
Mona as a DL Reasoner

Eldar Karabaev and Carsten Lutz

Institute for Theoreti
al Computer S
ien
e

TU Dresden, Germany

fkarabaev,lutzg�t
s.inf.tu-dresden.de

Abstra
t

We show how the Mona tool for reasoning in the monadi
 se
ond order theories

WS1S and WS2S
an be used to obtain de
ision pro
edures for des
ription logi
s.

The performan
e of this approa
h is evaluated and
ompared to the dedi
ated

DL reasoners FaCT and RACER.

1 Motivation

The weak monadi
 se
ond order theories of one and two su

essors,
ommonly
alled

WS1S and WS2S, are among the most powerful de
idable logi
s known today [10℄.

This is witnessed by the fa
t that a large number of des
ription logi
s, modal logi
s,

and dynami
 logi
s
an be translated into them (see, e.g., [3℄), and also by their

impressive non-elementary
omplexity: there exists no positive integer n su
h that

satis�ability of WS1S or WS2S formulas
an be de
ided in n-ExpTime [9℄. Despite

their powerful expressivity and immense
omputational
omplexity, with the Mona

tool there exists an eÆ
ient implementation of both WS1S and WS2S [4℄. As the

Mona manual puts it, \eÆ
ient here means that the tool is fast enough to have been

used in a variety of non-trivial settings". Indeed, an impressive list of su

essful

appli
ations
an be found on the Mona homepage [1℄.

Sin
e it is
ommon knowledge that many DLs
an be translated into WS2S, it

is a natural idea to use Mona for DL reasoning. Thus, the purpose of the
urrent

paper is to translate the basi
 des
ription logi
 ALC into formulas digestible by Mona,

and to evaluate Mona's performan
e for DL reasoning. More pre
isely, we use a well-

known translation of ALC into WS2S using a Rabin-style en
oding of non-binary trees

into binary trees, and exhibit a novel redu
tion of ALC into WS1S that is inspired

by Pratt's \type elimination" te
hnique for de
iding the satis�ability of modal logi

formulas. We then
ompare the performan
e of Mona with that of the dedi
ated

DL reasoners FaCT and RACER [8, 5℄. There are at least two reasons why su
h a

omparison is interesting: �rst, it
ontrasts the performan
e of DL reasoners with

the performan
e of more general reasoners, thus being in the line of [12℄ where the

performan
e of the FaCT system is
ompared to that of the �rst order theorem prover

Vampire. Se
ond, Mona implements an automata-based de
ision pro
edure, while the

two DL reasoners are tableau-based and thus a
omparison may
ontribute to the

understanding of the advantages and disadvantages of the two approa
hes.

The out
ome of our investigation is as follows: if no TBoxes are involved, then

Mona's performan
e is reasonable, though it
annot rea
h the performan
e of FaCT

and RACER. In the presen
e of TBoxes, Mona's performan
e is extremely poor, ren-

dering the Mona approa
h to DL reasoning virtually useless. However, we believe

that using Mona for DL reasoning without TBoxes
an be useful at least for prototyp-

ing purposes: WS1S and WS2S are powerful enough to a

omodate many expressive

des
ription logi
s su
h as SHIQ or DLs involving transitive
losure of roles, and im-

plementing a translator is
onsiderably less diÆ
ult than implementing an optimized,

dedi
ated reasoner. Developing translations for more
omplex DLs, however, is outside

the s
ope of this paper.

2 Translations to WS1S and WS2S

We assume familarity with the des
ription logi
 ALC, see, e.g., [2℄ for details. In

TBoxes, we admit
on
ept equations C

:

= D with both C and D possibly
omplex.

These TBoxes are interpreted a

ording to the usual des
riptive semanti
s. Due to

spa
e limitations, we
annot give a full des
ription of the monadi
 weak se
ond-order

theories WS1S and WS2S. Intuitively, the syntax of our monadi
 se
ond-order (MSO)

language is obtained from the familiar �rst-order (FO) language without fun
tion

symbols and
onstants (but with equality) by

1. restri
ting predi
ates to be unary;

2. adding se
ond-order quanti�ers \8" and \9" that
an be used to quantify over

unary predi
ates, whi
h are in this
ontext
alled se
ond-order variables;

3. in the
ase of WS1S, adding an ordering predi
ate \<" and a su

essor fun
-

tion s(�);

4. in the
ase of WS2S, adding an ordering predi
ate \<" and two su

essor fun
-

tions s

`

(�) and s

r

(�).

As for the semanti
s, formulas of WS1S are interpreted in the stru
ture of one su

essor

fun
tion, i.e. in one-side in�nite words. The built-in ordering predi
ate \<" has the

obvious interpretation on positions in su
h !-words, and the su

essor fun
tion
an

be used for going to the su

essive position. In the
ase of WS2S, formulas are

interpreted in the stru
ture of two su

essor fun
tions, i.e. in in�nite binary trees. The

ordering predi
ate \<" des
ribes the \o�spring" relation in su
h trees, and the two

su

essor fun
tions s

`

(�) and s

r

(�)
an be used for going to the left and right su

essor,

respe
tively. For both WS1S and WS2S, the \W" stands for \weak" indi
ating that

quanti�
ation is on �nite sets rather than on arbitrary ones as in the
losely related

theories S1S and S2S.

To WS1S and the Monadi
 Theory of In�nite Sets

We �rst present a translation of ALC
on
epts and TBoxes to WS1S, or rather to the

MSO theory of in�nite sets sin
e we will not use WS1S's built-in ordering predi
ates

and su

essor fun
tions. The translation is inspired by the Pratt-style \type elimi-

nation" pro
edure for de
iding the satis�ability of modal formuas [11℄. Intuitively,

type elimination is based on the following simple observation: if a domain element

in an ALC interpretation satis�es a set of
on
epts �
ontaining an existential value

restri
tion 9R:C, then there must exist another domain element satisfying C and all

D with 8R:D 2 �. This observation also
onstitutes the
ore of the WS1S redu
tion.

Let C be an ALC-
on
ept and T a TBox. We use sub(C) to denote the set of

sub
on
epts of C and set

sub(C;T) := sub(C) [

[

D

:

=E2T

sub(D) [sub(E):

Moreover, we use
nam(C;T) and rnam(C;T) to denote the sets of
on
ept names

and role names o

urring in C and T , respe
tively. To translate C and T into a

orresponding se
ond order formula, we introdu
e a unary FO-predi
ate P

A

for ea
h

A 2
nam(C;T), and a unary FO-predi
ate Q

D

for ea
h D 2 sub(C;T) of the form

9R:E or 8R:E. Then, for ea
h
on
ept D 2 sub(C;T) and ea
h �rst-order variable x,

we de�ne a formula D

℄

(x) by repla
ing

1.
on
ept names A with P

A

(x);

2. u with ^ and t with _;

3. 9R:D with Q

9R:D

(x) and 8R:D with Q

8R:D

(x).

Con
erning the last item, we only repla
e existential and universal value restri
tions

that are not
ontained inside another value restri
tion. For example, taking

C = A u :8R:(8S:(A u :B))

and the FO variable x, we obtain

C

℄

(x) = P

A

(x) ^ :Q

8R:(8S:(A^:B))

(x):

Next, for ea
h role name R 2 rnam(C;T) we de�ne a formula

#

R

:= 8x:9W:

h

^

8R:C2sub(X;T)

�

Q

8R:C

(x)!

�

8y:W (y)! C

℄

(y)

�

�

^

^

9R:C2sub(X;T)

�

Q

9R:C

(x)!

�

9y:W (y) ^C

℄

(y)

�

�i

where x is a �rst order variable and W is a se
ond order variable (the same variables

may be used for every R 2 rnam(C;T)). Finally, we
an de�ne the WS1S formula

'

1

C;T

, whi
h is the translation of C and T :

'

1

C;T

:= 9x:C

℄

(x) ^ 8x:

�

^

D

:

=E2T

(D

℄

(x)$ E

℄

(x))

�

^

^

R2rnam(C;T)

#

R

Some remarks on this translation, whi
h is
alled T1 in the remainder of this paper,

are in order. First, it is linear and may even result in an exponential
ompression of

the input
on
ept and TBox. Se
ond, the formula '

1

C;T

does not refer to any su

essor

fun
tions and ordering predi
ates, and
an hen
e be interpreted both in WS1S and in

the MSO theory of in�nite sets. And third, it is interesting to note that des
ription

logi
 roles are not expli
itly represented on the se
ond-order side. This is so be
ause we

have only a single relation available in WS1S: the su

essor fun
tion, whi
h does not

seem suitable for representing the in general non-fun
tional role relationships. Thus

we resort to a type elimination perspe
tive as initially sket
hed: the existentially

quanti�ed variable W in #

R

omprises those domain elements that are needed to

satisfy all the existential value restri
tions of x.

Theorem 1. A
on
ept C is satis�able w.r.t. a TBox T i� '

1

C;T

is satis�able in the

MSO-theory of in�nite sets i� '

1

C;T

is WS1S-satis�able.

It is interesting to note that we
an even eliminate the se
ond-order quanti�er in the

previous translation by de�ning the formula #

R

in a di�erent way. Here, the relation

to type elimination is even more visible:

#

0

R

:= 8x:

^

8R:C2sub(X;T)

h

Q

9R:C

(x)!

�

9y:

�

C

℄

(y) ^

^

8R:D2sub(X;T)

(Q

8R:D

(x)! D

℄

(y))

�

�i

With this modi�
ation, we
ould use our translation together with a �rst-order theo-

rem prover rather than together with Mona|a path that we are not going to explore

in the
urrent paper. Note that the modi�ed translation is quadrati
 rather than

linear.

To WS2S

The translation to WS2S is mu
h more standard than our WS1S translation. Sin
e we

have two su

essor fun
tions available in WS2S, we
an now expli
itly represent the

relational stru
ture on the se
ond-order side: ALC is known to have the tree-model

property, and an old tri
k of Rabin [10℄
an be used to transform ALC's tree models,

whi
h are not ne
essarily binary trees, into the binary tree stru
ture of WS2S.

Let C be an ALC
on
ept and T a TBox. For the new translation, we �x an

enumeration of the roles in C and T , and use #R to denote the position of a role R in

this enumeration. We introdu
e a unary FO-predi
ate P

A

for ea
h A 2
nam(C;T),

and another unary FO-predi
ate M . Then, we indu
tively de�ne two translation

fun
tions �

x

and �

y

, where x and y are �rst-order variables. Here is the �

x

translation:

A

x

:= A(x)

(:C)

x

:= :C

x

(C uD)

x

:= C

x

^D

x

(C tD)

x

:= C

x

_D

x

(9R:C)

x

:= 9y:(y <

`

s

n

r

(x) ^ C

y

^M(y)) where n := #R

(8R:C)

x

:= 8y:((y <

`

s

n

r

(x) ^M(y))! C

y

) where n := #R

In this translation, s

r

(�) is the \right" su

essor fun
tion, and s

n

r

(�) stands for going

to the right su

essor n times. Moreover, <

`

is the ordering over left su

essors only.

Sin
e this is not available in Mona, we simulate y <

`

x by writing

9Q:

h

x 2 Q ^ 8z:

�

z 2 Q! (z = y _ s

`

(z) 2 Q)

�

i

:

Note that this formula only works sin
e, in WS2S, quanti�
ation is over �nite sets.

The �

y

translation is de�ned symmetri
ally to �

x

, details are omitted. Given a
on
ept

C and a TBox T , we now de�ne their translation to WS2S as follows:

'

2

C;T

:= 9x:(M(x) ^C

x

) ^

^

D

:

=E2T

8x:(D

x

$ E

x

):

The intuition behind this translation, whi
h is
alled T2, is as follows: there is a one-

to-one
orresponden
e between domain elements of ALC interpretations and nodes in

the WS2S tree stru
ture that are in the extension of the predi
ate M . Let x be a

node in the WS2S tree that is in M . To �nd the R-su

essors of x for a role name

R 2 rnam(C;T) with ℄R = n, we start at x and follow the right su

essor fun
tion

exa
tly n times to the node y. Then the R-su

essors of x are y, its left su

essor,

its left su

essor's left su

essor, and so forth. This also explains the use of the M

predi
ate: sin
e we do not want to have in�nitely many su

essors for ea
h domain

element and ea
h role name, we mark the \existing ones" with M .

Theorem 2. A
on
ept C is satis�able w.r.t. a TBox T i� '

2

C;T

is WS2S-satis�able.

There are some interesting variations of this translation. For example, we
an modify

the translation �

x

as follows (and �

y

analogously):

(9R:C)

x

:= M(s

n

r

(x)) ^ 9y:(y <

`

s

`

(s

n

r

(x)) ^C

y

) where n := #R

(8R:C)

x

:= M(s

n

r

(x))! 8y:(y <

`

s

`

(s

n

r

(x))! C

y

) where n := #R

Here, the intuition of the M predi
ate is a di�erent one sin
e M is only used to state

whether a node x has su

essors for a role name R at all: this is the
ase if and only

if s

n

r

(x) is in M , with n = ℄R. This se
ond variant of the S2S translation is denoted

with T2b.

3 Evaluation

To evaluate the performan
e of Mona when used for de
iding the satis�ability of ALC

on
epts without referen
e to TBoxes, we employed two di�erent
lasses of
on
epts.

Firstly, we tested our approa
h on the Tableaux'98 (hen
eforth T98) ben
hmark suite

that is frequently used to evaluate DL reasoners, see, e.g., [8, 12℄. The T98 suite

onsists of 18 sequen
es of
on
epts, ea
h sequen
e
omprised of 21
on
epts with

in
reasing diÆ
ulty. Sin
e the T98
on
epts are arti�
ial in the sense that they have

been designed with the only purpose of making reasoning diÆ
ult [6℄, we se
ondly

used
on
epts that were extra
ted from the real world knowledge bases Galen and

Platt|see [7℄ for more information on both of them.

All tests were perfomed �ve times: on
e for ea
h of the three translations T1, T2,

and T2b, and on
e using the well-known DL reasoners FaCT and RACER [8, 5℄. The

T1 T2 T2b RACER FaCT

k bran
h n 0 2 1 14 6

k bran
h p 0 2 1 20 8

k d4 n 0 2 4 21 21

k d4 p 0 3 6 21 21

k dum n 0 2 3 21 21

k dum p 0 6 7 21 21

k grz n 0 3 5 21 21

k grz p 0 4 5 21 21

k lin n 1 1 21 21 21

k lin p 1 7 10 21 21

k path n 0 3 16 21 8

k path p 0 4 17 21 10

k ph n 2 4 11 21 9

k ph p 2 4 11 9 8

k poly n 0 1 2 21 21

k poly p 0 1 1 21 21

k t4p n 0 0 6 21 21

k t4p p 0 1 10 21 21

Total: 6 50 137 358 301

Galen-kris-1,% 97.34 93.13 91.07 100.00 100.00

Galen-kris-2,% 99.54 98.66 97.83 100.00 100.00

Platt,% 100.00 100.00 100.00 100.00 100.00

Figure 1: Experimental Results

results are summarized in Figure 1. In the table, the names k � � denote the
on
ept

sequen
es of T98. The entries are to be read as follows: the reasoners had 100 se
onds

to de
ide the satis�ability of ea
h
on
ept in a sequen
e. The number given in the

table is then the number of the last
on
ept that a reasoner was able to solve within

this time. Thus, the entry \21" means that all
on
epts in a given sequen
e have

been solved. For the \real world"
on
epts, for whi
h the results
an be found in the

last three lines, we use a di�erent s
heme: there are again 100 se
onds available for

reasoning on ea
h
on
ept, but sin
e these
on
epts are not ordered w.r.t. in
reasing

diÆ
ulty, we simply give the per
entage of
on
ept that the reasoner was able to solve

within the given time. Note that, in total, there were 1165
on
epts for Galen-kris-1,

1936
on
epts for Galen-kris-2, and 262
on
epts for Platt

There are several interesting observations to be made in Figure 1. First, it is ob-

vious that the dedi
ated DL reasoners RACER and FaCT outperform Mona in most

ases, ex
ept for the translation T2b used on the sequen
es k lin n, k path p, k path n,

k ph n, and k ph p|in the last
ase, Mona even beats FaCT and RACER. Se
ond, on

the T98
on
epts the translation T2b performs mu
h better than the other two trans-

lations, and T1 is worst solving only 6
on
epts out of 378. Surprisingly, the situation

is reversed for the real world
on
epts: here T1 outperforms both other translations

and T2b is worst. And third, there is a surprising di�eren
e in the performan
e of the

almost identi
al T2 and T2b translations (at least on the T98
on
epts). Thus, Mona

is apparently quite sensitive to small
hanges in the translation.

How should these results be judged? Let us start with saying that the better

performan
e of FaCT and RACER is perhaps not too surprising: both Mona and the

involved DL reasoners are highly optimized, but Mona is
apable of dealing with

a mu
h more powerful logi
. This is witnessed by the fa
t that the
omplexity of

WS1S and WS2S is non-elementary [9℄, while FaCT and RACER implement ExpTime-

omplete logi
s. Still, we believe that the performan
e of our translations is reasonable.

In parti
ular, it should be taken into a

ount that,
ompared to the implementation

of a full-
edged DL reasoner, the implementation of our translations is a pie
e of

ake. Sin
e many di�erent des
ription logi
s
an be translated to WS1S and WS2S,

we believe that su
h translations
an be useful at least for prototyping purposes.

To analyze why the three translations exhibit a di�erent performan
e, we need

to introdu
e some of Mona's implementation details. To de
ide the satis�ability of a

formula, Mona
onstru
ts a �nite automaton that a

epts the empty language if and

only if the input formula is unsatis�able, and then performs an emptyness test on this

automaton. The
onstru
tion of the automaton, whi
h works on !-words in the
ase of

WS1S and on in�nite trees in the WS2S
ase, involves a number of automata-theoreti

operations:
omplementation for dealing with logi
al negation, union for disjun
tion,

produ
t for
onjun
tion, and proje
tion for quanti�ers. Sin
e Mona always works with

determinsti
 automata, the most \dangerous" operation in this list is proje
tion as

it involves the determinization of a non-deterministi
 automaton. As is well-known,

this may produ
e an exponential blowup in automaton size, in
ontrast to
onstant

blowup produ
ed by
omplementation and union, and quadrati
 blowup produ
ed

by the produ
t. This is
losely related to the fa
t that WS1S and WS2S are non-

elementary: a separate proje
tion
annot be avoided for ea
h alternation of logi
al

quanti�ers, thus resulting in repeated exponential blowups.

Surprisingly, however, quanti�er alternation is almost never the
ulprit of per-

forman
e problems in our translation-based appoa
h to DL reasoning: the reason

for non-termination is usually the more harmless looking produ
t operation, i.e. the

treatment of logi
al
onjun
tion. To understand this, we must know some more details

about Mona internals: the alphabet of the automaton
onstru
ted for a (sub)formula

' is
omprised of 0/1-strings whose length is identi
al to the number of free vari-

ables in '|the intuition is that the domain element des
ribed by su
h a string is

ontained in the extension of exa
tly those free variables for whi
h we �nd a \1" value

in the string. Thus, the size of the alphabet is exponential in the length of the input

formula. To
ope with this, Mona stores the transition table of automata in a
om-

pressed way using binary de
ision diagrams (BDDs). Unfortunately, this
ompression

only works well if the underlying formula enfor
es many interdependen
ies among the

free variables.

Now
onsider our translation T1: ea
h subformula #

R

is a huge
onjun
tion inside

a \89" quanti�er pattern. Moreover, ea
h
onjun
t involves a large number of free

variables: sin
e �rst-order predi
ates are treated by Mona as free variables (whi
h are

impli
itly existentially quanti�ed on the outermost level), this in
ludes the predi
ates

P

A

introdu
ed for
on
ept names and the predi
ates Q

C

introdu
ed for sub
on
epts C

of the form 9R:D and 8R:D. Unfortunately, the intera
tion between these free vari-

ables turns out to be rather weak in general. Thus, the repeated produ
t operations

performed when pro
essing the huge
onjun
tion in #

R

produ
e an automaton whose

BDD has an ex
essive number of nodes. The subsequent proje
tion and determiniza-

tion that is performed to treat the se
ond operator in the \89" pattern is not able to

pro
ess this large automaton.

In
ontrast, the formulas produ
ed by T2 and T2b re
e
t the stru
ture of the

original
on
ept, and are thus not just a big
onjun
tion. This explains why T2b is

better on the T98 ben
hmark. But why, then, is T1 better on real world
on
epts?

There seem to be two reasons: �rst, the
on
epts extra
ted from real world knowledge

bases are mu
h smaller than the T98 ones, whi
h
an be several megabytes in size.

Thus,
onjun
tions produ
ed by T1 are less giganti
 in the real world
ase. Se
ond,

Mona
an handle automata on !-words more eÆ
iently than tree-automata, thus

giving T1 an advantage over T2 and T2b.

We have also used our translation for de
iding the satis�ability of
on
epts w.r.t.

TBoxes, e.g. on the Platt knowledge base and on the two ALC versions of Galen.

Unfortunately, the results were dis
ouraging: Mona terminated only for very small

TBoxes (< 10
on
ept equations) and was not able to
lassify any of the real world

KBs. The reason for this is again due to the generation of BDDs with a massive number

of nodes: in all our translations, TBoxes are translated into a huge
onjun
tion inside

a \8" quanti�er. Hen
e, we
an observe the same blowup pattern as with T1 on the

T98
on
epts. Even a pre
eeding \absorption" of
on
ept equations as known from

[7℄, and an elimination of \non-relevant"
on
ept equations as proposed in [12℄ did

not allow us to
lassify real world KBs.

4 Dis
ussion

We have shown how the Mona tool
an be exploited for reasoning about des
ription

logi
s. The out
ome of our experiments suggests that, although Mona is outperformed

by dedi
ated DL reasoners, her performan
e is suÆ
ient at least for prototyping pur-

poses. In this
ontext, it should be noted that translations
an be implemented rather

qui
kly, and that Mona is expressive enough to
apture a large
lass of des
ription

logi
s. For example, it should not be hard to
ome up with translations for more

powerful DLs su
h as SHIQ, and even to treat features that are very diÆ
ult for

tableau reasoners, su
h as the transitive
losure of roles.

It would be very interesting to determine a
lass of
on
epts on whi
h Mona

performs good, but the DL reasoners do not, and vi
e versa. A �rst idea is provided by

the dis
ussion in Se
tion 3: Mona is good on disjun
tion (the
orresponding operation

\automata union" only yields a
onstant blowup in size), and bad on
onjun
tion; for

tableau algorithms, this is the other way round. Still, we found it diÆ
ult to
ome

up with the desired
lass of
on
epts due to the intri
ate optimization te
hniques of

FaCT and RACER. The two reasoners even behave quite di�erently: we have found

two
lasses of formulas on whi
h Mona performs good, but one of FaCT and RACER

performs bad. A
lass of su
h formulas on whi
h both FaCT and RACER perform bad,

however, remains yet to be seen.

The translator and
on
epts used in the experiments
an be downloaded from the

internet,
.f. http://lat.inf.tu-dresden.de/�
lu/atom.tar.gz.

Referen
es

[1℄ The Mona homepage. http://www.bri
s.dk/mona/.

[2℄ F. Baader, D. L. M
Guiness, D. Nardi, and P. Patel-S
hneider. The Des
ription

Logi
 Handbook: Theory, implementation and appli
ations. Cambridge University

Press, 2003.

[3℄ P. Bla
kburn, M. de Rijke, and Y. Venema. Modal Logi
. Cambridge University

Press, 2001.

[4℄ J. Elgaard, N. Klarlund, and A. Moller. Mona 1.x: new te
hniques for ws1s and

ws2s. In Computer Aided Veri�
ation, CAV '98, Pro
eedings, volume 1427 of

LNCS. Springer Verlag, 1998.

[5℄ V. Haarslev and R. M�oller. RACER system des
ription. In R. Gor�e, A. Leits
h,

and T. Nipkow, editors, Pro
eedings of the First International Joint Conferen
e

on Automated Reasoning (IJCAR'01), number 2083 in Le
ture Notes in Arti�
al

Intelligen
e, pages 701{705. Springer-Verlag, 2001.

[6℄ A. Heuerding and S. S
hwendimann. A ben
hmark method for the propositional

modal logi
s k, kt, s4. Te
hni
al Report IAM-96-015, University of Bern, Switzer-

land, 1996.

[7℄ I. Horro
ks. Optimising Tableaux De
ision Pro
edures for Des
ription Logi
s.

Phd thesis, University of Man
hester, 1997.

[8℄ I. Horro
ks. Using an expressive des
ription logi
: Fa
t or �
tion? In Pro-

eedings of the Sixth International Conferen
e on the Prin
iples of Knowledge

Representation and Reasoning (KR98), pages 636{647, 1998.

[9℄ A. Meyer. Weak monadi
 se
ond order theory of su

essor is not elementary-

re
ursive. In LOGCOLLOQ: Logi
 Colloquium. Le
ture Notes in Mathemati
s,

No. 453, Springer-Verlag, 1975.

[10℄ M.O. Rabin. De
idability of se
ond-order theories and automata on in�nite trees.

Transa
tions of the Ameri
an Mathemati
al So
iety, 141:1{35, 1969.

[11℄ V. R. Pratt. Models of program logi
s. In Pro
eedings of the Twentieth Annual

Symposium on Foundations of Computer S
ien
e, San Juan, Puerto Ri
o, 1979.

[12℄ D. Tsarkov and I. Horro
k. Dl reasoner vs. �rst-order prover. In E. F. Diego Cal-

vanese, Giuseppe De Gia
omo, editor, Pro
eedings of the International Workshop

in Des
ription Logi
s 2003 (DL2003), number 81 in CEUR-WS (http://
eur-

ws.org/), pages 152{159, 2003.

