
Implementing Matching in ALN

Sebastian Brandt∗ and Hongkai Liu
Theoretical Computer Science,

TU Dresden, Germany
brandt@tcs.inf.tu-dresden.de

Abstract

Although matching in Description Logics (DLs) is theoretically well-
investigated, an implementation of a matching algorithm exists only for
the DL ALE . The present paper presents an implementation of an existing
polynomial time matching algorithm for the DL ALN . Benchmarks using
randomly generated matching problems indicate a relatively good perfor-
mance even on large matching problems. Nevertheless, striking differences
are revealed by direct comparison of the ALN - and the ALE-algorithm
w.r.t. FL¬-matching problems.

1 Motivation

Matching in Description Logics (DLs) has been first introduced by Borgida and
McGuinness in the context of the Classic system [5] as a means to filter out
irrelevant aspects of large concept descriptions. A matching problem (modulo
equivalence) consists of a concept description C and a concept pattern D, i.e.,
a concept description with variables. Matching D against C means finding
a substitution of the variables in D by concept descriptions such that C is
equivalent to the instantiated concept pattern D.
To some extent, matching can help to find redundancies in or to integrate

Knowledge Bases (KBs) [3, 6]. Matching can also be employed for queries over
KBs: a domain expert unable to specify uniquely the concept he is looking for
in a KB can use a concept pattern to retrieve all those concepts for which a
matcher exists. The structural constraints expressible by patterns exceed the
capabilities of simple “wildcards” familiar from ordinary searches [7].
Matching algorithms are well-investigated for the DLs ALN , ALE , and re-

spective sublanguages [2, 1]. Only the ALE-matching algorithm, however, has

∗Supported by the DFG under grant BA 1122/4-3

Syntax Semantics FL¬ ALE ALN

>;⊥ ∆I ; ∅ x x x
¬P, P ∈ Ncon ∆I \ P I x x x
C uD CI ∩DI x x x
∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI ⇒ y ∈ CI} x x x
∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x
(≤ n r), n ∈

�
{x ∈ ∆I | #{y | (x, y) ∈ rI} ≤ n} x

(≥ n r), n ∈
�

{x ∈ ∆I | #{y | (x, y) ∈ rI} ≥ n} x

Table 1: Syntax and semantics of concept descriptions.

been implemented [8]. In the present paper, we present an implementation of
the ALN -matching algorithm defined in [2]. While matching in ALE is NP-
hard, matching in ALN is polynomial. This relation gives rise to the question
whether the implementations of both matching algorithms reflect the difference
in computational complexity of the theoretical problems.
In order to answer this question, we have conducted benchmarks on randomly

generated matching problems. In addition to testing the ALN -matching algo-
rithm individually, we have directly compared the performance of both matching
algorithms, i.e., the existing one for ALE and the new one for ALN . To this end,
randomly generated FL¬-matching problems have been used, FL¬ being the
largest intersection between ALE and ALN .
The present paper is structured as follows. Basic notions related to the

DLs under consideration are defined in Section 2. The existing ALN -matching
algorithm is discussed in Section 3. The actual implementation is presented in
Section 4. The results of our benchmarks can be found in Sections 4.1 and 4.2.

2 Preliminaries

Concept descriptions are inductively defined with the help of a set of concept
constructors, starting with a set Ncon of concept names and a set Nrole of role
names. In this paper, we consider concept descriptions built from the construc-
tors shown in Table 1. The DL FL¬ provides the constructors top-concept (>),
bottom-concept (⊥), primitive negation (¬P), conjunction (C uD), and value
restriction (∀r.C). ALE extends FL¬ by existential restrictions (∃r.C) while
ALN extends FL¬ by number restrictions ((≤ n r) and (≥ n r)).
In order to define matching problems we also need to introduce concept pat-

terns. These are defined w.r.t. a finite set Nvar of concept variables distinct from
Ncon and Nrole. Concept patterns are an extension of concept descriptions in
the sense that they allow for primitive concepts A ∈ Ncon and concept variables

X ∈ Nvar as atomic constructors. The only restriction is that concept variables
may not be negated.
A concept description C1 is subsumed by a description C2 (C1 v C2) iff

CI1 ⊆ CI2 holds for all interpretations I. The concept descriptions C1 and C2
are equivalent (C1 ≡ C2) iff they subsume each other.
An L-substitution σ is a mapping from Nvar into the set of all L-concept

descriptions. Substitutions are extended to concept patterns by induction on
the structure of the pattern, modifying only the occurrences of variables in the
pattern. The notion of subsumption is extended to L-substitutions as follows.
An L-substitution σ is subsumed by an L-substitution τ (σ v τ) iff σ(X) v τ(X)
for all X ∈ Nvar. With these preliminaries we can define matching problems.

Definition 1 Let C be an L-concept description and D be an L-concept pattern.
Then, C ≡? D is an L-matching problem1. An L-substitution σ is a matcher iff
C ≡ σ(D). A matcher σ is the least matcher to C ≡? D iff for every matcher

τ to C ≡? D it holds that σ v τ .

3 Matching in ALN

Matching in ALN has been well-investigated in [2]. In particular, it has been
shown that solvable ALN -matching problems always have exactly one least
matcher unique up to equivalence that can be computed in polynomial time.
As the focus of this work is on implementation rather than theory, we will
present the relevant matching algorithm only as detailed as necessary. For fur-
ther details, see [2]. The algorithm relies on the so-called FL0-normal form of
ALN -concept descriptions which must be introduced first.
Consider an arbitrary ALN -concept description C over Ncon, Nrole, and over

sets N≥ and N≤ of number restrictions of the form (≥ n r) and (≤ n r), re-
spectively. Exhaustively applying the equivalence ∀r.(C1 u C2) ≡ ∀r.C1 u ∀r.C2
from left to right, we can represent C as a conjunction of concepts of the form
∀r1. · · · ∀rn.Π, where Π is the bottom-concept, a (negated) primitive concept,
or a number restriction. Abbreviating ∀r1. · · · ∀rn.Π by ∀r1 . . . rn.Π, we can in-
terpret r1 . . . rn as a word over the alphabet Nrole. Collecting all these words
separately for the bottom-concept, for every (negated) primitive concept, and
for every number restriction, we obtain a representation of C of the form

C ≡ u
Π∈{⊥}∪Ncon∪{¬P |P∈Ncon}∪N≥∪N≤

∀UΠ.Π,

where every UΠ is a formal language over Nrole. Note that the occurrence of Π on
top-level can be represented by including ε in the corresponding role language.

1In contrast to [2] we do not introduce matching modulo equivalence and matching modulo
subsumption separately. Note that C v σ(D) iff C ≡ C u σ(D).

Moreover, if Π does not occur in C at all then UΠ = ∅. ALN -concept patterns can
be represented in FL0-normal form by treating variables like primitive concepts.
Hence, it suffices to extend the above representation by role languages UX for
every variable X ∈ Nvar. The following example illustrates this.

Example 2 Let Ncon := {A}, Nrole := {r, s}, N≥ := {(≥ 3 r)}, N≤ := ∅, and
Nvar := {X,Y }. Then the pattern D := Au∀r.⊥u∀s.(∀r.Au (≥ 3 r)uX)uX

can be represented in FL0-normal form as

∀{r}.⊥ u ∀{ε, sr}.A u ∀∅.¬A u ∀{s}.(≥ 3 r) u ∀{ε, s}.X u ∀∅.Y .

By means of the FL0-normal form, a matching problem can be viewed as a
problem over formal languages. In order to simplify the presentation of theALN -
matching algorithm, we introduce two auxiliary functions on formal languages.

Definition 3 For arbitrary formal languages U , V over Nrole and r ∈ Nrole,

define U ◦−V :=
⋂

u∈U{v
′ | uv′ ∈ V } and U · r−1 := {u′ | u′r ∈ U}.

We can now introduce one main result from [2] which shows how the least
matcher to a solvable ALN -matching problem can be constructed. To simplify
notation, let ¬Ncon := {¬A | A ∈ Ncon}.

Lemma 4 Let C ≡? D be an ALN -matching problem over Ncon, Nrole, and over

number restrictions N≥ and N≤. Let the FL0-normal form of C be represented

by role languages of the form UΠ quantified over every Π ∈ {⊥}∪Ncon∪¬Ncon∪
N≥ ∪N≤ ∪Nvar. Analogously, let D be represented by role languages VΠ.

Then, either C ≡? D is not solvable or it has a least matcher σ that assigns

to each variable X the concept description σ(X) defined by

σ(X) := ∀WX
⊥ .⊥ u u

Π∈Ncon∪¬Ncon∪N≥∪N≤
∀((VX ◦−WX

Π) \ (VX ◦−EC)).Π,

where EC = {w ∈ N ∗
role | C v ∀w.⊥}, WX

⊥ is a role language of polynomial size

in C with WX
⊥ · N

∗
role = VX ◦−EC, and all other role languages of the form WX

Π

are defined as follows.

WX
Π :=























UΠ ∪ EC if Π ∈ Ncon ∪ ¬Ncon
⋃

m≥n

U(≥mr) ∪ EC if Π =: (≥ n r) ∈ N≥

⋃

m≤n

U(≤mr) ∪ EC · r
−1 if Π =: (≤ n r) ∈ N≤

There are two obvious strategies to decide whether the substitution σ defined
above actually solves the matching problem C ≡? D. We might either ascertain
the solvability of C ≡? D before computing σ, or we might compute σ first

and decide the equivalence C ≡ σ(D) afterwards. In [2], the former strategy is
taken: a system of formal language equations, so-called ’solvability equations’,
is proposed which is solvable iff C ≡? D is solvable. To decide solvability of
these equations, however, necessitates computing exactly those role languages
which occur in the FL0-normal form of σ(X) constructed in Lemma 4.
As the second strategy is computationally equivalent but more easily ex-

plained, we deviate from the original in [2] by computing a candidate solution
first and testing for equivalence afterwards. To this end, we utilize a character-
ization of equivalence from [2] based on FL0-normal forms.

Lemma 5 Let C1 and C2 be ALN -concept descriptions over Ncon, Nrole, and

over number restrictions N≥ and N≤. Let the FL0-normal forms of C1 and C2
be represented by role languages of the form UΠ and VΠ, respectively. Then,

C ≡ D iff for every Π ∈ Ncon ∪ ¬Ncon, for every (≥ n r) ∈ N≥, and for every

(≤ n r) ∈ N≤ it holds that

EC1
= EC2

(⊥)

UΠ ∪ EC1
= VΠ ∪ EC2

(Π)
⋃

m≥n

U(≥mr) ∪ EC1
=

⋃

m≥n

V(≥mr) ∪ EC2

⋃

m≤n

U(≤mr) ∪ EC1
· r−1 =

⋃

m≤n

V(≤mr) ∪ EC2
· r−1,

where ECi
= {w ∈ N ∗

role | Ci v ∀w.⊥} for i = 1, 2.

Informally, the ALN -matching algorithm can now be described as follows.
Upon input C ≡? D, (i) transform C and D into FL0-normal form, (ii) construct
the candidate solution σ defined in Lemma 4, and (iii) test whether C and σ(D)
satisfy the formal language equations shown in Lemma 5. If they do, return
the least matcher σ, otherwise return ‘fail’. It remains to provide a method by
which to solve Steps (ii) and (iii) in polynomial time.
To this end, so-called ‘tree-like automata’ [2], can be utilized. Intuitively,

these are deterministic finite automata whose structure differs from a tree only in
that they either have ordinary leaves or leaves with an r-transition to themselves
for every r ∈ Nrole. Consider the following example.

Example 6 Let Nrole = {r, s}. Then the role language {ε, s} ∪ {rs} ·N
∗
role can

be represented by a tree-like automaton A of the form

s

r

s r, s

A

,

where denotes the initial state and double circles denote final states.

It has been shown in [2] that tree-like automata have the following properties.

• A tree-like automaton A that accepts EC can be constructed in polynomial
time in the size of C. From A, a language U of polynomial size in C with
EC = U ·N ∗

role can be constructed in linear time.

• The operations union, intersection, and complement on treelike automata
can be defined in such a way that the size of the resulting automaton does
not exceed the maximum of the sizes of the input automata. Moreover,
all operations can be performed in linear time.

• If U, V,W are finite languages, then a tree-like automaton that accepts
U ◦−(V ∪W · N ∗

role) can be constructed in polynomial time in the size of
the input.

As a consequence, tree-like automata can be used to construct the candidate
solution σ defined in Lemma 4 in polynomial time. It remains to show how
tree-like automata can be used to test whether σ actually is a solution.
Consider a matching problem C ≡? D in FL0-normal form with a candidate

solution σ as defined in Lemma 4. Instantiating the entire system of equations
from Lemma 5 by C and σ(D) is beyond the scope of this paper. Nevertheless, as
a typical example, we discuss Equation (Π) defined for every Π ∈ Ncon ∪¬Ncon.
Inserting the role languages from C and σ(D), we obtain the following equation.

UΠ ∪ EC = VΠ ∪ Eσ(D) ∪
⋃

X∈Nvar

VX ·
(

VX ◦−(UΠ ∪ EC)
)

(∗)

Assume that Equation (⊥) has already been tested, i.e., EC = Eσ(D). By defi-
nition of ◦−, the union over all X ∈ Nvar on the right-hand side of (∗) is always
a subset of the left-hand side of the equation. Hence, Equation (∗) holds iff
(i) VΠ ⊆ UA ∪ EC and (ii) for all u ∈ UΠ either (iia) u ∈ VX ∪ Eσ(D) or (iib)
u ∈ VX ·VX ◦−UΠ or (iic) u ∈ VΠ ·VX ◦−EC . Condition (i) can be decided by testing
the tree-like automaton of VΠ ∩ (UΠ ∪ EC) for emptyness. For Condition (iia),
merely the word problem w.r.t. the tree-like automaton for VΠ ∪Eσ(D) must be
decided for every u ∈ UΠ. Since there is no concatenation defined for tree-like
automata, the remaining Conditions (iib) and (iic) cannot be solved by means of
one single treelike automaton. Nevertheless, one can show that u ∈ VX ·VX ◦−UΠ
iff {u} ◦−VX ∩ VX ◦−UΠ is not empty, which again can be decided by a tree-like
automaton in polynomial time. Case (iic) is analogous. The other equations
from Lemma 4 can be decided similarly.
This completes our overview of matching inALN . In the following section, we

will explain how the theoretical algorithm described above can be implemented.

4 Implementation

In order to implement the ALN -matching algorithm introduced previously, ap-
propriate data structures for the representation of concept descriptions, concept
patterns, and tree-like automata are necessary.
As the algorithm is defined w.r.t. the role languages of the FL0-normal form

of its input, it seems expedient to begin by translating the input matching
problem into an array of sets of lists over symbols, the symbols representing the
alphabetNrole. Our data structure for tree-like automata resembles the inductive
representation of trees: a vector the elements of which are either atomic objects
or again vectors. In our case, we only additionally have to discriminate non-
final from final nodes and ordinary leaves from those accepting N ∗

role. In order
to decide word-problems more quickly, vectors representing non-leaf nodes are
implemented as arrays instead of lists.
The overall strategy of the implementation corresponds to the steps described

in Section 3. As implementation language, we chose Common LISP because it
proved well-suited to realize our representation of tree-like automata. Moreover
choosing LISP makes our implementation compatible to the system Sonic [9]
which provides an interface between the KB editor OilEd [4] and non-standard
reasoning services. This may help to make our algorithm available to users.

4.1 Benchmarks

In order to test the performance of our implementation on a sufficiently large set
of data, we had to resort to randomly generated matching problems. A similar
approach was used for the implementation of an ALE-matching algorithm [8].
Randomly generating C and D independently of each other makes it very

unlikely that a matcher for C ≡? D exists. Hence, we randomly generate a con-
cept C and then construct a concept pattern D from C by randomly replacing
sub-concepts of C by variables. Matching problems obtained thus are not neces-
sarily solvable because of multiple occurrences of the same variable. As a simple
example, consider C := ∀r.Au ∀s.B and D := ∀r.X u ∀s.X. Then, C ≡? D has
no solution. Note also that assuming the concept pattern D to be smaller than
C seems justified especially when viewing matching as querying over KBs.
The generated random matching problems were influenced by a vector of

probabilities controlling the depth and width of the resulting concept C as well
as the frequency of the different constructors available in ALN and the variables
in D. Our benchmarks comprise a total of about 22,000 matching problems
in 220 groups, each of which was generated with a unique probability vector.
Moreover, we have generated another 12,000 matching problems which, though
random, were constructed to be always solvable. The maximum problem size,
i.e., the sum of the sizes of C and D, was limited by 1000. The benchmarks were

0

500

1000

1500

2000

0 200 400 600 800 1000

tim
e

[m
s]

|C|+|D|

ALN-match

0

500

1000

1500

2000

0 200 400 600 800 1000

tim
e

[m
s]

|C|

ALN-match

general
solvable

(a) (b)

Figure 1: Benchmarks for matching in ALN

measured on a standard PC with one 1.7GHz Pentium-4 processor and 512MB
of memory. Computing overall averages, the algorithm takes 0.8 seconds to solve
a matching problem of size 528 with D being two thirds the size of C.
Figure 1 gives a more detailed account of our findings. Diagram (a) shows

the result of our benchmarks as a scatterplot together with a fitting function
computed by the least-squares method. One dot in the diagram represents one
matching problem C ≡? D. In the diagram, the horizontal position of every dot
represents the sum of the sizes C and D while the vertical position represents
the time necessary to solve the problem.
The fitting function in Figure 1(a) not only matches the overall average

fairly well, but also shows the general trend of the expected computation time
for larger problems. A problem of size, e.g., 800 increases the computation time
to about 1.5 seconds. Nevertheless, the ‘darker’ cluster below the fitting function
indicates that the majority of the problems are solved in less than one second.
Astonished by the strong dispersion of the scatterplot in Figure 1(a), we have

rearranged the plot so that the horizontal position of every dot representing a
matching problem C ≡? D is determined by the size of C alone, thus ignoring
the size of D. This rearrangement produces the scatterplot in Figure 1(b).
Comparing diagrams (a) and (b), the first immediate observation is that the

the size of C influences the computation time stronger than the size of D—
although on average the size of D is two thirds the size of C. Moreover, we
observe one cluster of simpler matching problems and another cluster of ‘hard’
ones, where a problem of size 400 on average already seems to take 2 seconds to
solve. Analysis of our data revealed that the ‘hard’ cases comprise exactly those
problems which, though random, were designed to be solvable.
As we do not have the means to verify these findings by matching problems

from realistic applications, we cannot rule out that the above findings are specific
to randomly generated matching problems. Nevertheless, it seems expedient

0

500

1000

1500

2000

0 200 400 600 800 1000

tim
e

[m
s]

|C|+|D|

ALE-match

0

500

1000

1500

2000

0 200 400 600 800 1000

tim
e

[m
s]

|C|

ALE-match
general

solvable

(a) (b)

Figure 2: Benchmarks for the ALE-matching algorithm in FL¬

to aim future optimizations of the ALN -matching algorithm at improving the
computation time for solvable matching problems.

4.2 A comparison to the ALE-matching algorithm

The fact that a matching algorithm for the DL ALE has already been imple-
mented offers the unique opportunity to compare the ALN - to the ALE-matching
algorithm head-to-head on FL¬-matching problems, the largest intersection of
ALN and ALE . This comparison might be interesting for two reasons. Firstly,
both algorithms take a totally different approach to solving a matching problem
C ≡? D. While the ALN -algorithm solves a system of formal language equa-
tions, the ALE-algorithm tries to construct homomorphisms from the description
tree of D into that of C. Secondly, the ALN -algorithm exploits the fact that
an ALN -matching problem has at most one solution while the ALE-algorithm
might look for several ones.
For our comparison, we have generated a set of 34.000 FL¬-matching prob-

lems in the manner described above. The results for the ALN -algorithm are
similar to the ones discussed in Section 4.1. On average, a problem of size 539
was solved in 1.2 seconds by the ALN -algorithm, compared to just 0.25 seconds
by the algorithm for ALE . The resulting scatterplots for the ALN -algorithm
are not shown here because they closely resemble the ones in Figure 1. The
scatterplots for the ALE-algorithm are shown in Figure 2.
The plot in Figure 2(a) shows that the majority of matching problems is

solved in less than 0.25 seconds with relatively fewer cases strongly deviating
upwards. Moreover, the fitting function indicates that even a problem of size
1000 is usually solved in about 0.5 seconds.
The discrimination by ordinary matching problems and those designed to be

solvable, see Figure 2(b), shows that our findings from the ALN -algorithm are

exactly reversed. The ALE-algorithm apparently had no difficulty with solvable
matching problems while the ‘hard’ cases are comprised of those problems of
which many have no solution.

5 Conclusion

In the present paper, we have presented an implementation of theALN -matching
algorithm defined in [2]. Upon input C ≡? D, the algorithm first computes a
candidate solution σ and verifies its validity afterwards. More precisely, the
algorithm reduces matching problems to problems over formal languages and
decides them in polynomial time with the help of tree-like automata.
Our benchmarks show that even large ALN -matching problems can be solved

relatively quickly. Analysis indicates that solvable matching problems tend to
consume much more time than those without a solution. This suggests for
potential optimizations to aim at constructing solutions more quickly and not
at trying to identify unsolvable problems earlier.
The validity of our findings is weakened by the fact that only randomly

generated data was available for benchmarks. It is an open questions whether
both implementations, the one forALN as well as the one forALE , behave similar
on matching problems from realistic applications. Nevertheless, our comparison
suggest that without major optimization the ALE-matching algorithm seems the
more auspicious starting point for an extension to matching in ALEN .

References

[1] F. Baader and R. Küsters. Matching in description logics with existential restrictions. In
Proc. of KR2000, Morgan Kaufmann Publishers, 2000.

[2] F. Baader, R. Küsters, A. Borgida, and D. McGuinness. Matching in description logics.
Journal of Logic and Computation, 9(3):411–447, 1999.

[3] F. Baader and P. Narendran. Unification of concept terms in description logics. In Proc.

of ECAI-98, John Wiley & Sons Ltd, 1998.

[4] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reason-able ontology
editor for the semantic Web. Lecture Notes in Computer Science, 2174, 2001.

[5] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick. CLASSIC: A Struc-
tural Data Model for Objects. In Proc. of ACM SIGMOD, ACM Press, 1989.

[6] A. Borgida and R. Küsters. What’s not in a name: Some Properties of a Purely Structural
Approach to Integrating Large DL Knowledge Bases. In Proc. of DL2000, CEUR-WS,
2000.

[7] S. Brandt and A.-Y. Turhan. Using non-standard inferences in description logics—what
does it buy me? In Proc. of KIDLWS’01, CEUR-WS, 2001.

[8] S. Brandt. Implementing matching in ALE—first results. In Proc. of DL2003, CEUR-
WS, 2003.

[9] A.-Y. Turhan and C. Kissig. Sonic—non-standard inferences go OilEd. In Proc. of

IJCAR’04, Springer-Verlag, 2004. 2004.

