the interval setof the selected temporal structureT ),

– a set�I (thedomainof I), and

– a function�I (theinterpretation functionof I), which gives a meaning to atomic
concepts, roles, features and parametric features:
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(s)

E

= f([u; v℄; [u

1

; v

1

℄) 2 T

?

<

� T

?

<

j u = u

1

^ v < v

1

g

: : :(similarly for the other Allen relations)

(r, s)E = r

E

[ s

E

hX;Ti

E

= fV : X 7! T

?

<

j 8(X r Y ) 2 T. (V(X);V(Y )) 2 r

E

g

A

I

V;t;H

= fa 2 �

I

j (t; a) 2 A

I

g

(:C)

I

V;t;H

= �

I

n C

I

V;t;H

(C uD)

I

V;t;H

= C

I

V;t;H

\D

I

V;t;H

(C tD)

I

V;t;H

= C

I

V;t;H

[D

I

V;t;H

(8R.C)I
V;t;H

= fa 2 �

I

j 8b.(a; b) 2 R

I

t

) b 2 C

I

V;t;H

g

(9R.C)I
V;t;H

= fa 2 �

I

j 9b.(a; b) 2 R

I

t

^ b 2 C

I

V;t;H

g

(p : C)

I

V;t;H

= fa 2 dompI
t

j p

I

t

(a) 2 C

I

V;t;H

g

(p#q)

I

V;t;H

= fa 2 dompI
t

\ domqI
t

j p

I

t

(a) = q

I

t

(a)g

(p"q)

I

V;t;H

= fa 2 dompI
t

\ domqI
t

j p

I

t

(a) 6= q

I

t

(a)g

(p")

I

V;t;H

= �

I

n dompI
t

(C�X)

I

V;t;H

= C

I

V;V(X);H

(C[Y ℄�X)

I

V;t;H

= C

I

V;t;H[fY 7!V(X)g

(3(X)T.C)I
V;t;H

= fa 2 �

I

j 9W . W 2 hX;Ti

E

H[f℄7!tg

^ a 2 C

I

W;t;;

g

R

I

t

= f(a; b) 2 �

I

��

I

j (t; a; b) 2 R

I

g

f

I

t

(a) = b iff f

I

(t; a) = b

( Æ q)

I

t

(a) = b iff q

I

t

(

I

t

(a)) = b

?g

I

t

= ?g

I

Figure 2. TheT L-ALCF semantics.

A

I

� T

?

<

��

I

; R

I

� T

?

<

��

I

��

I

;

f

I

: (T

?

<

��

I

)

partial

7�! �

I

; ?g

I

: �

I

partial

7�! �

I

Note the relationship between roles, features, and parametric features: first, features
are simply roles that are required to be functional; second,parametric features dif-
fer from features in being independent from time, i.e., theyare (temporally)global
functional roles.

The second step in definingT L-ALCF ’s semantics consists of dealing with tem-
poral constraint networks that occur inside the3 operator. These networks are one of
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the most common formalisms for temporal reasoning in AI, seee.g. [ALL 83, VIL 90,
NEB 95]. Formally, atemporal constraint networkis a labeled directed graphhX;Ti,
whereX is a set of variables representing the nodes andT is a set of temporal con-
straints representing the labeled edges as defined in Figure1. The semantics of tem-
poral constraint networks is defined usingvariable assignments, i.e. total functions
V : X 7! T

?

<

associating an interval to each temporal variable from a setX. As
defined by thetemporal interpretation function�E in the upper half of Figure 2, an
interpretation of a temporal constraint network is a set of variable assignments that
satisfy the temporal constraints. The notationhX;Ti

E

fx

1

7!t

1

;x

2

7!t

2

;:::g

, used to inter-

pret concept expressions in the next step, denotes the subset of hX;Ti

E where the
variablex

i

is mapped to the interval valuet
i

.

We can now perform the last step of definingT L-ALCF ’s semantics. Theinter-
pretationCI

V;t;H

of aT L-ALCF conceptC with free variablesx
1

; : : : ; x

k

(possibly
including℄) is based on

– a variable assignmentV such thatx
1

; : : : ; x

k

are in the domain ofV ,

– an intervalt 2 T ?

<

, and

– anassignment constraintH = fy

1

7! t

1

; : : :g with y

i

variable andt
i

2 T

?

<

.

The exact details of defining the interpretation ofT L-ALCF concepts can be found
in the lower part of Figure 2.

Intuitively, the interpretationCI
V;t;H

of a T L-ALCF conceptC is the set of ele-
ments of the domain which are of typeC at the time intervalt, with the assignment for
the free temporal variables inC given byV (c.f. the definition of(C�X)

I

V;t;H

) and
with the assignment of variables in the scope of the outermost temporal quantifiers
constrained byH. Thenatural interpretation functionCI

t

, being equivalent to the in-
terpretation functionCI

V;t;H

with anyV such thatV(℄) = t, andH = ;, is introduced
as an abbreviation. An interpretationI is amodelfor a conceptC if, for somet 2 T ?

<

,
C

I

t

6= ;. If a concept has a model, then it issatisfiable, otherwise it isunsatisfiable.

We will now informally discuss the intendedmeaningof T L-ALCF concepts. As
already noted, a central role is played by the temporal existential quantifier “3” and
the temporal qualification operator “�”. For example, to represent all the objects that
satisfy a conceptC at a time interval that is after the “current interval”, we can write

3(x)(x a ℄).(C�x):

Here, the3 operator introduces the new variablex and ensures that the time interval
it denotes is located after the current interval℄. Then, the� operator “evaluates”C at
x thus ensuring thatC holds at the time interval denoted byx.
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� -

� -�-

-�

Holding-Blok(BLK1)

Clear-Blok(BLK2) ON(BLK1, BLK2)

Clear-Blok(BLK1) Clear-Blok(BLK1)

Stak(BLK1, BLK2)

w

x y

v z

℄

Figure 3. Temporal dependencies in the definition of theStak action.

Let us now consider some more interesting examples from the well-known blocks
world domain. First, we define a concept representing the action of stacking a block
on top of another block1.

Basi-Stak = 3(x y)(x m ℄)(℄ m y).
((?BLOCK : OnTable)�x u (?BLOCK : OnBlok)�y)

Basi-Stak denotes any action involving a?BLOCK that was onceOnTable and
thenOnBlok. The parametric feature?BLOCK plays the role offormal parameter of
the action, mapping any individual action of typeBasi-Stak to the block to be
stacked, independently from time. The℄ interval can be understood as the occurring
time of the stacking action. The temporal constraints(x m ℄) and(℄ m y) state that
the intervalx should meet the interval℄—the occurrence interval of the action type
Basi-Stak—and that℄ should meety.

To illustrate the expressive power of otherT L-ALCF constructors, let us now
refine theBasi-Stak example. Figure 3 shows the temporal configuration induced
by the stacking action in some more detail: a stacking actioninvolves two blocks—
BLK1 andBLK2—which should be both clear at the beginning; the central part of the
action consists of grasping one block; at the end, the blocksare one on top of another,
and the bottom one is no longer clear. The formal definition ofthe actionStak is:

Stak = 3(x y z v w) (x � ℄)(y mi ℄)(z mi ℄)(v o ℄)(w f ℄)(w mi v).
((?BLOCK2 : Clear-Blok)�x u (?BLOCK1ÆON#?BLOCK2)�y u

(?BLOCK1 : Clear-Blok)�v u (?BLOCK1 : Holding-Blok)�w u

(?BLOCK1 : Clear-Blok)�z)

Apart from providing a more fain-grained modeling, the new definition of stacking
uses the feature agreement constructor:(?BLOCK1ÆON # ?BLOCK2)�y indicates that,
at intervaly, the objectON which?BLOCK1 is placed is?BLOCK2. Note that the world
states described at the intervals denoted byv; w; z are the result of an action ofgrasp-
ing a previously clear block:

1. In this paper, equalities are used only for introducing names for complex concepts. Such
equalities are thus not intended to denote so-called TBoxes, which are frequently used with
description logics. Please refer to Section 5 for a brief discussion of reasoning under TBoxes.
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Grasp = 3(x w z) (x o ℄)(w f ℄)(w mi x)(z mi ℄).
((?BLOCK1 : Clear-Blok)�x u (?BLOCK1 : Holding-Blok)�w u

(?BLOCK1 : Clear-Blok)�z)

TheStak action can be redefined by making use of theGrasp action:

Stak = 3(x y u v) (x � ℄)(y mi ℄)(u f ℄)(v o ℄).
((?BLOCK2 : Clear-Blok)�x u (?BLOCK1ÆON#?BLOCK2)�y u

(Grasp[x℄�v)�u)

The temporal substitutive qualifier(Grasp[x℄�v) renameswithin the definedGrasp
action the variablex to v. Thus, it is a way of establishing a coreference between two
temporal variables ensuring that the temporal constraintspeculiar to the renamed vari-
ablex are inherited by the substituting intervalv. Furthermore, the effect of tempo-
rally qualifying the grasping action atu is that the℄ variable associated to the grasping
action—referring to the occurrence time of the action itself—is bound to the interval
denoted byu. Because of this binding on the occurrence time of the grasping action,
the ℄ variable in the grasping action and the℄ variable in the stacking action denote
different time intervals, so that the grasping action occurs at an interval finishing the
occurrence time of the stacking action.

3. The logic ALCF(A)

As noted in the introduction, the temporal description logicALCF(A) is obtained
by taking the logicALCF(D), which provides for concrete domains, and instantiat-
ing it with a concrete domainA that is based on time intervals and the Allen inter-
val relations [LUT 97, LUT 02c, LUT ar]. For the sake of brevity, we do not intro-
duceALCF(D) in general (see, e.g. [LUT 02c]), but rather define it’s specialization
ALCF(A) right away.

The syntax ofALCF(A) is obtained from the syntax ofALCF as given in Figure 1
by making the following modifications:

–ALCF(A) does not provide parametric features.

–ALCF(A) is equipped with a new sort of feature, so calledtemporal features.

– The temporal part ofALCF(A) is integrated into the language by adding the
temporal concept constructor:

E;F ! 9p
1

; p
2

:r;

wherer is one of the Allen relations, andp
1

; : : : ; p

n

aretemporal paths—sequences


1

Æ � � � Æ 

k

Æ h with 

1

; : : : ; 

k

features, andh a temporal feature.

In contrast toT L-ALCF , the semantics ofALCF(A) is not a multi-dimensional one,
but rather it is very close to “classical” description logics semantics. To introduce it,
we again fix a linear, unbounded, and dense temporal structure T = (P ; <)—this
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structure is assumed to be the same as in theT L-ALCF case. Then, anALCF(A)
interpretationI = (�

I

; �

I

) consists of a set�I(thedomain), and an interpretation
function �I that assigns a meaning to atomic concepts, roles, features,and temporal
features:

A

I

� �

I

; R

I

� �

I

��

I

;

f

I

: �

I

partial

7�! �

I

; h

I

: �

I

partial

7�! T

?

<

If p = q Æ h is a temporal path, thenpI is defined ashI(qI(�)), where the meaning of
atemporal paths is defined as in Figure 2. Apart from the temporal concept constructor,
the interpretation of complex concepts is also determined by Figure 2—just omit the
three temporal indices. The semantics of the new temporal concept constructor is
given as follows:

(9p
1

; p
2

:r)I = fa 2 �

I

j 9t
1

; t
2

2 T

?

<

: (a; t
1

) 2 pI
1

^ (a; t
2

) 2 pI
2

^ (t
1

; t
2

) 2 r

E

g;

whererE is defined as in Figure 2.

Before discussing the intuitions behindALCF(A), let us adopt two conventions:
first, we will use parametric feature names ofT L-ALCF as non-temporal feature
names inALCF(A). Thus, we may write e.g.?BLOCK in anALCF(A) concept to
denote a (non-temporal) feature. Second, in the following we will only need a single
temporal feature which will be denoted withtime.

Comparing the semantics ofT L-ALCF andALCF(A), the main difference is
that T L-ALCF ’s semantics is two-dimensional (i.e. based on the product of the
domain and the set of time intervals), whileALCF(A)’s semantic is not. The con-
sequences of this difference can be summarized as follows:

– in T L-ALCF , a domain element may be in the extension of a conceptonly
w.r.t. a given time interval; moreover, objects are not associated with a “life span”, but
rather exist at any given time interval.

– inALCF(A), concept membership of domain elements is independent of time;
moreover, objects are associated with aunique life spanvia thetime feature.2

The semantic difference induces two different paradigms for the representation of
temporal conceptual knowledge. If the aim is to talk about “eternal” objects whose
properties vary over time, thenT L-ALCF seems like a natural choice. On the other
hand, if we want to reason about temporal entities that are associated with a unique
temporal extension, then usingALCF(A) is the better approach.

2. Or with multiple time spans if we admit more than one temporal feature. This can be very
useful: consider e.g. the introduction of distinct temporal features for the life time, the youth, the
work time, etc. However, in the context ofT L-ALCF we prefer to stick to a single temporal
feature.
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step

2

Basi-Stak

?BLOCK : OnBlok

meetsmeets

step

1

time time time

step

℄

?BLOCK : OnTable

Figure 4. Model of theALCF(A) Basi-Stak.

Despite these differences, there exists a close and naturalrelationship between the
two temporal description logicsT L-ALCF andALCF(A). To get a first idea, let us
represent the basic stack action from Section 2 in the framework ofALCF(A) :

Basi-Stak
:

= step

1

: (?BLOCK : OnTable) u

step

2

: (?BLOCK : OnBlok) u

9(step

1

Æ time); (step

℄

Æ time):m u

9(step

℄

Æ time); (step

2

Æ time):m

The concept states that anyBasi-Stak is related to three objects via the features

step

1

; step

2

; andstep
℄

. These objects describe the basic stack action at different
time intervals – withstep

℄

representing the occurring time of the action. For each
step, a corresponding time interval is associated by thetime feature. The relation
between these time intervals is described using the temporal concept constructor and
resembles the temporal network in theT L-ALCF definition of the basic stack. In
step

1

, the?BLOCK is OnTable, and instep
2

it is OnBlok. This situation is illus-
trated in Figure 4.

Comparing the two definitions ofBasi-Stak, their main difference can be char-
acterized as follows: in theT L-ALCF definition, the basic stack is represented by a
single logical object, whose properties are defined separately for each temporal inter-
val. To the contrary, inALCF(A), the basic stack is represented by a logical “meta-
object” (theBasi-Stak object itself in the above concept definition) and a set of
additional logical “temporal-facet” objects (thestep

i

successors of theBasi-Stak
meta-object), each of which has unique properties and represents the basic stack at a
unique time interval.

To reduce satisfiability ofT L-ALCF concepts to satisfiability ofALCF(A) con-
cepts, we exploit the idea suggested by this simple example:the translation must
be such that one domain element in models of theT L-ALCF concepts corresponds
to a number of domain elements in models of itsALCF(A) translation, i.e. one
meta-object together with a number of temporal-facet objects that represent the single
T L-ALCF domain element at different time intervals. An additional difficulty is to
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: > ! ? : ? ! >

:(C uD)! :C t :D :(C tD)! :C u :D

:(8R.C)! 9R.:C :(9R.C)! 8R.:C

::C ! C :(p : C)! p" t p : :C

:(p#q)! p" t q" t p"q :(p"q)! p" t q" t p#q

:(p")! p : >

Figure 5. NNF rewrite rules

preserve the temporal invariance of parametric features. As illustrated in the next sec-
tion, this problem is solved by using the feature agreement constructor ofALCF(A).

4. The reduction

This section presents the reduction ofT L-ALCF concept satisfiability toALCF(A)
concept satisfiability. To simplify matters, we will only considerT L-ALCF concepts
in so-calledexistential normal form (ENF). In this normal form, the only temporal
operator that may occur is a single “3” operator, i.e.T L-ALCF concepts in ENF are
of the form

C = 3(X)T.Q
0

uQ

1

�X

1

u : : : uQ

n

�X

n

; (�)

whereX = fX

1

; : : : ; X

n

g and eachQ
i

is an (atemporal)ALCF concept. Addition-
ally, we assume that theT L-ALCF conceptsQ

0

; : : : ; Q

n

are innegation normal form
(NNF), i.e. that negation occurs only in front of concept names. Inthis case, we will
simply say that the conceptC is in normal form (NF). As the following proposition
shows, normal form can be assumed without loss of generality.

PROPOSITION1 (EQUIVALENCE OF NF). — EveryT L-ALCF conceptC can be
converted in polynomial time into an equivalent concept in normal form.

PROOF. — In [ART 98], it is shown that everyT L-ALCF concept can be converted
in polynomial time to an equivalent one in ENF. We can then convert theQ

0

; : : : ; Q

n

to NNF by exhaustively applying the rewrite rules in Figure 5. Note that this takes only
polynomial time and the length of the resulting concept is polynomial in the length of
the original concept. ■

Let C be aT L-ALCF concept in NF of the form (�). To translateC into an
equi-satisfiableALCF(A) concept	(C), we introduce the new featuresf

0

; : : : ; f

n

(corresponding to thestep
i

features in Section 3), the new concept namesA

i;j

for
all 0 � i; j � n, and the new concrete featuretime. We assume w.l.o.g. that these
features and concept names are not used in theT L-ALCF conceptC. For the re-
mainder of this section, we use the symbolf to denote features that are distinct from
the reserved featuresf

0

; : : : ; f

n

, parametric features are denoted by?g, and denotes
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features that may or may not be parametric, but are distinct from the reserved fea-
tures. To define the concept	(C), we need to define a number of auxiliary concepts.
To start with, we need a mapping fromT L-ALCF ’s temporal constraint networks to
ALCF(A) concepts.

DEFINITION 2 (TRANSLATION OF TEMPORAL NETWORKS). — Let T be a tem-
poral constraint network for the set of variablesX = fX

0

; X

1

; : : : ; X

n

g, where
X

0

= ℄. For each temporal constraint(X r Y ) 2 T, we define anALCF(A)
concept,�(X r Y ), as follows:

�(X r Y ) := 9(f

i

Æ time); (f

j

Æ time).r if X = X

i

andY = X

j

.

Then, the translation�(T) of T is defined as follows:

�(T) := u

(XrY )2T

�(X r Y ):

The remaining auxiliary concepts—�
C

;
;


0—are defined in Figure 6. In the
definition of�

C

, we usefeat(C) to denote the set of all features (either non-parametric
or parametric) inC, androl(C) to denote the set of all role names inC.

DEFINITION 3 (TRANSLATION OFT L-ALCF CONCEPTS). — Given aT L-ALCF
conceptC, itsALCF(A) translation,	(C), is defined as:

	(C) := �(T) u �

C

u 
 u 


0

:

Before giving a formal proof of the fact that	(C) andC are equi-satisfiable, let
us briefly discuss the various concepts used in the reduction. The concept
 enforces
the existence ofn + 1 temporal-facet objects asf

i

-successors of the root object (i.e.
the object that satisfies the reduction concept	(C)). Thus, this root object is a meta-
object in the sense of the previous section. Furthermore,
 ensures that, for eachi,
the temporal facet that is anf

i

-successor must be a member of	

i

(Q

i

). The purpose
of the	

i

translation used here is to insert thef
i

features after each feature and role
name used inQ

i

. This is necessary since not only the root object, but also all other
objects are composed of a meta-object andn+ 1 temporal facets.
The concept�(T) associates atime feature to each temporal-facet of the root meta-
object ensuring that the values of suchtime features satisfy all constraints inT. It is
interesting to note thatonlythef

i

successors of the root meta-object are equipped with
time intervals via thetime feature. As we said before, all successors of such temporal-
facet objects implicitly “inherit” the same temporal structure via the	

i

translation.
The concept�

C

serves two purposes. First, the last row of�

C

uses feature agreements
to ensure that parametric features are independent from time, i.e. if twoALCF(A)
domain elementsd

1

andd
2

represent two temporal-facet of the same meta-object,
thend

1

andd
2

should have the same successor for each parametric feature.Second,
together with the
0 concept and translations	

i

and�i
C

,�
C

ensures that if, for a given
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 := f

0

: 	

0

(Q

0

) u � � � u f

n

: 	

n

(Q

n

)




0

:= u

0�i<j�n

(9(f

i

Æ time); (f
j

Æ time): =)! A

i;j

�

C

:= u

0�i<j�n

A

i;j

! f

i

# f

j

u

u

0�i<j�n

A

i;j

!

�

u

0�k�n

( u

2feat(C)

(f

k

: "tf

k

:  : A

i;j

) u

u

R2rol(C)

f

k

: 8R.A
i;j

)

�

u

u

?g used in C
((un

j=0

f

j

Æ ?g") t (u

n

j=1

(f

0

Æ ?g)#(f

j

Æ ?g)))

�

i

() := 

�

i

(p Æ ) := �

i

(p) Æ f

i

Æ 

�

i

C

() :=  : �

C

�

i

C

( Æ p) :=  : (�

C

u f

i

: �

i

C

(p))

	

i

(A) := A

	

i

(: A) := :A

	

i

(D u E) := 	

i

(D) u 	

i

(E)

	

i

(D t E) := 	

i

(D) t 	

i

(E)

	

i

(9R.D) := 9R.(�
C

u f

i

: 	

i

(D))

	

i

(8R.D) := 8R.(f
i

: 	

i

(D))

	

i

(p : D) := �

i

(p) : f

i

: 	

i

(D) u �

i

C

(p)

	

i

(p#q) := �

i

(p)#�

i

(q) u �

i

C

(p) u �

i

C

(q)

	

i

(p"q) := �

i

(p)"�

i

(q) u �

i

C

(p) u �

i

C

(q)

	

i

(p") := �

i

(p)"

Figure 6. Definition of auxiliary concepts.
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meta-object, two variablesX
i

andX
j

denote thesametime interval, then for each
successor of such meta-object bothf

i

andf
j

features coincide. The latter is necessary
since, inT L-ALCF models, a domain element together with a time intervaluniquely
identifies concept membership, role membership, etc.

Proof of correctness

Throughout the proofs, we will writesub(C) to denote the set of all subconcepts of
the conceptC, includingC itself. We now establish the correctness of our reduction.
For the sake of clarity, it is split into two propositions.

PROPOSITION4. — LetC be aT L-ALCF concept in normal form. ThenALCF(A)
satisfiability of	(C) impliesT L-ALCF satisfiability ofC.

PROOF. — Let I be a model of	(C), and letd
C

2 	(C)

I . We define�� to be the
smallest subset of� satisfying the following properties:

1) d
C

2 �

�;

2) if d 2 �

�, d0 2 �

I , 0 � i � n, and9R.(�
C

u f

i

: 	

i

(D)) 2 sub(	(C)) such
that

- fI
i

(d) 2 (9R.(�
C

u f

i

: 	

i

(D)))

I ,

- (fI
i

(d); d

0

) 2 R

I , and

- d0 2 (�

C

u f

i

: 	

i

(D))

I ,

thend0 2 �

�;

3) if d 2 �

�, d
1

; : : : ; d

k

2 �

I , 0 � i � n, X 2 sub(	(C)), andp� is a path
such that

- d = d

1

,

- X is of the form�

i

(p) : f

i

: 	

i

(D) u �

i

C

(p), andp� = p,
X is of the form�

i

(p) # �

i

(q) u �

i

C

(p) u �

i

C

(q), andp� 2 fp; qg, or
X is of the form�

i

(p) " �

i

(q) u �

i

C

(p) u �

i

C

(q), andp� 2 fp; qg,

- fI
i

(d) 2 X

I ,

- p� = 

1

Æ � � � Æ 

k�1

, and

- (fI
i

(d

`

); d

`+1

) 2 

I

`

for 1 � ` < k,

thend
1

; : : : ; d

k

2 �

�.

Obviously, the sub-interpretation ofI induced by�� is rooted byd
C

. Moreover, it is
not hard to show that��

� �

I

C

:

– d

C

2 �

I

C

by definition of	(C).

– if d0 2 �

� due to Property 2, thend0 2 �

C

by choice ofd0;

– Let d
1

; : : : ; d

k

2 �

� due to Property 3. Using the definition of the concept
�

i

C

(p) and the fact thatfI
i

(d

1

) 2 �

i

C

(p

�

), it is easily verified thatd
j

2 �

I

C

for
1 � j � k.
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We now define aT L-ALCF interpretationJ . For convenience, we set

t

i

:= time

I

(f

I

i

(d

C

)); for 0 � i � n

and use this abbreviation for the remainder of the proof. Nowset

�

J

:= �

�

A

J

:= f(t; d) j d 2 �

J

; t = t

i

; andfI
i

(d) 2 A

I for somei � ng

R

J

:= f(t; d; d

0

) j d; d

0

2 �

J

; t = t

i

; and(fI
i

(d); d

0

) 2 R

I for somei � ng

f

J

:= f(t; d; d

0

) j d; d

0

2 �

J

; t = t

i

; andfI((fI
i

(d)) = d

0 for somei � ng

?g

J

:= f(d; d

0

) j d; d

0

2 �

J and?gI(fI
0

(d)) = d

0

g

We now prove some important properties ofJ . Note that the first property implies
that the interpretation of non-parametric features inJ is functional as required (the
interpretation of parametric features is obviously also functional, but does not depend
on the following property).

1) For alld 2 �

� and alli; j with t

i

= t

j

, we havefI
i

(d) = f

I

j

(d).

Proof: By definition of
0, t
i

= t

j

impliesd
C

2 A

i;j

. Since�� is rooted byd
C

and��

� �

I

C

, the definition of�
C

(second/third line) yields that��

� A

I

i;j

. Again
by definition of�

C

(first line) and since��

� �

I

C

, this impliesfI
i

(d) = f

I

j

(d) for all
d 2 �

�.

2) For all d 2 �

�, all i with 1 � i � n, and all parametric features?g, either
?g

I

(f

I

i

(d)) and?gI(fI
0

(d)) are both undefined, or?gI(fI
i

(d)) = ?g

I

(f

I

0

(d)).

The proof is easy by considering the fact that�

�

� �

I

C

together with the last line
of the definition of�

C

.

3) Letd; d0 2 �

�, p be a path not containing the featuresf

1

; : : : ; f

n

, and0 � i �

n. Thend0 2 (�

i

(p))

I

(f

I

i

(d)) iff pJ
t

i

(d) = d

0.

The proof is by induction on the length ofp. For the induction start, letp be of
length one, i.e.p = . Then�

i

(p) = .

First, assume that is a non-parametric feature. Then,d

0

= 

I

(f

I

i

(d)) implies
(t

i

; d; d

0

) 2 

J by definition ofJ , and thus the “only if” direction holds. For the
“if” direction, assume that(t

i

; d; d

0

) 2 

J . Then there is aj with 0 � j � n such
that t

i

= t

j

andI(fI
j

(d)) = d

0. By Property 1, we havefI
j

(d) = f

I

i

(d) and thus


I

(f

I

i

(d)) = d

0 as required.

Let now  be a parametric feature. Then,I(fI
i

(d)) = d

0 iff (by Property 2)


I

(f

I

0

(d)) = d

0 iff J (d) = d

0.

Now for the induction step. Letp = q Æ . Then�
i

(p) = �

i

(q) Æ f

i

Æ . As-
sume that(�

i

(p))

I

(f

I

i

(d)) = d

0. Then there is ad00 with (�

i

(q))

I

(f

I

i

(d)) = d

00 and


I

(f

I

i

(d

00

)) = d

0. By IH, we obtainqJ
t

i

(d) = d

00. To prove thatpJ
t

i

(d) = d

0, it thus re-
mains to show thatJ

t

i

(d

00

) = d

0. In both the non-parametric and the parametric case,
this can be done exactly as in the induction start (using the fact thatI(fI

i

(d

00

)) = d

0).

Vice-versa, assume thatpJ
t

i

(d) = d

0. Then there is ad00 such thatqJ
t

i

(d) = d

00 and


J

t

i

(d

00

) = d

0. By IH, the former yields(�
i

(q))

I

(f

I

i

(d)) = d

00. It thus remains to
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show thatI(fI
i

(d

00

)) = d

0, which can again be done as in the induction start (using
the fact thatJ

t

i

(d

00

) = d

0).

We now prove the following, central claim:

Claim: For alld 2 �

J , 0 � i � n, andD 2 sub(C), we have thatfI
i

(d) 2 	

i

(D)

I

impliesd 2 D

J

t

i

.

This claim easily yields the desired result: sinceC is in normal form, it is of the form

C = 3(X)T.Q
0

uQ

1

�X

1

u : : : uQ

n

�X

n

;

withX = fX

1

; : : : ; X

n

g. We define a variable assignmentW for by settingW(X

i

) :=

t

i

for 1 � i � n. Sinced
C

2 �(T)

I , we haveW 2 hX;Ti

E

℄7!t

0

. Using the claim, it
is then readily verified that

d

C

2 (Q

0

uQ

1

�X

1

u : : : uQ

n

�X

n

)

J

W;t

0

;;

:

Thus,d
C

2 C

J

t

0

andC is T L-ALCF satisfiable as required. The proof of the claim
is by structural induction:

– D is a concept name. Then,	
i

(D) = A and (t
i

; d) 2 A

J is an immediate
consequence of the definition ofJ .

– D = :A (A is a concept name sinceC is in NNF). Then,	
i

(D) = :A.
SupposefI

i

(d) =2 A

I and(t
i

; d) 2 A

J . Then there is aj with 0 � j � n such that
t

i

= t

j

andfI
j

(d) 2 A

I . By Property 1, we havefI
j

(d) = f

I

i

(d). Thus,fI
i

(d) 2 A

I ,
which is a contradiction.

– D = D

1

uD

2

. Easy using IH and the semantics.

– D = D

1

tD

2

. Easy using IH and the semantics.

– D = 9R.E. Then,	
i

(D) = 9R.(�
C

u f

i

: 	

i

(E)). SincefI
i

(d) 2 	

i

(D)

I ,
there is ad0 such that(fI

i

(d); d

0

) 2 R

I andd0 2 (�

C

u f

i

: 	

i

(E))

I . By definition
of ��, we thus haved0 2 �

�. Moreover,fI
i

(d

0

) 2 	

i

(E)

I . By definition ofRJ , we
obtain(t

i

; d; d

0

) 2 R

J . By IH and sincefI
i

(d

0

) 2 	

i

(E)

I , we getd0 2 E

J

t

i

. Thus,
d 2 D

J

t

i

.

– D = 8R.E. Then,	
i

(D) = 8R.(f
i

: 	

i

(E)). Let (t
i

; d; d

0

) 2 R

J . Then there
is aj with 0 � j � n such thatt

i

= t

j

and(fI
j

(d); d

0

) 2 R

I . By Property 1, we have
f

I

j

(d) = f

I

i

(d) and hence(fI
i

(d); d

0

) 2 R

I . SincefI
i

(d) 2 	

i

(D)

I , we thus have
d

0

2 (f

i

: 	

i

(E))

I andfI
i

(d

0

) 2 	

i

(E)

I . Thus, IH yieldsd0 2 E

J

t

i

as required.

– D = p : E. Then,	
i

(D) = �

i

(p) : f

i

: 	

i

(E) u �

i

C

(p). SincefI
i

(d) 2

	

i

(D), there is ad0 2 �

I such that(�
i

(p))

I

(f

I

i

(d)) = d andfI
i

(d) 2 	

i

(E)

I .
By Property 3, we thus havepJ

t

i

(d) = d

0, and IH yieldsd0 2 E

J

t

i

. Summing up, we
obtaind 2 D

J

t

i

.

– D = p # q. Then,	
i

(D) = �

i

(p) # �

i

(q) u �

i

C

(p) u �

i

C

(q). SincefI
i

(d) 2

	

i

(D)

I , there is ad0 2 �

I such that

(�

i

(p))

I

(f

I

i

(d)) = (�

i

(q))

I

(f

I

i

(d)) = d:
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By definition of��, we haved0 2 �

�. By Property 3, we havepJ
t

i

(d) = q

J

t

i

(d) = d

0,
and thusd 2 D

J

t

i

as required.

– D = p " q. Then,	
i

(D) = �

i

(p) " �

i

(q) u �

i

C

(p) u �

i

C

(q). Analogous to the
previous case.

– D = p". Then,	
i

(D) = �

i

(p)". Let fI
i

(d) 2 	

i

(D)

I , and assume that
d =2 D

J

t

i

. Then there is ad0 2 �

J such thatpJ
t

i

(d) = d

0. By Property 3, we thus have
(�

i

(p))

I

(f

I

i

(d)) = d

0, which is a contradiction.

■

PROPOSITION5. — LetC be aT L-ALCF concept in normal form. ThenT L-ALCF
satisfiability ofC impliesALCF(A) satisfiability of	(C).

PROOF. — LetJ be aT L-ALCF model ofC and letd
C

2 �

J andt
0

2 T

?

<

such
thatd

C

2 C

J

t

0

. Let

C = 3(X)T.Q
0

uQ

1

�X

1

u : : : uQ

n

�X

n

with X = fX

1

; : : : ; X

n

g. By the semantics, there exists a variable assignmentW 2

hX;Ti

E

℄!t

0

such that

d

C

2 (Q

0

uQ

1

�X

1

u : : : uQ

n

�X

n

)

J

W;t

0

;;

: (�)

In the remainder of this proof, we useX
0

= ℄, andt
i

to denoteW(X

i

), for 1 � i � n.
We now construct anALCF-interpretationI :

�

I

:= �

J

[ f(d; t

i

) j d 2 �

J and0 � i � ng

A

I

:= f(d; t) j (t; d) 2 A

J andt = t

i

for somei � ng

f

I

:= f((d; t); d

0

) j (t; d; d

0

) 2 f

J andt = t

i

for somei � ng

?g

I

:= f((d; t

i

); d

0

) j (d; d

0

) 2 ?g

J and0 � i � ng

R

I

:= f((d; t); d

0

) j (t; d; d

0

) 2 R

J andt = t

i

for somei � ng

time

I

:= f((d

C

; t

i

); t

i

) j 0 � i � ng

A

I

j;`

:=

(

�

J if t
j

= t

`

; otherwise

f

I

i

:= f(d; (d; t

i

)) j d 2 �

J and0 � i � ng

for all concept namesA;A
i;j

, non-parametric featuresf , reserved featuresf
i

, para-
metric features?g, role namesR, andj; ` 2 f0; : : : ; ng. We show thatd

C

2 	(C)

I .
To this end, it is readily verified thatd

C

2 (�(T)u�

C

u


0

)

I . It thus remains to show
thatd

C

2 


I . This is obviously an immediate consequence of (�), I ’s interpretation
of thef

i

features, and the following claim:

Claim: For all d 2 �

J , 0 � i � n, andD 2 sub(C), we have thatd 2 D

J

t

i

implies
(d; t

i

) 2 	

i

(D)

I .

Before we prove the claim, let us state three useful properties of�I :
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1) �J

� �

I

C

, as it is easily verified by considering the definitions of both A

I

j;`

and?gI .

2) For all d 2 �

J , pathsp not containing the featuresf
0

; : : : ; f

n

, and i 2

f0; : : : ; ng, the following holds: if there is ad0 with p

J

t

i

(d) = d

0, then (d; t
i

) 2

�

i

C

(p)

I .

The proof is by induction on the length ofp, using Property 1. Details are left to
the reader.

3) Let d; d0 2 �

J , p be a path not containing the featuresf
0

; : : : ; f

n

, andi 2
f0; : : : ; ng. ThenpJ

t

i

(d) = d

0 iff (�
i

(p))

I

((d; t

i

)) = d

0.

The proof is again by induction on the length ofp. Details are left to the reader.

We now proof the claim by structural induction:

– D is a concept name. Then,	
i

(D) = A, and(d; t
i

) 2 D

I is an immediate
consequence of the definition ofJ .

– D = :A (A is a concept name sinceC is in NNF). Then,	
i

(D) = :A. It is
an immediate consequence of the definition ofA

I that (t
i

; d) =2 A

J , which implies
(d; t

i

) =2 A

I .

– D = D

1

uD

2

. Easy using IH and the semantics.

– D = D

1

tD

2

. Easy using IH and the semantics.

– D = 9R.E. Then,	
i

(D) = 9R.(�
C

u f

i

: 	

i

(E)). Sinced 2 D

J

t

i

, there
is a d0 2 �

J such that(t
i

; d; d

0

) 2 R

J andd0 2 E

J

t

i

. By definition ofRI , we
obtain((d; t

i

); d

0

) 2 R

I . By IH, we get(d0; t
i

) 2 E

I . By the interpretation of thef
i

features, this yieldsd0 2 (f

i

: 	

i

(E))

I . By Property 1, we get(d; t
i

) 2 	

i

(D)

I .

– D = 8R.E. Then,	
i

(D) = 8R.(f
i

: 	

i

(E)). Let ((d; t
i

); d

0

) 2 R

I . By
definition ofRI , we haved0 2 �

J and(t
i

; d; d

0

) 2 R

J . Sinced 2 D

J

t

i

, we thus
haved0 2 E

J

t

i

. Thus, IH yields(d0; t
i

) 2 	

i

(E)

I . By the interpretation of thef
i

features, this yieldsd0 2 (f

i

: 	

i

(E))

I as required.

– D = p : E. Then,	
i

(D) = �

i

(p) : f

i

: 	

i

(E) u �

i

C

(p). Sinced 2 D

J

t

i

,
there are is ad0 2 �

J such thatpJ
t

i

(d) = d

0 andd0 2 E

J

t

i

. By Property 3, we have
�

i

(p)

I

((d; t

i

)) = d

0 and IH yields(d0; t
i

) 2 	

i

(E)

I . Thus, by the interpretation
of thef

i

features we have(d; t
i

) 2 (�

i

(p) : f

i

: 	

i

(E))

I . To verify that(d; t
i

) 2

	

i

(D)

I , it thus remains to show that(d; t
i

) 2 �

i

C

(p)

I , which is true because of
Property 2.

– D = p # q. Then,	
i

(D) = �

i

(p) # �

i

(q) u �

i

C

(p) u �

i

C

(q). Sinced 2 D

J

t

i

,
there are is ad0 2 �

J such thatpJ
t

i

(d) = q

J

t

i

(d) = d

0. By Property 3, we have
�

i

(p)

I

((d; t

i

)) = �

i

(q)

I

((d; t

i

)) = d

0. Thus,(d; t
i

) 2 (�

i

(p) # �

i

(q))

I . To verify
that(d; t

i

) 2 	

i

(D)

I , it thus remains to show that(d; t
i

) 2 (�

i

C

(p)u�

i

C

(q))

I , which
is an easy consequence of Property 2.

– D = p " q. Then,	
i

(D) = �

i

(p) " �

i

(q) u �

i

C

(p) u �

i

C

(q). Analogous to the
previous case.
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– D = p". Then,	
i

(D) = �

i

(p)". Let d 2 (p")

J and assume that(d; t
i

) =2

	

i

(D)

I . Then there is ad0 2 �

I such that�
i

(p)

I

((d; t

i

)) = d

0. By definition of
�

i

(p) and ofI, we haved0 2 �

J . By Property 3, we obtainpJ
t

i

(d) = d

0, which is a
contradiction.

■

Since satisfiability ofALCF(A) concepts is PSPACE-complete [LUT 02c], satis-
fiability of ALC-concepts is PSPACE-hard, andALC is a fragment ofT L-ALCF , we
obtain the following theorem.

THEOREM 6. — Satisfiability ofT L-ALCF concepts isPSPACE-complete.

5. Conclusions

We have discussed the relationship between the two interval-based temporal DLs
T L-ALCF andALCF(A), and found that the gap between the two different knowl-
edge representation paradigms suggested by these logics can be bridged by a suitable
translation. Based on this translation, we have presented areduction fromT L-ALCF
concept satisfiability toALCF(A) concept satisfiability that allowed us to determine
the complexity ofT L-ALCF concept satisfiability as a PSPACE-complete problem.
Moreover, the reduction allows to use theALCF(A) tableau algorithm described
in [LUT 02c] to be used for reasoning onT L-ALCF concept expressions.

Concerning future work, the described reduction can be extended in at least two
interesting directions:

(1) In this paper, we concentrated on the satisfiability of concepts. In description
logics, an equally important reasoning task is the subsumption of concepts: a concept
C is subsumed by a conceptD if CI � D

I for all interpretationsI. In description
logics with all Boolean operators, subsumption can be reduced to (un)satisfiability:C
is subsumed byD iff Cu:D is unsatisfiable. Clearly, we cannot do this inT L-ALCF
since full negation is not available in the temporal part.3 Moreover, our reduction can-
not be used to decideT L-ALCF subsumption. Consider, for example, the concepts

C = 3(x)(℄ before x).A�x

D = 3(x; y)(℄ before x)(y equals x).A�y

ThenC is subsumed byD (actually, they are equivalent concepts), but	(C) is not
subsumed by	(D) since	(C) has only two “reserved features”f

0

andf
1

, while
	(D) has three:f

0

, f
1

, andf
2

. It would thus be interesting to extend the corre-
spondence betweenT L-ALCF andALCF(A) developed in this paper to concept
subsumption.

3. Indeed, adding full negation toT L-ALCF would result in undecidability. Still, it was shown
in [ART 98] that subsumption ofT L-ALCF-concepts is decidable.
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(2) For the reduction, we consider the satisfiability of concepts without reference
to so-called TBoxes. As modern DLs are usually equipped withTBoxes [BAA 03b],
it would be worthwhile to add them to bothT L-ALCF andALCF(A), and to ex-
tend our reduction accordingly. However, we cannot expect to obtain PSPACE-results:
in [LUT 02b], it is proved thatALCF concept satisfiability w.r.t. general TBoxes
(also known as GCIs) is undecidable. Thus, the same holds forboth T L-ALCF
andALCF(A). Undecidability may be overcome by resorting to so-calledacyclic
TBoxes [BAA 03b]. However, as proved in [LUT 99],ALCF concept satisfiability
w.r.t. acyclic TBoxes is NEXPTIME-hard. Clearly, this lower bound is inherited by
T L-ALCF andALCF(A). A matching upper bound forALCF(A) has been proved
in [LUT 02c]. A similar bound forT L-ALCF is yet to be established.

6. References

[ALL 83] A LLEN J., “Maintaining Knowledge about Temporal Intervals”,Communications
of the ACM, vol. 26, num. 11, 1983.

[ALL 91] A LLEN J. F., KAUTZ H. A., PELAVIN R. N., TENENBERGJ. D., Eds.,Reasoning
about Plans, Morgan Kaufmann, 1991.

[ALL 94] A LLEN J. F., FERGUSONG., “Actions and Events in Interval Temporal Logic”,
Journal of Logic and Computation, vol. 4, num. 5, 1994, Special Issue on Actions and
Processes.

[ART 94] ARTALE A., FRANCONI E., “A Computational Account for a Description Logic of
Time and Action”, J.DOYLE, E.SANDEWALL , P.TORASSO, Eds.,Proc. of the 4th Inter-
national Conference on Principles of Knowledge Representation and Reasoning – KR94,
Bonn, Germany, May 1994, Morgan Kaufmann, p. 3-14.

[ART 98] ARTALE A., FRANCONI E., “A Temporal Description Logic for Reasoning about
Actions and Plans”,Journal of Artificial Intelligence Research (JAIR), vol. 9, 1998, p. 463–
506.

[ART 99a] ARTALE A., FRANCONI E., “Representing a robotic domain using temporal de-
scription logics”, Artificial Intelligence in Engineering, Design, Analysis and Manifactur-
ing, vol. 13, num. 9, 1999, p. 105-117, Cambridge University Press.

[ART 99b] ARTALE A., FRANCONI E., “Temporal ER Modeling with Description Logics”,
Proceedings of the International Conference on ConceptualModeling (ER’99), vol. 1728
of Lecture Notes in Computer Science, Springer-Verlag, 1999.

[ART 01] ARTALE A., FRANCONI E., “A Survey of Temporal Extensions of Description Log-
ics”, Annals on Mathematics and Artificial Intelligence (AMAI), vol. 30, num. 1-4, 2001,
p. 171-210, Kluwer Academic Publishers.

[ART 02] ARTALE A., FRANCONI E., WOLTER F., ZAKHARYASCHEV M., “A Temporal De-
scription Logic for Reasoning about Conceptual Schemas andQueries”, FLESCA S.,
GRECO S., LEONE N., IANNI G., Eds.,Proceedings of the 8th Joint European Confer-
ence on Logics in Artificial Intelligence (JELIA-02), vol. 2424 ofLNAI, Springer, 2002,
p. 98–110.

[ART 03] ARTALE A., FRANCONI E., MANDREOLI F., “Description Logics for Modeling of
Dynamic Information”, CHOMICKI J., VAN DER MEYDEN R., SAAKE G., Eds.,Logics



Correspondence between temporal DLs 23

for Emerging Applications of Databases, Page 368, Springer-Verlag, 2003.

[BAA 00] B AADER F., SATTLER U., “Tableau Algorithms for Description Logics”, DYCK-
HOFF R., Ed.,Proceedings of the International Conference on Automated Reasoning with
Tableaux and Related Methods (Tableaux 2000), vol. 1847 ofLecture Notes in Artificial
Intelligence, Springer-Verlag, 2000, p. 1–18.

[BAA 03a] BAADER F., KÜSTERS R., WOLTER F., “Extensions to Description Logics”,
BAADER F., MCGUINESSD. L., NARDI D., PATEL -SCHNEIDERP., Eds.,The Description
Logic Handbook: Theory, implementation and applications, Cambridge University Press,
2003.

[BAA 03b] BAADER F., MCGUINESS D. L., NARDI D., PATEL -SCHNEIDER P., Eds.,The
Description Logic Handbook: Theory, implementation and applications, Cambridge Uni-
versity Press, 2003.

[BEN 95] VAN BENTHEM J., “Temporal Logic”, GABBAY D., HOGGER C., ROBINSON

J., Eds.,Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 4,
p. 241–350, Oxford Science Publishers, 1995.

[BET 97] BETTINI C., “Time-dependent concepts: representation and reasoning using tempo-
ral description logics”,Data & Knowledge Engineering, vol. 22, 1997, p. 1–38.

[CHO 98] CHOMICKI J., SAAKE G., Eds.,Logics for Databases and Information Systems,
Kluwer Academic Publisher, 1998.

[CHO 03] CHOMICKI J.,VAN DER MEYDEN R., SAAKE G., Eds.,Logic for Emerging Appli-
cation of Databases, Springer-Verlag, 2003.

[EME 90] EMERSON A., “Temporal and Modal Logic”, VAN LEEUWEN J., Ed.,Handbook
of Theoretical Computer Science, vol. B, p. 995–1072, Elsevier, 1990.

[GAB 94] GABBAY D. M., HODKINSON I. M., REYNOLDS M. A., Eds.,Temporal Logic:
Mathematical Foundations and Computational Aspects, Volume 1, Oxford University Press,
Logic Guides 28, 1994.

[GAB 03] GABBAY D. M., KURUCZ A., WOLTER F., ZAKHARYASCHEV M., Many-
Dimensional Modal Logics: Theory and Applications, Num. 148 Studies in Logic and
the Foundations of Mathematics, Elsevier, 2003.

[GAB ar] GABBAY D., FISHERM., V ILA L., Eds.,Handbook of Time and Temporal Reason-
ing in Artificial Intelligence, Elsevier, To appear.

[GOR 03a] GORANKO V., MONTANARI A., SCIAVICCO G., “Propositional Interval Neigh-
borhood Temporal Logics”,Journal of Universal Computer Science, vol. 9, num. 9, 2003.

[GOR 03b] GORANKO V., MONTANARI A., SCIAVICCO G., “A Road Map on Interval Tem-
poral Logics and Duration Calculi”, GORANKO V., MONTANARI A., Eds.,Proc. of the
ESSLLI Workshop on Interval Temporal Logics and Duration Calculi, 2003, p. 1–40.

[HAA 01] H AARSLEV V., MÖLLER R., “RACER system description”, GORÉ R., LEITSCH

A., NIPKOW T., Eds.,Proceedings of the First International Joint Conference onAuto-
mated Reasoning (IJCAR’01), num. 2083 Lecture Notes in Artifical Intelligence, Springer-
Verlag, 2001, p. 701–705.

[HAL 91] H ALPERN J. Y., SHOHAM Y., “A Propositional Modal Logic of Time Intervals”,
Journal of ACM, vol. 38, num. 4, 1991, p. 935-962.

[HOL 90] HOLLUNDER B., NUTT W., “Subsumption Algorithms for Concept Languages”,
DFKI Research Report num. RR-90-04, 1990, German Research Center for Artificial Intel-



24 Journal of Applied Non-Classical Logics. Volume 13 – nÆ 2/2003

ligence (DFKI), Kaiserslautern, Germany.

[HOR 00] HORROCKSI., SATTLER U., TOBIESS., “Practical Reasoning for Very Expressive
Description Logics”,Logic Journal of the IGPL, vol. 8, num. 3, 2000, p. 239–264.

[LUT 97] L UTZ C., HAARSLEV V., MÖLLER R., “A Concept Language with Role-Forming
Predicate Restrictions”, Technical Report num. FBI-HH-M-276/97, 1997, University of
Hamburg, Computer Science Department, Hamburg.

[LUT 99] L UTZ C., “Complexity of Terminological Reasoning Revisited”, GANZINGER H.,
MCALLESTERD., VORONKOV A., Eds.,Proceedings of the 6th International Conference
on Logic for Programming and Automated Reasoning (LPAR’99), num. 1705 Lecture
Notes in Artificial Intelligence, Springer-Verlag, 1999, p. 181–200.

[LUT 01] L UTZ C., STURM H., WOLTER F., ZAKHARYASCHEV M., “Tableaux for Temporal
Description Logic with Constant Domain”, GORÉR., LEITSCHA., NIPKOW T., Eds.,Pro-
ceedings of the First International Joint Conference on Automated Reasoning (IJCAR’01),
num. 2083 Lecture Notes in Artifical Intelligence, Springer-Verlag, 2001, p. 121–136.

[LUT 02a] LUTZ C., “Adding Numbers to theSHIQ Description Logic—First Results”,
Proc. of the 8th International Conference on Principles of Knowledge Representation and
Reasoning – KR2002, Morgan Kaufman, 2002, p. 191–202.

[LUT 02b] LUTZ C., “The Complexity of Reasoning with Concrete Domains”, PhD thesis,
LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2002.

[LUT 02c] LUTZ C., “PSPACE Reasoning with the Description LogicALCF(D)”, Logic
Journal of the IGPL, vol. 10, num. 5, 2002, p. 535–568.

[LUT 03] L UTZ C., “Description Logics with Concrete Domains—A Survey”, BALBIANI

P., SUZUKI N.-Y., WOLTER F., ZAKHARYASCHEV M., Eds.,Advances in Modal Logics
Volume 4, King’s College Publications, 2003, p. 265–296.

[LUT ar] L UTZ C., “Combining Interval-based Temporal Reasoning with General TBoxes”,
Artificial Intelligence, To appear.

[NEB 95] NEBEL B., BÜRCKERT H.-J., “Reasoning about temporal relations: a maximal
tractable subclass of Allen’s interval algebra”,Journal of the ACM, vol. 42, 1995, p. 43–
66.

[PAT 99] PATEL -SCHNEIDER P., “DLP”, LAMBRIX P., BORGIDA A., LENZERINI M.,
MÖLLER R., PATEL -SCHNEIDERP., Eds.,Proceedings of the International Workshop on
Description Logics (DL’99), num. 22 CEUR-WS (http://ceur-ws.org/Vol-22/), 1999, p. 9–
13.

[PNU 86] PNUELI A., “Application of Temporal Logic to the Specification and Verification of
Reactive Systems: A Survey of Current Trends”,Current Trends in Concurrency, vol. 224
of Lecture Notes in Computer Science, p. 510-584, Springer-Verlag, 1986.

[SCH 90] SCHMIEDEL A., “Temporal Terminological Logic”, DIETTERICH, TOM;
SWARTOUT W., Ed.,Proceedings of the 8th National Conference on Artificial Intelligence
(AAAI’90), MIT Press, 1990, p. 640–645.

[SCH 93] SCHILD K. D., “Combining Terminological Logics with Tense Logic”,
FILGUEIRAS M., DAMAS L., Eds., Progress in Artificial Intelligence – 6th Portuguese
Conference on Artificial Intelligence, EPIA’93, vol. 727 ofLecture Notes in Artificial In-
telligence, Springer-Verlag, 1993, p. 105–120.

[STU 01] STURM H., WOLTER F., “A tableau calculus for temporal description logic: The
expanding domain case”,Journal of Logic and Computation, , 2001.



Correspondence between temporal DLs 25

[VEN 90] VENEMA Y., “Expressiveness and Completeness of an Interval Tense Logic”, Notre
Dame Journal of Formal Logic, vol. 31, num. 4, 1990, p. 529–547.

[VIL 90] V ILAIN M., KAUTZ H., VAN BEEK P., “Constraint Propagation Algorithms for
Temporal Reasoning: A Revised Report”, WELD D. S., DE KLEER J., Eds.,Readings
in Qualitative Reasoning about Physical Systems, p. 373-381, Morgan Kaufmann, 1990.

[WOL 98] WOLTER F., ZAKHARYASCHEV M., “Satisfiability Problem in Description Logics
with Modal Operators”, COHN A. G., SCHUBERT L., SHAPIRO S. C., Eds.,Proc. of the
6th International Conference on Principles of Knowledge Representation and Reasoning –
KR98, p. 512–523, Morgan Kaufmann, San Francisco, CA, USA, 1998.

[WOL 99] WOLTER F., ZAKHARYASCHEV M., “Temporalizing description logic”, GABBAY

D., DE RIJKE M., Eds.,Frontiers of Combining Systems, p. 379 - 402, Studies Press/Wiley,
1999.


