R. KONTCHAKOV
C.Lutz

F.WOLTER

M. ZAKHARYASCHEV

Temporalising tableaux

Abstract. Asaremedy for the bad computational behaviour of first-order temporal logic
(FOTL), it has recently been proposed to restrict the application of temporal operators to
formulas with at most one free variable thereby obtaining so-called monodic fragments of
FOTL. In this paper, we are concerned with constructing tableau algorithms for monodic
fragments based on decidable fragments of first-order logic like the two-variable fragment or
the guarded fragment. We present a general framework that shows how existing decision
procedures for first-order fragments can be used for constructing a tableau algorithm
for the corresponding monodic fragment of FOTL. Some example instantiations of the
framework are presented.

Keywords: first-order temporal logic, monodic fragment, tableau algorithm.

1. Introduction

First-order temporal logic (FOTL) based on the flow of time (N, <) is no-
torious for its bad computational behaviour: even the two-variable monadic
fragment of this logic is not recursively enumerable (see e.g. [11] and refer-
ences therein). A certain breakthrough has recently been achieved in [11],
where the so-called monodic fragment of FOTL is introduced by restricting
applications of temporal operators to formulas with at most one free variable.
The full monodic fragment (containing full first-order logic) turns out to be
axiomatisable [26]. Moreover, by restricting its first-order part to decidable
fragments, we obtain decidable monodic FOTLs, say, the monodic guarded,
monodic two-variable, and monodic monadic fragments. This opens a way
to various applications of the monodic FOTL in knowledge representation,
temporal databases, program specification and verification, and other fields.
For example, many temporal description logics and spatio-temporal logics
can be regarded as fragments of monodic FOTL [12, 7, 27]. Unfortunately,
the decision procedures provided in [11] are of model-theoretic character
and cannot be used as a basis for implementations. In [1] and quite recently
in [3], a resolution-based approach has been first developed for certain sub-
fragments of the monodic fragment and then for the full monodic fragment.

Presented by Heinrich Wansing; Received December 1, 2002

Studia Logica 68: 1-46, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

2 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

A tableau-based analysis of the decision problem for monodic FOTL has been
missing. In this paper we are trying to fill in this gap. More specifically, our
aims are as follows:

1. to develop a general framework for devising tableau-based decision pro-
cedures for decidable monodic FOTLs and then,

2. within this framework, to construct tableau systems for a number of
concrete monodic fragments.

We consider monodic FOTLs interpreted in models with both expanding and
constant domains. The former case is technically much easier, but the latter
one is more general: reasoning with expanding domains can be reduced to
reasoning with constant domains, but not vice versa (see e.g., [7]).

Our approach is based on the following ideas:

e modularity—a decision procedure for a given fragment of first-order
logic is combined with Wolper’s tableaux [20] for propositional tempo-
ral logic (PTL);

e finite quasimodel representations of temporal models with potentially
infinite first-order domains—elements indistinguishable by the subfor-
mulas (of a given formula) with at most one free variable are repre-
sented by the same type;

e the minimal type technique for dealing with constant domains in tem-
poral models [16]

To describe the proposed framework in some more depth, let us assume that
the satisfiability of a monodic FOTL formula ¢ has to be decided. The
‘temporal’ tableau algorithm tries to construct a model for ¢, i.e., a (one-
side) infinite sequence of classical first-order models. To achieve modularity,
we separate the temporal and the pure first-order parts of i} and treat the
former using Wolper’s tableau for PTL and the latter using available decision
procedures for fragments of first-order logic. More precisely, the temporal
tableau algorithm first replaces all subformulas of ¥ that start with temporal
operators by their ‘surrogates,’ i.e., by unary predicates. Unary predicates
are sufficient here, since we are dealing with monodic FOTLs. The proper
‘temporal behaviour’ of the surrogates is ensured by some auxiliary surrogate
axioms, which are passed to the first-order decision procedure along with
the surrogated version of). This decision procedure is expected to provide
us with descriptions of possible models for its input. We then choose an

Temporalising tableaux 3

appropriate model 2 for the current time point and make one ‘step in time’
by omitting the ‘next-time’ operator (as in Wolper’s tableaux) and adding
new surrogate axioms. This way we build up a temporal tableau. When
such a tableau is completed, the pruning technique—which is also used in
Wolper’s tableau for PTL—is employed to check whether all eventualities
are fulfilled, i.e., whether the tableau represents a temporal model of the
input formula.

Additional effort is needed to preserve the representation of tableaux
finite and to guarantee termination. For example, first-order models are
represented by finite sets of types, each representing a possibly infinite num-
ber of domain elements. Quasimodels, which are well-known from e.g. [11],
are used to encode temporal models by associating a finite set of types
with each time instant. To avoid constructing an infinite number of (finite
representations of) first-order models, we use blocking to detect and avoid
duplicates.

Two rather general theorems, one for expanding domains and one for
constant domains, provide conditions under which a first-order decision pro-
cedure can be combined with Wolper’s tableaux to yield a tableau-based
decision procedure for the corresponding monodic FOTL. The price we have
to pay for this level of generality is that the resulting combined tableaux are
far from optimal. In particular, in many concrete cases new tableau rules can
be used instead of surrogate axioms. Thus, our general framework for com-
bining tableaux is not supposed for direct applications or implementations,
but rather as a guide for considering more specific cases.

The paper is organised as follows. In Section 2 we define the syntax and
semantics of first-order temporal logic and introduce the monodic fragment
of FOTL. We start Section 3 with characterising decision procedures for
fragments of first-order logic that can be used as building blocks in tableau
calculi for monodic fragments (so-called saturation rules). Then we prove
that quasimodels are a proper abstraction of temporal models. In Section 4
we show how to obtain a tableau procedure for a monodic fragment based on
an existing decision procedure for the corresponding FO fragment. We prove
termination, soundness and completeness of the algorithm for both expand-
ing and constant domains. In Section 5, two example instantiations of our
framework are presented: we describe two standard first-order tableau algo-
rithms (for the one-variable fragment and the modal logic S4,—i.e., Lewis’s
S4 with the universal modality) and prove that they can be considered as
saturation rules. Then we present some applications of the tableau algorithm
for the temporalisation of the one-variable fragment of first-order logic. We
conclude in Section 6.

4 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

2. First-order temporal logic

In this section, we introduce first-order temporal logic and its monodic frag-
ment. Then we consider monodic fragments as ‘temporalisations’ of certain
fragments of first-order logic and show how the monodic formulas can be
split up into temporal and first-order parts.

Let QT L be the first-order (or quantified) temporal language based on
the following vocabulary:

e predicate symbols Py, Py, ..., each of which is of some fixed arity > 0;

e a countably infinite set V of individual variables xg, x1,...;

e the Boolean connectives A and —;

e the universal quantifier Va for every individual variable x;

e the temporal operators ¢/ (‘until’) and O (‘next-time’).
REMARK 2.1. Note that our language contains neither constant symbols nor
equality. The reason for omitting the constants is to simplify presentation
by avoiding unnecessary technical details. The reader should not have any
problems to extend the method developed in the paper to the language
with constant symbols. Equality and/or function symbols may ruin good
algorithmic properties of the monodic fragment by making it not recursively
enumerable [11]. Moreover, it is shown in [2] that the monodic monadic

two-variable fragment with equality is undecidable; see, however, [10] where
it is shown that the monodic packed fragment with equality is decidable.

The set of QT L-formulas is defined as follows:

e if P is an m-ary predicate symbol and x1,...,x,, are variables, then
P(xy1,...,xy) is an (atomic) formula;

e if ¢ and ¢ are formulas, then so are ¢ A ¥ and —y;

e if ¢ is a formula and x a variable, then Vz ¢ is a formula;

e if ¢ and v are formulas, then so are ¢ I/ ¥ and Ogp.

We use the standard abbreviations V, —, and
T=7, L==T, Jxp=-Vrop, <Sp=TUp, Op=-C-p,

where 7 is some fixed tautology. Intuitively, & means ‘now or sometime in
the future’ and O means ‘from now on.’

For a given formula ¢, sub(y) denotes the set of subformulas of ¢ and
free(y) the set of variables occurring free in ¢. We write ¢(z1,...,7n) to

Temporalising tableaux)

indicate that all free variables of ¢ are in the set {x1,..., 2, }; in particular,
() has at most one free variable x. The pure (non-temporal) first-order
fragment of Q7 L is denoted by QL.

Let us now define the semantics of Q7 L: in principle, we just have to
fix a flow of time and then relate each moment of time with some first-order
model. Since in this paper we are concerned with the flow of time (N, <),
it thus suffices to associate with each moment n € N a first-order model.
Thus we obtain Q7 L£-models, in which domains of first-order structures can
vary along the time axis. However, a more natural (and more powerful)
semantics is obtained by additional restrictions on the domains. In what
follows, we consider two kinds of temporal models: with expanding and
constant domains. The former class of models is much easier to be dealt
with by tableau decision procedures (as well as by resolution [3]), whereas
the latter one is more general, since reasoning with expanding (or, in general,
varying) domains can be reduced to reasoning with constant domains; see
e.g., [5, 25, 7).

DEFINITION 2.2 (model). A QT L-model is a triple 9 = (N, <, I), where
(N, <) is the set of natural numbers equipped with the usual strict order <,
and [is a function associating with each n € N some first-order model

I(n) = <An,P[{(”),P{(”), N >

where A,, is a non-empty set and each Pil(n) is a relation on A,, of the same
arity as P;. 901 is said to be a model with expanding domains if A; C A;
whenever i < j, and 9 is called a model with constant domains if A; = A;
for all 4,7 € N.

From now on by a Q7 £-model we mean a QT £-model with expanding
or constant domains.

There are different approaches to defining truth in Q7 L-models; see
e.g., [13]. We take the following version due to [14]:

DEFINITION 2.3 (truth). Let 9 = (N, <,I) be a Q7 L-model. An assign-
ment a in M is a function from the set V of individual variables to [J,, oy An-
Given a QT L-formula ¥, the truth-relation (9, n) =9 (‘0 is true at mo-
ment n in model M under assignment a’) is defined inductively on the

construction of ¥ for only those assignments a that satisfy the condition
a(z) € A, for all z € free(V):

o (M,n) E* Par,...,am) iff (alz1)...,a(zy)) € POV

6 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

() | —p ifF (M, m) P20 g
() o A HF (D, n) =% and (D, n) = o

(M, n) = Va o iff (M, n) £° ¢ for every assignment b that may differ
from a only on z, provided that b(x) € Ay;

(M, n) =* pU ¢ iff there is m > n such that (M, m) =* ¢ and
(M, k) =" ¢ for all k € [n,m), where [n,m) ={k | n <k <m};

o (M,n) " Opiff (M,n+1) " ¢.

A QT L-formula ¢ is said to be satisfiable in expanding domains (or
satisfiable, for short) if (9, n) = holds for some model M with expanding
domains, moment n and assignment a in 9. If 91 is a model with constant
domains, we say that ¢ is satisfiable in constant domains. The notions of
validity and validity in constant domains are defined in the dual way. It is
not hard to see that satisfiability in constant domains implies satisfiability
in expanding domains, but not vice versa: the formula

Vo O-C(x) A OJz C(x)

is satisfiable in expanding domains, but not in constant domains. Note that
both QT L with expanding domains and Q7 £ with constant domains are
conservative extensions of classical first-order logic in the language QL.

Throughout this paper, we will not be distinguishing between a finite
set I of formulas and the conjunction AT of formulas in it. In particular,
we write (M, n) =* I to say that (M, n) = ¢ for every ¢ € I'. Instead
of (M, n) E* p(z1,...,2,) we often write (M, n) = plat,...,an], where
a={x1 = a1,..., Ty — ap}.

2.1. The monodic fragment

As is known too well, first-order temporal logic and even its ‘small’ fragments
such as the two-variable monadic fragment are not recursively enumerable
(see [6] and references therein). The maximal ‘well-behaved’ sublanguage
of QT L that has been discovered so far [11] consists of so-called monodic
formulas.

DEFINITION 2.4 (monodic fragment). A Q7 L-formula is said to be monodic
if it contains no subformula of the form ¢ i/ ¥ or Oy with more than one
free variable. The set of all monodic formulas will be denoted by Q7 L .

Temporalising tableaux 7

Two important results concerning the monodic fragment are relevant
here. First, the set of valid (in constant domains) monodic formulas is finitely
axiomatisable [26], and so there exists a semi-decision procedure (as Q7 L
clearly contains full QL, it is undecidable). The second result obtained in [11]
states (roughly) that, if we take a fragment of Q7 L the underlying first-
order (non-temporal) part of which is decidable, then this fragment itself is
decidable as well. Examples of decidable monodic fragments are:

e the two-variable monodic fragment Q’TE :
¢ the monadic monodic fragment Q7 LZ?;

e the guarded monodic fragment 7TGFy (in which quantification is re-
stricted to patterns Vi (v —), where 7 is a tuple of variables, every
free variable in ¢ is free in v as well, and the ‘guard’ 7 is an atomic
formula).

2.2. Temporalisation

These and other similar fragments Q7 L C QT Lg can be regarded as
temporalisations of the corresponding first-order fragments oL c oL (two-
variable, monadic, guarded, etc.) by extending their formula-formation rules
with the following one:

if p(z) and ¢(z) are QT L'-formulas,

then so are Op(z) and p(z) U ¥(x). (1)

Various temporalisations of expressive propositional modal (say, epis-
temic, description, or dynamic) logics [17, 21, 23, 22, 24, 7] can also be
viewed as fragments of Q7 L5 . However, we have to be careful here because
not all constructors of these logics are first-order definable, for instance, the
transitive reflexive closure of binary relations used in some description logics

and PDL.

To include such logics in our general framework, we first define a fragment
theory (or an f-theory, for short) as a pair (QL’, M), where QL' C QL and M
is a class of models in the signature of QL' (or its extension). For instance,
the two-variable fragment QL2 of QL can be considered as the f-theory
(QL£?,FO), where FO is the class of all first-order models.

As another example take the propositional bimodal logic S4,,, i.e., Lewis’s
S4 with the universal modality & (see [8]). Let ST be the set of standard

8 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

translations of S4,-formulas defined by taking

(p)* = P(z), for a propositional variable p,
(e AY)* =" AYT,
(~e) ="
(Op)* =Yy (R(m, y) — go*{y/x}), for a fresh variable y,
(Bp)* = Vo ",

where p{y/x} denotes the result of replacing the free variable = in ¢ with y.
Denote by TR the class of all first-order models of the form

m = <W,Rm,P§m,me,...>,

where R™ is a transitive and reflexive relation on W and the me are ar-
bitrary subsets of W. As is well-known, for every S4,-formula ¢, ¢* is
satisfiable in a model from TR iff ¢ is satisfiable. Thus, we can consider the
modal logic S4, as the f-theory (ST, TR).

Now we can define a temporal monodic fragment theory (or tmf-theory)
as a pair (QT L', TM), where QT L' C QT L5 and TM is a class of temporal
models (with either expanding or constant domains) in the signature of

QTL.

DEFINITION 2.5 (temporalisation). A tmf-theory (QT L', TM) is called the
expanding (constant) domain temporalisation of an f-theory (QL', M) if

e QT L' is obtained from QL' by extending its formula formation rules
with (f),

e TM consists of models of the form M = (N, <,) with expanding
(respectively, constant) domains such that I(n) € M for all n € N.

For instance, the constant domain temporalisation of (S7, TR) is the tmf-
theory (TST,TTR) such that the language TST consists of formulas of the
form

o u= Pi(x) | ~¢ | pr A2 | Yop(x) |
Yy (R(z,y) — o(y)) | Op | ¢1U o,

where the P; are unary predicates and R is the only binary predicate (note
that TST-formulas contain at most one free variable), and TTR consists of
models with constant domains of the form 9t = (N, <,), where I(n) € TR
for every n € N.

Temporalising tableaux 9

2.3. Surrogates (detemporalisation)

Our approach to devising tableau decision procedures for decidable monodic
fragments is based on a simple principle: we want to separate the temporal
and the first-order parts of formulas and treat them using available pro-
cedures for propositional temporal logic and the corresponding first-order
fragment. With this in mind, we introduce the following notion of ‘surro-
gates’ for temporal formulas.

DEFINITION 2.6 (surrogates). With every formula 9(z) of the form @i 1) or
Oy having z as its only free variable we associate a fresh unary predicate
Qy(x). Similarly, with every sentence ¢ of the form pif1) or Op we associate
a fresh propositional variable ¢, (i.e., a predicate of arity 0). Qy(x) and g,
are called the surrogates of ¥(x) and), respectively. Given a QT L -formula
¥, denote by ¥ the formula obtained by replacing all its subformulas of the
form U ¢ and Oy that are not in the scope of another temporal operator
with their surrogates. 9 is called the first-order reduct of 1.

The first-order reduct ¥ of a QT L5 -formula ¥ does not contain temporal
operators at all—they are replaced with their surrogates. To ensure the
proper ‘temporal behavior’ of these surrogates, we use the following formulas.

For all formulas of the form ¢ U ¢ and Oy with one free variable x, let

(pU)T =V (Quuy(r) = &V (B A Qoun(2)))
(PUP)™ =V (~Quuy(r) = = A (7 V Qongouun (7))
(pUp)” ("Qoww)() = Qo-oun (@) 5

(Op)” (Qop () = Qo-p()) -

Similarly, for all sentences of the form ¢ U ¢ and O, let

Vax
=V

DEFINITION 2.7 (surrogate axioms). The set Axy(x) of surrogate axioms
for a QT Lz -formula ¥ consists of T (z), where z is a fresh variable, and all
the formulas (o U)T, (@UY) ", (@U)™, and (Op)~ for p U 1 € sub(1))
and Oy € sub(v}).

The formula T(x) will be important for dealing with constant domains
as is explained later on.

10 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

ExamMprLE 2.8. Consider, for instance, the sentence
0(3y (Cly) A=OC(y)) AVy (=Cly) = O=C(y)))
which is equivalent to

9 = ﬁ(Tu ﬁ(ay (Cly) A -OC(y)) /\ny (=Cly) — oﬁC(y))»

Then ¥ = =gy, and Axy(x) consists of the formulas
T(x),
Gris = (39 (C) A =Qocy) Ay (+C(y) = Qoney))) V docrumvr
~grius = (3 (CW) A ~Qoc 1)) AVY (=C(y) = ~Qo-c())) A domcrums

TGo(TU=v) T dO-(TU=y)s

Yy (_‘QOC(y) - QoﬂC(y»a
Yy (“QOW(Z/) - QOO(y>)'

DEFINITION 2.9 (reduct). Let QT L' be a fragment of QT Ly and TM a
class of first-order temporal models (in the signature of Q7 L’). Say that an
f-theory (QL',M) is a reduct of the tmf-theory (Q7 L', TM) if the following
holds:

e Q['is the smallest sublanguage of QL containing all first-order reducts
of QT L'-formulas, closed under the Boolean connectives, and such that
Vz o(z) € QL whenever p(x) € QL'

e M consists of models of the form
<A7P[§III7"'7Q%R7“-7(]8:H7"'>7

where (A, PJ",...) = I(n) for some (N,<,I) € TM, n € N, and
Qo, Q1,... are the predicates used as surrogates for temporal formulas
from QT L' and qo,q1,... are the propositional variables surrogating
temporal sentences from Q7 L'.

It should be noted that the surrogate symbols @Q; and ¢; can be inter-
preted in an arbitrary way. We illustrate this definition with a number of

examples.

Temporalising tableaux 11

1. The two-variable fragment (QL2 FO) of first-order logic can be re-
garded as a reduct of (QT L%, TFO), where TFO is the class of all
temporal first-order models with constant domains. Note, that in this
case, as well as in all following cases, without loss of generality we can
assume that the language QL2 already contains infinitely many unary
predicates and propositional variables for surrogates of all Q’Tﬁ—
formulas.

2. The monadic fragment (QL™°, FO) of first-order logic is a reduct of
(QT LE?, TFO).

3. The one-variable fragment (QL' FO) of predicate logic can be con-
sidered as a reduct of the temporalised modal logic S5, i.e., of the
one-variable fragment of Q7 L.

4. The propositional modal logic S4,, (i.e., the f-theory (ST, TR)) can be
viewed as a reduct of its own temporalisation (7S7, TTR).

5. Strictly speaking, the first-order guarded fragment GF is not a reduct
of the monodic guarded fragment 7 GFy , because GF does not contain
arbitrary formulas of the form Vz p(x). To get round this problem we
can introduce a ‘dummy’ guard T (z) and use Vz (T (z) — ¢(x)) instead
of Vo p(x). Thus, the extended language can be regarded as a reduct
of TGFy .

3. Quasimodels

In this section, we introduce the two core notions underlying our framework
for tableau calculi presented in Section 4. First, we develop a general condi-
tion that first-order decision procedures must satisfy to be a useful building
block in tableau calculi for fragments of monodic FOTL. Second, we define
an abstraction of temporal models called ‘quasimodels.” To keep tableaux
finite and guarantee termination, the tableau procedure to be devised tries
to construct a quasimodel for the input formula, rather than a temporal
model itself.

3.1. First-order decision procedure

We require first-order decision procedures not only to return ‘true’ or ‘false,’
but rather to compute finite representations of all possible models for the
input formula. The reason for this is as follows: first, we need an explicit

12 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

representation of models to make a step in time, i.e., to take all tempo-
ral formulas realised in a model and then dropping a single occurrence of
the next operator from them. Second, we need representations of all mod-
els since some of them may be appropriate for participating in a temporal
model and others may not—which we will usually find out much later in the
construction of the temporal tableau. The requirement of returning finite
representations of models is much less exotic than it seems on first sight:
indeed, most decision procedures for fragments of first-order logic satisfy it
or can be easily modified to do so. This includes, for example, most tableau-
and resolution-based algorithms (see Section 5).

The finite representation of models is type-based. Hence, fix some f-
theory (QL',M) and a QL'-formula . Let x be a variable not occurring
in n. Then we put

suby () = {p{z/y}t, ~p{z/y} | ©(y) € sub(n)}

and call a non-empty subset of sub,(n) a type for a QL -formula n (usually
denoted by t(z)).

Important kinds of types for i are given by models 9t € M and their
elements a:

to'(x) = {p(2) | p(z) € suby(n) and M = pla]}.

In what follows we will identify a type t(x) with the conjunction of all
formulas in it and write 9 = t[a] instead of ‘M = p[a] for all p(x) € t(z).’

DEFINITION 3.1 (flock). By a flock for a QL'-formula 1 we mean any non-
empty set T of types for . Such a flock is called saturated if

e for every t(z) € T,
— if @ A € t(x) then ¢ € t(x) and ¥ € t(x);

— if 2(p A) € t(x) then —p € t(z) or ¢ € t(z);
— if Vz¢(z) € t(x) then p(z) € t(x);

e all types in T contain precisely the same sentences.

Because of the latter item, we may write ¢ € T to say that a sentence ¢
belongs to some (every) type in the saturated flock T.

Let T be a flock for n and 9t € M a model with domain A. A T-
assignment in A is a map a: T — A. We write 9 = T[a] if M = t[a(t)],

Temporalising tableaux 13

for all t(z) € T. A flock T is called satisfiable in M if there are Mt € M with
domain A and a T-assignment a in A such that 9 = Ta].

We are now ready to give a formal account of decision procedures for
fragments of first-order logic that can be used for constructing temporal
tableau algorithms. We call such decision procedures saturation rules since,
in the temporal tableau algorithm, they play the role of a tableau rule that
‘saturates’ a set of first-order types associated with a single time point: they
take a flock and return a set of saturated flocks, each describing a class of
models from M.

DEFINITION 3.2 (saturation rule). A saturation rule for (QL', M) is a com-
putable function A which takes a flock T' for a QL'-formula 7 and returns
either ‘clash’ if T’ is not satisfiable in M, or a (finite) set A(T') of saturated
flocks for 77 such that the following holds:

(TR) forevery t'(z) € T', each flock T € A(T') contains a type t(x) 2 t'(x),
in which case we write t'(z) — 4 t(z);

(CO) for every M € M with domain A, every type t'(z) € T’ and every
T’-assignment a’ in A, if 9 |= T'[a’] then there is a flock T € A(T’)
such that

— there exist a type t(x) € T and a T-assignment a in A for which
M = Tla], t'(z) =4 t(x) and o’ (t') = a(t);

(SO) there is a cardinal x > Vg such that for every ¥’ > k and every
T € A(T’), there exists a model

m m m
93?: <A7P0 7"'7Q0 7...7(]0 ,> € M
in which
— A= |J A%, where At are pairwise disjoint sets of cardinality &/,
teT
— the ¢; are all of the propositional variables, and q%m is true iff
4 € T7

— the Q; are all of the unary predicates, and a € Q?ﬁ iff there is a
type t(z) € T such that Q;(z) € t(z) and a € A®,

such that 9 = t[a] holds for all t(x) € T and all a € A®.

Intuitively, (SO) corresponds to the soundness of the decision procedure and
(CO) to its completeness. In more details this connection will be illustrated
in Section 5, where we show that standard tableau algorithms for fragments
of first-order logic can be viewed as saturation rules.

14 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

3.2. Quasimodels: expanding domains

We abstract temporal models to the more manageable quasimodels. Both in
the definition of quasimodels and in the tableau procedure to be devised, we
consider sentences rather than formulas which obviously does not sacrifice
generality. Let (QT L', TM) be a tmf-theory and (QL', M) its first-order
reduct. Fix a QT L-sentence 9.

By a type for the temporal sentence ¥ we mean any subset of

{(2) | o(x) € subr(V)} U sub(Axy(x)),

where z is a variable not occurring in . It should be noted that every type
t(z) for ¥ can be considered as a type for a first-order formula. In particular,
Axy(x) is a type for

T@A A (U AUs) AU A A ()

YUY Esub(VI) O@E sub(P)

Then a flock for ¥ is a non-empty set of types for ¢ (which again can be
treated as a flock for a first-order formula).

DEFINITION 3.3 (quasimodel). Let A be a saturation rule for (QL£',M). An
A-quasistate for ¥ is a flock T € A(T’), where T' is a flock for ¥ containing
Axy(z). Let @ = (T, | n € N) be a sequence of A-quasistates for J. A run
in @ is a function r with domain dom(r) = {n € N | n > ng}, for some
no € N, which for every n € dom(r) returns a type t,(z) € T, for ¥ such
that the following two conditions hold:

e for every QT L'-formula Op(z), if Op(x) € r(n) then p(z) € r(n + 1);

e for every QT L'-formula (o U ©)(z), if (¢ U 1)(x) € r(n) then there is
k > n such that ¢(x) € r(k) and B(z) € r(i) for every i € [n, k).

The sequence @Q of A-quasistates is called an A-quasimodel if for every n € N
and every type t,(z) € T, there is a run r in @) such that r(n) = t,(z). We
say that ¢ is A-satisfiable if there are an A-quasimodel @ = (T, | n € N)
and some n € N such that ¥ € T,,.

Quasimodels are defined such that every QT £'-sentence ¥ has a model
iff it has a quasimodel. However, for the correctness proof of our tableau
calculus, we will only make use of the “if” direction of this claim.

Temporalising tableaux 15

THEOREM 3.4. Let (QTL',TM) be a tmf-theory, where TM is a class of
models with expanding domains. Let (QL' M) be a first-order reduct of
(QT L', TM) and A a saturation rule for (QL,M). If a QT L'-sentence ¥ is
A-satisfiable, then it is satisfiable in a model from TM.

Proor. Take an A-quasimodel @ = (T,, | n € N) satisfying . Denote by
Q the set of all runs in @ and take a cardinal " exceeding the cardinality of
the set 2 and the cardinal x supplied by (SO). For each n € N, we set

Ay ={(r,&) | reQ, nedom(r), <k}

By the definition of quasimodel, we have A, C A,, if n < m. By (SO), for
every T, n € N, we can find a model

imn:<An,Pém",...,Q0 nq3ﬁ> eM

where
e A, = |J At with At being pairwise disjoint sets of cardinality &/,
t(z)ET,
M, - .
e ¢, " is true iff ¢; € Ty, and

e ac Q?ﬁ" iff there is a type t(r) € T, with Q;(z) € t(z) and a € A?,

such that 9, = t[a] for all types t(z) € T, and all a € AY. This means,
in particular, that for all sentences ¢ we have 9, = ¢ whenever ¢ € T,,.
Without loss of generality we can assume that

AL ={(r,€) € Ay | r(n) = t(2)}. 1)

Let 9 = (N, <, I}, where I(n) = <An,Pgmn, . > for all n € N.

CLAIM. For every n € N, every assignment a in A, and every formula
X € {p, | ¢ € sub(V)}, if a(x) € A, for all x € free(x), then

M, =*X implies (M, n) = x.

Suppose for a moment that the claim holds. Since @ is an A-quasimodel
of ¥, there exists an n € N such that ¢ € T,,. By the choice of 9,, we have
M, = I, whence (M, n) = I, which proves our theorem.

PROOF OF CLAIM. The proof is by induction on the construction of y.

Case x = Pi(x1,...,xy) follows from the definition of 9.

16 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

Case X = ~P;(x1,...,Tp). This means that (a(z1),...,a(zy)) € PP, As
a(z;) € A, for j € [1,m], we then obtain (M, n) E* =P;(x1,...,2m).

Cases x = ==, X = @A, x = =(pA) follow from the obvious equivalences
=P =""0 pAV=FAY, (pAY)==(FAY).

Case x =V . We need to show that, for all assignments b that may differ
from a only on x and such that b(z) € A,, we have (M, n) = . Fix such
an assignment b. Since M, = Vo ¢ and Vo ¢ = Vo 3, we have M, =° &
By IH, (M, n) E=° o, as required.

Case x = —Vxp. Since -V = —Vop, we have M, E* —-Vaxp. Then
there exists an assignment b that may differ from a only on x and such that
M, =°* —=p. Since the domain of M, is A,, we have b(x) € A,. By IH,
(M, n) E° ~p and so (M, n) E* =V p.

Case x = Op. Let a(x) = (r,&). By the choice of 9M,,, there exists a type
t(z) such that Op(z) € t(x) and (r,&) € Al. By (1), we have r(n) = t(z)
and Op(z) € r(n). Then by the definition of runs, p(z) € r(n + 1). Let
r(n+1) = t'(x). By using again (1), we obtain (r,&) € Ag_i_l, and therefore
Mosr = 7€), By TH, (M0 +1) = ol(r,&)]. Then (M, n) k= Oglir, &),
which means that (901, n) E* Ogp.

Case x = —Ogp. Since T, is an A-quasistate and A satisfies (TR), we
have Vo (=Qq,(r) = Qo-,(x)) € Ty,. Therefore, M, E* ~Op implies

M, E* O—-p. As in the previous case, we obtain (M, n) E* O—y, and so
(9, n) E* ~Ogp.
Case x = @ U . The proof is similar to the case y = Og: we use the

definition of runs and ().

Case x = ~(pU). As T; is an A-quasistate,

Vo (=Quuy () = =Y (x) A (5B(2) V Qon(ous () € T (i)

Suppose M, |=* =(¢ U ¥)(x). First we show that

(A) for all k > n, either My, =* =b(x) A =Quy(2) or there is i € [n, k)
such that M, = =5 ().

The proof is by induction on k. The basis of induction, i.e., k = n follows
from (i).

Assume now that the claim has already been proved for k = m. If there
is some i € [n,m) such that 9M; |=* —=@(x), then we are clearly done. So

Temporalising tableaux 17

suppose that there is no such an i. Then, by TH, we have 9, =* —(x) and
My, = =Q (). (i) gives us either M, = —B(x) or My, = Qo (ouw) (7).
In the former case we are done. Consider the latter. As in the case y = Oy,
we then have 9,11 E* ~Quy(z). Using (i), we obtain M, 41 =* =, as
required. This completes the induction step, and hence the proof of (A).
By the induction hypothesis of the main proof and (A), we then have:

(B) for all k& > n, either (MM, k) =% —)(x) or there is i € [n,k) such that
(M, i) =" —p(x).

This means that (9, n) E* = (pU). []

3.3. Quasimodels: constant domains

To define quasimodels which give rise to first-order temporal models with
constant domains, we should obviously require all runs to be total functions
on N. We also need the following refinement of the definition of saturation
rules.

Let (QT L', TM) be a tmf-theory and (QL', M) its first-order reduct.

DEFINITION 3.5 (exhaustive saturation rule). Say that a flock T for a QL'-
formula 7 is exhaustive for a model 9t € M with domain A if for each a € A
there is a type t(x) € T such that 9 = t[a]. A saturation rule A for
(QL',M) is called ezhaustive if the following strengthening of (CO) holds:

(CO") for every M € M with domain A, every type t'(x) € T’ and every
T’-assignment o' in A, if 9 |= T'[a'] then there is a flock T € A(T’)
such that

— T is exhaustive for 9;

— there exist a type t(z) € T and a T-assignment a in A for which
M | Tla], t'(x) =4 t(z) and o' (t') = a(t).

As in the case of expanding domains, exhaustive saturation rules can be
obtained from standard tableau algorithms by making some rather minor
modifications. More details are provided in Section 5.3.

Let A be an exhaustive saturation rule for (QL', M) and fix some QT L'~
sentence . We now define exhaustive flocks for 9.

DEFINITION 3.6 (constant domain quasimodel). An A-quasistate for o is an
exhaustive flock T for ¢ such that T € A(T’) for some flock T/ containing
the type Axy(x). A sequence Q = (T, | n € N) of A-quasistates for o is

18 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

called a constant domain A-quasimodel if for every n € N and every type
tn(z) € T, for ¥ there is a total run r in @ (i.e., dom(r) = N) such that
r(n) = ty(z).

We say that a sentence o is A-satisfiable in constant domains if there
is a constant domain A-quasimodel Q = (T, | n € N) such that 9 € T, for
some n € N.

Following the proof of Theorem 3.4, one can readily show the following:

THEOREM 3.7. Let (QTL',TM) be a tmf-theory, with TM being a class
of models with constant domains. Let (QL',M) be a first-order reduct of
(QT L', TM) and A an ezhaustive saturation rule for (QL' M). If a QT L'-
sentence ¥ is A-satisfiable in constant domains, then it is satisfiable in a
model from TM.

4. Tableaux

We are in a position now to define temporal tableaux for decidable monodic
fragments. Let us start with the expanding domain case. Fix a tmf-theory
(QT L', TM), its first-order reduct (QL’, M), a saturation rule A for (QL', M),
and a OT L -sentence .

To decide the satisfiability of 1, the tableau algorithm tries to construct
an A-quasimodel for 9 by applying the saturation rule A to the reduct of ,
then making a step in time, then again applying A, and so on. Let us start
its presentation with defining the basic data structure.

DEFINITION 4.1 (temporal tableau). A temporal tableau for ¢ is a labelled
directed graph G = (S, s,,—,(,(~), where S is a set of states containing
the root state s,, — is a binary relation on S, and ¢, {~ are state labelling
functions such that ¢(s) is a saturated flock for each state s € S'\ {s,}, and
(~(s) is a flock for ¢ for each state s € S.

Intuitively, tableaux can be understood as follows: apart from the root
state, each state s is associated with a time point n in the sense that the
saturated flock ((s) is a candidate for the quasistate T, for time point n of
the quasimodel to be constructed. Distinct states may be associated with
the same time point n describing different possible choices for the quasistate
T,. If a state s describes time point n, then any state s’ with s — s’
describes time point n + 1. It remains to explain the second labelling ¢~ (s):
it’s purpose is to list those types that have to be included in the quasistate
T,,+1 due to temporal formulas appearing (in surrogated form) in ((s). Let
us formally define how ¢~ (s) can be obtained from ((s).

Temporalising tableaux 19

DEFINITION 4.2 (transition rule). If t/(z) = {(z) | Op() € t(z) } U{T(x
for a type t(x) for 9, then we write

t(z) = t'(2).

The transition rule for QT L' is the map A that takes a flock T for ¥ and
returns the flock

= {t'(z) € T and t(z) >4 t'(2)} U{Axy(z)}.

Suppose now that the satisfiability of ¢ is to be decided. The algorithm
starts with the initial temporal tableau

gﬁ - <{8T}7 Sr, ®7€7€O> ’

where

((s;) =0 and (5(s;) = {{0, T(2)}, Axy(z)}

for some variable x not to occur in . Note that the root state s, is not as-
sociated with a point in time but only serves the purpose of getting started
with the tableau construction. The flock ¢~ (rs) consists of two types: one
of them, {1, T(x)}, ensures that o is satisfied in the first quasistate of a
quasimodel to be constructed and the other one, Axy(z), contains the sur-
rogate axioms. Then we apply the saturation rule A to ¢~ (s,) and obtain
new —-successor states st of s,, for every T € A({(s,)), labelled with

l(st) =T and (5(st)=N(T).

We continue by applying A to the (~(sT), and so forth (see Section 5.4 for
detailed examples). Here is a more precise definition.

DEFINITION 4.3 (tableau rule). Say that a tableau G’ for 9 is obtained by an
application of rule = from a tableau G = (S, s, =, (, () for ¥ and write
G = @' if there is a state sg € S such that ((sg) = To, A(Tp) is not a
clash, and there is a saturated flock Ty € A(Ty) such that either

e there is no state s; € S for which ¢(s;) = Ty, and

gl = <SU {81}7 Spy, — U {<80781>}7 Ela glo>,

£ ’
where ('(s) = ((s) 1 s€S and (- (s) = lo(s) 1 ses
T, ifs=s N(Ty) if s = s,

20 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

e or there is s1 € S for which ((s1) = Ty, so 4 s1, and
G'=(S, s, > U {(so,s1)}, ¢,).

A tableau G for ¢ is called complete if rule => is not applicable to it.

The second item in Definition 4.3 is the so-called blocking condition which
is crucial for ensuring termination.

THEOREM 4.4 (termination). The process of completing a tableau G for
terminates. In other words, there is no infinite sequence

(=0 = ... =0, = ...

of tableaux for ¥.

PROOF. Any complete tableau G for # contains at most

52¢(17)

states, where p is a polynomial function of the length || of ¢. Indeed, the
number of subformulas of

{7 | € sub(¥)} U Axy(x)

is linear in |9)], the number of different types for ¢ is bounded by 2P(?D and

the number of states in G does not exceed 927D []

Suppose we have constructed a complete tableau G for 1. Due to the
presence of the temporal until operator, such tableaux do not necessarily
give rise to a quasimodel satisfying 1. As an example, we present a complete
tableau for the obviously unsatisfiable sentence # = T U L on Fig. 1. The
state s1 has no successors because the type t|(x) is not satisfiable, and the
saturation rule returns clash. Nevertheless, the tableau contains the loop
sp — Sp, and so one could have tried to extract a quasimodel from this
infinite path. It follows from Theorem 3.4 that the extracted sequence of
flocks cannot be a quasimodel.

How can we identify tableaux that do not describe quasimodels? Here we
come to the second component of Wolper’s [20] tableau procedure. Having
built up a complete tableau for 1}, one has to eliminate those states that have
no successors or contain so-called unrealised eventualities. Wolper proved (in
the propositional case) that) is satisfiable iff the root state of the complete
tableau is not eliminated.

Temporalising tableaux 21

'R T S
14 0 to ty
O O
Y Y
/ 0 0 1
© Axy Axy Axy
N/
v \io/"”
to(7) = {qs, 400} U Axy() to(x) = {gs, T()}
t1(2) = {49,909, 40—} U Axy(x) t1(2) = {9, ~qs, T(2)}
Axy(z) ={T(2), ¢ = 9oss @9 = 4o-9s "0 — qo-0}

Figure 1. Complete tableau for LU/ T.

DEFINITION 4.5 (eventuality). Formulas of the form ¢ U ¢(x) are called
eventualities. Let G = (S, s,,—,(, () be a tableau for . A sequence

50 =t = Sp

of states in G, where n > 0, is said to realise pU () € to(x) € ((sp) if
there exists a sequence

to(z) =0 t1(7) =4 t1(x) =0 th(T) =4 ... =0 th(7) =4 to(2)

of types such that ti(x) € ((s;), ti(z) € (5(s;) for i, 0 < i < n, and
U(x) € tp(x).

DEFINITION 4.6 (elimination rules). We use the following rules to eliminate
states in G:

(E2) if a state s € S has no —-successor, eliminate it;

(E3) if ((s), s € S, contains an eventuality having no realising sequence
starting from s, eliminate s.

Elimination rules (E2) and (E3) are very similar to those in [20]. How-
ever, we do not need rule (E1) from [20], since the flock ¢(s), for every state

22 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

s, contains no contradiction (it is the result of applying the saturation rule
A). In the complete tableau for ¥ = T U L from above, the state s is elim-
inated since it has no successor. Then s is eliminated since the eventuality
¢y has no realising sequence. Finally, we eliminate the root s, due to (E2).

THEOREM 4.7. Let (QTL',TM) be a tmf-theory, (QL',M) its first-order
reduct, A a saturation rule for (QL',M), and N a transition rule for QT L'.
Then for every QT L'-sentence ¥ the following conditions are equivalent:

(1) ¥ is satisfiable in a model from TM;

(2) the root of a complete tableau for ¥ cannot be eliminated using rules

(E2) and (E3).

In the following two subsections we will prove the implications (1) = (2)
(completeness) and (2) = (1) (soundness).

4.1. Completeness

We require a number of lemmas.
Suppose M = (N, <, I) € TM, where I(n) = <An,POI(n), . > For every
n € N, define a first-order model
m, = <An,P§mn,...,Q”‘n q?;”> €M,

ag *°

where ag, aq,... is an enumeration of all formulas of the form ¢ U ¥ and
Oy with one free variable x and Sy, 31, ... is an enumeration of all sentence

of the form ¢y U 9 and Oy. Namely, we set me" — P!™ and define the

(2
QZ"" and qgﬁ" as follows:

o If Q,(z) € sub(Axy(z)), then a € QT iff (M,n) = ¢[a], for every
a € Ay; otherwise put, say, Q¥ = 0.

o If ¢, € sub(Axy(r)), then qaﬁ" is true iff (M, n) | ¢; otherwise let,
say, qgﬁ" be false.

LEMMA 4.8. For every subformula ¢(y) of ¥, everyn € N, and every a € A,
(M,n) =pla] off My = Plal;

besides, M, = Axy(x).

Temporalising tableaux 23

PROOF. The former claim follows immediately from the definition of 9t,,.
As to the latter, we show only that

My, = Gorw = UV (B A Ao un))-

Suppose otherwise. Then My, = Gy, Mp 1 and My, FE B A qoous- 1t
follows that (9, n) = U ¢ and (M, n) ¥~ . Moreover, we must also have
either (M, n) = ¢ or (M, n) = O(pU), i.e., (M, n+ 1) = oU 1), contrary
to the truth-definition of . |

Suppose now that G = (S, s,, —>,(, () is a complete tableau for ¥ and
that ¢ is satisfiable in a model 9 = (N, <,I) from the class TM, where

I(n) = <An,POI(”>,...>.

LEMMA 4.9. Letn €N, s' € S, ((s") =T, let o’ be a T'-assignment in A,
and th(x) € T'. If M, = T'[d] then there are a state s € S with ((s) =T,
a T-assignment a in Ay and a type to(x) € T such that

s — S, My, |: T[a]a al(tf)) = a(t0>7
and ty(x) — 4 to(x).

PROOF. Suppose M,, = T'[a’]. Then, by (CO), we can find T € A(T'),
to(x) € T and a T-assignment a such that 9, = Ta], a’(t;) = a(ty) and
to(2) —.4 to(x). Since G is complete, there is a state s € S such that ' — s
and ((s) = T. |

LEMMA 4.10. Let n € N, s € S, ((s) = T, let a be a T-assignment in A,
and to(x) € T. If M,, |= Ta] then there are a state 8" € S with ((s") = T",
a T"-assignment a” in A, 41, and a type t(z) € T such that

s—s", M1 = T"[a"], a(to) = a”(tg),
and to(x) —o to(x) =4 th(x) for some type th(x).

PROOF. Let ((s) = T'. Take the type t{(x) € T’ such that to(z) — ti(x)
and define a T’-assignment o’ in A, 1 so that a'(t)) = a(tp). For every
other type t'(z) € T', either there is a type t(z) € T with t(x) =4 t'(x) or
t'(z) = Axy(x). In the former case put a/(t') = a(t) and in the latter one
a'(t') = a(tg). Clearly, M, 11 E T'[a’] holds whenever 9, = T[a] holds.
By Lemma 4.9, we then have a required state s”. []

24 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

LEMMA 4.11. There exists an infinite sequence
Sp —> S0 —> S1 — ...

of states in G such that every eventuality ¢ U v in every type of £(sy), n >0,
1s realised in the sequence Sy, ..., Sm, for some m > n.

ProOF. Without loss of generality we may assume that (91,0) = . By
Lemma 4.8, we then have 9 = 0 A Axy(z).

We construct the required sequence by induction. We begin with s, and
take an arbitrary Tj-assignment afy in Ay, where ((s,) = Tf. Then clearly
My = Tplag]. By Lemma 4.9, we obtain a state sy with ¢(sg) = Ty and a
Ty-assignment ag in Ay such that s, — sg and My = Tolag]. Denote the
beginning of our sequence by

Sr — 8o | ap

(we will always need to remember the last assignment).
Suppose now that we have constructed a sequence

Sp—>Sp = — Sy | Ay (ii)

such that ((s,) = T, and M,, = Ty [a,]. Two cases are possible.
Case 1. Every eventuality in every type of £(s;), 0 < i < n, is realised in (ii).
In this case we take an arbitrary type t,(z) € T, and, by Lemma 4.10, find
a state s,41 with ((sp411) = Tpaq and a Tpyq-assignment a, 1 in Ay
such that s, — sp4+1 and My, 11 = Thii[ans1]. So we can extend (ii) with
Sp41 | Gpgr:

Sp =80 = = Sp = Sp1 | Anp1

Case 2. Suppose that Case 1 does not hold. Take a minimal £ < n such
that some eventuality ¢ U ¢ (x) in some ti(z) € T}, is not realised in (ii). As
all T; are A-quasistates, (U YP)t € T;. As Ty, is saturated and satisfiable,
either (x) € tx(z) or B(x), O(eU Y)(x) € tx(x). And as U (x) is not
realised in (ii), only the latter case is possible. It follows that there are
t}.41(z) and g1 () such that

66(2) =0 th1 (1) > bosr(2) and PUB() € by ().
Thus we can choose a sequence

Temporalising tableaux 25

such that t;(x) € T},

pUY(r) € ti(w), OlpU)(w) €ti(x) and P(z) ¢ ti(x) (iif)

for all i € [k, n].
Let a = a,(ty). We have M, = Ty [ay], and so, by (iii), M,, = U ¥a]
and M,, = —¢[a]. Then by Lemma 4.8,

(M, n) = (U p)[a] and (M,n) = —[d]. (iv)

Now we construct a sequence of states realising our eventuality. By
applying Lemma 4.10 to s,, a, and t,(x) € T, such that M, E Ty,[a,],
an(t,) = a and

eUP(x) €tp(z), OlpUY)(x) € tylx), ¢ ¢ ty(x)

we find a state s,41 with ¢(s,41) = Tp41 and a T, yq-assignment a,41 in
An—}-l with
Sp = Spp1 and - M4y = Trgafanta]s
and tp41(x) € Tp4q1 such that a,11(tp41) = @ and U Y(x) € tp1(x). So
we can extend (ii) with s,41 | apy1.
Note that (o U)" € Tpi1 and T, is a saturated flock, so either

P(x) € tugpi(z) or O(pU Y)(z) € tyii(x) and ¥(z) ¢ ty,oi(x). In the
former case the eventuality is realised by

Sk —>r — Sp — Sp1-

In the latter case we again apply the above procedure to the state s, 1, the
assignment a, 11 and the type t,11(x). It follows from (iv) that there must
exist m > n such that (M, m) = ¢[a], and so, by Lemma 4.8, M, = ¥[a].
Thus, we will find a realising sequence in at most m — n steps.

In the limit we obtain an infinite sequence
Sp—>Sp —S1 — ... (v)
satisfying the requirements of the lemma. [|
We are in a position now to prove the completeness part of Theorem 4.7.

PROOF. Suppose that 9 is satisfiable in a model from the class TM, and let
G =(S,sp,—,l,l5) be a complete tableau for ¢. By Lemma 4.11, we have
an infinite sequence

Sp—> Sp — 8] — ... (vi)

26 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

of states in G such that every eventuality ¢ U 1 in every type of {(s,,), n > 0,
is realised in the sequence s, ..., Sm, for some m > n.

To prove completeness, it suffices to show that no s; from the sequence
is eliminated. Let

S=5252...

be the sequence produced by the elimination procedure. We show by induc-
tion on n that, for all n € N,

{s;}U{si | i e N} CG,.

The basis of induction (n = 0) is clear. Suppose {s,} U {s; | i € N} C Sj.
Since every state s; has a successor, rule (E2) is not applicable to it. As
all eventualities in the sequence (vi) are realised, rule (E3) is not applicable
either. [

4.2. Soundness

LEMMA 4.12. Let G = (S, s;,—,(,(~) be a complete tableau for ¥ and let S’
be the set of states that remains after execution of the elimination procedure.
If s, € S’ then there is an infinite sequence

Sp —>Sog—>S1 — ...

of states in S" such that every eventuality o U 1 in every type of {(sy), n >0,
1s realised by the sequence sy, ..., Sy for some m > n.

PROOF. Suppose that we have constructed a sequence
Sp = 8) — 81— - —> Sp, (vii)

sitting entirely in S’. Two cases are possible.

Case 1. Every eventuality in every type of ((s;), i > 0, is realised in (vii).
As (E2) is not applicable to s,, we can extend (vii) by a state s,41 € S
with s, = sp41.

Case 2. Suppose Case 1 does not hold. Take a minimal & € [0,n] such
that an eventuality ¢ U ¥ () in a type of {(sg) is not realised in (vii). Then
@ U () belongs to some type in ((s,). Since (E3) is not applicable to s,,
@ U 1p(x) is realised by a sequence

Sp = Spal —> = Sm

Temporalising tableaux 27

for some m > n such that s; € S’ for i € [n,m]. Then we extend (vii) with
the states spy1,...,5m.

In the limit we obtain a sequence satisfying the conditions of the lemma.
|

We can now complete the proof of Theorem 4.7.

PROOF. Suppose that G = (S, s,, —,(, () is a complete tableau for ¢ and S’
is the set of states which remains after execution of the elimination procedure
and that the root s, was not eliminated. By Theorem 3.4, it is enough to
prove that there exists a quasimodel satisfying . Lemma 4.12 provides us
with an infinite sequence

Sp —>Sog—>S1 — ...

of states in S’ realising all eventualities. The reader can readily check that
(0(s;) | i € N) is a quasimodel satisfying 9. []

4.3. Tableaux: constant domains

Let us consider now the case of constant domains. Tableaux for this case can
be obtained by a simple modification of tableaux for the case of expanding
domains. The major difference is that we use exhaustive saturation and
transition rules.

DEFINITION 4.13 (exhaustive transition rule). The exhaustive transition rule
for QT L' is the map N that takes a flock T for ¥ and returns the flock

N(T) = {t'(x) | t(x) € T and t(z) =4 t'(x)} U{Axy(z) U{CDAT}},

where
CDAr=Vz \/ ()
t(z)eT
t(z) =t (z)

The formula CDAT is used to deal with constant domains: we must
now construct a quasimodel in which the domains of runs are total. In other
words, this means that for every quasistate T, 11 and every t(z) € T,1,
there must exist a type t'(x) € T, such that the two conditions formulated
in Definition 3.3 are satisfied. However, this is precisely what the joint use
of CDAT and the surrogate axioms ensures. Together with the modified
Property (CO’) of exhaustive saturation rules, this approach resembles the
‘minimal types’ technique developed in [16].

28 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

THEOREM 4.14. Let (QT L', TM) be a tmf-theory, where TM is a class of
models with constant domains, (QL',M) a first-order reduct of (QT L', TM),
A an exhaustive saturation rule for (QL',M) and N an exhaustive transition
rule for QT L'. Then for every QT L -sentence O the following conditions are
equivalent:

(1) @ is satisfiable in a model from TM;

(2) the root of a complete tableau for ¥ cannot be eliminated using rules

(E2) and (E3).

A close inspection of the proofs for the case of expanding domains shows
that it is sufficient to prove reformulations of the lemmas above in which

e the model 9 is assumed to have constant domains,
e the ((s,) are exhaustive flocks for the corresponding I,,.

The only non-trivial changes are in Lemmas 4.9 and 4.10.
Suppose that G = (S, s,,—,(, () is a complete tableau for ¢ and that

is satisfiable in a model M = (N, <, T) € TM, where I(n) = <A, pim_ >
for all n € N.

LEMMA 4.15. Letn € N, s' € S, ((s") =T, let o’ be a T'-assignment in A
and ty(z) € T'. If My, = T'[a'] and T' is exhaustive for My, then there are
a state s € S with ((s) = T, a T-assignment a in A and a type to(r) € T
such that

s'— s, M, = Tla] and T is ezhaustive for M, d'(ty) = a(to)
and ty(x) — 4 to(x).

PRrROOF. The proof is analogous to the proof of Lemma 4.9 and follows im-
mediately from (CO'). |

LEMMA 4.16. Letn € N, s € S, ((s) = T, let a be a T-assignment in A, and
to(z) € T. If M, = Tla] and T is exhaustive for My, then there are a state
s" e S with ((s") =T", a T"-assignment a” in A, and a type tj(x) € T
such that

s— 8", My ET"[0"] and T" is exhaustive for M1, a(ty) = a”’(t)

and to(x) —o to(x) =4 th(x) for some type th(x).

Temporalising tableaux 29

PROOF. The proof is analogous to the proof of Lemma 4.10. The only
difference is that in the proof of M, 11 = T'[a'] we have to show additionally
that

M, 4 | CDAT.

Suppose a € A. As T is exhaustive for 9,, there is a type t(z) € T
such that M, | tla], and we choose t'(x) € T' with t(x) —~ t'(x). Then
My11 E t'[a] and M1 E CDAT.

It should be clear that the flock T’ is exhaustive for 9,1, and then
Lemma 4.15 supplies a state s” and an assignment a” as required. []

5. Instantiating the framework

The purpose of this section is to illustrate the generality of our approach
by presenting example instantiations of the framework. To keep the presen-
tation succinct, we stick to simple yet useful fragments of first-order logic:
exhaustive and non-exhaustive saturation rules are presented for

1. the f-theory (QL' FO) induced by the one-variable fragment of first-
order logic (which is a notational variant of propositional modal logic
S5 [19]) and

2. the f-theory (8T, TR) corresponding to the propositional bimodal logic
S4, introduced in Section 2.2.

In fact, we show that the well-known, existing tableau decision procedures for
these fragments of first-order logic—for the corresponding modal logics, to be
more precise (see e.g., [4, 9])—can be regarded as saturation rules for the case
of expanding domains, whereas some additional efforts are needed to obtain
exhaustive saturation rules. The technique described in Section 4 then yields
‘temporal’ tableau algorithms for the one-variable fragment QT L' of OT L
and the tmf-theory (78T, TTR) from Section 2.2, i.e., the temporalisation of
(ST, TR)—both for expanding and constant domains. We finish this section
with presenting some example runs of the tableau algorithm for Q7 £!.

5.1. S5

As a (non-exhaustive) saturation rule for the one-variable fragment of first-
order logic, we use a slight variant of the well-known prefixed tableaux for
S5, as presented e.g. in [4]. The main difference between our presentation
of this algorithm and the one given in [4] is that we write formulas in the
syntax of first-order logic rather than modal logic.

30 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

A labelled formula is of the from o :: @, where o is a label and ¢ a formula
(in our examples ¢ is a QL-formula with at most one free variable). A label o
is a nonempty sequence of natural numbers separated by dots. For example,
1.21 and 1.2.1 are labels. Labels allow us to distinguish between formulas
that belong to one world and those belonging to another one. Moreover, the
structure of labels describes the accessibility relation between the worlds.
Although in the definition of the tableau algorithm for S5 we use only natural
numbers as labels (i.e., all labels are of length 1), we still denote these
sequences by Greek letters (o, 7, etc.) because the same tableau rules are
used for S4,, in Section 5.2, where the structure of labels is essential.

A tableau T (for both f-theories we consider in this section) is a finite
tree, where each node contains a single labelled formula. A tableau branch
B of T is a path starting at the root node and ending at a leaf node.

Suppose we are given a flock T = {ti(x),...,tx(z)}. The tableau al-
gorithm starts with an initial tableau Ty consisting of a single branch such
that its nodes contain all labelled formulas of the set

{n:px)] ex) €ty(zr) and 1 <n < k}.

Thus, for every type t;(x) we introduce a unique label i which denotes a new
world for this type (in the modal logic setting), or a set of domain elements
indistinguishable by formulas of t;(z) (in the first-order logic setting).

Then the algorithm exhaustively applies the tableau rules given in Fig. 2
to nodes on each branch B of the tableau as follows.

(I=) If a node contains o :: =—p(x) then an application of (I—) appends a
node containing o :: p(x) to B.

(IN) If a node contains o :: p(z) A (x) then an application of (IA) appends
two consecutive nodes to B, one containing o :: p(z) and the other
o (x).

(IV) If a node contains o :: =(p(x) A(x)) then an application of (1V) splits
the end of B and extends the left fork with o :: =¢(z) and the right
one with o :: =¢(z).

(I3) If a node contains o :: =Vx ¢(x) then an application of (/3) extends B
with 7 :: =(x), where 7 is a new label on B.

(I¥) If a node contains o :: Vo ¢(x) then an application of (IV) extends B
with 7 :: p(x), where the label 7 already exists on B.

(Iv*) Tf a node contains o :: ¢, where ¢ is a sentence, then an application of
(IV*) extends B with 7 :: ¢, where the label 7 already exists on 5.

Temporalising tableaux 31

o mmple) (In) oA AU
(l_') o go(x) g Qo(x)
o+ ()
o :: ~(p(x) AY(x))
(tv) o) | oo —(x)
o =V e(r) oV p(r) . o
(13) 7 =) (1v) 7 o(x) (1) TP
T is new for B T is used on B T is used on B

Figure 2. Tableau rules for S5.

Observe that every branch B of a tableau can be converted into a flock
Ty by setting
T = {t5(z) | o is a label on B},

where
t5(x) = {@(x) | o :: o(x) occurs on B}

(note that types t2(z) and t5(x) may coincide for ¢ # 7; in this case they
are identified in Tg).

We generally assume tableau rules to be applied in such a way that no
labelled formula appears twice on the same branch and that (I3) is never
applied twice to the same labelled formula. A branch B is complete if no
rule can be applied to it. A branch B is called contradictory if both o :: ¢
and o :: = occur on B, for some formula ¢ and label . A tableau T is
complete if each branch in T is complete.

To simplify further considerations, we fix an order of rule applications.
We assume that there is an ordering on pairs ((1), o :: ¢), with tableau rule
(1) and labelled formula o :: ¢, and that a tableau rule (I) is applied to a
formula o :: ¢ only if ((I),0 :: ¢) is minimal with respect to the ordering.
In this way, the tableau constructed by the algorithm for a given input T
is completely determined. We call this tableau the canonical tableau for T.
Note that canonical tableaux are complete by definition. We use BT to
denote the set of non-contradictory branches in the canonical tableau for T.

If started on a flock T, the tableau algorithm constructs the canonical
tableau for T. It is a standard task to prove that this construction termi-
nates. If B is the empty set, then Ags(T) = clash is returned. Otherwise,

32 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

each element of By represents a flock as explained above. Since every branch
in B is complete, the corresponding flocks are saturated. Thus, if B is
nonempty, then the tableau algorithm returns the set

./455(T) = {TB | B e ‘BT}.

It is easy to see that this algorithm satisfies property (TR) of saturation
rules. Hence, let us proceed to property (CO).

LEMMA 5.1. Let T be a flock. For every model 9 € FO with domain A,
every type t(x) € T, and every T-assignment a in A, if M | T[a] then
there are a branch B € By, a type t'(x) € Tg, and a Tg-assignment o’ in
A such that t(x) C t'(x), a(t) = a'(t'), and M = Tgla'].

PROOF. Let T = {t1(z),...,tx(x)} be a flock, M € FO with domain A and
let a be a T-assignment in A such that 9t = T[a]. Without loss of generality
we may assume that t = t;. Suppose that the canonical tableau for T is the
last tableau of the sequence

TOlea"' aTna

where Ty is the initial tableau for T and, for every i < n, Tjy1 is obtained
from T; by an application of a tableau rule.

We define, for each tableau T;, 0 < ¢ < n, a branch B; of T; and a Tp;-
assignment a; in A as follows. Let By be the single branch of Ty. Set ag = a
(recall that formulas of type t;(x) are labelled by j on By). Clearly we have
M |= Tp,[ap]. Then we proceed in such a way that the following conditions
are satisfied for every i, 0 < i < n:

M b= Tp,la)] and a;(th) = ai,l(tfi‘l). (viii)

Without loss of generality we can always assume that tf * € Tp, for every i,
0 < i < n (recall that in a flock Tp, types can be identified).

Suppose that we have already constructed B; and a;, 0 < ¢ < n, and T;11
is obtained from 7T; by an application of (/). Consider all possible cases.

(IVv) is applied to o :: =(p(z)AY(x)) on B;. The rule application splits B; into
two branches B, and By, where B, contains a new node with o :: =p(x) and
By, contains a new node with o :: =¢)(x). Let a be the value assigned to the
type of o at step i, i.e., a;(t5¢). Since, by TH, M |= =(p(x) Av(x))[a], we have
either M |= —p(x)[a] or M |= —¢p(x)[a]. In the former case, set B 1 = By,
and in the latter one B; 1 = By. In either case, let ai+1(t§i+l) = q;(t5) for

every type toit! () € Tp,,,-

Temporalising tableaux 33

(13) is applied to 7’ :: =Vx ¢(x) on B;, introducing a label 7 and creating a
node with 7 :: =p(z). Since M |= -V p(x), there exists an element a € A
such that MM = ¢[a]. Let B;y1 be the extension of B; with the new node and
4 (6541) = a;(t5%) for every type to+ (2) € Tp,,, and a1 (6547 = a.
In all other cases B;11 is the extension of B; with the new nodes and
i1 (b57) = a;(t57) for every type t5 7 (x) € Tsi,,-
It is easy to show that in every case B;;11 and a;41 satisfy (viii). Since
M = Tpg,la,], the branch B, is not contradictory, i.e., B, € Br. Now set
B =B, d to a, and t'(x) = t®"(x). Tt is readily checked that B, t’ and o

are as required. [|

Note that the proof of the lemma above resembles the standard complete-
ness proof for the described tableau algorithm: an existing model is used to
‘guide’ the application of the tableau rules. We now come to property (SO),
i.e., to soundness.

LEMMA 5.2. For every flock T, every cardinal k' > Ny, and every branch
B € BT, there exists a model

m = <A,Q3",...q3ﬁ,...> € FO,
i which

e A= |J AL, where A are pairwise disjoint sets of cardinality r',
teTp

. qém is true iff q; € Tp,
o a € Q™ iff there is a type t(v) € Ty such that Q;(v) € t(x) and
a € At
such that MM k= t[a] holds for all t(x) € T and a € A*.
PRrROOF. Fix a branch B € Bt and a cardinal £’ > Rjy. Define a model 91
by taking
At = {(t,6) [€ <} for t(z) € Tg,
Q7 = {(t:€) | Qi(x) € t(2) and £ < w'},
@' = {6, | g € t(x) and £ <},
Using the fact that B is complete and non-contradictory, by induction on
the structure of formulas one can easily show that 9 is as required. [|
We thus obtain the following lemma.

LEMMA 5.3. Ass is a saturation rule for (QL', FO).

34 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

o =Vo (R(x,v) = p(v))

o.m is new to B
o.m 2 —p(x)

G

o=V (R(x,v) = ¢(v)) o Vo (R(x,v) = ¢(v))
o.w :: p(x) (T) o p(x)
o Yo (R(x,v) = p(v))
ow Vv (R(x,v) = p(v))

(1K)

(14)

o.w is already exists on B

Figure 3. Additional tableau rules for S4,,.

5.2. S4,

Let us now extend the previous example to a saturation rule for the propo-
sitional modal logic S4 with the universal modality, that is to the f-theory
(ST, TR) defined in Section 2.2.

The tableau algorithm for S4,, is similar to that for S5, so we concentrate
on the differences. The set of tableau rules is comprised of those in Fig. 2
(for the Booleans and the universal modality) and Fig. 3 (for the transitive
and reflexive modal operator O of S4—its first-order translation, to be more
precise). Again we assume that the rules (/3) and (I7r) are applied at most
once for every node.

To ensure termination of rule application, some additional efforts are
required. We say that a label o is reduced if no rule different from (/3) and
(Im) can be applied to nodes containing o :: p. A label o is called fully
reduced if no tableau rule is applicable to nodes containing o :: ¢. Now, a
branch B is complete if

e all labels on B are reduced and

e for every o that is not fully reduced, there exists a fully reduced label
7 such that t5(x) = t5(2).

To guarantee termination, tableau rules must not be applied to complete
branches. The tableau algorithm works as the one from the previous section:
it constructs the canonical tableau, returns Ass, = clash if By is empty
and the set of saturated flocks

Asa, (T) ={Ts | B Br},

Temporalising tableaux 35

otherwise.

We now show that the extended algorithm is a (non-exhaustive) satura-
tion rule for (ST, TR). As it is easy to prove that (TR) is satisfied, we again
start with (CO).

LEMMA 5.4. Let T be a flock. For every model MM € TR with domain A,
every type t(x) € T, and every T-assignment a in A, if M | T[a] then
there are a branch B € By, a type t'(xz) € Tg, and a Tg-assignment o' in
A such that t(x) C t'(x), a(t) = a'(t'), and M = Tgla'].

PrOOF. Let T = {ti(x),...,tx(x)} be a flock,
m = <A,R”‘,Qgﬁ,...,q§ﬁ,...,> € TR,

and let a be a T-assignment in A such that 9 |= T[a]. Without loss of
generality we may assume that t = t;. Suppose that the canonical tableau
for T is the last tableau of the sequence

TOlea"' 7Tn7

where Ty is the initial tableau for T and, for every i < n, Tjy1 is obtained
from T; by an application of a tableau rule. For a branch B of a tableau and
an Tp-assignment a, we write 9 =* R® to say that (a(t?),a(t?.)) € R™,
for all labels o and 0.7 on the branch (both o and 7 are sequences of natural
numbers).

We define, for each tableau T, 0 < ¢ < n, a branch B; of T; and a Tjp;-
assignment a;. Let By be the single branch of Ty. Set ayp = a. Then we
proceed in such a way that the following conditions are satisfied for every i,
0<1<n,

M |= T, [ai], ai(tfi) = aifl(tllgi_l) and 9 % RP

Assume that we have already constructed B; and a;, for 0 < ¢ < n, and T;;
is obtained from 7T; by an application of (I). Since the rules in Fig. 2 can be
treated in precisely the same way as in Lemma 5.1, we concentrate only on
the rules in Fig. 3.

(Ir) is applied to o :: =Vv (R(z,v) — ¢(v)) on B;, introducing a new label
o.m and creating a node o.m :: =p(x). Let a be the value assigned to the type
of o at step i, i.e., a;(t5). Since, by TH, M = (=Vo (R(z,v) = ©(v)))[a],
there exists an element a’ € A such that (a,a’) € R™ and M = —yp[d].

Let B;;1 be the extension of B; with the new node, a;11(E_%l) = a' and

g1 (E2F1) = a;(t57) for all other types toit(z) € Tsi,r-

36 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

In all other cases B;11 is the extension of B; with the new nodes and
4 (6541) = a;(t5%) for every type t5+ (2) € Tg;, -
Again it is straightforward to show that B;;; and a;4; are as required
(for (1K), (IT) and (14) we need to use the fact that Mt =% R5) and that B,
and a, induce a branch B € B, a type t'(z) € T, and a Tg-assignment

a’, as required by the lemma. []

It remains to prove that the soundness property (SO) holds.

LEMMA 5.5. For every flock T, every cardinal k' > Ny, and every branch
B € B there exists a model

m = <A,R9",Q3”,...q3”,...> € TR,
i which

e A= |J AL, where At are pairwise disjoint sets of cardinality r',
teTpy

. q;'-m 1s true iff ¢; € Tp,

o a € QM iff there is a type t(x) € Ty such that Q;(x) € t(zx) and
a € AY,

such that 9 k= t[a] holds for all t(x) € T and a € Ab.

PRrROOF. Fix a branch B € Bt and a cardinal £’ > Rjy. Define a model 9
by taking

At = {(t,&) | € <K'} for t(x) € Tg,

R™ = {((t,&),{t,&)) |t =t5 and t' =t% for o < 7},
QY = {(t,6) | Qi(x) € t(z) and £ < &'},

@' = {(t,€) | ¢ €t(x) and £ <k'},

where o < 7 iff 0 is a (not necessarily proper) prefix of 7. Clearly, R™
is reflexive and transitive. Since distinct labels # and ¢’ may describe the
same type tg = tg,, in general R™ is not necessarily antisymmetric, i.e., it
is a quasi-order. Using the fact that B is complete and non-contradictory,
by induction on the structure of formulas one can easily show that 9 is as
required. [|

Summing up, we obtain the following:

LEMMA 5.6. Asg, is a saturation rule for (ST, TR).

Temporalising tableaux 37

ko =(e(x) ANp(x)) k is marked
w(x)
ko —p(2) —nb(x) for m new to B ko —)(x)

:n(x) for every k ::n(x) on B

Figure 4. The disjunction rule (IV*) for marked labels.

5.3. Constant domains

With minor modifications, the tableau algorithms presented in Sections 5.1
and 5.2 also give rise to exhaustive saturation rules for (QL! FO) and
(ST, TR), respectively. Here we consider only the latter, more general case.

In the constant domain tableau algorithm, there exist two types of la-
bels: marked and unmarked ones, where marked labels are always of length
one (i.e. contain no dots). We assume that each input flock contains the
distinguished type t,(x) = {T(x)}. In the initial tableau for a flock T, a
marked label is used for t,(z). All other labels in the initial tableau are
unmarked. For the application of tableau rules, sentences and formulas with
unmarked labels are treated precisely as in the expanding domain case.

The only difference for marked labels is that a modified version of the
disjunction rule is used, which can be found in Fig. 4: if k :: =(¢(x) V ¥ (x))
is found on a branch B with & marked, then we split the end of the branch
into three and do the following: the left fork is extended with the labelled
formula k :: —p(z), the right one with k :: ¢(x), and the middle fork is
extended with formulas

{k s mp(z), m::—=(x)} U{m = n(z) | k::n(z)is on B},

where m is a new marked label of length 1 (a ‘copy’ of k). Intuitively, we
are constructing a set of ‘minimal types’ corresponding to the marked la-
bels as proposed in [16]: if B is a non-contradictory branch of the canonical
tableau and 9t a model with domain A such that 9 = Tpla] for some
Tp-assignment a, then for each d € A we find a marked label ¢ on B such
that 9 |= tZ[d]! This obviously corresponds to the ‘exhaustiveness’ prop-
erty required by the strengthened completeness condition (CO’) for constant
domains.

'The type t5(z) is called a minimal type, since there is no type t(z) € Ts such that
t(z) C t5 ().

38 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

The result returned by the constant domain tableau algorithm Ag4u is
obtained from the canonical tableau in the very same way as for expanding
domains. Let us now prove the constant domain completeness property

(CON:

LEMMA 5.7. Let T be a flock. For every model MM € TR with domain A,
every type t(x) € T, and every T-assignment a in A, if M = T[a] then
there is a branch B € B such that

1. Ty is exhaustive for M,

2. there exist a type t'(x) € T and a Tg-assignment o' in A such that
t(x) Ct/(x), a(t) =d'(t'), and M = Tpld'].

PRroOF. Let T be a flock, M = <A,R5m, QY. ..., .. > € TR, and a a T-
assignment in A such that 9t |= T[a]. Suppose that the canonical tableau
for T is the last tableau of the sequence

TOlea"' 7Tn7

where Tj is the initial tableau for T and, for every ¢ < n, T;;1 is obtained
from T; by an application of a tableau rule.

We define, for each tableau T;, 0 < ¢ < n, a branch B; of T;, an Tp;-
assignment a;, and a surjective map m; from A to the set of marked labels on
B;. Let By be the single branch of Ty. Set ag = a, and let my be the function
mapping every element of A to the single marked label on By (recall that
T(x) is the only formula labelled by it). We proceed in such a way that the
following conditions are satisfied:

ME=Tela), at])=a(t7"), 0MEY R,

and
mi(d) = o implies 9 }=t5i[d] for every d € A. (ix)

Assume that we have already constructed B;, a;, and m; for 0 < i < n, and
T;11 is obtained from T; by an application of (I). All rules except (IV*) are
treated as in Lemmas 5.1 and 5.4 with the addition that m;;1 = m; for any
of these rules.

(Iv*) is applied to o.k :: =(p(z) A ¢(x)), where o.k is a marked label. The
rule application splits B; into three branches B,, By and B, where B, has
a new node containing 0.k :: =p(x), By has a node containing o.k :: =) (z),
and B, has new nodes containing

{o.k s ~p(x), oom . =p(x)} U{o.m = n(z) | 0.k 2 n(x) is on B;},

Temporalising tableaux 39

where o.m is a new marked label. Define two sets

A, ={d € A|mi(d) = ok and M = —p[d]},
Ay ={d€A|m(d) =k and M = —pld]}.

Due to the surjectivity of ;, we have either A, # 0 or Ay, # 0. So we have
to consider three cases:

1. If Ag, = @, then Bi-i—l = B,/,.
2. If A,/, = @, then Bi-i—l = BVJ‘

3. If AKP 75 @ and A,/, 75 @, then Bi—l—l = B*, ai+1(tf_%l) = ai(tf_ik) and
a1 (6571) = a;(t5%) for every other t2 (2) € Biy, and

o.k, ifde Ay,
7['i+1(d) = { o.m, if d e Aw \ Alﬂ’

mi(d), otherwise.

Finally, in the first two cases we let 7,11 = m; and ai+1(tfi+1) = q;(t5) for
Bit1)
every t7 7' (x) € Bit1.

In the same way as in the proof of Lemma 5.4 we can use B, and a, to
fix a branch B = B, € B, a type t' € Tp, and a Tg-assignment a’ such
that condition 2 from the formulation of the lemma is satisfied. It remains
to note that exhaustiveness of Tp is obviously an immediate consequence
of (ix).]

Since soundness (SO) can be proved precisely as in the expanding domain
case, we obtain the following:

LEMMA 5.8. Ag, is an ezhaustive saturation rule for (ST, TR).

In general, it seems that all tableau algorithms which may serve as an
(expanding domain) saturation rule can be converted into an exhaustive
saturation rule by modifying all non-deterministic tableau rules in the way
we modified the (IV*) rule: instead of considering each non-deterministic
outcome separately, we must also consider arbitrary combinations of such
outcomes. More details on this issue can be found in [16].

40 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

5.4. Temporal tableaux at work

In the following, we exemplarily apply the temporal tableau calculus from
Section 4 to some QT L1-formulas using the tableau algorithm for oLl as a
saturation rule as shown in Section 5.1.

REMARK 5.9. Let ¢ be a QT L -sentence and G a complete tableau for
¥ after execution of the elimination procedure. Then clearly no type in
the tableau contains both Op(x) and O—¢(x) (otherwise the node has no
successor). On the other hand, it follows from (O)™ that every type of every
saturated flock ((s), where s is a state in G, contains at least one of Op(x)
and O=p(x), for every subformula Op(z) of ¥. So in the final (completed
and pruned) tableaux we can identify Op(x) and ~O-¢(x) and consider
only one of them, since the truth value of the other can easily be restored.
Similarly, axiom (¢; U 19)” guarantees that every type in every saturated
flock ((s) contains precisely one of O(¢ U 12)(x) and O=(¢ U 1)2)(x), for
every subformula 1 U 19 (x) of ¥. So by the same argument we can identify

O(Y1 U p2) () and =O= (Y1 U ¥2)(z).

EXAMPLE 5.10. Consider the formula
3(3y (Cly) A =OC(y)) AVy (=Cly) = O=C(y))),

from Example 2.8. As was shown above, we can identify ¢ory-y) With
Go-tu-y) and Qoe(x) with 2Qo-c(x) (and consider only one representa-
tive of each pair). This is done to simplify tableau in the example by avoiding
construction of dead ends. Then the set Axy(x) of surrogate axioms consists
of the following formulas:

T(x),
Qru-y = 7Y (O(y) A _‘QOC(y)) v aVy (C(y) v _‘QOc(y)) V o Tu-v)
“Gry-y — Yy (C(y) N _‘QOO(?J)) Ay (C(y) V =Qoc(Y)) A =Goru-v),
Toru-v) 7 4O(TuU-v)
Va (“ro(l') - _‘QOO(QU))-
We begin constructing a tableau for ©} with a state s, such that

l(sy) =0, Cl5(sy) =Ty and T{={ty(z), Axy(x)}.

The flock Ty consists of only two types, namely, to(x) = {=¢ry-y, T ()}
and Axy(x). As a saturation rule we use the tableau procedure for the one-
variable fragment from Section 5.1. The complete tableau for T contains

Temporalising tableaux 41

—
s \ to \
tc t_|o t
l 0 -c to-c
to-c to-c
o o 1 o
\ \ v \
te te
EO t6 tic tic tl—.o tic
Axy Axy Axy Axy Axy
-/
O

Figure 5. Complete tableau for Example 2.8.

then three non-contradictory branches, each of which represents a class of
models for T{. These branches give us the following saturated flocks

T1 = {to-c(@), te(x)}, T2={to-c(), t-c(¥)}, Ts3={to-c()}

consisting of three distinct types

to-c(r) =To(x) U{C(x), “Qpc(x), C(x) AN =Qpc(7)},
te(z) =To(z) U{C(z), Qoc(®)},
tc(x) = To(x) U{-C(z), ~Qoc(2)},

where o (x) = Axy(2)U{¢ru-y» 7Go(Tu-y) - Thus, the result of saturation
is

A(T6) = {Tlv T27 T3})

and so we create three new states si, s3 and s3 labelled by Ty, Ty and T3,
respectively.

Now we take one step in time and obtain N(T;) = T}, for i = 1,2,3,

42 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

with

={tlo(2), to(x), Axy(a)},
{t ((L‘ AXg(l’)})
{t ((L‘ AXg(l’)})

where t' () = {~qry-y, 2C(x), T(2)}, th(x) ={"¢ry-y, C(x), T(x)}.
An application of the saturation rule to the flocks T}, T and T% gives

A(T) = {T2, Ta}, A(Ty) = {T2, T4} and A(Tj) = {T3, Ty},

where Ty = {to_c(z), t_c(x), to(x)}. As in the tableau we already have
a state, ss, labelled by T9, we create one new state s4 and label it by T4.
Having taken the second step in time, we obtain A (T4) = T}, where

Ty = {t (2), to(2), Axy(r)}.

An application of the saturation rule to T/ gives no new states, so this
step completes the tableau. Wolper’s elimination rules will not reduce the
number of states, since our formula contains no eventualities. The resulting
tableau is depicted on Fig. 5.

EXAMPLE 5.11. Consider now the formula ¢ = Vy O=C'(y) A OJy C(y). Its
first-order reduct is 0 = Yy Q-c(y) Agoa,c and the set Axy(z) of surrogate
axioms consists of three formulas (modulo the simplifications above):

T(x),
T (=Qo-c(2) = 2Qo-c(T)),

“qoayc — 'qoayo-

In the case of expanding domains (using again the saturation rule for the one-
variable fragment from Section 5.1) we obtain then the infinite path of the
complete temporal tableau for ¥ (see Fig. 5.4). It should be remarked that
the complete tableau contains more than 30 states, however the displayed
path is enough to construct a quasimodel satisfying J.

In the case of constant domains, the type Axy(x) in sg contains the
formula

CDAy =Vz (=C(z) ATy C(y)),

which is clearly not satisfiable. Therefore, sy has no successors, and the
elimination procedure removes both s, and sg, so that the resulting tableau
is empty. By Theorem 4.14, 1 is not satisfiable in constant domains.

Temporalising tableaux 43

SR
'SR) to
14 0 t te
; t3
o o
v v
/ 0 1 1
© Axy Axy Axy
N N

Sy S0 s[)

(@) ={J, T(2)}

() ={9, Yy Qo-c(y), Qo-c(2), doaye, T(2)}

(x) ={=C(x), IyC(y), T(x)}

to(v) = {=C(z), C(y), Qo-c(T), qoze, T(2)}
(z) ={C(), Y C(y), Qo-c(7), Goa,e, T(2)}
(x) ={

Figure 6. An infinite path in the tableau for Vy O =C'(y) A O3y C(y).

6. Conclusion

We have presented a general framework for constructing tableau algorithms
for monodic fragments of first-order temporal logic from Wolper’s tableau
algorithm for PTL and decision procedures for fragments of first-order logic.
In both the expanding domain and the constant domain case, we can use
existing decision procedures for first-order fragments. However, for constant
domains we need more than a single application of the algorithm.

As example instantiations of our framework, we have developed tableau
algorithms for the one-variable fragment of monodic FOTL and for the tem-
poralisation of the modal logic S4,. These logics are sufficiently simple to
serve as examples but also have some rather serious applications:

e The tableau system for the one-variable fragment QT L' of FOTL can
be used for various spatio-temporal reasoning tasks, see [27] for an
embedding of spatio-temporal logics in this fragment.

44 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

e In the case of constant domains, the tableau for QT L' actually yields
a tableau decision procedure for the Cartesian product of propositional
linear temporal logic PTL and S5 (see e.g. [7]).

e The tableau system for the temporalised S4, can be generalised in a
straightforward way to tableaux for various temporal description logics
(see, e.g., [24, 18, 15]).

It should be obvious that the presented framework can also be used to de-
velop tableau algorithms for more powerful fragments of monodic FOTL such
as the monodic two-variable fragment and the monodic guarded fragment.

Acknowledgements

The work of the first and fourth author was partially supported by UK EP-
SRC grant GR/R45369/01 “Analysis and mechanisation of decidable first-
order temporal logics.” The work of the second author was partially sup-
ported by Deutsche Forschungsgemeinschaft (DFG) grant Bal122/3-1. The
work of the third author was partially supported by Deutsche Forschungs-
gemeinschaft (DFG) grant Wo583/3-1.

References

[1] A. Degtyarev and M. Fisher. Towards first-order temporal resolution. In F. Baader,
G. Brewka, and T. Eiter, editors, Advances in Artificial Intelligence (KI1'2001), vol-
ume 2174 of LNAI, pages 18-32. Springer-Verlag, 2001.

[2] A. Degtyarev, M. Fisher, and A. Lisitsa. Equality and monodic first-order temporal
logic. Studia Logica, 72(2):147-156, 2002.

[3] A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. Submitted,
2003. Available as Technical report ULCS-03-001 from http://www.csc.liv.ac.uk/

research/techreports.

[4] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht,
1983.

[6] M. Fitting and R. Mendelson. First-Order Modal Logic. Kluwer Academic Publishers,
Dordrecht, 1998.

[6] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Founda-
tions and Computational Aspects, Volume 1. Oxford University Press, 1994.

[7] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal
Logics: Theory and Applications. Elsevier, 2003.

[8] V. Goranko and S. Passy. Using the universal modality: Gains and questions. Journal
of Logic and Computation, 2:5-30, 1992.

Temporalising tableaux 45

[9]

[10]

[11]

[12]

[22]

[23]

R. Goré. Tableau algorithms for modal and temporal logic. Tn D’Agostino et al.,
editors, Handbook of Tableau Methods. Kluwer Academic Publishers, Dordrecht, 1999.

I. Hodkinson. Monodic packed fragment with equality is decidable. Studia Logica,
72(2):185-197, 2002.

I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order
temporal logics. Annals of Pure and Applied Logic, 106:85-134, 2000.

I. Hodkinson, F. Wolter, and M. Zakharyaschev. Monodic fragments of first-order
temporal logics: 2000-2001 A.D. In Logic for Programming, Artificial Intelligence
and Reasoning, volume 2250 of LNAI, pages 1-23. Springer-Verlag, 2001.

G.E. Hughes and M.J. Cresswell. A New Introduction to Modal Logic. Methuen,
London, 1996.

S.A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16:83-94, 1963.

C. Lutz, H. Sturm, F. Wolter, and M. Zakharyaschev. Tableaux for temporal de-
scription logic with constant domain. In R. Goré, A. Leitsch, and T. Nipkow, editors,
Proceedings of the First International Joint Conference on Automated Reasoning (I1J-
CAR’01), volume 2083 of LNAI, pages 121-136. Springer-Verlag, 2001.

C. Lutz, H. Sturm, F. Wolter, and M. Zakharyaschev. A tableau decision algorithm
for modalized ALC with constant domains. Studia Logica, 72(2):199-232, 2002.

K. Schild. Combining terminological logics with tense logic. In Miguel Filgueiras and
Luis Damas, editors, Progress in Artificial Intelligence — 6th Portuguese Conference
on Artificial Intelligence, EPIA’93, volume 727 of LNAI, pages 105-120. Springer-
Verlag, 1993.

H. Sturm and F. Wolter. A tableau calculus for temporal description logic: The
expanding domain case. Journal of Logic and Computation, 2002.

M. Wajsberg. Ein erweiterter Klassenkalkiil. Monatsh Math. Phys., 40:113-126, 1933.

P. Wolper. The tableau method for temporal logic: An overview. Logique et Analyse,
28:119-152, 1985.

F. Wolter and M. Zakharyaschev. Satisfiability problem in description logics with
modal operators. In A. Cohn, L. Schubert, and S. Shapiro, editors, KR’98: Princi-
ples of Knowledge Representation and Reasoning, pages 512-523. Morgan Kaufmann
Publishers, 1998.

F. Wolter and M. Zakharyaschev. Multi-dimensional description logics. In D. Thomas,
editor, Proceedings of the 16th International Joint Conference on Artificial Intelli-
gence (IJCAI-99), pages 104-109. Morgan Kaufmann Publishers, 1999.

F. Wolter and M. Zakharyaschev. Dynamic description logic. In K. Segerberg,
M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic,
Volume 2, pages 431-445. CSLI Publications, 2000.

46 R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev

[24] F. Wolter and M. Zakharyaschev. Temporalizing description logics. In D. Gabbay
and M. de Rijke, editors, Frontiers of Combining Systems II, pages 379-401. Studies
Press/Wiley, 2000.

[25] F. Wolter and M. Zakharyaschev. Decidable fragments of first-order modal logics.
Journal of Symbolic Logic, 66:1415-1438, 2001.

[26] F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order
temporal logic. Annals of Pure and Applied Logic, 118(1-2):133-145, 2002.

[27] F. Wolter and M. Zakharyaschev. Qualitative spatio-temporal representation and
reasoning: a computational perspective. In Exploring Artificial Intelligence in the
New Millenium, pages 175-215. Morgan Kaufmann Publishers, 2002.

RoMAN KONTCHAKOV
Department of Computer Science
King’s College London

Strand

London WC2R, 2LS, U.K.

romanvk@dcs.kcl.ac.uk

CARSTEN LuTz

Institut fiir Theoretische Informatik
TU Dresden, Fakultat Informatik
01062 Dresden, Germany
lutz@Qtcs.inf.tu-dresden.de

FrANK WOLTER
Department of Computing
Universty of Liverpool
Liverpool L69 7ZF, U.K.

frank@csc.liv.ac.uk

MICHAEL ZAKHARYASCHEV
Department of Computer Science
King’s College London

Strand

London WC2R, 2LS, U.K.

mz@dcs.kcl.ac.uk

