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1 Introdu
tion

For the satis�ability test of des
ription logi
s (DLs) [1℄, there are two promi-

nent families of algorithms with 
omplementary advantages and disadvantages:

�rstly, automata-based algorithms (see e.g. [6℄), whi
h translate a DL expression

' into an automaton A

'

whi
h a

epts all (abstra
tions of) models for ', so

that the satis�ability test for ' 
an be redu
ed to the emptiness test of A

'

; and

se
ondly tableau algorithms [2℄, whi
h in
rementally 
reate a tree-shaped (pre-)

model for ' using a set of rules labelling ea
h tree node with the appropriate

subformulas of '. In short, the advantages of automata algorithms are on the

theoreti
al side, be
ause in many 
ases the proofs are very elegant and o�er

tight 
omplexity bounds (in parti
ular for ExpTime-
omplete logi
s), whereas

the advantages of tableau algorithms are on the pra
ti
al side, sin
e they are

well suited for implementation and optimisation. In 
ontrast, intuitive automata

algorithms usually require exponential time also in the best 
ase, and thus an

eÆ
ient implementation requires 
onsiderable modi�
ations.

For this reason, an approa
h 
ombining both advantages is highly desirable.

In [3℄, we introdu
ed tableau systems (TS), a framework for tableau algorithms.

If a tableau algorithm 
an be des
ribed within this framework, the existen
e of

an automata algorithm (and thus the ExpTime upper bound) dire
tly follows.

Moreover, only soundness and 
ompleteness of the tableau algorithm have to be

proved; termination and a pra
ti
al pro
edure to ensure termination, 
alled a

blo
king test, also follow from the prerequisites of the framework.

As an example for the usefulness of this framework, we present in this pa-

per a TS for SHIO, an expressive DL whose 
omputational properties to the

best of our knowledge have not been analysed so far. The purpose of this is

two-fold: �rstly, we obtain that SHIO satis�ability is ExpTime-
omplete and


an be de
ided by a tableau algorithm. Se
ondly, the su

in
tness of the proofs

demonstrates how our framework simpli�es the design of tableau algorithms.

2 The Tableau Framework for ExpTime Logi
s

In DL tableau algorithms, a (pre-)model is represented by a tree with node and

edge labels, 
alled a 
ompletion tree.

1

The 
ompletion rules des
ribe how to sat-

1

This is di�erent from �rst-order tableaus, where a model 
orresponds to a path within

the generated tree.



isfy a formula 
ontained in a node label, essentially by des
ribing a subtree of

bounded width and depth in whi
h a parti
ular rule 
an be applied, and the

modi�
ation of this subtree through appli
ation of this rule. It is possible that

several rules are appli
able to a node at the same time, but the sequen
e of

rule appli
ations is don't-
are-nondeterministi
, i.e. every sequen
e will lead to

the same result. In 
ontrast, some rules, e.g. for disjun
tion, are don't-know -

nondeterministi
, i.e. it is possible that one disjun
t may lead to a model, while

another one may not. Unsatis�ability of the generated 
ompletion tree is de-

te
ted through 
lash triggers, subtrees 
ontaining an obvious 
ontradi
tion, thus

a 
ompletion tree 
ontaining a 
lash trigger 
annot be transformed into a model.

Due to spa
e restri
tions, we 
annot present all details of the tableau frame-

work; instead, we will des
ribe the intuition whi
h motivated the design and

refer the reader to [3℄ for details. A 
ompletion tree is formalised as an S-tree

((V;E; n; `); �), where (V;E) is a bounded width tree and n; ` are node and

edge labelling fun
tions; and we 
apture the rules by using S-patterns, whi
h

are essentially S-trees of bounded depth. Thus for every possible S-pattern, we

des
ribe the possible modi�
ations by all rules: a pattern P is mapped to a set

of sets of patterns fS

1

; S

2

; : : : ; S

n

g. The 
hoi
e of the set S

i

represents the don't-


are 
hoi
e of the rule that is applied, whereas the 
hoi
e of the pattern within

the set S

i

represents the don't-know 
hoi
e of the alternative (whi
h means that

a deterministi
 rule 
orresponds to a singleton set S

i

). In parti
ular, if no rule

is appli
able to P , then P is mapped to the empty set. As an example, 
onsider

a pattern P in whi
h the node n is labelled with fC uD;E t Fg. Here, one 
an

de�ne the rules as follows: P 7! ffP

1

g; fP

2

; P

3

gg, and in P

1

, C and D are added

to the label of n, whereas E is added in P

2

and F in P

3

. Patterns are also used to

des
ribe 
lash triggers: within our framework, a 
lash trigger is simply a pattern

whi
h 
ontains a 
ontradi
tion (in the 
ontext of the logi
 under 
onsideration).

Sin
e our intention was to de�ne one tableau system for one logi
 rather than

a parti
ular one for every possible input, we have to in
lude all possible node

labels in these rules and 
lash triggers. For a parti
ular input � , these sets are

mapped to the appropriate subsets, whi
h is ne
essary to ensure the ExpTime

upper bound. Finally, we also wanted to allow for rules whi
h are not applied

lo
ally, but globally, whi
h is ne
essary e.g. for handling TBoxes or nominals.

For this purpose, S-trees and -patterns also 
ontain a global memory �, whi
h


an be read and modi�ed by a rule just like a node label.

Formally, a tableau system S is a tuple (NLE;GME;EL; �

S

; k;R; C), where

NLE is the set of all possible node label elements, GME is the set of global

memory elements, EL is the set of edge labels, k is the maximum pattern depth,

i.e. the number of edges on a longest path, and R and C are the sets of rules and


lash triggers as de�ned above. The fun
tion �

S

maps an input � to the tuple

(nle; gme; el; ini), where nle, gme and el are �nite subsets of the 
orresponding

sets in S, and ini � }(nle)�}(gme) des
ribes the possible initial states for � (}

denotes power set).

3 The Des
ription Logi
 SHIO

The DL SHIO extends the basi
 DL ALC [8℄ by transitive roles, role hierar
hies,

inverse roles, and nominals, i.e. 
on
epts that have to be interpreted by singleton



sets. The presen
e of both transitive roles together with role hierar
hies allows

for the internalisation of general 
on
ept in
lusion axioms [5℄; and nominals

together with inverse roles require additional measures to ensure that nominals

are handled 
orre
tly; e.g. we 
annot use a forest model as for SHOQ (D) [4℄.

De�nition 1 (SHIO syntax and semanti
s). Let CON be a set of 
on
ept

names, ROL be a set of role names, the set of nominal names NOM � CON, and

the set of transitive role names TRA � ROL. If r is a role name, then both r and

r

�

, the inverse of r, are roles. The set of SHIO 
on
epts is indu
tively de�ned

as follows: every 
on
ept name is a 
on
ept; and if C and D are 
on
epts and

r is a role, then :C, C uD, C tD, 8r:C, and 9r:C are also 
on
epts. If r and

s are roles, then r v s is a role in
lusion axiom. An RBox is a �nite set of role

in
lusion axioms.

An interpretation of a 
on
ept C w.r.t. an RBox B is a pair I = (�

I

; �

I

),

where �

I

is a non-empty set of individuals and �

I

maps every 
on
ept name

C to a set C

I

� �

I

and every role name r to a set r

I

� �

I

� �

I

. For all

O 2 NOM, it holds that #O

I

= 1, where #S denotes the 
ardinality of a set S.

For all t 2 TRA, it holds that t

I

= (t

I

)

+

, where �

+

denotes the transitive 
losure

of a relation. Complex roles and 
on
epts are interpreted as follows:

{ (:C)

I

= �

I

n C

I

; (C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

;

{ (9r:C)

I

= fd 2 �

I

j there is an e 2 �

I

with (d; e) 2 r

I

and e 2 C

I

g

{ (8r:C)

I

= fd 2 �

I

j for all e 2 �

I

, if (d; e) 2 r

I

, then e 2 C

I

g

{ (r

�

)

I

= f(x; y) j (y; x) 2 r

I

g.

An interpretation I is a model for an RBox B if, for all r v s 2 B, it holds that

r

I

� s

I

. A model for C w.r.t. B is a model for B where C

I

is a nonempty set.

If a model exists, we say that C is satis�able w.r.t. B.

4 A Tableau System for SHIO

Before de�ning the TS S

SHIO

, we �x some notation. Firstly, to avoid multiple

inverse operators as in r

��

, we use the notation r, with the meaning r

�

, if r

is a role name, and s, if r is an inverse role s

�

. Se
ondly, in an S-pattern P =

((V;E; n; `); �) with fm;ng � V , we 
all m an r-neighbour of n if `(n;m) = r

or `(m;n) = r. Thirdly, for an RBox B, we de�ne the role hierar
hy B

+

as

B

+

= B [ fr v s j r v s 2 Bg, and by v*

B

we denote the re
exive-transitive


losure of v on B

+

. Finally, to 
apture roles whi
h are impli
itly de
lared to be

transitive (e.g. r if r 2 TRA), we use, for an RBox B, the predi
ate Trans

B

: for a

role r, Trans

B

(r) is true i� there exists a role s su
h that s 2 TRA; s

0

v*

B

r and

r v*

B

s

00

for some s

0

; s

00

2 fs; s

�

g.

The 
losure 
los(C;B) of a SHIO 
on
ept term C and an RBox B is de�ned

as follows: C 2 
los(C;B); if :D 2 
los(C;B), then D 2 
los(C;B); if D u E

or D t E 2 
los(C;B), then fD;Eg � 
los(C;B); if 9r:D 2 
los(C;B), then

D 2 
los(C;B); and if 8r:D 2 
los(C;B) and the role s appears in C or B, then

fD;8s:D;8s:Dg � 
los(C;B).

2

For the sake of simpli
ity, we only deal with 
on-

2

The slightly unusual de�nition for the 8 quanti�er is motivated by the 8

+

-rule (see

below), whi
h in turn is ne
essary in order to 
apture transitive sub-roles of non-

transitive roles.




epts in negation normal form (NNF), i.e. where negation appears only dire
tly

before 
on
ept names. It is easy to see that every 
on
ept 
an be transformed

into an equivalent one in NNF in linear time.

We 
an now de�ne S

SHIO

= (NLE;GME;EL; 1; �

S

;R; C). Note that we use

the global memory for three purposes: �rstly, for transitive roles; se
ondly, for

role in
lusion axioms; thirdly, for information about 
on
epts appearing together

with a nominal.

{ NLE is the set of all SHIO 
on
epts,

{ GME = f(O;C) j O 2 NOM and C 2 NLEg [

fTrans(r) j r is a roleg [ fr v* s j r and s are rolesg,

3

{ EL is the set of all SHIO roles, and

{ for an input � = (C;B), where C is a 
on
ept and B is an RBox, the fun
tion

�

S

maps � to a tuple �

S

= (nle

�

; gme

�

; el

�

; ini

�

) with

� nle

�

= 
los(C;B),

� el

�

= fr j r or r appears in C or Bg,

� gme

�

= f(O;D) j O 2 NOM \ 
los(C;B) and D 2 
los(C;B)g [

fTrans(r) j r 2 el

�

g [ fr v* s j fr; sg � el

�

g, and

� ini

�

= f(fCg; fTrans(r) j Trans

B

(r) holdsg [ fr v* s j r v*

B

s holdsg)g.

We now de�ne the set of rules R. For ea
h pattern P = (t; �), where t =

(V;E; n; `) has v

0

as root and depth at most 1, R(P ) 
ontains the following sets:

Ru If CuD 2 n(v

0

) and fC;Dg 6� n(v

0

), thenR(P ) 
ontains f((V;E; n

0

; `); �)g,

where n

0

(v) = n(v) for all v 6= v

0

and n

0

(v

0

) = n(v

0

) [ fC;Dg.

Rt If C tD 2 n(v

0

) and fC;Dg\n(v

0

) = ;, then R(P ) 
ontains f((V;E; n

0

; `);

�); ((V;E; n

00

; `); �)g, where n

0

(v) = n

00

(v) = n(v) for all v 6= v

0

, n

0

(v

0

) =

n(v

0

) [ fCg and n

00

(v

0

) = n(v

0

) [ fDg.

R9 If 9r:C 2 n(v

0

), v

1

; : : : ; v

m

are all the sons of v

0

with `(v

0

; v

i

) = r, and

C =2 n(v

i

) for all i; 1 � i � m, then R(P ) 
ontains the set fP

0

; P

1

; : : : ; P

m

g

with

{ P

0

= ((V

0

; E

0

; n

0

; `

0

); �), where v

0

=2 V , V

0

= V [ fv

0

g; E

0

= E [

f(v

0

; v

0

)g; n

0

= n [ fv

0

7! fCgg; `

0

= ` [ f(v

0

; v

0

) 7! rg.

{ for all i; 1 � i � m;P

i

= ((V;E; n

i

; `); �), where n

i

(v) = n(v) for all

v 6= v

i

and n

i

(v

i

) = n(v

i

) [ fCg.

R8 If 8r:C 2 n(v) for some v 2 V , v

0

is an s-neighbour of v with C =2 n(v

0

)

and s v* r 2 �, then R(P ) 
ontains f((V;E; n

0

; `); �)g with n

0

(v) = n(v) for

v 6= v

0

and n

0

(v

0

) = n(v

0

) [ fCg.

R8

+

If 8r:C 2 n(v), fTrans(s); s v* r; s

0

v* sg � � and for some v 2 V , v

0

is an

s

0

-neighbour of v with 8s:C =2 n(v

0

) , then R(P ) 
ontains f((V;E; n

0

; `); �)g

with n

0

(v) = n(v) for v 6= v

0

and n

0

(v

0

) = n(v

0

) [ f8s:Cg.

R" If fO;Cg � n(v

0

) for some O 2 NOM and (O;C) =2 �, then R(P ) 
ontains

f((V;E; n; `); �

0

)g, where �

0

= � [ fO;Cg.

R# If O 2 n(v

0

) for an O 2 NOM; (O;C) 2 � and C =2 n(v

0

), thenR(P ) 
ontains

f((V;E; n

0

; `); �)g, where n

0

(v) = n(v) for v 6= v

0

and n

0

(v

0

) = n(v

0

) [ fCg.

3

Note that the relations Trans

B

and v*

B

(i.e. the semanti
s) are distinguished from

the global memory elements (the syntax) by the index

B

.



Most of these rules 
orrespond dire
tly to the \standard" rules known from

DL tableaus, with the ex
eption of R9, whi
h in our framework is non-determin-

isti
. The reason for this is that with a deterministi
 rule, this TS would not be

admissible (see [3℄ for a dis
ussion of this issue). In an implementation, a deter-

ministi
 rule would be preferable due to eÆ
ien
y 
onsiderations, sin
e it is easy

to see that the 
reation of dupli
ate nodes does not 
ompromise 
ompleteness of

the de
ision pro
edure. Finally, the set C of 
lash patterns 
ontains all patterns

((V;E; n; `); �) of depth 0 with node v

0

su
h that fC;:Cg � n(v

0

).

Lemma 2. The TS S

SHIO

is sound and 
omplete for SHIO satis�ability.

From this, we 
an derive that SHIO satis�ability is de
idable through a

tableau algorithm, and we know that for the blo
king 
ondition, equality blo
king

suÆ
es, i.e. we do not need pair-wise blo
king as e.g. for SHIQ [5℄. The reason

for this is that we use only patterns of depth at most 1. We 
an also derive the

ExpTime upper bound:

Theorem 3. Satis�ability for SHIO 
on
epts w.r.t. RBoxes is de
idable in

ExpTime.

Sin
e SHIO is an extension of ALC with TBoxes, for whi
h satis�ability is

known to be ExpTime-hard [7℄, it follows that SHIO satis�ability is ExpTime-


omplete.

5 Con
lusion

We have introdu
ed the tableau framework for ExpTime logi
s, de�ned the de-

s
ription logi
 SHIO and developed a tableau system for SHIO. From this, we


an derive an automata algorithm de
iding satis�ability of SHIO 
on
epts w.r.t.

RBoxes in ExpTime and a tableau algorithm whi
h promises to be amenable to

the well-known optimisations and thus to perform well in pra
ti
e. We believe

that the simpli
ity of the proofs justi�es the additional overhead resulting from

the formalisation of the algorithm within the tableau framework.
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Appendix

We will now give the proofs for Lemma 2 and Theorem 3, for whi
h we have to

re
all some additional de�nitions from [3℄. An S-tree t is 
alled saturated

4

if no

rule is appli
able, i.e. if there is no pattern P mat
hing t with R(P ) 6= ;. It is


alled 
lash-free if no 
lash trigger P 2 C mat
hes t.

For a TS S, we require admissibility : the rules may only add information,

but never remove anything from the tree; and if a rule is appli
able, then it 
an

be applied in su
h a way that the tree approa
hes saturation. This last prop-

erty is the key to proving 
ompleteness of tableau systems: we distinguish an

S-tree 
ompatible with � , i.e. a tree whi
h is labelled a

ording to �

S

, from an

S-tree for � , i.e. a tree whi
h 
an be 
onstru
ted e�e
tively from an initial tree

by rule appli
ation. For the ExpTime upper bound, we also require ExpTime-

admissibility : for an input � , the 
ardinality of the sets nle, gme and el and the

size of ea
h element has to be polynomial in the size of � . If the prerequisites

of our framework are met by S, then the existen
e of a 
lash-free and satu-

rated S-tree 
ompatible with � implies the existen
e of su
h a tree for � , whi
h

means that in the following proofs, we need not show that a parti
ular tree 
an

e�e
tively be 
reated by rule appli
ation.

Lemma 2 (Soundness). The TS S

SHIO

is sound for SHIO satis�ability.

Proof. From a saturated and 
lash-free S-tree (t; �) with t = (V;E; n; `), we

generate a model I = (�

I

; �

I

) as follows: �

I

= fv

O

j O 2 NOM \ 
los(C;B)g [

fv j v 2 V and n(v) \ NOM = ;g, i.e. we have one individual for ea
h nominal

name and one individual for every tree node that is not labelled with a nominal.

A 
on
ept name C is interpreted as follows: for every O 2 NOM \ 
los(C;B),

v

O

2 C

I

i� there is a node v 2 V with fO;Cg � n(v). Sin
e R" and R# are not

appli
able, all nodes whose labels 
ontain the same nominal symbol have exa
tly

the same label, and thus �

I

is well-de�ned. For all other individuals, v 2 C

I

i�

C 2 n(v).

For a role r, r

I

is the smallest set satisfying the following 
onditions: if

`(v; w) = r or `(w; v) = r, then (v

I

; w

I

) 2 r

I

; if s v* r 2 �, then s

I

� r

I

; if

Trans(r) 2 �, then r

I

is 
losed under transitivity.

We will now show by indu
tion that 
omplex 
on
epts are interpreted 
or-

re
tly. By de�nition, all individuals belong to the interpretation of the 
on
ept

names in their labels, and the interpretation of a nominal 
ontains exa
tly one

element. From our 
onstru
tion, it follows dire
tly that the role hierar
hy is

respe
ted and transitive roles are interpreted 
orre
tly. For a 
onjun
t C u D

(disjun
t C tD) in a node label n(v), sin
e Ru (Rt) is not appli
able, it follows

that C and D (C or D) are 
ontained in n(v), and by indu
tion, v

I

is 
ontained

in C

I

\D

I

(C

I

[D

I

).

If 9r:C 2 n(v), we assume w.l.o.g. that r is a role name (if it is an in-

verse role, the argument is analogous). Sin
e R9 is not appli
able, there exists

an r-son w of v with C 2 n(w). By 
onstru
tion, (v; w) 2 r

I

and w 2 C

I

.

4

Usually, this property is 
alled \
ompleteness"; we use the word \saturated" in order

to avoid 
onfusion with the notion of 
ompleteness of the de
ision pro
edure.



If 8r:C 2 n(v), we again assume that r is a role name. There are two possi-

ble reasons why (v

I

; w

I

) 
an be 
ontained in r

I

: �rstly, if w is an s-neighbour

of v for some s with s v* r 2 �. In this 
ase, it follows that C 2 n(w) be-


ause R8 is not appli
able, and thus w

I

2 C

I

. Se
ondly, if there exist roles

s; s

1

; : : : ; s

k

s.th. fTrans(s); s v* r; s

i

v* sg � � for all i 2 f1; : : : ; kg and there is

an s

i

-
hain from v to w, i.e. a sequen
e of nodes v

1

; v

2

; : : : ; v

n

s.th., for all edges

e 2 f(v; v

1

); (v

1

; v

2

); : : : ; (v

n

; w)g, it holds that e 2 E and `(e) = s

i

for some i.

In this 
ase, sin
e R8

+

is not appli
able, all nodes v

1

; : : : ; v

k

are labelled with

8s:C, and, sin
e R8 is not appli
able to v

k

, n(w) 
ontains C. ut

Lemma 2 (Completeness). The TS S

SHIO

is 
omplete for SHIO satis�a-

bility.

Proof. We have to show that if there exists a model I = (�

I

; �

I

) for an input

� = (C;B), then there also exists a 
lash-free and saturated S-tree (t; �) with

t = (V;E; n; `) for � . We will 
reate (t; �) by unravelling I: �rstly, we add the

appropriate transitivity axioms (Trans(r) if Trans

B

(r) holds) and role in
lusion

axioms (r v* s if r v*

B

s holds) to �. The tree t is indu
tively de�ned as follows:

sin
e I j= � , there is an individual i

0

in �

I

whi
h satis�es C. We start with

V = fv

0

g and de�ne n(v

0

) as the set of all 
on
epts in 
los(C;B) whi
h i

0

satis�es. We de�ne a fun
tion � : V ! �

I

and set �(v

0

) = i

0

.

Then we iterate, for every node v, the following pro
edure: for every existen-

tial formula 9r:D 2 n(v) we 
hoose a witness individual i 2 �

I

with i 2 D

I

and

(�(v); i) 2 r

I

(su
h a witness exists sin
e I is a model). We 
reate a new node w

with �(w) = i, (v; w) 2 E and `(v; w) = r. Note that the tree width is bounded

by the size of 
los(C;B). Again, we label w with the appropriate 
on
epts in


los(C;B) and then 
ontinue the iteration. For every nominal 
on
ept O, we add

to � the pair (O;D) for every 
on
ept D 2 
los(C) whi
h the unique element i

O

of O

I

satis�es.

It is easy to see that (t; �) is 
ompatible with � and 
lash-free. We will now

show that it is also saturated: from the de�nition of 
los, it follows that Ru and

Rt are not appli
able. If a node label n(v) 
ontains a 
on
ept 9r:D, then by


onstru
tion of t, there is an r-su

essor of v whi
h is labelled with D. Likewise,

if 8r:D 2 n(v), all r-neighbours of v are labelled with D. If 8r:D 2 n(v), �


ontains s v* r, s

0

v* s and Trans(s), and there is an s

0

-neighbour w of v, then,

sin
e I is a model, (�(v); �(w)) 2 s

I

and, sin
e s

I

is transitive, for every node

u with (�(w); �(u)) 2 s

I

, it also holds that (�(v); �(u)) 2 s

I

, and therefore

�(u) 2 D

I

. Thus, �(w) j= 8r:D and, sin
e s v*

B

r, v(w) 
ontains 8s:D, whi
h

means that R8

+

is not appli
able. Finally, sin
e every node n with �(n) = i

O

for

a nominal O is labelled with exa
tly those 
on
epts for whi
h � 
ontains (O;C),

R" and R# are not appli
able. ut

Note that in these proofs, we did not have to deal with termination and a

blo
king 
ondition, and we did not have to prove that the 
ompletion tree 
an

e�e
tively be 
onstru
ted by rule appli
ations. All these results follow from the

tableau framework.



Theorem 3. Satis�ability for SHIO 
on
epts w.r.t. RBoxes is de
idable in

ExpTime.

Proof. It is easy to see that S is ExpTime-admissible: e.g. the size of nle

S

(� )

and gme

S

(� ) is quadrati
 in the size of the input. The maximum required width

of an S-tree is bounded by the number of existential subformulas of the input


on
ept sin
e at most one su

essor is needed for every existential subformula.

Soundness and 
ompleteness have been shown above. ut


