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Temporalising tableaux

Abstrat. As a remedy for the bad omputational behaviour of �rst-order temporal logi

(FOTL), it has reently been proposed to restrit the appliation of temporal operators to

formulas with at most one free variable thereby obtaining so-alled monodi fragments of

FOTL. In this paper, we are onerned with onstruting tableau algorithms for monodi

fragments based on deidable fragments of �rst-order logi like the two-variable fragment or

the guarded fragment. We present a general framework that shows how existing deision

proedures for �rst-order fragments an be used for onstruting a tableau algorithm

for the orresponding monodi fragment of FOTL. Some example instantiations of the

framework are presented.
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1. Introdution

First-order temporal logi (FOTL) based on the ow of time hN; <i is no-

torious for its bad omputational behaviour: even the two-variable monadi

fragment of this logi is not reursively enumerable (see e.g. [11℄ and refer-

enes therein). A ertain breakthrough has reently been ahieved in [11℄,

where the so-alled monodi fragment of FOTL is introdued by restriting

appliations of temporal operators to formulas with at most one free variable.

The full monodi fragment (ontaining full �rst-order logi) turns out to be

axiomatisable [26℄. Moreover, by restriting its �rst-order part to deidable

fragments, we obtain deidable monodi FOTLs, say, the monodi guarded,

monodi two-variable, and monodi monadi fragments. This opens a way

to various appliations of the monodi FOTL in knowledge representation,

temporal databases, program spei�ation and veri�ation, and other �elds.

For example, many temporal desription logis and spatio-temporal logis

an be regarded as fragments of monodi FOTL [12, 7, 27℄. Unfortunately,

the deision proedures provided in [11℄ are of model-theoreti harater

and annot be used as a basis for implementations. In [1℄ and quite reently

in [3℄, a resolution-based approah has been �rst developed for ertain sub-

fragments of the monodi fragment and then for the full monodi fragment.
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A tableau-based analysis of the deision problem for monodi FOTL has been

missing. In this paper we are trying to �ll in this gap. More spei�ally, our

aims are as follows:

1. to develop a general framework for devising tableau-based deision pro-

edures for deidable monodi FOTLs and then,

2. within this framework, to onstrut tableau systems for a number of

onrete monodi fragments.

We onsider monodi FOTLs interpreted in models with both expanding and

onstant domains. The former ase is tehnially muh easier, but the latter

one is more general: reasoning with expanding domains an be redued to

reasoning with onstant domains, but not vie versa (see e.g., [7℄).

Our approah is based on the following ideas:

� modularity|a deision proedure for a given fragment of �rst-order

logi is ombined with Wolper's tableaux [20℄ for propositional tempo-

ral logi (PTL);

� �nite quasimodel representations of temporal models with potentially

in�nite �rst-order domains|elements indistinguishable by the subfor-

mulas (of a given formula) with at most one free variable are repre-

sented by the same type;

� the minimal type tehnique for dealing with onstant domains in tem-

poral models [16℄

To desribe the proposed framework in some more depth, let us assume that

the satis�ability of a monodi FOTL formula # has to be deided. The

`temporal' tableau algorithm tries to onstrut a model for #, i.e., a (one-

side) in�nite sequene of lassial �rst-order models. To ahieve modularity,

we separate the temporal and the pure �rst-order parts of # and treat the

former using Wolper's tableau for PTL and the latter using available deision

proedures for fragments of �rst-order logi. More preisely, the temporal

tableau algorithm �rst replaes all subformulas of # that start with temporal

operators by their `surrogates,' i.e., by unary prediates. Unary prediates

are suÆient here, sine we are dealing with monodi FOTLs. The proper

`temporal behaviour' of the surrogates is ensured by some auxiliary surrogate

axioms, whih are passed to the �rst-order deision proedure along with

the surrogated version of #. This deision proedure is expeted to provide

us with desriptions of possible models for its input. We then hoose an
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appropriate modelM for the urrent time point and make one `step in time'

by omitting the `next-time' operator (as in Wolper's tableaux) and adding

new surrogate axioms. This way we build up a temporal tableau. When

suh a tableau is ompleted, the pruning tehnique|whih is also used in

Wolper's tableau for PTL|is employed to hek whether all eventualities

are ful�lled, i.e., whether the tableau represents a temporal model of the

input formula.

Additional e�ort is needed to preserve the representation of tableaux

�nite and to guarantee termination. For example, �rst-order models are

represented by �nite sets of types, eah representing a possibly in�nite num-

ber of domain elements. Quasimodels, whih are well-known from e.g. [11℄,

are used to enode temporal models by assoiating a �nite set of types

with eah time instant. To avoid onstruting an in�nite number of (�nite

representations of) �rst-order models, we use bloking to detet and avoid

dupliates.

Two rather general theorems, one for expanding domains and one for

onstant domains, provide onditions under whih a �rst-order deision pro-

edure an be ombined with Wolper's tableaux to yield a tableau-based

deision proedure for the orresponding monodi FOTL. The prie we have

to pay for this level of generality is that the resulting ombined tableaux are

far from optimal. In partiular, in many onrete ases new tableau rules an

be used instead of surrogate axioms. Thus, our general framework for om-

bining tableaux is not supposed for diret appliations or implementations,

but rather as a guide for onsidering more spei� ases.

The paper is organised as follows. In Setion 2 we de�ne the syntax and

semantis of �rst-order temporal logi and introdue the monodi fragment

of FOTL. We start Setion 3 with haraterising deision proedures for

fragments of �rst-order logi that an be used as building bloks in tableau

aluli for monodi fragments (so-alled saturation rules). Then we prove

that quasimodels are a proper abstration of temporal models. In Setion 4

we show how to obtain a tableau proedure for a monodi fragment based on

an existing deision proedure for the orresponding FO fragment. We prove

termination, soundness and ompleteness of the algorithm for both expand-

ing and onstant domains. In Setion 5, two example instantiations of our

framework are presented: we desribe two standard �rst-order tableau algo-

rithms (for the one-variable fragment and the modal logi S4

u

|i.e., Lewis's

S4 with the universal modality) and prove that they an be onsidered as

saturation rules. Then we present some appliations of the tableau algorithm

for the temporalisation of the one-variable fragment of �rst-order logi. We

onlude in Setion 6.
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2. First-order temporal logi

In this setion, we introdue �rst-order temporal logi and its monodi frag-

ment. Then we onsider monodi fragments as `temporalisations' of ertain

fragments of �rst-order logi and show how the monodi formulas an be

split up into temporal and �rst-order parts.

Let QT L be the �rst-order (or quanti�ed) temporal language based on

the following voabulary:

� prediate symbols P

0

; P

1

; : : : , eah of whih is of some �xed arity � 0;

� a ountably in�nite set V of individual variables x

0

; x

1

; : : : ;

� the Boolean onnetives ^ and :;

� the universal quanti�er 8x for every individual variable x;

� the temporal operators U (`until') and



(`next-time').

Remark 2.1. Note that our language ontains neither onstant symbols nor

equality. The reason for omitting the onstants is to simplify presentation

by avoiding unneessary tehnial details. The reader should not have any

problems to extend the method developed in the paper to the language

with onstant symbols. Equality and/or funtion symbols may ruin good

algorithmi properties of the monodi fragment by making it not reursively

enumerable [11℄. Moreover, it is shown in [2℄ that the monodi monadi

two-variable fragment with equality is undeidable; see, however, [10℄ where

it is shown that the monodi paked fragment with equality is deidable.

The set of QT L-formulas is de�ned as follows:

� if P is an m-ary prediate symbol and x

1

; : : : ; x

m

are variables, then

P (x

1

; : : : ; x

m

) is an (atomi) formula;

� if ' and  are formulas, then so are ' ^  and :';

� if ' is a formula and x a variable, then 8x' is a formula;

� if ' and  are formulas, then so are ' U  and



'.

We use the standard abbreviations _, !, and

> = �; ? = :>; 9x' = :8x:'; 3' = > U '; 2' = :3:';

where � is some �xed tautology. Intuitively, 3 means `now or sometime in

the future' and 2 means `from now on.'

For a given formula ', sub(') denotes the set of subformulas of ' and

free(') the set of variables ourring free in '. We write '(x

1

; : : : ; x

m

) to
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indiate that all free variables of ' are in the set fx

1

; : : : ; x

m

g; in partiular,

'(x) has at most one free variable x. The pure (non-temporal) �rst-order

fragment of QT L is denoted by QL.

Let us now de�ne the semantis of QT L: in priniple, we just have to

�x a ow of time and then relate eah moment of time with some �rst-order

model. Sine in this paper we are onerned with the ow of time hN; <i,

it thus suÆes to assoiate with eah moment n 2 N a �rst-order model.

Thus we obtain QT L-models, in whih domains of �rst-order strutures an

vary along the time axis. However, a more natural (and more powerful)

semantis is obtained by additional restritions on the domains. In what

follows, we onsider two kinds of temporal models: with expanding and

onstant domains. The former lass of models is muh easier to be dealt

with by tableau deision proedures (as well as by resolution [3℄), whereas

the latter one is more general, sine reasoning with expanding (or, in general,

varying) domains an be redued to reasoning with onstant domains; see

e.g., [5, 25, 7℄.

Definition 2.2 (model). A QT L-model is a triple M = hN; <; Ii, where

hN; <i is the set of natural numbers equipped with the usual strit order <,

and I is a funtion assoiating with eah n 2 N some �rst-order model

I(n) =

D

�

n

; P

I(n)

0

; P

I(n)

1

; : : :

E

;

where �

n

is a non-empty set and eah P

I(n)

i

is a relation on �

n

of the same

arity as P

i

. M is said to be a model with expanding domains if �

i

� �

j

whenever i < j, and M is alled a model with onstant domains if �

i

= �

j

for all i; j 2 N.

From now on by a QT L-model we mean a QT L-model with expanding

or onstant domains.

There are di�erent approahes to de�ning truth in QT L-models; see

e.g., [13℄. We take the following version due to [14℄:

Definition 2.3 (truth). Let M = hN; <; Ii be a QT L-model. An assign-

ment a inM is a funtion from the set V of individual variables to

S

n2N

�

n

.

Given a QT L-formula #, the truth-relation (M; n) j=

a

# (`# is true at mo-

ment n in model M under assignment a') is de�ned indutively on the

onstrution of # for only those assignments a that satisfy the ondition

a(x) 2 �

n

for all x 2 free(#):

� (M; n) j=

a

P (x

1

; : : : ; x

m

) i� ha(x

1

) : : : ; a(x

m

)i 2 P

I(n)

;
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� (M; n) j=

a

:' i� (M; n) 6j=

a

';

� (M; n) j=

a

' ^  i� (M; n) j=

a

' and (M; n) j=

a

 ;

� (M; n) j=

a

8x' i� (M; n) j=

b

' for every assignment b that may di�er

from a only on x, provided that b(x) 2 �

n

;

� (M; n) j=

a

' U  i� there is m � n suh that (M;m) j=

a

 and

(M; k) j=

a

' for all k 2 [n;m), where [n;m) = fk j n � k < mg;

� (M; n) j=

a



' i� (M; n+ 1) j=

a

'.

A QT L-formula ' is said to be satis�able in expanding domains (or

satis�able, for short) if (M; n) j=

a

' holds for some modelM with expanding

domains, moment n and assignment a in M. If M is a model with onstant

domains, we say that ' is satis�able in onstant domains. The notions of

validity and validity in onstant domains are de�ned in the dual way. It is

not hard to see that satis�ability in onstant domains implies satis�ability

in expanding domains, but not vie versa: the formula

8x



:C(x) ^



9xC(x)

is satis�able in expanding domains, but not in onstant domains. Note that

both QT L with expanding domains and QT L with onstant domains are

onservative extensions of lassial �rst-order logi in the language QL.

Throughout this paper, we will not be distinguishing between a �nite

set � of formulas and the onjuntion

V

� of formulas in it. In partiular,

we write (M; n) j=

a

� to say that (M; n) j=

a

' for every ' 2 �. Instead

of (M; n) j=

a

'(x

1

; : : : ; x

m

) we often write (M; n) j= '[a

1

; : : : ; a

m

℄, where

a = fx

1

7! a

1

; : : : ; x

m

7! a

m

g.

2.1. The monodi fragment

As is known too well, �rst-order temporal logi and even its `small' fragments

suh as the two-variable monadi fragment are not reursively enumerable

(see [6℄ and referenes therein). The maximal `well-behaved' sublanguage

of QT L that has been disovered so far [11℄ onsists of so-alled monodi

formulas.

Definition 2.4 (monodi fragment). A QT L-formula is said to be monodi

if it ontains no subformula of the form ' U  or



' with more than one

free variable. The set of all monodi formulas will be denoted by QT L

1

.



Temporalising tableaux 7

Two important results onerning the monodi fragment are relevant

here. First, the set of valid (in onstant domains) monodi formulas is �nitely

axiomatisable [26℄, and so there exists a semi-deision proedure (as QT L

1

learly ontains fullQL, it is undeidable). The seond result obtained in [11℄

states (roughly) that, if we take a fragment of QT L

1

the underlying �rst-

order (non-temporal) part of whih is deidable, then this fragment itself is

deidable as well. Examples of deidable monodi fragments are:

� the two-variable monodi fragment QT L

2

1

;

� the monadi monodi fragment QT L

mo

1

;

� the guarded monodi fragment T GF

1

(in whih quanti�ation is re-

strited to patterns 8�y ( ! '), where �y is a tuple of variables, every

free variable in ' is free in  as well, and the `guard'  is an atomi

formula).

2.2. Temporalisation

These and other similar fragments QT L

0

� QT L

1

an be regarded as

temporalisations of the orresponding �rst-order fragments QL

0

� QL (two-

variable, monadi, guarded, et.) by extending their formula-formation rules

with the following one:

if '(x) and  (x) are QT L

0

-formulas,

then so are



'(x) and '(x) U  (x).

(y)

Various temporalisations of expressive propositional modal (say, epis-

temi, desription, or dynami) logis [17, 21, 23, 22, 24, 7℄ an also be

viewed as fragments of QT L

1

. However, we have to be areful here beause

not all onstrutors of these logis are �rst-order de�nable, for instane, the

transitive reexive losure of binary relations used in some desription logis

and PDL.

To inlude suh logis in our general framework, we �rst de�ne a fragment

theory (or an f-theory, for short) as a pair (QL

0

;M), where QL

0

� QL andM

is a lass of models in the signature of QL

0

(or its extension). For instane,

the two-variable fragment QL

2

of QL an be onsidered as the f-theory

(QL

2

;FO), where FO is the lass of all �rst-order models.

As another example take the propositional bimodal logi S4

u

, i.e., Lewis's

S4 with the universal modality 2

8

(see [8℄). Let ST be the set of standard
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translations of S4

u

-formulas de�ned by taking

(p)

�

= P (x); for a propositional variable p;

(' ^  )

�

= '

�

^  

�

;

(:')

�

= :'

�

;

(2')

�

= 8y

�

R(x; y)! '

�

fy=xg

�

; for a fresh variable y;

(2

8

')

�

= 8x'

�

;

where 'fy=xg denotes the result of replaing the free variable x in ' with y.

Denote by TR the lass of all �rst-order models of the form

M =

D

W;R

M

; P

M

0

; P

M

1

; : : :

E

;

where R

M

is a transitive and reexive relation on W and the P

M

i

are ar-

bitrary subsets of W . As is well-known, for every S4

u

-formula ', '

�

is

satis�able in a model from TR i� ' is satis�able. Thus, we an onsider the

modal logi S4

u

as the f-theory (ST ;TR).

Now we an de�ne a temporal monodi fragment theory (or tmf-theory)

as a pair (QT L

0

;TM), where QT L

0

� QT L

1

and TM is a lass of temporal

models (with either expanding or onstant domains) in the signature of

QT L

0

.

Definition 2.5 (temporalisation). A tmf-theory (QT L

0

;TM) is alled the

expanding (onstant) domain temporalisation of an f-theory (QL

0

;M) if

� QT L

0

is obtained from QL

0

by extending its formula formation rules

with (y),

� TM onsists of models of the form M = hN; <; Ii with expanding

(respetively, onstant) domains suh that I(n) 2 M for all n 2 N.

For instane, the onstant domain temporalisation of (ST ;TR) is the tmf-

theory (T ST ;TTR) suh that the language T ST onsists of formulas of the

form

' ::= P

i

(x) j :' j '

1

^ '

2

j 8x'(x) j

8y (R(x; y)! '(y)) j



' j '

1

U '

2

;

where the P

i

are unary prediates and R is the only binary prediate (note

that T ST -formulas ontain at most one free variable), and TTR onsists of

models with onstant domains of the form M = hN; <; Ii, where I(n) 2 TR

for every n 2 N.
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2.3. Surrogates (detemporalisation)

Our approah to devising tableau deision proedures for deidable monodi

fragments is based on a simple priniple: we want to separate the temporal

and the �rst-order parts of formulas and treat them using available pro-

edures for propositional temporal logi and the orresponding �rst-order

fragment. With this in mind, we introdue the following notion of `surro-

gates' for temporal formulas.

Definition 2.6 (surrogates). With every formula #(x) of the form 'U  or



' having x as its only free variable we assoiate a fresh unary prediate

Q

#

(x). Similarly, with every sentene # of the form 'U or



' we assoiate

a fresh propositional variable q

#

(i.e., a prediate of arity 0). Q

#

(x) and q

#

are alled the surrogates of #(x) and #, respetively. Given aQT L

1

-formula

#, denote by # the formula obtained by replaing all its subformulas of the

form ' U  and



' that are not in the sope of another temporal operator

with their surrogates. # is alled the �rst-order redut of #.

The �rst-order redut # of a QT L

1

-formula # does not ontain temporal

operators at all|they are replaed with their surrogates. To ensure the

proper `temporal behavior' of these surrogates, we use the following formulas.

For all formulas of the form ' U  and



' with one free variable x, let

(' U  )

+

= 8x

�

Q

'U 

(x)!  _ (' ^Q

('U )

(x))

�

;

(' U  )

�

= 8x

�

:Q

'U 

(x)! : ^ (:' _Q

:('U )

(x))

�

;

(' U  )

:

= 8x (:Q

('U )

(x)! Q

:('U )

(x)) ;

(



')

:

= 8x (:Q

'

(x)! Q

:'

(x)) :

Similarly, for all sentenes of the form ' U  and



', let

(' U  )

+

= q

'U 

!  _ (' ^ q

('U )

);

(' U  )

�

= :q

'U 

! : ^ (:' _ q

:('U )

);

(' U  )

:

= :q

('U )

! q

:('U )

;

(



')

:

= :q

'

! q

:'

:

Definition 2.7 (surrogate axioms). The set Ax

#

(x) of surrogate axioms

for a QT L

1

-formula # onsists of >(x), where x is a fresh variable, and all

the formulas (' U  )

+

, (' U  )

�

, (' U  )

:

, and (



')

:

for ' U  2 sub(#)

and



' 2 sub(#).

The formula >(x) will be important for dealing with onstant domains

as is explained later on.
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Example 2.8. Consider, for instane, the sentene

2

�

9y

�

C(y) ^ :



C(y)

�

^ 8y

�

:C(y)!



:C(y)

�

�

whih is equivalent to

# = :

�

> U :

�

9y

�

C(y) ^ :



C(y)

�

^ 8y

�

:C(y)!



:C(y)

�

| {z }

 

��

Then # = :q

>U: 

and Ax

#

(x) onsists of the formulas

>(x);

q

>U: 

! :

�

9y (C(y) ^ :Q

C

(y)) ^ 8y (:C(y)! Q

:C

(y))

�

_ q

(>U: )

;

:q

>U: 

!

�

9y (C(y) ^ :Q

C

(y)) ^ 8y (:C(y)! :Q

:C

(y))

�

^ q

:(>U: )

;

:q

(>U: )

! q

:(>U: )

;

8y

�

:Q

C

(y)! Q

:C

(y)

�

;

8y

�

:Q

:C

(y)! Q

C

(y)

�

:

Definition 2.9 (redut). Let QT L

0

be a fragment of QT L

1

and TM a

lass of �rst-order temporal models (in the signature of QT L

0

). Say that an

f-theory (QL

0

;M) is a redut of the tmf-theory (QT L

0

;TM) if the following

holds:

� QL

0

is the smallest sublanguage ofQL ontaining all �rst-order reduts

ofQT L

0

-formulas, losed under the Boolean onnetives, and suh that

8x'(x) 2 QL

0

whenever '(x) 2 QL

0

;

� M onsists of models of the form

D

�; P

M

0

; : : : ; Q

M

0

; : : : ; q

M

0

; : : :

E

;

where




�; P

M

0

; : : :

�

= I(n) for some hN; <; Ii 2 TM, n 2 N, and

Q

0

; Q

1

; : : : are the prediates used as surrogates for temporal formulas

from QT L

0

and q

0

; q

1

; : : : are the propositional variables surrogating

temporal sentenes from QT L

0

.

It should be noted that the surrogate symbols Q

j

and q

j

an be inter-

preted in an arbitrary way. We illustrate this de�nition with a number of

examples.
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1. The two-variable fragment (QL

2

;FO) of �rst-order logi an be re-

garded as a redut of (QT L

2

1

;TFO), where TFO is the lass of all

temporal �rst-order models with onstant domains. Note, that in this

ase, as well as in all following ases, without loss of generality we an

assume that the language QL

2

already ontains in�nitely many unary

prediates and propositional variables for surrogates of all QT L

2

1

-

formulas.

2. The monadi fragment (QL

mo

;FO) of �rst-order logi is a redut of

(QT L

mo

1

;TFO).

3. The one-variable fragment (QL

1

;FO) of prediate logi an be on-

sidered as a redut of the temporalised modal logi S5, i.e., of the

one-variable fragment of QT L.

4. The propositional modal logi S4

u

(i.e., the f-theory (ST ;TR)) an be

viewed as a redut of its own temporalisation (T ST ;TTR).

5. Stritly speaking, the �rst-order guarded fragment GF is not a redut

of the monodi guarded fragment T GF

1

, beause GF does not ontain

arbitrary formulas of the form 8x'(x). To get round this problem we

an introdue a `dummy' guard>(x) and use 8x (>(x)! '(x)) instead

of 8x'(x). Thus, the extended language an be regarded as a redut

of T GF

1

.

3. Quasimodels

In this setion, we introdue the two ore notions underlying our framework

for tableau aluli presented in Setion 4. First, we develop a general ondi-

tion that �rst-order deision proedures must satisfy to be a useful building

blok in tableau aluli for fragments of monodi FOTL. Seond, we de�ne

an abstration of temporal models alled `quasimodels.' To keep tableaux

�nite and guarantee termination, the tableau proedure to be devised tries

to onstrut a quasimodel for the input formula, rather than a temporal

model itself.

3.1. First-order deision proedure

We require �rst-order deision proedures not only to return `true' or `false,'

but rather to ompute �nite representations of all possible models for the

input formula. The reason for this is as follows: �rst, we need an expliit
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representation of models to make a step in time, i.e., to take all tempo-

ral formulas realised in a model and then dropping a single ourrene of

the next operator from them. Seond, we need representations of all mod-

els sine some of them may be appropriate for partiipating in a temporal

model and others may not|whih we will usually �nd out muh later in the

onstrution of the temporal tableau. The requirement of returning �nite

representations of models is muh less exoti than it seems on �rst sight:

indeed, most deision proedures for fragments of �rst-order logi satisfy it

or an be easily modi�ed to do so. This inludes, for example, most tableau-

and resolution-based algorithms (see Setion 5).

The �nite representation of models is type-based. Hene, �x some f-

theory (QL

0

;M) and a QL

0

-formula �. Let x be a variable not ourring

in �. Then we put

sub

x

(�) = f'fx=yg;:'fx=yg j '(y) 2 sub(�)g

and all a non-empty subset of sub

x

(�) a type for a QL

0

-formula � (usually

denoted by t(x)).

Important kinds of types for � are given by models M 2 M and their

elements a:

t

M

a

(x) = f'(x) j '(x) 2 sub

x

(�) and M j= '[a℄g:

In what follows we will identify a type t(x) with the onjuntion of all

formulas in it and write M j= t[a℄ instead of `M j= '[a℄ for all '(x) 2 t(x).'

Definition 3.1 (ok). By a ok for a QL

0

-formula � we mean any non-

empty set T of types for �. Suh a ok is alled saturated if

� for every t(x) 2 T,

{ if ' ^  2 t(x) then ' 2 t(x) and  2 t(x);

{ if :(' ^  ) 2 t(x) then :' 2 t(x) or : 2 t(x);

{ if 8z '(z) 2 t(x) then '(x) 2 t(x);

� all types in T ontain preisely the same sentenes.

Beause of the latter item, we may write ' 2 T to say that a sentene '

belongs to some (every) type in the saturated ok T.

Let T be a ok for � and M 2 M a model with domain �. A T-

assignment in � is a map a : T ! �. We write M j= T[a℄ if M j= t[a(t)℄,
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for all t(x) 2 T. A ok T is alled satis�able in M if there areM 2 M with

domain � and a T-assignment a in � suh that M j= T[a℄.

We are now ready to give a formal aount of deision proedures for

fragments of �rst-order logi that an be used for onstruting temporal

tableau algorithms. We all suh deision proedures saturation rules sine,

in the temporal tableau algorithm, they play the role of a tableau rule that

`saturates' a set of �rst-order types assoiated with a single time point: they

take a ok and return a set of saturated oks, eah desribing a lass of

models from M.

Definition 3.2 (saturation rule). A saturation rule for (QL

0

;M) is a om-

putable funtion A whih takes a ok T

0

for a QL

0

-formula � and returns

either `lash' if T

0

is not satis�able in M, or a (�nite) set A(T

0

) of saturated

oks for � suh that the following holds:

(TR) for every t

0

(x) 2 T

0

, eah okT 2 A(T

0

) ontains a type t(x) � t

0

(x),

in whih ase we write t

0

(x)!

A

t(x);

(CO) for every M 2 M with domain �, every type t

0

(x) 2 T

0

and every

T

0

-assignment a

0

in �, if M j= T

0

[a

0

℄ then there is a ok T 2 A(T

0

)

suh that

{ there exist a type t(x) 2 T and a T-assignment a in � for whih

M j= T[a℄, t

0

(x)!

A

t(x) and a

0

(t

0

) = a(t);

(SO) there is a ardinal � � �

0

suh that for every �

0

� � and every

T 2 A(T

0

), there exists a model

M =

D

�; P

M

0

; : : : ; Q

M

0

; : : : ; q

M

0

; : : :

E

2 M

in whih

{ � =

S

t2T

�

t

, where �

t

are pairwise disjoint sets of ardinality �

0

,

{ the q

i

are all of the propositional variables, and q

M

i

is true i�

q

i

2 T,

{ the Q

i

are all of the unary prediates, and a 2 Q

M

i

i� there is a

type t(x) 2 T suh that Q

i

(x) 2 t(x) and a 2 �

t

,

suh that M j= t[a℄ holds for all t(x) 2 T and all a 2 �

t

.

Intuitively, (SO) orresponds to the soundness of the deision proedure and

(CO) to its ompleteness. In more details this onnetion will be illustrated

in Setion 5, where we show that standard tableau algorithms for fragments

of �rst-order logi an be viewed as saturation rules.
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3.2. Quasimodels: expanding domains

We abstrat temporal models to the more manageable quasimodels. Both in

the de�nition of quasimodels and in the tableau proedure to be devised, we

onsider sentenes rather than formulas whih obviously does not sari�e

generality. Let (QT L

0

;TM) be a tmf-theory and (QL

0

;M) its �rst-order

redut. Fix a QT L

0

-sentene #.

By a type for the temporal sentene # we mean any subset of

f'(x) j '(x) 2 sub

x

(#)g [ sub(Ax

#

(x));

where x is a variable not ourring in #. It should be noted that every type

t(x) for # an be onsidered as a type for a �rst-order formula. In partiular,

Ax

#

(x) is a type for

>(x) ^

^

'U 2sub(#)

�

(' U  )

+

^ (' U  )

�

^ (' U  )

:

�

^

^

'2sub(#)

(



')

:

:

Then a ok for # is a non-empty set of types for # (whih again an be

treated as a ok for a �rst-order formula).

Definition 3.3 (quasimodel). Let A be a saturation rule for (QL

0

;M). An

A-quasistate for # is a ok T 2 A(T

0

), where T

0

is a ok for # ontaining

Ax

#

(x). Let Q = (T

n

j n 2 N) be a sequene of A-quasistates for #. A run

in Q is a funtion r with domain dom(r) = fn 2 N j n � n

0

g, for some

n

0

2 N, whih for every n 2 dom(r) returns a type t

n

(x) 2 T

n

for # suh

that the following two onditions hold:

� for every QT L

0

-formula



'(x), if



'(x) 2 r(n) then '(x) 2 r(n+ 1);

� for every QT L

0

-formula (' U  )(x), if (' U  )(x) 2 r(n) then there is

k � n suh that  (x) 2 r(k) and '(x) 2 r(i) for every i 2 [n; k).

The sequene Q of A-quasistates is alled an A-quasimodel if for every n 2 N

and every type t

n

(x) 2 T

n

, there is a run r in Q suh that r(n) = t

n

(x). We

say that # is A-satis�able if there are an A-quasimodel Q = (T

n

j n 2 N)

and some n 2 N suh that # 2 T

n

.

Quasimodels are de�ned suh that every QT L

0

-sentene # has a model

i� it has a quasimodel. However, for the orretness proof of our tableau

alulus, we will only make use of the \if" diretion of this laim.
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Theorem 3.4. Let (QT L

0

;TM) be a tmf-theory, where TM is a lass of

models with expanding domains. Let (QL

0

;M) be a �rst-order redut of

(QT L

0

;TM) and A a saturation rule for (QL

0

;M). If a QT L

0

-sentene # is

A-satis�able, then it is satis�able in a model from TM.

Proof. Take an A-quasimodel Q = (T

n

j n 2 N) satisfying #. Denote by


 the set of all runs in Q and take a ardinal �

0

exeeding the ardinality of

the set 
 and the ardinal � supplied by (SO). For eah n 2 N, we set

�

n

= fhr; �i j r 2 
; n 2 dom(r); � < �

0

g:

By the de�nition of quasimodel, we have �

n

� �

m

if n � m. By (SO), for

every T

n

, n 2 N, we an �nd a model

M

n

=

D

�

n

; P

M

n

0

; : : : ; Q

M

n

0

; : : : ; q

M

n

0

; : : :

E

2 M

where

� �

n

=

S

t(x)2T

n

�

t

n

, with �

t

n

being pairwise disjoint sets of ardinality �

0

,

� q

M

n

i

is true i� q

i

2 T

n

, and

� a 2 Q

M

n

i

i� there is a type t(x) 2 T

n

with Q

i

(x) 2 t(x) and a 2 �

t

n

,

suh that M

n

j= t[a℄ for all types t(x) 2 T

n

and all a 2 �

t

n

. This means,

in partiular, that for all sentenes ' we have M

n

j= ' whenever ' 2 T

n

.

Without loss of generality we an assume that

�

t

n

= fhr; �i 2 �

n

j r(n) = t(x)g: (z)

Let M = hN; <; Ii, where I(n) =

D

�

n

; P

M

n

0

; : : :

E

, for all n 2 N.

Claim. For every n 2 N, every assignment a in �

n

and every formula

� 2 f';:' j ' 2 sub(#)g, if a(x) 2 �

n

for all x 2 free(�), then

M

n

j=

a

� implies (M; n) j=

a

�:

Suppose for a moment that the laim holds. Sine Q is an A-quasimodel

of #, there exists an n 2 N suh that # 2 T

n

. By the hoie of M

n

, we have

M

n

j= #, whene (M; n) j= #, whih proves our theorem.

Proof of laim. The proof is by indution on the onstrution of �.

Case � = P

i

(x

1

; : : : ; x

m

) follows from the de�nition of M.
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Case � = :P

i

(x

1

; : : : ; x

m

). This means that ha(x

1

); : : : ; a(x

m

)i 62 P

M

n

i

. As

a(x

j

) 2 �

n

for j 2 [1;m℄, we then obtain (M; n) j=

a

:P

i

(x

1

; : : : ; x

m

).

Cases � = ::', � = '^ , � = :('^ ) follow from the obvious equivalenes

::' = ::' ' ^  = ' ^  ; :(' ^  ) = :(' ^  ):

Case � = 8x'. We need to show that, for all assignments b that may di�er

from a only on x and suh that b(x) 2 �

n

, we have (M; n) j=

b

'. Fix suh

an assignment b. Sine M

n

j=

a

8x' and 8x' = 8x', we have M

n

j=

b

'.

By IH, (M; n) j=

b

', as required.

Case � = :8x'. Sine :8x' = :8x', we have M

n

j=

a

:8x'. Then

there exists an assignment b that may di�er from a only on x and suh that

M

n

j=

b

:'. Sine the domain of M

n

is �

n

, we have b(x) 2 �

n

. By IH,

(M; n) j=

b

:' and so (M; n) j=

a

:8x'.

Case � =



'. Let a(x) = hr; �i. By the hoie of M

n

, there exists a type

t(x) suh that



'(x) 2 t(x) and hr; �i 2 �

t

n

. By (z), we have r(n) = t(x)

and



'(x) 2 r(n). Then by the de�nition of runs, '(x) 2 r(n + 1). Let

r(n+ 1) = t

0

(x). By using again (z), we obtain hr; �i 2 �

t

0

n+1

, and therefore

M

n+1

j= '[hr; �i℄. By IH, (M; n + 1) j= '[hr; �i℄. Then (M; n) j=



'[hr; �i℄,

whih means that (M; n) j=

a



'.

Case � = :



'. Sine T

n

is an A-quasistate and A satis�es (TR), we

have 8x (:Q

'

(x) ! Q

:'

(x)) 2 T

n

. Therefore, M

n

j=

a

:



' implies

M

n

j=

a



:'. As in the previous ase, we obtain (M; n) j=

a



:', and so

(M; n) j=

a

:



'.

Case � = ' U  . The proof is similar to the ase � =



': we use the

de�nition of runs and (z).

Case � = :(' U  ). As T

j

is an A-quasistate,

8x

�

:Q

'U 

(x)! : (x) ^ (:'(x) _Q

:('U )

(x))

�

2 T

j

: (i)

SupposeM

n

j=

a

:(' U  )(x). First we show that

(A) for all k � n, either M

k

j=

a

: (x) ^ :Q

'U 

(x) or there is i 2 [n; k)

suh that M

i

j=

a

:'(x).

The proof is by indution on k. The basis of indution, i.e., k = n follows

from (i).

Assume now that the laim has already been proved for k = m. If there

is some i 2 [n;m) suh that M

i

j=

a

:'(x), then we are learly done. So
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suppose that there is no suh an i. Then, by IH, we haveM

m

j=

a

: (x) and

M

m

j=

a

:Q

'U 

(x). (i) gives us eitherM

m

j=

a

:'(x) orM

m

j=

a

Q

:('U )

(x).

In the former ase we are done. Consider the latter. As in the ase � =



',

we then have M

m+1

j=

a

:Q

'U 

(x). Using (i), we obtain M

m+1

j=

a

: , as

required. This ompletes the indution step, and hene the proof of (A).

By the indution hypothesis of the main proof and (A), we then have:

(B) for all k � n, either (M; k) j=

a

: (x) or there is i 2 [n; k) suh that

(M; i) j=

a

:'(x).

This means that (M; n) j=

a

:(' U  ).

3.3. Quasimodels: onstant domains

To de�ne quasimodels whih give rise to �rst-order temporal models with

onstant domains, we should obviously require all runs to be total funtions

on N. We also need the following re�nement of the de�nition of saturation

rules.

Let (QT L

0

;TM) be a tmf-theory and (QL

0

;M) its �rst-order redut.

Definition 3.5 (exhaustive saturation rule). Say that a ok T for a QL

0

-

formula � is exhaustive for a modelM 2 M with domain � if for eah a 2 �

there is a type t(x) 2 T suh that M j= t[a℄. A saturation rule A for

(QL

0

;M) is alled exhaustive if the following strengthening of (CO) holds:

(CO

0

) for every M 2 M with domain �, every type t

0

(x) 2 T

0

and every

T

0

-assignment a

0

in �, ifM j= T

0

[a

0

℄ then there is a ok T 2 A(T

0

)

suh that

{ T is exhaustive for M;

{ there exist a type t(x) 2 T and a T-assignment a in � for whih

M j= T[a℄, t

0

(x)!

A

t(x) and a

0

(t

0

) = a(t).

As in the ase of expanding domains, exhaustive saturation rules an be

obtained from standard tableau algorithms by making some rather minor

modi�ations. More details are provided in Setion 5.3.

Let A be an exhaustive saturation rule for (QL

0

;M) and �x some QT L

0

-

sentene #. We now de�ne exhaustive oks for #.

Definition 3.6 (onstant domain quasimodel). An A-quasistate for # is an

exhaustive ok T for # suh that T 2 A(T

0

) for some ok T

0

ontaining

the type Ax

#

(x). A sequene Q = (T

n

j n 2 N) of A-quasistates for # is
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alled a onstant domain A-quasimodel if for every n 2 N and every type

t

n

(x) 2 T

n

for # there is a total run r in Q (i.e., dom(r) = N) suh that

r(n) = t

n

(x).

We say that a sentene # is A-satis�able in onstant domains if there

is a onstant domain A-quasimodel Q = (T

n

j n 2 N) suh that # 2 T

n

for

some n 2 N.

Following the proof of Theorem 3.4, one an readily show the following:

Theorem 3.7. Let (QT L

0

;TM) be a tmf-theory, with TM being a lass

of models with onstant domains. Let (QL

0

;M) be a �rst-order redut of

(QT L

0

;TM) and A an exhaustive saturation rule for (QL

0

;M). If a QT L

0

-

sentene # is A-satis�able in onstant domains, then it is satis�able in a

model from TM.

4. Tableaux

We are in a position now to de�ne temporal tableaux for deidable monodi

fragments. Let us start with the expanding domain ase. Fix a tmf-theory

(QT L

0

;TM), its �rst-order redut (QL

0

;M), a saturation ruleA for (QL

0

;M),

and a QT L

0

-sentene #.

To deide the satis�ability of #, the tableau algorithm tries to onstrut

an A-quasimodel for # by applying the saturation rule A to the redut of #,

then making a step in time, then again applying A, and so on. Let us start

its presentation with de�ning the basi data struture.

Definition 4.1 (temporal tableau). A temporal tableau for # is a labelled

direted graph G = hS; s

r

;!; `; `



i, where S is a set of states ontaining

the root state s

r

, ! is a binary relation on S, and `, `



are state labelling

funtions suh that `(s) is a saturated ok for eah state s 2 S n fs

r

g, and

`



(s) is a ok for # for eah state s 2 S.

Intuitively, tableaux an be understood as follows: apart from the root

state, eah state s is assoiated with a time point n in the sense that the

saturated ok `(s) is a andidate for the quasistate T

n

for time point n of

the quasimodel to be onstruted. Distint states may be assoiated with

the same time point n desribing di�erent possible hoies for the quasistate

T

n

. If a state s desribes time point n, then any state s

0

with s ! s

0

desribes time point n+1. It remains to explain the seond labelling `



(s):

it's purpose is to list those types that have to be inluded in the quasistate

T

n+1

due to temporal formulas appearing (in surrogated form) in `(s). Let

us formally de�ne how `



(s) an be obtained from `(s).
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Definition 4.2 (transition rule). If t

0

(x) =

�

'(x) j



'(x) 2 t(x)

	

[f>(x)g

for a type t(x) for #, then we write

t(x)!



t

0

(x):

The transition rule for QT L

0

is the map N that takes a ok T for # and

returns the ok

N (T) =

�

t

0

(x) j t(x) 2 T and t(x)!



t

0

(x)

	

[ fAx

#

(x)g:

Suppose now that the satis�ability of # is to be deided. The algorithm

starts with the initial temporal tableau

G

#

= hfs

r

g; s

r

; ;; `; `



i ;

where

`(s

r

) = ; and `



(s

r

) =

�

f#;>(x)g;Ax

#

(x)

	

for some variable x not to our in #. Note that the root state s

r

is not as-

soiated with a point in time but only serves the purpose of getting started

with the tableau onstrution. The ok `



(r

s

) onsists of two types: one

of them, f#;>(x)g, ensures that # is satis�ed in the �rst quasistate of a

quasimodel to be onstruted and the other one, Ax

#

(x), ontains the sur-

rogate axioms. Then we apply the saturation rule A to `



(s

r

) and obtain

new !-suessor states s

T

of s

r

, for every T 2 A(`



(s

r

)), labelled with

`(s

T

) = T and `



(s

T

) = N (T):

We ontinue by applying A to the `



(s

T

), and so forth (see Setion 5.4 for

detailed examples). Here is a more preise de�nition.

Definition 4.3 (tableau rule). Say that a tableau G

0

for # is obtained by an

appliation of rule =) from a tableau G = hS; s

r

;!; `; `



i for # and write

G =) G

0

if there is a state s

0

2 S suh that `



(s

0

) = T

0

, A(T

0

) is not a

lash, and there is a saturated ok T

1

2 A(T

0

) suh that either

� there is no state s

1

2 S for whih `(s

1

) = T

1

, and

G

0

=




S [ fs

1

g; s

r

; ! [ fhs

0

; s

1

ig; `

0

; `

0



�

;

where `

0

(s) =

(

`(s) if s 2 S

T

1

if s = s

1

and `

0



(s) =

(

`



(s) if s 2 S

N (T

1

) if s = s

1

;
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� or there is s

1

2 S for whih `(s

1

) = T

1

, s

0

6! s

1

, and

G

0

= hS; s

r

; ! [ fhs

0

; s

1

ig; `; `



i :

A tableau G for # is alled omplete if rule =) is not appliable to it.

The seond item in De�nition 4.3 is the so-alled bloking ondition whih

is ruial for ensuring termination.

Theorem 4.4 (termination). The proess of ompleting a tableau G for #

terminates. In other words, there is no in�nite sequene

G =) G

1

=) : : : =) G

n

=) : : :

of tableaux for #.

Proof. Any omplete tableau G for # ontains at most

2

2

p(j#j)

states, where p is a polynomial funtion of the length j#j of #. Indeed, the

number of subformulas of

f' j ' 2 sub(#)g [Ax

#

(x)

is linear in j#j, the number of di�erent types for # is bounded by 2

p(j#j)

, and

the number of states in G does not exeed 2

2

p(j#j)

.

Suppose we have onstruted a omplete tableau G for #. Due to the

presene of the temporal until operator, suh tableaux do not neessarily

give rise to a quasimodel satisfying #. As an example, we present a omplete

tableau for the obviously unsatis�able sentene # = > U ? on Fig. 1. The

state s

1

has no suessors beause the type t

0

1

(x) is not satis�able, and the

saturation rule returns lash. Nevertheless, the tableau ontains the loop

s

0

! s

0

, and so one ould have tried to extrat a quasimodel from this

in�nite path. It follows from Theorem 3.4 that the extrated sequene of

oks annot be a quasimodel.

How an we identify tableaux that do not desribe quasimodels? Here we

ome to the seond omponent of Wolper's [20℄ tableau proedure. Having

built up a omplete tableau for #, one has to eliminate those states that have

no suessors or ontain so-alled unrealised eventualities. Wolper proved (in

the propositional ase) that # is satis�able i� the root state of the omplete

tableau is not eliminated.
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` ;

t

0



��

t

1



��

`



t

0

0

Ax

#

t

0

0

Ax

#

t

0

1

Ax

#

s

r

// 33s

0

//
��

s

1

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

t

0

(x) = fq

#

; q

#

g [Ax

#

(x) t

0

0

(x) = fq

#

;>(x)g

t

1

(x) = fq

#

; q

#

; q

:#

g [Ax

#

(x) t

0

1

(x) = fq

#

;:q

#

;>(x)g

Ax

#

(x) = f>(x); q

#

! q

#

; :q

#

! q

:#

; :q

#

! q

:#

g

Figure 1. Complete tableau for ?U >.

Definition 4.5 (eventuality). Formulas of the form ' U  (x) are alled

eventualities. Let G = hS; s

r

;!; `; `



i be a tableau for #. A sequene

s

0

! � � � ! s

n

of states in G, where n � 0, is said to realise ' U  (x) 2 t

0

(x) 2 `(s

0

) if

there exists a sequene

t

0

(x)!



t

0

1

(x)!

A

t

1

(x)!



t

0

2

(x)!

A

: : :!



t

0

n

(x)!

A

t

n

(x)

of types suh that t

i

(x) 2 `(s

i

), t

0

i

(x) 2 `



(s

i

) for i, 0 � i � n, and

 (x) 2 t

n

(x).

Definition 4.6 (elimination rules). We use the following rules to eliminate

states in G:

(E2) if a state s 2 S has no !-suessor, eliminate it;

(E3) if `(s), s 2 S, ontains an eventuality having no realising sequene

starting from s, eliminate s.

Elimination rules (E2) and (E3) are very similar to those in [20℄. How-

ever, we do not need rule (E1) from [20℄, sine the ok `(s), for every state
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s, ontains no ontradition (it is the result of applying the saturation rule

A). In the omplete tableau for # = >U ? from above, the state s

1

is elim-

inated sine it has no suessor. Then s

0

is eliminated sine the eventuality

q

#

has no realising sequene. Finally, we eliminate the root s

r

due to (E2).

Theorem 4.7. Let (QT L

0

;TM) be a tmf-theory, (QL

0

;M) its �rst-order

redut, A a saturation rule for (QL

0

;M), and N a transition rule for QT L

0

.

Then for every QT L

0

-sentene # the following onditions are equivalent:

(1) # is satis�able in a model from TM;

(2) the root of a omplete tableau for # annot be eliminated using rules

(E2) and (E3).

In the following two subsetions we will prove the impliations (1)) (2)

(ompleteness) and (2)) (1) (soundness).

4.1. Completeness

We require a number of lemmas.

Suppose M = hN; <; Ii 2 TM, where I(n) =

D

�

n

; P

I(n)

0

; : : :

E

. For every

n 2 N, de�ne a �rst-order model

M

n

=

D

�

n

; P

M

n

0

; : : : ; Q

M

n

�

0

; : : : ; q

M

n

�

0

; : : :

E

2 M;

where �

0

; �

1

; : : : is an enumeration of all formulas of the form  

1

U  

2

and



 with one free variable x and �

0

; �

1

; : : : is an enumeration of all sentene

of the form  

1

U  

2

and



 . Namely, we set P

M

n

i

= P

I(n)

i

and de�ne the

Q

M

n

'

and q

M

n

'

as follows:

� If Q

'

(x) 2 sub(Ax

#

(x)), then a 2 Q

M

n

'

i� (M; n) j= '[a℄, for every

a 2 �

n

; otherwise put, say, Q

M

n

'

= ;.

� If q

'

2 sub(Ax

#

(x)), then q

M

n

'

is true i� (M; n) j= '; otherwise let,

say, q

M

n

'

be false.

Lemma 4.8. For every subformula '(y) of #, every n 2 N, and every a 2 �

n

,

(M; n) j= '[a℄ i� M

n

j= '[a℄;

besides, M

n

j= Ax

#

(x).
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Proof. The former laim follows immediately from the de�nition of M

n

.

As to the latter, we show only that

M

n

j= q

'U 

!  _ (' ^ q

('U )

):

Suppose otherwise. Then M

n

j= q

'U 

, M

n

6j=  and M

n

6j= ' ^ q

('U )

. It

follows that (M; n) j= ' U  and (M; n) 6j=  . Moreover, we must also have

either (M; n) 6j= ' or (M; n) 6j=



(' U  ), i.e., (M; n+ 1) 6j= ' U  , ontrary

to the truth-de�nition of U .

Suppose now that G = hS; s

r

;!; `; `



i is a omplete tableau for # and

that # is satis�able in a model M = hN; <; Ii from the lass TM, where

I(n) =

D

�

n

; P

I(n)

0

; : : :

E

.

Lemma 4.9. Let n 2 N, s

0

2 S, `



(s

0

) = T

0

, let a

0

be a T

0

-assignment in �

n

and t

0

0

(x) 2 T

0

. If M

n

j= T

0

[a

0

℄ then there are a state s 2 S with `(s) = T,

a T-assignment a in �

n

and a type t

0

(x) 2 T suh that

s

0

! s; M

n

j= T[a℄; a

0

(t

0

0

) = a(t

0

);

and t

0

0

(x)!

A

t

0

(x).

Proof. Suppose M

n

j= T

0

[a

0

℄. Then, by (CO), we an �nd T 2 A(T

0

),

t

0

(x) 2 T and a T-assignment a suh that M

n

j= T[a℄, a

0

(t

0

0

) = a(t

0

) and

t

0

0

(x)!

A

t

0

(x). Sine G is omplete, there is a state s 2 S suh that s

0

! s

and `(s) = T.

Lemma 4.10. Let n 2 N, s 2 S, `(s) = T, let a be a T-assignment in �

n

and t

0

(x) 2 T. If M

n

j= T[a℄ then there are a state s

00

2 S with `(s

00

) = T

00

,

a T

00

-assignment a

00

in �

n+1

, and a type t

00

0

(x) 2 T

00

suh that

s! s

00

; M

n+1

j= T

00

[a

00

℄; a(t

0

) = a

00

(t

00

0

);

and t

0

(x)!



t

0

0

(x)!

A

t

00

0

(x) for some type t

0

0

(x).

Proof. Let `



(s) = T

0

. Take the type t

0

0

(x) 2 T

0

suh that t

0

(x)!



t

0

0

(x)

and de�ne a T

0

-assignment a

0

in �

n+1

so that a

0

(t

0

0

) = a(t

0

). For every

other type t

0

(x) 2 T

0

, either there is a type t(x) 2 T with t(x)!



t

0

(x) or

t

0

(x) = Ax

#

(x). In the former ase put a

0

(t

0

) = a(t) and in the latter one

a

0

(t

0

) = a(t

0

). Clearly, M

n+1

j= T

0

[a

0

℄ holds whenever M

n

j= T[a℄ holds.

By Lemma 4.9, we then have a required state s

00

.
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Lemma 4.11. There exists an in�nite sequene

s

r

! s

0

! s

1

! : : :

of states in G suh that every eventuality ' U  in every type of `(s

n

), n � 0,

is realised in the sequene s

n

; : : : ; s

m

, for some m � n.

Proof. Without loss of generality we may assume that (M; 0) j= #. By

Lemma 4.8, we then have M

0

j= # ^Ax

#

(x).

We onstrut the required sequene by indution. We begin with s

r

and

take an arbitrary T

0

0

-assignment a

0

0

in �

0

, where `



(s

r

) = T

0

0

. Then learly

M

0

j= T

0

0

[a

0

0

℄. By Lemma 4.9, we obtain a state s

0

with `(s

0

) = T

0

and a

T

0

-assignment a

0

in �

0

suh that s

r

! s

0

and M

0

j= T

0

[a

0

℄. Denote the

beginning of our sequene by

s

r

! s

0

j a

0

(we will always need to remember the last assignment).

Suppose now that we have onstruted a sequene

s

r

! s

0

! � � � ! s

n

j a

n

(ii)

suh that `(s

n

) = T

n

and M

n

j= T

n

[a

n

℄. Two ases are possible.

Case 1. Every eventuality in every type of `(s

i

), 0 � i � n, is realised in (ii).

In this ase we take an arbitrary type t

n

(x) 2 T

n

and, by Lemma 4.10, �nd

a state s

n+1

with `(s

n+1

) = T

n+1

and a T

n+1

-assignment a

n+1

in �

n+1

suh that s

n

! s

n+1

and M

n+1

j= T

n+1

[a

n+1

℄. So we an extend (ii) with

s

n+1

j a

n+1

:

s

r

! s

0

! � � � ! s

n

! s

n+1

j a

n+1

:

Case 2. Suppose that Case 1 does not hold. Take a minimal k � n suh

that some eventuality ' U  (x) in some t

k

(x) 2 T

k

is not realised in (ii). As

all T

i

are A-quasistates, (' U  )

+

2 T

i

. As T

k

is saturated and satis�able,

either  (x) 2 t

k

(x) or '(x);



(' U  )(x) 2 t

k

(x). And as ' U  (x) is not

realised in (ii), only the latter ase is possible. It follows that there are

t

0

k+1

(x) and t

k+1

(x) suh that

t

k

(x)!



t

0

k+1

(x)!

A

t

k+1

(x) and ' U  (x) 2 t

k+1

(x):

Thus we an hoose a sequene

t

k

(x)!



t

0

k+1

(x)!

A

: : :!



t

0

n

(x)!

A

t

n

(x)
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suh that t

i

(x) 2 T

i

,

' U  (x) 2 t

i

(x);



(' U  )(x) 2 t

i

(x) and  (x) =2 t

i

(x) (iii)

for all i 2 [k; n℄.

Let a = a

n

(t

n

). We have M

n

j= T

n

[a

n

℄, and so, by (iii), M

n

j= ' U  [a℄

and M

n

j= : [a℄. Then by Lemma 4.8,

(M; n) j= (' U  )[a℄ and (M; n) j= : [a℄: (iv)

Now we onstrut a sequene of states realising our eventuality. By

applying Lemma 4.10 to s

n

, a

n

and t

n

(x) 2 T

n

suh that M

n

j= T

n

[a

n

℄,

a

n

(t

n

) = a and

' U  (x) 2 t

n

(x);



(' U  )(x) 2 t

n

(x);  =2 t

n

(x)

we �nd a state s

n+1

with `(s

n+1

) = T

n+1

and a T

n+1

-assignment a

n+1

in

�

n+1

with

s

n

! s

n+1

and M

n+1

j= T

n+1

[a

n+1

℄;

and t

n+1

(x) 2 T

n+1

suh that a

n+1

(t

n+1

) = a and ' U  (x) 2 t

n+1

(x). So

we an extend (ii) with s

n+1

j a

n+1

.

Note that (' U  )

+

2 T

n+1

and T

n+1

is a saturated ok, so either

 (x) 2 t

n+1

(x) or



(' U  )(x) 2 t

n+1

(x) and  (x) =2 t

n+1

(x). In the

former ase the eventuality is realised by

s

k

! � � � ! s

n

! s

n+1

:

In the latter ase we again apply the above proedure to the state s

n+1

, the

assignment a

n+1

and the type t

n+1

(x). It follows from (iv) that there must

exist m > n suh that (M;m) j=  [a℄, and so, by Lemma 4.8, M

m

j=  [a℄.

Thus, we will �nd a realising sequene in at most m� n steps.

In the limit we obtain an in�nite sequene

s

r

! s

0

! s

1

! : : : (v)

satisfying the requirements of the lemma.

We are in a position now to prove the ompleteness part of Theorem 4.7.

Proof. Suppose that # is satis�able in a model from the lass TM, and let

G = hS; s

r

;!; `; `



i be a omplete tableau for #. By Lemma 4.11, we have

an in�nite sequene

s

r

! s

0

! s

1

! : : : (vi)
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of states in G suh that every eventuality ' U  in every type of `(s

n

), n � 0,

is realised in the sequene s

n

; : : : ; s

m

, for some m � n.

To prove ompleteness, it suÆes to show that no s

i

from the sequene

is eliminated. Let

S = S

0

� S

1

� : : :

be the sequene produed by the elimination proedure. We show by indu-

tion on n that, for all n 2 N,

fs

r

g [ fs

i

j i 2 Ng � S

n

:

The basis of indution (n = 0) is lear. Suppose fs

r

g [ fs

i

j i 2 Ng � S

k

.

Sine every state s

i

has a suessor, rule (E2) is not appliable to it. As

all eventualities in the sequene (vi) are realised, rule (E3) is not appliable

either.

4.2. Soundness

Lemma 4.12. Let G = hS; s

r

;!; `; `



i be a omplete tableau for # and let S

0

be the set of states that remains after exeution of the elimination proedure.

If s

r

2 S

0

then there is an in�nite sequene

s

r

! s

0

! s

1

! : : :

of states in S

0

suh that every eventuality ' U  in every type of `(s

n

), n � 0,

is realised by the sequene s

n

; : : : ; s

m

for some m � n.

Proof. Suppose that we have onstruted a sequene

s

r

! s

0

! s

1

! � � � ! s

n

(vii)

sitting entirely in S

0

. Two ases are possible.

Case 1. Every eventuality in every type of `(s

i

), i � 0, is realised in (vii).

As (E2) is not appliable to s

n

, we an extend (vii) by a state s

n+1

2 S

0

with s

n

! s

n+1

.

Case 2. Suppose Case 1 does not hold. Take a minimal k 2 [0; n℄ suh

that an eventuality ' U  (x) in a type of `(s

k

) is not realised in (vii). Then

' U  (x) belongs to some type in `(s

n

). Sine (E3) is not appliable to s

n

,

' U  (x) is realised by a sequene

s

n

! s

n+1

! � � � ! s

m
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for some m � n suh that s

i

2 S

0

for i 2 [n;m℄. Then we extend (vii) with

the states s

n+1

; : : : ; s

m

.

In the limit we obtain a sequene satisfying the onditions of the lemma.

We an now omplete the proof of Theorem 4.7.

Proof. Suppose that G = hS; s

r

;!; `; `



i is a omplete tableau for # and S

0

is the set of states whih remains after exeution of the elimination proedure

and that the root s

r

was not eliminated. By Theorem 3.4, it is enough to

prove that there exists a quasimodel satisfying #. Lemma 4.12 provides us

with an in�nite sequene

s

r

! s

0

! s

1

! : : :

of states in S

0

realising all eventualities. The reader an readily hek that

(`(s

i

) j i 2 N) is a quasimodel satisfying #.

4.3. Tableaux: onstant domains

Let us onsider now the ase of onstant domains. Tableaux for this ase an

be obtained by a simple modi�ation of tableaux for the ase of expanding

domains. The major di�erene is that we use exhaustive saturation and

transition rules.

Definition 4.13 (exhaustive transition rule). The exhaustive transition rule

for QT L

0

is the map N that takes a ok T for # and returns the ok

N (T) =

�

t

0

(x) j t(x) 2 T and t(x)!



t

0

(x)

	

[ fAx

#

(x) [ fCDA

T

gg;

where

CDA

T

= 8x

_

t(x)2T

t(x)!



t

0

(x)

t

0

(x):

The formula CDA

T

is used to deal with onstant domains: we must

now onstrut a quasimodel in whih the domains of runs are total. In other

words, this means that for every quasistate T

n+1

and every t(x) 2 T

n+1

,

there must exist a type t

0

(x) 2 T

n

suh that the two onditions formulated

in De�nition 3.3 are satis�ed. However, this is preisely what the joint use

of CDA

T

and the surrogate axioms ensures. Together with the modi�ed

Property (CO

0

) of exhaustive saturation rules, this approah resembles the

`minimal types' tehnique developed in [16℄.
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Theorem 4.14. Let (QT L

0

;TM) be a tmf-theory, where TM is a lass of

models with onstant domains, (QL

0

;M) a �rst-order redut of (QT L

0

;TM),

A an exhaustive saturation rule for (QL

0

;M) and N an exhaustive transition

rule for QT L

0

. Then for every QT L

0

-sentene # the following onditions are

equivalent:

(1) # is satis�able in a model from TM;

(2) the root of a omplete tableau for # annot be eliminated using rules

(E2) and (E3).

A lose inspetion of the proofs for the ase of expanding domains shows

that it is suÆient to prove reformulations of the lemmas above in whih

� the model M is assumed to have onstant domains,

� the `(s

n

) are exhaustive oks for the orresponding M

n

.

The only non-trivial hanges are in Lemmas 4.9 and 4.10.

Suppose that G = hS; s

r

;!; `; `



i is a omplete tableau for # and that #

is satis�able in a model M = hN; <; Ii 2 TM, where I(n) =

D

�; P

I(n)

0

; : : :

E

for all n 2 N.

Lemma 4.15. Let n 2 N, s

0

2 S, `



(s

0

) = T

0

, let a

0

be a T

0

-assignment in �

and t

0

0

(x) 2 T

0

. If M

n

j= T

0

[a

0

℄ and T

0

is exhaustive for M

n

then there are

a state s 2 S with `(s) = T, a T-assignment a in � and a type t

0

(x) 2 T

suh that

s

0

! s; M

n

j= T[a℄ and T is exhaustive for M

n

; a

0

(t

0

0

) = a(t

0

)

and t

0

0

(x)!

A

t

0

(x).

Proof. The proof is analogous to the proof of Lemma 4.9 and follows im-

mediately from (CO

0

).

Lemma 4.16. Let n 2 N, s 2 S, `(s) = T, let a be a T-assignment in �, and

t

0

(x) 2 T. If M

n

j= T[a℄ and T is exhaustive for M

n

then there are a state

s

00

2 S with `(s

00

) = T

00

, a T

00

-assignment a

00

in �, and a type t

00

0

(x) 2 T

00

suh that

s! s

00

; M

n+1

j= T

00

[a

00

℄ and T

00

is exhaustive for M

n+1

; a(t

0

) = a

00

(t

00

0

)

and t

0

(x)!



t

0

0

(x)!

A

t

00

0

(x) for some type t

0

0

(x).
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Proof. The proof is analogous to the proof of Lemma 4.10. The only

di�erene is that in the proof ofM

n+1

j= T

0

[a

0

℄ we have to show additionally

that

M

n+1

j= CDA

T

:

Suppose a 2 �. As T is exhaustive for M

n

, there is a type t(x) 2 T

suh that M

n

j= t[a℄, and we hoose t

0

(x) 2 T

0

with t(x) !



t

0

(x). Then

M

n+1

j= t

0

[a℄ and M

n+1

j= CDA

T

.

It should be lear that the ok T

0

is exhaustive for M

n+1

, and then

Lemma 4.15 supplies a state s

00

and an assignment a

00

as required.

5. Instantiating the framework

The purpose of this setion is to illustrate the generality of our approah

by presenting example instantiations of the framework. To keep the presen-

tation suint, we stik to simple yet useful fragments of �rst-order logi:

exhaustive and non-exhaustive saturation rules are presented for

1. the f-theory (QL

1

;FO) indued by the one-variable fragment of �rst-

order logi (whih is a notational variant of propositional modal logi

S5 [19℄) and

2. the f-theory (ST ;TR) orresponding to the propositional bimodal logi

S4

u

introdued in Setion 2.2.

In fat, we show that the well-known, existing tableau deision proedures for

these fragments of �rst-order logi|for the orresponding modal logis, to be

more preise (see e.g., [4, 9℄)|an be regarded as saturation rules for the ase

of expanding domains, whereas some additional e�orts are needed to obtain

exhaustive saturation rules. The tehnique desribed in Setion 4 then yields

`temporal' tableau algorithms for the one-variable fragment QT L

1

of QT L

and the tmf-theory (T ST ;TTR) from Setion 2.2, i.e., the temporalisation of

(ST ;TR)|both for expanding and onstant domains. We �nish this setion

with presenting some example runs of the tableau algorithm for QT L

1

.

5.1. S5

As a (non-exhaustive) saturation rule for the one-variable fragment of �rst-

order logi, we use a slight variant of the well-known pre�xed tableaux for

S5, as presented e.g. in [4℄. The main di�erene between our presentation

of this algorithm and the one given in [4℄ is that we write formulas in the

syntax of �rst-order logi rather than modal logi.
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A labelled formula is of the from � :: ', where � is a label and ' a formula

(in our examples ' is a QL-formula with at most one free variable). A label �

is a nonempty sequene of natural numbers separated by dots. For example,

1:21 and 1:2:1 are labels. Labels allow us to distinguish between formulas

that belong to one world and those belonging to another one. Moreover, the

struture of labels desribes the aessibility relation between the worlds.

Although in the de�nition of the tableau algorithm for S5 we use only natural

numbers as labels (i.e., all labels are of length 1), we still denote these

sequenes by Greek letters (�, � , et.) beause the same tableau rules are

used for S4

u

in Setion 5.2, where the struture of labels is essential.

A tableau T (for both f-theories we onsider in this setion) is a �nite

tree, where eah node ontains a single labelled formula. A tableau branh

B of T is a path starting at the root node and ending at a leaf node.

Suppose we are given a ok T = ft

1

(x); : : : ; t

k

(x)g. The tableau al-

gorithm starts with an initial tableau T

0

onsisting of a single branh suh

that its nodes ontain all labelled formulas of the set

fn :: '(x) j '(x) 2 t

n

(x) and 1 � n � kg:

Thus, for every type t

i

(x) we introdue a unique label i whih denotes a new

world for this type (in the modal logi setting), or a set of domain elements

indistinguishable by formulas of t

i

(x) (in the �rst-order logi setting).

Then the algorithm exhaustively applies the tableau rules given in Fig. 2

to nodes on eah branh B of the tableau as follows.

(l:) If a node ontains � :: ::'(x) then an appliation of (l:) appends a

node ontaining � :: '(x) to B.

(l^) If a node ontains � :: '(x)^ (x) then an appliation of (l^) appends

two onseutive nodes to B, one ontaining � :: '(x) and the other

� ::  (x).

(l_) If a node ontains � :: :('(x)^ (x)) then an appliation of (l_) splits

the end of B and extends the left fork with � :: :'(x) and the right

one with � :: : (x).

(l9) If a node ontains � :: :8x'(x) then an appliation of (l9) extends B

with � :: :'(x), where � is a new label on B.

(l8) If a node ontains � :: 8x'(x) then an appliation of (l8) extends B

with � :: '(x), where the label � already exists on B.

(l8

�

) If a node ontains � :: ', where ' is a sentene, then an appliation of

(l8

�

) extends B with � :: ', where the label � already exists on B.
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(l:)

� :: ::'(x)

� :: '(x)

(l^)

� :: '(x) ^  (x)

� :: '(x)

� ::  (x)

(l_)

� :: :('(x) ^  (x))

� :: :'(x) j � :: : (x)

(l9)

� :: :8x'(x)

� :: :'(x)

� is new for B

(l8)

� :: 8x'(x)

� :: '(x)

� is used on B

(l8

�

)

� :: '

� :: '

� is used on B

Figure 2. Tableau rules for S5.

Observe that every branh B of a tableau an be onverted into a ok

T

B

by setting

T

B

= ft

B

�

(x) j � is a label on Bg;

where

t

B

�

(x) = f'(x) j � :: '(x) ours on Bg

(note that types t

B

�

(x) and t

B

�

(x) may oinide for � 6= � ; in this ase they

are identi�ed in T

B

).

We generally assume tableau rules to be applied in suh a way that no

labelled formula appears twie on the same branh and that (l9) is never

applied twie to the same labelled formula. A branh B is omplete if no

rule an be applied to it. A branh B is alled ontraditory if both � :: '

and � :: :' our on B, for some formula ' and label �. A tableau T is

omplete if eah branh in T is omplete.

To simplify further onsiderations, we �x an order of rule appliations.

We assume that there is an ordering on pairs ((l); � :: '), with tableau rule

(l) and labelled formula � :: ', and that a tableau rule (l) is applied to a

formula � :: ' only if ((l); � :: ') is minimal with respet to the ordering.

In this way, the tableau onstruted by the algorithm for a given input T

is ompletely determined. We all this tableau the anonial tableau for T.

Note that anonial tableaux are omplete by de�nition. We use B

T

to

denote the set of non-ontraditory branhes in the anonial tableau for T.

If started on a ok T, the tableau algorithm onstruts the anonial

tableau for T. It is a standard task to prove that this onstrution termi-

nates. If B

T

is the empty set, then A

S5

(T) = lash is returned. Otherwise,
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eah element ofB

T

represents a ok as explained above. Sine every branh

in B

T

is omplete, the orresponding oks are saturated. Thus, if B

T

is

nonempty, then the tableau algorithm returns the set

A

S5

(T) = fT

B

j B 2 B

T

g:

It is easy to see that this algorithm satis�es property (TR) of saturation

rules. Hene, let us proeed to property (CO).

Lemma 5.1. Let T be a ok. For every model M 2 FO with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there are a branh B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment a

0

in

� suh that t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T = ft

1

(x); : : : ; t

k

(x)g be a ok, M 2 FO with domain � and

let a be a T-assignment in � suh thatM j= T[a℄. Without loss of generality

we may assume that t = t

1

. Suppose that the anonial tableau for T is the

last tableau of the sequene

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appliation of a tableau rule.

We de�ne, for eah tableau T

i

, 0 � i � n, a branh B

i

of T

i

and a T

B

i

-

assignment a

i

in � as follows. Let B

0

be the single branh of T

0

. Set a

0

= a

(reall that formulas of type t

j

(x) are labelled by j on B

0

). Clearly we have

M j= T

B

0

[a

0

℄. Then we proeed in suh a way that the following onditions

are satis�ed for every i, 0 < i � n:

M j= T

B

i

[a

i

℄ and a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

): (viii)

Without loss of generality we an always assume that t

B

i

1

2 T

B

i

for every i,

0 � i � n (reall that in a ok T

B

i

types an be identi�ed).

Suppose that we have already onstruted B

i

and a

i

, 0 � i < n, and T

i+1

is obtained from T

i

by an appliation of (l). Consider all possible ases.

(l_) is applied to � :: :('(x)^ (x)) on B

i

. The rule appliation splits B

i

into

two branhes B

'

and B

 

, where B

'

ontains a new node with � :: :'(x) and

B

 

ontains a new node with � :: : (x). Let a be the value assigned to the

type of � at step i, i.e., a

i

(t

B

i

�

). Sine, by IH,M j= :('(x)^ (x))[a℄, we have

either M j= :'(x)[a℄ or M j= : (x)[a℄. In the former ase, set B

i+1

= B

'

and in the latter one B

i+1

= B

 

. In either ase, let a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for

every type t

B

i+1

�

(x) 2 T

B

i+1

.
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(l9) is applied to �

0

:: :8x'(x) on B

i

, introduing a label � and reating a

node with � :: :'(x). Sine M j= :8x'(x), there exists an element a 2 �

suh thatM j= '[a℄. Let B

i+1

be the extension of B

i

with the new node and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

and a

i+1

(t

B

i+1

�

) = a.

In all other ases B

i+1

is the extension of B

i

with the new nodes and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

.

It is easy to show that in every ase B

i+1

and a

i+1

satisfy (viii). Sine

M j= T

B

n

[a

n

℄, the branh B

n

is not ontraditory, i.e., B

n

2 B

T

. Now set

B = B

n

, a

0

to a

n

and t

0

(x) = t

B

n

1

(x). It is readily heked that B, t

0

and a

0

are as required.

Note that the proof of the lemma above resembles the standard omplete-

ness proof for the desribed tableau algorithm: an existing model is used to

`guide' the appliation of the tableau rules. We now ome to property (SO),

i.e., to soundness.

Lemma 5.2. For every ok T, every ardinal �

0

� �

0

, and every branh

B 2 B

T

, there exists a model

M =

D

�; Q

M

0

; : : : q

M

0

; : : :

E

2 FO;

in whih

� � =

S

t2T

B

�

t

, where �

t

are pairwise disjoint sets of ardinality �

0

,

� q

M

i

is true i� q

i

2 T

B

,

� a 2 Q

M

i

i� there is a type t(x) 2 T

B

suh that Q

i

(x) 2 t(x) and

a 2 �

t

,

suh that M j= t[a℄ holds for all t(x) 2 T

B

and a 2 �

t

.

Proof. Fix a branh B 2 B

T

and a ardinal �

0

� �

0

. De�ne a model M

by taking

�

t

= fht; �i j � < �

0

g for t(x) 2 T

B

;

Q

M

i

= fht; �i j Q

i

(x) 2 t(x) and � < �

0

g;

q

M

i

= fht; �i j q

i

2 t(x) and � < �

0

g:

Using the fat that B is omplete and non-ontraditory, by indution on

the struture of formulas one an easily show that M is as required.

We thus obtain the following lemma.

Lemma 5.3. A

S5

is a saturation rule for (QL

1

;FO).
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(l�)

� :: :8v (R(x; v)! '(v))

�:m :: :'(x)

�:m is new to B

(lK)

� :: 8v (R(x; v)! '(v))

�:w :: '(x)

(lT )

� :: 8v (R(x; v)! '(v))

� :: '(x)

(l4)

� :: 8v (R(x; v)! '(v))

�:w :: 8v (R(x; v)! '(v))

�:w is already exists on B

Figure 3. Additional tableau rules for S4

u

.

5.2. S4

u

Let us now extend the previous example to a saturation rule for the propo-

sitional modal logi S4 with the universal modality, that is to the f-theory

(ST ;TR) de�ned in Setion 2.2.

The tableau algorithm for S4

u

is similar to that for S5, so we onentrate

on the di�erenes. The set of tableau rules is omprised of those in Fig. 2

(for the Booleans and the universal modality) and Fig. 3 (for the transitive

and reexive modal operator 2 of S4|its �rst-order translation, to be more

preise). Again we assume that the rules (l9) and (l�) are applied at most

one for every node.

To ensure termination of rule appliation, some additional e�orts are

required. We say that a label � is redued if no rule di�erent from (l9) and

(l�) an be applied to nodes ontaining � :: '. A label � is alled fully

redued if no tableau rule is appliable to nodes ontaining � :: '. Now, a

branh B is omplete if

� all labels on B are redued and

� for every � that is not fully redued, there exists a fully redued label

� suh that t

B

�

(x) = t

B

�

(x).

To guarantee termination, tableau rules must not be applied to omplete

branhes. The tableau algorithm works as the one from the previous setion:

it onstruts the anonial tableau, returns A

S4

u

= lash if B

T

is empty

and the set of saturated oks

A

S4

u

(T) = fT

B

j B 2B

T

g;
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otherwise.

We now show that the extended algorithm is a (non-exhaustive) satura-

tion rule for (ST ;TR). As it is easy to prove that (TR) is satis�ed, we again

start with (CO).

Lemma 5.4. Let T be a ok. For every model M 2 TR with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there are a branh B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment a

0

in

� suh that t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T = ft

1

(x); : : : ; t

k

(x)g be a ok,

M =

D

�; R

M

; Q

M

0

; : : : ; q

M

0

; : : : ;

E

2 TR;

and let a be a T-assignment in � suh that M j= T[a℄. Without loss of

generality we may assume that t = t

1

. Suppose that the anonial tableau

for T is the last tableau of the sequene

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appliation of a tableau rule. For a branh B of a tableau and

an T

B

-assignment a, we write M j=

a

R

B

to say that (a(t

B

�

); a(t

B

�:�

)) 2 R

M

,

for all labels � and �:� on the branh (both � and � are sequenes of natural

numbers).

We de�ne, for eah tableau T

i

, 0 � i � n, a branh B

i

of T

i

and a T

B

i

-

assignment a

i

. Let B

0

be the single branh of T

0

. Set a

0

= a. Then we

proeed in suh a way that the following onditions are satis�ed for every i,

0 < i � n,

M j= T

B

i

[a

i

℄; a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

) and M j=

a

i

R

B

i

:

Assume that we have already onstruted B

i

and a

i

, for 0 � i < n, and T

i+1

is obtained from T

i

by an appliation of (l). Sine the rules in Fig. 2 an be

treated in preisely the same way as in Lemma 5.1, we onentrate only on

the rules in Fig. 3.

(l�) is applied to � :: :8v (R(x; v) ! '(v)) on B

i

, introduing a new label

�:m and reating a node �:m :: :'(x). Let a be the value assigned to the type

of � at step i, i.e., a

i

(t

B

i

�

). Sine, by IH, M j= (:8v (R(x; v) ! '(v)))[a℄,

there exists an element a

0

2 � suh that (a; a

0

) 2 R

M

and M j= :'[a

0

℄.

Let B

i+1

be the extension of B

i

with the new node, a

i+1

(t

B

i+1

�:m

) = a

0

and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for all other types t

B

i+1

�

(x) 2 T

B

i+1

.
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In all other ases B

i+1

is the extension of B

i

with the new nodes and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

.

Again it is straightforward to show that B

i+1

and a

i+1

are as required

(for (lK), (lT ) and (l4) we need to use the fat thatM j=

a

i

R

B

i

) and that B

n

and a

n

indue a branh B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment

a

0

, as required by the lemma.

It remains to prove that the soundness property (SO) holds.

Lemma 5.5. For every ok T, every ardinal �

0

� �

0

, and every branh

B 2 B

T

there exists a model

M =

D

�; R

M

; Q

M

0

; : : : q

M

0

; : : :

E

2 TR;

in whih

� � =

S

t2T

B

�

t

, where �

t

are pairwise disjoint sets of ardinality �

0

,

� q

M

i

is true i� q

i

2 T

B

,

� a 2 Q

M

i

i� there is a type t(x) 2 T

B

suh that Q

i

(x) 2 t(x) and

a 2 �

t

,

suh that M j= t[a℄ holds for all t(x) 2 T

B

and a 2 �

t

.

Proof. Fix a branh B 2 B

T

and a ardinal �

0

� �

0

. De�ne a model M

by taking

�

t

= fht; �i j � < �

0

g for t(x) 2 T

B

;

R

M

= f

�

ht; �i ;




t

0

; �

0

��

j t = t

B

�

and t

0

= t

B

�

for � � �g;

Q

M

i

= fht; �i j Q

i

(x) 2 t(x) and � < �

0

g;

q

M

i

= fht; �i j q

i

2 t(x) and � < �

0

g;

where � � � i� � is a (not neessarily proper) pre�x of � . Clearly, R

M

is reexive and transitive. Sine distint labels � and �

0

may desribe the

same type t

B

�

= t

B

�

0

, in general R

M

is not neessarily antisymmetri, i.e., it

is a quasi-order. Using the fat that B is omplete and non-ontraditory,

by indution on the struture of formulas one an easily show that M is as

required.

Summing up, we obtain the following:

Lemma 5.6. A

S4

u

is a saturation rule for (ST ;TR).
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k :: :('(x) ^  (x)) k is marked

k :: :'(x)

k :: :'(x)

m :: : (x) for m new to B

m :: �(x) for every k :: �(x) on B

k :: : (x)

Figure 4. The disjuntion rule (l_

�

) for marked labels.

5.3. Constant domains

With minor modi�ations, the tableau algorithms presented in Setions 5.1

and 5.2 also give rise to exhaustive saturation rules for (QL

1

;FO) and

(ST ;TR), respetively. Here we onsider only the latter, more general ase.

In the onstant domain tableau algorithm, there exist two types of la-

bels: marked and unmarked ones, where marked labels are always of length

one (i.e. ontain no dots). We assume that eah input ok ontains the

distinguished type t

z

(x) = f>(x)g. In the initial tableau for a ok T, a

marked label is used for t

z

(x). All other labels in the initial tableau are

unmarked. For the appliation of tableau rules, sentenes and formulas with

unmarked labels are treated preisely as in the expanding domain ase.

The only di�erene for marked labels is that a modi�ed version of the

disjuntion rule is used, whih an be found in Fig. 4: if k :: :('(x) _ (x))

is found on a branh B with k marked, then we split the end of the branh

into three and do the following: the left fork is extended with the labelled

formula k :: :'(x), the right one with k ::  (x), and the middle fork is

extended with formulas

fk :: :'(x); m :: : (x)g [ fm :: �(x) j k :: �(x) is on Bg;

where m is a new marked label of length 1 (a `opy' of k). Intuitively, we

are onstruting a set of `minimal types' orresponding to the marked la-

bels as proposed in [16℄: if B is a non-ontraditory branh of the anonial

tableau and M a model with domain � suh that M j= T

B

[a℄ for some

T

B

-assignment a, then for eah d 2 � we �nd a marked label � on B suh

that M j= t

B

�

[d℄.

1

This obviously orresponds to the `exhaustiveness' prop-

erty required by the strengthened ompleteness ondition (CO

0

) for onstant

domains.

1

The type t

B

�

(x) is alled a minimal type, sine there is no type t(x) 2 T

B

suh that

t(x) � t

B

�

(x).
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The result returned by the onstant domain tableau algorithm A

0

S4

u

is

obtained from the anonial tableau in the very same way as for expanding

domains. Let us now prove the onstant domain ompleteness property

(CO

0

):

Lemma 5.7. Let T be a ok. For every model M 2 TR with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there is a branh B 2 B

T

suh that

1. T

B

is exhaustive for M,

2. there exist a type t

0

(x) 2 T

B

and a T

B

-assignment a

0

in � suh that

t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T be a ok, M =




�; R

M

; Q

M

0

; : : : ; q

M

0

; : : :

�

2 TR, and a a T-

assignment in � suh that M j= T[a℄. Suppose that the anonial tableau

for T is the last tableau of the sequene

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appliation of a tableau rule.

We de�ne, for eah tableau T

i

, 0 � i � n, a branh B

i

of T

i

, an T

B

i

-

assignment a

i

, and a surjetive map �

i

from � to the set of marked labels on

B

i

. Let B

0

be the single branh of T

0

. Set a

0

= a, and let �

0

be the funtion

mapping every element of � to the single marked label on B

0

(reall that

>(x) is the only formula labelled by it). We proeed in suh a way that the

following onditions are satis�ed:

M j= T

B

i

[a

i

℄; a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

); M j=

a

i

R

B

i

;

and

�

i

(d) = � implies M j= t

B

i

�

[d℄ for every d 2 �: (ix)

Assume that we have already onstruted B

i

, a

i

, and �

i

for 0 � i < n, and

T

i+1

is obtained from T

i

by an appliation of (l). All rules exept (l_

�

) are

treated as in Lemmas 5.1 and 5.4 with the addition that �

i+1

= �

i

for any

of these rules.

(l_

�

) is applied to �:k :: :('(x) ^  (x)), where �:k is a marked label. The

rule appliation splits B

i

into three branhes B

'

, B

 

and B

�

, where B

'

has

a new node ontaining �:k :: :'(x), B

 

has a node ontaining �:k :: : (x),

and B

�

has new nodes ontaining

f�:k :: :'(x); �:m :: : (x)g [ f�:m :: �(x) j �:k :: �(x) is on B

i

g;
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where �:m is a new marked label. De�ne two sets

�

'

=fd 2 � j �

i

(d) = �:k and M j= :'[d℄g;

�

 

=fd 2 � j �

i

(d) = �:k and M j= : [d℄g:

Due to the surjetivity of �

i

, we have either �

'

6= ; or �

 

6= ;. So we have

to onsider three ases:

1. If �

'

= ;, then B

i+1

= B

 

.

2. If �

 

= ;, then B

i+1

= B

'

.

3. If �

'

6= ; and �

 

6= ;, then B

i+1

= B

�

, a

i+1

(t

B

i+1

�:m

) = a

i

(t

B

i

�:k

) and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every other t

B

i+1

�

(x) 2 B

i+1

, and

�

i+1

(d) =

8

>

<

>

:

�:k; if d 2 �

'

;

�:m; if d 2 �

 

n�

'

;

�

i

(d); otherwise.

Finally, in the �rst two ases we let �

i+1

= �

i

and a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for

every t

B

i+1

�

(x) 2 B

i+1

.

In the same way as in the proof of Lemma 5.4 we an use B

n

and a

n

to

�x a branh B = B

n

2 B

T

, a type t

0

2 T

B

, and a T

B

-assignment a

0

suh

that ondition 2 from the formulation of the lemma is satis�ed. It remains

to note that exhaustiveness of T

B

is obviously an immediate onsequene

of (ix).

Sine soundness (SO) an be proved preisely as in the expanding domain

ase, we obtain the following:

Lemma 5.8. A

0

S4

u

is an exhaustive saturation rule for (ST ;TR).

In general, it seems that all tableau algorithms whih may serve as an

(expanding domain) saturation rule an be onverted into an exhaustive

saturation rule by modifying all non-deterministi tableau rules in the way

we modi�ed the (l_

�

) rule: instead of onsidering eah non-deterministi

outome separately, we must also onsider arbitrary ombinations of suh

outomes. More details on this issue an be found in [16℄.
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5.4. Temporal tableaux at work

In the following, we exemplarily apply the temporal tableau alulus from

Setion 4 to some QT L

1

-formulas using the tableau algorithm for QL

1

as a

saturation rule as shown in Setion 5.1.

Remark 5.9. Let # be a QT L

1

-sentene and G a omplete tableau for

# after exeution of the elimination proedure. Then learly no type in

the tableau ontains both



'(x) and



:'(x) (otherwise the node has no

suessor). On the other hand, it follows from (



')

:

that every type of every

saturated ok `(s), where s is a state in G, ontains at least one of



'(x)

and



:'(x), for every subformula



'(x) of #. So in the �nal (ompleted

and pruned) tableaux we an identify



'(x) and :



:'(x) and onsider

only one of them, sine the truth value of the other an easily be restored.

Similarly, axiom ( 

1

U  

2

)

:

guarantees that every type in every saturated

ok `(s) ontains preisely one of



( 

1

U  

2

)(x) and



:( 

1

U  

2

)(x), for

every subformula  

1

U  

2

(x) of #. So by the same argument we an identify



( 

1

U  

2

)(x) and :



:( 

1

U  

2

)(x).

Example 5.10. Consider the formula

2

�

9y

�

C(y) ^ :



C(y)

�

^ 8y

�

:C(y)!



:C(y)

�

�

;

from Example 2.8. As was shown above, we an identify q

(>U: )

with

:q

:(>U: )

and Q

C

(x) with :Q

:C

(x) (and onsider only one representa-

tive of eah pair). This is done to simplify tableau in the example by avoiding

onstrution of dead ends. Then the set Ax

#

(x) of surrogate axioms onsists

of the following formulas:

>(x);

q

>U: 

! :9y

�

C(y) ^ :Q

C

(y)

�

_ :8y

�

C(y) _ :Q



C

(y)

�

_ q

(>U: )

;

:q

>U: 

! 9y

�

C(y) ^ :Q

C

(y)

�

^ 8y

�

C(y) _ :Q

C

(y)

�

^ :q

(>U: )

;

:q

(>U: )

! :q

(>U: )

;

8x

�

:Q

C

(x)! :Q

C

(x)

�

:

We begin onstruting a tableau for # with a state s

r

suh that

`(s

r

) = ;; `



(s

r

) = T

0

0

and T

0

0

= ft

0

0

(x); Ax

#

(x)g:

The ok T

0

0

onsists of only two types, namely, t

0

0

(x) = f:q

>U: 

;>(x)g

and Ax

#

(x). As a saturation rule we use the tableau proedure for the one-

variable fragment from Setion 5.1. The omplete tableau for T

0

0

ontains
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`

;

t

C

t

:C



��

t

:C

t

:C



��

t

C

t

:C

t

:C



��

t

:C



��

`



t

0

0

Ax

#

t

0

C

t

0

:C

Ax

#

t

0

:C

Ax

#

t

0

C

t

0

:C

Ax

#

t

0

:C

Ax

#

s

r

// 33 66s

1

// &&
s

2 66YY s

4

oo
EE s

3

ooxx

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

Figure 5. Complete tableau for Example 2.8.

then three non-ontraditory branhes, eah of whih represents a lass of

models for T

0

0

. These branhes give us the following saturated oks

T

1

= ft

:C

(x); t

C

(x)g ; T

2

= ft

:C

(x); t

:C

(x)g ; T

3

= ft

:C

(x)g

onsisting of three distint types

t

:C

(x) = �

0

(x) [ fC(x); :Q

C

(x); C(x) ^ :Q

C

(x)g ;

t

C

(x) = �

0

(x) [ fC(x); Q

C

(x)g ;

t

:C

(x) = �

0

(x) [ f:C(x); :Q

C

(x)g ;

where �

0

(x) = Ax

#

(x)[f:q

>U: 

; :q

(>U: )

g. Thus, the result of saturation

is

A(T

0

0

) = fT

1

;T

2

;T

3

g ;

and so we reate three new states s

1

, s

2

and s

3

labelled by T

1

, T

2

and T

3

,

respetively.

Now we take one step in time and obtain N (T

i

) = T

0

i

, for i = 1; 2; 3,
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with

T

0

1

=

�

t

0

:C

(x); t

0

C

(x); Ax

#

(x)

	

;

T

0

2

=

�

t

0

:C

(x); Ax

#

(x)

	

;

T

0

3

=

�

t

0

:C

(x); Ax

#

(x)

	

;

where t

0

:C

(x) = f:q

>U: 

; :C(x); >(x)g, t

0

C

(x) = f:q

>U: 

; C(x); >(x)g.

An appliation of the saturation rule to the oks T

0

1

, T

0

2

and T

0

3

gives

A(T

0

1

) = fT

2

;T

4

g ; A(T

0

2

) = fT

2

;T

4

g and A(T

0

3

) = fT

2

;T

4

g ;

where T

4

= ft

:C

(x); t

:C

(x); t

C

(x)g. As in the tableau we already have

a state, s

2

, labelled by T

2

, we reate one new state s

4

and label it by T

4

.

Having taken the seond step in time, we obtain N (T

4

) = T

0

4

, where

T

0

4

=

�

t

0

:C

(x); t

0

C

(x); Ax

#

(x)

	

:

An appliation of the saturation rule to T

0

4

gives no new states, so this

step ompletes the tableau. Wolper's elimination rules will not redue the

number of states, sine our formula ontains no eventualities. The resulting

tableau is depited on Fig. 5.

Example 5.11. Consider now the formula # = 8y



:C(y) ^



9y C(y). Its

�rst-order redut is # = 8y Q

:C

(y)^q

9yC

and the set Ax

#

(x) of surrogate

axioms onsists of three formulas (modulo the simpli�ations above):

>(x);

8x (:Q

:C

(x)! :Q

:C

(x));

:q

9yC

! :q

9yC

:

In the ase of expanding domains (using again the saturation rule for the one-

variable fragment from Setion 5.1) we obtain then the in�nite path of the

omplete temporal tableau for # (see Fig. 5.4). It should be remarked that

the omplete tableau ontains more than 30 states, however the displayed

path is enough to onstrut a quasimodel satisfying #.

In the ase of onstant domains, the type Ax

#

(x) in s

0

ontains the

formula

CDA

T

= 8x (:C(x) ^ 9y C(y));

whih is learly not satis�able. Therefore, s

0

has no suessors, and the

elimination proedure removes both s

r

and s

0

, so that the resulting tableau

is empty. By Theorem 4.14, # is not satis�able in onstant domains.
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`

;

t

1



��

t

2

t



t

3



��

`



t

0

0

Ax

#

t

0

1

Ax

#

t

0

1

Ax

#

s

r

//
s

0

//
s

1

��

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

t

0

0

(x) = f#; >(x)g

t

1

(x) = f#; 8y Q

:C

(y); Q

:C

(x); q

9yC

;>(x)g

t

0

1

(x) = f:C(x); 9y C(y); >(x)g

t

2

(x) = f:C(x); 9y C(y); Q

:C

(x); q

9yC

; >(x)g

t



(x) = fC(x); 9y C(y); Q

:C

(x); q

9yC

; >(x)g

t

3

(x) = f9y C(y); Q

:C

(x); q

9yC

; >(x)g

Figure 6. An in�nite path in the tableau for 8y :C(y) ^9y C(y).

6. Conlusion

We have presented a general framework for onstruting tableau algorithms

for monodi fragments of �rst-order temporal logi from Wolper's tableau

algorithm for PTL and deision proedures for fragments of �rst-order logi.

In both the expanding domain and the onstant domain ase, we an use

existing deision proedures for �rst-order fragments. However, for onstant

domains we need more than a single appliation of the algorithm.

As example instantiations of our framework, we have developed tableau

algorithms for the one-variable fragment of monodi FOTL and for the tem-

poralisation of the modal logi S4

u

. These logis are suÆiently simple to

serve as examples but also have some rather serious appliations:

� The tableau system for the one-variable fragment QT L

1

of FOTL an

be used for various spatio-temporal reasoning tasks, see [27℄ for an

embedding of spatio-temporal logis in this fragment.
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� In the ase of onstant domains, the tableau for QT L

1

atually yields

a tableau deision proedure for the Cartesian produt of propositional

linear temporal logi PTL and S5 (see e.g. [7℄).

� The tableau system for the temporalised S4

u

an be generalised in a

straightforward way to tableaux for various temporal desription logis

(see, e.g., [24, 18, 15℄).

It should be obvious that the presented framework an also be used to de-

velop tableau algorithms for more powerful fragments of monodi FOTL suh

as the monodi two-variable fragment and the monodi guarded fragment.
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