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Temporalising tableaux

Abstra
t. As a remedy for the bad 
omputational behaviour of �rst-order temporal logi


(FOTL), it has re
ently been proposed to restri
t the appli
ation of temporal operators to

formulas with at most one free variable thereby obtaining so-
alled monodi
 fragments of

FOTL. In this paper, we are 
on
erned with 
onstru
ting tableau algorithms for monodi


fragments based on de
idable fragments of �rst-order logi
 like the two-variable fragment or

the guarded fragment. We present a general framework that shows how existing de
ision

pro
edures for �rst-order fragments 
an be used for 
onstru
ting a tableau algorithm

for the 
orresponding monodi
 fragment of FOTL. Some example instantiations of the

framework are presented.

Keywords: �rst-order temporal logi
, monodi
 fragment, tableau algorithm.

1. Introdu
tion

First-order temporal logi
 (FOTL) based on the 
ow of time hN; <i is no-

torious for its bad 
omputational behaviour: even the two-variable monadi


fragment of this logi
 is not re
ursively enumerable (see e.g. [11℄ and refer-

en
es therein). A 
ertain breakthrough has re
ently been a
hieved in [11℄,

where the so-
alled monodi
 fragment of FOTL is introdu
ed by restri
ting

appli
ations of temporal operators to formulas with at most one free variable.

The full monodi
 fragment (
ontaining full �rst-order logi
) turns out to be

axiomatisable [26℄. Moreover, by restri
ting its �rst-order part to de
idable

fragments, we obtain de
idable monodi
 FOTLs, say, the monodi
 guarded,

monodi
 two-variable, and monodi
 monadi
 fragments. This opens a way

to various appli
ations of the monodi
 FOTL in knowledge representation,

temporal databases, program spe
i�
ation and veri�
ation, and other �elds.

For example, many temporal des
ription logi
s and spatio-temporal logi
s


an be regarded as fragments of monodi
 FOTL [12, 7, 27℄. Unfortunately,

the de
ision pro
edures provided in [11℄ are of model-theoreti
 
hara
ter

and 
annot be used as a basis for implementations. In [1℄ and quite re
ently

in [3℄, a resolution-based approa
h has been �rst developed for 
ertain sub-

fragments of the monodi
 fragment and then for the full monodi
 fragment.
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A tableau-based analysis of the de
ision problem for monodi
 FOTL has been

missing. In this paper we are trying to �ll in this gap. More spe
i�
ally, our

aims are as follows:

1. to develop a general framework for devising tableau-based de
ision pro-


edures for de
idable monodi
 FOTLs and then,

2. within this framework, to 
onstru
t tableau systems for a number of


on
rete monodi
 fragments.

We 
onsider monodi
 FOTLs interpreted in models with both expanding and


onstant domains. The former 
ase is te
hni
ally mu
h easier, but the latter

one is more general: reasoning with expanding domains 
an be redu
ed to

reasoning with 
onstant domains, but not vi
e versa (see e.g., [7℄).

Our approa
h is based on the following ideas:

� modularity|a de
ision pro
edure for a given fragment of �rst-order

logi
 is 
ombined with Wolper's tableaux [20℄ for propositional tempo-

ral logi
 (PTL);

� �nite quasimodel representations of temporal models with potentially

in�nite �rst-order domains|elements indistinguishable by the subfor-

mulas (of a given formula) with at most one free variable are repre-

sented by the same type;

� the minimal type te
hnique for dealing with 
onstant domains in tem-

poral models [16℄

To des
ribe the proposed framework in some more depth, let us assume that

the satis�ability of a monodi
 FOTL formula # has to be de
ided. The

`temporal' tableau algorithm tries to 
onstru
t a model for #, i.e., a (one-

side) in�nite sequen
e of 
lassi
al �rst-order models. To a
hieve modularity,

we separate the temporal and the pure �rst-order parts of # and treat the

former using Wolper's tableau for PTL and the latter using available de
ision

pro
edures for fragments of �rst-order logi
. More pre
isely, the temporal

tableau algorithm �rst repla
es all subformulas of # that start with temporal

operators by their `surrogates,' i.e., by unary predi
ates. Unary predi
ates

are suÆ
ient here, sin
e we are dealing with monodi
 FOTLs. The proper

`temporal behaviour' of the surrogates is ensured by some auxiliary surrogate

axioms, whi
h are passed to the �rst-order de
ision pro
edure along with

the surrogated version of #. This de
ision pro
edure is expe
ted to provide

us with des
riptions of possible models for its input. We then 
hoose an
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appropriate modelM for the 
urrent time point and make one `step in time'

by omitting the `next-time' operator (as in Wolper's tableaux) and adding

new surrogate axioms. This way we build up a temporal tableau. When

su
h a tableau is 
ompleted, the pruning te
hnique|whi
h is also used in

Wolper's tableau for PTL|is employed to 
he
k whether all eventualities

are ful�lled, i.e., whether the tableau represents a temporal model of the

input formula.

Additional e�ort is needed to preserve the representation of tableaux

�nite and to guarantee termination. For example, �rst-order models are

represented by �nite sets of types, ea
h representing a possibly in�nite num-

ber of domain elements. Quasimodels, whi
h are well-known from e.g. [11℄,

are used to en
ode temporal models by asso
iating a �nite set of types

with ea
h time instant. To avoid 
onstru
ting an in�nite number of (�nite

representations of) �rst-order models, we use blo
king to dete
t and avoid

dupli
ates.

Two rather general theorems, one for expanding domains and one for


onstant domains, provide 
onditions under whi
h a �rst-order de
ision pro-


edure 
an be 
ombined with Wolper's tableaux to yield a tableau-based

de
ision pro
edure for the 
orresponding monodi
 FOTL. The pri
e we have

to pay for this level of generality is that the resulting 
ombined tableaux are

far from optimal. In parti
ular, in many 
on
rete 
ases new tableau rules 
an

be used instead of surrogate axioms. Thus, our general framework for 
om-

bining tableaux is not supposed for dire
t appli
ations or implementations,

but rather as a guide for 
onsidering more spe
i�
 
ases.

The paper is organised as follows. In Se
tion 2 we de�ne the syntax and

semanti
s of �rst-order temporal logi
 and introdu
e the monodi
 fragment

of FOTL. We start Se
tion 3 with 
hara
terising de
ision pro
edures for

fragments of �rst-order logi
 that 
an be used as building blo
ks in tableau


al
uli for monodi
 fragments (so-
alled saturation rules). Then we prove

that quasimodels are a proper abstra
tion of temporal models. In Se
tion 4

we show how to obtain a tableau pro
edure for a monodi
 fragment based on

an existing de
ision pro
edure for the 
orresponding FO fragment. We prove

termination, soundness and 
ompleteness of the algorithm for both expand-

ing and 
onstant domains. In Se
tion 5, two example instantiations of our

framework are presented: we des
ribe two standard �rst-order tableau algo-

rithms (for the one-variable fragment and the modal logi
 S4

u

|i.e., Lewis's

S4 with the universal modality) and prove that they 
an be 
onsidered as

saturation rules. Then we present some appli
ations of the tableau algorithm

for the temporalisation of the one-variable fragment of �rst-order logi
. We


on
lude in Se
tion 6.
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2. First-order temporal logi


In this se
tion, we introdu
e �rst-order temporal logi
 and its monodi
 frag-

ment. Then we 
onsider monodi
 fragments as `temporalisations' of 
ertain

fragments of �rst-order logi
 and show how the monodi
 formulas 
an be

split up into temporal and �rst-order parts.

Let QT L be the �rst-order (or quanti�ed) temporal language based on

the following vo
abulary:

� predi
ate symbols P

0

; P

1

; : : : , ea
h of whi
h is of some �xed arity � 0;

� a 
ountably in�nite set V of individual variables x

0

; x

1

; : : : ;

� the Boolean 
onne
tives ^ and :;

� the universal quanti�er 8x for every individual variable x;

� the temporal operators U (`until') and




(`next-time').

Remark 2.1. Note that our language 
ontains neither 
onstant symbols nor

equality. The reason for omitting the 
onstants is to simplify presentation

by avoiding unne
essary te
hni
al details. The reader should not have any

problems to extend the method developed in the paper to the language

with 
onstant symbols. Equality and/or fun
tion symbols may ruin good

algorithmi
 properties of the monodi
 fragment by making it not re
ursively

enumerable [11℄. Moreover, it is shown in [2℄ that the monodi
 monadi


two-variable fragment with equality is unde
idable; see, however, [10℄ where

it is shown that the monodi
 pa
ked fragment with equality is de
idable.

The set of QT L-formulas is de�ned as follows:

� if P is an m-ary predi
ate symbol and x

1

; : : : ; x

m

are variables, then

P (x

1

; : : : ; x

m

) is an (atomi
) formula;

� if ' and  are formulas, then so are ' ^  and :';

� if ' is a formula and x a variable, then 8x' is a formula;

� if ' and  are formulas, then so are ' U  and




'.

We use the standard abbreviations _, !, and

> = �; ? = :>; 9x' = :8x:'; 3' = > U '; 2' = :3:';

where � is some �xed tautology. Intuitively, 3 means `now or sometime in

the future' and 2 means `from now on.'

For a given formula ', sub(') denotes the set of subformulas of ' and

free(') the set of variables o

urring free in '. We write '(x

1

; : : : ; x

m

) to
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indi
ate that all free variables of ' are in the set fx

1

; : : : ; x

m

g; in parti
ular,

'(x) has at most one free variable x. The pure (non-temporal) �rst-order

fragment of QT L is denoted by QL.

Let us now de�ne the semanti
s of QT L: in prin
iple, we just have to

�x a 
ow of time and then relate ea
h moment of time with some �rst-order

model. Sin
e in this paper we are 
on
erned with the 
ow of time hN; <i,

it thus suÆ
es to asso
iate with ea
h moment n 2 N a �rst-order model.

Thus we obtain QT L-models, in whi
h domains of �rst-order stru
tures 
an

vary along the time axis. However, a more natural (and more powerful)

semanti
s is obtained by additional restri
tions on the domains. In what

follows, we 
onsider two kinds of temporal models: with expanding and


onstant domains. The former 
lass of models is mu
h easier to be dealt

with by tableau de
ision pro
edures (as well as by resolution [3℄), whereas

the latter one is more general, sin
e reasoning with expanding (or, in general,

varying) domains 
an be redu
ed to reasoning with 
onstant domains; see

e.g., [5, 25, 7℄.

Definition 2.2 (model). A QT L-model is a triple M = hN; <; Ii, where

hN; <i is the set of natural numbers equipped with the usual stri
t order <,

and I is a fun
tion asso
iating with ea
h n 2 N some �rst-order model

I(n) =

D

�

n

; P

I(n)

0

; P

I(n)

1

; : : :

E

;

where �

n

is a non-empty set and ea
h P

I(n)

i

is a relation on �

n

of the same

arity as P

i

. M is said to be a model with expanding domains if �

i

� �

j

whenever i < j, and M is 
alled a model with 
onstant domains if �

i

= �

j

for all i; j 2 N.

From now on by a QT L-model we mean a QT L-model with expanding

or 
onstant domains.

There are di�erent approa
hes to de�ning truth in QT L-models; see

e.g., [13℄. We take the following version due to [14℄:

Definition 2.3 (truth). Let M = hN; <; Ii be a QT L-model. An assign-

ment a inM is a fun
tion from the set V of individual variables to

S

n2N

�

n

.

Given a QT L-formula #, the truth-relation (M; n) j=

a

# (`# is true at mo-

ment n in model M under assignment a') is de�ned indu
tively on the


onstru
tion of # for only those assignments a that satisfy the 
ondition

a(x) 2 �

n

for all x 2 free(#):

� (M; n) j=

a

P (x

1

; : : : ; x

m

) i� ha(x

1

) : : : ; a(x

m

)i 2 P

I(n)

;
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� (M; n) j=

a

:' i� (M; n) 6j=

a

';

� (M; n) j=

a

' ^  i� (M; n) j=

a

' and (M; n) j=

a

 ;

� (M; n) j=

a

8x' i� (M; n) j=

b

' for every assignment b that may di�er

from a only on x, provided that b(x) 2 �

n

;

� (M; n) j=

a

' U  i� there is m � n su
h that (M;m) j=

a

 and

(M; k) j=

a

' for all k 2 [n;m), where [n;m) = fk j n � k < mg;

� (M; n) j=

a




' i� (M; n+ 1) j=

a

'.

A QT L-formula ' is said to be satis�able in expanding domains (or

satis�able, for short) if (M; n) j=

a

' holds for some modelM with expanding

domains, moment n and assignment a in M. If M is a model with 
onstant

domains, we say that ' is satis�able in 
onstant domains. The notions of

validity and validity in 
onstant domains are de�ned in the dual way. It is

not hard to see that satis�ability in 
onstant domains implies satis�ability

in expanding domains, but not vi
e versa: the formula

8x




:C(x) ^




9xC(x)

is satis�able in expanding domains, but not in 
onstant domains. Note that

both QT L with expanding domains and QT L with 
onstant domains are


onservative extensions of 
lassi
al �rst-order logi
 in the language QL.

Throughout this paper, we will not be distinguishing between a �nite

set � of formulas and the 
onjun
tion

V

� of formulas in it. In parti
ular,

we write (M; n) j=

a

� to say that (M; n) j=

a

' for every ' 2 �. Instead

of (M; n) j=

a

'(x

1

; : : : ; x

m

) we often write (M; n) j= '[a

1

; : : : ; a

m

℄, where

a = fx

1

7! a

1

; : : : ; x

m

7! a

m

g.

2.1. The monodi
 fragment

As is known too well, �rst-order temporal logi
 and even its `small' fragments

su
h as the two-variable monadi
 fragment are not re
ursively enumerable

(see [6℄ and referen
es therein). The maximal `well-behaved' sublanguage

of QT L that has been dis
overed so far [11℄ 
onsists of so-
alled monodi


formulas.

Definition 2.4 (monodi
 fragment). A QT L-formula is said to be monodi


if it 
ontains no subformula of the form ' U  or




' with more than one

free variable. The set of all monodi
 formulas will be denoted by QT L

1

.
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Two important results 
on
erning the monodi
 fragment are relevant

here. First, the set of valid (in 
onstant domains) monodi
 formulas is �nitely

axiomatisable [26℄, and so there exists a semi-de
ision pro
edure (as QT L

1


learly 
ontains fullQL, it is unde
idable). The se
ond result obtained in [11℄

states (roughly) that, if we take a fragment of QT L

1

the underlying �rst-

order (non-temporal) part of whi
h is de
idable, then this fragment itself is

de
idable as well. Examples of de
idable monodi
 fragments are:

� the two-variable monodi
 fragment QT L

2

1

;

� the monadi
 monodi
 fragment QT L

mo

1

;

� the guarded monodi
 fragment T GF

1

(in whi
h quanti�
ation is re-

stri
ted to patterns 8�y (
 ! '), where �y is a tuple of variables, every

free variable in ' is free in 
 as well, and the `guard' 
 is an atomi


formula).

2.2. Temporalisation

These and other similar fragments QT L

0

� QT L

1


an be regarded as

temporalisations of the 
orresponding �rst-order fragments QL

0

� QL (two-

variable, monadi
, guarded, et
.) by extending their formula-formation rules

with the following one:

if '(x) and  (x) are QT L

0

-formulas,

then so are




'(x) and '(x) U  (x).

(y)

Various temporalisations of expressive propositional modal (say, epis-

temi
, des
ription, or dynami
) logi
s [17, 21, 23, 22, 24, 7℄ 
an also be

viewed as fragments of QT L

1

. However, we have to be 
areful here be
ause

not all 
onstru
tors of these logi
s are �rst-order de�nable, for instan
e, the

transitive re
exive 
losure of binary relations used in some des
ription logi
s

and PDL.

To in
lude su
h logi
s in our general framework, we �rst de�ne a fragment

theory (or an f-theory, for short) as a pair (QL

0

;M), where QL

0

� QL andM

is a 
lass of models in the signature of QL

0

(or its extension). For instan
e,

the two-variable fragment QL

2

of QL 
an be 
onsidered as the f-theory

(QL

2

;FO), where FO is the 
lass of all �rst-order models.

As another example take the propositional bimodal logi
 S4

u

, i.e., Lewis's

S4 with the universal modality 2

8

(see [8℄). Let ST be the set of standard
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translations of S4

u

-formulas de�ned by taking

(p)

�

= P (x); for a propositional variable p;

(' ^  )

�

= '

�

^  

�

;

(:')

�

= :'

�

;

(2')

�

= 8y

�

R(x; y)! '

�

fy=xg

�

; for a fresh variable y;

(2

8

')

�

= 8x'

�

;

where 'fy=xg denotes the result of repla
ing the free variable x in ' with y.

Denote by TR the 
lass of all �rst-order models of the form

M =

D

W;R

M

; P

M

0

; P

M

1

; : : :

E

;

where R

M

is a transitive and re
exive relation on W and the P

M

i

are ar-

bitrary subsets of W . As is well-known, for every S4

u

-formula ', '

�

is

satis�able in a model from TR i� ' is satis�able. Thus, we 
an 
onsider the

modal logi
 S4

u

as the f-theory (ST ;TR).

Now we 
an de�ne a temporal monodi
 fragment theory (or tmf-theory)

as a pair (QT L

0

;TM), where QT L

0

� QT L

1

and TM is a 
lass of temporal

models (with either expanding or 
onstant domains) in the signature of

QT L

0

.

Definition 2.5 (temporalisation). A tmf-theory (QT L

0

;TM) is 
alled the

expanding (
onstant) domain temporalisation of an f-theory (QL

0

;M) if

� QT L

0

is obtained from QL

0

by extending its formula formation rules

with (y),

� TM 
onsists of models of the form M = hN; <; Ii with expanding

(respe
tively, 
onstant) domains su
h that I(n) 2 M for all n 2 N.

For instan
e, the 
onstant domain temporalisation of (ST ;TR) is the tmf-

theory (T ST ;TTR) su
h that the language T ST 
onsists of formulas of the

form

' ::= P

i

(x) j :' j '

1

^ '

2

j 8x'(x) j

8y (R(x; y)! '(y)) j




' j '

1

U '

2

;

where the P

i

are unary predi
ates and R is the only binary predi
ate (note

that T ST -formulas 
ontain at most one free variable), and TTR 
onsists of

models with 
onstant domains of the form M = hN; <; Ii, where I(n) 2 TR

for every n 2 N.
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2.3. Surrogates (detemporalisation)

Our approa
h to devising tableau de
ision pro
edures for de
idable monodi


fragments is based on a simple prin
iple: we want to separate the temporal

and the �rst-order parts of formulas and treat them using available pro-


edures for propositional temporal logi
 and the 
orresponding �rst-order

fragment. With this in mind, we introdu
e the following notion of `surro-

gates' for temporal formulas.

Definition 2.6 (surrogates). With every formula #(x) of the form 'U  or




' having x as its only free variable we asso
iate a fresh unary predi
ate

Q

#

(x). Similarly, with every senten
e # of the form 'U or




' we asso
iate

a fresh propositional variable q

#

(i.e., a predi
ate of arity 0). Q

#

(x) and q

#

are 
alled the surrogates of #(x) and #, respe
tively. Given aQT L

1

-formula

#, denote by # the formula obtained by repla
ing all its subformulas of the

form ' U  and




' that are not in the s
ope of another temporal operator

with their surrogates. # is 
alled the �rst-order redu
t of #.

The �rst-order redu
t # of a QT L

1

-formula # does not 
ontain temporal

operators at all|they are repla
ed with their surrogates. To ensure the

proper `temporal behavior' of these surrogates, we use the following formulas.

For all formulas of the form ' U  and




' with one free variable x, let

(' U  )

+

= 8x

�

Q

'U 

(x)!  _ (' ^Q


('U )

(x))

�

;

(' U  )

�

= 8x

�

:Q

'U 

(x)! : ^ (:' _Q


:('U )

(x))

�

;

(' U  )

:

= 8x (:Q


('U )

(x)! Q


:('U )

(x)) ;

(




')

:

= 8x (:Q


'

(x)! Q


:'

(x)) :

Similarly, for all senten
es of the form ' U  and




', let

(' U  )

+

= q

'U 

!  _ (' ^ q


('U )

);

(' U  )

�

= :q

'U 

! : ^ (:' _ q


:('U )

);

(' U  )

:

= :q


('U )

! q


:('U )

;

(




')

:

= :q


'

! q


:'

:

Definition 2.7 (surrogate axioms). The set Ax

#

(x) of surrogate axioms

for a QT L

1

-formula # 
onsists of >(x), where x is a fresh variable, and all

the formulas (' U  )

+

, (' U  )

�

, (' U  )

:

, and (




')

:

for ' U  2 sub(#)

and




' 2 sub(#).

The formula >(x) will be important for dealing with 
onstant domains

as is explained later on.
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Example 2.8. Consider, for instan
e, the senten
e

2

�

9y

�

C(y) ^ :




C(y)

�

^ 8y

�

:C(y)!




:C(y)

�

�

whi
h is equivalent to

# = :

�

> U :

�

9y

�

C(y) ^ :




C(y)

�

^ 8y

�

:C(y)!




:C(y)

�

| {z }

 

��

Then # = :q

>U: 

and Ax

#

(x) 
onsists of the formulas

>(x);

q

>U: 

! :

�

9y (C(y) ^ :Q


C

(y)) ^ 8y (:C(y)! Q


:C

(y))

�

_ q


(>U: )

;

:q

>U: 

!

�

9y (C(y) ^ :Q


C

(y)) ^ 8y (:C(y)! :Q


:C

(y))

�

^ q


:(>U: )

;

:q


(>U: )

! q


:(>U: )

;

8y

�

:Q


C

(y)! Q


:C

(y)

�

;

8y

�

:Q


:C

(y)! Q


C

(y)

�

:

Definition 2.9 (redu
t). Let QT L

0

be a fragment of QT L

1

and TM a


lass of �rst-order temporal models (in the signature of QT L

0

). Say that an

f-theory (QL

0

;M) is a redu
t of the tmf-theory (QT L

0

;TM) if the following

holds:

� QL

0

is the smallest sublanguage ofQL 
ontaining all �rst-order redu
ts

ofQT L

0

-formulas, 
losed under the Boolean 
onne
tives, and su
h that

8x'(x) 2 QL

0

whenever '(x) 2 QL

0

;

� M 
onsists of models of the form

D

�; P

M

0

; : : : ; Q

M

0

; : : : ; q

M

0

; : : :

E

;

where




�; P

M

0

; : : :

�

= I(n) for some hN; <; Ii 2 TM, n 2 N, and

Q

0

; Q

1

; : : : are the predi
ates used as surrogates for temporal formulas

from QT L

0

and q

0

; q

1

; : : : are the propositional variables surrogating

temporal senten
es from QT L

0

.

It should be noted that the surrogate symbols Q

j

and q

j


an be inter-

preted in an arbitrary way. We illustrate this de�nition with a number of

examples.
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1. The two-variable fragment (QL

2

;FO) of �rst-order logi
 
an be re-

garded as a redu
t of (QT L

2

1

;TFO), where TFO is the 
lass of all

temporal �rst-order models with 
onstant domains. Note, that in this


ase, as well as in all following 
ases, without loss of generality we 
an

assume that the language QL

2

already 
ontains in�nitely many unary

predi
ates and propositional variables for surrogates of all QT L

2

1

-

formulas.

2. The monadi
 fragment (QL

mo

;FO) of �rst-order logi
 is a redu
t of

(QT L

mo

1

;TFO).

3. The one-variable fragment (QL

1

;FO) of predi
ate logi
 
an be 
on-

sidered as a redu
t of the temporalised modal logi
 S5, i.e., of the

one-variable fragment of QT L.

4. The propositional modal logi
 S4

u

(i.e., the f-theory (ST ;TR)) 
an be

viewed as a redu
t of its own temporalisation (T ST ;TTR).

5. Stri
tly speaking, the �rst-order guarded fragment GF is not a redu
t

of the monodi
 guarded fragment T GF

1

, be
ause GF does not 
ontain

arbitrary formulas of the form 8x'(x). To get round this problem we


an introdu
e a `dummy' guard>(x) and use 8x (>(x)! '(x)) instead

of 8x'(x). Thus, the extended language 
an be regarded as a redu
t

of T GF

1

.

3. Quasimodels

In this se
tion, we introdu
e the two 
ore notions underlying our framework

for tableau 
al
uli presented in Se
tion 4. First, we develop a general 
ondi-

tion that �rst-order de
ision pro
edures must satisfy to be a useful building

blo
k in tableau 
al
uli for fragments of monodi
 FOTL. Se
ond, we de�ne

an abstra
tion of temporal models 
alled `quasimodels.' To keep tableaux

�nite and guarantee termination, the tableau pro
edure to be devised tries

to 
onstru
t a quasimodel for the input formula, rather than a temporal

model itself.

3.1. First-order de
ision pro
edure

We require �rst-order de
ision pro
edures not only to return `true' or `false,'

but rather to 
ompute �nite representations of all possible models for the

input formula. The reason for this is as follows: �rst, we need an expli
it
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representation of models to make a step in time, i.e., to take all tempo-

ral formulas realised in a model and then dropping a single o

urren
e of

the next operator from them. Se
ond, we need representations of all mod-

els sin
e some of them may be appropriate for parti
ipating in a temporal

model and others may not|whi
h we will usually �nd out mu
h later in the


onstru
tion of the temporal tableau. The requirement of returning �nite

representations of models is mu
h less exoti
 than it seems on �rst sight:

indeed, most de
ision pro
edures for fragments of �rst-order logi
 satisfy it

or 
an be easily modi�ed to do so. This in
ludes, for example, most tableau-

and resolution-based algorithms (see Se
tion 5).

The �nite representation of models is type-based. Hen
e, �x some f-

theory (QL

0

;M) and a QL

0

-formula �. Let x be a variable not o

urring

in �. Then we put

sub

x

(�) = f'fx=yg;:'fx=yg j '(y) 2 sub(�)g

and 
all a non-empty subset of sub

x

(�) a type for a QL

0

-formula � (usually

denoted by t(x)).

Important kinds of types for � are given by models M 2 M and their

elements a:

t

M

a

(x) = f'(x) j '(x) 2 sub

x

(�) and M j= '[a℄g:

In what follows we will identify a type t(x) with the 
onjun
tion of all

formulas in it and write M j= t[a℄ instead of `M j= '[a℄ for all '(x) 2 t(x).'

Definition 3.1 (
o
k). By a 
o
k for a QL

0

-formula � we mean any non-

empty set T of types for �. Su
h a 
o
k is 
alled saturated if

� for every t(x) 2 T,

{ if ' ^  2 t(x) then ' 2 t(x) and  2 t(x);

{ if :(' ^  ) 2 t(x) then :' 2 t(x) or : 2 t(x);

{ if 8z '(z) 2 t(x) then '(x) 2 t(x);

� all types in T 
ontain pre
isely the same senten
es.

Be
ause of the latter item, we may write ' 2 T to say that a senten
e '

belongs to some (every) type in the saturated 
o
k T.

Let T be a 
o
k for � and M 2 M a model with domain �. A T-

assignment in � is a map a : T ! �. We write M j= T[a℄ if M j= t[a(t)℄,
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for all t(x) 2 T. A 
o
k T is 
alled satis�able in M if there areM 2 M with

domain � and a T-assignment a in � su
h that M j= T[a℄.

We are now ready to give a formal a

ount of de
ision pro
edures for

fragments of �rst-order logi
 that 
an be used for 
onstru
ting temporal

tableau algorithms. We 
all su
h de
ision pro
edures saturation rules sin
e,

in the temporal tableau algorithm, they play the role of a tableau rule that

`saturates' a set of �rst-order types asso
iated with a single time point: they

take a 
o
k and return a set of saturated 
o
ks, ea
h des
ribing a 
lass of

models from M.

Definition 3.2 (saturation rule). A saturation rule for (QL

0

;M) is a 
om-

putable fun
tion A whi
h takes a 
o
k T

0

for a QL

0

-formula � and returns

either `
lash' if T

0

is not satis�able in M, or a (�nite) set A(T

0

) of saturated


o
ks for � su
h that the following holds:

(TR) for every t

0

(x) 2 T

0

, ea
h 
o
kT 2 A(T

0

) 
ontains a type t(x) � t

0

(x),

in whi
h 
ase we write t

0

(x)!

A

t(x);

(CO) for every M 2 M with domain �, every type t

0

(x) 2 T

0

and every

T

0

-assignment a

0

in �, if M j= T

0

[a

0

℄ then there is a 
o
k T 2 A(T

0

)

su
h that

{ there exist a type t(x) 2 T and a T-assignment a in � for whi
h

M j= T[a℄, t

0

(x)!

A

t(x) and a

0

(t

0

) = a(t);

(SO) there is a 
ardinal � � �

0

su
h that for every �

0

� � and every

T 2 A(T

0

), there exists a model

M =

D

�; P

M

0

; : : : ; Q

M

0

; : : : ; q

M

0

; : : :

E

2 M

in whi
h

{ � =

S

t2T

�

t

, where �

t

are pairwise disjoint sets of 
ardinality �

0

,

{ the q

i

are all of the propositional variables, and q

M

i

is true i�

q

i

2 T,

{ the Q

i

are all of the unary predi
ates, and a 2 Q

M

i

i� there is a

type t(x) 2 T su
h that Q

i

(x) 2 t(x) and a 2 �

t

,

su
h that M j= t[a℄ holds for all t(x) 2 T and all a 2 �

t

.

Intuitively, (SO) 
orresponds to the soundness of the de
ision pro
edure and

(CO) to its 
ompleteness. In more details this 
onne
tion will be illustrated

in Se
tion 5, where we show that standard tableau algorithms for fragments

of �rst-order logi
 
an be viewed as saturation rules.
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3.2. Quasimodels: expanding domains

We abstra
t temporal models to the more manageable quasimodels. Both in

the de�nition of quasimodels and in the tableau pro
edure to be devised, we


onsider senten
es rather than formulas whi
h obviously does not sa
ri�
e

generality. Let (QT L

0

;TM) be a tmf-theory and (QL

0

;M) its �rst-order

redu
t. Fix a QT L

0

-senten
e #.

By a type for the temporal senten
e # we mean any subset of

f'(x) j '(x) 2 sub

x

(#)g [ sub(Ax

#

(x));

where x is a variable not o

urring in #. It should be noted that every type

t(x) for # 
an be 
onsidered as a type for a �rst-order formula. In parti
ular,

Ax

#

(x) is a type for

>(x) ^

^

'U 2sub(#)

�

(' U  )

+

^ (' U  )

�

^ (' U  )

:

�

^

^


'2sub(#)

(




')

:

:

Then a 
o
k for # is a non-empty set of types for # (whi
h again 
an be

treated as a 
o
k for a �rst-order formula).

Definition 3.3 (quasimodel). Let A be a saturation rule for (QL

0

;M). An

A-quasistate for # is a 
o
k T 2 A(T

0

), where T

0

is a 
o
k for # 
ontaining

Ax

#

(x). Let Q = (T

n

j n 2 N) be a sequen
e of A-quasistates for #. A run

in Q is a fun
tion r with domain dom(r) = fn 2 N j n � n

0

g, for some

n

0

2 N, whi
h for every n 2 dom(r) returns a type t

n

(x) 2 T

n

for # su
h

that the following two 
onditions hold:

� for every QT L

0

-formula




'(x), if




'(x) 2 r(n) then '(x) 2 r(n+ 1);

� for every QT L

0

-formula (' U  )(x), if (' U  )(x) 2 r(n) then there is

k � n su
h that  (x) 2 r(k) and '(x) 2 r(i) for every i 2 [n; k).

The sequen
e Q of A-quasistates is 
alled an A-quasimodel if for every n 2 N

and every type t

n

(x) 2 T

n

, there is a run r in Q su
h that r(n) = t

n

(x). We

say that # is A-satis�able if there are an A-quasimodel Q = (T

n

j n 2 N)

and some n 2 N su
h that # 2 T

n

.

Quasimodels are de�ned su
h that every QT L

0

-senten
e # has a model

i� it has a quasimodel. However, for the 
orre
tness proof of our tableau


al
ulus, we will only make use of the \if" dire
tion of this 
laim.
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Theorem 3.4. Let (QT L

0

;TM) be a tmf-theory, where TM is a 
lass of

models with expanding domains. Let (QL

0

;M) be a �rst-order redu
t of

(QT L

0

;TM) and A a saturation rule for (QL

0

;M). If a QT L

0

-senten
e # is

A-satis�able, then it is satis�able in a model from TM.

Proof. Take an A-quasimodel Q = (T

n

j n 2 N) satisfying #. Denote by


 the set of all runs in Q and take a 
ardinal �

0

ex
eeding the 
ardinality of

the set 
 and the 
ardinal � supplied by (SO). For ea
h n 2 N, we set

�

n

= fhr; �i j r 2 
; n 2 dom(r); � < �

0

g:

By the de�nition of quasimodel, we have �

n

� �

m

if n � m. By (SO), for

every T

n

, n 2 N, we 
an �nd a model

M

n

=

D

�

n

; P

M

n

0

; : : : ; Q

M

n

0

; : : : ; q

M

n

0

; : : :

E

2 M

where

� �

n

=

S

t(x)2T

n

�

t

n

, with �

t

n

being pairwise disjoint sets of 
ardinality �

0

,

� q

M

n

i

is true i� q

i

2 T

n

, and

� a 2 Q

M

n

i

i� there is a type t(x) 2 T

n

with Q

i

(x) 2 t(x) and a 2 �

t

n

,

su
h that M

n

j= t[a℄ for all types t(x) 2 T

n

and all a 2 �

t

n

. This means,

in parti
ular, that for all senten
es ' we have M

n

j= ' whenever ' 2 T

n

.

Without loss of generality we 
an assume that

�

t

n

= fhr; �i 2 �

n

j r(n) = t(x)g: (z)

Let M = hN; <; Ii, where I(n) =

D

�

n

; P

M

n

0

; : : :

E

, for all n 2 N.

Claim. For every n 2 N, every assignment a in �

n

and every formula

� 2 f';:' j ' 2 sub(#)g, if a(x) 2 �

n

for all x 2 free(�), then

M

n

j=

a

� implies (M; n) j=

a

�:

Suppose for a moment that the 
laim holds. Sin
e Q is an A-quasimodel

of #, there exists an n 2 N su
h that # 2 T

n

. By the 
hoi
e of M

n

, we have

M

n

j= #, when
e (M; n) j= #, whi
h proves our theorem.

Proof of 
laim. The proof is by indu
tion on the 
onstru
tion of �.

Case � = P

i

(x

1

; : : : ; x

m

) follows from the de�nition of M.
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Case � = :P

i

(x

1

; : : : ; x

m

). This means that ha(x

1

); : : : ; a(x

m

)i 62 P

M

n

i

. As

a(x

j

) 2 �

n

for j 2 [1;m℄, we then obtain (M; n) j=

a

:P

i

(x

1

; : : : ; x

m

).

Cases � = ::', � = '^ , � = :('^ ) follow from the obvious equivalen
es

::' = ::' ' ^  = ' ^  ; :(' ^  ) = :(' ^  ):

Case � = 8x'. We need to show that, for all assignments b that may di�er

from a only on x and su
h that b(x) 2 �

n

, we have (M; n) j=

b

'. Fix su
h

an assignment b. Sin
e M

n

j=

a

8x' and 8x' = 8x', we have M

n

j=

b

'.

By IH, (M; n) j=

b

', as required.

Case � = :8x'. Sin
e :8x' = :8x', we have M

n

j=

a

:8x'. Then

there exists an assignment b that may di�er from a only on x and su
h that

M

n

j=

b

:'. Sin
e the domain of M

n

is �

n

, we have b(x) 2 �

n

. By IH,

(M; n) j=

b

:' and so (M; n) j=

a

:8x'.

Case � =




'. Let a(x) = hr; �i. By the 
hoi
e of M

n

, there exists a type

t(x) su
h that




'(x) 2 t(x) and hr; �i 2 �

t

n

. By (z), we have r(n) = t(x)

and




'(x) 2 r(n). Then by the de�nition of runs, '(x) 2 r(n + 1). Let

r(n+ 1) = t

0

(x). By using again (z), we obtain hr; �i 2 �

t

0

n+1

, and therefore

M

n+1

j= '[hr; �i℄. By IH, (M; n + 1) j= '[hr; �i℄. Then (M; n) j=




'[hr; �i℄,

whi
h means that (M; n) j=

a




'.

Case � = :




'. Sin
e T

n

is an A-quasistate and A satis�es (TR), we

have 8x (:Q


'

(x) ! Q


:'

(x)) 2 T

n

. Therefore, M

n

j=

a

:




' implies

M

n

j=

a




:'. As in the previous 
ase, we obtain (M; n) j=

a




:', and so

(M; n) j=

a

:




'.

Case � = ' U  . The proof is similar to the 
ase � =




': we use the

de�nition of runs and (z).

Case � = :(' U  ). As T

j

is an A-quasistate,

8x

�

:Q

'U 

(x)! : (x) ^ (:'(x) _Q


:('U )

(x))

�

2 T

j

: (i)

SupposeM

n

j=

a

:(' U  )(x). First we show that

(A) for all k � n, either M

k

j=

a

: (x) ^ :Q

'U 

(x) or there is i 2 [n; k)

su
h that M

i

j=

a

:'(x).

The proof is by indu
tion on k. The basis of indu
tion, i.e., k = n follows

from (i).

Assume now that the 
laim has already been proved for k = m. If there

is some i 2 [n;m) su
h that M

i

j=

a

:'(x), then we are 
learly done. So
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suppose that there is no su
h an i. Then, by IH, we haveM

m

j=

a

: (x) and

M

m

j=

a

:Q

'U 

(x). (i) gives us eitherM

m

j=

a

:'(x) orM

m

j=

a

Q


:('U )

(x).

In the former 
ase we are done. Consider the latter. As in the 
ase � =




',

we then have M

m+1

j=

a

:Q

'U 

(x). Using (i), we obtain M

m+1

j=

a

: , as

required. This 
ompletes the indu
tion step, and hen
e the proof of (A).

By the indu
tion hypothesis of the main proof and (A), we then have:

(B) for all k � n, either (M; k) j=

a

: (x) or there is i 2 [n; k) su
h that

(M; i) j=

a

:'(x).

This means that (M; n) j=

a

:(' U  ).

3.3. Quasimodels: 
onstant domains

To de�ne quasimodels whi
h give rise to �rst-order temporal models with


onstant domains, we should obviously require all runs to be total fun
tions

on N. We also need the following re�nement of the de�nition of saturation

rules.

Let (QT L

0

;TM) be a tmf-theory and (QL

0

;M) its �rst-order redu
t.

Definition 3.5 (exhaustive saturation rule). Say that a 
o
k T for a QL

0

-

formula � is exhaustive for a modelM 2 M with domain � if for ea
h a 2 �

there is a type t(x) 2 T su
h that M j= t[a℄. A saturation rule A for

(QL

0

;M) is 
alled exhaustive if the following strengthening of (CO) holds:

(CO

0

) for every M 2 M with domain �, every type t

0

(x) 2 T

0

and every

T

0

-assignment a

0

in �, ifM j= T

0

[a

0

℄ then there is a 
o
k T 2 A(T

0

)

su
h that

{ T is exhaustive for M;

{ there exist a type t(x) 2 T and a T-assignment a in � for whi
h

M j= T[a℄, t

0

(x)!

A

t(x) and a

0

(t

0

) = a(t).

As in the 
ase of expanding domains, exhaustive saturation rules 
an be

obtained from standard tableau algorithms by making some rather minor

modi�
ations. More details are provided in Se
tion 5.3.

Let A be an exhaustive saturation rule for (QL

0

;M) and �x some QT L

0

-

senten
e #. We now de�ne exhaustive 
o
ks for #.

Definition 3.6 (
onstant domain quasimodel). An A-quasistate for # is an

exhaustive 
o
k T for # su
h that T 2 A(T

0

) for some 
o
k T

0


ontaining

the type Ax

#

(x). A sequen
e Q = (T

n

j n 2 N) of A-quasistates for # is
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alled a 
onstant domain A-quasimodel if for every n 2 N and every type

t

n

(x) 2 T

n

for # there is a total run r in Q (i.e., dom(r) = N) su
h that

r(n) = t

n

(x).

We say that a senten
e # is A-satis�able in 
onstant domains if there

is a 
onstant domain A-quasimodel Q = (T

n

j n 2 N) su
h that # 2 T

n

for

some n 2 N.

Following the proof of Theorem 3.4, one 
an readily show the following:

Theorem 3.7. Let (QT L

0

;TM) be a tmf-theory, with TM being a 
lass

of models with 
onstant domains. Let (QL

0

;M) be a �rst-order redu
t of

(QT L

0

;TM) and A an exhaustive saturation rule for (QL

0

;M). If a QT L

0

-

senten
e # is A-satis�able in 
onstant domains, then it is satis�able in a

model from TM.

4. Tableaux

We are in a position now to de�ne temporal tableaux for de
idable monodi


fragments. Let us start with the expanding domain 
ase. Fix a tmf-theory

(QT L

0

;TM), its �rst-order redu
t (QL

0

;M), a saturation ruleA for (QL

0

;M),

and a QT L

0

-senten
e #.

To de
ide the satis�ability of #, the tableau algorithm tries to 
onstru
t

an A-quasimodel for # by applying the saturation rule A to the redu
t of #,

then making a step in time, then again applying A, and so on. Let us start

its presentation with de�ning the basi
 data stru
ture.

Definition 4.1 (temporal tableau). A temporal tableau for # is a labelled

dire
ted graph G = hS; s

r

;!; `; `




i, where S is a set of states 
ontaining

the root state s

r

, ! is a binary relation on S, and `, `




are state labelling

fun
tions su
h that `(s) is a saturated 
o
k for ea
h state s 2 S n fs

r

g, and

`




(s) is a 
o
k for # for ea
h state s 2 S.

Intuitively, tableaux 
an be understood as follows: apart from the root

state, ea
h state s is asso
iated with a time point n in the sense that the

saturated 
o
k `(s) is a 
andidate for the quasistate T

n

for time point n of

the quasimodel to be 
onstru
ted. Distin
t states may be asso
iated with

the same time point n des
ribing di�erent possible 
hoi
es for the quasistate

T

n

. If a state s des
ribes time point n, then any state s

0

with s ! s

0

des
ribes time point n+1. It remains to explain the se
ond labelling `




(s):

it's purpose is to list those types that have to be in
luded in the quasistate

T

n+1

due to temporal formulas appearing (in surrogated form) in `(s). Let

us formally de�ne how `




(s) 
an be obtained from `(s).
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Definition 4.2 (transition rule). If t

0

(x) =

�

'(x) j




'(x) 2 t(x)

	

[f>(x)g

for a type t(x) for #, then we write

t(x)!




t

0

(x):

The transition rule for QT L

0

is the map N that takes a 
o
k T for # and

returns the 
o
k

N (T) =

�

t

0

(x) j t(x) 2 T and t(x)!




t

0

(x)

	

[ fAx

#

(x)g:

Suppose now that the satis�ability of # is to be de
ided. The algorithm

starts with the initial temporal tableau

G

#

= hfs

r

g; s

r

; ;; `; `




i ;

where

`(s

r

) = ; and `




(s

r

) =

�

f#;>(x)g;Ax

#

(x)

	

for some variable x not to o

ur in #. Note that the root state s

r

is not as-

so
iated with a point in time but only serves the purpose of getting started

with the tableau 
onstru
tion. The 
o
k `




(r

s

) 
onsists of two types: one

of them, f#;>(x)g, ensures that # is satis�ed in the �rst quasistate of a

quasimodel to be 
onstru
ted and the other one, Ax

#

(x), 
ontains the sur-

rogate axioms. Then we apply the saturation rule A to `




(s

r

) and obtain

new !-su

essor states s

T

of s

r

, for every T 2 A(`




(s

r

)), labelled with

`(s

T

) = T and `




(s

T

) = N (T):

We 
ontinue by applying A to the `




(s

T

), and so forth (see Se
tion 5.4 for

detailed examples). Here is a more pre
ise de�nition.

Definition 4.3 (tableau rule). Say that a tableau G

0

for # is obtained by an

appli
ation of rule =) from a tableau G = hS; s

r

;!; `; `




i for # and write

G =) G

0

if there is a state s

0

2 S su
h that `




(s

0

) = T

0

, A(T

0

) is not a


lash, and there is a saturated 
o
k T

1

2 A(T

0

) su
h that either

� there is no state s

1

2 S for whi
h `(s

1

) = T

1

, and

G

0

=




S [ fs

1

g; s

r

; ! [ fhs

0

; s

1

ig; `

0

; `

0




�

;

where `

0

(s) =

(

`(s) if s 2 S

T

1

if s = s

1

and `

0




(s) =

(

`




(s) if s 2 S

N (T

1

) if s = s

1

;
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� or there is s

1

2 S for whi
h `(s

1

) = T

1

, s

0

6! s

1

, and

G

0

= hS; s

r

; ! [ fhs

0

; s

1

ig; `; `




i :

A tableau G for # is 
alled 
omplete if rule =) is not appli
able to it.

The se
ond item in De�nition 4.3 is the so-
alled blo
king 
ondition whi
h

is 
ru
ial for ensuring termination.

Theorem 4.4 (termination). The pro
ess of 
ompleting a tableau G for #

terminates. In other words, there is no in�nite sequen
e

G =) G

1

=) : : : =) G

n

=) : : :

of tableaux for #.

Proof. Any 
omplete tableau G for # 
ontains at most

2

2

p(j#j)

states, where p is a polynomial fun
tion of the length j#j of #. Indeed, the

number of subformulas of

f' j ' 2 sub(#)g [Ax

#

(x)

is linear in j#j, the number of di�erent types for # is bounded by 2

p(j#j)

, and

the number of states in G does not ex
eed 2

2

p(j#j)

.

Suppose we have 
onstru
ted a 
omplete tableau G for #. Due to the

presen
e of the temporal until operator, su
h tableaux do not ne
essarily

give rise to a quasimodel satisfying #. As an example, we present a 
omplete

tableau for the obviously unsatis�able senten
e # = > U ? on Fig. 1. The

state s

1

has no su

essors be
ause the type t

0

1

(x) is not satis�able, and the

saturation rule returns 
lash. Nevertheless, the tableau 
ontains the loop

s

0

! s

0

, and so one 
ould have tried to extra
t a quasimodel from this

in�nite path. It follows from Theorem 3.4 that the extra
ted sequen
e of


o
ks 
annot be a quasimodel.

How 
an we identify tableaux that do not des
ribe quasimodels? Here we


ome to the se
ond 
omponent of Wolper's [20℄ tableau pro
edure. Having

built up a 
omplete tableau for #, one has to eliminate those states that have

no su

essors or 
ontain so-
alled unrealised eventualities. Wolper proved (in

the propositional 
ase) that # is satis�able i� the root state of the 
omplete

tableau is not eliminated.
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` ;

t

0




��

t

1




��

`




t

0

0

Ax

#

t

0

0

Ax

#

t

0

1

Ax

#

s

r

// 33s

0

//
��

s

1

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

t

0

(x) = fq

#

; q


#

g [Ax

#

(x) t

0

0

(x) = fq

#

;>(x)g

t

1

(x) = fq

#

; q


#

; q


:#

g [Ax

#

(x) t

0

1

(x) = fq

#

;:q

#

;>(x)g

Ax

#

(x) = f>(x); q

#

! q


#

; :q

#

! q


:#

; :q


#

! q


:#

g

Figure 1. Complete tableau for ?U >.

Definition 4.5 (eventuality). Formulas of the form ' U  (x) are 
alled

eventualities. Let G = hS; s

r

;!; `; `




i be a tableau for #. A sequen
e

s

0

! � � � ! s

n

of states in G, where n � 0, is said to realise ' U  (x) 2 t

0

(x) 2 `(s

0

) if

there exists a sequen
e

t

0

(x)!




t

0

1

(x)!

A

t

1

(x)!




t

0

2

(x)!

A

: : :!




t

0

n

(x)!

A

t

n

(x)

of types su
h that t

i

(x) 2 `(s

i

), t

0

i

(x) 2 `




(s

i

) for i, 0 � i � n, and

 (x) 2 t

n

(x).

Definition 4.6 (elimination rules). We use the following rules to eliminate

states in G:

(E2) if a state s 2 S has no !-su

essor, eliminate it;

(E3) if `(s), s 2 S, 
ontains an eventuality having no realising sequen
e

starting from s, eliminate s.

Elimination rules (E2) and (E3) are very similar to those in [20℄. How-

ever, we do not need rule (E1) from [20℄, sin
e the 
o
k `(s), for every state
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s, 
ontains no 
ontradi
tion (it is the result of applying the saturation rule

A). In the 
omplete tableau for # = >U ? from above, the state s

1

is elim-

inated sin
e it has no su

essor. Then s

0

is eliminated sin
e the eventuality

q

#

has no realising sequen
e. Finally, we eliminate the root s

r

due to (E2).

Theorem 4.7. Let (QT L

0

;TM) be a tmf-theory, (QL

0

;M) its �rst-order

redu
t, A a saturation rule for (QL

0

;M), and N a transition rule for QT L

0

.

Then for every QT L

0

-senten
e # the following 
onditions are equivalent:

(1) # is satis�able in a model from TM;

(2) the root of a 
omplete tableau for # 
annot be eliminated using rules

(E2) and (E3).

In the following two subse
tions we will prove the impli
ations (1)) (2)

(
ompleteness) and (2)) (1) (soundness).

4.1. Completeness

We require a number of lemmas.

Suppose M = hN; <; Ii 2 TM, where I(n) =

D

�

n

; P

I(n)

0

; : : :

E

. For every

n 2 N, de�ne a �rst-order model

M

n

=

D

�

n

; P

M

n

0

; : : : ; Q

M

n

�

0

; : : : ; q

M

n

�

0

; : : :

E

2 M;

where �

0

; �

1

; : : : is an enumeration of all formulas of the form  

1

U  

2

and




 with one free variable x and �

0

; �

1

; : : : is an enumeration of all senten
e

of the form  

1

U  

2

and




 . Namely, we set P

M

n

i

= P

I(n)

i

and de�ne the

Q

M

n

'

and q

M

n

'

as follows:

� If Q

'

(x) 2 sub(Ax

#

(x)), then a 2 Q

M

n

'

i� (M; n) j= '[a℄, for every

a 2 �

n

; otherwise put, say, Q

M

n

'

= ;.

� If q

'

2 sub(Ax

#

(x)), then q

M

n

'

is true i� (M; n) j= '; otherwise let,

say, q

M

n

'

be false.

Lemma 4.8. For every subformula '(y) of #, every n 2 N, and every a 2 �

n

,

(M; n) j= '[a℄ i� M

n

j= '[a℄;

besides, M

n

j= Ax

#

(x).
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Proof. The former 
laim follows immediately from the de�nition of M

n

.

As to the latter, we show only that

M

n

j= q

'U 

!  _ (' ^ q


('U )

):

Suppose otherwise. Then M

n

j= q

'U 

, M

n

6j=  and M

n

6j= ' ^ q


('U )

. It

follows that (M; n) j= ' U  and (M; n) 6j=  . Moreover, we must also have

either (M; n) 6j= ' or (M; n) 6j=




(' U  ), i.e., (M; n+ 1) 6j= ' U  , 
ontrary

to the truth-de�nition of U .

Suppose now that G = hS; s

r

;!; `; `




i is a 
omplete tableau for # and

that # is satis�able in a model M = hN; <; Ii from the 
lass TM, where

I(n) =

D

�

n

; P

I(n)

0

; : : :

E

.

Lemma 4.9. Let n 2 N, s

0

2 S, `




(s

0

) = T

0

, let a

0

be a T

0

-assignment in �

n

and t

0

0

(x) 2 T

0

. If M

n

j= T

0

[a

0

℄ then there are a state s 2 S with `(s) = T,

a T-assignment a in �

n

and a type t

0

(x) 2 T su
h that

s

0

! s; M

n

j= T[a℄; a

0

(t

0

0

) = a(t

0

);

and t

0

0

(x)!

A

t

0

(x).

Proof. Suppose M

n

j= T

0

[a

0

℄. Then, by (CO), we 
an �nd T 2 A(T

0

),

t

0

(x) 2 T and a T-assignment a su
h that M

n

j= T[a℄, a

0

(t

0

0

) = a(t

0

) and

t

0

0

(x)!

A

t

0

(x). Sin
e G is 
omplete, there is a state s 2 S su
h that s

0

! s

and `(s) = T.

Lemma 4.10. Let n 2 N, s 2 S, `(s) = T, let a be a T-assignment in �

n

and t

0

(x) 2 T. If M

n

j= T[a℄ then there are a state s

00

2 S with `(s

00

) = T

00

,

a T

00

-assignment a

00

in �

n+1

, and a type t

00

0

(x) 2 T

00

su
h that

s! s

00

; M

n+1

j= T

00

[a

00

℄; a(t

0

) = a

00

(t

00

0

);

and t

0

(x)!




t

0

0

(x)!

A

t

00

0

(x) for some type t

0

0

(x).

Proof. Let `




(s) = T

0

. Take the type t

0

0

(x) 2 T

0

su
h that t

0

(x)!




t

0

0

(x)

and de�ne a T

0

-assignment a

0

in �

n+1

so that a

0

(t

0

0

) = a(t

0

). For every

other type t

0

(x) 2 T

0

, either there is a type t(x) 2 T with t(x)!




t

0

(x) or

t

0

(x) = Ax

#

(x). In the former 
ase put a

0

(t

0

) = a(t) and in the latter one

a

0

(t

0

) = a(t

0

). Clearly, M

n+1

j= T

0

[a

0

℄ holds whenever M

n

j= T[a℄ holds.

By Lemma 4.9, we then have a required state s

00

.
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Lemma 4.11. There exists an in�nite sequen
e

s

r

! s

0

! s

1

! : : :

of states in G su
h that every eventuality ' U  in every type of `(s

n

), n � 0,

is realised in the sequen
e s

n

; : : : ; s

m

, for some m � n.

Proof. Without loss of generality we may assume that (M; 0) j= #. By

Lemma 4.8, we then have M

0

j= # ^Ax

#

(x).

We 
onstru
t the required sequen
e by indu
tion. We begin with s

r

and

take an arbitrary T

0

0

-assignment a

0

0

in �

0

, where `




(s

r

) = T

0

0

. Then 
learly

M

0

j= T

0

0

[a

0

0

℄. By Lemma 4.9, we obtain a state s

0

with `(s

0

) = T

0

and a

T

0

-assignment a

0

in �

0

su
h that s

r

! s

0

and M

0

j= T

0

[a

0

℄. Denote the

beginning of our sequen
e by

s

r

! s

0

j a

0

(we will always need to remember the last assignment).

Suppose now that we have 
onstru
ted a sequen
e

s

r

! s

0

! � � � ! s

n

j a

n

(ii)

su
h that `(s

n

) = T

n

and M

n

j= T

n

[a

n

℄. Two 
ases are possible.

Case 1. Every eventuality in every type of `(s

i

), 0 � i � n, is realised in (ii).

In this 
ase we take an arbitrary type t

n

(x) 2 T

n

and, by Lemma 4.10, �nd

a state s

n+1

with `(s

n+1

) = T

n+1

and a T

n+1

-assignment a

n+1

in �

n+1

su
h that s

n

! s

n+1

and M

n+1

j= T

n+1

[a

n+1

℄. So we 
an extend (ii) with

s

n+1

j a

n+1

:

s

r

! s

0

! � � � ! s

n

! s

n+1

j a

n+1

:

Case 2. Suppose that Case 1 does not hold. Take a minimal k � n su
h

that some eventuality ' U  (x) in some t

k

(x) 2 T

k

is not realised in (ii). As

all T

i

are A-quasistates, (' U  )

+

2 T

i

. As T

k

is saturated and satis�able,

either  (x) 2 t

k

(x) or '(x);




(' U  )(x) 2 t

k

(x). And as ' U  (x) is not

realised in (ii), only the latter 
ase is possible. It follows that there are

t

0

k+1

(x) and t

k+1

(x) su
h that

t

k

(x)!




t

0

k+1

(x)!

A

t

k+1

(x) and ' U  (x) 2 t

k+1

(x):

Thus we 
an 
hoose a sequen
e

t

k

(x)!




t

0

k+1

(x)!

A

: : :!




t

0

n

(x)!

A

t

n

(x)
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su
h that t

i

(x) 2 T

i

,

' U  (x) 2 t

i

(x);




(' U  )(x) 2 t

i

(x) and  (x) =2 t

i

(x) (iii)

for all i 2 [k; n℄.

Let a = a

n

(t

n

). We have M

n

j= T

n

[a

n

℄, and so, by (iii), M

n

j= ' U  [a℄

and M

n

j= : [a℄. Then by Lemma 4.8,

(M; n) j= (' U  )[a℄ and (M; n) j= : [a℄: (iv)

Now we 
onstru
t a sequen
e of states realising our eventuality. By

applying Lemma 4.10 to s

n

, a

n

and t

n

(x) 2 T

n

su
h that M

n

j= T

n

[a

n

℄,

a

n

(t

n

) = a and

' U  (x) 2 t

n

(x);




(' U  )(x) 2 t

n

(x);  =2 t

n

(x)

we �nd a state s

n+1

with `(s

n+1

) = T

n+1

and a T

n+1

-assignment a

n+1

in

�

n+1

with

s

n

! s

n+1

and M

n+1

j= T

n+1

[a

n+1

℄;

and t

n+1

(x) 2 T

n+1

su
h that a

n+1

(t

n+1

) = a and ' U  (x) 2 t

n+1

(x). So

we 
an extend (ii) with s

n+1

j a

n+1

.

Note that (' U  )

+

2 T

n+1

and T

n+1

is a saturated 
o
k, so either

 (x) 2 t

n+1

(x) or




(' U  )(x) 2 t

n+1

(x) and  (x) =2 t

n+1

(x). In the

former 
ase the eventuality is realised by

s

k

! � � � ! s

n

! s

n+1

:

In the latter 
ase we again apply the above pro
edure to the state s

n+1

, the

assignment a

n+1

and the type t

n+1

(x). It follows from (iv) that there must

exist m > n su
h that (M;m) j=  [a℄, and so, by Lemma 4.8, M

m

j=  [a℄.

Thus, we will �nd a realising sequen
e in at most m� n steps.

In the limit we obtain an in�nite sequen
e

s

r

! s

0

! s

1

! : : : (v)

satisfying the requirements of the lemma.

We are in a position now to prove the 
ompleteness part of Theorem 4.7.

Proof. Suppose that # is satis�able in a model from the 
lass TM, and let

G = hS; s

r

;!; `; `




i be a 
omplete tableau for #. By Lemma 4.11, we have

an in�nite sequen
e

s

r

! s

0

! s

1

! : : : (vi)
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of states in G su
h that every eventuality ' U  in every type of `(s

n

), n � 0,

is realised in the sequen
e s

n

; : : : ; s

m

, for some m � n.

To prove 
ompleteness, it suÆ
es to show that no s

i

from the sequen
e

is eliminated. Let

S = S

0

� S

1

� : : :

be the sequen
e produ
ed by the elimination pro
edure. We show by indu
-

tion on n that, for all n 2 N,

fs

r

g [ fs

i

j i 2 Ng � S

n

:

The basis of indu
tion (n = 0) is 
lear. Suppose fs

r

g [ fs

i

j i 2 Ng � S

k

.

Sin
e every state s

i

has a su

essor, rule (E2) is not appli
able to it. As

all eventualities in the sequen
e (vi) are realised, rule (E3) is not appli
able

either.

4.2. Soundness

Lemma 4.12. Let G = hS; s

r

;!; `; `




i be a 
omplete tableau for # and let S

0

be the set of states that remains after exe
ution of the elimination pro
edure.

If s

r

2 S

0

then there is an in�nite sequen
e

s

r

! s

0

! s

1

! : : :

of states in S

0

su
h that every eventuality ' U  in every type of `(s

n

), n � 0,

is realised by the sequen
e s

n

; : : : ; s

m

for some m � n.

Proof. Suppose that we have 
onstru
ted a sequen
e

s

r

! s

0

! s

1

! � � � ! s

n

(vii)

sitting entirely in S

0

. Two 
ases are possible.

Case 1. Every eventuality in every type of `(s

i

), i � 0, is realised in (vii).

As (E2) is not appli
able to s

n

, we 
an extend (vii) by a state s

n+1

2 S

0

with s

n

! s

n+1

.

Case 2. Suppose Case 1 does not hold. Take a minimal k 2 [0; n℄ su
h

that an eventuality ' U  (x) in a type of `(s

k

) is not realised in (vii). Then

' U  (x) belongs to some type in `(s

n

). Sin
e (E3) is not appli
able to s

n

,

' U  (x) is realised by a sequen
e

s

n

! s

n+1

! � � � ! s

m
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for some m � n su
h that s

i

2 S

0

for i 2 [n;m℄. Then we extend (vii) with

the states s

n+1

; : : : ; s

m

.

In the limit we obtain a sequen
e satisfying the 
onditions of the lemma.

We 
an now 
omplete the proof of Theorem 4.7.

Proof. Suppose that G = hS; s

r

;!; `; `




i is a 
omplete tableau for # and S

0

is the set of states whi
h remains after exe
ution of the elimination pro
edure

and that the root s

r

was not eliminated. By Theorem 3.4, it is enough to

prove that there exists a quasimodel satisfying #. Lemma 4.12 provides us

with an in�nite sequen
e

s

r

! s

0

! s

1

! : : :

of states in S

0

realising all eventualities. The reader 
an readily 
he
k that

(`(s

i

) j i 2 N) is a quasimodel satisfying #.

4.3. Tableaux: 
onstant domains

Let us 
onsider now the 
ase of 
onstant domains. Tableaux for this 
ase 
an

be obtained by a simple modi�
ation of tableaux for the 
ase of expanding

domains. The major di�eren
e is that we use exhaustive saturation and

transition rules.

Definition 4.13 (exhaustive transition rule). The exhaustive transition rule

for QT L

0

is the map N that takes a 
o
k T for # and returns the 
o
k

N (T) =

�

t

0

(x) j t(x) 2 T and t(x)!




t

0

(x)

	

[ fAx

#

(x) [ fCDA

T

gg;

where

CDA

T

= 8x

_

t(x)2T

t(x)!




t

0

(x)

t

0

(x):

The formula CDA

T

is used to deal with 
onstant domains: we must

now 
onstru
t a quasimodel in whi
h the domains of runs are total. In other

words, this means that for every quasistate T

n+1

and every t(x) 2 T

n+1

,

there must exist a type t

0

(x) 2 T

n

su
h that the two 
onditions formulated

in De�nition 3.3 are satis�ed. However, this is pre
isely what the joint use

of CDA

T

and the surrogate axioms ensures. Together with the modi�ed

Property (CO

0

) of exhaustive saturation rules, this approa
h resembles the

`minimal types' te
hnique developed in [16℄.
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Theorem 4.14. Let (QT L

0

;TM) be a tmf-theory, where TM is a 
lass of

models with 
onstant domains, (QL

0

;M) a �rst-order redu
t of (QT L

0

;TM),

A an exhaustive saturation rule for (QL

0

;M) and N an exhaustive transition

rule for QT L

0

. Then for every QT L

0

-senten
e # the following 
onditions are

equivalent:

(1) # is satis�able in a model from TM;

(2) the root of a 
omplete tableau for # 
annot be eliminated using rules

(E2) and (E3).

A 
lose inspe
tion of the proofs for the 
ase of expanding domains shows

that it is suÆ
ient to prove reformulations of the lemmas above in whi
h

� the model M is assumed to have 
onstant domains,

� the `(s

n

) are exhaustive 
o
ks for the 
orresponding M

n

.

The only non-trivial 
hanges are in Lemmas 4.9 and 4.10.

Suppose that G = hS; s

r

;!; `; `




i is a 
omplete tableau for # and that #

is satis�able in a model M = hN; <; Ii 2 TM, where I(n) =

D

�; P

I(n)

0

; : : :

E

for all n 2 N.

Lemma 4.15. Let n 2 N, s

0

2 S, `




(s

0

) = T

0

, let a

0

be a T

0

-assignment in �

and t

0

0

(x) 2 T

0

. If M

n

j= T

0

[a

0

℄ and T

0

is exhaustive for M

n

then there are

a state s 2 S with `(s) = T, a T-assignment a in � and a type t

0

(x) 2 T

su
h that

s

0

! s; M

n

j= T[a℄ and T is exhaustive for M

n

; a

0

(t

0

0

) = a(t

0

)

and t

0

0

(x)!

A

t

0

(x).

Proof. The proof is analogous to the proof of Lemma 4.9 and follows im-

mediately from (CO

0

).

Lemma 4.16. Let n 2 N, s 2 S, `(s) = T, let a be a T-assignment in �, and

t

0

(x) 2 T. If M

n

j= T[a℄ and T is exhaustive for M

n

then there are a state

s

00

2 S with `(s

00

) = T

00

, a T

00

-assignment a

00

in �, and a type t

00

0

(x) 2 T

00

su
h that

s! s

00

; M

n+1

j= T

00

[a

00

℄ and T

00

is exhaustive for M

n+1

; a(t

0

) = a

00

(t

00

0

)

and t

0

(x)!




t

0

0

(x)!

A

t

00

0

(x) for some type t

0

0

(x).
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Proof. The proof is analogous to the proof of Lemma 4.10. The only

di�eren
e is that in the proof ofM

n+1

j= T

0

[a

0

℄ we have to show additionally

that

M

n+1

j= CDA

T

:

Suppose a 2 �. As T is exhaustive for M

n

, there is a type t(x) 2 T

su
h that M

n

j= t[a℄, and we 
hoose t

0

(x) 2 T

0

with t(x) !




t

0

(x). Then

M

n+1

j= t

0

[a℄ and M

n+1

j= CDA

T

.

It should be 
lear that the 
o
k T

0

is exhaustive for M

n+1

, and then

Lemma 4.15 supplies a state s

00

and an assignment a

00

as required.

5. Instantiating the framework

The purpose of this se
tion is to illustrate the generality of our approa
h

by presenting example instantiations of the framework. To keep the presen-

tation su

in
t, we sti
k to simple yet useful fragments of �rst-order logi
:

exhaustive and non-exhaustive saturation rules are presented for

1. the f-theory (QL

1

;FO) indu
ed by the one-variable fragment of �rst-

order logi
 (whi
h is a notational variant of propositional modal logi


S5 [19℄) and

2. the f-theory (ST ;TR) 
orresponding to the propositional bimodal logi


S4

u

introdu
ed in Se
tion 2.2.

In fa
t, we show that the well-known, existing tableau de
ision pro
edures for

these fragments of �rst-order logi
|for the 
orresponding modal logi
s, to be

more pre
ise (see e.g., [4, 9℄)|
an be regarded as saturation rules for the 
ase

of expanding domains, whereas some additional e�orts are needed to obtain

exhaustive saturation rules. The te
hnique des
ribed in Se
tion 4 then yields

`temporal' tableau algorithms for the one-variable fragment QT L

1

of QT L

and the tmf-theory (T ST ;TTR) from Se
tion 2.2, i.e., the temporalisation of

(ST ;TR)|both for expanding and 
onstant domains. We �nish this se
tion

with presenting some example runs of the tableau algorithm for QT L

1

.

5.1. S5

As a (non-exhaustive) saturation rule for the one-variable fragment of �rst-

order logi
, we use a slight variant of the well-known pre�xed tableaux for

S5, as presented e.g. in [4℄. The main di�eren
e between our presentation

of this algorithm and the one given in [4℄ is that we write formulas in the

syntax of �rst-order logi
 rather than modal logi
.
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A labelled formula is of the from � :: ', where � is a label and ' a formula

(in our examples ' is a QL-formula with at most one free variable). A label �

is a nonempty sequen
e of natural numbers separated by dots. For example,

1:21 and 1:2:1 are labels. Labels allow us to distinguish between formulas

that belong to one world and those belonging to another one. Moreover, the

stru
ture of labels des
ribes the a

essibility relation between the worlds.

Although in the de�nition of the tableau algorithm for S5 we use only natural

numbers as labels (i.e., all labels are of length 1), we still denote these

sequen
es by Greek letters (�, � , et
.) be
ause the same tableau rules are

used for S4

u

in Se
tion 5.2, where the stru
ture of labels is essential.

A tableau T (for both f-theories we 
onsider in this se
tion) is a �nite

tree, where ea
h node 
ontains a single labelled formula. A tableau bran
h

B of T is a path starting at the root node and ending at a leaf node.

Suppose we are given a 
o
k T = ft

1

(x); : : : ; t

k

(x)g. The tableau al-

gorithm starts with an initial tableau T

0


onsisting of a single bran
h su
h

that its nodes 
ontain all labelled formulas of the set

fn :: '(x) j '(x) 2 t

n

(x) and 1 � n � kg:

Thus, for every type t

i

(x) we introdu
e a unique label i whi
h denotes a new

world for this type (in the modal logi
 setting), or a set of domain elements

indistinguishable by formulas of t

i

(x) (in the �rst-order logi
 setting).

Then the algorithm exhaustively applies the tableau rules given in Fig. 2

to nodes on ea
h bran
h B of the tableau as follows.

(l:) If a node 
ontains � :: ::'(x) then an appli
ation of (l:) appends a

node 
ontaining � :: '(x) to B.

(l^) If a node 
ontains � :: '(x)^ (x) then an appli
ation of (l^) appends

two 
onse
utive nodes to B, one 
ontaining � :: '(x) and the other

� ::  (x).

(l_) If a node 
ontains � :: :('(x)^ (x)) then an appli
ation of (l_) splits

the end of B and extends the left fork with � :: :'(x) and the right

one with � :: : (x).

(l9) If a node 
ontains � :: :8x'(x) then an appli
ation of (l9) extends B

with � :: :'(x), where � is a new label on B.

(l8) If a node 
ontains � :: 8x'(x) then an appli
ation of (l8) extends B

with � :: '(x), where the label � already exists on B.

(l8

�

) If a node 
ontains � :: ', where ' is a senten
e, then an appli
ation of

(l8

�

) extends B with � :: ', where the label � already exists on B.
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(l:)

� :: ::'(x)

� :: '(x)

(l^)

� :: '(x) ^  (x)

� :: '(x)

� ::  (x)

(l_)

� :: :('(x) ^  (x))

� :: :'(x) j � :: : (x)

(l9)

� :: :8x'(x)

� :: :'(x)

� is new for B

(l8)

� :: 8x'(x)

� :: '(x)

� is used on B

(l8

�

)

� :: '

� :: '

� is used on B

Figure 2. Tableau rules for S5.

Observe that every bran
h B of a tableau 
an be 
onverted into a 
o
k

T

B

by setting

T

B

= ft

B

�

(x) j � is a label on Bg;

where

t

B

�

(x) = f'(x) j � :: '(x) o

urs on Bg

(note that types t

B

�

(x) and t

B

�

(x) may 
oin
ide for � 6= � ; in this 
ase they

are identi�ed in T

B

).

We generally assume tableau rules to be applied in su
h a way that no

labelled formula appears twi
e on the same bran
h and that (l9) is never

applied twi
e to the same labelled formula. A bran
h B is 
omplete if no

rule 
an be applied to it. A bran
h B is 
alled 
ontradi
tory if both � :: '

and � :: :' o

ur on B, for some formula ' and label �. A tableau T is


omplete if ea
h bran
h in T is 
omplete.

To simplify further 
onsiderations, we �x an order of rule appli
ations.

We assume that there is an ordering on pairs ((l); � :: '), with tableau rule

(l) and labelled formula � :: ', and that a tableau rule (l) is applied to a

formula � :: ' only if ((l); � :: ') is minimal with respe
t to the ordering.

In this way, the tableau 
onstru
ted by the algorithm for a given input T

is 
ompletely determined. We 
all this tableau the 
anoni
al tableau for T.

Note that 
anoni
al tableaux are 
omplete by de�nition. We use B

T

to

denote the set of non-
ontradi
tory bran
hes in the 
anoni
al tableau for T.

If started on a 
o
k T, the tableau algorithm 
onstru
ts the 
anoni
al

tableau for T. It is a standard task to prove that this 
onstru
tion termi-

nates. If B

T

is the empty set, then A

S5

(T) = 
lash is returned. Otherwise,
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ea
h element ofB

T

represents a 
o
k as explained above. Sin
e every bran
h

in B

T

is 
omplete, the 
orresponding 
o
ks are saturated. Thus, if B

T

is

nonempty, then the tableau algorithm returns the set

A

S5

(T) = fT

B

j B 2 B

T

g:

It is easy to see that this algorithm satis�es property (TR) of saturation

rules. Hen
e, let us pro
eed to property (CO).

Lemma 5.1. Let T be a 
o
k. For every model M 2 FO with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there are a bran
h B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment a

0

in

� su
h that t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T = ft

1

(x); : : : ; t

k

(x)g be a 
o
k, M 2 FO with domain � and

let a be a T-assignment in � su
h thatM j= T[a℄. Without loss of generality

we may assume that t = t

1

. Suppose that the 
anoni
al tableau for T is the

last tableau of the sequen
e

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appli
ation of a tableau rule.

We de�ne, for ea
h tableau T

i

, 0 � i � n, a bran
h B

i

of T

i

and a T

B

i

-

assignment a

i

in � as follows. Let B

0

be the single bran
h of T

0

. Set a

0

= a

(re
all that formulas of type t

j

(x) are labelled by j on B

0

). Clearly we have

M j= T

B

0

[a

0

℄. Then we pro
eed in su
h a way that the following 
onditions

are satis�ed for every i, 0 < i � n:

M j= T

B

i

[a

i

℄ and a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

): (viii)

Without loss of generality we 
an always assume that t

B

i

1

2 T

B

i

for every i,

0 � i � n (re
all that in a 
o
k T

B

i

types 
an be identi�ed).

Suppose that we have already 
onstru
ted B

i

and a

i

, 0 � i < n, and T

i+1

is obtained from T

i

by an appli
ation of (l). Consider all possible 
ases.

(l_) is applied to � :: :('(x)^ (x)) on B

i

. The rule appli
ation splits B

i

into

two bran
hes B

'

and B

 

, where B

'


ontains a new node with � :: :'(x) and

B

 


ontains a new node with � :: : (x). Let a be the value assigned to the

type of � at step i, i.e., a

i

(t

B

i

�

). Sin
e, by IH,M j= :('(x)^ (x))[a℄, we have

either M j= :'(x)[a℄ or M j= : (x)[a℄. In the former 
ase, set B

i+1

= B

'

and in the latter one B

i+1

= B

 

. In either 
ase, let a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for

every type t

B

i+1

�

(x) 2 T

B

i+1

.
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(l9) is applied to �

0

:: :8x'(x) on B

i

, introdu
ing a label � and 
reating a

node with � :: :'(x). Sin
e M j= :8x'(x), there exists an element a 2 �

su
h thatM j= '[a℄. Let B

i+1

be the extension of B

i

with the new node and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

and a

i+1

(t

B

i+1

�

) = a.

In all other 
ases B

i+1

is the extension of B

i

with the new nodes and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

.

It is easy to show that in every 
ase B

i+1

and a

i+1

satisfy (viii). Sin
e

M j= T

B

n

[a

n

℄, the bran
h B

n

is not 
ontradi
tory, i.e., B

n

2 B

T

. Now set

B = B

n

, a

0

to a

n

and t

0

(x) = t

B

n

1

(x). It is readily 
he
ked that B, t

0

and a

0

are as required.

Note that the proof of the lemma above resembles the standard 
omplete-

ness proof for the des
ribed tableau algorithm: an existing model is used to

`guide' the appli
ation of the tableau rules. We now 
ome to property (SO),

i.e., to soundness.

Lemma 5.2. For every 
o
k T, every 
ardinal �

0

� �

0

, and every bran
h

B 2 B

T

, there exists a model

M =

D

�; Q

M

0

; : : : q

M

0

; : : :

E

2 FO;

in whi
h

� � =

S

t2T

B

�

t

, where �

t

are pairwise disjoint sets of 
ardinality �

0

,

� q

M

i

is true i� q

i

2 T

B

,

� a 2 Q

M

i

i� there is a type t(x) 2 T

B

su
h that Q

i

(x) 2 t(x) and

a 2 �

t

,

su
h that M j= t[a℄ holds for all t(x) 2 T

B

and a 2 �

t

.

Proof. Fix a bran
h B 2 B

T

and a 
ardinal �

0

� �

0

. De�ne a model M

by taking

�

t

= fht; �i j � < �

0

g for t(x) 2 T

B

;

Q

M

i

= fht; �i j Q

i

(x) 2 t(x) and � < �

0

g;

q

M

i

= fht; �i j q

i

2 t(x) and � < �

0

g:

Using the fa
t that B is 
omplete and non-
ontradi
tory, by indu
tion on

the stru
ture of formulas one 
an easily show that M is as required.

We thus obtain the following lemma.

Lemma 5.3. A

S5

is a saturation rule for (QL

1

;FO).
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(l�)

� :: :8v (R(x; v)! '(v))

�:m :: :'(x)

�:m is new to B

(lK)

� :: 8v (R(x; v)! '(v))

�:w :: '(x)

(lT )

� :: 8v (R(x; v)! '(v))

� :: '(x)

(l4)

� :: 8v (R(x; v)! '(v))

�:w :: 8v (R(x; v)! '(v))

�:w is already exists on B

Figure 3. Additional tableau rules for S4

u

.

5.2. S4

u

Let us now extend the previous example to a saturation rule for the propo-

sitional modal logi
 S4 with the universal modality, that is to the f-theory

(ST ;TR) de�ned in Se
tion 2.2.

The tableau algorithm for S4

u

is similar to that for S5, so we 
on
entrate

on the di�eren
es. The set of tableau rules is 
omprised of those in Fig. 2

(for the Booleans and the universal modality) and Fig. 3 (for the transitive

and re
exive modal operator 2 of S4|its �rst-order translation, to be more

pre
ise). Again we assume that the rules (l9) and (l�) are applied at most

on
e for every node.

To ensure termination of rule appli
ation, some additional e�orts are

required. We say that a label � is redu
ed if no rule di�erent from (l9) and

(l�) 
an be applied to nodes 
ontaining � :: '. A label � is 
alled fully

redu
ed if no tableau rule is appli
able to nodes 
ontaining � :: '. Now, a

bran
h B is 
omplete if

� all labels on B are redu
ed and

� for every � that is not fully redu
ed, there exists a fully redu
ed label

� su
h that t

B

�

(x) = t

B

�

(x).

To guarantee termination, tableau rules must not be applied to 
omplete

bran
hes. The tableau algorithm works as the one from the previous se
tion:

it 
onstru
ts the 
anoni
al tableau, returns A

S4

u

= 
lash if B

T

is empty

and the set of saturated 
o
ks

A

S4

u

(T) = fT

B

j B 2B

T

g;
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otherwise.

We now show that the extended algorithm is a (non-exhaustive) satura-

tion rule for (ST ;TR). As it is easy to prove that (TR) is satis�ed, we again

start with (CO).

Lemma 5.4. Let T be a 
o
k. For every model M 2 TR with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there are a bran
h B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment a

0

in

� su
h that t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T = ft

1

(x); : : : ; t

k

(x)g be a 
o
k,

M =

D

�; R

M

; Q

M

0

; : : : ; q

M

0

; : : : ;

E

2 TR;

and let a be a T-assignment in � su
h that M j= T[a℄. Without loss of

generality we may assume that t = t

1

. Suppose that the 
anoni
al tableau

for T is the last tableau of the sequen
e

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appli
ation of a tableau rule. For a bran
h B of a tableau and

an T

B

-assignment a, we write M j=

a

R

B

to say that (a(t

B

�

); a(t

B

�:�

)) 2 R

M

,

for all labels � and �:� on the bran
h (both � and � are sequen
es of natural

numbers).

We de�ne, for ea
h tableau T

i

, 0 � i � n, a bran
h B

i

of T

i

and a T

B

i

-

assignment a

i

. Let B

0

be the single bran
h of T

0

. Set a

0

= a. Then we

pro
eed in su
h a way that the following 
onditions are satis�ed for every i,

0 < i � n,

M j= T

B

i

[a

i

℄; a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

) and M j=

a

i

R

B

i

:

Assume that we have already 
onstru
ted B

i

and a

i

, for 0 � i < n, and T

i+1

is obtained from T

i

by an appli
ation of (l). Sin
e the rules in Fig. 2 
an be

treated in pre
isely the same way as in Lemma 5.1, we 
on
entrate only on

the rules in Fig. 3.

(l�) is applied to � :: :8v (R(x; v) ! '(v)) on B

i

, introdu
ing a new label

�:m and 
reating a node �:m :: :'(x). Let a be the value assigned to the type

of � at step i, i.e., a

i

(t

B

i

�

). Sin
e, by IH, M j= (:8v (R(x; v) ! '(v)))[a℄,

there exists an element a

0

2 � su
h that (a; a

0

) 2 R

M

and M j= :'[a

0

℄.

Let B

i+1

be the extension of B

i

with the new node, a

i+1

(t

B

i+1

�:m

) = a

0

and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for all other types t

B

i+1

�

(x) 2 T

B

i+1

.
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In all other 
ases B

i+1

is the extension of B

i

with the new nodes and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every type t

B

i+1

�

(x) 2 T

B

i+1

.

Again it is straightforward to show that B

i+1

and a

i+1

are as required

(for (lK), (lT ) and (l4) we need to use the fa
t thatM j=

a

i

R

B

i

) and that B

n

and a

n

indu
e a bran
h B 2 B

T

, a type t

0

(x) 2 T

B

, and a T

B

-assignment

a

0

, as required by the lemma.

It remains to prove that the soundness property (SO) holds.

Lemma 5.5. For every 
o
k T, every 
ardinal �

0

� �

0

, and every bran
h

B 2 B

T

there exists a model

M =

D

�; R

M

; Q

M

0

; : : : q

M

0

; : : :

E

2 TR;

in whi
h

� � =

S

t2T

B

�

t

, where �

t

are pairwise disjoint sets of 
ardinality �

0

,

� q

M

i

is true i� q

i

2 T

B

,

� a 2 Q

M

i

i� there is a type t(x) 2 T

B

su
h that Q

i

(x) 2 t(x) and

a 2 �

t

,

su
h that M j= t[a℄ holds for all t(x) 2 T

B

and a 2 �

t

.

Proof. Fix a bran
h B 2 B

T

and a 
ardinal �

0

� �

0

. De�ne a model M

by taking

�

t

= fht; �i j � < �

0

g for t(x) 2 T

B

;

R

M

= f

�

ht; �i ;




t

0

; �

0

��

j t = t

B

�

and t

0

= t

B

�

for � � �g;

Q

M

i

= fht; �i j Q

i

(x) 2 t(x) and � < �

0

g;

q

M

i

= fht; �i j q

i

2 t(x) and � < �

0

g;

where � � � i� � is a (not ne
essarily proper) pre�x of � . Clearly, R

M

is re
exive and transitive. Sin
e distin
t labels � and �

0

may des
ribe the

same type t

B

�

= t

B

�

0

, in general R

M

is not ne
essarily antisymmetri
, i.e., it

is a quasi-order. Using the fa
t that B is 
omplete and non-
ontradi
tory,

by indu
tion on the stru
ture of formulas one 
an easily show that M is as

required.

Summing up, we obtain the following:

Lemma 5.6. A

S4

u

is a saturation rule for (ST ;TR).
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k :: :('(x) ^  (x)) k is marked

k :: :'(x)

k :: :'(x)

m :: : (x) for m new to B

m :: �(x) for every k :: �(x) on B

k :: : (x)

Figure 4. The disjun
tion rule (l_

�

) for marked labels.

5.3. Constant domains

With minor modi�
ations, the tableau algorithms presented in Se
tions 5.1

and 5.2 also give rise to exhaustive saturation rules for (QL

1

;FO) and

(ST ;TR), respe
tively. Here we 
onsider only the latter, more general 
ase.

In the 
onstant domain tableau algorithm, there exist two types of la-

bels: marked and unmarked ones, where marked labels are always of length

one (i.e. 
ontain no dots). We assume that ea
h input 
o
k 
ontains the

distinguished type t

z

(x) = f>(x)g. In the initial tableau for a 
o
k T, a

marked label is used for t

z

(x). All other labels in the initial tableau are

unmarked. For the appli
ation of tableau rules, senten
es and formulas with

unmarked labels are treated pre
isely as in the expanding domain 
ase.

The only di�eren
e for marked labels is that a modi�ed version of the

disjun
tion rule is used, whi
h 
an be found in Fig. 4: if k :: :('(x) _ (x))

is found on a bran
h B with k marked, then we split the end of the bran
h

into three and do the following: the left fork is extended with the labelled

formula k :: :'(x), the right one with k ::  (x), and the middle fork is

extended with formulas

fk :: :'(x); m :: : (x)g [ fm :: �(x) j k :: �(x) is on Bg;

where m is a new marked label of length 1 (a `
opy' of k). Intuitively, we

are 
onstru
ting a set of `minimal types' 
orresponding to the marked la-

bels as proposed in [16℄: if B is a non-
ontradi
tory bran
h of the 
anoni
al

tableau and M a model with domain � su
h that M j= T

B

[a℄ for some

T

B

-assignment a, then for ea
h d 2 � we �nd a marked label � on B su
h

that M j= t

B

�

[d℄.

1

This obviously 
orresponds to the `exhaustiveness' prop-

erty required by the strengthened 
ompleteness 
ondition (CO

0

) for 
onstant

domains.

1

The type t

B

�

(x) is 
alled a minimal type, sin
e there is no type t(x) 2 T

B

su
h that

t(x) � t

B

�

(x).
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The result returned by the 
onstant domain tableau algorithm A

0

S4

u

is

obtained from the 
anoni
al tableau in the very same way as for expanding

domains. Let us now prove the 
onstant domain 
ompleteness property

(CO

0

):

Lemma 5.7. Let T be a 
o
k. For every model M 2 TR with domain �,

every type t(x) 2 T, and every T-assignment a in �, if M j= T[a℄ then

there is a bran
h B 2 B

T

su
h that

1. T

B

is exhaustive for M,

2. there exist a type t

0

(x) 2 T

B

and a T

B

-assignment a

0

in � su
h that

t(x) � t

0

(x), a(t) = a

0

(t

0

), and M j= T

B

[a

0

℄.

Proof. Let T be a 
o
k, M =




�; R

M

; Q

M

0

; : : : ; q

M

0

; : : :

�

2 TR, and a a T-

assignment in � su
h that M j= T[a℄. Suppose that the 
anoni
al tableau

for T is the last tableau of the sequen
e

T

0

; T

1

; : : : ; T

n

;

where T

0

is the initial tableau for T and, for every i < n, T

i+1

is obtained

from T

i

by an appli
ation of a tableau rule.

We de�ne, for ea
h tableau T

i

, 0 � i � n, a bran
h B

i

of T

i

, an T

B

i

-

assignment a

i

, and a surje
tive map �

i

from � to the set of marked labels on

B

i

. Let B

0

be the single bran
h of T

0

. Set a

0

= a, and let �

0

be the fun
tion

mapping every element of � to the single marked label on B

0

(re
all that

>(x) is the only formula labelled by it). We pro
eed in su
h a way that the

following 
onditions are satis�ed:

M j= T

B

i

[a

i

℄; a

i

(t

B

i

1

) = a

i�1

(t

B

i�1

1

); M j=

a

i

R

B

i

;

and

�

i

(d) = � implies M j= t

B

i

�

[d℄ for every d 2 �: (ix)

Assume that we have already 
onstru
ted B

i

, a

i

, and �

i

for 0 � i < n, and

T

i+1

is obtained from T

i

by an appli
ation of (l). All rules ex
ept (l_

�

) are

treated as in Lemmas 5.1 and 5.4 with the addition that �

i+1

= �

i

for any

of these rules.

(l_

�

) is applied to �:k :: :('(x) ^  (x)), where �:k is a marked label. The

rule appli
ation splits B

i

into three bran
hes B

'

, B

 

and B

�

, where B

'

has

a new node 
ontaining �:k :: :'(x), B

 

has a node 
ontaining �:k :: : (x),

and B

�

has new nodes 
ontaining

f�:k :: :'(x); �:m :: : (x)g [ f�:m :: �(x) j �:k :: �(x) is on B

i

g;
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where �:m is a new marked label. De�ne two sets

�

'

=fd 2 � j �

i

(d) = �:k and M j= :'[d℄g;

�

 

=fd 2 � j �

i

(d) = �:k and M j= : [d℄g:

Due to the surje
tivity of �

i

, we have either �

'

6= ; or �

 

6= ;. So we have

to 
onsider three 
ases:

1. If �

'

= ;, then B

i+1

= B

 

.

2. If �

 

= ;, then B

i+1

= B

'

.

3. If �

'

6= ; and �

 

6= ;, then B

i+1

= B

�

, a

i+1

(t

B

i+1

�:m

) = a

i

(t

B

i

�:k

) and

a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for every other t

B

i+1

�

(x) 2 B

i+1

, and

�

i+1

(d) =

8

>

<

>

:

�:k; if d 2 �

'

;

�:m; if d 2 �

 

n�

'

;

�

i

(d); otherwise.

Finally, in the �rst two 
ases we let �

i+1

= �

i

and a

i+1

(t

B

i+1

�

) = a

i

(t

B

i

�

) for

every t

B

i+1

�

(x) 2 B

i+1

.

In the same way as in the proof of Lemma 5.4 we 
an use B

n

and a

n

to

�x a bran
h B = B

n

2 B

T

, a type t

0

2 T

B

, and a T

B

-assignment a

0

su
h

that 
ondition 2 from the formulation of the lemma is satis�ed. It remains

to note that exhaustiveness of T

B

is obviously an immediate 
onsequen
e

of (ix).

Sin
e soundness (SO) 
an be proved pre
isely as in the expanding domain


ase, we obtain the following:

Lemma 5.8. A

0

S4

u

is an exhaustive saturation rule for (ST ;TR).

In general, it seems that all tableau algorithms whi
h may serve as an

(expanding domain) saturation rule 
an be 
onverted into an exhaustive

saturation rule by modifying all non-deterministi
 tableau rules in the way

we modi�ed the (l_

�

) rule: instead of 
onsidering ea
h non-deterministi


out
ome separately, we must also 
onsider arbitrary 
ombinations of su
h

out
omes. More details on this issue 
an be found in [16℄.
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5.4. Temporal tableaux at work

In the following, we exemplarily apply the temporal tableau 
al
ulus from

Se
tion 4 to some QT L

1

-formulas using the tableau algorithm for QL

1

as a

saturation rule as shown in Se
tion 5.1.

Remark 5.9. Let # be a QT L

1

-senten
e and G a 
omplete tableau for

# after exe
ution of the elimination pro
edure. Then 
learly no type in

the tableau 
ontains both




'(x) and




:'(x) (otherwise the node has no

su

essor). On the other hand, it follows from (




')

:

that every type of every

saturated 
o
k `(s), where s is a state in G, 
ontains at least one of




'(x)

and




:'(x), for every subformula




'(x) of #. So in the �nal (
ompleted

and pruned) tableaux we 
an identify




'(x) and :




:'(x) and 
onsider

only one of them, sin
e the truth value of the other 
an easily be restored.

Similarly, axiom ( 

1

U  

2

)

:

guarantees that every type in every saturated


o
k `(s) 
ontains pre
isely one of




( 

1

U  

2

)(x) and




:( 

1

U  

2

)(x), for

every subformula  

1

U  

2

(x) of #. So by the same argument we 
an identify




( 

1

U  

2

)(x) and :




:( 

1

U  

2

)(x).

Example 5.10. Consider the formula

2

�

9y

�

C(y) ^ :




C(y)

�

^ 8y

�

:C(y)!




:C(y)

�

�

;

from Example 2.8. As was shown above, we 
an identify q


(>U: )

with

:q


:(>U: )

and Q


C

(x) with :Q


:C

(x) (and 
onsider only one representa-

tive of ea
h pair). This is done to simplify tableau in the example by avoiding


onstru
tion of dead ends. Then the set Ax

#

(x) of surrogate axioms 
onsists

of the following formulas:

>(x);

q

>U: 

! :9y

�

C(y) ^ :Q


C

(y)

�

_ :8y

�

C(y) _ :Q




C

(y)

�

_ q


(>U: )

;

:q

>U: 

! 9y

�

C(y) ^ :Q


C

(y)

�

^ 8y

�

C(y) _ :Q


C

(y)

�

^ :q


(>U: )

;

:q


(>U: )

! :q


(>U: )

;

8x

�

:Q


C

(x)! :Q


C

(x)

�

:

We begin 
onstru
ting a tableau for # with a state s

r

su
h that

`(s

r

) = ;; `




(s

r

) = T

0

0

and T

0

0

= ft

0

0

(x); Ax

#

(x)g:

The 
o
k T

0

0


onsists of only two types, namely, t

0

0

(x) = f:q

>U: 

;>(x)g

and Ax

#

(x). As a saturation rule we use the tableau pro
edure for the one-

variable fragment from Se
tion 5.1. The 
omplete tableau for T

0

0


ontains
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`

;

t

C

t


:C




��

t

:C

t


:C




��

t

C

t

:C

t


:C




��

t


:C




��

`




t

0

0

Ax

#

t

0

C

t

0

:C

Ax

#

t

0

:C

Ax

#

t

0

C

t

0

:C

Ax

#

t

0

:C

Ax

#

s

r

// 33 66s

1

// &&
s

2 66YY s

4

oo
EE s

3

ooxx

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

Figure 5. Complete tableau for Example 2.8.

then three non-
ontradi
tory bran
hes, ea
h of whi
h represents a 
lass of

models for T

0

0

. These bran
hes give us the following saturated 
o
ks

T

1

= ft


:C

(x); t

C

(x)g ; T

2

= ft


:C

(x); t

:C

(x)g ; T

3

= ft


:C

(x)g


onsisting of three distin
t types

t


:C

(x) = �

0

(x) [ fC(x); :Q


C

(x); C(x) ^ :Q


C

(x)g ;

t

C

(x) = �

0

(x) [ fC(x); Q


C

(x)g ;

t

:C

(x) = �

0

(x) [ f:C(x); :Q


C

(x)g ;

where �

0

(x) = Ax

#

(x)[f:q

>U: 

; :q


(>U: )

g. Thus, the result of saturation

is

A(T

0

0

) = fT

1

;T

2

;T

3

g ;

and so we 
reate three new states s

1

, s

2

and s

3

labelled by T

1

, T

2

and T

3

,

respe
tively.

Now we take one step in time and obtain N (T

i

) = T

0

i

, for i = 1; 2; 3,
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with

T

0

1

=

�

t

0

:C

(x); t

0

C

(x); Ax

#

(x)

	

;

T

0

2

=

�

t

0

:C

(x); Ax

#

(x)

	

;

T

0

3

=

�

t

0

:C

(x); Ax

#

(x)

	

;

where t

0

:C

(x) = f:q

>U: 

; :C(x); >(x)g, t

0

C

(x) = f:q

>U: 

; C(x); >(x)g.

An appli
ation of the saturation rule to the 
o
ks T

0

1

, T

0

2

and T

0

3

gives

A(T

0

1

) = fT

2

;T

4

g ; A(T

0

2

) = fT

2

;T

4

g and A(T

0

3

) = fT

2

;T

4

g ;

where T

4

= ft


:C

(x); t

:C

(x); t

C

(x)g. As in the tableau we already have

a state, s

2

, labelled by T

2

, we 
reate one new state s

4

and label it by T

4

.

Having taken the se
ond step in time, we obtain N (T

4

) = T

0

4

, where

T

0

4

=

�

t

0

:C

(x); t

0

C

(x); Ax

#

(x)

	

:

An appli
ation of the saturation rule to T

0

4

gives no new states, so this

step 
ompletes the tableau. Wolper's elimination rules will not redu
e the

number of states, sin
e our formula 
ontains no eventualities. The resulting

tableau is depi
ted on Fig. 5.

Example 5.11. Consider now the formula # = 8y




:C(y) ^




9y C(y). Its

�rst-order redu
t is # = 8y Q


:C

(y)^q


9yC

and the set Ax

#

(x) of surrogate

axioms 
onsists of three formulas (modulo the simpli�
ations above):

>(x);

8x (:Q


:C

(x)! :Q


:C

(x));

:q


9yC

! :q


9yC

:

In the 
ase of expanding domains (using again the saturation rule for the one-

variable fragment from Se
tion 5.1) we obtain then the in�nite path of the


omplete temporal tableau for # (see Fig. 5.4). It should be remarked that

the 
omplete tableau 
ontains more than 30 states, however the displayed

path is enough to 
onstru
t a quasimodel satisfying #.

In the 
ase of 
onstant domains, the type Ax

#

(x) in s

0


ontains the

formula

CDA

T

= 8x (:C(x) ^ 9y C(y));

whi
h is 
learly not satis�able. Therefore, s

0

has no su

essors, and the

elimination pro
edure removes both s

r

and s

0

, so that the resulting tableau

is empty. By Theorem 4.14, # is not satis�able in 
onstant domains.
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`

;

t

1




��

t

2

t




t

3




��

`




t

0

0

Ax

#

t

0

1

Ax

#

t

0

1

Ax

#

s

r

//
s

0

//
s

1

��

?> =<

89 :;

?> =<

89 :;

?> =<

89 :;

t

0

0

(x) = f#; >(x)g

t

1

(x) = f#; 8y Q


:C

(y); Q


:C

(x); q


9yC

;>(x)g

t

0

1

(x) = f:C(x); 9y C(y); >(x)g

t

2

(x) = f:C(x); 9y C(y); Q


:C

(x); q


9yC

; >(x)g

t




(x) = fC(x); 9y C(y); Q


:C

(x); q


9yC

; >(x)g

t

3

(x) = f9y C(y); Q


:C

(x); q


9yC

; >(x)g

Figure 6. An in�nite path in the tableau for 8y 
:C(y) ^
9y C(y).

6. Con
lusion

We have presented a general framework for 
onstru
ting tableau algorithms

for monodi
 fragments of �rst-order temporal logi
 from Wolper's tableau

algorithm for PTL and de
ision pro
edures for fragments of �rst-order logi
.

In both the expanding domain and the 
onstant domain 
ase, we 
an use

existing de
ision pro
edures for �rst-order fragments. However, for 
onstant

domains we need more than a single appli
ation of the algorithm.

As example instantiations of our framework, we have developed tableau

algorithms for the one-variable fragment of monodi
 FOTL and for the tem-

poralisation of the modal logi
 S4

u

. These logi
s are suÆ
iently simple to

serve as examples but also have some rather serious appli
ations:

� The tableau system for the one-variable fragment QT L

1

of FOTL 
an

be used for various spatio-temporal reasoning tasks, see [27℄ for an

embedding of spatio-temporal logi
s in this fragment.
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� In the 
ase of 
onstant domains, the tableau for QT L

1

a
tually yields

a tableau de
ision pro
edure for the Cartesian produ
t of propositional

linear temporal logi
 PTL and S5 (see e.g. [7℄).

� The tableau system for the temporalised S4

u


an be generalised in a

straightforward way to tableaux for various temporal des
ription logi
s

(see, e.g., [24, 18, 15℄).

It should be obvious that the presented framework 
an also be used to de-

velop tableau algorithms for more powerful fragments of monodi
 FOTL su
h

as the monodi
 two-variable fragment and the monodi
 guarded fragment.
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