
R.Kont
hakov

C. Lutz

F.Wolter

M. Zakharyas
hev

Temporalising tableaux

Abstra
t. As a remedy for the bad
omputational behaviour of �rst-order temporal logi

(FOTL), it has re
ently been proposed to restri
t the appli
ation of temporal operators to

formulas with at most one free variable thereby obtaining so-
alled monodi
 fragments of

FOTL. In this paper, we are
on
erned with
onstru
ting tableau algorithms for monodi

fragments based on de
idable fragments of �rst-order logi
 like the two-variable fragment or

the guarded fragment. We present a general framework that shows how existing de
ision

pro
edures for �rst-order fragments
an be used for
onstru
ting a tableau algorithm

for the
orresponding monodi
 fragment of FOTL. Some example instantiations of the

framework are presented.

Keywords: �rst-order temporal logi
, monodi
 fragment, tableau algorithm.

1. Introdu
tion

First-order temporal logi
 (FOTL) based on the
ow of time hN; <i is no-

torious for its bad
omputational behaviour: even the two-variable monadi

fragment of this logi
 is not re
ursively enumerable (see e.g. [11℄ and refer-

en
es therein). A
ertain breakthrough has re
ently been a
hieved in [11℄,

where the so-
alled monodi
 fragment of FOTL is introdu
ed by restri
ting

appli
ations of temporal operators to formulas with at most one free variable.

The full monodi
 fragment (
ontaining full �rst-order logi
) turns out to be

axiomatisable [26℄. Moreover, by restri
ting its �rst-order part to de
idable

fragments, we obtain de
idable monodi
 FOTLs, say, the monodi
 guarded,

monodi
 two-variable, and monodi
 monadi
 fragments. This opens a way

to various appli
ations of the monodi
 FOTL in knowledge representation,

temporal databases, program spe
i�
ation and veri�
ation, and other �elds.

For example, many temporal des
ription logi
s and spatio-temporal logi
s

an be regarded as fragments of monodi
 FOTL [12, 7, 27℄. Unfortunately,

the de
ision pro
edures provided in [11℄ are of model-theoreti

hara
ter

and
annot be used as a basis for implementations. In [1℄ and quite re
ently

in [3℄, a resolution-based approa
h has been �rst developed for
ertain sub-

fragments of the monodi
 fragment and then for the full monodi
 fragment.

Presented by Heinri
h Wansing; Re
eived De
ember 1, 2002

Studia Logi
a 68: 1{46, 2001.

2001 Kluwer A
ademi
 Publishers. Printed in the Netherlands.

2 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

A tableau-based analysis of the de
ision problem for monodi
 FOTL has been

missing. In this paper we are trying to �ll in this gap. More spe
i�
ally, our

aims are as follows:

1. to develop a general framework for devising tableau-based de
ision pro-

edures for de
idable monodi
 FOTLs and then,

2. within this framework, to
onstru
t tableau systems for a number of

on
rete monodi
 fragments.

We
onsider monodi
 FOTLs interpreted in models with both expanding and

onstant domains. The former
ase is te
hni
ally mu
h easier, but the latter

one is more general: reasoning with expanding domains
an be redu
ed to

reasoning with
onstant domains, but not vi
e versa (see e.g., [7℄).

Our approa
h is based on the following ideas:

� modularity|a de
ision pro
edure for a given fragment of �rst-order

logi
 is
ombined with Wolper's tableaux [20℄ for propositional tempo-

ral logi
 (PTL);

� �nite quasimodel representations of temporal models with potentially

in�nite �rst-order domains|elements indistinguishable by the subfor-

mulas (of a given formula) with at most one free variable are repre-

sented by the same type;

� the minimal type te
hnique for dealing with
onstant domains in tem-

poral models [16℄

To des
ribe the proposed framework in some more depth, let us assume that

the satis�ability of a monodi
 FOTL formula # has to be de
ided. The

`temporal' tableau algorithm tries to
onstru
t a model for #, i.e., a (one-

side) in�nite sequen
e of
lassi
al �rst-order models. To a
hieve modularity,

we separate the temporal and the pure �rst-order parts of # and treat the

former using Wolper's tableau for PTL and the latter using available de
ision

pro
edures for fragments of �rst-order logi
. More pre
isely, the temporal

tableau algorithm �rst repla
es all subformulas of # that start with temporal

operators by their `surrogates,' i.e., by unary predi
ates. Unary predi
ates

are suÆ
ient here, sin
e we are dealing with monodi
 FOTLs. The proper

`temporal behaviour' of the surrogates is ensured by some auxiliary surrogate

axioms, whi
h are passed to the �rst-order de
ision pro
edure along with

the surrogated version of #. This de
ision pro
edure is expe
ted to provide

us with des
riptions of possible models for its input. We then
hoose an

Temporalising tableaux 3

appropriate modelM for the
urrent time point and make one `step in time'

by omitting the `next-time' operator (as in Wolper's tableaux) and adding

new surrogate axioms. This way we build up a temporal tableau. When

su
h a tableau is
ompleted, the pruning te
hnique|whi
h is also used in

Wolper's tableau for PTL|is employed to
he
k whether all eventualities

are ful�lled, i.e., whether the tableau represents a temporal model of the

input formula.

Additional e�ort is needed to preserve the representation of tableaux

�nite and to guarantee termination. For example, �rst-order models are

represented by �nite sets of types, ea
h representing a possibly in�nite num-

ber of domain elements. Quasimodels, whi
h are well-known from e.g. [11℄,

are used to en
ode temporal models by asso
iating a �nite set of types

with ea
h time instant. To avoid
onstru
ting an in�nite number of (�nite

representations of) �rst-order models, we use blo
king to dete
t and avoid

dupli
ates.

Two rather general theorems, one for expanding domains and one for

onstant domains, provide
onditions under whi
h a �rst-order de
ision pro-

edure
an be
ombined with Wolper's tableaux to yield a tableau-based

de
ision pro
edure for the
orresponding monodi
 FOTL. The pri
e we have

to pay for this level of generality is that the resulting
ombined tableaux are

far from optimal. In parti
ular, in many
on
rete
ases new tableau rules
an

be used instead of surrogate axioms. Thus, our general framework for
om-

bining tableaux is not supposed for dire
t appli
ations or implementations,

but rather as a guide for
onsidering more spe
i�

ases.

The paper is organised as follows. In Se
tion 2 we de�ne the syntax and

semanti
s of �rst-order temporal logi
 and introdu
e the monodi
 fragment

of FOTL. We start Se
tion 3 with
hara
terising de
ision pro
edures for

fragments of �rst-order logi
 that
an be used as building blo
ks in tableau

al
uli for monodi
 fragments (so-
alled saturation rules). Then we prove

that quasimodels are a proper abstra
tion of temporal models. In Se
tion 4

we show how to obtain a tableau pro
edure for a monodi
 fragment based on

an existing de
ision pro
edure for the
orresponding FO fragment. We prove

termination, soundness and
ompleteness of the algorithm for both expand-

ing and
onstant domains. In Se
tion 5, two example instantiations of our

framework are presented: we des
ribe two standard �rst-order tableau algo-

rithms (for the one-variable fragment and the modal logi
 S4

u

|i.e., Lewis's

S4 with the universal modality) and prove that they
an be
onsidered as

saturation rules. Then we present some appli
ations of the tableau algorithm

for the temporalisation of the one-variable fragment of �rst-order logi
. We

on
lude in Se
tion 6.

4 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

2. First-order temporal logi

In this se
tion, we introdu
e �rst-order temporal logi
 and its monodi
 frag-

ment. Then we
onsider monodi
 fragments as `temporalisations' of
ertain

fragments of �rst-order logi
 and show how the monodi
 formulas
an be

split up into temporal and �rst-order parts.

Let QT L be the �rst-order (or quanti�ed) temporal language based on

the following vo
abulary:

� predi
ate symbols P

0

; P

1

; : : : , ea
h of whi
h is of some �xed arity � 0;

� a
ountably in�nite set V of individual variables x

0

; x

1

; : : : ;

� the Boolean
onne
tives ^ and :;

� the universal quanti�er 8x for every individual variable x;

� the temporal operators U (`until') and

(`next-time').

Remark 2.1. Note that our language
ontains neither
onstant symbols nor

equality. The reason for omitting the
onstants is to simplify presentation

by avoiding unne
essary te
hni
al details. The reader should not have any

problems to extend the method developed in the paper to the language

with
onstant symbols. Equality and/or fun
tion symbols may ruin good

algorithmi
 properties of the monodi
 fragment by making it not re
ursively

enumerable [11℄. Moreover, it is shown in [2℄ that the monodi
 monadi

two-variable fragment with equality is unde
idable; see, however, [10℄ where

it is shown that the monodi
 pa
ked fragment with equality is de
idable.

The set of QT L-formulas is de�ned as follows:

� if P is an m-ary predi
ate symbol and x

1

; : : : ; x

m

are variables, then

P (x

1

; : : : ; x

m

) is an (atomi
) formula;

� if ' and are formulas, then so are ' ^ and :';

� if ' is a formula and x a variable, then 8x' is a formula;

� if ' and are formulas, then so are ' U and

'.

We use the standard abbreviations _, !, and

> = �; ? = :>; 9x' = :8x:'; 3' = > U '; 2' = :3:';

where � is some �xed tautology. Intuitively, 3 means `now or sometime in

the future' and 2 means `from now on.'

For a given formula ', sub(') denotes the set of subformulas of ' and

free(') the set of variables o

urring free in '. We write '(x

1

; : : : ; x

m

) to

Temporalising tableaux 5

indi
ate that all free variables of ' are in the set fx

1

; : : : ; x

m

g; in parti
ular,

'(x) has at most one free variable x. The pure (non-temporal) �rst-order

fragment of QT L is denoted by QL.

Let us now de�ne the semanti
s of QT L: in prin
iple, we just have to

�x a
ow of time and then relate ea
h moment of time with some �rst-order

model. Sin
e in this paper we are
on
erned with the
ow of time hN; <i,

it thus suÆ
es to asso
iate with ea
h moment n 2 N a �rst-order model.

Thus we obtain QT L-models, in whi
h domains of �rst-order stru
tures
an

vary along the time axis. However, a more natural (and more powerful)

semanti
s is obtained by additional restri
tions on the domains. In what

follows, we
onsider two kinds of temporal models: with expanding and

onstant domains. The former
lass of models is mu
h easier to be dealt

with by tableau de
ision pro
edures (as well as by resolution [3℄), whereas

the latter one is more general, sin
e reasoning with expanding (or, in general,

varying) domains
an be redu
ed to reasoning with
onstant domains; see

e.g., [5, 25, 7℄.

Definition 2.2 (model). A QT L-model is a triple M = hN; <; Ii, where

hN; <i is the set of natural numbers equipped with the usual stri
t order <,

and I is a fun
tion asso
iating with ea
h n 2 N some �rst-order model

I(n) =

D

�

n

; P

I(n)

0

; P

I(n)

1

; : : :

E

;

where �

n

is a non-empty set and ea
h P

I(n)

i

is a relation on �

n

of the same

arity as P

i

. M is said to be a model with expanding domains if �

i

� �

j

whenever i < j, and M is
alled a model with
onstant domains if �

i

= �

j

for all i; j 2 N.

From now on by a QT L-model we mean a QT L-model with expanding

or
onstant domains.

There are di�erent approa
hes to de�ning truth in QT L-models; see

e.g., [13℄. We take the following version due to [14℄:

Definition 2.3 (truth). Let M = hN; <; Ii be a QT L-model. An assign-

ment a inM is a fun
tion from the set V of individual variables to

S

n2N

�

n

.

Given a QT L-formula #, the truth-relation (M; n) j=

a

(`# is true at mo-

ment n in model M under assignment a') is de�ned indu
tively on the

onstru
tion of # for only those assignments a that satisfy the
ondition

a(x) 2 �

n

for all x 2 free(#):

� (M; n) j=

a

P (x

1

; : : : ; x

m

) i� ha(x

1

) : : : ; a(x

m

)i 2 P

I(n)

;

6 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

� (M; n) j=

a

:' i� (M; n) 6j=

a

';

� (M; n) j=

a

' ^ i� (M; n) j=

a

' and (M; n) j=

a

 ;

� (M; n) j=

a

8x' i� (M; n) j=

b

' for every assignment b that may di�er

from a only on x, provided that b(x) 2 �

n

;

� (M; n) j=

a

' U i� there is m � n su
h that (M;m) j=

a

 and

(M; k) j=

a

' for all k 2 [n;m), where [n;m) = fk j n � k < mg;

� (M; n) j=

a

' i� (M; n+ 1) j=

a

'.

A QT L-formula ' is said to be satis�able in expanding domains (or

satis�able, for short) if (M; n) j=

a

' holds for some modelM with expanding

domains, moment n and assignment a in M. If M is a model with
onstant

domains, we say that ' is satis�able in
onstant domains. The notions of

validity and validity in
onstant domains are de�ned in the dual way. It is

not hard to see that satis�ability in
onstant domains implies satis�ability

in expanding domains, but not vi
e versa: the formula

8x

:C(x) ^

9xC(x)

is satis�able in expanding domains, but not in
onstant domains. Note that

both QT L with expanding domains and QT L with
onstant domains are

onservative extensions of
lassi
al �rst-order logi
 in the language QL.

Throughout this paper, we will not be distinguishing between a �nite

set � of formulas and the
onjun
tion

V

� of formulas in it. In parti
ular,

we write (M; n) j=

a

� to say that (M; n) j=

a

' for every ' 2 �. Instead

of (M; n) j=

a

'(x

1

; : : : ; x

m

) we often write (M; n) j= '[a

1

; : : : ; a

m

℄, where

a = fx

1

7! a

1

; : : : ; x

m

7! a

m

g.

2.1. The monodi
 fragment

As is known too well, �rst-order temporal logi
 and even its `small' fragments

su
h as the two-variable monadi
 fragment are not re
ursively enumerable

(see [6℄ and referen
es therein). The maximal `well-behaved' sublanguage

of QT L that has been dis
overed so far [11℄
onsists of so-
alled monodi

formulas.

Definition 2.4 (monodi
 fragment). A QT L-formula is said to be monodi

if it
ontains no subformula of the form ' U or

' with more than one

free variable. The set of all monodi
 formulas will be denoted by QT L

1

.

Temporalising tableaux 7

Two important results
on
erning the monodi
 fragment are relevant

here. First, the set of valid (in
onstant domains) monodi
 formulas is �nitely

axiomatisable [26℄, and so there exists a semi-de
ision pro
edure (as QT L

1

learly
ontains fullQL, it is unde
idable). The se
ond result obtained in [11℄

states (roughly) that, if we take a fragment of QT L

1

the underlying �rst-

order (non-temporal) part of whi
h is de
idable, then this fragment itself is

de
idable as well. Examples of de
idable monodi
 fragments are:

� the two-variable monodi
 fragment QT L

2

1

;

� the monadi
 monodi
 fragment QT L

mo

1

;

� the guarded monodi
 fragment T GF

1

(in whi
h quanti�
ation is re-

stri
ted to patterns 8�y (
 ! '), where �y is a tuple of variables, every

free variable in ' is free in
 as well, and the `guard'
 is an atomi

formula).

2.2. Temporalisation

These and other similar fragments QT L

0

� QT L

1

an be regarded as

temporalisations of the
orresponding �rst-order fragments QL

0

� QL (two-

variable, monadi
, guarded, et
.) by extending their formula-formation rules

with the following one:

if '(x) and (x) are QT L

0

-formulas,

then so are

'(x) and '(x) U (x).

(y)

Various temporalisations of expressive propositional modal (say, epis-

temi
, des
ription, or dynami
) logi
s [17, 21, 23, 22, 24, 7℄
an also be

viewed as fragments of QT L

1

. However, we have to be
areful here be
ause

not all
onstru
tors of these logi
s are �rst-order de�nable, for instan
e, the

transitive re
exive
losure of binary relations used in some des
ription logi
s

and PDL.

To in
lude su
h logi
s in our general framework, we �rst de�ne a fragment

theory (or an f-theory, for short) as a pair (QL

0

;M), where QL

0

� QL andM

is a
lass of models in the signature of QL

0

(or its extension). For instan
e,

the two-variable fragment QL

2

of QL
an be
onsidered as the f-theory

(QL

2

;FO), where FO is the
lass of all �rst-order models.

As another example take the propositional bimodal logi
 S4

u

, i.e., Lewis's

S4 with the universal modality 2

8

(see [8℄). Let ST be the set of standard

8 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

translations of S4

u

-formulas de�ned by taking

(p)

�

= P (x); for a propositional variable p;

(' ^)

�

= '

�

^

�

;

(:')

�

= :'

�

;

(2')

�

= 8y

�

R(x; y)! '

�

fy=xg

�

; for a fresh variable y;

(2

8

')

�

= 8x'

�

;

where 'fy=xg denotes the result of repla
ing the free variable x in ' with y.

Denote by TR the
lass of all �rst-order models of the form

M =

D

W;R

M

; P

M

0

; P

M

1

; : : :

E

;

where R

M

is a transitive and re
exive relation on W and the P

M

i

are ar-

bitrary subsets of W . As is well-known, for every S4

u

-formula ', '

�

is

satis�able in a model from TR i� ' is satis�able. Thus, we
an
onsider the

modal logi
 S4

u

as the f-theory (ST ;TR).

Now we
an de�ne a temporal monodi
 fragment theory (or tmf-theory)

as a pair (QT L

0

;TM), where QT L

0

� QT L

1

and TM is a
lass of temporal

models (with either expanding or
onstant domains) in the signature of

QT L

0

.

Definition 2.5 (temporalisation). A tmf-theory (QT L

0

;TM) is
alled the

expanding (
onstant) domain temporalisation of an f-theory (QL

0

;M) if

� QT L

0

is obtained from QL

0

by extending its formula formation rules

with (y),

� TM
onsists of models of the form M = hN; <; Ii with expanding

(respe
tively,
onstant) domains su
h that I(n) 2 M for all n 2 N.

For instan
e, the
onstant domain temporalisation of (ST ;TR) is the tmf-

theory (T ST ;TTR) su
h that the language T ST
onsists of formulas of the

form

' ::= P

i

(x) j :' j '

1

^ '

2

j 8x'(x) j

8y (R(x; y)! '(y)) j

' j '

1

U '

2

;

where the P

i

are unary predi
ates and R is the only binary predi
ate (note

that T ST -formulas
ontain at most one free variable), and TTR
onsists of

models with
onstant domains of the form M = hN; <; Ii, where I(n) 2 TR

for every n 2 N.

Temporalising tableaux 9

2.3. Surrogates (detemporalisation)

Our approa
h to devising tableau de
ision pro
edures for de
idable monodi

fragments is based on a simple prin
iple: we want to separate the temporal

and the �rst-order parts of formulas and treat them using available pro-

edures for propositional temporal logi
 and the
orresponding �rst-order

fragment. With this in mind, we introdu
e the following notion of `surro-

gates' for temporal formulas.

Definition 2.6 (surrogates). With every formula #(x) of the form 'U or

' having x as its only free variable we asso
iate a fresh unary predi
ate

Q

#

(x). Similarly, with every senten
e # of the form 'U or

' we asso
iate

a fresh propositional variable q

#

(i.e., a predi
ate of arity 0). Q

#

(x) and q

#

are
alled the surrogates of #(x) and #, respe
tively. Given aQT L

1

-formula

#, denote by # the formula obtained by repla
ing all its subformulas of the

form ' U and

' that are not in the s
ope of another temporal operator

with their surrogates. # is
alled the �rst-order redu
t of #.

The �rst-order redu
t # of a QT L

1

-formula # does not
ontain temporal

operators at all|they are repla
ed with their surrogates. To ensure the

proper `temporal behavior' of these surrogates, we use the following formulas.

For all formulas of the form ' U and

' with one free variable x, let

(' U)

+

= 8x

�

Q

'U

(x)! _ (' ^Q

('U)

(x))

�

;

(' U)

�

= 8x

�

:Q

'U

(x)! : ^ (:' _Q

:('U)

(x))

�

;

(' U)

:

= 8x (:Q

('U)

(x)! Q

:('U)

(x)) ;

(

')

:

= 8x (:Q

'

(x)! Q

:'

(x)) :

Similarly, for all senten
es of the form ' U and

', let

(' U)

+

= q

'U

! _ (' ^ q

('U)

);

(' U)

�

= :q

'U

! : ^ (:' _ q

:('U)

);

(' U)

:

= :q

('U)

! q

:('U)

;

(

')

:

= :q

'

! q

:'

:

Definition 2.7 (surrogate axioms). The set Ax

#

(x) of surrogate axioms

for a QT L

1

-formula #
onsists of >(x), where x is a fresh variable, and all

the formulas (' U)

+

, (' U)

�

, (' U)

:

, and (

')

:

for ' U 2 sub(#)

and

' 2 sub(#).

The formula >(x) will be important for dealing with
onstant domains

as is explained later on.

10 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

Example 2.8. Consider, for instan
e, the senten
e

2

�

9y

�

C(y) ^ :

C(y)

�

^ 8y

�

:C(y)!

:C(y)

�

�

whi
h is equivalent to

= :

�

> U :

�

9y

�

C(y) ^ :

C(y)

�

^ 8y

�

:C(y)!

:C(y)

�

| {z }

��

Then # = :q

>U:

and Ax

#

(x)
onsists of the formulas

>(x);

q

>U:

! :

�

9y (C(y) ^ :Q

C

(y)) ^ 8y (:C(y)! Q

:C

(y))

�

_ q

(>U:)

;

:q

>U:

!

�

9y (C(y) ^ :Q

C

(y)) ^ 8y (:C(y)! :Q

:C

(y))

�

^ q

:(>U:)

;

:q

(>U:)

! q

:(>U:)

;

8y

�

:Q

C

(y)! Q

:C

(y)

�

;

8y

�

:Q

:C

(y)! Q

C

(y)

�

:

Definition 2.9 (redu
t). Let QT L

0

be a fragment of QT L

1

and TM a

lass of �rst-order temporal models (in the signature of QT L

0

). Say that an

f-theory (QL

0

;M) is a redu
t of the tmf-theory (QT L

0

;TM) if the following

holds:

� QL

0

is the smallest sublanguage ofQL
ontaining all �rst-order redu
ts

ofQT L

0

-formulas,
losed under the Boolean
onne
tives, and su
h that

8x'(x) 2 QL

0

whenever '(x) 2 QL

0

;

� M
onsists of models of the form

D

�; P

M

0

; : : : ; Q

M

0

; : : : ; q

M

0

; : : :

E

;

where

�; P

M

0

; : : :

�

= I(n) for some hN; <; Ii 2 TM, n 2 N, and

Q

0

; Q

1

; : : : are the predi
ates used as surrogates for temporal formulas

from QT L

0

and q

0

; q

1

; : : : are the propositional variables surrogating

temporal senten
es from QT L

0

.

It should be noted that the surrogate symbols Q

j

and q

j

an be inter-

preted in an arbitrary way. We illustrate this de�nition with a number of

examples.

Temporalising tableaux 11

1. The two-variable fragment (QL

2

;FO) of �rst-order logi

an be re-

garded as a redu
t of (QT L

2

1

;TFO), where TFO is the
lass of all

temporal �rst-order models with
onstant domains. Note, that in this

ase, as well as in all following
ases, without loss of generality we
an

assume that the language QL

2

already
ontains in�nitely many unary

predi
ates and propositional variables for surrogates of all QT L

2

1

-

formulas.

2. The monadi
 fragment (QL

mo

;FO) of �rst-order logi
 is a redu
t of

(QT L

mo

1

;TFO).

3. The one-variable fragment (QL

1

;FO) of predi
ate logi

an be
on-

sidered as a redu
t of the temporalised modal logi
 S5, i.e., of the

one-variable fragment of QT L.

4. The propositional modal logi
 S4

u

(i.e., the f-theory (ST ;TR))
an be

viewed as a redu
t of its own temporalisation (T ST ;TTR).

5. Stri
tly speaking, the �rst-order guarded fragment GF is not a redu
t

of the monodi
 guarded fragment T GF

1

, be
ause GF does not
ontain

arbitrary formulas of the form 8x'(x). To get round this problem we

an introdu
e a `dummy' guard>(x) and use 8x (>(x)! '(x)) instead

of 8x'(x). Thus, the extended language
an be regarded as a redu
t

of T GF

1

.

3. Quasimodels

In this se
tion, we introdu
e the two
ore notions underlying our framework

for tableau
al
uli presented in Se
tion 4. First, we develop a general
ondi-

tion that �rst-order de
ision pro
edures must satisfy to be a useful building

blo
k in tableau
al
uli for fragments of monodi
 FOTL. Se
ond, we de�ne

an abstra
tion of temporal models
alled `quasimodels.' To keep tableaux

�nite and guarantee termination, the tableau pro
edure to be devised tries

to
onstru
t a quasimodel for the input formula, rather than a temporal

model itself.

3.1. First-order de
ision pro
edure

We require �rst-order de
ision pro
edures not only to return `true' or `false,'

but rather to
ompute �nite representations of all possible models for the

input formula. The reason for this is as follows: �rst, we need an expli
it

12 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

representation of models to make a step in time, i.e., to take all tempo-

ral formulas realised in a model and then dropping a single o

urren
e of

the next operator from them. Se
ond, we need representations of all mod-

els sin
e some of them may be appropriate for parti
ipating in a temporal

model and others may not|whi
h we will usually �nd out mu
h later in the

onstru
tion of the temporal tableau. The requirement of returning �nite

representations of models is mu
h less exoti
 than it seems on �rst sight:

indeed, most de
ision pro
edures for fragments of �rst-order logi
 satisfy it

or
an be easily modi�ed to do so. This in
ludes, for example, most tableau-

and resolution-based algorithms (see Se
tion 5).

The �nite representation of models is type-based. Hen
e, �x some f-

theory (QL

0

;M) and a QL

0

-formula �. Let x be a variable not o

urring

in �. Then we put

sub

x

(�) = f'fx=yg;:'fx=yg j '(y) 2 sub(�)g

and
all a non-empty subset of sub

x

(�) a type for a QL

0

-formula � (usually

denoted by t(x)).

Important kinds of types for � are given by models M 2 M and their

elements a:

t

M

a

(x) = f'(x) j '(x) 2 sub

x

(�) and M j= '[a℄g:

In what follows we will identify a type t(x) with the
onjun
tion of all

formulas in it and write M j= t[a℄ instead of `M j= '[a℄ for all '(x) 2 t(x).'

Definition 3.1 (
o
k). By a
o
k for a QL

0

-formula � we mean any non-

empty set T of types for �. Su
h a
o
k is
alled saturated if

� for every t(x) 2 T,

{ if ' ^ 2 t(x) then ' 2 t(x) and 2 t(x);

{ if :(' ^) 2 t(x) then :' 2 t(x) or : 2 t(x);

{ if 8z '(z) 2 t(x) then '(x) 2 t(x);

� all types in T
ontain pre
isely the same senten
es.

Be
ause of the latter item, we may write ' 2 T to say that a senten
e '

belongs to some (every) type in the saturated
o
k T.

Let T be a
o
k for � and M 2 M a model with domain �. A T-

assignment in � is a map a : T ! �. We write M j= T[a℄ if M j= t[a(t)℄,

Temporalising tableaux 13

for all t(x) 2 T. A
o
k T is
alled satis�able in M if there areM 2 M with

domain � and a T-assignment a in � su
h that M j= T[a℄.

We are now ready to give a formal a

ount of de
ision pro
edures for

fragments of �rst-order logi
 that
an be used for
onstru
ting temporal

tableau algorithms. We
all su
h de
ision pro
edures saturation rules sin
e,

in the temporal tableau algorithm, they play the role of a tableau rule that

`saturates' a set of �rst-order types asso
iated with a single time point: they

take a
o
k and return a set of saturated
o
ks, ea
h des
ribing a
lass of

models from M.

Definition 3.2 (saturation rule). A saturation rule for (QL

0

;M) is a
om-

putable fun
tion A whi
h takes a
o
k T

0

for a QL

0

-formula � and returns

either `
lash' if T

0

is not satis�able in M, or a (�nite) set A(T

0

) of saturated

o
ks for � su
h that the following holds:

(TR) for every t

0

(x) 2 T

0

, ea
h
o
kT 2 A(T

0

)
ontains a type t(x) � t

0

(x),

in whi
h
ase we write t

0

(x)!

A

t(x);

(CO) for every M 2 M with domain �, every type t

0

(x) 2 T

0

and every

T

0

-assignment a

0

in �, if M j= T

0

[a

0

℄ then there is a
o
k T 2 A(T

0

)

su
h that

{ there exist a type t(x) 2 T and a T-assignment a in � for whi
h

M j= T[a℄, t

0

(x)!

A

t(x) and a

0

(t

0

) = a(t);

(SO) there is a
ardinal � � �

0

su
h that for every �

0

� � and every

T 2 A(T

0

), there exists a model

M =

D

�; P

M

0

; : : : ; Q

M

0

; : : : ; q

M

0

; : : :

E

2 M

in whi
h

{ � =

S

t2T

�

t

, where �

t

are pairwise disjoint sets of
ardinality �

0

,

{ the q

i

are all of the propositional variables, and q

M

i

is true i�

q

i

2 T,

{ the Q

i

are all of the unary predi
ates, and a 2 Q

M

i

i� there is a

type t(x) 2 T su
h that Q

i

(x) 2 t(x) and a 2 �

t

,

su
h that M j= t[a℄ holds for all t(x) 2 T and all a 2 �

t

.

Intuitively, (SO)
orresponds to the soundness of the de
ision pro
edure and

(CO) to its
ompleteness. In more details this
onne
tion will be illustrated

in Se
tion 5, where we show that standard tableau algorithms for fragments

of �rst-order logi

an be viewed as saturation rules.

14 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

3.2. Quasimodels: expanding domains

We abstra
t temporal models to the more manageable quasimodels. Both in

the de�nition of quasimodels and in the tableau pro
edure to be devised, we

onsider senten
es rather than formulas whi
h obviously does not sa
ri�
e

generality. Let (QT L

0

;TM) be a tmf-theory and (QL

0

;M) its �rst-order

redu
t. Fix a QT L

0

-senten
e #.

By a type for the temporal senten
e # we mean any subset of

f'(x) j '(x) 2 sub

x

(#)g [sub(Ax

#

(x));

where x is a variable not o

urring in #. It should be noted that every type

t(x) for #
an be
onsidered as a type for a �rst-order formula. In parti
ular,

Ax

#

(x) is a type for

>(x) ^

^

'U 2sub(#)

�

(' U)

+

^ (' U)

�

^ (' U)

:

�

^

^

'2sub(#)

(

')

:

:

Then a
o
k for # is a non-empty set of types for # (whi
h again
an be

treated as a
o
k for a �rst-order formula).

Definition 3.3 (quasimodel). Let A be a saturation rule for (QL

0

;M). An

A-quasistate for # is a
o
k T 2 A(T

0

), where T

0

is a
o
k for #
ontaining

Ax

#

(x). Let Q = (T

n

j n 2 N) be a sequen
e of A-quasistates for #. A run

in Q is a fun
tion r with domain dom(r) = fn 2 N j n � n

0

g, for some

n

0

2 N, whi
h for every n 2 dom(r) returns a type t

n

(x) 2 T

n

for # su
h

that the following two
onditions hold:

� for every QT L

0

-formula

'(x), if

'(x) 2 r(n) then '(x) 2 r(n+ 1);

� for every QT L

0

-formula (' U)(x), if (' U)(x) 2 r(n) then there is

k � n su
h that (x) 2 r(k) and '(x) 2 r(i) for every i 2 [n; k).

The sequen
e Q of A-quasistates is
alled an A-quasimodel if for every n 2 N

and every type t

n

(x) 2 T

n

, there is a run r in Q su
h that r(n) = t

n

(x). We

say that # is A-satis�able if there are an A-quasimodel Q = (T

n

j n 2 N)

and some n 2 N su
h that # 2 T

n

.

Quasimodels are de�ned su
h that every QT L

0

-senten
e # has a model

i� it has a quasimodel. However, for the
orre
tness proof of our tableau

al
ulus, we will only make use of the \if" dire
tion of this
laim.

Temporalising tableaux 15

Theorem 3.4. Let (QT L

0

;TM) be a tmf-theory, where TM is a
lass of

models with expanding domains. Let (QL

0

;M) be a �rst-order redu
t of

(QT L

0

;TM) and A a saturation rule for (QL

0

;M). If a QT L

0

-senten
e # is

A-satis�able, then it is satis�able in a model from TM.

Proof. Take an A-quasimodel Q = (T

n

j n 2 N) satisfying #. Denote by

 the set of all runs in Q and take a
ardinal �

0

ex
eeding the
ardinality of

the set
 and the
ardinal � supplied by (SO). For ea
h n 2 N, we set

�

n

= fhr; �i j r 2
; n 2 dom(r); � < �

0

g:

By the de�nition of quasimodel, we have �

n

� �

m

if n � m. By (SO), for

every T

n

, n 2 N, we
an �nd a model

M

n

=

D

�

n

; P

M

n

0

; : : : ; Q

M

n

0

; : : : ; q

M

n

0

; : : :

E

2 M

where

� �

n

=

S

t(x)2T

n

�

t

n

, with �

t

n

being pairwise disjoint sets of
ardinality �

0

,

� q

M

n

i

is true i� q

i

2 T

n

, and

� a 2 Q

M

n

i

i� there is a type t(x) 2 T

n

with Q

i

(x) 2 t(x) and a 2 �

t

n

,

su
h that M

n

j= t[a℄ for all types t(x) 2 T

n

and all a 2 �

t

n

. This means,

in parti
ular, that for all senten
es ' we have M

n

j= ' whenever ' 2 T

n

.

Without loss of generality we
an assume that

�

t

n

= fhr; �i 2 �

n

j r(n) = t(x)g: (z)

Let M = hN; <; Ii, where I(n) =

D

�

n

; P

M

n

0

; : : :

E

, for all n 2 N.

Claim. For every n 2 N, every assignment a in �

n

and every formula

� 2 f';:' j ' 2 sub(#)g, if a(x) 2 �

n

for all x 2 free(�), then

M

n

j=

a

� implies (M; n) j=

a

�:

Suppose for a moment that the
laim holds. Sin
e Q is an A-quasimodel

of #, there exists an n 2 N su
h that # 2 T

n

. By the
hoi
e of M

n

, we have

M

n

j= #, when
e (M; n) j= #, whi
h proves our theorem.

Proof of
laim. The proof is by indu
tion on the
onstru
tion of �.

Case � = P

i

(x

1

; : : : ; x

m

) follows from the de�nition of M.

16 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

Case � = :P

i

(x

1

; : : : ; x

m

). This means that ha(x

1

); : : : ; a(x

m

)i 62 P

M

n

i

. As

a(x

j

) 2 �

n

for j 2 [1;m℄, we then obtain (M; n) j=

a

:P

i

(x

1

; : : : ; x

m

).

Cases � = ::', � = '^ , � = :('^) follow from the obvious equivalen
es

::' = ::' ' ^ = ' ^ ; :(' ^) = :(' ^):

Case � = 8x'. We need to show that, for all assignments b that may di�er

from a only on x and su
h that b(x) 2 �

n

, we have (M; n) j=

b

'. Fix su
h

an assignment b. Sin
e M

n

j=

a

8x' and 8x' = 8x', we have M

n

j=

b

'.

By IH, (M; n) j=

b

', as required.

Case � = :8x'. Sin
e :8x' = :8x', we have M

n

j=

a

:8x'. Then

there exists an assignment b that may di�er from a only on x and su
h that

M

n

j=

b

:'. Sin
e the domain of M

n

is �

n

, we have b(x) 2 �

n

. By IH,

(M; n) j=

b

:' and so (M; n) j=

a

:8x'.

Case � =

'. Let a(x) = hr; �i. By the
hoi
e of M

n

, there exists a type

t(x) su
h that

'(x) 2 t(x) and hr; �i 2 �

t

n

. By (z), we have r(n) = t(x)

and

'(x) 2 r(n). Then by the de�nition of runs, '(x) 2 r(n + 1). Let

r(n+ 1) = t

0

(x). By using again (z), we obtain hr; �i 2 �

t

0

n+1

, and therefore

M

n+1

j= '[hr; �i℄. By IH, (M; n + 1) j= '[hr; �i℄. Then (M; n) j=

'[hr; �i℄,

whi
h means that (M; n) j=

a

'.

Case � = :

'. Sin
e T

n

is an A-quasistate and A satis�es (TR), we

have 8x (:Q

'

(x) ! Q

:'

(x)) 2 T

n

. Therefore, M

n

j=

a

:

' implies

M

n

j=

a

:'. As in the previous
ase, we obtain (M; n) j=

a

:', and so

(M; n) j=

a

:

'.

Case � = ' U . The proof is similar to the
ase � =

': we use the

de�nition of runs and (z).

Case � = :(' U). As T

j

is an A-quasistate,

8x

�

:Q

'U

(x)! : (x) ^ (:'(x) _Q

:('U)

(x))

�

2 T

j

: (i)

SupposeM

n

j=

a

:(' U)(x). First we show that

(A) for all k � n, either M

k

j=

a

: (x) ^ :Q

'U

(x) or there is i 2 [n; k)

su
h that M

i

j=

a

:'(x).

The proof is by indu
tion on k. The basis of indu
tion, i.e., k = n follows

from (i).

Assume now that the
laim has already been proved for k = m. If there

is some i 2 [n;m) su
h that M

i

j=

a

:'(x), then we are
learly done. So

Temporalising tableaux 17

suppose that there is no su
h an i. Then, by IH, we haveM

m

j=

a

: (x) and

M

m

j=

a

:Q

'U

(x). (i) gives us eitherM

m

j=

a

:'(x) orM

m

j=

a

Q

:('U)

(x).

In the former
ase we are done. Consider the latter. As in the
ase � =

',

we then have M

m+1

j=

a

:Q

'U

(x). Using (i), we obtain M

m+1

j=

a

: , as

required. This
ompletes the indu
tion step, and hen
e the proof of (A).

By the indu
tion hypothesis of the main proof and (A), we then have:

(B) for all k � n, either (M; k) j=

a

: (x) or there is i 2 [n; k) su
h that

(M; i) j=

a

:'(x).

This means that (M; n) j=

a

:(' U).

3.3. Quasimodels:
onstant domains

To de�ne quasimodels whi
h give rise to �rst-order temporal models with

onstant domains, we should obviously require all runs to be total fun
tions

on N. We also need the following re�nement of the de�nition of saturation

rules.

Let (QT L

0

;TM) be a tmf-theory and (QL

0

;M) its �rst-order redu
t.

Definition 3.5 (exhaustive saturation rule). Say that a
o
k T for a QL

0

-

formula � is exhaustive for a modelM 2 M with domain � if for ea
h a 2 �

there is a type t(x) 2 T su
h that M j= t[a℄. A saturation rule A for

(QL

0

;M) is
alled exhaustive if the following strengthening of (CO) holds:

(CO

0

) for every M 2 M with domain �, every type t

0

(x) 2 T

0

and every

T

0

-assignment a

0

in �, ifM j= T

0

[a

0

℄ then there is a
o
k T 2 A(T

0

)

su
h that

{ T is exhaustive for M;

{ there exist a type t(x) 2 T and a T-assignment a in � for whi
h

M j= T[a℄, t

0

(x)!

A

t(x) and a

0

(t

0

) = a(t).

As in the
ase of expanding domains, exhaustive saturation rules
an be

obtained from standard tableau algorithms by making some rather minor

modi�
ations. More details are provided in Se
tion 5.3.

Let A be an exhaustive saturation rule for (QL

0

;M) and �x some QT L

0

-

senten
e #. We now de�ne exhaustive
o
ks for #.

Definition 3.6 (
onstant domain quasimodel). An A-quasistate for # is an

exhaustive
o
k T for # su
h that T 2 A(T

0

) for some
o
k T

0

ontaining

the type Ax

#

(x). A sequen
e Q = (T

n

j n 2 N) of A-quasistates for # is

18 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

alled a
onstant domain A-quasimodel if for every n 2 N and every type

t

n

(x) 2 T

n

for # there is a total run r in Q (i.e., dom(r) = N) su
h that

r(n) = t

n

(x).

We say that a senten
e # is A-satis�able in
onstant domains if there

is a
onstant domain A-quasimodel Q = (T

n

j n 2 N) su
h that # 2 T

n

for

some n 2 N.

Following the proof of Theorem 3.4, one
an readily show the following:

Theorem 3.7. Let (QT L

0

;TM) be a tmf-theory, with TM being a
lass

of models with
onstant domains. Let (QL

0

;M) be a �rst-order redu
t of

(QT L

0

;TM) and A an exhaustive saturation rule for (QL

0

;M). If a QT L

0

-

senten
e # is A-satis�able in
onstant domains, then it is satis�able in a

model from TM.

4. Tableaux

We are in a position now to de�ne temporal tableaux for de
idable monodi

fragments. Let us start with the expanding domain
ase. Fix a tmf-theory

(QT L

0

;TM), its �rst-order redu
t (QL

0

;M), a saturation ruleA for (QL

0

;M),

and a QT L

0

-senten
e #.

To de
ide the satis�ability of #, the tableau algorithm tries to
onstru
t

an A-quasimodel for # by applying the saturation rule A to the redu
t of #,

then making a step in time, then again applying A, and so on. Let us start

its presentation with de�ning the basi
 data stru
ture.

Definition 4.1 (temporal tableau). A temporal tableau for # is a labelled

dire
ted graph G = hS; s

r

;!; `; `

i, where S is a set of states
ontaining

the root state s

r

, ! is a binary relation on S, and `, `

are state labelling

fun
tions su
h that `(s) is a saturated
o
k for ea
h state s 2 S n fs

r

g, and

`

(s) is a
o
k for # for ea
h state s 2 S.

Intuitively, tableaux
an be understood as follows: apart from the root

state, ea
h state s is asso
iated with a time point n in the sense that the

saturated
o
k `(s) is a
andidate for the quasistate T

n

for time point n of

the quasimodel to be
onstru
ted. Distin
t states may be asso
iated with

the same time point n des
ribing di�erent possible
hoi
es for the quasistate

T

n

. If a state s des
ribes time point n, then any state s

0

with s ! s

0

des
ribes time point n+1. It remains to explain the se
ond labelling `

(s):

it's purpose is to list those types that have to be in
luded in the quasistate

T

n+1

due to temporal formulas appearing (in surrogated form) in `(s). Let

us formally de�ne how `

(s)
an be obtained from `(s).

Temporalising tableaux 19

Definition 4.2 (transition rule). If t

0

(x) =

�

'(x) j

'(x) 2 t(x)

	

[f>(x)g

for a type t(x) for #, then we write

t(x)!

t

0

(x):

The transition rule for QT L

0

is the map N that takes a
o
k T for # and

returns the
o
k

N (T) =

�

t

0

(x) j t(x) 2 T and t(x)!

t

0

(x)

	

[fAx

#

(x)g:

Suppose now that the satis�ability of # is to be de
ided. The algorithm

starts with the initial temporal tableau

G

#

= hfs

r

g; s

r

; ;; `; `

i ;

where

`(s

r

) = ; and `

(s

r

) =

�

f#;>(x)g;Ax

#

(x)

	

for some variable x not to o

ur in #. Note that the root state s

r

is not as-

so
iated with a point in time but only serves the purpose of getting started

with the tableau
onstru
tion. The
o
k `

(r

s

)
onsists of two types: one

of them, f#;>(x)g, ensures that # is satis�ed in the �rst quasistate of a

quasimodel to be
onstru
ted and the other one, Ax

#

(x),
ontains the sur-

rogate axioms. Then we apply the saturation rule A to `

(s

r

) and obtain

new !-su

essor states s

T

of s

r

, for every T 2 A(`

(s

r

)), labelled with

`(s

T

) = T and `

(s

T

) = N (T):

We
ontinue by applying A to the `

(s

T

), and so forth (see Se
tion 5.4 for

detailed examples). Here is a more pre
ise de�nition.

Definition 4.3 (tableau rule). Say that a tableau G

0

for # is obtained by an

appli
ation of rule =) from a tableau G = hS; s

r

;!; `; `

i for # and write

G =) G

0

if there is a state s

0

2 S su
h that `

(s

0

) = T

0

, A(T

0

) is not a

lash, and there is a saturated
o
k T

1

2 A(T

0

) su
h that either

� there is no state s

1

2 S for whi
h `(s

1

) = T

1

, and

G

0

=

S [fs

1

g; s

r

; ! [fhs

0

; s

1

ig; `

0

; `

0

�

;

where `

0

(s) =

(

`(s) if s 2 S

T

1

if s = s

1

and `

0

(s) =

(

`

(s) if s 2 S

N (T

1

) if s = s

1

;

20 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

� or there is s

1

2 S for whi
h `(s

1

) = T

1

, s

0

6! s

1

, and

G

0

= hS; s

r

; ! [fhs

0

; s

1

ig; `; `

i :

A tableau G for # is
alled
omplete if rule =) is not appli
able to it.

The se
ond item in De�nition 4.3 is the so-
alled blo
king
ondition whi
h

is
ru
ial for ensuring termination.

Theorem 4.4 (termination). The pro
ess of
ompleting a tableau G for #

terminates. In other words, there is no in�nite sequen
e

G =) G

1

=) : : : =) G

n

=) : : :

of tableaux for #.

Proof. Any
omplete tableau G for #
ontains at most

2

2

p(j#j)

states, where p is a polynomial fun
tion of the length j#j of #. Indeed, the

number of subformulas of

f' j ' 2 sub(#)g [Ax

#

(x)

is linear in j#j, the number of di�erent types for # is bounded by 2

p(j#j)

, and

the number of states in G does not ex
eed 2

2

p(j#j)

.

Suppose we have
onstru
ted a
omplete tableau G for #. Due to the

presen
e of the temporal until operator, su
h tableaux do not ne
essarily

give rise to a quasimodel satisfying #. As an example, we present a
omplete

tableau for the obviously unsatis�able senten
e # = > U ? on Fig. 1. The

state s

1

has no su

essors be
ause the type t

0

1

(x) is not satis�able, and the

saturation rule returns
lash. Nevertheless, the tableau
ontains the loop

s

0

! s

0

, and so one
ould have tried to extra
t a quasimodel from this

in�nite path. It follows from Theorem 3.4 that the extra
ted sequen
e of

o
ks
annot be a quasimodel.

How
an we identify tableaux that do not des
ribe quasimodels? Here we

ome to the se
ond
omponent of Wolper's [20℄ tableau pro
edure. Having

built up a
omplete tableau for #, one has to eliminate those states that have

no su

essors or
ontain so-
alled unrealised eventualities. Wolper proved (in

the propositional
ase) that # is satis�able i� the root state of the
omplete

tableau is not eliminated.

Temporalising tableaux 21

` ;

t

0

��

t

1

��

`

t

0

0

Ax

#

t

0

0

Ax

#

t

0

1

Ax

#

s

r

// 33s

0

//
��

s

1

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

t

0

(x) = fq

#

; q

#

g [Ax

#

(x) t

0

0

(x) = fq

#

;>(x)g

t

1

(x) = fq

#

; q

#

; q

:#

g [Ax

#

(x) t

0

1

(x) = fq

#

;:q

#

;>(x)g

Ax

#

(x) = f>(x); q

#

! q

#

; :q

#

! q

:#

; :q

#

! q

:#

g

Figure 1. Complete tableau for ?U >.

Definition 4.5 (eventuality). Formulas of the form ' U (x) are
alled

eventualities. Let G = hS; s

r

;!; `; `

i be a tableau for #. A sequen
e

s

0

! � � � ! s

n

of states in G, where n � 0, is said to realise ' U (x) 2 t

0

(x) 2 `(s

0

) if

there exists a sequen
e

t

0

(x)!

t

0

1

(x)!

A

t

1

(x)!

t

0

2

(x)!

A

: : :!

t

0

n

(x)!

A

t

n

(x)

of types su
h that t

i

(x) 2 `(s

i

), t

0

i

(x) 2 `

(s

i

) for i, 0 � i � n, and

 (x) 2 t

n

(x).

Definition 4.6 (elimination rules). We use the following rules to eliminate

states in G:

(E2) if a state s 2 S has no !-su

essor, eliminate it;

(E3) if `(s), s 2 S,
ontains an eventuality having no realising sequen
e

starting from s, eliminate s.

Elimination rules (E2) and (E3) are very similar to those in [20℄. How-

ever, we do not need rule (E1) from [20℄, sin
e the
o
k `(s), for every state

22 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

s,
ontains no
ontradi
tion (it is the result of applying the saturation rule

A). In the
omplete tableau for # = >U ? from above, the state s

1

is elim-

inated sin
e it has no su

essor. Then s

0

is eliminated sin
e the eventuality

q

#

has no realising sequen
e. Finally, we eliminate the root s

r

due to (E2).

Theorem 4.7. Let (QT L

0

;TM) be a tmf-theory, (QL

0

;M) its �rst-order

redu
t, A a saturation rule for (QL

0

;M), and N a transition rule for QT L

0

.

Then for every QT L

0

-senten
e # the following
onditions are equivalent:

(1) # is satis�able in a model from TM;

(2) the root of a
omplete tableau for #
annot be eliminated using rules

(E2) and (E3).

In the following two subse
tions we will prove the impli
ations (1)) (2)

(
ompleteness) and (2)) (1) (soundness).

4.1. Completeness

We require a number of lemmas.

Suppose M = hN; <; Ii 2 TM, where I(n) =

D

�

n

; P

I(n)

0

; : : :

E

. For every

n 2 N, de�ne a �rst-order model

M

n

=

D

�

n

; P

M

n

0

; : : : ; Q

M

n

�

0

; : : : ; q

M

n

�

0

; : : :

E

2 M;

where �

0

; �

1

; : : : is an enumeration of all formulas of the form

1

U

2

and

 with one free variable x and �

0

; �

1

; : : : is an enumeration of all senten
e

of the form

1

U

2

and

 . Namely, we set P

M

n

i

= P

I(n)

i

and de�ne the

Q

M

n

'

and q

M

n

'

as follows:

� If Q

'

(x) 2 sub(Ax

#

(x)), then a 2 Q

M

n

'

i� (M; n) j= '[a℄, for every

a 2 �

n

; otherwise put, say, Q

M

n

'

= ;.

� If q

'

2 sub(Ax

#

(x)), then q

M

n

'

is true i� (M; n) j= '; otherwise let,

say, q

M

n

'

be false.

Lemma 4.8. For every subformula '(y) of #, every n 2 N, and every a 2 �

n

,

(M; n) j= '[a℄ i� M

n

j= '[a℄;

besides, M

n

j= Ax

#

(x).

Temporalising tableaux 23

Proof. The former
laim follows immediately from the de�nition of M

n

.

As to the latter, we show only that

M

n

j= q

'U

! _ (' ^ q

('U)

):

Suppose otherwise. Then M

n

j= q

'U

, M

n

6j= and M

n

6j= ' ^ q

('U)

. It

follows that (M; n) j= ' U and (M; n) 6j= . Moreover, we must also have

either (M; n) 6j= ' or (M; n) 6j=

(' U), i.e., (M; n+ 1) 6j= ' U ,
ontrary

to the truth-de�nition of U .

Suppose now that G = hS; s

r

;!; `; `

i is a
omplete tableau for # and

that # is satis�able in a model M = hN; <; Ii from the
lass TM, where

I(n) =

D

�

n

; P

I(n)

0

; : : :

E

.

Lemma 4.9. Let n 2 N, s

0

2 S, `

(s

0

) = T

0

, let a

0

be a T

0

-assignment in �

n

and t

0

0

(x) 2 T

0

. If M

n

j= T

0

[a

0

℄ then there are a state s 2 S with `(s) = T,

a T-assignment a in �

n

and a type t

0

(x) 2 T su
h that

s

0

! s; M

n

j= T[a℄; a

0

(t

0

0

) = a(t

0

);

and t

0

0

(x)!

A

t

0

(x).

Proof. Suppose M

n

j= T

0

[a

0

℄. Then, by (CO), we
an �nd T 2 A(T

0

),

t

0

(x) 2 T and a T-assignment a su
h that M

n

j= T[a℄, a

0

(t

0

0

) = a(t

0

) and

t

0

0

(x)!

A

t

0

(x). Sin
e G is
omplete, there is a state s 2 S su
h that s

0

! s

and `(s) = T.

Lemma 4.10. Let n 2 N, s 2 S, `(s) = T, let a be a T-assignment in �

n

and t

0

(x) 2 T. If M

n

j= T[a℄ then there are a state s

00

2 S with `(s

00

) = T

00

,

a T

00

-assignment a

00

in �

n+1

, and a type t

00

0

(x) 2 T

00

su
h that

s! s

00

; M

n+1

j= T

00

[a

00

℄; a(t

0

) = a

00

(t

00

0

);

and t

0

(x)!

t

0

0

(x)!

A

t

00

0

(x) for some type t

0

0

(x).

Proof. Let `

(s) = T

0

. Take the type t

0

0

(x) 2 T

0

su
h that t

0

(x)!

t

0

0

(x)

and de�ne a T

0

-assignment a

0

in �

n+1

so that a

0

(t

0

0

) = a(t

0

). For every

other type t

0

(x) 2 T

0

, either there is a type t(x) 2 T with t(x)!

t

0

(x) or

t

0

(x) = Ax

#

(x). In the former
ase put a

0

(t

0

) = a(t) and in the latter one

a

0

(t

0

) = a(t

0

). Clearly, M

n+1

j= T

0

[a

0

℄ holds whenever M

n

j= T[a℄ holds.

By Lemma 4.9, we then have a required state s

00

.

24 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

Lemma 4.11. There exists an in�nite sequen
e

s

r

! s

0

! s

1

! : : :

of states in G su
h that every eventuality ' U in every type of `(s

n

), n � 0,

is realised in the sequen
e s

n

; : : : ; s

m

, for some m � n.

Proof. Without loss of generality we may assume that (M; 0) j= #. By

Lemma 4.8, we then have M

0

j= # ^Ax

#

(x).

We
onstru
t the required sequen
e by indu
tion. We begin with s

r

and

take an arbitrary T

0

0

-assignment a

0

0

in �

0

, where `

(s

r

) = T

0

0

. Then
learly

M

0

j= T

0

0

[a

0

0

℄. By Lemma 4.9, we obtain a state s

0

with `(s

0

) = T

0

and a

T

0

-assignment a

0

in �

0

su
h that s

r

! s

0

and M

0

j= T

0

[a

0

℄. Denote the

beginning of our sequen
e by

s

r

! s

0

j a

0

(we will always need to remember the last assignment).

Suppose now that we have
onstru
ted a sequen
e

s

r

! s

0

! � � � ! s

n

j a

n

(ii)

su
h that `(s

n

) = T

n

and M

n

j= T

n

[a

n

℄. Two
ases are possible.

Case 1. Every eventuality in every type of `(s

i

), 0 � i � n, is realised in (ii).

In this
ase we take an arbitrary type t

n

(x) 2 T

n

and, by Lemma 4.10, �nd

a state s

n+1

with `(s

n+1

) = T

n+1

and a T

n+1

-assignment a

n+1

in �

n+1

su
h that s

n

! s

n+1

and M

n+1

j= T

n+1

[a

n+1

℄. So we
an extend (ii) with

s

n+1

j a

n+1

:

s

r

! s

0

! � � � ! s

n

! s

n+1

j a

n+1

:

Case 2. Suppose that Case 1 does not hold. Take a minimal k � n su
h

that some eventuality ' U (x) in some t

k

(x) 2 T

k

is not realised in (ii). As

all T

i

are A-quasistates, (' U)

+

2 T

i

. As T

k

is saturated and satis�able,

either (x) 2 t

k

(x) or '(x);

(' U)(x) 2 t

k

(x). And as ' U (x) is not

realised in (ii), only the latter
ase is possible. It follows that there are

t

0

k+1

(x) and t

k+1

(x) su
h that

t

k

(x)!

t

0

k+1

(x)!

A

t

k+1

(x) and ' U (x) 2 t

k+1

(x):

Thus we
an
hoose a sequen
e

t

k

(x)!

t

0

k+1

(x)!

A

: : :!

t

0

n

(x)!

A

t

n

(x)

Temporalising tableaux 25

su
h that t

i

(x) 2 T

i

,

' U (x) 2 t

i

(x);

(' U)(x) 2 t

i

(x) and (x) =2 t

i

(x) (iii)

for all i 2 [k; n℄.

Let a = a

n

(t

n

). We have M

n

j= T

n

[a

n

℄, and so, by (iii), M

n

j= ' U [a℄

and M

n

j= : [a℄. Then by Lemma 4.8,

(M; n) j= (' U)[a℄ and (M; n) j= : [a℄: (iv)

Now we
onstru
t a sequen
e of states realising our eventuality. By

applying Lemma 4.10 to s

n

, a

n

and t

n

(x) 2 T

n

su
h that M

n

j= T

n

[a

n

℄,

a

n

(t

n

) = a and

' U (x) 2 t

n

(x);

(' U)(x) 2 t

n

(x); =2 t

n

(x)

we �nd a state s

n+1

with `(s

n+1

) = T

n+1

and a T

n+1

-assignment a

n+1

in

�

n+1

with

s

n

! s

n+1

and M

n+1

j= T

n+1

[a

n+1

℄;

and t

n+1

(x) 2 T

n+1

su
h that a

n+1

(t

n+1

) = a and ' U (x) 2 t

n+1

(x). So

we
an extend (ii) with s

n+1

j a

n+1

.

Note that (' U)

+

2 T

n+1

and T

n+1

is a saturated
o
k, so either

 (x) 2 t

n+1

(x) or

(' U)(x) 2 t

n+1

(x) and (x) =2 t

n+1

(x). In the

former
ase the eventuality is realised by

s

k

! � � � ! s

n

! s

n+1

:

In the latter
ase we again apply the above pro
edure to the state s

n+1

, the

assignment a

n+1

and the type t

n+1

(x). It follows from (iv) that there must

exist m > n su
h that (M;m) j= [a℄, and so, by Lemma 4.8, M

m

j= [a℄.

Thus, we will �nd a realising sequen
e in at most m� n steps.

In the limit we obtain an in�nite sequen
e

s

r

! s

0

! s

1

! : : : (v)

satisfying the requirements of the lemma.

We are in a position now to prove the
ompleteness part of Theorem 4.7.

Proof. Suppose that # is satis�able in a model from the
lass TM, and let

G = hS; s

r

;!; `; `

i be a
omplete tableau for #. By Lemma 4.11, we have

an in�nite sequen
e

s

r

! s

0

! s

1

! : : : (vi)

26 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

of states in G su
h that every eventuality ' U in every type of `(s

n

), n � 0,

is realised in the sequen
e s

n

; : : : ; s

m

, for some m � n.

To prove
ompleteness, it suÆ
es to show that no s

i

from the sequen
e

is eliminated. Let

S = S

0

� S

1

� : : :

be the sequen
e produ
ed by the elimination pro
edure. We show by indu
-

tion on n that, for all n 2 N,

fs

r

g [fs

i

j i 2 Ng � S

n

:

The basis of indu
tion (n = 0) is
lear. Suppose fs

r

g [fs

i

j i 2 Ng � S

k

.

Sin
e every state s

i

has a su

essor, rule (E2) is not appli
able to it. As

all eventualities in the sequen
e (vi) are realised, rule (E3) is not appli
able

either.

4.2. Soundness

Lemma 4.12. Let G = hS; s

r

;!; `; `

i be a
omplete tableau for # and let S

0

be the set of states that remains after exe
ution of the elimination pro
edure.

If s

r

2 S

0

then there is an in�nite sequen
e

s

r

! s

0

! s

1

! : : :

of states in S

0

su
h that every eventuality ' U in every type of `(s

n

), n � 0,

is realised by the sequen
e s

n

; : : : ; s

m

for some m � n.

Proof. Suppose that we have
onstru
ted a sequen
e

s

r

! s

0

! s

1

! � � � ! s

n

(vii)

sitting entirely in S

0

. Two
ases are possible.

Case 1. Every eventuality in every type of `(s

i

), i � 0, is realised in (vii).

As (E2) is not appli
able to s

n

, we
an extend (vii) by a state s

n+1

2 S

0

with s

n

! s

n+1

.

Case 2. Suppose Case 1 does not hold. Take a minimal k 2 [0; n℄ su
h

that an eventuality ' U (x) in a type of `(s

k

) is not realised in (vii). Then

' U (x) belongs to some type in `(s

n

). Sin
e (E3) is not appli
able to s

n

,

' U (x) is realised by a sequen
e

s

n

! s

n+1

! � � � ! s

m

Temporalising tableaux 27

for some m � n su
h that s

i

2 S

0

for i 2 [n;m℄. Then we extend (vii) with

the states s

n+1

; : : : ; s

m

.

In the limit we obtain a sequen
e satisfying the
onditions of the lemma.

We
an now
omplete the proof of Theorem 4.7.

Proof. Suppose that G = hS; s

r

;!; `; `

i is a
omplete tableau for # and S

0

is the set of states whi
h remains after exe
ution of the elimination pro
edure

and that the root s

r

was not eliminated. By Theorem 3.4, it is enough to

prove that there exists a quasimodel satisfying #. Lemma 4.12 provides us

with an in�nite sequen
e

s

r

! s

0

! s

1

! : : :

of states in S

0

realising all eventualities. The reader
an readily
he
k that

(`(s

i

) j i 2 N) is a quasimodel satisfying #.

4.3. Tableaux:
onstant domains

Let us
onsider now the
ase of
onstant domains. Tableaux for this
ase
an

be obtained by a simple modi�
ation of tableaux for the
ase of expanding

domains. The major di�eren
e is that we use exhaustive saturation and

transition rules.

Definition 4.13 (exhaustive transition rule). The exhaustive transition rule

for QT L

0

is the map N that takes a
o
k T for # and returns the
o
k

N (T) =

�

t

0

(x) j t(x) 2 T and t(x)!

t

0

(x)

	

[fAx

#

(x) [fCDA

T

gg;

where

CDA

T

= 8x

_

t(x)2T

t(x)!

t

0

(x)

t

0

(x):

The formula CDA

T

is used to deal with
onstant domains: we must

now
onstru
t a quasimodel in whi
h the domains of runs are total. In other

words, this means that for every quasistate T

n+1

and every t(x) 2 T

n+1

,

there must exist a type t

0

(x) 2 T

n

su
h that the two
onditions formulated

in De�nition 3.3 are satis�ed. However, this is pre
isely what the joint use

of CDA

T

and the surrogate axioms ensures. Together with the modi�ed

Property (CO

0

) of exhaustive saturation rules, this approa
h resembles the

`minimal types' te
hnique developed in [16℄.

28 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

Theorem 4.14. Let (QT L

0

;TM) be a tmf-theory, where TM is a
lass of

models with
onstant domains, (QL

0

;M) a �rst-order redu
t of (QT L

0

;TM),

A an exhaustive saturation rule for (QL

0

;M) and N an exhaustive transition

rule for QT L

0

. Then for every QT L

0

-senten
e # the following
onditions are

equivalent:

(1) # is satis�able in a model from TM;

(2) the root of a
omplete tableau for #
annot be eliminated using rules

(E2) and (E3).

A
lose inspe
tion of the proofs for the
ase of expanding domains shows

that it is suÆ
ient to prove reformulations of the lemmas above in whi
h

� the model M is assumed to have
onstant domains,

� the `(s

n

) are exhaustive
o
ks for the
orresponding M

n

.

The only non-trivial
hanges are in Lemmas 4.9 and 4.10.

Suppose that G = hS; s

r

;!; `; `

i is a
omplete tableau for # and that #

is satis�able in a model M = hN; <; Ii 2 TM, where I(n) =

D

�; P

I(n)

0

; : : :

E

for all n 2 N.

Lemma 4.15. Let n 2 N, s

0

2 S, `

(s

0

) = T

0

, let a

0

be a T

0

-assignment in �

and t

0

0

(x) 2 T

0

. If M

n

j= T

0

[a

0

℄ and T

0

is exhaustive for M

n

then there are

a state s 2 S with `(s) = T, a T-assignment a in � and a type t

0

(x) 2 T

su
h that

s

0

! s; M

n

j= T[a℄ and T is exhaustive for M

n

; a

0

(t

0

0

) = a(t

0

)

and t

0

0

(x)!

A

t

0

(x).

Proof. The proof is analogous to the proof of Lemma 4.9 and follows im-

mediately from (CO

0

).

Lemma 4.16. Let n 2 N, s 2 S, `(s) = T, let a be a T-assignment in �, and

t

0

(x) 2 T. If M

n

j= T[a℄ and T is exhaustive for M

n

then there are a state

s

00

2 S with `(s

00

) = T

00

, a T

00

-assignment a

00

in �, and a type t

00

0

(x) 2 T

00

su
h that

s! s

00

; M

n+1

j= T

00

[a

00

℄ and T

00

is exhaustive for M

n+1

; a(t

0

) = a

00

(t

00

0

)

and t

0

(x)!

t

0

0

(x)!

A

t

00

0

(x) for some type t

0

0

(x).

Temporalising tableaux 29

Proof. The proof is analogous to the proof of Lemma 4.10. The only

di�eren
e is that in the proof ofM

n+1

j= T

0

[a

0

℄ we have to show additionally

that

M

n+1

j= CDA

T

:

Suppose a 2 �. As T is exhaustive for M

n

, there is a type t(x) 2 T

su
h that M

n

j= t[a℄, and we
hoose t

0

(x) 2 T

0

with t(x) !

t

0

(x). Then

M

n+1

j= t

0

[a℄ and M

n+1

j= CDA

T

.

It should be
lear that the
o
k T

0

is exhaustive for M

n+1

, and then

Lemma 4.15 supplies a state s

00

and an assignment a

00

as required.

5. Instantiating the framework

The purpose of this se
tion is to illustrate the generality of our approa
h

by presenting example instantiations of the framework. To keep the presen-

tation su

in
t, we sti
k to simple yet useful fragments of �rst-order logi
:

exhaustive and non-exhaustive saturation rules are presented for

1. the f-theory (QL

1

;FO) indu
ed by the one-variable fragment of �rst-

order logi
 (whi
h is a notational variant of propositional modal logi

S5 [19℄) and

2. the f-theory (ST ;TR)
orresponding to the propositional bimodal logi

S4

u

introdu
ed in Se
tion 2.2.

In fa
t, we show that the well-known, existing tableau de
ision pro
edures for

these fragments of �rst-order logi
|for the
orresponding modal logi
s, to be

more pre
ise (see e.g., [4, 9℄)|
an be regarded as saturation rules for the
ase

of expanding domains, whereas some additional e�orts are needed to obtain

exhaustive saturation rules. The te
hnique des
ribed in Se
tion 4 then yields

`temporal' tableau algorithms for the one-variable fragment QT L

1

of QT L

and the tmf-theory (T ST ;TTR) from Se
tion 2.2, i.e., the temporalisation of

(ST ;TR)|both for expanding and
onstant domains. We �nish this se
tion

with presenting some example runs of the tableau algorithm for QT L

1

.

5.1. S5

As a (non-exhaustive) saturation rule for the one-variable fragment of �rst-

order logi
, we use a slight variant of the well-known pre�xed tableaux for

S5, as presented e.g. in [4℄. The main di�eren
e between our presentation

of this algorithm and the one given in [4℄ is that we write formulas in the

syntax of �rst-order logi
 rather than modal logi
.

30 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

A labelled formula is of the from � :: ', where � is a label and ' a formula

(in our examples ' is a QL-formula with at most one free variable). A label �

is a nonempty sequen
e of natural numbers separated by dots. For example,

1:21 and 1:2:1 are labels. Labels allow us to distinguish between formulas

that belong to one world and those belonging to another one. Moreover, the

stru
ture of labels des
ribes the a

essibility relation between the worlds.

Although in the de�nition of the tableau algorithm for S5 we use only natural

numbers as labels (i.e., all labels are of length 1), we still denote these

sequen
es by Greek letters (�, � , et
.) be
ause the same tableau rules are

used for S4

u

in Se
tion 5.2, where the stru
ture of labels is essential.

A tableau T (for both f-theories we
onsider in this se
tion) is a �nite

tree, where ea
h node
ontains a single labelled formula. A tableau bran
h

B of T is a path starting at the root node and ending at a leaf node.

Suppose we are given a
o
k T = ft

1

(x); : : : ; t

k

(x)g. The tableau al-

gorithm starts with an initial tableau T

0

onsisting of a single bran
h su
h

that its nodes
ontain all labelled formulas of the set

fn :: '(x) j '(x) 2 t

n

(x) and 1 � n � kg:

Thus, for every type t

i

(x) we introdu
e a unique label i whi
h denotes a new

world for this type (in the modal logi
 setting), or a set of domain elements

indistinguishable by formulas of t

i

(x) (in the �rst-order logi
 setting).

Then the algorithm exhaustively applies the tableau rules given in Fig. 2

to nodes on ea
h bran
h B of the tableau as follows.

(l:) If a node
ontains � :: ::'(x) then an appli
ation of (l:) appends a

node
ontaining � :: '(x) to B.

(l^) If a node
ontains � :: '(x)^ (x) then an appli
ation of (l^) appends

two
onse
utive nodes to B, one
ontaining � :: '(x) and the other

� :: (x).

(l_) If a node
ontains � :: :('(x)^ (x)) then an appli
ation of (l_) splits

the end of B and extends the left fork with � :: :'(x) and the right

one with � :: : (x).

(l9) If a node
ontains � :: :8x'(x) then an appli
ation of (l9) extends B

with � :: :'(x), where � is a new label on B.

(l8) If a node
ontains � :: 8x'(x) then an appli
ation of (l8) extends B

with � :: '(x), where the label � already exists on B.

(l8

�

) If a node
ontains � :: ', where ' is a senten
e, then an appli
ation of

(l8

�

) extends B with � :: ', where the label � already exists on B.

Temporalising tableaux 31

(l:)

� :: ::'(x)

� :: '(x)

(l^)

� :: '(x) ^ (x)

� :: '(x)

� :: (x)

(l_)

� :: :('(x) ^ (x))

� :: :'(x) j � :: : (x)

(l9)

� :: :8x'(x)

� :: :'(x)

� is new for B

(l8)

� :: 8x'(x)

� :: '(x)

� is used on B

(l8

�

)

� :: '

� :: '

� is used on B

Figure 2. Tableau rules for S5.

Observe that every bran
h B of a tableau
an be
onverted into a
o
k

T

B

by setting

T

B

= ft

B

�

(x) j � is a label on Bg;

where

t

B

�

(x) = f'(x) j � :: '(x) o

urs on Bg

(note that types t

B

�

(x) and t

B

�

(x) may
oin
ide for � 6= � ; in this
ase they

are identi�ed in T

B

).

We generally assume tableau rules to be applied in su
h a way that no

labelled formula appears twi
e on the same bran
h and that (l9) is never

applied twi
e to the same labelled formula. A bran
h B is
omplete if no

rule
an be applied to it. A bran
h B is
alled
ontradi
tory if both � :: '

and � :: :' o

ur on B, for some formula ' and label �. A tableau T is

omplete if ea
h bran
h in T is
omplete.

To simplify further
onsiderations, we �x an order of rule appli
ations.

We assume that there is an ordering on pairs ((l); � :: '), with tableau rule

(l) and labelled formula � :: ', and that a tableau rule (l) is applied to a

formula � :: ' only if ((l); � :: ') is minimal with respe
t to the ordering.

In this way, the tableau
onstru
ted by the algorithm for a given input T

is
ompletely determined. We
all this tableau the
anoni
al tableau for T.

Note that
anoni
al tableaux are
omplete by de�nition. We use B

T

to

denote the set of non-
ontradi
tory bran
hes in the
anoni
al tableau for T.

If started on a
o
k T, the tableau algorithm
onstru
ts the
anoni
al

tableau for T. It is a standard task to prove that this
onstru
tion termi-

nates. If B

T

is the empty set, then A

S5

(T) =
lash is returned. Otherwise,

32 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

ea
h element ofB

T

represents a
o
k as explained above. Sin
e every bran
h

in B

T

is
omplete, the
orresponding
o
ks are saturated. Thus, if B

T

is

nonempty, then the tableau algorithm returns the set

A

S5

(T) = fT

B

j B 2 B

T

g:

It is easy to see that this algorithm satis�es property (TR) of saturation

rules. Hen
e, let us pro
eed to property (CO).

Lemma 5.1. Let T be a
o
k. For every model M 2 FO with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there are a bran
h B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment a

0

in

� su
h that t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T = ft

1

(x); : : : ; t

k

(x)g be a
o
k, M 2 FO with domain � and

let a be a T-assignment in � su
h thatM j= T[a℄. Without loss of generality

we may assume that t = t

1

. Suppose that the
anoni
al tableau for T is the

last tableau of the sequen
e

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appli
ation of a tableau rule.

We de�ne, for ea
h tableau T

i

, 0 � i � n, a bran
h B

i

of T

i

and a T

B

i

-

assignment a

i

in � as follows. Let B

0

be the single bran
h of T

0

. Set a

0

= a

(re
all that formulas of type t

j

(x) are labelled by j on B

0

). Clearly we have

M j= T

B

0

[a

0

℄. Then we pro
eed in su
h a way that the following
onditions

are satis�ed for every i, 0 < i � n:

M j= T

B

i

[a

i

℄ and a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

): (viii)

Without loss of generality we
an always assume that t

B

i

1

2 T

B

i

for every i,

0 � i � n (re
all that in a
o
k T

B

i

types
an be identi�ed).

Suppose that we have already
onstru
ted B

i

and a

i

, 0 � i < n, and T

i+1

is obtained from T

i

by an appli
ation of (l). Consider all possible
ases.

(l_) is applied to � :: :('(x)^ (x)) on B

i

. The rule appli
ation splits B

i

into

two bran
hes B

'

and B

, where B

'

ontains a new node with � :: :'(x) and

B

ontains a new node with � :: : (x). Let a be the value assigned to the

type of � at step i, i.e., a

i

(t

B

i

�

). Sin
e, by IH,M j= :('(x)^ (x))[a℄, we have

either M j= :'(x)[a℄ or M j= : (x)[a℄. In the former
ase, set B

i+1

= B

'

and in the latter one B

i+1

= B

. In either
ase, let a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for

every type t

B

i+1

�

(x) 2 T

B

i+1

.

Temporalising tableaux 33

(l9) is applied to �

0

:: :8x'(x) on B

i

, introdu
ing a label � and
reating a

node with � :: :'(x). Sin
e M j= :8x'(x), there exists an element a 2 �

su
h thatM j= '[a℄. Let B

i+1

be the extension of B

i

with the new node and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

and a

i+1

(t

B

i+1

�

) = a.

In all other
ases B

i+1

is the extension of B

i

with the new nodes and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

.

It is easy to show that in every
ase B

i+1

and a

i+1

satisfy (viii). Sin
e

M j= T

B

n

[a

n

℄, the bran
h B

n

is not
ontradi
tory, i.e., B

n

2 B

T

. Now set

B = B

n

, a

0

to a

n

and t

0

(x) = t

B

n

1

(x). It is readily
he
ked that B, t

0

and a

0

are as required.

Note that the proof of the lemma above resembles the standard
omplete-

ness proof for the des
ribed tableau algorithm: an existing model is used to

`guide' the appli
ation of the tableau rules. We now
ome to property (SO),

i.e., to soundness.

Lemma 5.2. For every
o
k T, every
ardinal �

0

� �

0

, and every bran
h

B 2 B

T

, there exists a model

M =

D

�; Q

M

0

; : : : q

M

0

; : : :

E

2 FO;

in whi
h

� � =

S

t2T

B

�

t

, where �

t

are pairwise disjoint sets of
ardinality �

0

,

� q

M

i

is true i� q

i

2 T

B

,

� a 2 Q

M

i

i� there is a type t(x) 2 T

B

su
h that Q

i

(x) 2 t(x) and

a 2 �

t

,

su
h that M j= t[a℄ holds for all t(x) 2 T

B

and a 2 �

t

.

Proof. Fix a bran
h B 2 B

T

and a
ardinal �

0

� �

0

. De�ne a model M

by taking

�

t

= fht; �i j � < �

0

g for t(x) 2 T

B

;

Q

M

i

= fht; �i j Q

i

(x) 2 t(x) and � < �

0

g;

q

M

i

= fht; �i j q

i

2 t(x) and � < �

0

g:

Using the fa
t that B is
omplete and non-
ontradi
tory, by indu
tion on

the stru
ture of formulas one
an easily show that M is as required.

We thus obtain the following lemma.

Lemma 5.3. A

S5

is a saturation rule for (QL

1

;FO).

34 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

(l�)

� :: :8v (R(x; v)! '(v))

�:m :: :'(x)

�:m is new to B

(lK)

� :: 8v (R(x; v)! '(v))

�:w :: '(x)

(lT)

� :: 8v (R(x; v)! '(v))

� :: '(x)

(l4)

� :: 8v (R(x; v)! '(v))

�:w :: 8v (R(x; v)! '(v))

�:w is already exists on B

Figure 3. Additional tableau rules for S4

u

.

5.2. S4

u

Let us now extend the previous example to a saturation rule for the propo-

sitional modal logi
 S4 with the universal modality, that is to the f-theory

(ST ;TR) de�ned in Se
tion 2.2.

The tableau algorithm for S4

u

is similar to that for S5, so we
on
entrate

on the di�eren
es. The set of tableau rules is
omprised of those in Fig. 2

(for the Booleans and the universal modality) and Fig. 3 (for the transitive

and re
exive modal operator 2 of S4|its �rst-order translation, to be more

pre
ise). Again we assume that the rules (l9) and (l�) are applied at most

on
e for every node.

To ensure termination of rule appli
ation, some additional e�orts are

required. We say that a label � is redu
ed if no rule di�erent from (l9) and

(l�)
an be applied to nodes
ontaining � :: '. A label � is
alled fully

redu
ed if no tableau rule is appli
able to nodes
ontaining � :: '. Now, a

bran
h B is
omplete if

� all labels on B are redu
ed and

� for every � that is not fully redu
ed, there exists a fully redu
ed label

� su
h that t

B

�

(x) = t

B

�

(x).

To guarantee termination, tableau rules must not be applied to
omplete

bran
hes. The tableau algorithm works as the one from the previous se
tion:

it
onstru
ts the
anoni
al tableau, returns A

S4

u

=
lash if B

T

is empty

and the set of saturated
o
ks

A

S4

u

(T) = fT

B

j B 2B

T

g;

Temporalising tableaux 35

otherwise.

We now show that the extended algorithm is a (non-exhaustive) satura-

tion rule for (ST ;TR). As it is easy to prove that (TR) is satis�ed, we again

start with (CO).

Lemma 5.4. Let T be a
o
k. For every model M 2 TR with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there are a bran
h B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment a

0

in

� su
h that t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T = ft

1

(x); : : : ; t

k

(x)g be a
o
k,

M =

D

�; R

M

; Q

M

0

; : : : ; q

M

0

; : : : ;

E

2 TR;

and let a be a T-assignment in � su
h that M j= T[a℄. Without loss of

generality we may assume that t = t

1

. Suppose that the
anoni
al tableau

for T is the last tableau of the sequen
e

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appli
ation of a tableau rule. For a bran
h B of a tableau and

an T

B

-assignment a, we write M j=

a

R

B

to say that (a(t

B

�

); a(t

B

�:�

)) 2 R

M

,

for all labels � and �:� on the bran
h (both � and � are sequen
es of natural

numbers).

We de�ne, for ea
h tableau T

i

, 0 � i � n, a bran
h B

i

of T

i

and a T

B

i

-

assignment a

i

. Let B

0

be the single bran
h of T

0

. Set a

0

= a. Then we

pro
eed in su
h a way that the following
onditions are satis�ed for every i,

0 < i � n,

M j= T

B

i

[a

i

℄; a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

) and M j=

a

i

R

B

i

:

Assume that we have already
onstru
ted B

i

and a

i

, for 0 � i < n, and T

i+1

is obtained from T

i

by an appli
ation of (l). Sin
e the rules in Fig. 2
an be

treated in pre
isely the same way as in Lemma 5.1, we
on
entrate only on

the rules in Fig. 3.

(l�) is applied to � :: :8v (R(x; v) ! '(v)) on B

i

, introdu
ing a new label

�:m and
reating a node �:m :: :'(x). Let a be the value assigned to the type

of � at step i, i.e., a

i

(t

B

i

�

). Sin
e, by IH, M j= (:8v (R(x; v) ! '(v)))[a℄,

there exists an element a

0

2 � su
h that (a; a

0

) 2 R

M

and M j= :'[a

0

℄.

Let B

i+1

be the extension of B

i

with the new node, a

i+1

(t

B

i+1

�:m

) = a

0

and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for all other types t

B

i+1

�

(x) 2 T

B

i+1

.

36 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

In all other
ases B

i+1

is the extension of B

i

with the new nodes and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

.

Again it is straightforward to show that B

i+1

and a

i+1

are as required

(for (lK), (lT) and (l4) we need to use the fa
t thatM j=

a

i

R

B

i

) and that B

n

and a

n

indu
e a bran
h B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment

a

0

, as required by the lemma.

It remains to prove that the soundness property (SO) holds.

Lemma 5.5. For every
o
k T, every
ardinal �

0

� �

0

, and every bran
h

B 2 B

T

there exists a model

M =

D

�; R

M

; Q

M

0

; : : : q

M

0

; : : :

E

2 TR;

in whi
h

� � =

S

t2T

B

�

t

, where �

t

are pairwise disjoint sets of
ardinality �

0

,

� q

M

i

is true i� q

i

2 T

B

,

� a 2 Q

M

i

i� there is a type t(x) 2 T

B

su
h that Q

i

(x) 2 t(x) and

a 2 �

t

,

su
h that M j= t[a℄ holds for all t(x) 2 T

B

and a 2 �

t

.

Proof. Fix a bran
h B 2 B

T

and a
ardinal �

0

� �

0

. De�ne a model M

by taking

�

t

= fht; �i j � < �

0

g for t(x) 2 T

B

;

R

M

= f

�

ht; �i ;

t

0

; �

0

��

j t = t

B

�

and t

0

= t

B

�

for � � �g;

Q

M

i

= fht; �i j Q

i

(x) 2 t(x) and � < �

0

g;

q

M

i

= fht; �i j q

i

2 t(x) and � < �

0

g;

where � � � i� � is a (not ne
essarily proper) pre�x of � . Clearly, R

M

is re
exive and transitive. Sin
e distin
t labels � and �

0

may des
ribe the

same type t

B

�

= t

B

�

0

, in general R

M

is not ne
essarily antisymmetri
, i.e., it

is a quasi-order. Using the fa
t that B is
omplete and non-
ontradi
tory,

by indu
tion on the stru
ture of formulas one
an easily show that M is as

required.

Summing up, we obtain the following:

Lemma 5.6. A

S4

u

is a saturation rule for (ST ;TR).

Temporalising tableaux 37

k :: :('(x) ^ (x)) k is marked

k :: :'(x)

k :: :'(x)

m :: : (x) for m new to B

m :: �(x) for every k :: �(x) on B

k :: : (x)

Figure 4. The disjun
tion rule (l_

�

) for marked labels.

5.3. Constant domains

With minor modi�
ations, the tableau algorithms presented in Se
tions 5.1

and 5.2 also give rise to exhaustive saturation rules for (QL

1

;FO) and

(ST ;TR), respe
tively. Here we
onsider only the latter, more general
ase.

In the
onstant domain tableau algorithm, there exist two types of la-

bels: marked and unmarked ones, where marked labels are always of length

one (i.e.
ontain no dots). We assume that ea
h input
o
k
ontains the

distinguished type t

z

(x) = f>(x)g. In the initial tableau for a
o
k T, a

marked label is used for t

z

(x). All other labels in the initial tableau are

unmarked. For the appli
ation of tableau rules, senten
es and formulas with

unmarked labels are treated pre
isely as in the expanding domain
ase.

The only di�eren
e for marked labels is that a modi�ed version of the

disjun
tion rule is used, whi
h
an be found in Fig. 4: if k :: :('(x) _ (x))

is found on a bran
h B with k marked, then we split the end of the bran
h

into three and do the following: the left fork is extended with the labelled

formula k :: :'(x), the right one with k :: (x), and the middle fork is

extended with formulas

fk :: :'(x); m :: : (x)g [fm :: �(x) j k :: �(x) is on Bg;

where m is a new marked label of length 1 (a `
opy' of k). Intuitively, we

are
onstru
ting a set of `minimal types'
orresponding to the marked la-

bels as proposed in [16℄: if B is a non-
ontradi
tory bran
h of the
anoni
al

tableau and M a model with domain � su
h that M j= T

B

[a℄ for some

T

B

-assignment a, then for ea
h d 2 � we �nd a marked label � on B su
h

that M j= t

B

�

[d℄.

1

This obviously
orresponds to the `exhaustiveness' prop-

erty required by the strengthened
ompleteness
ondition (CO

0

) for
onstant

domains.

1

The type t

B

�

(x) is
alled a minimal type, sin
e there is no type t(x) 2 T

B

su
h that

t(x) � t

B

�

(x).

38 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

The result returned by the
onstant domain tableau algorithm A

0

S4

u

is

obtained from the
anoni
al tableau in the very same way as for expanding

domains. Let us now prove the
onstant domain
ompleteness property

(CO

0

):

Lemma 5.7. Let T be a
o
k. For every model M 2 TR with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there is a bran
h B 2 B

T

su
h that

1. T

B

is exhaustive for M,

2. there exist a type t

0

(x) 2 T

B

and a T

B

-assignment a

0

in � su
h that

t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T be a
o
k, M =

�; R

M

; Q

M

0

; : : : ; q

M

0

; : : :

�

2 TR, and a a T-

assignment in � su
h that M j= T[a℄. Suppose that the
anoni
al tableau

for T is the last tableau of the sequen
e

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appli
ation of a tableau rule.

We de�ne, for ea
h tableau T

i

, 0 � i � n, a bran
h B

i

of T

i

, an T

B

i

-

assignment a

i

, and a surje
tive map �

i

from � to the set of marked labels on

B

i

. Let B

0

be the single bran
h of T

0

. Set a

0

= a, and let �

0

be the fun
tion

mapping every element of � to the single marked label on B

0

(re
all that

>(x) is the only formula labelled by it). We pro
eed in su
h a way that the

following
onditions are satis�ed:

M j= T

B

i

[a

i

℄; a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

); M j=

a

i

R

B

i

;

and

�

i

(d) = � implies M j= t

B

i

�

[d℄ for every d 2 �: (ix)

Assume that we have already
onstru
ted B

i

, a

i

, and �

i

for 0 � i < n, and

T

i+1

is obtained from T

i

by an appli
ation of (l). All rules ex
ept (l_

�

) are

treated as in Lemmas 5.1 and 5.4 with the addition that �

i+1

= �

i

for any

of these rules.

(l_

�

) is applied to �:k :: :('(x) ^ (x)), where �:k is a marked label. The

rule appli
ation splits B

i

into three bran
hes B

'

, B

and B

�

, where B

'

has

a new node
ontaining �:k :: :'(x), B

has a node
ontaining �:k :: : (x),

and B

�

has new nodes
ontaining

f�:k :: :'(x); �:m :: : (x)g [f�:m :: �(x) j �:k :: �(x) is on B

i

g;

Temporalising tableaux 39

where �:m is a new marked label. De�ne two sets

�

'

=fd 2 � j �

i

(d) = �:k and M j= :'[d℄g;

�

=fd 2 � j �

i

(d) = �:k and M j= : [d℄g:

Due to the surje
tivity of �

i

, we have either �

'

6= ; or �

6= ;. So we have

to
onsider three
ases:

1. If �

'

= ;, then B

i+1

= B

.

2. If �

= ;, then B

i+1

= B

'

.

3. If �

'

6= ; and �

6= ;, then B

i+1

= B

�

, a

i+1

(t

B

i+1

�:m

) = a

i

(t

B

i

�:k

) and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every other t

B

i+1

�

(x) 2 B

i+1

, and

�

i+1

(d) =

8

>

<

>

:

�:k; if d 2 �

'

;

�:m; if d 2 �

n�

'

;

�

i

(d); otherwise.

Finally, in the �rst two
ases we let �

i+1

= �

i

and a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for

every t

B

i+1

�

(x) 2 B

i+1

.

In the same way as in the proof of Lemma 5.4 we
an use B

n

and a

n

to

�x a bran
h B = B

n

2 B

T

, a type t

0

2 T

B

, and a T

B

-assignment a

0

su
h

that
ondition 2 from the formulation of the lemma is satis�ed. It remains

to note that exhaustiveness of T

B

is obviously an immediate
onsequen
e

of (ix).

Sin
e soundness (SO)
an be proved pre
isely as in the expanding domain

ase, we obtain the following:

Lemma 5.8. A

0

S4

u

is an exhaustive saturation rule for (ST ;TR).

In general, it seems that all tableau algorithms whi
h may serve as an

(expanding domain) saturation rule
an be
onverted into an exhaustive

saturation rule by modifying all non-deterministi
 tableau rules in the way

we modi�ed the (l_

�

) rule: instead of
onsidering ea
h non-deterministi

out
ome separately, we must also
onsider arbitrary
ombinations of su
h

out
omes. More details on this issue
an be found in [16℄.

40 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

5.4. Temporal tableaux at work

In the following, we exemplarily apply the temporal tableau
al
ulus from

Se
tion 4 to some QT L

1

-formulas using the tableau algorithm for QL

1

as a

saturation rule as shown in Se
tion 5.1.

Remark 5.9. Let # be a QT L

1

-senten
e and G a
omplete tableau for

after exe
ution of the elimination pro
edure. Then
learly no type in

the tableau
ontains both

'(x) and

:'(x) (otherwise the node has no

su

essor). On the other hand, it follows from (

')

:

that every type of every

saturated
o
k `(s), where s is a state in G,
ontains at least one of

'(x)

and

:'(x), for every subformula

'(x) of #. So in the �nal (
ompleted

and pruned) tableaux we
an identify

'(x) and :

:'(x) and
onsider

only one of them, sin
e the truth value of the other
an easily be restored.

Similarly, axiom (

1

U

2

)

:

guarantees that every type in every saturated

o
k `(s)
ontains pre
isely one of

(

1

U

2

)(x) and

:(

1

U

2

)(x), for

every subformula

1

U

2

(x) of #. So by the same argument we
an identify

(

1

U

2

)(x) and :

:(

1

U

2

)(x).

Example 5.10. Consider the formula

2

�

9y

�

C(y) ^ :

C(y)

�

^ 8y

�

:C(y)!

:C(y)

�

�

;

from Example 2.8. As was shown above, we
an identify q

(>U:)

with

:q

:(>U:)

and Q

C

(x) with :Q

:C

(x) (and
onsider only one representa-

tive of ea
h pair). This is done to simplify tableau in the example by avoiding

onstru
tion of dead ends. Then the set Ax

#

(x) of surrogate axioms
onsists

of the following formulas:

>(x);

q

>U:

! :9y

�

C(y) ^ :Q

C

(y)

�

_ :8y

�

C(y) _ :Q

C

(y)

�

_ q

(>U:)

;

:q

>U:

! 9y

�

C(y) ^ :Q

C

(y)

�

^ 8y

�

C(y) _ :Q

C

(y)

�

^ :q

(>U:)

;

:q

(>U:)

! :q

(>U:)

;

8x

�

:Q

C

(x)! :Q

C

(x)

�

:

We begin
onstru
ting a tableau for # with a state s

r

su
h that

`(s

r

) = ;; `

(s

r

) = T

0

0

and T

0

0

= ft

0

0

(x); Ax

#

(x)g:

The
o
k T

0

0

onsists of only two types, namely, t

0

0

(x) = f:q

>U:

;>(x)g

and Ax

#

(x). As a saturation rule we use the tableau pro
edure for the one-

variable fragment from Se
tion 5.1. The
omplete tableau for T

0

0

ontains

Temporalising tableaux 41

`

;

t

C

t

:C

��

t

:C

t

:C

��

t

C

t

:C

t

:C

��

t

:C

��

`

t

0

0

Ax

#

t

0

C

t

0

:C

Ax

#

t

0

:C

Ax

#

t

0

C

t

0

:C

Ax

#

t

0

:C

Ax

#

s

r

// 33 66s

1

// &&
s

2 66YY s

4

oo
EE s

3

ooxx

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

Figure 5. Complete tableau for Example 2.8.

then three non-
ontradi
tory bran
hes, ea
h of whi
h represents a
lass of

models for T

0

0

. These bran
hes give us the following saturated
o
ks

T

1

= ft

:C

(x); t

C

(x)g ; T

2

= ft

:C

(x); t

:C

(x)g ; T

3

= ft

:C

(x)g

onsisting of three distin
t types

t

:C

(x) = �

0

(x) [fC(x); :Q

C

(x); C(x) ^ :Q

C

(x)g ;

t

C

(x) = �

0

(x) [fC(x); Q

C

(x)g ;

t

:C

(x) = �

0

(x) [f:C(x); :Q

C

(x)g ;

where �

0

(x) = Ax

#

(x)[f:q

>U:

; :q

(>U:)

g. Thus, the result of saturation

is

A(T

0

0

) = fT

1

;T

2

;T

3

g ;

and so we
reate three new states s

1

, s

2

and s

3

labelled by T

1

, T

2

and T

3

,

respe
tively.

Now we take one step in time and obtain N (T

i

) = T

0

i

, for i = 1; 2; 3,

42 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

with

T

0

1

=

�

t

0

:C

(x); t

0

C

(x); Ax

#

(x)

	

;

T

0

2

=

�

t

0

:C

(x); Ax

#

(x)

	

;

T

0

3

=

�

t

0

:C

(x); Ax

#

(x)

	

;

where t

0

:C

(x) = f:q

>U:

; :C(x); >(x)g, t

0

C

(x) = f:q

>U:

; C(x); >(x)g.

An appli
ation of the saturation rule to the
o
ks T

0

1

, T

0

2

and T

0

3

gives

A(T

0

1

) = fT

2

;T

4

g ; A(T

0

2

) = fT

2

;T

4

g and A(T

0

3

) = fT

2

;T

4

g ;

where T

4

= ft

:C

(x); t

:C

(x); t

C

(x)g. As in the tableau we already have

a state, s

2

, labelled by T

2

, we
reate one new state s

4

and label it by T

4

.

Having taken the se
ond step in time, we obtain N (T

4

) = T

0

4

, where

T

0

4

=

�

t

0

:C

(x); t

0

C

(x); Ax

#

(x)

	

:

An appli
ation of the saturation rule to T

0

4

gives no new states, so this

step
ompletes the tableau. Wolper's elimination rules will not redu
e the

number of states, sin
e our formula
ontains no eventualities. The resulting

tableau is depi
ted on Fig. 5.

Example 5.11. Consider now the formula # = 8y

:C(y) ^

9y C(y). Its

�rst-order redu
t is # = 8y Q

:C

(y)^q

9yC

and the set Ax

#

(x) of surrogate

axioms
onsists of three formulas (modulo the simpli�
ations above):

>(x);

8x (:Q

:C

(x)! :Q

:C

(x));

:q

9yC

! :q

9yC

:

In the
ase of expanding domains (using again the saturation rule for the one-

variable fragment from Se
tion 5.1) we obtain then the in�nite path of the

omplete temporal tableau for # (see Fig. 5.4). It should be remarked that

the
omplete tableau
ontains more than 30 states, however the displayed

path is enough to
onstru
t a quasimodel satisfying #.

In the
ase of
onstant domains, the type Ax

#

(x) in s

0

ontains the

formula

CDA

T

= 8x (:C(x) ^ 9y C(y));

whi
h is
learly not satis�able. Therefore, s

0

has no su

essors, and the

elimination pro
edure removes both s

r

and s

0

, so that the resulting tableau

is empty. By Theorem 4.14, # is not satis�able in
onstant domains.

Temporalising tableaux 43

`

;

t

1

��

t

2

t

t

3

��

`

t

0

0

Ax

#

t

0

1

Ax

#

t

0

1

Ax

#

s

r

//
s

0

//
s

1

��

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

t

0

0

(x) = f#; >(x)g

t

1

(x) = f#; 8y Q

:C

(y); Q

:C

(x); q

9yC

;>(x)g

t

0

1

(x) = f:C(x); 9y C(y); >(x)g

t

2

(x) = f:C(x); 9y C(y); Q

:C

(x); q

9yC

; >(x)g

t

(x) = fC(x); 9y C(y); Q

:C

(x); q

9yC

; >(x)g

t

3

(x) = f9y C(y); Q

:C

(x); q

9yC

; >(x)g

Figure 6. An in�nite path in the tableau for 8y
:C(y) ^
9y C(y).

6. Con
lusion

We have presented a general framework for
onstru
ting tableau algorithms

for monodi
 fragments of �rst-order temporal logi
 from Wolper's tableau

algorithm for PTL and de
ision pro
edures for fragments of �rst-order logi
.

In both the expanding domain and the
onstant domain
ase, we
an use

existing de
ision pro
edures for �rst-order fragments. However, for
onstant

domains we need more than a single appli
ation of the algorithm.

As example instantiations of our framework, we have developed tableau

algorithms for the one-variable fragment of monodi
 FOTL and for the tem-

poralisation of the modal logi
 S4

u

. These logi
s are suÆ
iently simple to

serve as examples but also have some rather serious appli
ations:

� The tableau system for the one-variable fragment QT L

1

of FOTL
an

be used for various spatio-temporal reasoning tasks, see [27℄ for an

embedding of spatio-temporal logi
s in this fragment.

44 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

� In the
ase of
onstant domains, the tableau for QT L

1

a
tually yields

a tableau de
ision pro
edure for the Cartesian produ
t of propositional

linear temporal logi
 PTL and S5 (see e.g. [7℄).

� The tableau system for the temporalised S4

u

an be generalised in a

straightforward way to tableaux for various temporal des
ription logi
s

(see, e.g., [24, 18, 15℄).

It should be obvious that the presented framework
an also be used to de-

velop tableau algorithms for more powerful fragments of monodi
 FOTL su
h

as the monodi
 two-variable fragment and the monodi
 guarded fragment.

A
knowledgements

The work of the �rst and fourth author was partially supported by UK EP-

SRC grant GR/R45369/01 \Analysis and me
hanisation of de
idable �rst-

order temporal logi
s." The work of the se
ond author was partially sup-

ported by Deuts
he Fors
hungsgemeins
haft (DFG) grant Ba1122/3-1. The

work of the third author was partially supported by Deuts
he Fors
hungs-

gemeins
haft (DFG) grant Wo583/3-1.

Referen
es

[1℄ A. Degtyarev and M. Fisher. Towards �rst-order temporal resolution. In F. Baader,

G. Brewka, and T. Eiter, editors, Advan
es in Arti�
ial Intelligen
e (KI'2001), vol-

ume 2174 of LNAI, pages 18{32. Springer-Verlag, 2001.

[2℄ A. Degtyarev, M. Fisher, and A. Lisitsa. Equality and monodi
 �rst-order temporal

logi
. Studia Logi
a, 72(2):147{156, 2002.

[3℄ A. Degtyarev, M. Fisher, and B. Konev. Monodi
 temporal resolution. Submitted,

2003. Available as Te
hni
al report ULCS-03-001 from http://www.
s
.liv.a
.uk/

resear
h/te
hreports.

[4℄ M. Fitting. Proof Methods for Modal and Intuitionisti
 Logi
s. Reidel, Dordre
ht,

1983.

[5℄ M. Fitting and R. Mendelson. First-Order Modal Logi
. Kluwer A
ademi
 Publishers,

Dordre
ht, 1998.

[6℄ D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logi
: Mathemati
al Founda-

tions and Computational Aspe
ts, Volume 1. Oxford University Press, 1994.

[7℄ D. Gabbay, A. Kuru
z, F. Wolter, and M. Zakharyas
hev. Many-Dimensional Modal

Logi
s: Theory and Appli
ations. Elsevier, 2003.

[8℄ V. Goranko and S. Passy. Using the universal modality: Gains and questions. Journal

of Logi
 and Computation, 2:5{30, 1992.

Temporalising tableaux 45

[9℄ R. Gor�e. Tableau algorithms for modal and temporal logi
. In D'Agostino et al.,

editors, Handbook of Tableau Methods. Kluwer A
ademi
 Publishers, Dordre
ht, 1999.

[10℄ I. Hodkinson. Monodi
 pa
ked fragment with equality is de
idable. Studia Logi
a,

72(2):185{197, 2002.

[11℄ I. Hodkinson, F. Wolter, and M. Zakharyas
hev. De
idable fragments of �rst-order

temporal logi
s. Annals of Pure and Applied Logi
, 106:85{134, 2000.

[12℄ I. Hodkinson, F. Wolter, and M. Zakharyas
hev. Monodi
 fragments of �rst-order

temporal logi
s: 2000{2001 A.D. In Logi
 for Programming, Arti�
ial Intelligen
e

and Reasoning, volume 2250 of LNAI, pages 1{23. Springer-Verlag, 2001.

[13℄ G.E. Hughes and M.J. Cresswell. A New Introdu
tion to Modal Logi
. Methuen,

London, 1996.

[14℄ S.A. Kripke. Semanti
al
onsiderations on modal logi
. A
ta Philosophi
a Fenni
a,

16:83{94, 1963.

[15℄ C. Lutz, H. Sturm, F. Wolter, and M. Zakharyas
hev. Tableaux for temporal de-

s
ription logi
 with
onstant domain. In R. Gor�e, A. Leits
h, and T. Nipkow, editors,

Pro
eedings of the First International Joint Conferen
e on Automated Reasoning (IJ-

CAR'01), volume 2083 of LNAI, pages 121{136. Springer-Verlag, 2001.

[16℄ C. Lutz, H. Sturm, F. Wolter, and M. Zakharyas
hev. A tableau de
ision algorithm

for modalized ALC with
onstant domains. Studia Logi
a, 72(2):199{232, 2002.

[17℄ K. S
hild. Combining terminologi
al logi
s with tense logi
. In Miguel Filgueiras and

Lu��s Damas, editors, Progress in Arti�
ial Intelligen
e { 6th Portuguese Conferen
e

on Arti�
ial Intelligen
e, EPIA'93, volume 727 of LNAI, pages 105{120. Springer-

Verlag, 1993.

[18℄ H. Sturm and F. Wolter. A tableau
al
ulus for temporal des
ription logi
: The

expanding domain
ase. Journal of Logi
 and Computation, 2002.

[19℄ M. Wajsberg. Ein erweiterter Klassenkalk�ul. Monatsh Math. Phys., 40:113{126, 1933.

[20℄ P. Wolper. The tableau method for temporal logi
: An overview. Logique et Analyse,

28:119{152, 1985.

[21℄ F. Wolter and M. Zakharyas
hev. Satis�ability problem in des
ription logi
s with

modal operators. In A. Cohn, L. S
hubert, and S. Shapiro, editors, KR'98: Prin
i-

ples of Knowledge Representation and Reasoning, pages 512{523. Morgan Kaufmann

Publishers, 1998.

[22℄ F. Wolter and M. Zakharyas
hev. Multi-dimensional des
ription logi
s. In D. Thomas,

editor, Pro
eedings of the 16th International Joint Conferen
e on Arti�
ial Intelli-

gen
e (IJCAI-99), pages 104{109. Morgan Kaufmann Publishers, 1999.

[23℄ F. Wolter and M. Zakharyas
hev. Dynami
 des
ription logi
. In K. Segerberg,

M. de Rijke, H. Wansing, and M. Zakharyas
hev, editors, Advan
es in Modal Logi
,

Volume 2, pages 431{445. CSLI Publi
ations, 2000.

46 R. Kont
hakov, C. Lutz, F. Wolter, and M. Zakharyas
hev

[24℄ F. Wolter and M. Zakharyas
hev. Temporalizing des
ription logi
s. In D. Gabbay

and M. de Rijke, editors, Frontiers of Combining Systems II, pages 379{401. Studies

Press/Wiley, 2000.

[25℄ F. Wolter and M. Zakharyas
hev. De
idable fragments of �rst-order modal logi
s.

Journal of Symboli
 Logi
, 66:1415{1438, 2001.

[26℄ F. Wolter and M. Zakharyas
hev. Axiomatizing the monodi
 fragment of �rst-order

temporal logi
. Annals of Pure and Applied Logi
, 118(1{2):133{145, 2002.

[27℄ F. Wolter and M. Zakharyas
hev. Qualitative spatio-temporal representation and

reasoning: a
omputational perspe
tive. In Exploring Arti�
ial Intelligen
e in the

New Millenium, pages 175{215. Morgan Kaufmann Publishers, 2002.

Roman Kont
hakov

Department of Computer S
ien
e

King's College London

Strand

London WC2R 2LS, U.K.

romanvk�d
s.k
l.a
.uk

Carsten Lutz

Institut f�ur Theoretis
he Informatik

TU Dresden, Fakult�at Informatik

01062 Dresden, Germany

lutz�t
s.inf.tu-dresden.de

Frank Wolter

Department of Computing

Universty of Liverpool

Liverpool L69 7ZF, U.K.

frank�
s
.liv.a
.uk

Mi
hael Zakharyas
hev

Department of Computer S
ien
e

King's College London

Strand

London WC2R 2LS, U.K.

mz�d
s.k
l.a
.uk

