A Tableau System
for the Description Logic SHZ O

Jan Hladik
hladik@tcs.inf.tu-dresden.de

Chair for Automata Theory
University of Technology, Dresden

1 Introduction

For the satisfiability test of description logics (DLs) [1], there are two promi-
nent families of algorithms with complementary advantages and disadvantages:
firstly, automata-based algorithms (see e.g. [6]), which translate a DL expression
¢ into an automaton A, which accepts all (abstractions of) models for ¢, so
that the satisfiability test for ¢ can be reduced to the emptiness test of A,; and
secondly tableau algorithms [2], which incrementally create a tree-shaped (pre-)
model for ¢ using a set of rules labelling each tree node with the appropriate
subformulas of . In short, the advantages of automata algorithms are on the
theoretical side, because in many cases the proofs are very elegant and offer
tight complexity bounds (in particular for EXpTIME-complete logics), whereas
the advantages of tableau algorithms are on the practical side, since they are
well suited for implementation and optimisation. In contrast, intuitive automata
algorithms usually require exponential time also in the best case, and thus an
efficient implementation requires considerable modifications.

For this reason, an approach combining both advantages is highly desirable.
In [3], we introduced tableau systems (TS), a framework for tableau algorithms.
If a tableau algorithm can be described within this framework, the existence of
an automata algorithm (and thus the EXPTIME upper bound) directly follows.
Moreover, only soundness and completeness of the tableau algorithm have to be
proved; termination and a practical procedure to ensure termination, called a
blocking test, also follow from the prerequisites of the framework.

As an example for the usefulness of this framework, we present in this pa-
per a TS for SHZO, an expressive DL whose computational properties to the
best of our knowledge have not been analysed so far. The purpose of this is
two-fold: firstly, we obtain that SHZO satisfiability is EXpTIME-complete and
can be decided by a tableau algorithm. Secondly, the succinctness of the proofs
demonstrates how our framework simplifies the design of tableau algorithms.

2 The Tableau Framework for ExPTIME Logics

In DL tableau algorithms, a (pre-)model is represented by a tree with node and
edge labels, called a completion tree." The completion rules describe how to sat-

! This is different from first-order tableaus, where a model corresponds to a path within
the generated tree.

isfy a formula contained in a node label, essentially by describing a subtree of
bounded width and depth in which a particular rule can be applied, and the
modification of this subtree through application of this rule. It is possible that
several rules are applicable to a node at the same time, but the sequence of
rule applications is don’t-care-nondeterministic, i.e. every sequence will lead to
the same result. In contrast, some rules, e.g. for disjunction, are don’t-know-
nondeterministic, i.e. it is possible that one disjunct may lead to a model, while
another one may not. Unsatisfiability of the generated completion tree is de-
tected through clash triggers, subtrees containing an obvious contradiction, thus
a completion tree containing a clash trigger cannot be transformed into a model.

Due to space restrictions, we cannot present all details of the tableau frame-
work; instead, we will describe the intuition which motivated the design and
refer the reader to [3] for details. A completion tree is formalised as an S-tree
((V,E,n,l),u), where (V,E) is a bounded width tree and n,¢ are node and
edge labelling functions; and we capture the rules by using S-patterns, which
are essentially S-trees of bounded depth. Thus for every possible S-pattern, we
describe the possible modifications by all rules: a pattern P is mapped to a set
of sets of patterns {57, Ss, ..., S, }. The choice of the set S; represents the don’t-
care choice of the rule that is applied, whereas the choice of the pattern within
the set S; represents the don’t-know choice of the alternative (which means that
a deterministic rule corresponds to a singleton set S;). In particular, if no rule
is applicable to P, then P is mapped to the empty set. As an example, consider
a pattern P in which the node n is labelled with {C'M D, E U F'}. Here, one can
define the rules as follows: P — {{P1},{P, Ps}}, and in P;, C' and D are added
to the label of n, whereas F is added in P, and F in Ps. Patterns are also used to
describe clash triggers: within our framework, a clash trigger is simply a pattern
which contains a contradiction (in the context of the logic under consideration).

Since our intention was to define one tableau system for one logic rather than
a particular one for every possible input, we have to include all possible node
labels in these rules and clash triggers. For a particular input I', these sets are
mapped to the appropriate subsets, which is necessary to ensure the EXpPTIME
upper bound. Finally, we also wanted to allow for rules which are not applied
locally, but globally, which is necessary e.g. for handling TBoxes or nominals.
For this purpose, S-trees and -patterns also contain a global memory u, which
can be read and modified by a rule just like a node label.

Formally, a tableau system S is a tuple (NLE,GME,EL,-°, &k, R,C), where
NLE is the set of all possible node label elements, GME is the set of global
memory elements, EL is the set of edge labels, £ is the maximum pattern depth,
i.e. the number of edges on a longest path, and R and C are the sets of rules and
clash triggers as defined above. The function -° maps an input I" to the tuple
(nle, gme, el ini), where nle, gme and el are finite subsets of the corresponding
sets in S, and ini C p(nle) X p(gme) describes the possible initial states for I" (p
denotes power set).

3 The Description Logic SHZO

The DL SHZO extends the basic DL ALC [8] by transitive roles, role hierarchies,
inverse roles, and nominals, i.e. concepts that have to be interpreted by singleton

sets. The presence of both transitive roles together with role hierarchies allows
for the internalisation of general concept inclusion axioms [5]; and nominals
together with inverse roles require additional measures to ensure that nominals
are handled correctly; e.g. we cannot use a forest model as for SHOQ (D) [4].

Definition 1 (SHZO syntax and semantics). Let CON be a set of concept
names, ROL be a set of role names, the set of nominal names NOM C CON, and
the set of transitive role names TRA C ROL. If r is a role name, then both r and
r—, the inverse of r, are roles. The set of SHZO concepts is inductively defined
as follows: every concept name is a concept; and if C' and D are concepts and
r is a role, then =C', C 1 D, C U D, V¥r.C', and 3r.C' are also concepts. If r» and
s are roles, then r C s is a role inclusion aziom. An RBozx is a finite set of role
inclusion axioms.

An interpretation of a concept C' w.r.t. an RBox B is a pair 7 = (AZ%,-T),
where A7 is a non-empty set of individuals and - maps every concept name
C to a set CT C AT and every role name r to a set r- C AT x AT, For all
O € NOM, it holds that #0% = 1, where #S denotes the cardinality of a set S.
For all t € TRA, it holds that t* = (t*)*, where - denotes the transitive closure
of a relation. Complex roles and concepts are interpreted as follows:

- (=0 =AT\Ct, (cnD)Y=ctnD* (CuD)t=cC*uD?,
— (3r.C)t = {d € AL | thereis an e € AT with (d,e) € r* and e € C*}
— (Vr.C)T = {d € AT |for all e € AT if (d,e) € T, then e € CT}

- () ={(xy) | (y,2) er’}.

An interpretation Z is a model for an RBox B if, for all r C s € B, it holds that
r? C s?. A model for C w.r.t. B is a model for B where C* is a nonempty set.
If a model exists, we say that C' is satisfiable w.r.t. B.

4 A Tableau System for SHZO

Before defining the TS Ssyz0, we fix some notation. Firstly, to avoid multiple
inverse operators as in r~—, we use the notation 7, with the meaning r—, if r
is a role name, and s, if r is an inverse role s~. Secondly, in an S-pattern P =
(V,E,n,l),) with {m,n} C V, we call m an r-neighbour of n if {(n,m) =r
or {(m,n) = 7. Thirdly, for an RBox B, we define the role hierarchy B* as
Bt =BU{FCs5|rCse B} and by Ep we denote the reflexive-transitive
closure of C on BT. Finally, to capture roles which are implicitly declared to be
transitive (e.g. 7 if r € TRA), we use, for an RBox B, the predicate Transp: for a
role r, Transg(r) is true iff there exists a role s such that s € TRA,s' E gr and
r &g s for some s',s" € {s,s7}.

The closure clos(C, B) of a SHZO concept term C and an RBox B is defined
as follows: C' € clos(C, B); if =D € clos(C, B), then D € clos(C,B); if DM E
or DUE € clos(C,B), then {D,E} C clos(C,B); if 3r.D € clos(C, B), then
D € clos(C, B); and if Vr.D € clos(C, B) and the role s appears in C' or B, then
{D,Vs.D,V¥s5.D} C clos(C, B).? For the sake of simplicity, we only deal with con-

2 The slightly unusual definition for the V quantifier is motivated by the V.-rule (see
below), which in turn is necessary in order to capture transitive sub-roles of non-
transitive roles.

cepts in negation normal form (NNF), i.e. where negation appears only directly
before concept names. It is easy to see that every concept can be transformed
into an equivalent one in NNF in linear time.

We can now define Ss»zo = (NLE,GME,EL,1,-°,R,C). Note that we use
the global memory for three purposes: firstly, for transitive roles; secondly, for
role inclusion axioms; thirdly, for information about concepts appearing together
with a nominal.

— NLE is the set of all SHZO concepts,
~ GME = {(0,C)) | O € NOM and C' € NLE} U
{Trans(r) | 7 is a role} U {r Es | r and s are roles},>
— EL is the set of all SHZO roles, and
- for an input I' = (C, B), where C is a concept and B is an RBox, the function
S maps I' to a tuple I'* = (nler, gmey, elr,inir) with
e nler = clos(C, B),
e el ={r|r or ¥ appears in C or B},
e gme, = {(0,D) | O e NOMNclos(C, B) and D € clos(C,B)} U
{Trans(r) | r €elpfU{rEs | {r,s} Celr}, and
e inip = {({C},{Trans(r) | Transp(r) holds} U {r Es | r E g s holds})}.

We now define the set of rules R. For each pattern P = (¢,), where ¢t =
(V, E,n, () has vy as root and depth at most 1, R(P) contains the following sets:

RN If CMD € n(vy) and {C, D} € n(vg), then R(P) contains {((V, E,n’, (), u)},
where n'(v) = n(v) for all v # vy and n'(vg) = n(ve) U {C, D}.

RU If CUD € n(vg) and {C, D}r‘m(vo) = (), then R(P) contains {((V, E,n’, (),

w), (V,E,n",0),)}, where n'(v) = n”(v) = n(v) for all v # vy, n'(vg) =
n(vy) U {C} and n" (vo) = n(vo) U{D}.

R3 If Ir.C € n(wy), v1,...,vy are all the sons of vy with ¢(vg,v;) = r, and
C ¢ n(v;) for all 7,1 <14 < m, then R(P) contains the set {Pp, P1,..., Py}
with

- PO = ((Vo,Eo,no,go),u), where v’ ¢ V, VO =Vu {U’},EO = FEU
{(vg,v")},no =nU{v' = {C}}, 6 = LU {(vy,v") — r}.

—for all i,1 < i < m, P, = ((V,E,n;,),), where n;(v) = n(v) for all
v # v; and n;(v;) = n(v;) U{C}.

RY If Vr.C € n(v) for some v € V, v' is an s-neighbour of v with C' ¢ n(v')
and s Er € p, then R(P) contains {((V, E,n’, (), n)} with n'(v) = n(v) for
v #0v" and n/(v") =n(v") U {C}.

RV, If Vr.C € n(v), {Trans(s),s Er,s' Es} C u and for some v € V, v/ is an
s"-neighbour of v with Vs.C' ¢ n(v') , then R(P) contains {((V, E,n’,),)}
with n'(v) = n(v) for v #v" and n'(v") = n(v") U {Vs.C'}.

Rt If {O,C} C n(vg) for some O € NOM and (O,C) ¢ pu, then R(P) contains
{((V,E,n,0),)}, where p = pU {0, C}.

R] IfO € n(vg) foran O € NOM, (O,C) € pand C ¢ n(vp), then R(P) contains
{((V,E,n',0),)}, where n'(v) = n(v) for v # v and n'(ve) = n(ve) U {C}.

% Note that the relations Transg and [5 (i.e. the semantics) are distinguished from
the global memory elements (the syntax) by the index p.

Most of these rules correspond directly to the “standard” rules known from
DL tableaus, with the exception of R3, which in our framework is non-determin-
istic. The reason for this is that with a deterministic rule, this TS would not be
admissible (see [3] for a discussion of this issue). In an implementation, a deter-
ministic rule would be preferable due to efficiency considerations, since it is easy
to see that the creation of duplicate nodes does not compromise completeness of
the decision procedure. Finally, the set C of clash patterns contains all patterns
((V,E,n,), u) of depth 0 with node vy such that {C,—=C} C n(vo).

Lemma 2. The TS Ssyzo is sound and complete for SHIZO satisfiability.

From this, we can derive that SHZO satisfiability is decidable through a
tableau algorithm, and we know that for the blocking condition, equality blocking
suffices, i.e. we do not need pair-wise blocking as e.g. for SHZQ [5]. The reason
for this is that we use only patterns of depth at most 1. We can also derive the
ExPTIME upper bound:

Theorem 3. Satisfiability for SHZO concepts w.r.t. RBozes is decidable in
ExpPTIME.

Since SHZO is an extension of ALC with TBoxes, for which satisfiability is
known to be EXPTIME-hard [7], it follows that SHZO satisfiability is EXPTIME-
complete.

5 Conclusion

We have introduced the tableau framework for EXPTIME logics, defined the de-
scription logic SHZO and developed a tableau system for SHZO. From this, we
can derive an automata algorithm deciding satisfiability of SHZO concepts w.r.t.
RBoxes in EXPTIME and a tableau algorithm which promises to be amenable to
the well-known optimisations and thus to perform well in practice. We believe
that the simplicity of the proofs justifies the additional overhead resulting from
the formalisation of the algorithm within the tableau framework.

References

[1] F. Baader. Logic-based knowledge representation. In Artificial Intelligence Today,
Recent Trends and Developments, number 1600 in LNCS. Springer-Verlag, 1999.

[2] F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69, 2001.

[3] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to automata for
description logics. Fundamenta Informaticae, 57:1-33, 2003.

[4] 1. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proceedings of IJCAI-01, 2001.

[6] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proceedings of LPAR’99, number 1705 in LNAI. Springer-Verlag, 1999.

[6] U. Sattler and M. Y. Vardi. The hybrid p-calculus. In IJCAR-01, volume 2083 of
LNAI Springer-Verlag, 2001.

[7] K. Schild. Terminological cycles and the propositional p-calculus. In Proceedings
of KR-94, Bonn, 1994.

[8] M. Schmidt-Schauff and G. Smolka. Attributive concept descriptions with unions
and complements. Tech. Rep. SR-88-21, Univ. Kaiserslautern, Germany, 1988.

Appendix

We will now give the proofs for Lemma 2 and Theorem 3, for which we have to
recall some additional definitions from [3]. An S-tree t is called saturated® if no
rule is applicable, i.e. if there is no pattern P matching ¢ with R(P) # 0. It is
called clash-free if no clash trigger P € C matches t.

For a TS S, we require admissibility: the rules may only add information,
but never remove anything from the tree; and if a rule is applicable, then it can
be applied in such a way that the tree approaches saturation. This last prop-
erty is the key to proving completeness of tableau systems: we distinguish an
S-tree compatible with I, i.e. a tree which is labelled according to I', from an
S-tree for I', i.e. a tree which can be constructed effectively from an initial tree
by rule application. For the EXPTIME upper bound, we also require EXPTIME-
admissibility: for an input I, the cardinality of the sets nle, gme and el and the
size of each element has to be polynomial in the size of I'. If the prerequisites
of our framework are met by S, then the existence of a clash-free and satu-
rated S-tree compatible with I" implies the existence of such a tree for I', which
means that in the following proofs, we need not show that a particular tree can
effectively be created by rule application.

Lemma 2 (Soundness). The TS Ssyzo is sound for SHIO satisfiability.

Proof. From a saturated and clash-free S-tree (t,u) with ¢t = (V, E,n, (), we
generate a model T = (AZ,-7) as follows: AT = {vp | O € NOM N clos(C, B)} U
{v]v €V and n(v) N NOM = (}, i.e. we have one individual for each nominal
name and one individual for every tree node that is not labelled with a nominal.
A concept name C is interpreted as follows: for every O € NOM N clos(C, B),
vo € CT iff there is a node v € V with {O,C} C n(v). Since R1 and RJ are not
applicable, all nodes whose labels contain the same nominal symbol have exactly
the same label, and thus - is well-defined. For all other individuals, v € C7 iff
C € n(v).

For a role r, r* is the smallest set satisfying the following conditions: if
((v,w) = r or {(w,v) =T, then (vI,w?) € r;if sEr € p, then s* C rZ; if
Trans(r) € u, then 77 is closed under transitivity.

We will now show by induction that complex concepts are interpreted cor-
rectly. By definition, all individuals belong to the interpretation of the concept
names in their labels, and the interpretation of a nominal contains exactly one
element. From our construction, it follows directly that the role hierarchy is
respected and transitive roles are interpreted correctly. For a conjunct C' 1 D
(disjunct C'UI D) in a node label n(v), since RM (RU) is not applicable, it follows
that C and D (C or D) are contained in n(v), and by induction, v” is contained
in CT n DT (C*uDY).

If Ir.C € n(v), we assume w.l.o.g. that r is a role name (if it is an in-
verse role, the argument is analogous). Since R3 is not applicable, there exists
an r-son w of v with C' € n(w). By construction, (v,w) € rf and w € CZ.

T

* Usually, this property is called “completeness”; we use the word “saturated” in order
to avoid confusion with the notion of completeness of the decision procedure.

If Vr.C' € n(v), we again assume that r is a role name. There are two possi-
ble reasons why (vZ,w?) can be contained in rZ: firstly, if w is an s-neighbour
of v for some s with s Er € p. In this case, it follows that C' € n(w) be-
cause RY is not applicable, and thus w” € C”. Secondly, if there exist roles
8,81y...,8; s.th. {Trans(s),s Er,s; Es} C u for all i € {1,...,k} and there is
an s;-chain from v to w, i.e. a sequence of nodes vy, vs, ..., v, s.th., for all edges
e € {(v,v1), (v1,v2),...,(vn,w)}, it holds that e € E and {(e) = s; for some i.
In this case, since RV is not applicable, all nodes vy, ...,v; are labelled with
Vs.C, and, since RY is not applicable to vy, n(w) contains C. O

Lemma 2 (Completeness). The TS Ssyzo is complete for SHIO satisfia-
bility.

Proof. We have to show that if there exists a model T = (AZ,-%) for an input
I' = (C, B), then there also exists a clash-free and saturated S-tree (¢, u) with
t = (V,E,n,0) for I'. We will create (¢,) by unravelling Z: firstly, we add the
appropriate transitivity axioms (Trans(r) if Transg(r) holds) and role inclusion
axioms (r Es if r E g s holds) to p. The tree ¢ is inductively defined as follows:
since T |= I, there is an individual ip in AT which satisfies C'. We start with
V' = {vo} and define n(vg) as the set of all concepts in clos(C, B) which ig
satisfies. We define a function 7 : V' — AZ and set 7(vg) = io.

Then we iterate, for every node v, the following procedure: for every existen-
tial formula 3r.D € n(v) we choose a witness individual i € A with i € D? and
(m(v),4) € r* (such a witness exists since 7 is a model). We create a new node w
with 7(w) =1, (v,w) € E and ¢(v,w) = r. Note that the tree width is bounded
by the size of clos(C, B). Again, we label w with the appropriate concepts in
clos(C, B) and then continue the iteration. For every nominal concept O, we add
to p the pair (O, D) for every concept D € clos(C') which the unique element ip
of O satisfies.

It is easy to see that (¢,) is compatible with I" and clash-free. We will now
show that it is also saturated: from the definition of clos, it follows that RM and
RU are not applicable. If a node label n(v) contains a concept Jr.D, then by
construction of ¢, there is an r-successor of v which is labelled with D. Likewise,
if Vr.D € n(v), all r-neighbours of v are labelled with D. If Vr.D € n(v), p
contains s Er, s’ Es and Trans(s), and there is an s'-neighbour w of v, then,
since 7 is a model, (m(v), m(w)) € s and, since s” is transitive, for every node
u with (m(w),m(u)) € s%, it also holds that (7(v),7(u)) € s, and therefore
m(u) € DT. Thus, m(w) | Vr.D and, since s E gr, v(w) contains Vs.D, which
means that RV is not applicable. Finally, since every node n with 7(n) = ip for
a nominal O is labelled with exactly those concepts for which u contains (O, C'),
R?1 and RJ are not applicable. O

Note that in these proofs, we did not have to deal with termination and a
blocking condition, and we did not have to prove that the completion tree can
effectively be constructed by rule applications. All these results follow from the
tableau framework.

Theorem 3. Satisfiability for SHZO concepts w.r.t. RBozes is decidable in
ExXPTIME.

Proof. Tt is easy to see that S is EXPTIME-admissible: e.g. the size of nleg(I")
and gmeg(I") is quadratic in the size of the input. The maximum required width
of an S-tree is bounded by the number of existential subformulas of the input
concept since at most one successor is needed for every existential subformula.
Soundness and completeness have been shown above. O

