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Abstrat

We show how the Mona tool for reasoning in the monadi seond order theories

WS1S and WS2S an be used to obtain deision proedures for desription logis.

The performane of this approah is evaluated and ompared to the dediated

DL reasoners FaCT and RACER.

1 Motivation

The weak monadi seond order theories of one and two suessors, ommonly alled

WS1S and WS2S, are among the most powerful deidable logis known today [10℄.

This is witnessed by the fat that a large number of desription logis, modal logis,

and dynami logis an be translated into them (see, e.g., [3℄), and also by their

impressive non-elementary omplexity: there exists no positive integer n suh that

satis�ability of WS1S or WS2S formulas an be deided in n-ExpTime [9℄. Despite

their powerful expressivity and immense omputational omplexity, with the Mona

tool there exists an eÆient implementation of both WS1S and WS2S [4℄. As the

Mona manual puts it, \eÆient here means that the tool is fast enough to have been

used in a variety of non-trivial settings". Indeed, an impressive list of suessful

appliations an be found on the Mona homepage [1℄.

Sine it is ommon knowledge that many DLs an be translated into WS2S, it

is a natural idea to use Mona for DL reasoning. Thus, the purpose of the urrent

paper is to translate the basi desription logi ALC into formulas digestible by Mona,

and to evaluate Mona's performane for DL reasoning. More preisely, we use a well-

known translation of ALC into WS2S using a Rabin-style enoding of non-binary trees

into binary trees, and exhibit a novel redution of ALC into WS1S that is inspired

by Pratt's \type elimination" tehnique for deiding the satis�ability of modal logi

formulas. We then ompare the performane of Mona with that of the dediated

DL reasoners FaCT and RACER [8, 5℄. There are at least two reasons why suh a

omparison is interesting: �rst, it ontrasts the performane of DL reasoners with

the performane of more general reasoners, thus being in the line of [12℄ where the

performane of the FaCT system is ompared to that of the �rst order theorem prover

Vampire. Seond, Mona implements an automata-based deision proedure, while the

two DL reasoners are tableau-based and thus a omparison may ontribute to the

understanding of the advantages and disadvantages of the two approahes.

The outome of our investigation is as follows: if no TBoxes are involved, then

Mona's performane is reasonable, though it annot reah the performane of FaCT



and RACER. In the presene of TBoxes, Mona's performane is extremely poor, ren-

dering the Mona approah to DL reasoning virtually useless. However, we believe

that using Mona for DL reasoning without TBoxes an be useful at least for prototyp-

ing purposes: WS1S and WS2S are powerful enough to aomodate many expressive

desription logis suh as SHIQ or DLs involving transitive losure of roles, and im-

plementing a translator is onsiderably less diÆult than implementing an optimized,

dediated reasoner. Developing translations for more omplex DLs, however, is outside

the sope of this paper.

2 Translations to WS1S and WS2S

We assume familarity with the desription logi ALC, see, e.g., [2℄ for details. In

TBoxes, we admit onept equations C

:

= D with both C and D possibly omplex.

These TBoxes are interpreted aording to the usual desriptive semantis. Due to

spae limitations, we annot give a full desription of the monadi weak seond-order

theories WS1S and WS2S. Intuitively, the syntax of our monadi seond-order (MSO)

language is obtained from the familiar �rst-order (FO) language without funtion

symbols and onstants (but with equality) by

1. restriting prediates to be unary;

2. adding seond-order quanti�ers \8" and \9" that an be used to quantify over

unary prediates, whih are in this ontext alled seond-order variables;

3. in the ase of WS1S, adding an ordering prediate \<" and a suessor fun-

tion s(�);

4. in the ase of WS2S, adding an ordering prediate \<" and two suessor fun-

tions s

`

(�) and s

r

(�).

As for the semantis, formulas of WS1S are interpreted in the struture of one suessor

funtion, i.e. in one-side in�nite words. The built-in ordering prediate \<" has the

obvious interpretation on positions in suh !-words, and the suessor funtion an

be used for going to the suessive position. In the ase of WS2S, formulas are

interpreted in the struture of two suessor funtions, i.e. in in�nite binary trees. The

ordering prediate \<" desribes the \o�spring" relation in suh trees, and the two

suessor funtions s

`

(�) and s

r

(�) an be used for going to the left and right suessor,

respetively. For both WS1S and WS2S, the \W" stands for \weak" indiating that

quanti�ation is on �nite sets rather than on arbitrary ones as in the losely related

theories S1S and S2S.

To WS1S and the Monadi Theory of In�nite Sets

We �rst present a translation of ALC onepts and TBoxes to WS1S, or rather to the

MSO theory of in�nite sets sine we will not use WS1S's built-in ordering prediates

and suessor funtions. The translation is inspired by the Pratt-style \type elimi-

nation" proedure for deiding the satis�ability of modal formuas [11℄. Intuitively,



type elimination is based on the following simple observation: if a domain element

in an ALC interpretation satis�es a set of onepts � ontaining an existential value

restrition 9R:C, then there must exist another domain element satisfying C and all

D with 8R:D 2 �. This observation also onstitutes the ore of the WS1S redution.

Let C be an ALC-onept and T a TBox. We use sub(C) to denote the set of

subonepts of C and set

sub(C;T ) := sub(C) [

[

D

:

=E2T

sub(D) [ sub(E):

Moreover, we use nam(C;T ) and rnam(C;T ) to denote the sets of onept names

and role names ourring in C and T , respetively. To translate C and T into a

orresponding seond order formula, we introdue a unary FO-prediate P

A

for eah

A 2 nam(C;T ), and a unary FO-prediate Q

D

for eah D 2 sub(C;T ) of the form

9R:E or 8R:E. Then, for eah onept D 2 sub(C;T ) and eah �rst-order variable x,

we de�ne a formula D

℄

(x) by replaing

1. onept names A with P

A

(x);

2. u with ^ and t with _;

3. 9R:D with Q

9R:D

(x) and 8R:D with Q

8R:D

(x).

Conerning the last item, we only replae existential and universal value restritions

that are not ontained inside another value restrition. For example, taking

C = A u :8R:(8S:(A u :B))

and the FO variable x, we obtain

C

℄

(x) = P

A

(x) ^ :Q

8R:(8S:(A^:B))

(x):

Next, for eah role name R 2 rnam(C;T ) we de�ne a formula

#

R

:= 8x:9W:

h

^

8R:C2sub(X;T )

�

Q

8R:C

(x)!

�

8y:W (y)! C

℄

(y)

�

�

^

^

9R:C2sub(X;T )

�

Q

9R:C

(x)!

�

9y:W (y) ^C

℄

(y)

�

�i

where x is a �rst order variable and W is a seond order variable (the same variables

may be used for every R 2 rnam(C;T )). Finally, we an de�ne the WS1S formula

'

1

C;T

, whih is the translation of C and T :

'

1

C;T

:= 9x:C

℄

(x) ^ 8x:

�

^

D

:

=E2T

(D

℄

(x)$ E

℄

(x))

�

^

^

R2rnam(C;T )

#

R

Some remarks on this translation, whih is alled T1 in the remainder of this paper,

are in order. First, it is linear and may even result in an exponential ompression of



the input onept and TBox. Seond, the formula '

1

C;T

does not refer to any suessor

funtions and ordering prediates, and an hene be interpreted both in WS1S and in

the MSO theory of in�nite sets. And third, it is interesting to note that desription

logi roles are not expliitly represented on the seond-order side. This is so beause we

have only a single relation available in WS1S: the suessor funtion, whih does not

seem suitable for representing the in general non-funtional role relationships. Thus

we resort to a type elimination perspetive as initially skethed: the existentially

quanti�ed variable W in #

R

omprises those domain elements that are needed to

satisfy all the existential value restritions of x.

Theorem 1. A onept C is satis�able w.r.t. a TBox T i� '

1

C;T

is satis�able in the

MSO-theory of in�nite sets i� '

1

C;T

is WS1S-satis�able.

It is interesting to note that we an even eliminate the seond-order quanti�er in the

previous translation by de�ning the formula #

R

in a di�erent way. Here, the relation

to type elimination is even more visible:

#

0

R

:= 8x:

^

8R:C2sub(X;T )

h

Q

9R:C

(x)!

�

9y:

�

C

℄

(y) ^

^

8R:D2sub(X;T )

(Q

8R:D

(x)! D

℄

(y))

�

�i

With this modi�ation, we ould use our translation together with a �rst-order theo-

rem prover rather than together with Mona|a path that we are not going to explore

in the urrent paper. Note that the modi�ed translation is quadrati rather than

linear.

To WS2S

The translation to WS2S is muh more standard than our WS1S translation. Sine we

have two suessor funtions available in WS2S, we an now expliitly represent the

relational struture on the seond-order side: ALC is known to have the tree-model

property, and an old trik of Rabin [10℄ an be used to transform ALC's tree models,

whih are not neessarily binary trees, into the binary tree struture of WS2S.

Let C be an ALC onept and T a TBox. For the new translation, we �x an

enumeration of the roles in C and T , and use #R to denote the position of a role R in

this enumeration. We introdue a unary FO-prediate P

A

for eah A 2 nam(C;T ),

and another unary FO-prediate M . Then, we indutively de�ne two translation

funtions �

x

and �

y

, where x and y are �rst-order variables. Here is the �

x

translation:

A

x

:= A(x)

(:C)

x

:= :C

x

(C uD)

x

:= C

x

^D

x

(C tD)

x

:= C

x

_D

x

(9R:C)

x

:= 9y:(y <

`

s

n

r

(x) ^ C

y

^M(y)) where n := #R

(8R:C)

x

:= 8y:((y <

`

s

n

r

(x) ^M(y))! C

y

) where n := #R

In this translation, s

r

(�) is the \right" suessor funtion, and s

n

r

(�) stands for going

to the right suessor n times. Moreover, <

`

is the ordering over left suessors only.



Sine this is not available in Mona, we simulate y <

`

x by writing

9Q:

h

x 2 Q ^ 8z:

�

z 2 Q! (z = y _ s

`

(z) 2 Q)

�

i

:

Note that this formula only works sine, in WS2S, quanti�ation is over �nite sets.

The �

y

translation is de�ned symmetrially to �

x

, details are omitted. Given a onept

C and a TBox T , we now de�ne their translation to WS2S as follows:

'

2

C;T

:= 9x:(M(x) ^C

x

) ^

^

D

:

=E2T

8x:(D

x

$ E

x

):

The intuition behind this translation, whih is alled T2, is as follows: there is a one-

to-one orrespondene between domain elements of ALC interpretations and nodes in

the WS2S tree struture that are in the extension of the prediate M . Let x be a

node in the WS2S tree that is in M . To �nd the R-suessors of x for a role name

R 2 rnam(C;T ) with ℄R = n, we start at x and follow the right suessor funtion

exatly n times to the node y. Then the R-suessors of x are y, its left suessor,

its left suessor's left suessor, and so forth. This also explains the use of the M

prediate: sine we do not want to have in�nitely many suessors for eah domain

element and eah role name, we mark the \existing ones" with M .

Theorem 2. A onept C is satis�able w.r.t. a TBox T i� '

2

C;T

is WS2S-satis�able.

There are some interesting variations of this translation. For example, we an modify

the translation �

x

as follows (and �

y

analogously):

(9R:C)

x

:= M(s

n

r

(x)) ^ 9y:(y <

`

s

`

(s

n

r

(x)) ^C

y

) where n := #R

(8R:C)

x

:= M(s

n

r

(x))! 8y:(y <

`

s

`

(s

n

r

(x))! C

y

) where n := #R

Here, the intuition of the M prediate is a di�erent one sine M is only used to state

whether a node x has suessors for a role name R at all: this is the ase if and only

if s

n

r

(x) is in M , with n = ℄R. This seond variant of the S2S translation is denoted

with T2b.

3 Evaluation

To evaluate the performane of Mona when used for deiding the satis�ability of ALC

onepts without referene to TBoxes, we employed two di�erent lasses of onepts.

Firstly, we tested our approah on the Tableaux'98 (heneforth T98) benhmark suite

that is frequently used to evaluate DL reasoners, see, e.g., [8, 12℄. The T98 suite

onsists of 18 sequenes of onepts, eah sequene omprised of 21 onepts with

inreasing diÆulty. Sine the T98 onepts are arti�ial in the sense that they have

been designed with the only purpose of making reasoning diÆult [6℄, we seondly

used onepts that were extrated from the real world knowledge bases Galen and

Platt|see [7℄ for more information on both of them.

All tests were perfomed �ve times: one for eah of the three translations T1, T2,

and T2b, and one using the well-known DL reasoners FaCT and RACER [8, 5℄. The



T1 T2 T2b RACER FaCT

k branh n 0 2 1 14 6

k branh p 0 2 1 20 8

k d4 n 0 2 4 21 21

k d4 p 0 3 6 21 21

k dum n 0 2 3 21 21

k dum p 0 6 7 21 21

k grz n 0 3 5 21 21

k grz p 0 4 5 21 21

k lin n 1 1 21 21 21

k lin p 1 7 10 21 21

k path n 0 3 16 21 8

k path p 0 4 17 21 10

k ph n 2 4 11 21 9

k ph p 2 4 11 9 8

k poly n 0 1 2 21 21

k poly p 0 1 1 21 21

k t4p n 0 0 6 21 21

k t4p p 0 1 10 21 21

Total: 6 50 137 358 301

Galen-kris-1,% 97.34 93.13 91.07 100.00 100.00

Galen-kris-2,% 99.54 98.66 97.83 100.00 100.00

Platt,% 100.00 100.00 100.00 100.00 100.00

Figure 1: Experimental Results

results are summarized in Figure 1. In the table, the names k � � denote the onept

sequenes of T98. The entries are to be read as follows: the reasoners had 100 seonds

to deide the satis�ability of eah onept in a sequene. The number given in the

table is then the number of the last onept that a reasoner was able to solve within

this time. Thus, the entry \21" means that all onepts in a given sequene have

been solved. For the \real world" onepts, for whih the results an be found in the

last three lines, we use a di�erent sheme: there are again 100 seonds available for

reasoning on eah onept, but sine these onepts are not ordered w.r.t. inreasing

diÆulty, we simply give the perentage of onept that the reasoner was able to solve

within the given time. Note that, in total, there were 1165 onepts for Galen-kris-1,

1936 onepts for Galen-kris-2, and 262 onepts for Platt

There are several interesting observations to be made in Figure 1. First, it is ob-

vious that the dediated DL reasoners RACER and FaCT outperform Mona in most

ases, exept for the translation T2b used on the sequenes k lin n, k path p, k path n,

k ph n, and k ph p|in the last ase, Mona even beats FaCT and RACER. Seond, on

the T98 onepts the translation T2b performs muh better than the other two trans-

lations, and T1 is worst solving only 6 onepts out of 378. Surprisingly, the situation

is reversed for the real world onepts: here T1 outperforms both other translations

and T2b is worst. And third, there is a surprising di�erene in the performane of the

almost idential T2 and T2b translations (at least on the T98 onepts). Thus, Mona

is apparently quite sensitive to small hanges in the translation.



How should these results be judged? Let us start with saying that the better

performane of FaCT and RACER is perhaps not too surprising: both Mona and the

involved DL reasoners are highly optimized, but Mona is apable of dealing with

a muh more powerful logi. This is witnessed by the fat that the omplexity of

WS1S and WS2S is non-elementary [9℄, while FaCT and RACER implement ExpTime-

omplete logis. Still, we believe that the performane of our translations is reasonable.

In partiular, it should be taken into aount that, ompared to the implementation

of a full-edged DL reasoner, the implementation of our translations is a piee of

ake. Sine many di�erent desription logis an be translated to WS1S and WS2S,

we believe that suh translations an be useful at least for prototyping purposes.

To analyze why the three translations exhibit a di�erent performane, we need

to introdue some of Mona's implementation details. To deide the satis�ability of a

formula, Mona onstruts a �nite automaton that aepts the empty language if and

only if the input formula is unsatis�able, and then performs an emptyness test on this

automaton. The onstrution of the automaton, whih works on !-words in the ase of

WS1S and on in�nite trees in the WS2S ase, involves a number of automata-theoreti

operations: omplementation for dealing with logial negation, union for disjuntion,

produt for onjuntion, and projetion for quanti�ers. Sine Mona always works with

determinsti automata, the most \dangerous" operation in this list is projetion as

it involves the determinization of a non-deterministi automaton. As is well-known,

this may produe an exponential blowup in automaton size, in ontrast to onstant

blowup produed by omplementation and union, and quadrati blowup produed

by the produt. This is losely related to the fat that WS1S and WS2S are non-

elementary: a separate projetion annot be avoided for eah alternation of logial

quanti�ers, thus resulting in repeated exponential blowups.

Surprisingly, however, quanti�er alternation is almost never the ulprit of per-

formane problems in our translation-based appoah to DL reasoning: the reason

for non-termination is usually the more harmless looking produt operation, i.e. the

treatment of logial onjuntion. To understand this, we must know some more details

about Mona internals: the alphabet of the automaton onstruted for a (sub)formula

' is omprised of 0/1-strings whose length is idential to the number of free vari-

ables in '|the intuition is that the domain element desribed by suh a string is

ontained in the extension of exatly those free variables for whih we �nd a \1" value

in the string. Thus, the size of the alphabet is exponential in the length of the input

formula. To ope with this, Mona stores the transition table of automata in a om-

pressed way using binary deision diagrams (BDDs). Unfortunately, this ompression

only works well if the underlying formula enfores many interdependenies among the

free variables.

Now onsider our translation T1: eah subformula #

R

is a huge onjuntion inside

a \89" quanti�er pattern. Moreover, eah onjunt involves a large number of free

variables: sine �rst-order prediates are treated by Mona as free variables (whih are

impliitly existentially quanti�ed on the outermost level), this inludes the prediates

P

A

introdued for onept names and the prediates Q

C

introdued for subonepts C

of the form 9R:D and 8R:D. Unfortunately, the interation between these free vari-

ables turns out to be rather weak in general. Thus, the repeated produt operations



performed when proessing the huge onjuntion in #

R

produe an automaton whose

BDD has an exessive number of nodes. The subsequent projetion and determiniza-

tion that is performed to treat the seond operator in the \89" pattern is not able to

proess this large automaton.

In ontrast, the formulas produed by T2 and T2b reet the struture of the

original onept, and are thus not just a big onjuntion. This explains why T2b is

better on the T98 benhmark. But why, then, is T1 better on real world onepts?

There seem to be two reasons: �rst, the onepts extrated from real world knowledge

bases are muh smaller than the T98 ones, whih an be several megabytes in size.

Thus, onjuntions produed by T1 are less giganti in the real world ase. Seond,

Mona an handle automata on !-words more eÆiently than tree-automata, thus

giving T1 an advantage over T2 and T2b.

We have also used our translation for deiding the satis�ability of onepts w.r.t.

TBoxes, e.g. on the Platt knowledge base and on the two ALC versions of Galen.

Unfortunately, the results were disouraging: Mona terminated only for very small

TBoxes (< 10 onept equations) and was not able to lassify any of the real world

KBs. The reason for this is again due to the generation of BDDs with a massive number

of nodes: in all our translations, TBoxes are translated into a huge onjuntion inside

a \8" quanti�er. Hene, we an observe the same blowup pattern as with T1 on the

T98 onepts. Even a preeeding \absorption" of onept equations as known from

[7℄, and an elimination of \non-relevant" onept equations as proposed in [12℄ did

not allow us to lassify real world KBs.

4 Disussion

We have shown how the Mona tool an be exploited for reasoning about desription

logis. The outome of our experiments suggests that, although Mona is outperformed

by dediated DL reasoners, her performane is suÆient at least for prototyping pur-

poses. In this ontext, it should be noted that translations an be implemented rather

quikly, and that Mona is expressive enough to apture a large lass of desription

logis. For example, it should not be hard to ome up with translations for more

powerful DLs suh as SHIQ, and even to treat features that are very diÆult for

tableau reasoners, suh as the transitive losure of roles.

It would be very interesting to determine a lass of onepts on whih Mona

performs good, but the DL reasoners do not, and vie versa. A �rst idea is provided by

the disussion in Setion 3: Mona is good on disjuntion (the orresponding operation

\automata union" only yields a onstant blowup in size), and bad on onjuntion; for

tableau algorithms, this is the other way round. Still, we found it diÆult to ome

up with the desired lass of onepts due to the intriate optimization tehniques of

FaCT and RACER. The two reasoners even behave quite di�erently: we have found

two lasses of formulas on whih Mona performs good, but one of FaCT and RACER

performs bad. A lass of suh formulas on whih both FaCT and RACER perform bad,

however, remains yet to be seen.

The translator and onepts used in the experiments an be downloaded from the



internet, .f. http://lat.inf.tu-dresden.de/�lu/atom.tar.gz.
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