
Tableau Systems for SHIO and SHIQ

Jan Hladik∗, Jörg Model
Chair for Automata Theory, TU Dresden

{hladik,model}@tcs.inf.tu-dresden.de

1 Introduction

Two prominent families of algorithms for the satisfiability test of DLs are automata-
based algorithms (see e.g. [6]), which translate a concept C into an automaton AC

accepting all (abstractions of) models for C, and tableau algorithms (TAs) [2], which
incrementally create a tree-shaped (pre-) model for C using a set of completion rules.
In short, the advantages of automata algorithms are on the theoretical side, because in
many cases the proofs are very elegant and provide tight complexity bounds (in partic-
ular for ExpTime-complete logics), whereas the advantages of tableau algorithms are
on the practical side, since they are well suited for implementation and optimisation.
Thus, an approach combining both advantages is highly desirable. In [1], we in-

troduced tableau systems (TSs), a framework for tableau algorithms. From a TS for
a DL L, we can derive an automata algorithm deciding satisfiability of L inputs in
exponential time, and a tableau algorithm for L, including an appropriate blocking
condition which ensures termination. As an application of this framework, we present
in this paper tableau systems for two expressive DLs, the new DL SHIO and the well-
known SHIQ [5]. Our main results are the following: firstly, we obtain that SHIO
satisfiability is ExpTime-complete and can be decided by a tableau algorithm. Sec-
ondly, we will see that although these two logics share most of their constructs, they
lead to quite different TSs, which demonstrates how the capabilities of our framework
can be used to capture different language properties. Thirdly, the succinctness of the
proofs demonstrates how our framework simplifies the design of TAs.

2 The Tableau Framework for ExpTime Logics

Although the term “DL tableau algorithm” is not formally defined, the following fea-
tures can be considered as the common ground for existing algorithms: a TA operates
on a completion tree which represents a model for the input (e.g. a concept term, pos-
sibly together with an RBox or TBox) under consideration. To generate this model,
the TA starts with an initial tree, which is subsequently modified according to a set
of completion rules, which may or may not be applicable to a certain node. These
rules essentially describe subtrees of the completion tree before and after rule appli-
cation, i.e. pre- and post-conditions. In many cases, they only operate on a node and
its direct neighbours, but sometimes they also consider nodes which are arbitrarily

∗The first author of this paper is supported by the DFG, Project No. GR 1324/3-4.

far apart (e.g. for nominals as in [4]) or global information which is relevant for all
nodes (e.g. for concept or role inclusion axioms). In general, it is possible that several
rules are applicable to a node at the same time, but the sequence of rule applica-
tions is don’t-care-nondeterministic, i.e. every sequence will lead to the same result.
In contrast, some rules, e.g. for disjunction, are don’t-know -nondeterministic, i.e. it is
possible that one disjunct may lead to a model, while another one may not.
An inconsistency in the generated completion tree is detected through clash trig-

gers, subtrees containing an obvious contradiction, which means that a completion
tree containing a clash trigger cannot be transformed into a model. Thus, a model is
represented by a completion tree which is saturated 1, i.e. to which no rule is applicable,
and clash-free, i.e. not containing a clash trigger.
In our framework, we formalise a completion tree as an S-tree ((V,E, n, `), µ),

where (V,E) is a bounded width tree, n and ` are node and edge labelling functions,
and µ is a global memory which is used to store information relevant for all nodes.
Rules are are represented by S-Patterns, which are essentially S-trees of bounded
depth. For every S-pattern P , we describe the possible modifications by all rules as
follows: P is mapped to a set of sets of patterns {S1, S2, . . . , Sn}, where the choice of
the set Si represents the don’t-care choice of the rule that is applied, and the choice
of the pattern within the set Si represents the don’t-know choice of the alternative (a
deterministic rule corresponds to a singleton set Si). In particular, if P is saturated,
then it is mapped to the empty set. As an example, consider a pattern P in which
the node n is labelled with {C uD,E t F}. Here, one can define the rules as follows:
P 7→ {{P1}, {P2, P3}}, and in P1, C and D are added to the label of n, whereas E is
added in P2 and F in P3.
S-patterns are also used to describe clash triggers: within our framework, a clash

trigger is simply a pattern which contains a contradiction (in the context of the logic
under consideration). Note that S-patterns also contain a µ component, thus rules and
clash triggers can read the global memory, and rules can also modify it.
Since our intention was to define one tableau system for one logic rather than a

particular one for every possible input, we have to include patterns for all possible node
labels in these rules and clash triggers. For a particular input Γ, these sets are mapped
to the appropriate subsets, which is necessary to ensure decidability in ExpTime.
Formally, a tableau system S is a tuple (NLE,GME,EL, ·S , k,R, C), where NLE is

the set of all possible node label elements, GME is the set of global memory elements,
EL is the set of edge labels, k is the maximum pattern depth, i.e. the number of edges
on a longest path, and R and C are the sets of rules and clash triggers as defined
above. The function ·S maps an input Γ to the tuple ΓS = (nle, gme, el, ini), where nle,
gme and el are finite subsets of the corresponding sets in S, and ini ⊆ ℘(nle)×℘(gme)
describes the possible initial states for Γ (℘ denotes power set).
In order to obtain the results of our framework (ExpTime automata algorithm

and a terminating TA) from a tableau system S, it has to satisfy three conditions:
ExpTime-admissibility, soundness and p-completeness, which will be explained in the
following paragraphs. Since the formal definitions require a rather complex notation,
we will only explain the intuition behind these conditions here and refer the reader
to [1] for the details of the definitions.

1Usually, this property is called “completeness”; we use the word “saturated” to avoid confusion
with the notion of completeness of the decision procedure.

ExpTime-admissibility. In order to be admissible, tableau systems have to satisfy
four conditions:

1. Rules may never remove anything from a pattern, and they must add information
(nodes, labels or global memory elements).

2. If Ps = (Vs, Es, ns, `s) is a saturated pattern and P = (V,E, n, `) is a non-
saturated sub-pattern of Ps (i.e. V ⊆ Vs and, for all v ∈ V , n(v) ⊆ ns(v)),
then every applicable rule can be applied to P in such a way that the resulting
pattern P ′ is a sub-pattern of Ps.

3. Rules may only add elements (to nodes, edges or the global memory) which
appear in the subset nle, el or gme for the corresponding input Γ.

4. If P is a clash-trigger, then all super-patterns of P are also clash-triggers.

Conditions 1 and 2 are required to prove termination. However, not all existing TAs
satisfy these conditions, e.g. sometimes there are rules which merge two nodes, e.g. the
6-rule for SHIQ in [5], or create more nodes than necessary for a saturated pattern,
e.g. the usual definition of the ∃-rule. However, for the logics we considered it was
possible to reformulate these rules in an admissible way. For example, we can define
the rules for ∃- and >-formulas non-deterministically (see below).
For ExpTime-admissibility, we require in addition to admissibility that the sets

nleS , elS , gmeS and iniS and the size of their elements are polynomial in the size of Γ
and can be computed in time exponential in the size of Γ, and that it can be decided
in exponential time whether a rule or a clash trigger is applicable to a pattern.

Soundness and p-completeness. For a tableau system S, it must be shown that
if there exists a clash-free and saturated completion tree, then there exists a model
(soundness), and conversely, that there exists a polynomial p such that for every
satisfiable input Γ, there exists a clash-free and saturated completion-tree whose out-
degree is bounded by p(|Γ|) (p-completeness). Here, we distinguish between an S-tree
compatible with Γ, a tree which is labelled in accordance with ΓS , from an S-tree
for Γ, a tree which can be constructed from an initial tree by rule application. If
a saturated and complete S-tree compatible with Γ exists, then the existence of a
saturated and complete S-tree for Γ follows from the framework (essentially from the
admissibility condition). Thus in the proofs, we will only show the existence of an
S-tree ((V,E, n, `), µ) compatible with Γ, which is defined as follows:

• µ ⊆ ℘(gmeS(Γ)) and n(x) ⊆ ℘(nleS(Γ)) for each x ∈ V ;
• `(x, y) ∈ elS(Γ) for each (x, y) ∈ E;
• there exists (Λ, ν) ∈ iniS(Γ) such that ν ⊆ µ and Λ ⊆ n(v0) for the root node v0;
• the out-degree of T is bounded by p(|Γ|) for a polynomial p.

3 The Description Logics SHIO and SHIQV

Both SHIO and SHIQ are extensions of SHI (called ALCHIR+ in [3]), which
provides for transitive and inverse roles and role hierarchies. In addition to the SHI
constructs, SHIO allows for nominals, i.e. concepts which have to be interpreted by
singleton sets. This makes it possible to express that some concept can only have
one instance (e.g. God), or to give names to individuals (e.g. Rome or John) and
use these names in concept definitions (Roman or Friend of John). The logic SHIQ
allows for qualifying number restrictions (QNR) as described in [5]. For this paper,
we introduce the syntactic variant SHIQV , which does not include universal and

existential quantification and thus requires fewer rules. For both logics, the presence
of transitive roles together with role hierarchies makes it possible to internalise general
concept inclusion axioms [5], thus we do not include them in our syntax.

Definition 1 (SHIO and SHIQV syntax.) Let CON be a set of concept names,
ROL be a set of role names, the set of nominal names NOM ⊆ CON, and the set of
transitive role names TRA ⊆ ROL. If r is a role name, then both r and r−, the inverse of
r, are roles. To avoid multiple inverse operators as in r−−, we use the notation r, with
the meaning r−, if r is a role name, and s, if r is an inverse role s−. If r and s are roles,
then r v s is a role inclusion axiom. An RBox is a finite set of role inclusion axioms.
For an RBox B, we define the role hierarchy B+ as B+ = B ∪ {r v s | r v s ∈ B},
and by v* B we denote the reflexive-transitive closure of v on B+. A role r is called
simple w.r.t. an RBox R if there exists no role s ∈ TRA with s v* B r or s v* B r.
The set of SHIO concepts is inductively defined as follows: every concept name

is a concept; and if C and D are concepts and r is a role, then ¬C, C u D, C t D,
∀r.C, and ∃r.C are also concepts.
The set of SHIQV concepts is inductively defined as for SHIO, with the re-

striction that the set NOM is empty and the quantifiers ∃ and ∀ are not allowed. In
addition, SHIQV provides the following constructors: if C is a concept, m is a non-
negative integer and r is a simple role, then (6 m r C) and (> m r C) are SHIQV

roles. If r is an arbitrary role, then (6 0 r C) and (> 1 r C) are also SHIQV concepts.

The concepts ∀r.C and ∃r.C can be expressed in SHIQV by (6 0 r ¬C) and
(> 1 r C), respectively. Thus, our syntax allows for non-simple roles in QNRs, if they
are equivalent to an ∀ or ∃ formula, but not in the general case.

Definition 2 (SHIO and SHIQV semantics.) An interpretation of a concept C
w.r.t. an RBox B is a pair I = (∆I , ·I), where ∆I is a non-empty set of individuals
and ·I maps every concept name C to a set CI ⊆ ∆I and every role name r to a
set rI ⊆ ∆I ×∆I . For all O ∈ NOM, it holds that #OI = 1, where #S denotes the
cardinality of a set S. For all t ∈ TRA, it holds that tI = (tI)+, where ·+ denotes
the transitive closure of a relation t. Complex roles and concepts are interpreted as
follows:

• (r−)I = {(x, y) | (y, x) ∈ rI},
• (¬C)I = ∆I \ CI , (C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,
• (∃r.C)I = {d ∈ ∆I | there is an e ∈ ∆I with (d, e) ∈ rI and e ∈ CI},
• (∀r.C)I = {d ∈ ∆I | for all e ∈ ∆I , if (d, e) ∈ rI , then e ∈ CI},
• (6 m r C)I =

{

x |]{(x, y) ∈ rI and y ∈ CI} ≤ m
}

,

• (> m r C)I =
{

x |]{(x, y) ∈ rI and y ∈ CI} ≥ m
}

.

An interpretation I is a model for an RBox B if, for all r v s ∈ B, it holds that
rI ⊆ sI . A model for C w.r.t. B is a model for B where CI is a nonempty set. If such
a model exists, we say that C is satisfiable w.r.t. B.

4 The Tableau Systems SO and SQ

Before defining the tableau systems, we fix some notation. Firstly, in an S-pattern
P = ((V,E, n, `), µ) with {m,n} ⊆ V , we call m an r-neighbour of n if `(n,m) = r or

`(m,n) = r. Secondly, to capture roles which are implicitly declared to be transitive
(e.g. r if r ∈ TRA), we use, for an RBox B, the predicate TransB, and define that
for a role r, TransB(r) is true iff there exists a role s such that s ∈ TRA, s′ v* B r and
r v* B s′′ for some s′, s′′ ∈ {s, s−}.
For the sake of simplicity, we only deal with concepts in negation normal form

(NNF), i.e. where negation appears only directly before concept names. Every concept
can be transformed into an equivalent one in NNF in linear time using the duality
of ∧ to ∨, ∃ to ∀, and > to 6. By ∼ C we denote the NNF of ¬C. The closure
clos(C,B) of a concept term C and an RBox B is defined as follows: C ∈ clos(C,B); if
¬D ∈ clos(C,B), then D ∈ clos(C,B); if DuE or DtE ∈ clos(C,B), then {D,E} ⊆
clos(C,B); if ∃r.D ∈ clos(C,B), then D ∈ clos(C,B); and if ∀r.D ∈ clos(C,B) and
the role s appears in C or B, then {D, ∀s.D, ∀s.D} ⊆ clos(C,B).2 For QNR, we need
the following addition: if (6 m r D) or (> m r D) ∈ clos(C,B), then {D, ∼D } ⊆
clos(C,B), and if (6 0 r D) ∈ clos(C,B) and the role s appears in C or B, then
{(6 0 s D), (6 0 s D)} ⊆ clos(C,B).
We can now define a TS for SHIO, SO = (NLEO,GMEO,ELO, 1, ·

SO ,RO, CO).
Here, we use the global memory for three purposes: for transitive roles, role inclusion
axioms, and for information about concepts appearing in a node label together with
a nominal.
• NLEO is the set of all SHIO concepts,
• GMEO = {(O,C) | O ∈ NOM and C ∈ NLEO} ∪
{Trans(r) | r is a role} ∪ {r v* s | r and s are roles},

• ELO is the set of all SHIO roles, and
• for an input Γ = (C,B), where C is a concept and B is an RBox, the function
·SO maps Γ to a tuple ΓSO = (nleΓ, gmeΓ, elΓ, iniΓ) with
• nleΓ = clos(C,B),
• elΓ = {r | r or r appears in C or B},
• gmeΓ = {(O,D) | O ∈ NOM ∩ clos(C,B) and D ∈ clos(C,B)} ∪
{Trans(r) | r ∈ elΓ} ∪ {r v* s | {r, s} ⊆ elΓ}, and

• iniΓ = {({C}, {Trans(r) | TransB(r) holds} ∪ {r v* s | r v* B s holds})}.

The set of rules RO is defined in Figure 1. For each pattern P = (t, µ), where
t = (V,E, n, `) has v0 as root and depth at most 1, R(P) contains the described
sets. Most of these rules correspond directly to the “standard” rules known from DL
tableaus, with the exception of R∃, which in our framework is non-deterministic. The
reason for this is that with a deterministic rule which simply adds a new son node,
this TS would violate condition 2 of admissibility (see Section 2). In an implementa-
tion, a deterministic rule would be preferable due to efficiency considerations, since
the creation of duplicate nodes does not compromise completeness of the decision pro-
cedure. Finally, the set CO of clash patterns contains all patterns ((V,E, n, `), µ) of
depth 0 with node v0 such that {D,¬D} ⊆ n(v0) for some concept D ∈ clos(C,R).
This completes SO, and we can obtain our first result:

Lemma 3 The TS SO is admissible, sound and q-complete for SHIO satisfiability,
where q = (x 7→ x2).

Proof. Since admissibility of the tableau systems is easy to see, we prove only sound-
ness and p-completeness.

2The slightly unusual definition for the ∀ quantifier is motivated by the ∀+-rule (see below), which
in turn is necessary to capture transitive sub-roles of non-transitive roles.

Ru If C u D ∈ n(v) for a node v ∈ V and {C,D} 6⊆ n(v), then R(P) contains
{((V,E, n′, `), µ)}, where n′(x) = n(x) for all x 6= v and n′(v) = n(v) ∪ {C,D}.

Rt If C t D ∈ n(v) and {C,D} ∩ n(v) = ∅, then R(P) contains {((V,E, n′, `), µ),
((V,E, n′′, `), µ)}, where n′(x) = n′′(x) = n(x) for all x 6= v, n′(v) = n(v) ∪ {C}
and n′′(v) = n(v) ∪ {D}.

R∃ If ∃r.C ∈ n(v0), v1, . . . , vm are all the sons of v0 with `(v0, vi) = r, and C /∈ n(vi) for all
i, 1 ≤ i ≤ m, then R(P) contains the set {P0, P1, . . . , Pm} with

• P0 = ((V0, E0, n0, `0), µ), where v
′ /∈ V , V0 = V ∪ {v′}, E0 = E ∪ {(v0, v

′)}, n0 =
n ∪ {v′ 7→ {C}}, `0 = ` ∪ {(v0, v

′) 7→ r}.
• for all i, 1 ≤ i ≤ m,Pi = ((V,E, ni, `), µ), where ni(x) = n(x) for all x 6= vi and
ni(vi) = n(vi) ∪ {C}.

R∀ If ∀r.C ∈ n(v) for some v ∈ V , v′ is an s-neighbour of v with C /∈ n(v′) and s v* r ∈ µ, then
R(P) contains {((V,E, n′, `), µ)} with n′(x) = n(x) for x 6= v′ and n′(v′) = n(v′)∪{C}.

R∀+ If ∀r.C ∈ n(v), {Trans(s), s v* r, q v* s} ⊆ µ and v′ is an q-neighbour of v with ∀s.C /∈
n(v′) , then R(P) contains {((V,E, n′, `), µ)} with n′(x) = n(x) for x 6= v′ and n′(v′) =
n(v′) ∪ {∀s.C}.

R↑ If {O,C} ⊆ n(v) for some O ∈ NOM and (O,C) /∈ µ, then R(P) contains
{((V,E, n, `), µ′)}, where µ′ = µ ∪ {(O,C)}.

R↓ If O ∈ n(v) for an O ∈ NOM, (O,C) ∈ µ and C /∈ n(v), then R(P) contains
{((V,E, n′, `), µ)}, where n′(x) = n(x) for x 6= v and n′(v) = n(v) ∪ {C}.

Figure 1: Tableau rules for SHIO.

Soundness. From a saturated and clash-free S-tree (t, µ) with t = (V,E, n, `), we
generate a model I = (∆I , ·I) as follows: ∆I = {dO | O ∈ NOM ∩ clos(C,B)} ∪ {dv |
v ∈ V and n(v) ∩ NOM = ∅}, i.e. we have one individual for each nominal name and
one individual for every tree node that is not labelled with a nominal. A concept name
C is interpreted as follows: for every O ∈ NOM ∩ clos(C,B), dO ∈ CI iff there is a
node v ∈ V with {O,C} ⊆ n(v). Since R↑ and R↓ are not applicable, all nodes whose
labels contain the same nominal symbol have exactly the same label, and thus ·I is
well-defined. For all other individuals, dv ∈ CI iff C ∈ n(v). For a role r, rI is the
smallest set satisfying the following conditions: if `(v, w) = r or `(w, v) = r, then
(dv, dw) ∈ rI ; if s v* r ∈ µ, then sI ⊆ rI ; if Trans(r) ∈ µ, then rI is closed under
transitivity.
We will now show by induction that complex concepts are interpreted correctly.

By definition, all individuals belong to the interpretation of the concept names in
their labels, and the interpretation of a nominal contains exactly one element. From
our construction, it follows directly that the role hierarchy is respected and transitive
roles are interpreted correctly. For a conjunct C uD (disjunct C tD) in a node label
n(v), since Ru (Rt) is not applicable, it follows that C and D (C or D) are contained
in n(v), and by induction, dv is contained in C

I ∩DI (CI ∪DI).
If ∃r.C ∈ n(v), we assume w.l.o.g. that r is a role name (if it is an inverse role,

the argument is analogous). Since R∃ is not applicable, there exists an r-son w of
v with C ∈ n(w). By construction, (dv, dw) ∈ rI and dw ∈ CI . If ∀r.C ∈ n(v), we
again assume that r is a role name. There are two possible reasons why (dv, dw) can
be contained in rI : firstly, if w is an s-neighbour of v for some s with s v* r ∈ µ. In

this case, it follows that C ∈ n(w) because R∀ is not applicable, and thus dw ∈ CI .
Secondly, if there exist roles s, s1, . . . , sk such that {Trans(s), s v* r, si v* s} ⊆ µ for
all i ∈ {1, . . . , k} and there is an si-chain from v to w, i.e. a sequence of nodes
v1, v2, . . . , vn such that, for all edges e ∈ {(v, v1), (v1, v2), . . . , (vn, w)}, it holds that
e ∈ E and `(e) = si for some i. In this case, since R∀+ is not applicable, all nodes
v1, . . . , vk are labelled with ∀s.C and, since R∀ is not applicable to vk, n(w) contains
C. By induction, it follows that dv ∈ (∀r.C)

I .

Completeness. We have to show that if there exists a model I = (∆I , ·I) for an
input Γ = (C,B), then there also exists a clash-free and saturated S-tree (t, µ) with
t = (V,E, n, `) for Γ, whose width is at most quadratic in |Γ|. We will create (t, µ) by
unravelling I: firstly, we add the appropriate transitivity axioms (Trans(r) if TransB(r)
holds) and role inclusion axioms (r v* s if r v* B s holds) to µ. The tree t is inductively
defined as follows: since I |= Γ, there is an individual d0 in ∆

I which satisfies C. We
start with V = {v0} and define n(v0) as the set of all concepts in clos(C,B) which d0
satisfies. We define a function π : V → ∆I and set π(v0) = d0.
Then we iterate, for every node v, the following procedure: for every existen-

tial formula ∃r.D ∈ n(v) we choose a witness individual d ∈ ∆I with d ∈ DI and
(π(v), d) ∈ rI (such a witness exists by definition of n(v)). We create a new node w
with π(w) = d, (v, w) ∈ E and `(v, w) = r. Again, we label w with the appropriate
concepts in clos(C,B) and then continue the iteration. For every nominal concept O,
we add to µ the pair (O,D) for every concept D ∈ clos(C) which the unique element
dO of O

I satisfies.
It is easy to see that (t, µ) is compatible with Γ and clash-free. We will now show

that it is also saturated: from the definition of clos, it follows that Ru and Rt are
not applicable. If a node label n(v) contains a concept ∃r.D, then by construction
of t, there is an r-successor of v which is labelled with D. Likewise, if ∀r.D ∈ n(v),
all r-neighbours of v are labelled with D. If ∀r.D ∈ n(v), µ contains s v* r, q v* s and
Trans(s), and there is an q-neighbour w of v, then, since I is a model, (π(v), π(w)) ∈ sI

and, since sI is transitive, for every node u with (π(w), π(u)) ∈ sI , it also holds that
(π(v), π(u)) ∈ sI , and therefore π(u) ∈ DI . Thus, π(w) |= ∀r.D and, since s v* B r,
v(w) contains ∀s.D, which means that R∀+ is not applicable. Finally, since every node
n with π(n) = dO for a nominal O is labelled with exactly those concepts for which µ
contains (O,C), R↑ and R↓ are not applicable.
The width of the S-tree is quadratic in the length of Γ, because we create for every

node at most one successor for every existential formula in clos(Γ) and the number of
such formulas is bounded by the product of the number of roles appearing in C or B
and the number of existential subformulas of C.
From this, we can derive that SHIO satisfiability is decidable through a tableau

algorithm, and we know that for the blocking condition, equality blocking suffices, i.e.
we do not need pair-wise blocking as e.g. for SHIQ [5], since we use only patterns of
depth at most 1. We can also derive a complexity result:

Theorem 4 Satisfiability for SHIO concepts w.r.t. RBoxes is ExpTime-complete.

Proof. It is easy to see that S is ExpTime-admissible: e.g. the size of nleS(Γ) and
gmeS(Γ) is quadratic in the size of the input. Soundness and completeness have been
shown above. ExpTime-hardness follows from the fact that SHIO is an extension of
ALC with TBoxes, for which satisfiability is known to be ExpTime-hard [7].

Ru/Rt See RO.

RC If (≷ m r C) ∈ n(v) (where ≷ is a placeholder for > or 6) for some m and a node
v ∈ V and {C, ∼C } ∩ n(w) = ∅ for an r-neighbour w of v, then R contains the set
{((V,E, n′, `), µ), ((V,E, n′′, `), µ)} with n′(x) = n′′(x) = n(x) for all x ∈ V \ {w} and
n′(w) = n(w) ∪ {C} and n′′(w) = n(w) ∪ {∼C }.

R∀+ If (6 0 r C) ∈ n(v) for a node v ∈ V and there is a role s with {Trans(s), q v* s, s v* r} ⊆
µ and an q-neighbour w of v with (6 0 s C) 6∈ n(w), then R contains {((V,E, n′, `), µ)}
with n′(x) = n(x) for x 6= w and n′(w) = n(w) ∪ {(6 0 s C)}.

R> If P is a pattern of depth 2 and (> m r C) ∈ n(w) for one successor w of v0 and there are
less than m s-neighbours of w with s v* r ∈ µ and C ∈ n(ui), then R contains the set
{P0, P1 . . . Pn}, where u1 . . . un are the s-neighbours of w with s v* r ∈ µ and C 6∈ n(ui)
and

• P0 = ((V0, E0, n0, `0), µ) with u0 6∈ V ,V0 = V ∪ {u0}, E0 = E ∪ {(w, u0)},
n0(x) = n(x) for all x ∈ V and n0(u0) = {C} and `0 = ` ∪ {(w, u0) 7→ s}.

• For 1 ≤ i ≤ n, Pi = ((V,E, ni, `), µ) with ni(x) = n(x) for all x ∈ V \ {ui} and
ni(ui) = n(ui) ∪ {C}.

R>ROOT If {(> m r C),ROOT} ∈ n(v0) of the root node v0 and there are less than m s-
successors of v0 with s v* r ∈ µ and C ∈ n(ui), then R contains the set {P0, P1 . . . Pn},
where u1 . . . un are the s-successors of v0 with s v* r ∈ µ and C 6∈ n(ui) and P0, . . . , Pn

are defined as for R>.

Figure 2: Tableau Rules for SHIQV

For SHIQV , we need a TS with quite different properties: to handle QNR in the
presence of inverse roles correctly, we need patterns of size 2. However, this makes a
special treatment for the root node necessary, since it does not have a predecessor.
Thus, we need an additional concept name ROOT and a special >-rule for the root
node. Moreover, in contrast to the algorithm in [5], we do not have a 6-rule, but a
nondeterministic >-rule, which recycles neighbour nodes if necessary.
The TS SQ = (NLEQ,GMEQ,ELQ, 2, ·

SQ ,RQ, CQ) is defined as SO, with the ex-
ception that NLEQ contains the additional element ROOT, GMEQ and gmeΓ do
not contain any “nominal elements” (O,C) and iniΓ = {({C,ROOT}, {Trans(r) |
TransB(r) holds} ∪ {r v* s | r v* B s holds})}. The rules RQ are given in Figure 2.
Note that no rule modifies µ and that R> applies only to patterns whose depth is
exactly 2, whereas the other rules apply to patterns of depth at most 2. Here, we
obtain an explanation why double-blocking [5] is needed for SHIQ: the maximum
required pattern depth is 2.
We do not need an extra rule for concepts of the form (6 0 s D) to propagate ∼D

to all the appropriate neighbours (analogous to R∀), since this is performed by the
rule RC. We also do not have a 6-rule, but only a corresponding clash trigger: the set
CQ contains all patterns in CO and additionally all patterns of depth at most 2 such
that (6 m s C) ∈ n(v) with v ∈ V and there are at least m+1 r-neighbours of v with
r v* s ∈ µ. For the proof of p-completeness, we require that the numbers in number
restrictions are coded unary, since otherwise the width of a model can be exponential
in the size of the input. We can then obtain alternative proofs for the known results
of SHIQ decidability and complexity:

Lemma 5 If unary coding is used in number restrictions, the TS SQ is ExpTime-
admissible, sound and q-complete for SHIQV satisfiability, where q = (x 7→ x2).

Proof. The soundness proof is easier than for SO, since a completion tree corresponds
directly to a model, and we do not have to “merge” nodes labelled with nominals.

Soundness. From a saturated and clash-free S-tree (t, µ) with t = (V,E, n, `), we
generate a model I = (∆I , ·I) as follows: ∆I = {dv | v ∈ V }. For any concept name
D and any role r we have the same interpretation as in the proof of soundness for
SHIO. Thus, for u and t concepts, the proof is analogous to the one for Lemma 3.
We will now show that the QNR (6 m r D) and (> m r D) are also interpreted

correctly. Let (> m r C) be a concept in n(v) of a node v. Then, since the S-tree
is saturated, there exist at least m r-neighbours u1 . . . um of v with C ∈ n(ui) and
hence dui

∈ CI . From our construction, it follows that (dv, dui
) ∈ rI and thus]{d |

(dv, d) ∈ rI and d ∈ CI} ≥ m. If (6 m r C) ∈ n(v) for a node v and a simple role
r, then, since the S-tree is clash-free, there exist at most m r-neighbours u1 . . . um of
v with C ∈ n(ui) and hence dui

∈ CI . All other r-neighbours w contain the concept
∼D because the rule RC is not applicable. Since r is simple, our construction of rI

does not introduce any further rI-neighbours. Thus, it follows that]{d | (dv, d) ∈
rI and d ∈ CI} ≤ m.
For a concept (6 0 r C) ∈ n(v) and a non-simple role r, the proof is similar to

the one for ∀-concepts in SHIO: for roles s, s1, . . . , sn with s ∈ TRA and si v* s v* r, it
follows from saturatedness of the S-tree that (6 0 r C) ∈ n(w) for every node w that
is reachable from v via an si-chain, and thus all r-neighbours of w are labelled with
∼C since the tree is clash-free and the rule RC is not applicable.

Completeness. We have to show that if there exists a model I = (∆I , ·I) for an
input Γ = (C,B), then there also exists a clash-free and saturated S-tree (t, µ) with
t = (V,E, n, `) for Γ. We will create (t, µ) by unravelling I: the global memory µ is
created as in the case of SHIO by adding all appropriate transitivity and role inclusion
axioms. The tree is inductively defined as follows: we start with an individual d0 ∈ CI ,
create a node v0, and a function π with π(v0) = d0. Moreover, we define, for this and
all further nodes v, n(v) as the set of all concepts D ∈ clos(C,B) which the individual
π(v) satisfies. For the root node, we add the marker concept ROOT to n(v0).
New nodes are added to the tree if there is a node v and a formula

(> m r D) ∈ n(v): if there exist only k r-neighbours of v and k < m, we choose
appropriate individuals dk+1 . . . dm, i.e. individuals which are not yet in the range of
π, with di ∈ DI and (π(v), di) ∈ rI . For these nodes, we create r-neighbours u1 . . . um

of v and set π(ui) = di. Since I is a model, it always is possible to find appropriate
individuals. From this construction, it follows that R> and R>ROOT are not applica-
ble. The rule RC is not applicable by definition, since every node satisfies either C or
∼C for any concept C, and for Ru, Rt and R∀+, saturatedness follows analogous to
the proof for SO. Note that the out-degree of the S-tree is bounded by the number of
concepts of the form (> m r D) ∈ clos(C,B) and the highest number m occurring in
such a concept.
The resulting S-tree can neither contain a clash trigger with {C, ∼C } ⊆ n(v)

for a node v and a concept C, since I is a model, nor a clash trigger with a number
restriction of the form D = (6 m r C) ∈ n(v) of a node v ∈ V with π(v) = d, because
d ∈ DI and we create at most one r-neighbour of v for every rI-neighbour of d.

It is easy to see that (t, µ) is compatible with Γ and the width is at
most quadratic in length of Γ since we create only m successors for a formula
(> m r C) ∈ clos(C,B), the number m is coded unary and the number of such
formulas is quadratic in the length of Γ.

Theorem 6 Satisfiability for SHIQV concepts w.r.t. RBoxes is ExpTime-complete.

Proof. The tableau system SQ is ExpTime-admissible: the size of nleS(Γ) and of
gmeS(Γ) is quadratic in the size of the input. Soundness and p-completeness have
been shown above. ExpTime-hardness follows as for SO.

5 Conclusion and Outlook

We have described the main features of the tableau framework for ExpTime logics and
defined tableau systems for the new DL SHIO and the known DL SHIQ. It turned
out that these two logics make use of different features of the tableau framework: to
capture nominals, we need the global memory, whereas large patterns are needed to
handle QNR properly. From the tableau systems, we can derive automata algorithms
deciding satisfiability of SHIO/SHIQ concepts w.r.t. RBoxes in ExpTime and ter-
minating tableau algorithms, which are well suited for implementation and include
appropriate blocking conditions. We believe that the simplicity of the proofs justifies
the additional overhead resulting from the formalisation of the algorithm within the
tableau framework.
We aim at extending our framework to cover NExpTime logics, e.g. ALCQIO [8].

One way of achieving this could consist in replacing looping automata (for which the
emptiness problem is in P) with an automata model with an NP-complete emptiness
problem, e.g. Rabin automata. However, we do not yet see a way of capturing the
ALCQIO-specific problems with a Rabin acceptance condition.

References

[1] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to automata for description logics.
Fundamenta Informaticae, 57:1–33, 2003.

[2] F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia Logica,
69, 2001.

[3] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role hierarchies.
Technical Report 98-05, LuFg Theoretical Computer Science, RWTH Aachen, 1998.

[4] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In Proc. of
IJCAI-01, pages 199–204. Morgan Kaufmann, 2001.

[5] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In
Proc. of LPAR’99, number 1705 in LNAI, pages 161–180. Springer-Verlag, 1999.

[6] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In IJCAR-01, volume 2083 of LNAI, pages
76–91. Springer-Verlag, 2001.

[7] K. Schild. Terminological cycles and the propositional µ-calculus. In J. Doyle, E. Sandewall, and
P. Torasso, editors, Proc. of KR-94, pages 509–520, Bonn, 1994. Morgan Kaufmann.

[8] S. Tobies. The complexity of reasoning with cardinality restrictions and nominals in expressive
description logics. J. of Artificial Intelligence Research, 12:199–217, May 2000.

