
E-connections of abstract description systems

Oliver Kutz a, Carsten Lutz b, Frank Wolter a,

Michael Zakharyaschev c

aDepartment of Computer Science, University of Liverpool, Liverpool L69 7ZF,
U.K.

bInstitut für Theoretische Informatik, TU Dresden, Fakultät Informatik, 01062
Dresden, Germany.

cDepartment of Computer Science, King’s College London, Strand, London
WC2R 2LS, U.K.

Abstract

Combining knowledge representation and reasoning formalisms is an important and
challenging task. It is important because non-trivial AI applications often comprise
different aspects of the world, thus requiring suitable combinations of available form-
alisms modeling each of these aspects. It is challenging because the computational
behavior of the resulting hybrids is often much worse than the behavior of their
components.

In this paper, we propose a new combination method which is computationally
robust in the sense that the combination of decidable formalisms is again decid-
able, and which, nonetheless, allows non-trivial interactions between the combined
components.

The new method, called E-connection, is defined in terms of abstract description
systems (ADSs), a common generalization of description logics, many logics of time
and space, as well as modal and epistemic logics. The basic idea of E-connections is
that the interpretation domains of n combined systems are disjoint, and that these
domains are connected by means of n-ary ‘link relations.’ We define several natural
variants of E-connections and study in-depth the transfer of decidability from the
component systems to their E-connections.
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1 Introduction

Logic-based formalisms play a prominent role in modern Artificial Intelligence
(AI) research. The numerous logical systems employed in various applications
can roughly be divided into three categories:

(1) very expressive but undecidable logics, typically variants of first- or higher-
order logics;

(2) quantifier-free formalisms of low computational complexity (typically P-
or NP-complete), such as (fragments of) classical propositional logic and
its non-monotonic variants;

(3) decidable logics with restricted quantification located ‘between’ proposi-
tional and first-order logics; typical examples are modal, description and
propositional temporal logics.

The use of formalisms of the third kind is motivated by the fact that logics
of category (2) are often not sufficiently expressive, e.g., for terminological,
spatial, and temporal reasoning, while logics of the first kind are usually too
complex to be used for efficient reasoning in realistic application domains.

Thus, the trade-off between expressiveness and effectiveness is the main design
problem in the third approach, with decidability being an important indicator
that the computational complexity of the language devised might be suffi-
ciently low for successful applications. Over the last few years, an enormous
progress has been made in the design and implementation of special purpose
languages in this area—witness surprisingly fast representation and reasoning
systems of description and temporal logics [58,40,65,44]. In contrast to first-
order and propositional logics, however, these systems are useful only for very
specific tasks, say, pure temporal, spatial, or terminological reasoning.

Since usually realistic application domains comprise various aspects of the
world, the next target within this third approach is the design of suitable com-
binations of formalisms modeling each of these aspects. Following the under-
lying idea that to devise useful languages one has to search for a compromise
between expressiveness and effectiveness, the problem then is to find combin-
ation methodologies which are sufficiently robust in the sense that the com-
putational behavior of the resulting hybrids should not be much worse than
that of the combined components. The need for such methodologies has been
clearly recognized by the AI community (it suffices to mention the workshop
series ‘Frontiers of Combining Systems’ FroCoS’96–02 and subsequent volumes
[15,22,45,5]), and various approaches to combining logics have been proposed,
e.g., description logics with concrete domains [56], multi-dimensional spatio-
temporal logics [77,78], independent fusions and fibring [28,46,25,13], tem-
poralized logics [26], temporal epistemic logic [23], or more general logics of
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rational agency [73,60].

In this paper we introduce and investigate a novel combination method with a
wide range of applications and a very robust computational behavior (in the
sense that the combination is decidable whenever all of its components are
decidable).

This combination method can be applied in the following setting. Suppose
that we have n mutually disjoint domains D1, . . . , Dn together with appro-
priate languages L1, . . . , Ln for speaking about them. Although the domains
are disjoint, they can represent different aspects of the same objects (say, a
concrete house as an instance of a general concept house, its spatial extension
and life span). So we can assume that we have a set E = {Ej | j ∈ J} of
links establishing certain relations Ej ⊆ D1 × · · · ×Dn among objects of the
domains.

Now we form a new language L containing all of the Li, 1 ≤ i ≤ n, which is
supposed to talk about the union

⋃n
i=1Di, where the Di are connected by the

links in E . The fragments Li of L can still talk about each of the Di, but the
super-language L contains extra (n−1)-ary operators 〈Ej〉

i, 1 ≤ i ≤ n, j ∈ J ,
which, given an input (X1, . . . , Xi−1, Xi+1, . . . , Xn), for Xℓ ⊆ Dℓ, return

{x ∈ Di | ∀ℓ 6= i ∃xℓ ∈ Xℓ (x1, . . . , xi−1, x, xi+1, xn) ∈ Ej}.

In other words, the value of 〈Ej〉
i (X1, . . . , Xi−1, Xi+1, . . .Xn) is the i-th factor

of
(X1 × · · · ×Xi−1 ×Di ×Xi+1 × · · · ×Xn) ∩ Ej .

For instance, if i = 2 then, for all X1 ⊆ D1 and X2 ⊆ D2, we have

x1 ∈ 〈Ej〉
1 (X2) iff ∃x2 ∈ X2 (x1, x2) ∈ Ej ,

x2 ∈ 〈Ej〉
2 (X1) iff ∃x1 ∈ X1 (x1, x2) ∈ Ej .

We call the new system L the basic E-connection of L1, . . . , Ln. The operators
〈Ej〉

i correspond to the exists-restrictions of standard description logics [9], or,
in terms of first-order logic, to an Ej-guarded quantification over the members
of foreign domains [2].

Here are four simple examples of E-connections; in more detail they will be
considered in Section 4.

Description Logic–Spatial Logic. A description logic L1 (say, ALC or
SHIQ [42]) talks about a domain D1 of abstract objects. A spatial logic L2

(say, qualitative S4u [70,16,66,30] or quantitative MS [69,48]) talks about
some spatial domain D2. An obvious E-connection is given by the relation
E ⊆ D1×D2 defined by taking (x, y) ∈ E iff y belongs to the spatial extension
of x—whenever x occupies some space. Then, given an L1-concept, say, river,
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the operator 〈E〉2 (river) provides us with the spatial extension of all rivers.
Conversely, given a spatial region of L2, say, the Alps, 〈E〉1 (Alps) provides
the concept comprising all objects whose spatial extension has a non-empty
intersection with the Alps. So the concept country⊓〈E〉1 (Alps) will then denote
the set of all alpine countries.

Description Logic–Temporal Logic. Now let L3 be a temporal logic (say,
point-based PTL [29] or Halpern–Shoham’s logic of intervals HS [34]) and let
D3 be a set of time points or, respectively, time intervals interpreting L3. In
this case, a natural relation E ⊆ D1 ×D3 is given by taking (x, y) ∈ E iff y
belongs to the life-span of x.

Description Logic–Description Logic. Besides the description logic L1

talking about the domain D1, another description logic L4 may be given that
is used to formalize knowledge about a domain D4 closely related to D1. For
instance, if L1 talks about countries and companies, while L4 talks about
people, we may have two relations W,L ⊆ D1 × D4, where (x, y) ∈ W iff y
works in x (for x a company) and (x, y) ∈ L iff y lives in x (for x a country).
Typically, L1 and L4 will also use different sets of concept constructors.

Similar combinations, called distributed description logics, have been construc-
ted by Borgida and Serafini [18] whose motivation was the integration of and
logical reasoning in loosely federated information systems. In more detail the
relationship between E-connections of description logics and distributed de-
scription logics will be analyzed in Section 6, where we will show that distrib-
uted description logics can be thought of as special instances of E-connections.

Description Logic–Spatial Logic–Temporal Logic. Further, we can com-
bine the three logics L1, L2, L3 above into a single formalism by defining a
ternary relation E ⊆ D1 ×D2 ×D3 such that (x, y, z) ∈ E iff y belongs to the
spatial extension of x at moment (interval) z.

This is a rough idea. To make it more precise and to provide evidence for the
claim that this combination technique is computationally robust, we will use
the framework of abstract description systems (ADSs, for short) introduced in
[13]. Basically, all description, modal, temporal, epistemic and similar logics
(in particular, modal logics of space) can be represented in the form of ADSs
with the same computational behavior as the original formalisms. For this
reason, ADSs appear to be a good level of abstraction for investigating E-
connections.

The next question is how we can ‘prove’ that the formation of E-connections
is a computationally robust operation. In this paper we adopt the idea that a
proof of the decidability of the main reasoning services provided by a formalism
is an important indication that the computational behavior of the formalism
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might be sufficiently good for applications.

Thus, our aim is to prove transfer results of the following form:

(1) if a certain reasoning service for each of the component ADSs of an E-
connection is decidable, then this reasoning service for the E-connection
itself is decidable as well.

On the other hand, to show that our results are in a sense optimal and that
indeed we have found (at least on the theoretical level) a good compromise
between expressivity and effectiveness, we provide examples which demon-
strate that

(2) the transfer results in (1) do not hold if we take more expressive E-
connections.

All ‘positive’ decidability transfer theorems come with the following complex-
ity result:

(3) the time complexity of a reasoning service for an E-connection is at most
one non-deterministic exponential higher than the maximal time complex-
ity of its components; in some cases this upper bound is optimal.

The increase of the worst-case time complexity by one exponential shows that
in general E-connections are not given ‘for free.’ On the other hand, this result
also shows that the formation of E-connections is a ‘relatively cheap’ combin-
ation methodology compared, for instance, with the multi-dimensional ap-
proach (see Section 8.1). Of course, only experiments can show whether a
particular E-connection is of sufficiently low complexity to be useful in prac-
tice; this obviously cannot be done in a paper providing a formal framework.
However, the idea underlying the decidability transfer theorems is not only
to indicate that practical algorithms may exist for some particular cases, but
also to help the designer of such algorithms by means of the insights provided
by the proofs of these theorems.

The structure of the paper is as follows. Section 2 introduces abstract descrip-
tion systems and four logic-based knowledge representation (KR) formalisms
that will be used in examples of E-connections. In Section 3 we introduce
the notion of a basic E-connection 1 and discuss transfer results for this com-
bination method. Examples illustrating basic E-connections are provided in
Section 4. In Section 5 we consider extended E-connections which allow more
interaction between the combined formalisms than basic E-connections (for
example, Boolean combinations of connecting relations or ‘qualified number
restrictions’ on them). Decidability results as well as counterexamples for the

1 Basic E-connections were first introduced and investigated in [49].
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transfer of decidability describe the trade-off between expressive power and
computational behavior. In Section 6 we consider the relation between E-
connections and distributed description logics recently introduced in [18], and
in Section 7 we discuss the extension of basic E-connections by means of first-
order constraints on the links between the domains. Finally, in Section 8 we
briefly discuss E-connections in the light of other combination methodologies.
All of the proofs are collected in Appendices A–C.

2 Abstract description systems

Abstract description systems (ADSs) have been proposed in [13] as a common
generalization of description logics, modal logics, temporal logics, and some
other formalisms. Our presentation of ADSs in this section will be brief, yet
self-contained. As illustrating examples, we describe several logics that have
been proposed in the literature for knowledge representation and reasoning,
and show how these logics can be viewed as abstract description systems. For
more details about ADSs the interested reader is referred to [13].

An abstract description system consists of an abstract description language
and a class of admissible models specifying the intended semantics.

Definition 1 An abstract description language (ADL) L is determined by a
countably infinite set V of set variables, a countably infinite set X of object
variables, a countable set R of relation symbols R of arity mR, and a countable
set F of function symbols f of arity nf such that ¬,∧ /∈ F . The terms tj of L
are built in the following way:

tj ::= x | ¬t1 | t1 ∧ t2 | f(t1, . . . , tnf
),

where x ∈ V and f ∈ F . The term assertions of L are of the form t1 ⊑ t2,
where t1 and t2 are terms, and the object assertions are

• R(a1, . . . , amR
), for a1, . . . , amR

∈ X and R ∈ R;

• a : t, for a ∈ X and t a term.

The sets of term and object assertions together form the set of L-assertions.
We will write t1 = t2 as an abbreviation for the two assertions t1 ⊑ t2, t2 ⊑ t1.

The semantics of ADLs is defined via abstract description models.

Definition 2 Given an ADL L = 〈V,X ,R,F〉, an abstract description model
(ADM) for L is a structure of the form

W =
〈

W,VW = (xW)x∈V ,X
W = (aW)a∈X ,F

W = (fW)f∈F ,R
W = (RW)R∈R

〉

,
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where W is a non-empty set, xW ⊆ W , aW ∈ W , each fW is a function
mapping nf -tuples

〈

X1, . . . , Xnf

〉

of subsets of W to a subset of W , and the

RW are mR-ary relations on W .

The value tW ⊆ W of an L-term t in W is defined inductively by taking

• (¬t)W = W \ (t)W, (t1 ∧ t2)
W = tW1 ∩ tW2 ,

• (f(t1, . . . , tmf
))W = fW(tW1 , . . . , t

W

mf
).

The truth-relation W |= ϕ for an L-assertion ϕ is defined in the obvious way:

• W |= R(a1, . . . , amR
) iff RW(aW

1 , . . . , a
W

mR
),

• W |= a : t iff aW ∈ tW,

• W |= t1 ⊑ t2 iff tW1 ⊆ tW2 .

If W |= ϕ holds, we say that ϕ is satisfied in W. For sets Γ of assertions, we
write W |= Γ if W |= ϕ holds for all ϕ ∈ Γ.

ADSs become a powerful tool by providing a choice of an appropriate class
of ADMs in which the ADL is interpreted. In this way, we can, e.g., ensure
that a function symbol has the desired semantics, and that relation symbols
are interpreted as relations having desired properties, say, transitivity.

Definition 3 An abstract description system (ADS) is a pair (L,M), where
L is an ADL and M is a class of ADMs for L that is closed under the following
operations:

(i) if W =
〈

W,VW,XW,FW,RW
〉

is in M and VW′
= (xW′

)x∈V is a new

assignment of set variables in W , then W′ =
〈

W,VW′
,XW,FW,RW

〉

is
in M as well;

(ii) for every finite G ⊆ F , there exists a finite set XG ⊆ X such that,

for every W =
〈

W,VW,XW,FW,RW

〉

from M and every assignment

XW′
= (aW′

)a∈X of object variables in W such that aW = aW′
for all

a ∈ XG, there is an interpretation FW′
= (fW′

)f∈F of the function sym-

bols such that fW′
= fW for all f ∈ G and W′ =

〈

W,VW,XW′
,FW′

,RW
〉

is in M.

The first closure condition imposed on the class of models M means that set
variables are treated as variables in any ADS, i.e., their values are not fixed.
Closure condition (ii) deals with object variables and is slightly weaker; it
states that object variables behave almost like variables with the exception
that the interpretation of a finite number of function symbols may determ-
ine the assignments of a finite number of object variables. This weakening is
required to enable the representation of the important ‘nominal-constructor’
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from modal and description logic (which associates with any object variable
a nullary function symbol; see below for more details) in abstract description
systems. Mostly, however, the example ADSs we are going to discuss satisfy
the stronger condition:

(ii′) if W =
〈

W,VW,XW,FW,RW
〉

∈ M and XW′
= (aW′

)a∈X is a new

assignment of object variables in W , then W′ =
〈

W,VW,XW′
,FW,RW

〉

is in M as well.

The main reasoning task for ADSs we are concerned with is the satisfiability
problem for finite sets of assertions.

Definition 4 Let S = (L,M) be an ADS. A finite set Γ of L-assertions is
called satisfiable in S if there exists an ADM W ∈ M such that W |= Γ.

Note that the entailment of term assertions and object assertions of the form
a : t—to decide, given such an assertion ϕ and a finite set of assertions Γ,
whether W |= Γ implies W |= ϕ for all models W—is clearly reducible to
the satisfiability problem. For example, Γ entails a : t iff Γ ∪ {a : ¬t} is
not satisfiable. The satisfiability problem for an ADS S restricted to sets Γ
of object assertions will be called the A-satisfiability problem for S (here ‘A’
stands for ABox; see below).

We now introduce several logics that have been proposed for knowledge rep-
resentation and reasoning in AI, and show how these logics can be viewed as
ADSs. Again, our presentation will be brief but self-contained. For readers
not familiar with the presented formalisms we give pointers to the literature.
Moreover, examples of the use of these formalisms can be found in Section 4
illustrating E-connections.

2.1 Description logics

Description logics (DLs) are formalisms devised for the representation of and
reasoning about conceptual knowledge. Such knowledge is represented in terms
of compound concepts which are composed from atomic concepts (unary pre-
dicates) and roles (binary predicates) using the concept and role constructors
provided by the given DL. Description logic knowledge bases consist of

• a TBox containing concept inclusion statements of the form C1 ⊑ C2, where
both C1 and C2 are concepts, and

• an ABox containing assertions of the form a : C and (a, b) : R, where a, b
are object names, C is a concept, and R is a role.
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Description logics have found applications in various fields of Artificial Intel-
ligence, for example, as languages for describing ontologies in the context of
the semantic web. More information on DLs can be found in the recent hand-
book [9]. It has been shown in [13] that almost all description logics can be
regarded as ADSs. Here we briefly describe three description logics and their
translations into ADSs. We start with the basic description logic ALC.

The alphabet of ALC is comprised of concept names A1, A2, . . . , role names
R1, R2, . . . , object names a1, a2, . . . , the Boolean constructors ¬ and ⊓, and the
existential and the universal restrictions ∃ and ∀, respectively. ALC-concepts
Ci are built according to the following rule:

Ci ::= Ai | ¬C1 | C1 ⊓ C2 | ∃R.C | ∀R.C

As usual, we use C1 ⊔ C2 as an abbreviation for ¬(¬C1 ⊓ ¬C2), and ∃R.C as
an abbreviation for ¬∀R.¬C. An ALC-model is a structure of the form

I =
〈

∆, AI
1 , . . . , R

I
1 , . . . , a

I
1 , . . .

〉

,

where ∆ is a non-empty set, the AI
i are subsets of ∆, the RI

i are binary
relations on ∆, and the aIi are elements of ∆. The interpretation of complex
concepts is defined by setting

(¬C)I = ∆ \ CI , (C ⊓D)I = CI ∩DI ,

(∃R.C)I = {w ∈ ∆ | ∃v ∈ ∆((w, v) ∈ RI ∧ v ∈ CI)},

(∀R.C)I = {w ∈ ∆ | ∀v ∈ ∆((w, v) ∈ RI → v ∈ CI)}.

The concepts of ALC can be regarded as terms C♯ of an ADS ALC♯. Indeed,
we can associate with each concept name Ai a set variable A♯i, with each role
name Ri two unary function symbols f∀Ri

and f∃Ri
, and then set inductively:

(¬C)♯ = ¬C♯, (C ⊓D)♯ = C♯ ∧D♯,

(∃Ri.C)♯ = f∃Ri
(C♯), (∀Ri.C)♯ = f∀Ri

(C♯).

The object names of ALC are treated as object variables of ALC♯ and the
role names as its binary relations. Thus, ALC♯-term assertions correspond
to concept inclusion statements, while object assertions correspond to ABox
assertions. The class M of ADMs for ALC♯ is defined as follows. For every
ALC-model I =

〈

∆, AI
1 , . . . , R

I
1 , . . . , a

I
1 , . . .

〉

, the class M contains the model

M =
〈

∆,VM,XM,FM,RM
〉

,
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where, for every concept name A, role name R, and every object name a,

(A♯)M = AI , RM = RI , aM = aI ,

fM

∃R(X) = {w ∈ ∆ | ∃v ((w, v) ∈ RI ∧ v ∈ X)},

fM

∀R(X) = {w ∈ ∆ | ∀v ((w, v) ∈ RI → v ∈ X)}.

Observe that the semantics of the function symbols f∃R and f∀R is obtained
in a straightforward way from the semantics of the DL constructors ∃R.C and
∀R.C. Since the interpretations of concept and object names can be changed
arbitrarily, M satisfies the closure conditions (i) and (ii′) (and therefore (ii)
as well). Now, considering this translation, it is easily seen that

• the satisfiability problem of ALC♯ corresponds to the problem of whether
an ALC-ABox is satisfiable with respect to a TBox; 2

• the A-satisfiability problem of ALC♯ corresponds to the problem of whether
an ALC-ABox is satisfiable without any reference to TBoxes.

Our second description logic SHIQ extends ALC by various additional con-
structors. For brevity, we define here only those that will be used in the ex-
amples later on, viz., inverse roles and qualified number restrictions. The in-
verse roles allow us to use roles of the form R−1 (where R is a role name)
in place of role names, and the qualified number restrictions are concept con-
structors of the form (≥ nR.C) and (≤ nR.C); their semantics is almost
obvious:

(R−1)I = {(w, v) | (v, w) ∈ RI},

(≥ nR.C)I = {w ∈ ∆ |
∣

∣

∣{v ∈ ∆ | (w, v) ∈ RI ∧ v ∈ CI}
∣

∣

∣ ≥ n},

(≤ nR.C)I = {w ∈ ∆ |
∣

∣

∣{v ∈ ∆ | (w, v) ∈ RI ∧ v ∈ CI}
∣

∣

∣ ≤ n}.

More details on SHIQ can be found in [42,43]. By extending the translation
♯ of ALC above in a straightforward way, one can transform SHIQ into the
corresponding ADS SHIQ♯. Details of this translation can be found in [13].

The third description logic we deal with is called ALCO; it extends ALC
with the nominal constructor {a}, where a is an object name; cf. [63,41].
The semantics of the concepts {a} is as expected: {a}I = {aI}. Thus, the
difference between ALC and ALCO is that ALCO allows the use of object
names in concepts rather than only in ABox assertions. The corresponding
ADS ALCO♯ is obtained from ALC♯ by introducing, for every object variable
a of ALC♯, the nullary function symbol fa such that, for every model M,
fM

a = {aM}, and by setting {a}♯ = fa. While ALC♯ and SHIQ♯ satisfy

2 Note that in the literature the TBoxes we are concerned with are usually called
general TBoxes.
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the closure condition (ii′) following Definition 3—simply observe that there
is no interaction between the interpretation of function symbols and object
variables—this is obviously not the case for ALCO♯, since, by changing the
assignment of an object variable a, we also change the interpretation of the
nullary function symbol fa. However, ALCO♯ does satisfy (ii). Indeed, given
a finite set G of function symbols of ALCO♯, let XG be the set of all object
variables a such that fa ∈ G. Now, for any new assignment of the variables in
X \ XG, the new interpretation of the function symbols not occurring in G is
obtained by interpreting every nominal fa, a ∈ X \ XG, as the singleton set
containing the object newly assigned to a. The remaining function symbols
are interpreted as before.

To determine the computational complexity of reasoning with the ADSs defined
above, let us recall that, for ALC, SHIQ, and ALCO, ABox-satisfiability with
respect to TBoxes is EXPTIME-complete [20,71,3]. It follows immediately
that we have the following:

Proposition 5 The satisfiability problem for ALC♯, SHIQ♯, and ALCO♯ is
EXPTIME-complete.

In what follows, it will turn out that the difference between ALC and ALCO
is rather important, also on the level of ADSs. To be precise about the notion
of ‘nominal’ within the framework of ADSs, we require one more definition.

Definition 6 An ADS S = (L,M), where L = 〈V,X ,R,F〉, is said to have
nominals if F contains a nullary function symbol fa, for each a ∈ X , such that,
for every W =

〈

W,VW,XW, FW, RW
〉

in M, we have fM

a = {aM}. Usually,

we will denote the function symbols fa by {a} and call them nominals.

The ADS ALCO♯ obviously has nominals in the sense of this definition, while
the ADSs ALC♯ and SHIQ♯ do not.

Remark 7 There is a close connection between nominals and object asser-
tions: for an ADS with nominals, object assertions of the form a : t can be
reformulated as {a} ⊑ t. On the other hand, in general object assertions of
the form R(a1, . . . , am) cannot be rephrased in this style. Yet, for some ADSs
they are equivalent to assertions of the form {a1} ⊑ f(a2, . . . , am), as will
be clear from examples below. We could give a more general definition of ‘to
have nominals’ by replacing nullary function symbols fa with terms ta. The
results we are going to obtain for ADSs with nominals hold true under this
more general definition as well.

In the examples below, some expressive means provided by the ADSs have
no direct counterparts in the corresponding logics. For instance, none of these
logics has explicit term and object assertions. However, we will see that this
additional expressivity can be regarded just as ‘syntactic sugar.’
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2.2 A modal logic of topological spaces

The modal logic S4u, i.e., Lewis’s modal system S4 enriched with the universal
modality, is an important formalism for reasoning about spatial knowledge.
Tarski [70] interpreted the basic S4 (without the universal modality) in topo-
logical spaces as early as 1938. Later, the universal box was added in order
to allow the representation of and reasoning about the well-known RCC-8 set
of relations between two regions in a topological space [59,61,16,62,66,78,30].
We discuss the encoding of the RCC-8 relations in S4u in Section 4.2.

The language of S4u is built from region variables X1, X2, . . . (in the modal
context, propositional variables), the Boolean operators, the interior operator
I (the necessity operator), and the universal quantifier ✷∀ (the universal box ).
More precisely, S4u-formulas ϕi are defined as follows:

ϕi ::= Xj | ¬ϕ1 | ϕ1 ∧ ϕ2 | Iϕ1 | ✷∀ ϕ1.

As usual, we use ϕ1 ∨ ϕ2 as an abbreviation for ¬(¬ϕ1 ∧ ¬ϕ2), ✸∃ ϕ (the
universal diamond) as an abbreviation for ¬✷∀ ¬ϕ, and the closure operator
Cϕ (the possibility operator) as an abbreviation for ¬I¬ϕ. A (topological)
S4u-model

I =
〈

T, I,C, XI
1 , X

I
2 , . . .

〉

consists of a topological space 〈T, I〉, where I is an interior operator mapping
subsets X of T to their interior I(X) ⊆ T and satisfying Kuratowski’s axioms

I(X ∩ Y ) = I(X) ∩ I(Y ), II(X) = I(X), I(X) ⊆ X,

for all X, Y ⊆ T , C is the closure operator defined by C(X) = T \ I(T \X),
and the XI

i are subsets of T (interpreting the region variables of S4u). The
value ϕI of an S4u-formula ϕ in I is defined inductively in the natural way:

(¬ψ)I = T \ ψI , (χ ∧ ψ)I = χI ∩ ψI ,

(Iψ)I = IψI , (✷∀ ψ)I =







∅ if ψI 6= T ,

T if ψI = T .

We say that ϕ is satisfiable if there is an S4u-model I such that ϕI 6= ∅.

Let us see now how S4u can be represented as an ADS S4♯u. The corresponding
ADL contains the set variables X♯

1, X
♯
2, . . . , the unary function symbols fI and

f
✷∀

, but no relation symbols. Besides, according to the definition, S4♯u must

contain a countably infinite set of object variables ai. The translation ♯ of S4u-
formulas into S4♯u-terms is obvious, e.g., (✷ϕ)♯ = f✷(ϕ♯), where ✷ ∈ {I,✷∀ }.

Define a class M of ADMs for S4♯u by taking, for every S4u-model I as above,
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the ADMs

M =
〈

T,VM,XM, fM

I
, fM

✷∀

〉

,

where (X♯
i )

M = XIi, aM ∈ T , for every a ∈ X , fM

I
= I, and, for every Y ⊆ T ,

fM

✷∀
(Y ) =







∅ if Y 6= T,

T if Y = T.

Obviously, S4♯u satisfies the closure conditions (i) and (ii) of Definition 3 (it
even satisfies (ii′)); so it is an ADS. Unlike S4♯u, the logic S4u does not have
assertions of the form t1 ⊑ t2 or a : t. So we have to be careful when relating
the computational complexity of S4♯u to that of S4u. The proof of the following
proposition can be found in Appendix A.

Proposition 8 The satisfiability problem for S4♯u is PSPACE-complete.

Note that S4♯u does not have nominals.

2.3 A logic of metric spaces

Formalisms like S4u allow the representation of qualitative spatial knowledge
using, e.g., the RCC-8 relations. Motivated by the fact that many spatial AI
applications also require representations of quantitative information, a family
of logics of metric spaces has been introduced in [69,48,47,79]. Here, we con-
sider a member of this family called MS and define a corresponding ADS. 3

The language of MS consists of region terms constructed from region variables
Xi and location variables ai using the Booleans, the operators E≤r and E>r,
for r ∈ Q+, and the nominal constructor giving the region term {ai} for every
location variable ai. More precisely, MS-formulas ϕi are defined as follows:

ϕi ::= Xj | {ak} | ¬ϕ1 | ϕ1 ∧ ϕ2 | E≤rϕ1 | E>rϕ1,

Intuitively, given a set X in a metric space, E≤rX is the set of all points in the
space located at distance ≤ r from (at least one point in) X. We use A≤rX as
abbreviation for ¬E≤r¬X and A>rX for ¬E>r¬X. Thus, a point is in A>rX
iff the complement of its r-neighborhood is in X. An MS-model

I =
〈

W, δ,XI
1 , . . . , a

I
1 , . . .

〉

consists of a metric space 〈W, δ〉 together with interpretations of set variables
Xi as subsets XI

i of W and location variables ai as elements aIi of W . We

3 The logic we consider here is called MS2 in [69] and MS♯ in [48].
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remind the reader that δ is a function from W ×W into the set R+ (of non-
negative real numbers) satisfying the axioms

δ(x, y) = 0 iff x = y,

δ(x, z) ≤ δ(x, y) + δ(y, z),

δ(x, y) = δ(y, x),

for all x, y, z ∈W . The value δ(x, y) is called the distance from x to y.

The semantics of complex concepts is defined in the usual way, the only inter-
esting cases being:

(E≤rϕ)I = {w ∈W | ∃v (δ(w, v) ≤ r ∧ v ∈ ϕI)},

(E>rϕ)I = {w ∈W | ∃v (δ(w, v) > r ∧ v ∈ ϕI)}.

To define a corresponding ADS MS♯, we reserve a set variable X♯
i for each

region variable Xi, an object variable a♯i for each location variable ai, and
take unary function symbols fE≤r

and fE>r
for each r ∈ Q+. Again, the set of

relation symbols is empty. It should now be clear how to devise a translation ♯

of MS-formulas into MS♯-set terms and to describe the class of ADMs simil-
arly to what was done in the preceding two sections. Note that the semantics
of the function symbols fE≤r

and fE>r
can be derived from the semantics of

the E≤r and E>r operators in a straightforward way. As a consequence of the
decidability and complexity results from [48,79], we obtain:

Proposition 9 The satisfiability problem for MS♯ is EXPTIME-complete
(even if the parameters r are represented in binary).

The proof is similar to the proof of Proposition 8 because in MS we can define
the universal box ✷∀ ϕ as, e.g., A>1ϕ ∧ A≤1ϕ.

MS♯ does have nominals.

2.4 Propositional temporal logic

Finally, we consider the propositional temporal logic PTL [29,31,23] which is a
well-known tool for reasoning about time. PTL-formulas ϕi are composed from
propositional variables pi by means of the Booleans and the binary temporal
operators U (‘until’) and S (‘since’):

ϕi ::= pj | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 | ϕ1Sϕ2.

We introduce ✸Fϕ (‘eventually ϕ’), ✷Fϕ (‘always in the future ϕ’), ✸Pϕ
(‘sometime in the past ϕ’), ✷Pϕ (‘always in the past ϕ’) as abbreviations for
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⊤Uϕ, ¬✸F¬ϕ, ⊤Sϕ, and ¬✸P¬ϕ, respectively. A PTL-model is a structure
of the form

I =
〈

N, <, pI0 , p
I
1 , . . .

〉

,

where 〈N, <〉 is the intended flow of time, and pIi ⊆ N. The temporal exten-
sion ϕI of a PTL-formula ϕ is defined inductively in the standard way, the
interesting cases being:

(ϕ1Uϕ2)
I = {u ∈ N | ∃z > u (z ∈ ϕI

2 ∧ ∀y ∈ (u, z) y ∈ ϕI
1 )},

(ϕ1Sϕ2)
I = {u ∈ N | ∃z < u (z ∈ ϕI

2 ∧ ∀y ∈ (z, u) y ∈ ϕI
1 )},

where (u, v) = {w ∈ N | u < w < v}.

To obtain the corresponding ADS PTL♯, we associate with U and S binary
function symbols fU and fS . It is not hard now to define a translation ♯ from
PTL-formulas to PTL♯-terms. We represent individual time points and the
precedence relation < by adding nominals and the relation symbol < to PTL,
i.e., the language PTL♯ has the function symbols fU , fS and {a}, for any object
variable a, and the binary relation symbol < interpreted by the precedence
relation on N. Note that although PTL itself contains none of these explicitly,
nominals {a} (and so object variables) can be simulated as PTL-formulas
pa ∧ ¬✸Fpa ∧ ¬✸Ppa, and the assertion a < b can be simulated as

(pa ∧ ¬✸Fpa ∧ ¬✸Ppa) ∧ ✸F (pb ∧ ¬✸Fpb ∧ ¬✸Ppb).

The definition of the class of ADMs for PTL♯ is now straightforward. The proof
of the following proposition can be found in Appendix A.

Proposition 10 The satisfiability problem for PTL♯ is PSPACE-complete.

3 Connections of abstract description systems

In this section, we introduce the basic variant of E-connections and show that
decidability transfers from the component formalisms to their combination,
whereas A-satisfiability does not.

Suppose that we want to connect n ADSs S1, . . . ,Sn, where Si = (Li,Mi) for
1 ≤ i ≤ n. Without loss of generality we assume that, for 1 ≤ i < j ≤ n,
the alphabets of the ADSs Si and Sj (i.e., the sets of set variables, object
variables, function symbols, and relation symbols) are disjoint apart from the
Boolean operators. To connect S1, . . . ,Sn, we take (i) a non-empty set of n-ary
relation symbols

E = {Ej | j ∈ J},
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and (ii) for 1 ≤ i ≤ n and each j ∈ J , function symbols 〈Ej〉
i of arity n − 1

that are distinct from the function symbols of S1, . . . ,Sn. In what follows, we
will call the elements of E link relations (or links, for short) and the function
symbols 〈Ej〉

i link operators.

We define the E-connection CE(S1, . . . ,Sn) of S1, . . . ,Sn following the defini-
tion of ADSs: first we introduce terms of CE(S1, . . . ,Sn), then assertions, and
finally define a class of models and a truth-relation between these models and
assertions. The set of CE(S1, . . . ,Sn)-terms is partitioned into n sets, each of
which contains i-terms for some i, 1 ≤ i ≤ n. Intuitively, i-terms are the terms
of Li enriched with the new function symbols 〈Ej〉

i for each j ∈ J . Here is a
formal inductive definition:

– every set variable of Li is an i-term;
– the set of i-terms is closed under ¬, ∧ and the function symbols of Li;
– if (t1, . . . , ti−1, ti+1, . . . , tn) is a sequence of k-terms tk for k 6= i, then

〈Ej〉
i (t1, . . . , ti−1, ti+1, . . . , tn)

is an i-term, for every j ∈ J .

There are three types of assertions of CE(S1, . . . ,Sn). Two of these types are the
term assertions and object assertions of the component ADSs. Additionally, to
be able to speak about the new ingredients of E-connections, link relations, we
require so-called link assertions. A formal definition is as follows: for 1 ≤ i ≤ n,

– the i-term assertions are of the form t1 ⊑ t2, where both t1 and t2 are
i-terms;

– the i-object assertions are of the form a : t or R(a1, . . . , amR
), where a and

a1, . . . , amR
are object variables of Li, t is an i-term, and R is a relation

symbol of Li.
– the link assertions are of the form (a1, . . . , an) : Ej , where the ai are object

variables of Li, 1 ≤ i ≤ n, and j ∈ J .

Taken together, the sets of all link assertions, i-term assertions, and i-object
assertions form the set of assertions of the E-connection CE(S1, . . . ,Sn). A
finite set of assertions is also called a knowledge base of CE(S1, . . . ,Sn).

We now introduce the semantics of CE(S1, . . . ,Sn). A structure

M =
〈

(Wi)i≤n, E
M = (EM

j )j∈J)
〉

,

where Wi ∈ Mi for 1 ≤ i ≤ n and EM
j ⊆ W1 × · · · ×Wn for each j ∈ J ,

is called a model for CE(S1, . . . ,Sn). The extension tM ⊆ Wi of an i-term t
is defined by induction. For set and object variables X and a of Li, we put
XM = XWi and aM = aWi. The inductive steps for the Booleans and function

16



symbols of Li are the same as in Definition 2:

– (¬t1)M = Wi \ tM1 , (t1 ∧ t2)M = tM1 ∧ tM2 ,

– (f(t1, . . . , tmf
))M = fWi(tM1 , . . . , t

M

mf
).

Now let ti = (t1, . . . , ti−1, ti+1, . . . , tn) be a sequence of j-terms tj . Then set

(〈Ej〉
i (ti))

M = {x ∈Wi |∃
ℓ 6=i

xℓ ∈ tMℓ (x1, . . . , xi−1, x, xi+1, . . . , xn) ∈ EM

j }.

Finally, the extension RM of a relation symbol R of Li is just RWi .

The truth-relation |= between models M for CE(S1, . . . ,Sn) and assertions of
CE(S1, . . . ,Sn) is defined in the obvious way:

– M |= t1 ⊑ t2 iff tM1 ⊆ tM2 ,

– M |= a : t iff aM ∈ tM,

– M |= R(a1, . . . , amR
) iff RM(aM

1 , . . . , a
M

mR
),

– M |= (a1, . . . , an) : Ej iff EM
j (aM

1 , . . . , a
M
n ).

As in the case of ADSs, we say that ϕ is satisfied in M if M |= ϕ. A
set Γ of CE(S1, . . . ,Sn)-assertions is satisfiable if there exists a model M

for CE(S1, . . . ,Sn) which satisfies all assertions in Γ. In this case we write
M |= Γ. If Γ contains only object assertions then, as before, we use the term
A-satisfiability instead of satisfiability. As in the case of ADSs, the entailment
of term assertions and object assertions of the form a : t can be reduced to
the satisfiability problem.

Observe that, technically, the E-connection of ADSs is not an ADS itself be-
cause the structure of models for E-connections is different from the structure
of models for ADSs. This approach was taken on purpose. Since we define the
E-connection as an n-ary operation, there is hardly any need to connect E-
connections. An alternative would be to extend the definition of ADSs in order
to capture E-connections. Although this is not a problem in general, it would
further complicate the definition of ADSs and, in turn, also of E-connections.

Several examples of E-connections are given in the next section. For now, we
refer the reader to Fig. 1 for an illustration of the semantics of E-connections:
the figure displays the connection of two ADSs by means of a single link
relation E, highlighting the extensions of two 1-terms and two 2-terms (one
of the latter is a nominal and thus has a singleton extension).

Our central result on E-connections is that they preserve decidability of the
satisfiability problem:
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Domain 1 Domain 2

〈E〉2 (t)

E

〈E〉1 ({a})

t

{a}

Fig. 1. A two-dimensional connection.

Theorem 11 Let CE(S1, . . . ,Sn) be an E-connection of ADSs S1, . . . ,Sn. If
the satisfiability problem for each of S1, . . . ,Sn is decidable, then it is decidable
for CE(S1, . . . ,Sn) as well.

A proof of this theorem can be found in Appendix B.1. Intuitively, the de-
cision procedure for CE(S1, . . . ,Sn) works as follows (for simplicity, we confine
ourselves to the connection of two ADSs and a single connection relation).
To check whether there exists a model M = 〈W1,W2, E〉 of a given set of
assertions Γ, the algorithm non-deterministically ‘guesses’

(1) the 1-types that are realized in W1 and the 2-types that are realized in
W2, where an i-type is a set of i-terms satisfied by a domain element of
Wi; and

(2) a binary relation e between the guessed sets of 1-types and 2-types.

Then it checks whether the guessed sets satisfy a set of integrity conditions.
This check involves satisfiability tests of certain sets of Si-assertions (i = 1, 2)
constructed from Γ—here we use the fact that the satisfiability problems for
S1 and S2 are decidable. If the integrity conditions are satisfied, then it is
possible to construct a model of Γ using models of the constructed sets of
Si-assertions. If the integrity conditions are not satisfied, Γ has no model.

This algorithm also provides an upper complexity bound for the satisfiability
problem for CE(S1, . . . ,Sn): the time complexity of our algorithm is one expo-
nential higher than the time complexity of the original decision procedures for
S1, . . . ,Sn. Moreover, the combined decision procedure is non-deterministic. It
is an open problem whether this complexity result is optimal. We can, however,
show that there indeed exist cases where the complexity of the E-connection
is higher than the complexity of the combined formalisms, namely, growing
from NP to EXPTIME. Let B = (LB,MB) be the ADS, where

• LB is the abstract description language without any function and relation
symbols (but, by definition, with the Booleans, infinitely many set variables
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and infinitely many object variables);
• MB consists of all ADMs for LB.

B can be regarded as the basic ADS from which all others are obtained by
adding function and relation symbols and/or constraints on the ADMs. Ob-
viously, the satisfiability problems for B and classical propositional logic are
mutually reducible to each other. So we have:

Lemma 12 The satisfiability problem for B is NP-complete.

On the other hand, the E-connection of B with itself is quite powerful:

Theorem 13 The satisfiability problem for CE(B,B) is EXPTIME-hard for
any infinite set E of links.

This result is proved in Appendix C.3 by reduction of the satisfiability of ALC-
concepts with respect to (general) TBoxes, which is known to be EXPTIME-
hard [64]. Intuitively, B is used for the Boolean part of ALC, while the link
relations and link operators simulate roles and value- and exists-restrictions,
respectively.

In contrast to full satisfiability, the decidability of A-satisfiability is not pre-
served under the formation of E-connections. Consider the description logic
ALCF which is the extension of ALC with functional roles and the feature
agreement and disagreement constructors. More precisely, the set of role names
of ALCF is partitioned into two sets R and F , where the elements of F (called
features) are interpreted as partial functions. For any two sequences of fea-
tures p = f1 · · ·fk and q = f ′

1 · · · f
′
ℓ, ALCF provides the additional concept

constructors p ↓ q (feature agreement) and p ↑ q (feature disagreement) with
the following semantics:

(p ↓ q)I = {w ∈ ∆ | ∃v(v = fk(· · · (f1(w))) = f ′
ℓ(· · · (f

′
1(w))))},

(p ↑ q)I = {w ∈ ∆ | ∃v, v′(v = fk(· · · (f1(w))) ∧ v′ = f ′
ℓ(· · · (f

′
1(w))) ∧ v 6= v′)}.

It is now straightforward to define a corresponding ADS ALCF ♯ (see [13] for
more details). The satisfiability of ABoxes with respect to (general) TBoxes
is undecidable for ALCF , while satisfiability of ABoxes (without TBoxes)
is decidable [39,52,8]. Hence, for ALCF ♯ the satisfiability problem is unde-
cidable, while the A-satisfiability problem is decidable. Interestingly, in the
E-connection of ALCF ♯ and ALCO♯ we can simulate general TBoxes, even in
the case of A-satisfiability. Thus, we obtain the following theorem, a proof of
which can be found in Appendix C.1:

Theorem 14 Let E be an arbitrary non-empty set of link relations. Then the
A-satisfiability problem for CE(ALCF ♯,ALCO♯) is undecidable.
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4 Examples of E-connections

In this section we give four examples of E-connections using the knowledge
representation formalisms introduced in Section 2. Our aim is to demonstrate
the versatility of the new combination technique and to outline its limits.
The first three examples are ‘two-dimensional,’ while the fourth one connects
three ADSs. To simplify notation, we will not distinguish between description,
spatial, metric, or temporal logics and the corresponding ADSs.

4.1 CE(ALC♯,MS♯)

Suppose that you are developing a KR&R system for an estate agency. You
imagine yourself to be a customer hunting for a house in London. What kind
of requirements (constraints) could you have? Perhaps something like this:

(A) The house should not be too far from King’s College, not more than 5 miles.

(B) The house should be close to a shop selling newspapers, say, within 0.5 mile.

(C) There should be a ‘green zone’ around the house, at least within 2 miles in
each direction.

(D) There must be a sports center around, and moreover, all sports centers of the
district should be reachable on foot, i.e., they should be within, say, 3 miles.

(E) Public transport should easily be accessible: whenever you are not more than 8
miles away from home, the nearest bus stop or tube station should be reachable
within 1 mile.

(F) The house should have a telephone.

(G) The neighbors should not have children.

The terminology usually requires some background ontology; in this case you
may also need statements like:

(H) Supermarkets are shops which provide no service and sell cheese, newspapers,
etc.

(I) Newsagents are shops which sell magazines and newspapers.

The resulting constraints (A)–(I) contain two kinds of knowledge. (F)–(I) can
be classified as conceptual knowledge which is captured by almost any de-
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scription logic, say, ALC:

(F) house : ∃has.Telephone

(G) house : ∀neighbor.∀child.⊥

(H) Supermarket ⊑ Shop ⊓ ∀service.⊥ ⊓ ∃sell.Newspaper ⊓ ∃sell.Cheese

(I) Newsagent ⊑ Shop ⊓ ∃sell.Magazine ⊓ ∃sell.Newspaper

(A)–(E) speak about distances and can be represented in the logic MS of
metric spaces:

(A) house : E≤5{King’s college}

(B) house : E≤0.5Newspaper shop

(C) house : A≤2Green zone

(D) house : (E≤3Sports center) ⊓ (A>3¬Sports center)

(E) house : A≤8E≤1Public transport

Note that house and King’s college are location constants of MS, while News-

paper shop, Green zone, etc. are set variables.

However, we cannot just join these two knowledge bases together without con-
necting them. They speak about the same things, but from different points of
view. For instance, in (H) ‘shop’ is used as a concept , while (B) deals with the
space occupied by ‘shops selling newspapers.’ Without connecting these differ-
ent aspects we cannot deduce from the knowledge base that a supermarket or
a news agent within 0.5 mile is sufficient to satisfy constraint (B). Moreover, it
is obviously not too natural for the spatial part of the knowledge base to deal
with primitive set variables for regions occupied by ‘shops selling newspapers.’

The required interaction can easily be captured by an E-connection between
ALC♯ and MS♯, where E = {E} and the relation E is intended to relate
abstract points of an ALC-model with points in a metric space understood
as the abstract point’s spatial extension. Indeed, take relations has, neighbor,
child, sell, service and set variables Telephone, Supermarket, Shop, Green zone

etc. from ALC♯, and the object variable King’s college from MS♯. Now, us-
ing the constructors 〈E〉1 and 〈E〉2 connecting ALC- and MS-models, we
can represent constraints (A)–(I) as the concept Good house defined by the
following knowledge base in CE(ALC♯,MS♯): 4

Good house = House ⊓ Well located ⊓ ∃has.Telephone ⊓ ∀neighbor.∀child.⊥

4 To enhance readability, here and in further examples we use the syntax of the
underlying logical formalism rather than the syntax of the corresponding ADS.
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Well located = 〈E〉1
(

E≤5{King’s college} ⊓ E≤0.5 〈E〉
2 (∃sell.Newspaper)⊓

A≤2 〈E〉
2 (Green zone) ⊓ E≤3 〈E〉

2 (Sports center)⊓

A>3¬ 〈E〉2 (Sports center) ⊓ A≤8E≤1 〈E〉
2 (Public transport)

)

Supermarket ⊑ Shop ⊓ ∀service.⊥ ⊓ ∃sell.Newspaper ⊓ ∃sell.Cheese

Newsagent ⊑ Shop ⊓ ∃sell.Magazine ⊓ ∃sell.Newspaper

If we also want to specify that the house should be available at a reason-
able price, ALC can be extended with a suitable ‘concrete domain’ dealing
with (natural or rational) numbers such that the resulting description logic
is still decidable [56,55]. As shown in [13], description logics with concrete
domains can still be regarded as ADSs and, therefore, the decidability of the
E-connection is preserved as well.

As discussed in Section 3, we can combine satisfiability checking algorithms for
ALC♯ and MS♯ to obtain an algorithm for their E-connection. This algorithm
can then be used to check whether the formulated requirements are consistent.
However, we can go one step further: to answer the query whether such a
house really exists in London, we should not perform reasoning with respect
to arbitrary metric spaces, but rather take a suitable map of London as our
metric space. This scenario can be represented by an E-connection of ALC♯

with the following ADS. Suppose that our map is a structure

D = 〈D, δ, P1, . . . , Pn, c1, . . . , cm〉 ,

where D is a finite set, δ a distance function on D, the Pi are subsets of D
representing spatial extensions of concepts like House, Sports center, etc., and
the ci are elements of D representing objects such as King’s college.5 Then
we define an ADS MAP = (MAP l,MAPm): here the ADL MAP l extends
the language of MS♯ by 0-ary function symbols fP1 , . . . , fPn

and fc1 , . . . , fcm ,
and MAPm contains models of the form

M =
〈

D,VM,XM,FM, fM

P1
, . . . , fM

Pn
, fM

c1
, . . . , fM

cm

〉

,

where
〈

D,VM,XM,FM

〉

is an MS♯-model corresponding to 〈D, δ〉 as defined

in Section 2.3, fM

P1
= P1, . . . , f

M

Pn
= Pn, and fM

c1
= {c1}, . . . , fM

cm
= {cm}. Note

that MAPm contains more than one model since, according to Definition 3,
the class of ADMs of any ADS is closed under arbitrary variations of the
extensions of set variables. For this reason, we have to take 0-ary function
symbols rather than set variables to represent the sets Pi and 0-ary function
symbols rather than object variables to represent the constants ci. However,
since all models in MAPm agree on FM, the fM

Pi
, and the fM

ci
, the ADS MAP

uniquely describes a single map.

5 This representation depends, of course, on the size or granularity of the map.
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Now, returning to our example, let us assume that the map D contains sub-
sets P1 = Green zone, P2 = Sports center, P3 = Public transport, P4 =
Super market, P5 = Newsagent, and a point c1 = King ′s College (but no
subset marked by shop). Then we can modify the knowledge base above by
replacing King’s College with fc1 and by adding the following equations to the
knowledge base in order to fix the spatial extensions of certain concepts:

〈E〉2 (Green zone) = fP1, 〈E〉2 (Sports center) = fP2 ,

〈E〉2 (Public transport) = fP3 , 〈E〉2 (Supermarket) = fP4 ,

〈E〉2 (Newsagent) = fP5.

Although shops selling newspapers are not marked in the map, it will follow
from the subsumption relations (H) and (I) of the ALC♯-part of the knowledge
base that any supermarket or shop at distance ≤ 0.5 in the map is sufficient
to satisfy the constraint on shops selling newspapers.

Finally, by adding house : Good house to the knowledge base and checking its
satisfiability, we can find out whether London has the house of our dreams.

4.2 CE(ALCO♯, S4♯u)

Now imagine that you are employed by the EU parliament to develop a geo-
graphical information system about Europe. One part of the task is easy. You
take the description logic ALCO and, using concepts Country, Treaty, etc.,
object names EU, Schengen treaty, Spain, Luxembourg, UK, etc., and a role
member, write

Luxembourg : ∃member.{EU } ⊓ ∃member.{Schengen treaty}

Iceland : ∃member.{Schengen treaty} ⊓ ¬∃member.{EU }

France : Country

Schengen treaty : Treaty

∃member.{Schengen treaty} ⊑ Country, etc.

After that you have to say something about the geography of Europe. To this
end you can use the spatial logic S4u in which, as we have mentioned already,
the topological meaning of the RCC-8 predicates can be encoded as follows,
where X, Y are set variables and ⊤ = Z ∨ ¬Z:

DC(X, Y ) : ⊤ = ¬✸∃ (X ∧ Y ),

EQ(X, Y ) : ⊤ = (X ↔ Y ),

EC(X, Y ) : ⊤ = ✸∃ (X ∧ Y ) ∧ ¬✸∃ (IX ∧ IY ),

PO(X, Y ) : ⊤ = ✸∃ (IX ∧ IY ) ∧✸∃ (IX ∧ ¬Y ) ∧✸∃ (IY ∧ ¬X),
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TPP(X, Y ) : ⊤ = (¬X ∨ Y ) ∧ ✸∃ (X ∧ ¬IY ) ∧ ✸∃ (¬X ∧ Y ),

NTPP(X, Y ) : ⊤ = ✷∀ (¬X ∨ IY ) ∧ ✸∃ (¬X ∧ Y )

(TPPi(X, Y ) = TPP(Y,X) and NTPPi(X, Y ) = NTPP(Y,X)). To ensure that
RCC-8 predicates are only applied to regular closed sets, one can add the
assertions CIX = X and CIY = Y to the knowledge base.

Now, using an E-connection between ALCO♯ and S4♯u you can continue:

EQ(〈E〉2 ({EU }), 〈E〉2 ({Portugal} ⊔ {Spain} ⊔ · · · ⊔ {UK})

EC(〈E〉2 ({France}), 〈E〉2 ({Luxembourg}))

NTPP(〈E〉2 ({Luxembourg}), 〈E〉2 (∃member.{Schengen Treaty}))

Austria : 〈E〉1 (Alps)

i.e., ‘the space occupied by the EU is the space occupied by its members,’
‘France and Luxembourg have a common border’ (see Fig. 2), ‘if you cross
the border of Luxembourg, then you enter a member of the Schengen Treaty,’
‘Austria is an alpine country’ (Alps is a set variable of S4♯u). You can even say
that Germany, Austria and Switzerland meet at one point:

✸∃ (〈E〉2 ({Austria}) ⊓ 〈E〉2 ({Germany}) ⊓ 〈E〉2 ({Switzerland}})) ∧
∧ ¬✸∃ (I 〈E〉2 ({Austria}) ⊓ I 〈E〉2 ({Germany})) ∧

∧ ¬✸∃ (I 〈E〉2 ({Austria}) ⊓ I 〈E〉2 ({Switzerland})) ∧
∧ ¬✸∃ (I 〈E〉2 ({Switzerland}) ⊓ I 〈E〉2 ({Germany})).

Of course, to ensure that the spatial extensions of the EU, France, etc. are not
degenerate and to comply with requirements of RCC-8 you should guarantee
that all mentioned spatial regions are interpreted by regular closed sets, i.e.,

〈E〉2 ({EU }) = CI 〈E〉2 ({EU })

〈E〉2 ({France}) = CI 〈E〉2 ({France})

etc.

Suppose now that you want to test your system and ask whether France is a
member of the Schengen treaty, i.e., France : ∃member.{Schengen treaty}. The
answer will be ‘Don’t know!’ because you did not tell your system that the
spatial extensions of any two countries do not overlap. If you add, for example,

¬✸∃ (I(〈E〉2 (Country ⊓ ¬∃member.{Schengen treaty})∧

∧ I(〈E〉2 (∃member.{Schengen treaty}))

(‘the members of the Schengen treaty do not overlap with the non-Schengen
countries’) to the knowledge base, then the answer to the query will be ‘Yes!’
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〈E〉2 ({France})

E

ALCO S4u

Luxembourg

France

〈E〉2({Luxembourg})

Fig. 2. France and Luxembourg have a common border.

Clearly, the representation task is much easier if complete knowledge about the
geography of Europe is available. Then you could have taken an existing spa-
tial database describing the RCC-8 relations between the European countries,
mountains, etc., and thus use a fixed model of S4u with a fixed connection E.
This database can be conceived of as an ADS in the same manner as the map
of London in the previous example.

4.3 CE(SHIQ♯,ALCO♯)

Having satisfied your boss in the EU parliament with the constructed GIS,
you get a new task: to develop a knowledge base regulating relations between
people in the EU (citizenship, jobs, etc.). On the one hand, you already have
the ALCO knowledge base describing countries in the EU from the previous
example. But on the other hand, you must also be able to express laws like (i)
‘no citizen of the EU may have more than one spouse,’ (ii) ‘all children of UK
citizens are UK citizens,’ or (iii) ‘a person living in the UK is either a child of
somebody who is a UK citizen or has a work permit in the UK, or the person
is a UK citizen or has a work permit in the UK herself.’ This means, in partic-
ular, that you need more constructors than ALCO can provide, say, qualified
number restrictions and inverse roles. It is known, however, that inverse roles,
number restrictions, and nominals are difficult to handle algorithmically in
one system [41]. The fusion of ALCO with, say, SHIQ of [42], having the re-
quired constructors, does not help either, because transfer results for fusions
are available so far only for DLs whose models are closed under disjoint unions
[13] which is not the case if nominals are allowed as concept constructors. It
seems that a perspective way to attack this problem is to connect SHIQ♯

with ALCO♯.

Let E contain three binary relations between the domains of SHIQ (people,
companies, etc.) and ALCO (countries): xSy means that x is a citizen of y,
xLy means that x lives in y, and xWy means that x has a work permit in y.
For example, 〈L〉1 (UK ) denotes all people living in the UK, while 〈S〉1 (UK )
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all UK citizens. The subsumptions below represent the regulations (i)–(iii):

〈S〉1 ({EU }) ⊑ ¬(≥ 2married.⊤)

∃child of. 〈S〉1 ({UK ) ⊑ 〈S〉1 ({UK })

〈L〉1 ({UK}) ⊑ ∃child of−1.
(

〈S〉1 ({UK }) ⊔ 〈W 〉1 ({UK})
)

⊔

〈S〉1 ({UK }) ⊔ 〈W 〉1 ({UK })

4.4 CE(ALCO♯, S4♯u,PTL♯)

‘The EU is developing,’ said your boss, ‘we are going to have new members by
2005.’ So you extend the connection CE(ALCO♯, S4♯u) with one more ADS—
propositional temporal logic PTL♯. Now, besides object variables EU, Ger-
many, etc. of ALCO♯ and set variables Alps, Basel, etc. of S4♯u, we use the
terms {0}, {1}, . . . as abbreviations for (¬ ©n

P ⊤ ∧ ©n−1
P ⊤)♯, where ©Pϕ

stands for ⊥Sϕ. We then have {n}W = {n}, for any PTL♯-model W. The
ternary relation E(x, y, z) means now that at moment z (from the domain of
PTL) point y (in the domain of S4u) belongs to the spatial region occupied by
object x (in the domain of ALCO).
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E

E

2005

0

E

PTL

ALCO S4u

〈E〉2 ({EU}, {2005})

Poland

EU

〈E〉2 ({Poland}, {2005})

Fig. 3. In 2005 Poland will be part of the EU.

Then we can say, for example:

〈E〉2 ({Poland}, {2005}) ⊑ 〈E〉2 ({EU }, {2005}),

PO(〈E〉2 ({Austria}, {1914)}, 〈E〉2 ({Italy}, {1950})),

✷F¬ 〈E〉3 ({Basel}, {EU }),

i.e., ‘in 2005, the territory of Poland will belong to the territory occupied by
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the EU’ (see Fig. 3), ‘the territory of Austria in 1914 partially overlaps the
territory of Italy in 1950,’ ‘no part of Basel will ever belong to the EU.’

5 Extensions

In this section, we introduce several variants of E-connections that allow an
even closer interaction of the combined formalisms than the original ver-
sion. These variants are obtained by extending basic E-connections with more
powerful link operators: those that can be applied to object variables even
though the connected ADSs do not have nominals; those that can talk about
Boolean combinations of links; and ‘qualified number restrictions’ on links (we
use description logic terminology here) which can be used to say, e.g., that a
given link operator is a partial function. We provide (brief) examples illustrat-
ing the expressive power of the new constructors and study the computational
properties of the resulting formalisms.

5.1 Applications of link operators to object variables

In some of the examples from Section 4, the connected ADSs have nomin-
als. According to Definition 6, this means that, for each object name a, they
provide terms {a} such that, for every model W, we have {a}M = {aM}.
This is the case, e.g., for MS♯, ALCO♯, and PTL♯ (see Section 2). In connec-
tions where the components do have nominals, it is often convenient to form
terms such as 〈E〉i({a}) to state that the current element is connected to a
particular element of the other component, namely, the one denoted by a.
However, not all E-connections considered in Section 4 are of this type, e.g.,
CE(SHIQ♯,ALCO♯) from Section 4.3. In this combination, we are not allowed
to build, say, the term comprising all of the countries where some person Bob
has citizenship: since SHIQ♯ has no nominals, we cannot use

country ⊓ 〈S〉2 ({Bob}),

where Bob is an object variable of SHIQ♯. An addition of the nominal con-
structor to SHIQ does not seem to be a promising solution because, despite
considerable efforts of the description logic community, no ‘implementable’
algorithms are known for SHIQ extended with nominals. A better idea is to
allow applications of link operators directly to objects, even if nominals are
not available in the component ADS. Indeed, we can show that this kind of
E-connection is still computationally robust.

Definition 15 Suppose that Si = (Li,Mi), 1 ≤ i ≤ n, are abstract descrip-
tion systems and E = {Ej | j ∈ J} is a set of n-ary relation symbols. Denote
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by

CE
O(S1, . . . ,Sn)

the E-connection in which the definition of i-term is extended with the follow-
ing clause, for 1 ≤ i ≤ n:

• if (a1, . . . , ai−1, ai+1, . . . , an) is a sequence of object variables aj from Lj ,
j 6= i, then 〈Ek〉

i (a1, . . . , ai−1, ai+1, . . . , an) is an i-term, for k ∈ J .

As for the semantics, given an ADM

M =
〈

(Wi)i≤n, E
M

〉

and a tuple ai = (a1, . . . , ai−1, ai+1, . . . , an), we set

(〈Ej〉
i (ai))

M = {x ∈Wi | (aM

1 , . . . , a
M

i−1, x, a
M

i+1, . . . , a
M

n ) ∈ EM

j }.

The following result, to be proved in Appendix B.1, shows that applications
of link operators to object variables do not influence the decidability of E-
connections:

Theorem 16 Let S1, . . . ,Sn be ADSs with decidable satisfiability problems.
Then the satisfiability problem for any E-connection CE

O(S1, . . . ,Sn) is decid-
able as well.

This result is somewhat surprising, since the addition of nominals to an ar-
bitrary ADS with a decidable satisfiability problem sometimes results in an
undecidable one; for an example see Lemma 52 in Appendix C.2.

Theorem 16 is proved similarly to the basic transfer theorem (Theorem 11),
and thus the same discussion and the same notes concerning the computational
complexity apply. Indeed, Appendix B contains only a proof of Theorem 16
from which Theorem 11 follows immediately.

In Theorem 14, we connected the ADSs ALCF ♯ and ALCO♯ to obtain a
counterexample for the transfer of decidability of A-satisfiability. The choice
of ALCO♯ was motived by the fact that this ADS has nominals. Now that we
are allowed to apply the link operators to object variables, we can strengthen
this result: any connection (of the type considered in this section) involving
ALCF ♯ as one of its components has an undecidable A-satisfiability problem.

Theorem 17 Let E be an arbitrary non-empty set of link relations and S an
ADS. Then the A-satisfiability problem for CE

O(ALCF ♯,S) is undecidable.

The proof of this result can be found in Appendix C.1.
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5.2 Boolean operations on links

The two variants of E-connections introduced so far do not allow any inter-
action between links, which is a rather severe restriction. To illustrate this,
we again consider the connection CE(SHIQ♯,ALCO♯) from Section 4.3. Re-
call that E = {S, L,W}, where the link S represents citizenship (of people
in EU countries) and L represents the place of living. In the E-connections
CE(SHIQ♯,ALCO♯) and CE

O(SHIQ♯,ALCO♯), we cannot describe the concept
of ‘all people that live in the country of their citizenship.’ To do this we need
the intersection of the links S and L:

Human being ⊓ 〈S ∩ L〉1 (Country).

Similarly, suppose that we are in the estate agent’s framework of Section 4.1
and want to describe the set of points in space (say, London) which are served
by all mobile phone providers. This can be naturally done using the comple-
ment operator on a link S (this time representing ‘serves’):

¬ 〈¬S〉2 (Mobile phone provider).

Note that 〈¬S〉2 (Mobile phone provider) is the set of points that are not served
by some mobile phone provider.

These simple examples motivate the following definition:

Definition 18 Suppose that Si = (Li,Mi), 1 ≤ i ≤ n, are ADSs and that
E = {Ej | j ∈ J} is a set of n-ary relation symbols. Denote by

CE
B(S1, . . . ,Sn)

the E-connection with the smallest set E of links such that

– E ⊆ E ;
– if F ∈ E , then ¬F ∈ E ;
– if F,G ∈ E , then F ∧G ∈ E .

Given an ADM
M =

〈

(Wi)i≤n, E
M

〉

,

we interpret the links F ∈ E as relations FM ⊆W1 ×· · ·×Wn (with Wi being
the domain of Wi) in the obvious way:

(F ∧G)M = FM ∩GM, (¬F )M = (W1 × · · · ×Wn) \ F
M.

The Boolean operations on links allow us to express link inclusion assertions
of the form F ⊑ G, where F and G are links, and M |= F ⊑ G iff FM ⊆ GM.
Such assertions are called role hierarchies in the area of description logics.
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Indeed, F ⊑ G can be equivalently rewritten as ⊤1 ⊑ ¬〈F ∧ ¬G〉1 ⊤2, where
⊤i = xi ∨ ¬xi, for some set variable xi of Li.

We denote by CE
OB (S1, . . . ,Sn) the E-connection which allows Boolean opera-

tions on links as well as applications of link operators to object variables. The
following theorem is to be proved in Appendix B.2.

Theorem 19 Let S1, . . . ,Sn be ADSs with decidable satisfiability problems.
Then the satisfiability problem for any E-connection CE

OB(S1, . . . ,Sn) is decid-
able as well.

The intuition behind the proof is similar to the basic case: we again reduce
the satisfiability problem for CE

OB(S1, . . . ,Sn) to the satisfiability problem for
its components. This time, however, the reduction is not so straightforward
because the interaction between (complex) links has to be taken into account.
For this reason, it is not enough to simply guess the 1-types and 2-types real-
ized in a potential model together with a binary relation between them, but
we have to guess a so-called pre-model which involves a relational structure
between elements (rather than between types) and can be understood as the
irregular core of an otherwise regular model. Fortunately, the size of this ir-
regular core is at most exponential in the size of the input.

As before, a non-deterministic upper time bound for the satisfiability problem
for the E-connection CE

OB(S1, . . . ,Sn) is obtained by adding one exponential
to the maximal time complexity of the components (cf. Appendix B.2). The
following result shows that this upper bound cannot be improved, in general,
since the satisfiability problem for the basic ADS B introduced in Section 3 is
NP-complete (cf. Lemma 12).

Theorem 20 The satisfiability problem for CE
B(B,B) is NEXPTIME-hard, for

any infinite E .

The proof, which can be found in Appendix C.3, is by reduction of the satis-
fiability problem for the modal logic S5 × S5 (i.e., the full binary product of
modal S5 with itself) to satisfiability in CE

B(B,B). Since the ADS B is rather
trivial, while S5×S5 is known to be a variant of the two-variable fragment of
first-order logic (the two-variable substitution free fragment, to be more pre-
cise) [30], this result demonstrates the considerable expressive power which
the Boolean operators on links add to E-connections.

5.3 Number restrictions on links

Another obvious need when dealing with connections is a possibility to con-
strain the number of objects linked by the connecting relations. For example,
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in the real estate agent’s application we may want to say that, according to the
chosen granularity of the spatial domain, the spatial extension of any house
consists of precisely one point in space. Thus, the corresponding connection
relation should be a partial function. The concept constructors employed in
description logic to represent this kind of constraints are known as (qualified)
number restrictions [38,20,42]; in modal logic they are called graded modalit-
ies [24,21,72]. What happens if we introduce similar constructors for links in
E-connections?

Definition 21 Suppose that Si = (Li,Mi), 1 ≤ i ≤ n, are ADSs and that
E = {Ej | j ∈ J} is a set of n-ary relation symbols. Denote by

CE
Q(S1, . . . ,Sn)

the E-connection in which the definition of i-terms, 1 ≤ i ≤ n, is extended
with the following clause, for every natural number r:

• if ti = (t1, . . . , ti−1, ti+1, . . . , tn) is a sequence of j-terms tj , for j 6= i, and
k ∈ J , then 〈≤ rEk〉

i (ti) and 〈≥ rEk〉
i (ti) are i-terms.

The semantics of the new constructors is defined as follows. Let

M =
〈

(Wi)i≤n, E
M

〉

be a model for CE(S1, . . . ,Sn). Then

x ∈ (〈≤ rEj〉
i (ti))

M iff
∣

∣{xi | (x1, . . . , xi−1, x, xi+1, . . . , xn) ∈ EM
j ∧ xk ∈ tMk }

∣

∣ ≤ r

and

x ∈ (〈≥ rEj〉
i (ti))

M iff
∣

∣{xi | (x1, . . . , xi−1, x, xi+1, . . . , xn) ∈ EM
j ∧ xk ∈ tMk }

∣

∣ ≥ r,

where xi = (x1, . . . , xi−1, xi+1, . . . , xn).

Combinations of CE
Q(S1, . . . ,Sn) with previous extensions are denoted by the

obvious names, e.g., CE
QB(S1, . . . ,Sn) stands for the extension of basic E-

connections with both number restrictions and the Boolean operators on links.

Unfortunately, it turns out that, in general, decidability does not transfer from
ADSs S1, . . . ,Sn to their E-connection with number restrictions CE

Q(S1, . . . ,Sn).
As will be proved in Appendix C.2 (using two rather technical ADSs), we have:

Theorem 22 There exist ADSs S1 and S2 with decidable satisfiability prob-
lems such that the satisfiability problem for CE

Q(S1,S2) is undecidable even if
E is a singleton.

The intuitive reason for this ‘negative’ result is that number restrictions on
links allow the transfer of ‘counting capabilities’ from one component to an-

other. For example, in C{E}
Q (SHIQ♯,ALCO♯), we can ‘export’ the nominals

31



of ALCO♯ to SHIQ♯: the assertions

⊤2 = 〈≤ 1E〉2 (⊤1), ⊤2 = 〈≥ 1E〉2 (⊤1), ⊤1 = 〈≤ 1E〉1 (⊤2), ⊤1 = 〈≥ 1E〉1 (⊤2)

state that E is a bijective function, and so we can use 〈E〉1 ({a}), a an object
variable of ALCO♯, as a nominal in SHIQ♯.

When introducing number restrictions on links, it is thus natural to confine
ourselves to ADSs which, intuitively, ‘cannot count.’ This leads to the following
definition. Given a finite set Σ of L-assertions, we denote by term(Σ) the set
of all terms in Σ.

Definition 23 An ADS S = (L,M) is called number tolerant if there is a
cardinal κ such that, for every κ′ ≥ κ and every satisfiable finite set Σ of
assertions, there exists a model W ∈ M satisfying Σ and such that, for each
d ∈W , there are precisely κ′ elements d′ ∈W for which

{t ∈ term(Σ) | d ∈ tW} = {t ∈ term(Σ) | d′ ∈ tW}.

Intuitively, being number tolerant means that, if a knowledge base Σ is sat-
isfiable, then we can find a model of Σ in which each occurring ‘type’ (set of
terms) is satisfied a ‘very large’ number of times. For example, ADSs of modal
logics that are invariant for the formation of disjoint unions of structures are
clearly number tolerant. In contrast, ADSs with nominals cannot be number
tolerant because nominals are always interpreted as singleton sets.

We now use results from [13] to obtain a straightforward proof that the ADSs
for numerous description logics, in particular ALC♯ and SHIQ♯, are number
tolerant. The following notion of a local ADS was introduced in [13], where the
transfer of decidability from local ADSs to their so-called fusions is proved:

Definition 24 Given a family (Wp)p∈P of ADMs

Wp =
〈

Wp,V
Wp,XWp,FWp,RWp

〉

over pairwise disjoint domains Wp, we say that

W =
〈

W,VW,XW,FW,RW
〉

is a disjoint union of (Wp)p∈P if

• W =
⋃

p∈P Wp,

• fW(X1, . . . , Xnf
) =

⋃

p∈P

fWp(X1 ∩Wp, . . . , Xnf
∩Wp),

for all X1, . . . , Xnf
⊆ W and all f ∈ F ,

• RW =
⋃

p∈P

RWp for all R ∈ R.
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An ADS S = (L,M) is called local if M is closed under disjoint unions.

The following result is easily proved and illustrates the relationship between
locality and number tolerance. For more details, consult Appendix A.

Proposition 25 Every local ADS is number tolerant.

It is an immediate consequence of Proposition 15 in [13] that both ALC♯ and
SHIQ♯ are local. By applying Proposition 25, we thus get:

Proposition 26 ALC♯ and SHIQ♯ are number tolerant.

Note, however, that locality and number tolerance are not the same. The ADS
S4♯u is a counterexample: it is number tolerant but not local. The proof of the
following proposition can be found in Appendix A.

Proposition 27 S4♯u is number tolerant.

That S4♯u is not local follows from the fact that it is equipped with the universal
modality: if we take the disjoint union of two ADMs, then the function symbols
for the universal modality ‘lose’ their universality.

Fortunately, number tolerance is precisely what we need in order to preserve
decidability in the presence of number restrictions on links—witness the fol-
lowing result to be proved in Appendix B.3:

Theorem 28 Let S1, . . . ,Sn be number-tolerant ADSs with decidable satis-
fiability problems. Then the satisfiability problem is also decidable for any E-
connection CE

Q(S1, . . . ,Sn).

For example, the connection CE
Q(SHIQ♯, S4♯u) is decidable, since both com-

ponents are number tolerant.

The proof of Theorem 28 is similar to that of Theorem 11: we guess sets
of 1-types and 2-types to be realized in a potential model. Additionally, for
each i-type t we need to guess the number and type of witnesses for the link
operators 〈≥ rE〉i(s) such that none of the link operators 〈≤ rE〉i(s) of t is
violated. Similarly to the previous variants of E-connections, we get a non-
deterministic upper time bound for the satisfiability problem that is obtained
by adding one exponential to the maximal time complexity of the component
ADSs.

It is now a natural question to ask whether number restrictions can be com-
bined with link operators on objects variables and/or Boolean operators on
links without losing the transfer of decidability. Unfortunately, this is not the
case. The proof of the following theorem is similar to the proof of Theorem 22
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and can be found in Appendix C.2:

Theorem 29

(i) There exist number tolerant ADSs S1,S2 with decidable satisfiability prob-
lems such that the satisfiability problem for CE

QB(S1,S2) is undecidable even if
E is a singleton.

(ii) There exist number tolerant S1,S2 with decidable satisfiability problems
such that the satisfiability problem for CE

QO(S1,S2) is undecidable even if E is
a singleton.

6 Connections and distributed description logics

Let us recall the knowledge base regulating relations between people in the EU
from Section 4.3. We proposed to employ the E-connection C(SHIQ♯,ALCO♯):
the SHIQ♯ component was used to talk about people and their relations,
while the ALCO♯ component to talk about the EU countries. Apart from
computational considerations, there is another important motivation for such
a separation of various aspects of a large application: we may think of the
components as independently maintained databases which are constantly up-
dated, systematically linked, and import information from each other. This
leads us to a discussion of distributed DLs (DDL) introduced by Borgida
and Serafini [18], who observed that in some cases functional correspondences
between different information systems are not enough to capture important
information and provided a number of examples illustrating this point. They
also stressed that, unlike other approaches relating databases, a suitable logic-
based approach enlarges the possible inferences we may draw from a combined
knowledge base.

In this section we show that the distributed description logics of Borgida and
Serafini can be regarded as a special case of E-connections linking a finite
number of DLs. In what follows, all DLs are considered as their ADS repres-
entations.

6.1 The DDL formalism

We start with a brief, but self-contained, description of the DDL formal-
ism. Suppose that n description logics DL1, . . . , DLn are given. A sequence
D = (DLi)i≤n is then called a distributed description logic (DDL). We use
subscripts to indicate that some concept Ci belongs to the language of the
description logic DLi. Two types of assertions—bridge rules and individual
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correspondence—are used to establish interconnections between the compon-
ents of a DDL.

Definition 30 Let Ci and Cj be concepts from DLi and DLj, respectively.
A bridge rule is an expression of the form

Ci
⊑

−→ Cj (into rule)

or of the form

Ci
⊒

−→ Cj. (onto rule)

Let ai be an object name of DLi and bj , b
1
j , . . . , b

n
j object names of DLj. A

partial individual correspondence is an expression of the form

ai 7→ bj . (PIC)

A complete individual correspondence is an expression of the form

ai
=
7→ {b1j , . . . , b

n
j }. (CIC)

A distributed TBox T consists of TBoxes Ti of DLi together with a set of
bridge rules. A distributed ABox A consists of ABoxes Ai of DLi together
with a set of partial and complete individual correspondences. A distributed
knowledge base is a pair (T,A).

The semantics of distributed knowledge bases is defined as follows.

Definition 31 A distributed interpretation I of a distributed knowledge base
(T,A) as above is a pair ({Ii}i≤n,R), where each Ii is a model for the corres-
ponding DLi and R is a function associating with every pair (i, j), i 6= j, a
binary relation rij ⊆ Wi ×Wj between the domains Wi and Wj of Ii and Ij ,
respectively. Given a point u ∈Wi and a subset U ⊆Wi, we set

rij(u) = {v ∈Wj | (u, v) ∈ rij}, rij(U) =
⋃

u∈U

rij(u).

The truth-relation is standard for formulas of the component DLs. For bridge
rules and individual correspondences it is defined as follows:

• I |= Ci
⊑

−→ Cj iff rij(C
I

i ) ⊆ CI

j ;

• I |= Ci
⊒

−→ Cj iff rij(C
I
i ) ⊇ CI

j ;
• I |= ai 7→ bj iff bIj ∈ rij(a

I

i );

• I |= ai
=
7→ {b1j , . . . , b

n
j } iff rij(a

I

i ) = {(b1j )
I, . . . , (bnj )

I}.

As usual, T |= C ⊑ D means that for every distributed interpretation I, if
I |= ϕ for all ϕ ∈ T, then I |= C ⊑ D. The same definition applies to ABoxes
A and individual assertions.
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It is of interest to note that, unlike E-connections, DDLs do not provide new
concept-formation operators to link the components of the DDL: both bridge
rules and individual correspondences are assertions, and so atoms of knowledge
bases, but not part of the concept language.

The satisfiability problem for distributed knowledge bases without complete
individual correspondences (CIC) is easily reduced to the satisfiability problem
for basic E-connections. Indeed, fix a DDL D = (DLi)i≤n and associate with
it the E-connection D♯ = CE(DL♯1, . . . , DL

♯
n), where E = {Eij | i, j ≤ n, i 6= j}

consists of n × (n − 1) many n-ary relations. To define a translation ·♯ of
D-assertions into D♯-assertions, we mainly have to take care of the fact that
DDL relations are binary, while E-connection links are n-ary.

Definition 32 Suppose that K = (T,A) is a distributed knowledge base
for D = (DLi)i≤n without complete individual correspondences. We define
a translation ♯ from D-assertions to D♯-assertions as follows:

• if ϕ is neither a bridge rule nor an individual correspondence, then ϕ♯ is
defined by translating the concepts in ϕ using the ♯ translation from Sec-
tion 2.1;

• (Ci
⊑

−→ Cj)
♯ is 〈Eij〉

j (⊤1, . . . , C
♯
i , . . . ,⊤n) ⊑ C♯

j ;

• (Ci
⊒

−→ Cj)
♯ is 〈Eij〉

j (⊤1, . . . , C
♯
i , . . . ,⊤n) ⊒ C♯

j ;
• (ai 7→ aj)

♯ is (a1, . . . , ai, . . . , aj, . . . , an) : Eij , where ak, for k 6= i, j,
are fresh object variables of DLk.

Finally, we put T♯ = {ϕ♯ | ϕ ∈ T}, A♯ = {ϕ♯ | ϕ ∈ A} and K♯ = T♯ ∪ A♯.

Note that we only need simple link assertions to translate partial individual
correspondences: no application of link operators to object variables is re-
quired. The theorem below follows immediately from the definition of the
translation ·♯:

Theorem 33 A distributed knowledge base K for a DDL D without complete
individual correspondences is satisfiable iff K♯ is satisfiable in a model of the
basic E-connection D♯.

Corollary 34 The satisfiability problem for DDLs (DLi)i≤n without complete
individual correspondences is decidable whenever the satisfiability problem for
ABoxes relative to TBoxes is decidable for each of the DLi.

Unfortunately, complete individual correspondences cannot be translated into
basic E-connections, and Corollary 34 does not hold for arbitrary distributed
description logics with knowledge bases including complete individual cor-
respondences. To be able to deal with these as well, we introduce another
extension of E-connections.
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6.2 Complete individual correspondence in E-connections

In this section, we extend the basic E-connections of n ADSs with an analogue
of complete individual correspondences.

Definition 35 Suppose that Si = (Li,Mi), 1 ≤ i ≤ n, are ADSs and that
E = {Ej | j ∈ J} is a set of n-ary relation symbols. We denote by

CE
I (S1, . . . ,Sn)

the E-connection in which the set of i-object assertions is extended with as-
sertions of the form

〈Ek〉
i (aj) = Bi,

where 1 ≤ i ≤ n, k ∈ J , Bi is a finite set of object variables of Li, and aj is
an object variable of Lj, for some j 6= i.

The truth-relation for the new assertions is defined as follows. Given an ADM

M =
〈

(Wi)i≤n, E
M

〉

,

we put

M |= 〈Ek〉
i (aj) = Bi iff

{xi ∈ Wi | ∃
l 6=i,j

xl ∈Wl(x1, . . . , a
M

j , . . . , xn) ∈ EM

k } = {bMi | bi ∈ Bi}.

The assertion 〈Ek〉
i (aj) = Bi can be expressed in the basic E-connection

CE(S1, . . . ,Sn) if all its components have nominals: if Bi = {b1i , . . . , b
r
i} then

〈Ek〉
i (aj) = Bi is equivalent to

〈Ek〉
i (⊤1, . . . , {aj}, . . . ,⊤n) = {b1i } ⊔ · · · ⊔ {bri}.

Therefore, as a consequence of Theorem 19 we obtain:

Theorem 36 Suppose that S1, . . . ,Sn are ADSs with decidable satisfiability
problems and that each of them has nominals. Then the satisfiability problem
for any E-connection CE

OBI (S1, . . . ,Sn) is decidable as well.

Moreover, there exists a connection to number restrictions on links: if we
consider the connection of two ADSs S1 and S2, then 〈Ek〉

1 (a) = B, where a
is an object variable of S2 and B = {b11, . . . , b

r
1} is a set of object variables of

S1, is equivalent to the set of object assertions

{(b11, a) : Ek, . . . , (b
r
1, a) : Ek, a : (≤ rEk)

2⊤1}
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if we adopt the unique name assumption (UNA), i.e., assume that (bik)
M 6=

(bjk)
M for any distinct bik and bjk and any model M. It should be clear that

this assumption can be made without loss of generality: reasoning without
UNA can be reduced to reasoning with UNA by first ‘guessing’ an equivalence
relation on the set of object names of each Si, then choosing a representative
of each equivalence class, and finally replacing each object name with the
representative of its class. We thus obtain from Theorem 28:

Theorem 37 Let S1 and S2 be number tolerant ADSs with decidable satisfiab-
ility problems. Then the satisfiability problem for any E-connection CE

QI (S1,S2)
is decidable as well.

Let us now transfer these results to distributed description logics. Obviously,
the translation ·♯ can be extended to a map from distributed knowledge bases
which possibly contain CICs into the set of assertions of the corresponding
E-connection by taking

• (ai
=
7→ {b1j , . . . , b

n
j })

♯ = 〈Eij〉
j (ai) = {b1j , . . . , b

n
j }.

We then obtain the following transfer results for DDLs:

Corollary 38

(i) The satisfiability problem for DDLs D = (DLi)i≤n is decidable whenever
the satisfiability problem for ABoxes relative to TBoxes is decidable for each
of the DLi, and all of them have nominals.

(ii) The satisfiability problem for distributed description logics D = (DL1, DL2)
is decidable whenever the satisfiability problem for ABoxes relative to TBoxes
is decidable for each of the DLi, and both of them are number tolerant.

Although we were able to identify some natural cases in which decidability
transfers from S1,S2 to CE

I (S1,S2), the transfer of decidability fails in general.
The proof of the following theorem is similar to the proofs of Theorems 22
and 29 and can be found in Appendix C.2:

Theorem 39

(i) There exist ADS S1 and S2 with decidable satisfiability problems such that
the satisfiability problem for CE

I (S1,S2) is undecidable even if E is a singleton.

(ii) There exist number tolerant S1,S2 with decidable satisfiability problems
such that the satisfiability problem for CE

IB (S1,S2) is undecidable even if E is
a singleton.

(iii) There exist number tolerant S1,S2 with decidable satisfiability problems
such that the satisfiability problem for CE

IO(S1,S2) is undecidable even if E is
a singleton.
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7 Link constraints

Yet another interesting way of increasing the expressive power of E-connections
is by imposing various kinds of first-order constraints. Suppose, for example,
that we want to extend the geographical knowledge bases considered in Sec-
tion 4 with the following information:

• the spatial extension of the capital of every country is included in the spatial
extension of that country, and that

• the EU will never contract.

Unfortunately, the E-connections CE(ALCO♯, S4♯u) and CE(ALCO♯, S4u,PTL♯)
provide no means to do this. Of course, the conditions above can easily be
expressed in the language of first-order logic:

(1) ∀x∀y∀z
(

x capital-of y → (xEz → yEz)
)

,

(2) ∀x∀y∀z
(

y < z → (E(EU, x, y) → E(EU, x, z))
)

,

where capital-of is an ALCO♯ relation, < is the precedence relation of the
flow of time 〈N, <〉, and the link E denotes spatial extension. Thus it would
be interesting to find out what kinds of first-order constraints are ‘harmless’
from the computational point of view.

A general investigation of this question seems to be rather complex and is out
of the scope of this paper. Here we only consider constraints of the form (1)
and (2) above. Note that (1) and (2) have the same structure in the sense that
they enforce a new E-link between the models under certain conditions. We
show that under some weak conditions constraints of this form do not ruin
the transfer of decidability. We begin by introducing link constraints formally.

Definition 40 Suppose that we are given n ≥ 2 ADSs Si = (Li,Mi), R is a
binary relation symbol of L1, a = a3, . . . , an are object variables in L3, . . . ,Ln,
respectively, and E ∈ E . Then the formula

∀x∀y∀z
(

xRy → (E(x, z, a) → E(y, z, a))
)

is called a link constraint for CE(S1, . . . ,Sn).

We say that the binary relation R of L1 is describable in S1 if there exists a
term tR in L1 such that, for every model M ∈ M1 with domain W , every
x ∈W and every X ⊆W , we have

x ∈ tMR (X) iff ∀y ∈W (xRMy → y ∈ X).

A link constraint with describable R is called a describable link constraint.
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Clearly, the relations R and < in link constraints (1) and (2) above are describ-
able by the ALC♯- and PTL♯-terms corresponding to the ‘box operators’ ∀R.C
and ✷Fp, respectively. In what follows, we only consider those link constraints
that are describable.

Definition 41 Suppose that Si = (Li,Mi), 1 ≤ i ≤ n, are abstract descrip-
tion systems and E = {Ej | j ∈ J} is a set of n-ary relation symbols. We
denote by

CE
LO(S1, . . . ,Sn)

the E-connection in which the set of link assertions is extended with describ-
able link constraints and the link operators can be applied to object variables.
The truth-relation for the new E-connection is defined in the obvious way; in
particular, satisfiability of link constraints is defined via the standard first-
order reading of these constraints.

The following transfer theorem can be proved by appropriately extending the
proof of Theorem 16. Details can be found in Appendix B.1.

Theorem 42 Let S1, . . . ,Sn be ADSs with decidable satisfiability problems.
Then the satisfiability problem for any E-connection CE

LO(S1, . . . ,Sn) is decid-
able as well.

As already noted, a further investigation of first-order constraints on links is
beyond the limits of this paper. As to the link constraints of the form above,
we conjecture that by dropping the describability condition one destroys the
(general) transfer of decidability. The combination of link constraints with
other variants of E-connections and the computational properties of different
kinds of first-order constraints are left for future work.

8 Comparison with other combination methodologies

We now briefly compare E-connections with three other combination method-
ologies which are relevant for knowledge representation and reasoning.

8.1 Multi-dimensional systems

The formation of multi-dimensional systems out of one-dimensional ones is
probably the most frequently employed methodology of combining knowledge
representation and reasoning formalisms. Given n languages L1, . . . , Ln inter-
preted in domains D1, . . . , Dn, we take the union L of the Li and interpret it
in the Cartesian product D1 × · · · ×Dn consisting of all n-tuples (d1, . . . , dn),
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di ∈ Di. (The combined language L contains no new constructors as compared
with the original languages Li.) Typical examples of such multi-dimensional
formalisms are:

– temporal-epistemic logics for reasoning about multi-agent systems—these
are based on the Cartesian product of a flow of time and a set of possible
states of a system (see [23,35] and references therein),

– first-order modal and temporal logics based on the Cartesian product of
a set of possible worlds or moments of time and a domain of first-order
individuals [27,30],

– spatio-temporal logics based on the Cartesian product of a flow of time and
a model of space (see, e.g., [77,78]),

– modal and temporal description logics based on the Cartesian product of a
set of possible worlds and a description logic domain [51,12,14,17,6,75,76].

The main difference between multi-dimensional systems and E-connections
is the range of the quantifiers: while the former quantify (at least impli-
citly) over the set of n-tuples, in E-connections we can quantify only over
one-dimensional objects which form a component of a link. This seems to
be the main reason why, as we show in this paper, E-connections exhibit a
much more robust computational behavior than multi-dimensional combina-
tions (see, e.g., [30] and references therein). In the multi-dimensional setting,
even the two-dimensional combination of simple, say, NP-complete logics, can
be highly undecidable [68]. In contrast to E-connections, no general transfer
results are available for multi-dimensional combinations (their algorithmic be-
havior is governed by rather subtle features of the component logics, so that
the concept of abstract description systems is ‘too abstract’ to be useful in this
context). On the contrary, it has been recently proved that three-dimensional
products of standard unimodal logics (and even the two-dimensional products
of CTL∗ with standard unimodal logics) are usually undecidable [36,37]. In
this respect, E-connections do not ‘feel’ the number of combined formalisms.

8.2 Independent fusions and Gabbay’s fibring methodology

Another way of combining formalisms without adding new constructors to the
union of the languages is known as the formation of independent fusions or
joins [46,25,74,13,68]. In this case, it is assumed that the component languages
Li actually speak about the same domain D. In other words, the expressive
capabilities of the Li are combined by the independent fusion in order to
reason about the same objects, yet viewed from different perspectives. As in
the case of multi-dimensional systems, no new constructors are added.

A typical example of an independent fusion is the standard multi-modal epi-
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stemic logic modeling knowledge of n > 1 agents [33], where we simply join
n epistemic logics for a single agent. Sometimes temporal epistemic logics de-
generate to fusions of temporal and epistemic logics [35].

Independent fusions have also been suggested in the context of description
logics [13], where constructors of different DLs may be required to represent
knowledge about certain domains. Note that putting the constructors of differ-
ent DLs together to form a new DL often results in an undecidable logic, even
if the components are decidable.6 It has been shown in [13] that independent
fusions form a more robust (but, of course, less expressive) way of combining
the constructors of different DLs than multi-dimensional combination.

In contrast to E-connections, independent fusions behave ‘badly’ if the class of
models is not closed under the formation of disjoint unions (the corresponding
ADS is not local), for instance, when nominals or negations of roles are present
[13] or when we combine logics of time and space—while linear orders are
natural models of time, their disjoint unions are certainly not.

Gabbay’s [28] fibring methodology is a generalization of independent fusions:
when constructing the fibring of two formalisms L1 and L2, their models are
not matched, but combined by a so-called fibring function F which associates
with any element of the domainDi of a modelMi for Li a modelMi of the other
formalism. The truth-values of formulas at point w are computed inductively:
the Boolean operators are treated as usual, and the inductive step for a given
constructor of Li depends on whether w is a member of a model Mi for Li—in
which case it is computed as in Mi—or a member of a model Mi for the other
logic Li, in which case the truth-value is computed in the model F (w) for Li.
In contrast to E-connections and similarly to multi-dimensional systems and
independent fusions, the fibring formalisms do not add any new constructors
to the combined languages, but are based on their unions. Also, in contrast
to E-connections, the atoms of the component languages are supposed to be
identical. Finally, because of the guarded quantification in E-connections in
‘any direction’ of a link relation, the interaction between the fibred components
is much weaker than the interaction between the E-connected ones.

8.3 Description logics with concrete domains

As demonstrated in Section 4.1, E-connections can be used to connect a de-
scription logic, such as ALC, with another logic, such as MS, which is evalu-

6 As an example, consider the DLs ALCF (introduced on Page 19) and ALC+,◦,⊔

(extending ALC with transitive closure, composition, and union of roles). For both
DLs, the subsumption of concept descriptions is known to be decidable [39,64,7].
However, the subsumption problem for their union ALCF+,◦,⊔ is undecidable [8].
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ated in a single model, say, a map of London. This idea—to fix a single model
in one of the combined formalisms—also underlies the extension of descrip-
tion logics with so-called concrete domains: since ‘classical’ description logics
represent knowledge at a rather abstract logical level, concrete domains have
been proposed to cope with applications that require predefined predicates
or temporal and spatial dimensions [10,56]. Examples of concrete domains in-
clude the natural numbers equipped with predicates like =17, <, and + [11,55],
Allen’s interval algebra [1,53], and the RCC-8 calculus discussed in Section 2.2
[32]. However, the expressive power provided by concrete domains is largely
orthogonal to the expressive power of E-connections. First, in DLs with con-
crete domains, the coupling of the two formalisms is ‘one way,’ i.e., we can
only talk about the concrete domain in the description logic, but not vice
versa. Clearly, E-connections are ‘two way’ in this sense. Second, in DLs with
concrete domains, the description logic is equipped with operators which allow
us to make statements about relations (of arbitrary arity) between ‘concrete
elements.’ In contrast, E-connections allow us only to express that formulas
(i.e., unary predicates) are satisfied by domain elements of other components.
It should also be noted that the addition of a concrete domain to a DL is a
rather sensitive operation as far as the preservation of computational prop-
erties is concerned: even ‘weak’ DLs combined with rather ‘weak’ concrete
domains can become undecidable, see, e.g., [11,32,54]. In fact, except for a
result in [13] which treats extremely inexpressive concrete domains, no gen-
eral decidability transfer results for the extension of description logics with
concrete domains are known. Indeed, investigating the computational proper-
ties of DLs with concrete domains is a cumbersome task which involves the
development of new and specialized techniques, consult, e.g., the survey [56].

9 Discussion

In this paper, we have developed a new methodology of combining knowledge
representation and reasoning formalisms. The key idea of the methodology
is to keep the domains of the combined formalisms disjoint and to introduce
‘link relations’ which keep track of existing correspondences between objects
in different domains. Typical link relations are as follows:

– ‘x is in the spatial extension of y,’
– ‘x belongs to the lifespan of y,’
– object x in information system IS1 ‘corresponds’ to object y in information

system IS2.

The new methodology is introduced within the framework of abstract descrip-
tion systems in order to provide coverage of a wide range of KR&R formalisms
such as description logics, temporal logics, modal logics of space, epistemic lo-
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gics, etc. The resulting combinations are called E-connections.

The main technical result of the paper is a number of theorems which show
that the formation of various kinds of E-connections is computationally robust,
even if we allow expressive link operators such as qualified number restrictions
and Boolean combinations of link relations. On the other hand, our complexity
and undecidability results show that this nice computational behavior of E-
connections does not come for free. As we have argued in the introduction, the
design of ‘practical’ reasoning systems for E-connections cannot be specified
at this level of generality, but depends on the features of the combined form-
alisms. The message of the present investigation is, however, that the chances
of E-connections to be reasonably efficient on practical examples are as high
as those of standard description or temporal logics.

Although we have considered in-depth various extensions of the basic E-
connections, a number of interesting problems remain open. Here are some
of them:

• Starting from the theoretical results obtained in this paper, develop ‘prac-
tical’ decision procedures for interesting E-connections like, for instance,
CE(SHIQ♯,ALCO♯), CE(SHIQ♯,MS♯), or CE(SHIQ♯, S4♯u,PTL♯). In all
these cases, efficient decision procedures for the components have been im-
plemented. Is it possible to devise decision procedures for the E-connections
which are modular and integrate known decision procedures for the com-
ponents without substantial modifications? Compare the performance of
implemented algorithms for the E-connections with the performance of de-
cision procedures for their components.

• Consider more general first-order constraints for the link relations and clas-
sify them according to their algorithmic behavior. This can also lead to a
deeper analysis of the structural properties of ADSs because more subtle
conditions than describability are required for decidability transfer results
covering larger classes of first-order constraints.

• Introduce elements of ‘fuzziness’ to link relations between different domains
in order to reflect the fact that spatial extensions or ‘corresponding’ objects
in distributed databases can be often specified only approximately. It would,
therefore, be of interest to allow link operators stating, for example, that
‘the probability that y belongs to the spatial extension of x is not more than
75%.’

• The embedding of the product logic S5 × S5 into the E-connection with
the Booleans CE

B(B,B) provides the first evidence that there might be an
interesting and useful hierarchy of formalisms between the ‘weak’ basic E-
connections and multi-dimensional formalisms. For example, we can take
the closure of the set of link relations E not only under the Booleans, but
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also under the operations 〈R〉E and [R]E defined by taking

(〈R〉E)M = {〈x, y〉 | ∃z (〈x, z〉 ∈ RM ∧ 〈z, y〉 ∈ EM)},

([R]E)M = {〈x, y〉 | ∀z (〈x, z〉 ∈ RM → 〈z, y〉 ∈ EM)},

for every binary relation symbol R of the first component of a binary E-
connection C (and similarly for the binary relations of the second com-
ponent). Using these new constructors, we can easily ‘simulate’ most of
multi-dimensional formalisms. Useful and interesting intermediate formal-
isms could be obtained by restricting applications of the Boolean operators
to links.

A Properties of ADSs

This section proves Propositions 25, 8, 27, and 10. For the reader’s convenience
we formulate these propositions once again.

Proposition 25. Every local ADS is number tolerant.

Proof. Suppose that an ADS (L,M) is local. Let κ be any infinite cardinal
such that, for every finite satisfiable Σ, there exists a model W ∈ M of
cardinality ≤ κ which satisfies Σ. The supremum of all the minimal cardinals
needed to satisfy each Σ will do, for instance. We show that κ is as required.
Suppose that κ′ ≥ κ and that Σ is satisfiable. Take any model

W0 =
〈

W0,V
W0,XW0 ,FW0,RW0

〉

from M which satisfies Σ and is of cardinality ≤ κ. Now take the disjoint
union W of κ′ isomorphic copies Wi, i < κ′, of W0 in which

– xW =
⋃

i<κ′ x
Wi , for x ∈ V;

– aW = aW0 , for a ∈ X .

By cardinal arithmetic, the size of W is κ′, and it is not difficult to show that
W satisfies all of the conditions we need. ✷

Propositions 8 and 27. S4♯u is number tolerant. The satisfiability problem
for S4♯u is PSPACE-complete.

Proof. We first show that the satisfiability problem for S4♯u is PSPACE-
complete. PSPACE-hardness follows from PSPACE-hardness of the satisfiab-
ility problem for S4 [50]. We establish the corresponding upper bound by
means of a reduction to the satisfiability problem for S4u enriched with nom-
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inals in topological models,7 which is known to be PSPACE-complete [4].
Namely, given a set Γ of S4♯u-assertions we define an S4u-formula ϕΓ as the
conjunction of all formulas in the set

{✷∀ (ϕ1 → ϕ2) | (ϕ♯1 ⊑ ϕ♯2) ∈ Γ} ∪ {✷∀ ({a} → ψ) | (a : ψ♯) ∈ Γ}.

Obviously, ϕΓ is satisfiable in some topological model iff Γ is satisfiable, which
gives us the required PSPACE-upper bound. Reductions of this type are known
as ‘internalizations’ of TBoxes by means of the universal box [64].

To prove that S4♯u is number tolerant, we show that ℵ0 is the required cardinal
number. Suppose that κ′ ≥ ℵ0 and that Σ is satisfiable. Let

W0 =
〈

T0,V
W0,XW0 , fW0

I
, fW0

C
, fW0

✷∀

〉

be a countable model satisfying Σ. Take the disjoint union W′ of κ′ isomorphic
copies W′

i, i < κ′, of the reduct

W′
0 =

〈

T0,V
W0 ,XW0, fW0

I
, fW0

C

〉

of W0 in which

– xW′
=

⋃

i<κ′ x
W0 , for x ∈ V;

– aW′
= aW0 , for a ∈ X .

Now we extend W′ to a model W of the required signature by setting

fW

✷∀
(Y ) =















∅ if Y 6=
⋃

i<κ′

Ti,

⋃

i<κ′

Ti if Y =
⋃

i<κ′

Ti,

for every subset Y of
⋃

i<κ′ Ti. It is readily seen that the constructed ADM W

is as required. ✷

Proposition 10. PTL♯ has nominals. The satisfiability problem for PTL♯ is
PSPACE-complete.

Proof. It it proved in [67] that the satisfiability problem for PTL is PSPACE-
complete. As we have already seen above, the nominals and the binary relation
< can be simulated in PTL. Observe that the universal box ✷∀ ϕ can be ex-
pressed as well, by using the formula ✷Fϕ∧ϕ∧✷Pϕ. Therefore, we can employ
the same internalization reduction as in the proof of Proposition 8 to show
that the satisfiability problem for PTL♯ is PSPACE-complete. ✷

7 Nominals {a} are interpreted as singleton sets of topological spaces.
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B Decidability results

This section establishes decidability results for E-connections of abstract de-
scription systems. Before we actually start proving these results, let us intro-
duce some notation that will be used in all of the proofs in this section. To make
presentation as clear as possible, throughout the appendix we confine ourselves
to E-connections of only two ADSs S1 = (L1,M1) and S2 = (L2,M2). In this
case it will be convenient to write 1 for 2 and 2 for 1. Let Γ be a finite set of
assertions of some E-connection of S1 and S2 (possibly allowing link operators
on object variables and/or Boolean combinations of link relations). Then we
use the following notation:

• We write obi(Γ) to denote the set of object variables from Li which occur
in Γ, for i = 1, 2.

• We write Xi(Γ) to denote the set of object variables

Xi \ (obi(Γ) ∪ (Xi)Gi
),

where Gi is the set of function symbols of Li which occur in Γ and (Xi)Gi
is

the set of object variables supplied by the closure condition of Definition 3
(ii), for i = 1, 2.

• In each of the decidability proofs, we will use cli(Γ), i = 1, 2, to refer to some
finite closure of the set of i-terms occurring in Γ. Since different closures are
required in different proofs, we do not fix the exact details here.

• We assume that, for every i-term t of the form 〈F 〉i (s) occurring in cli(Γ)
(where s is an i-term or an object name of Li, i = 1, 2, and F is a link symbol
or a Boolean combination of such symbols), there exists a set variable xt of
Li not occurring in Γ. Given an i-term t, denote by suri(t)—the surrogate
of t—the term which results from t by replacing all subterms t′ of the form
〈F 〉i (s) that are not within the scope of another term 〈G〉i (s) with xt′ .
Clearly, suri(t) belongs to the language Li.

• The i-consistency set Ci(Γ) is defined as the set {tc | c ⊆ cli(Γ)}, where

tc =
∧

{χ | χ ∈ c} ∧
∧

{¬χ | χ ∈ cli(Γ) \ c}.

Sometimes we will identify t ∈ Ci(Γ) with the set of its conjuncts. Then
s ∈ t means that s is a conjunct of t.

• Recall that by ⊤i we denote xi ∨ ¬xi, where xi is a set variable from Li.

B.1 Basic E-connections, link operators on object variables, and link con-
straints

This section proves Theorems 11, 16, and 42. More precisely, we start by
proving Theorem 16. Since Theorem 16 clearly implies Theorem 11, a separate
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proof for the latter is omitted. As was said above, we confine ourselves to E-
connections of only two ADSs S1 and S2. Moreover, for simplicity we assume
that E contains only a single link symbol E. Thus, our first aim is to prove
the following variant of Theorem 16.

Theorem 43 Suppose the satisfiability problems for the ADSs S1 and S2 are
decidable. Then the satisfiability problem for the {E}-connection C{E}

O (S1,S2)
is decidable as well.

The reader should be able to extend the proofs to n-ary E-connections with
multiple link relations without any difficulty. Having proved Theorem 43, we
then extend it to take into account link constraints, thus obtaining a proof of
Theorem 42. Here is the simplified variant of this theorem:

Theorem 44 Suppose the satisfiability problems for the ADSs S1 and S2 are
decidable. Then the satisfiability problem for the {E}-connection C{E}

LO (S1,S2)
is decidable as well.

Observe that, since we restrict ourselves to the connection of only two ADSs,
the additional function symbols 〈E〉1 and 〈E〉2 of the connection are unary.
Since the connections treated in this section allow the application of link
operators to object variables, we do not explicitly treat link assertions of the
form (a1, a2) : E. Clearly, such a link assertion can be replaced with the
equivalent object assertion a1 : 〈E〉1 (a2).

Proof of Theorem 43

Fix two ADSs S1 = (L1,M1) and S2 = (L2,M2) with decidable satisfiab-
ility problems, and let Γ be a finite set of assertions of the {E}-connection

C{E}
O (S1,S2). To define the closure cli(Γ) of i-terms occurring in Γ, we first

introduce the abbreviation

oi(Γ) = {〈E〉i ¬ 〈E〉i (a) | a ∈ obi(Γ)},

for i = 1, 2. The set oi(Γ) contains i-terms that must be present in the closure
cli(Γ) in order to ensure a proper treatment of link operators applied to object

variables. Note that, given a model M of the {E}-connection C{E}
O (S1,S2),

(〈E〉i ¬ 〈E〉i (a))M = {x ∈Wi | ∃y ∈Wi

(

(a, y) /∈ EM ∧ (x, y) ∈ EM
)

},

and so aM /∈ (〈E〉i ¬ 〈E〉i (a))M.

We now define cli(Γ), i = 1, 2, to be the closure under negation of the set of
i-terms which occur in Γ ∪ oi(Γ). Without loss of generality we can identify
¬¬t with t. Thus, cli(Γ) is finite.
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The following theorem is the core component in the proof of Theorem 43: it
provides us with a criterion of satisfiability of sets of C{E}

O (S1,S2)-assertions
Γ which almost immediately implies decidability of the satisfiability problem
for C{E}

O (S1,S2).

Theorem 45 Let Γ be a C{E}
O (S1,S2)-knowledge base. Then Γ is satisfiable iff

there exist (i) subsets ∆1 ⊆ C1(Γ) and ∆2 ⊆ C2(Γ), (ii) a relation e ⊆ ∆1×∆2,
(iii) functions σ1 from ob1(Γ) into ∆1 and σ2 from ob2(Γ) into ∆2 such that,
for i = 1, 2, the following conditions are satisfied:

(1) for any a ∈ obi(Γ), we have 〈E〉i ¬ 〈E〉i (a) 6∈ σi(a),
(2) the union Γi of

– {suri(
∨

∆i) = ⊤i},
– {at : suri(t) | t ∈ ∆i},
– {a : suri(σi(a)) | a ∈ obi(Γ)},
– {suri(t1) ⊑ suri(t2) | t1 ⊑ t2 ∈ Γ is an i-term assertion},
– {Rj(a1, . . . , amj

) | Rj(a1, . . . , amj
) ∈ Γ is an i-object assertion},

– {(a : suri(t)) | (a : t) ∈ Γ is an i-object assertion}
is Si-satisfiable, where at ∈ Xi(Γ) is a fresh object variable for each t ∈ ∆i,

(3) for all t ∈ ∆1 and 〈E〉1 (s) ∈ cl1(Γ) with s a 2-term, we have 〈E〉1 (s) ∈ t
iff there exists t′ ∈ ∆2 with (t, t′) ∈ e and s ∈ t′,

(4) for all t ∈ ∆2 and 〈E〉2 (s) ∈ cl2(Γ) with s a 1-term, we have 〈E〉2 (s) ∈ t
iff there exists t′ ∈ ∆1 with (t′, t) ∈ e and s ∈ t′,

(5) for all t ∈ ∆1 and 〈E〉1 (a) ∈ cl1(Γ) with a ∈ ob2(Γ), we have 〈E〉1 (a) ∈ t
iff (t, σ2(a)) ∈ e,

(6) for all t ∈ ∆2 and 〈E〉2 (a) ∈ cl2(Γ) with a ∈ ob1(Γ), we have 〈E〉2 (a) ∈ t
iff (σ1(a), t) ∈ e.

Proof. (⇒) Suppose Γ is C{E}
O (S1,S2)-satisfiable and M = ((W1,W2), E

M)
is a model of Γ, with W1 being the domain of W1 and W2 being the domain
of W2. For i = 1, 2 and each d ∈Wi, define

t(d) =
∧

{s ∈ cli(Γ) | d ∈ sM}.

Then set ∆i = {t(d) | d ∈Wi} for i = 1, 2 and define e ⊆ ∆1 ×∆2 by putting
(t, t′) ∈ e iff there exist d1 ∈ W1 and d2 ∈ W2 such that t = t(d1), t

′ = t(d2),
and (d1, d2) ∈ EM. Finally, for i = 1, 2 and each a ∈ obi(Γ), define

σi(a) =
∧

{s ∈ cli(Γ) | aM ∈ sM} = t(aM) ∈ ∆i.

It remains to check that ∆1, ∆2, e, σ1, and σ2 satisfy conditions (1)–(6).

(1) Suppose that there is an a ∈ obi(Γ) such that 〈E〉i ¬ 〈E〉i (a) ∈ σi(a).

Then, by the definition of σi, a
M ∈ (〈E〉i ¬ 〈E〉i (a))M, which is impossible.
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(2) We have to show that the Γi are Si-satisfiable. The models

Wi =
〈

Wi,V
Wi

i ,XWi

i ,RWi

i ,FWi

i

〉

are almost as required: we just have to give appropriate values to the fresh set
variables xt (which result from taking surrogates) and the fresh object names
at from Xi(Γ). To this end, put

xW′
i

s = sM

for every term s ∈ cli(Γ) of the form 〈E〉i (s′) and xW′
i = xWi for the remaining

variables. For every t ∈ ∆i, choose a
W′

i
t such that

a
W′

i
t ∈ tM

and set aW′
i = aWi for the remaining object names. Note that

W′
i =

〈

Wi,V
W′

i

i ,X
W′

i

i ,RWi

i ,F
W′

i

i

〉

∈ Mi

for some interpretation F
W′

i

i of the function symbols in Fi such that fWi = fW′
i

for all function symbols f of Γ (due to the closure condition for the class Mi

formulated in Definition 3). Using induction on the term structure of s, it is
straightforward to show that

d ∈ (suri(s))
W′

i iff d ∈ sM

for all d ∈ Wi and s ∈ cli(Γ). By considering the construction of Γi, it is
readily checked that this implies W′

i |= Γi. Hence Γi is (Li,Mi)-satisfiable.

(3) Let t ∈ ∆1 and 〈E〉1 (s) ∈ cl1(Γ) with s a 2-term. Since t ∈ ∆1, there is a
d ∈ W1 such that t(d) = t. First assume that 〈E〉1 (s) ∈ t. By definition, this
means that there exists a d′ ∈ W2 with (d, d′) ∈ EM and d′ ∈ sM. This, in
turn, clearly yields s ∈ t(d′) and (t, t(d′)) ∈ e, as required. Now assume that
(t, t′) ∈ e and s ∈ t′. Then there exist d ∈W1 and d′ ∈W2 such that t = t(d),
t′ = t(d′), and (d, d′) ∈ EM. We have d′ ∈ sW, and so d ∈ (〈E〉1 (s))M, from
which 〈E〉1 (s) ∈ t, as required.

(4) is proved similarly to (3).

(5) Let t ∈ ∆1 and 〈E〉1 (a) ∈ cl1(Γ) with a ∈ ob2(Γ). Since t ∈ ∆1, there
is a d ∈ W1 such that t(d) = t. First assume 〈E〉1 (a) ∈ t. By definition, we
then have (d, aM) ∈ EM. Hence (t, t(aM)) ∈ e, i.e., (t, σ2(a)) ∈ e, as required.
Conversely, suppose (t, σ2(a)) ∈ e. condition (1) yields 〈E〉2 ¬ 〈E〉1 (a) /∈ σ2(a).
By condition (4), we have ¬ 〈E〉1 (a) /∈ t. Hence 〈E〉1 (a) ∈ t, as required.

(6) is proved similarly to (5).
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(⇐) Conversely, suppose that ∆1, ∆2, e, σ1, and σ2 satisfy the conditions
of the theorem. By (2), there exist a model W1 ∈ M1 of Γ1 and a model
W2 ∈ M2 of Γ2. For i = 1, 2, let Wi be based on the domain Wi. For each
d ∈Wi, we set

t(d) =
∧

{t ∈ cli(Γ) | d ∈ (suri(t))
Wi} ∈ Ci(Γ).

Now define the extension EM ⊆W1 ×W2 of the link symbol E by taking:

EM = {(d, d′) | (t(d), t(d′)) ∈ e}.

In the following, we prove that M = (W1,W2, E
M) is a model of Γ. Using the

construction of the Γi, it is readily checked that it suffices to show that

d ∈ (suri(s))
Wi iff d ∈ sM (∗)

for i = 1, 2, all d ∈Wi, and all s ∈ cli(Γ).

The proof of this claim is by induction on the term structure of s, simultan-
eously for i = 1, 2. For set variables, the claim is an immediate consequence
of the definition of M. The cases of the Boolean operators and the function
symbols of Li, i = 1, 2, are trivial. Thus, it remains to consider the cases

(a) s = 〈E〉i (s′) with s′ an i-term and
(b) s = 〈E〉i (a) with a ∈ obi(Γ).

We assume i = 1, since the case i = 2 is dual.

(a) s = 〈E〉1 (s′) with s′ a 2-term. Let d ∈ (sur1(〈E〉
1 s′))W1 . Then we have

〈E〉1 (s′) ∈ t(d). Since W1 is a model of Γ1,

W1 |= sur1(
∨

∆1) = ⊤1.

Thus t(d) ∈ ∆1. By condition (3), we find a t′ ∈ ∆2 with (t(d), t′) ∈ e and
s′ ∈ t′. By the definition of Γ2, we have

W2 |= at′ : sur2(t
′),

and so there is a d′ ∈W2 such that t′ = t(d′). Hence we have (d, d′) ∈ EM by
the definition of EM. From s′ ∈ t′, we obtain d′ ∈ (sur2(s

′))M2 , and therefore
the induction hypothesis yields d′ ∈ s′M. Thus, d ∈ (〈E〉1 (s′))M by definition.

Conversely, suppose d ∈ (〈E〉1 (s′))M. We find d′ ∈ W2 with (d, d′) ∈ EM and
d′ ∈ sM. By the induction hypothesis, d′ ∈ (sur2(s

′))W2 and so s′ ∈ t(d′). The
definition of EM together with (d, d′) ∈ EM yields (t(d), t(d′)) ∈ e. Finally, by
(3), we obtain 〈E〉1 (s′) ∈ t(d) which implies d ∈ (sur1(〈E〉

1 s′))W1 .
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(b) s = 〈E〉1 (a) with a ∈ ob2(Γ). Let d ∈ (sur1(〈E〉
1 (a)))W1 . This implies

〈E〉1 (a) ∈ t(d). As in the previous case, we have t(d) ∈ ∆1. By condition (5),
we thus obtain (t(d), σ2(a)) ∈ e. Also, as in the previous case, we know that

W2 |= a : sur2(σ2(a)).

Hence (t(d), σ2(a)) ∈ e and the definition of EM yields (d, aW2) ∈ EM, which
implies d ∈ (〈E〉1 (a))M.

Conversely, suppose d ∈ (〈E〉1 (a))M. Then (d, aM) ∈ EM by definition, and so
(t(d), t(aM)) ∈ e by the definition ofEM. We have t(aM) = σ2(a), and therefore
(t(d), σ2(a)) ∈ e. Together with condition (5), this yields 〈E〉1 (a) ∈ t(d) which
clearly implies d ∈ (sur1(〈E〉

1 (a)))W1 . ✷

Theorem 43 follows from Theorem 45. Indeed, since the sets Ci(Γ) are fi-
nite, Theorem 45 provides us with a decision procedure for the connection
C{E}
O (S1,S2) if decision procedures for S1 and S2 are known. To decide whether

a set Γ of C{E}
O (S1,S2)-assertions is satisfiable, we ‘guess’ sets ∆1 ⊆ C1(Γ) and

∆2 ⊆ C2(Γ), a relation e ⊆ ∆1 × ∆2, and functions σi : obi(Γ) → ∆i, i = 1, 2,
and then check whether they satisfy the conditions listed in the formulation
of the theorem.

To estimate the complexity of the obtained decision procedure, note that the
cardinality of the sets Ci(Γ) is exponential in the size of Γ. Thus, the same
holds for the sets ∆1 and ∆2 and for the constructed sets of assertions Γ1 and
Γ2 which are passed to decision procedures for Si-satisfiability. This means
that the time complexity of the obtained decision procedure for C{E}

O (S1,S2)-
satisfiability is one exponential higher than the time complexity of the original
decision procedures for S1 and S2-satisfiability. Moreover, the combined de-
cision procedure is non-deterministic: if, for example, S1 and S2-satisfiability
are in EXPTIME, then our algorithm yields a 2-NEXPTIME decision proced-
ure for C{E}

O (S1,S2)-satisfiability.

Proof of Theorem 44

We now extend Theorem 45 and its proof to take into account constraints, thus
obtaining a proof of Theorem 44. Let Φ be a finite set of link constraints talking
only about the link relation E such that the relations R1, . . . , Rk occurring in
Φ are describable in S1. Observe that no vectors of object variables a appear
in the constraints, as we are concerned with the connection of only two ADSs.
We make the following modifications of Theorem 45 and the notions it uses:

(1) We redefine the closure cl1(Γ) as follows (but keep the definition of cl2(Γ)):
let Θ0 denote the closure under negation of the set of 1-terms occurring
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in Γ and o1(Γ). Then set

Θ1 = Θ0 ∪ {〈E〉1 (s) | s = ¬ 〈E〉2 (s′) ∈ cl2(Γ) or s = ¬ 〈E〉2 (a) ∈ cl2(Γ)},

Θ2 = Θ1 ∪
⋃

1≤j≤k

{tRj
(s) | s = 〈E〉1 (s′) ∈ Θ1 or s = 〈E〉1 (a) ∈ Θ1},

where, for 1 ≤ j ≤ k, tRj
is the L1-term describing the relation Rj (cf.

the definition of ‘describable’ in Section 7). Finally, define cl1(Γ) to be
the closure of Θ2 under subformulas and negation; again we identify ¬¬t
with t, so that the closure is finite.

(2) We add the following to the definition of Γ1 in condition (2) of Theorem 45
(but leave Γ2 unchanged):

{sur1(〈E〉
1 (s)) ⊑ tR(sur1(〈E〉

1 (s))) | 〈E〉1 (s) ∈ cl1(Γ)}

{sur1(〈E〉
1 (a)) ⊑ tR(sur1(〈E〉

1 (a))) | 〈E〉1 (a) ∈ cl1(Γ)}.

The proof of the theorem remains largely unchanged. Only in the ‘if’ direction,
the definition of the link relation EM is modified: we set

EM

0 = {(d, d′) | (t(d), t(d′)) ∈ e};

EM
n+1 = EM

n ∪ {(d, d′) | ∃d′′ (d′′, d) ∈ RW1
j with 1 ≤ j ≤ k and (d′′, d′) ∈ EM

n };

EM =
⋃

n≥0

EM

n .

It is easy to see that EM satisfies all of the constraints in Φ. Since the defin-
ition of EM has changed, we need to adapt the proof of (∗) on Page 51. The
cases of the Boolean operators, the function symbols of L1 and L2, and the
‘only if’ directions of the link operators remain unchanged. However, the ‘if’
directions of the link operators have to be extended. Let us start with proving
the following auxiliary lemma:

Lemma 46 Let s and s′ be, respectively, a 1- and a 2-term, a an object vari-
able of L1, and a′ an object variable of L2 with {〈E〉1 (s′), 〈E〉1 (a′)} ⊆ cl1(Γ)
and {〈E〉2 (s), 〈E〉2 (a)} ⊆ cl2(Γ). If (d, d′) ∈ EM, then the following holds:

(i) s′ ∈ t(d′) implies 〈E〉1 (s′) ∈ t(d);
(ii) s ∈ t(d) implies 〈E〉2 (s) ∈ t(d′);
(iii) a′M = d′ implies 〈E〉1 (a′) ∈ t(d);
(iv) aM = d implies 〈E〉2 (a) ∈ t(d′).

Proof. The proof is by induction on n. Let n = 0. Then (d, d′) ∈ EM

0 implies
(t(d), t(d′)) ∈ e. Thus, (i) is an immediate consequence of condition (3), (ii) is
an immediate consequence of (4), (iii) of (5), and (iv) of (6).
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Let n > 0. Then (d, d′) ∈ EM

n implies that either (d, d′) ∈ EM

n−1 or there exists

a d′′ such that (d′′, d) ∈ RW1
j for some j with 1 ≤ j ≤ k and (d′′, d′) ∈ EM

n−1. In
the former case, (i)–(iv) follow by the induction hypotheses. Let us consider
the latter one.

(i) Let s′ ∈ t(d′). By the induction hypotheses and since (d′′, d′) ∈ EM

n−1, we

have 〈E〉1 (s′) ∈ t(d′′) and so d′′ ∈ sur1(〈E〉
1 (s′))W1 . Due to the new compon-

ents of Γ1 and the fact that (d′′, d) ∈ RW1
j , we then have d ∈ sur1(〈E〉

1 (s′))W1 ,

which yields 〈E〉1 (s′) ∈ t(d), as required.

(ii) Assume by contraposition that ¬ 〈E〉2 (s) ∈ t(d′). By induction hypotheses
(and since we extended the closure cl1(Γ)), we obtain 〈E〉1 ¬ 〈E〉2 (s) ∈ t(d′′)
using (i), and thus d′′ ∈ sur1(〈E〉

1 ¬ 〈E〉2 (s))W1 . Due to the new components
of Γ1, this yields d′′ ∈ tR(sur1(〈E〉

1 ¬ 〈E〉2 (s)))W1. Because (d′′, d) ∈ RW1
j ,

we have d ∈ sur1(〈E〉
1 ¬ 〈E〉2 (s))W1 , and hence 〈E〉1 ¬ 〈E〉2 (s) ∈ t(d). By

conditions (3) and (4), we then have s /∈ t(d), which had to be shown.

Finally, (iii) is proved analogously to (i) and (iv) is proved analogously to (ii);
details are left to the reader. ✷

We can now adapt the ‘if’ directions in the proof of (a) and (b) of (∗). As
before, we restrict ourselves to the case i = 1.

(a) s = 〈E〉1 (s′) with s′ a 2-term. Suppose d ∈ (〈E〉1 (s′))M. We find d′ ∈W2

with (d, d′) ∈ EM and d′ ∈ sM. By the induction hypothesis, d′ ∈ (sur2(s
′))W2

and so s′ ∈ t(d′). As (d, d′) ∈ EM, part (i) of Lemma 46 yields 〈E〉1 (s′) ∈ t(d),
which implies d ∈ (sur1(〈E〉

1 (s′)))W1 .

(b) s = 〈E〉1 (a) with a ∈ ob2(Γ). Let d ∈ (〈E〉1 (a))M. Then (d, aM) ∈ EM by
definition and thus 〈E〉1 (a) ∈ t(d) by part (iii) of Lemma 46. This obviously
implies d ∈ (sur1(〈E〉

1 (a)))W1 , as required.

The case i = 2 is similar and uses parts (ii) and (iv) of Lemma 46 instead of
parts (i) and (iii).

B.2 Boolean operators on link relations

In this section, we prove that decidability of ADSs transfers to their E-con-
nection even if Boolean operators may be applied to link relations and the
link operators may be used on object variables, i.e., we prove Theorem 19. As
before, we confine ourselves to considering E-connections of only two ADSs.
In contrast to the previous section, however, we admit an arbitrary number of
link relations, since otherwise the Boolean operators on link relations cannot
deploy their full power. Under these restrictions, Theorem 19 reads as follows:
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Theorem 47 Suppose that the satisfiability problems for ADSs S1 and S2 are
decidable. Then the satisfiability problem for any E-connection CE

OB(S1,S2) is
decidable as well.

Let us fix two ADSs S1 = (L1,M1) and S2 = (L2,M2) with decidable satis-
fiability problems and a set of link symbols E . Let Γ be a finite set of assertions
of the E-connection CE

OB(S1,S2). We start by defining some notions:

• In contrast to the previous section, cli(Γ) (for i = 1, 2) simply denotes the
closure under negation of the set of i-terms occurring in Γ. As before, we
identify ¬¬t with t, and so cli(Γ) is finite.

• By rel(Γ) we denote the set of link symbols used in Γ. A link type for Γ is a
set T ⊆ rel(Γ). We use T(Γ) to denote the set of all link types for Γ. If we
interpret the symbols of rel(Γ) as propositional variables, then a link type
T for Γ can clearly be viewed as a propositional logic interpretation. Thus
we can write T |= F for a link type T and a link F if T is a model of F .

• For t ∈ Ci(Γ), t′ ∈ Ci(Γ), and T a link type for Γ, we write t ❀
T t′ if the

following conditions are satisfied:
(1) for all ¬ 〈F 〉i (s) ∈ t with s i-term and T |= F , we have s /∈ t′;

(2) for all ¬ 〈F 〉i (s) ∈ t′ with s i-term and T |= F , we have s /∈ t.
• Let S1, S2, and S3 be sets. We call a total function

f : (S1 × S2) ∪ (S2 × S1) → S3

a symmetric function from S1, S2 to S3 if for all (x1, x2) ∈ S1 × S2 we have

f(x1, x2) = f(x2, x1).

We assume without loss of generality that S1 and S2 support assertions of the
form a = a′ and a 6= a′, where a and a′ are object names. An assertion a = a′

(a 6= a′) is satisfied by a model W iff aW = a′W (aW 6= a′W). It should be
clear that reasoning with such assertions can be reduced to reasoning without
them: first perform appropriate substitutions of object names to eliminate all
assertions of the form a = a′. Then introduce a fresh set variable x from the
respective language for every assertion of the form a 6= a′ and replace a 6= a′

with {a : x, a′ : ¬x}. As in the previous section, we assume that link assertions
(a1, a2) : E are replaced by the equivalent object assertion a1 : 〈E〉1 (a2).

Our aim is to formulate a criterion of satisfiability of sets of CE
OB(S1,S2)-

assertions Γ similar to Theorem 45, from which we will derive decidability
of the satisfiability problem for CE

OB(S1,S2). However, in the presence of the
Boolean operators on link relations, things are somewhat more complicated. To
see why this is the case, consider the (⇐) direction of the proof of Theorem 45
in which we ‘connect’ the models for the sets Γ1 and Γ2 to a model for Γ.
Whenever an element d ∈ Wi should satisfy a term 〈E〉i(s), then Properties
(3) to (6) ensure that there is a t ∈ ∆i such that (i) s ∈ t and (ii) s′ /∈ t for
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all 〈E〉i(s′) that d should not satisfy. Moreover, Γi ensures that t is ‘realized’
at least once in Wi, and thus we can connect d to an appropriate witness via
the relation E. This simple strategy does not work with Boolean operators on
link relations: since the element d ∈ Wi may need a witness for the term s
for many complex link relations E1, . . . , Ek that are mutually exclusive (the
simplest case is a an atomic link relation and its negation), it does not suffice
to ensure that there is only one appropriate t ∈ ∆i that is realized only once
in Wi. The requirement of having enough witnesses for each term is in conflict
with the fact that the involved ADSs may not allow certain terms to be realized
an arbitrary number of times.

Our solution is to view models of CE
OB(S1,S2) as having a core of complex

structure which is ‘surrounded’ by a shell of more regular structure. Intuitively,
the core provides a ‘sufficient’ number of witnesses required for the model
construction: witness requirements inside the core are satisfied inside the core,
and witness requirements of elements outside the core (whose existence may
be enforced by the class of models of the involved ADMs) are also satisfied
inside the core.

In what follows, pre-models are used to describe the core part of models.

Definition 48 Let ∆1 ⊆ C1(Γ) and ∆2 ⊆ C2(Γ). A pre-model for ∆1,∆2 is a
structure

〈P1, P2, t1, t2, e, σ1, σ2〉 ,

where

• P1 and P2 are disjoint sets,
• ti is a surjective function mapping each p ∈ Pi to an element of ∆i,
• e is a symmetric function from P1, P2 to T(Γ),
• and σi is a function mapping each a ∈ obi(Γ) to an element of Pi

such that, for i ∈ {1, 2}, the following conditions are satisfied:

(1) for all p ∈ Pi, if 〈F 〉i (s) ∈ ti(p), then there is a p′ ∈ Pi such that
e(p, p′) |= F and s ∈ ti(p

′);
(2) for all p ∈ Pi, if 〈F 〉i (a) ∈ ti(p), then e(p, σi(a)) |= F ;
(3) for all p ∈ Pi and p′ ∈ Pi, we have ti(p) ❀

e(p,p′) ti(p
′);

(4) for all p ∈ Pi, if ¬ 〈F 〉i (a) ∈ ti(p), then e(p, σi(a)) 6|= F .

We are now in a position to formulate a satisfiability criterion for sets of
CE

OB(S1,S2)-assertions.

Theorem 49 Let Γ be a CE
OB(S1,S2)-knowledge base. Then Γ is satisfiable iff

there exist subsets ∆1 ⊆ C1(Γ) and ∆2 ⊆ C2(Γ), and a pre-model

P = 〈P1, P2, t1, t2, e, σ1, σ2〉
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for ∆1,∆2 such that, for i ∈ {1, 2}, the following conditions are satisfied:

(i) |Pi| ≤ (2δ + 1) · 4δ4, where δ = max(|ob1(Γ)|, |ob2(Γ)|, |cl1(Γ)|, |cl2(Γ)|),
(ii) the union Γi of the sets

– {suri(
∨

∆i) = ⊤i}
– {ap : suri(ti(p)) | p ∈ Pi}
– {ap = a | σi(a) = p}
– {ap 6= ap′ | p, p′ ∈ Pi and p 6= p′}
– {suri(t1) ⊑ suri(t2) | t1 ⊑ t2 ∈ Γ an i-term assertion}
– {Rj(a1, . . . , amj

) | Rj(a1, . . . , amj
) ∈ Γ an i-object assertion}

– {(a : suri(t)) | (a : t) ∈ Γ an i-object assertion}
is Si-satisfiable for i ∈ {1, 2}, where ap is a fresh object name from Xi(Γ)
for each p ∈ Pi.

Proof. (⇒) Let M =
〈

W1,W2, (E
M
i )i≤k

〉

be a model for Γ, where W1 has
domain W1 and W2 has domain W2. We use M to choose sets ∆1 and ∆2

and define a pre-model P satisfying the conditions given in the theorem: for
i ∈ {1, 2} and d ∈Wi, put

t(d) =
∧

{s ∈ cli(Γ) | d ∈ sM}.

Further, for d ∈W1 and d′ ∈W2, define their link type ct(d, d′) as

ct(d, d′) = {E ∈ rel(Γ) | (d, d′) ∈ EM} ∈ T(Γ).

Then set
∆i = {t(d) | d ∈Wi}.

The construction of P = 〈P1, P2, t1, t2, e, σ1, σ2〉 requires a bit more effort. We
proceed in several steps:

1. Choose a set L1 ⊆W1 such that the following conditions are satisfied:

(a) for t ∈ ∆1 and Σt = {d ∈ W1 | t(d) = t and aM 6= d for all a ∈ ob1(Γ)}
we let

{d ∈W1 | t(d) = t} ⊆ L1,

if |Σt| = |cl2(Γ)|, and, otherwise, choose a set

Σ′ ⊆ Σt with |Σ′| = |cl2(Γ)| and let Σ′ ⊆ L1;

(b) for all a ∈ ob1(Γ), we have aM ∈ L1;
(c) |L1| ≤ |∆1| · |cl2(Γ)| + |ob1(Γ)|.

It is easy to see that such a set exists.

2. Choose a set R1 ⊆W2 satisfying the following conditions:

(a) for each t ∈ ∆2, there is a d ∈ R1 such that t(d) = t;
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(b) for all a ∈ ob2(Γ), we have aM ∈ R1;
(c) for each d ∈ L1 and 〈F 〉1 (s) ∈ t(d), there exists a d′ ∈ R1 such that

(d, d′) ∈ FM and s ∈ t(d′);
(d) |R1| ≤ |L1| · |cl1(Γ)| + |∆2| + |ob2(Γ)|.

Such a set exists since property (2.c) can clearly be satisfied by choosing at
most |L1| · |cl1(Γ)| elements of W2 for R1.

3. Choose a set L2 ⊆W1 such that the following conditions are satisfied:

(a) L1 ∩ L2 = ∅;
(b) for each d ∈ R1 and 〈F 〉2 (s) ∈ t(d), there exists a d′ ∈ L1 ∪L2 such that

(d, d′) ∈ FM and s ∈ t(d′);
(c) |L2| ≤ |R1| · |cl2(Γ)|.

4. Choose a set R2 ⊆W2 such that the following conditions are satisfied:

(a) R1 ∩R2 = ∅;
(b) for each d ∈ L2 and 〈F 〉1 (s) ∈ t(d), there exists a d′ ∈ R1 ∪R2 such that

(d, d′) ∈ FM and s ∈ t(d′);
(c) |R2| ≤ |L2| · |cl1(Γ)|.

5. Choose a functionK from L1×R2 to T(Γ) such that the following conditions
are satisfied:

(a) for each d ∈ R2 and each 〈F 〉2 (s) ∈ t(d), there exists a d′ ∈ L1 such that
K(d′, d) |= F and s ∈ t(d′);

(b) for each d ∈ R2 and 〈F 〉2 (a) ∈ t(d), we have K(aM, d) |= F ;
(c) for all (d, d′) ∈ L1 × R2, we have d ❀

K(d,d′) d′;
(d) for each d ∈ R2 and ¬ 〈F 〉2 (a) ∈ t(d), we have K(aM, d) 6|= F .

Let us show that such a function does exist. First, fix for each d ∈ R2 a subset
τ(d) ⊆ W1 of cardinality ≤ |cl2(Γ)| such that, for each 〈F 〉2 (s) ∈ t(d), there
exists a d′ ∈ τ(d) such that (d′, d) ∈ FM and s ∈ t(d′). Due to properties (1.a)
and (1.b) of L1, we can find a map

π :
⋃

d∈R2

τ(d) → L1

whose restriction to τ(d) is injective for each d ∈ R2 and such that, for all d′

in the domain of π, we have

(i) t(d′) = t(π(d′)),
(ii) d′ = aM for some a ∈ ob1(Γ) implies d′ = π(d′), and
(iii) d′ 6= aM for all a ∈ ob1(Γ) implies π(d′) 6= aM for all a ∈ ob1(Γ).
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We now define K in three steps:

(1) for each a ∈ ob1(Γ) and d ∈ R2, set K(aM, d) = ct(aM, d);
(2) for each d ∈ R2 and d′ ∈ τ(d), set K(π(d′), d) = ct(d′, d);
(3) for each d ∈ L1 and each d′ ∈ R2 such that K(d, d′) is undefined, we set

K(d, d′) = ct(d, d′).

Due to properties (ii) and (iii) of π, K is well-defined. It is straightforward to
verify that K satisfies properties (5.a) to (5.d).

6. We now define the pre-model P as follows:

(1) Set P1 = L1 ∪ L2 and P2 = R1 ∪ R2.
(2) For i = 1, 2, set ti(d) = t(d) for all d ∈ Pi. In view of property (1.a) of L1

and property (3.a) of L2, it is clear that the ti are surjective.
(3) Let d ∈ P1 and d′ ∈ P2. If d /∈ L1 or d′ /∈ R2, then set e(d, d′) = e(d′, d) =

ct(d, d′). If d ∈ L1 and d′ ∈ R2, then set e(d, d′) = e(d′, d) = K(d, d′).
(4) For i = 1, 2 and a ∈ obi(Γ), set σi(a) = aM (we do not ‘leave’ P1 and P2

due to property (1.b) of L1 and property (3.b) of L2).

A lengthy but easy computation yields the upper bound |Pi| ≤ (2δ + 1) · 4δ4

for the size of the sets Pi. Next, we show that P is indeed a pre-model, i.e.,
that it satisfies properties (1)–(4) from Definition 48

(1) Let d ∈ L1 and 〈F 〉1 (s) ∈ t1(d). Since t1(d) = t(d) by the definition of
P, property (2.c) of R1 yields a d′ ∈ R1 such that (d, d′) ∈ FM and s ∈ t(d′).
By the definition of P, we have e(d, d′) = ct(d, d′) and t2(d

′) = t(d′). Thus,
e(d, d′) |= F and s ∈ t2(d

′), as required.

In the case d ∈ R1 and 〈F 〉2 (s) ∈ t2(d), we may use an analogous argument
employing property (3.b) of L2 instead of property (2.c) of R1. Similarly, in
the case d ∈ L2 we may use property (4.b) of R2.

Now let d ∈ R2 and 〈F 〉2 (s) ∈ t2(d). By property (5.a) of K, there exists a
d′ ∈ L1 such that K(d′, d) |= F and s ∈ t(d′). By the definition of P, we have
e(d′, d) = K(d′, d) and t1(d

′) = t(d′). Thus, e(d, d′) |= F and s ∈ t1(d
′).

(2) Let d ∈ L1 ∪ L2 and 〈F 〉1 (a) ∈ t1(d). By property (2.b) of R1, we have
aM ∈ R1. Moreover, by the definition of P, we have t1(d) = t(d). Thus,
〈F 〉1 (a) ∈ t(d) which implies ct(d, aM) |= F . Since e(d, aM) = ct(d, aM) and
σ2(a) = aM by the definition of P, we obtain e(d, σ2(a)) |= F , as required.

In the case d ∈ R1 and 〈F 〉2 (a) ∈ t2(d), we may use an analogous argument
employing property (1.b) of L1 instead of property (2.b) of R1.

Now let d ∈ R2 and 〈F 〉2 (a) ∈ t2(d). By property (1.b) of L1, we have aM ∈ L1.
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By property (5.b) ofK, we haveK(aM, d) |= F . Since e(aM, d) = K(aM, d) and
σ1(a) = aM by the definition of P, we obtain e(σ1(a), d) = e(d, σ1(a)) |= F ,
as required.

(3) As the definition of ❀ is symmetric, it suffices to show t1(d1) ❀
e(d1,d2) t2(d2)

for all d1 ∈ P1 and d2 ∈ P2. First, let d1 ∈ P1 and d2 ∈ R1. The definition of
P implies e(d1, d2) = ct(d1, d2). By the definition of ❀, we need to show two
properties:

• Let ¬ 〈F 〉1 (s) ∈ t1(d1) and e(d1, d2) |= F . Since t1(d1) = t(d1), we have
¬ 〈F 〉1 (s) ∈ t(d1). Since e(d1, d2) = ct(d1, d2) and e(d1, d2) |= F , we obtain
s /∈ t(d2). Now t(d2) = t2(d2) implies s /∈ t2(d2), as required.

• The case of ¬ 〈F 〉2 (s) ∈ t2(d2) and e(d1, d2) |= F is considered analogously.

Now let d1 ∈ P1 and d2 ∈ R2. The definition of P implies e(d1, d2) = K(d1, d2).
Again we need to show two properties:

• Let ¬ 〈F 〉1 (s) ∈ t1(d1) and e(d1, d2) |= F . Since t1(d1) = t(d1), we have
¬ 〈F 〉1 (s) ∈ t(d1). Since e(d1, d2) = K(d1, d2), we obtain s /∈ t(d2) by
property (5.c) of K. Now t(d2) = t2(d2) implies s /∈ t2(d2) as required.

• The case of ¬ 〈F 〉2 s ∈ t2(d2) and e(d1, d2) |= F is considered analogously.

(4) Let d ∈ L1 ∪L2 and ¬ 〈F 〉1 (a) ∈ t1(d). By property (2.b) of R1, a
M ∈ R1.

Moreover, by the definition of P we have t1(d) = t(d). Thus ¬ 〈F 〉1 (a) ∈ t(d),
which implies ct(d, aM) 6|= F . Since e(d, aM) = ct(d, aM) and σ2(a) = aM by
the definition of P, we obtain e(d, σ2(a)) 6|= F , as required.

In the case d ∈ R1 and 〈F 〉2 (a) ∈ t2(d), we may use an analogous argument
employing property (1.b) of L1 instead of property (2.b) of R1.

Now let d ∈ R2 and ¬ 〈F 〉2 (a) ∈ t2(d). By property (1.b) of L1, we have
aM ∈ L1. By property (5.d) of K, K(d, aM) 6|= F . Since e(d, aM) = K(d, aM)
and σ1(a) = aM by the definition of P, we obtain e(d, σ1(a)) 6|= F as required.

To complete the proof of the ‘only if’ direction, it remains to show that the sets
Γi are Si satisfiable, which is done as in Theorem 45 by additionally setting
(ap)

M′
i = p for all p ∈ Pi.

(⇐) Suppose that ∆1, ∆2, and P = 〈P1, P2, t1, t2, e, σ1, σ2〉 satisfying the con-
ditions of the theorem are given. We construct a model satisfying Γ. To this
end, take models Wi ∈ Mi with domain Wi satisfying Γi, for i = 1, 2. Let, for
d ∈Wi,

t(d) =
∧

{s ∈ cli(Γ) | d ∈ (suri(s))
Wi}.

By the definition of Γi, we clearly have t(d) ∈ ∆i for each d ∈ Wi. Now fix
an element ρ(d) ∈ Pi for each d ∈ Wi such that t(d) = ti(ρ(d)) and d = aWi

p

implies ρ(d) = p, for all p ∈ Pi. This is possible, since the functions ti of P are
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surjective and t(aWi
p ) = ti(p) by the definition of Γi. Let rel(Γ) = {E1, . . . , Ek}.

For 1 ≤ j ≤ k, we define the extension EM

j of a link relation Ej by setting

dEM

j d′ iff Ei ∈ e(ρ(d), ρ(d′)).

The proof of the following claim is straightforward and left to the reader:

(♣) For all links F , d1 ∈W1, and d2 ∈W2,

(d1, d2) ∈ FM iff e(ρ(d1), ρ(d2)) |= F.

We now show that M =
〈

W1,W2, (E
M

j )j≤k
〉

is a model for Γ. It clearly suffices
to prove that

d ∈ suri(s)
Wi iff d ∈ sM

for all d ∈ Wi, s ∈ cli(Γ), and i ∈ {1, 2}, which can be done by simul-
taneous structural induction. We only consider the interesting cases, i.e., (i)
t = 〈F 〉i (s′) and (ii) t = 〈F 〉i (a), for i = 1 (the case i = 2 is symmetric).

(i) Assume t = 〈F 〉1 (s′). Let d ∈ sur1(〈F 〉
1 s′)W1. This implies 〈F 〉1 (s′) ∈ t(d),

and so 〈F 〉1 (s′) ∈ t1(ρ(d)). By property (1) of pre-models, there exists a p ∈ P2

such that e(ρ(d), p) |= F and s′ ∈ t2(p). By the choice of ρ, we have ρ(aW2
p ) = p.

Since e(ρ(d), p) |= F , we thus obtain (d, aW2
p ) ∈ FM from (♣). Moreover,

s′ ∈ t2(p) and ρ(aW2
p ) = p yield s′ ∈ t(aW2

p ), and hence aW2
p ∈ sur2(s

′)W2 ,

from which we obtain aW2
p ∈ s′M by the induction hypotheses. To sum up,

d ∈ (〈F 〉1 (s′))M.

For the ‘if’ direction, we show the contrapositive. Let d /∈ sur1(〈F 〉
1 (s′))W1 .

We need to prove that d /∈ (〈F 〉1 (s′))M. Fix a d′ ∈ W2 such that (d, d′) ∈
FM. By (♣), we have e(ρ(d), ρ(d′)) |= F , and d /∈ sur1(〈F 〉

1 (s′))Wi yields
¬ 〈F 〉1 (s′) ∈ t(d) and ¬ 〈F 〉1 (s′) ∈ t1(ρ(d)). Thus, we have s′ /∈ t2(ρ(d

′)) by
property (3) of pre-models and the definition of ❀. This clearly yields s′ /∈ t(d′)
and thus d′ /∈ sur2(s

′)W2 , which implies d′ /∈ s′M by the induction hypotheses.
Since this holds independently of the choice of d′, we obtain d /∈ (〈F 〉1 (s′))M,
as required.

(ii) Let t = 〈F 〉1 (a) and d ∈ sur1(〈F 〉
1 (a))W1 . This implies 〈F 〉1 (a) ∈ t(d) and

so 〈F 〉1 (a) ∈ t1(ρ(d)). By property (2) of pre-models, e(ρ(d), σ2(a)) |= F . By
the construction of Γ2, there is a p ∈ P2 such that p = σ2(a) and aW2

p = aW2 .
By the choice of ρ, we then have ρ(aW2

p ) = σ2(a). Since e(ρ(d), σ2(a)) |= F , we

thus obtain (d, aW2
p ) ∈ FM from (♣). Hence, d ∈ (〈F 〉1 (a))M.

For the ‘if’ direction, we show the contrapositive. Let d /∈ sur1(〈F 〉
1 (a))W1. We

need to prove that d /∈ (〈F 〉1 (a))M. Fix a d′ ∈ W2 such that (d, d′) ∈ FM. By
the claim, we have e(ρ(d), ρ(d′)) |= F . Moreover, d /∈ sur1(〈F 〉

1 (a))W1 yields
¬ 〈F 〉1 (a) ∈ t(d) and ¬ 〈F 〉1 (a) ∈ t1(ρ(d)). Thus, e(ρ(d), σ2(a)) 6|= F , i.e.,
ρ(d′) 6= σ2(a), by property (4) of pre-models, and so d′ 6= aW2 by the definition
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of Γ2 and the choice of ρ. Thus d′ 6= aM. Since this holds independently of the
choice of d′, we obtain d /∈ (〈F 〉1 (a))M, as required. ✷

Similarly to the previous section, Theorem 49 almost immediately provides us
with a decision procedure for the connection CE

OB(S1,S2) if decision procedures
for S1 and S2 are known: since the sets Ci(Γ) are finite and |Pi| ≤ (2δ+1) ·4δ4,
to decide whether a set Γ of CE

OB(S1,S2)-assertions is satisfiable, we may ‘guess’
sets ∆1 ⊆ C1(Γ) and ∆2 ⊆ C2(Γ) and a pre-model P, and then check whether
they satisfy the conditions listed in the formulation of the theorem.

The time complexity of the obtained decision procedure is the same as in the
case without Boolean operators on link relations (see the previous section): it is
one exponential higher than the complexity of the original decision procedures
for S1 and S2-satisfiability. It should be noted that the combined decision
procedure is non-deterministic.

B.3 Qualified number restrictions

Now we prove Theorem 28, which states that decidability of ADSs transfers
to their E-connection even if we allow qualified number restrictions on link
relations. Note that, by Theorem 29, we have to disallow Boolean operators on
link relations and the use of link operators on object variables in order to avoid
undecidability. As in the previous sections, we restrict ourselves to two ADSs
and a single link relation E. For simplicity, we will therefore write number
restrictions as 〈≥ r〉i (s) and 〈≤ r〉i (s), thus omitting the link symbol E.

Here is the variant of Theorem 28 obtained by the two restrictions:

Theorem 50 Suppose that the satisfiability problems for the ADSs S1 and S2

are decidable and both S1 and S2 are number tolerant. Then the satisfiability
problem for the {E}-connection C{E}

Q (S1,S2) is decidable as well.

Fix two ADSs S1 = (L1,M1) and S2 = (L2,M2) with decidable satisfiability

problems. Note that for any model M of C{E}
Q (S1,S2) and any i-term s of Si

(i = 1, 2) we have

(〈 ≤ r〉i (s))M = (¬ 〈 ≥ r + 1〉i (s))M for all r ∈ N, and

(〈E〉i (s))M = (〈 ≥ 1〉i (s))M.

Therefore, without loss of generality we may assume that we do not have terms

of the form 〈 ≤ r〉i (s) and 〈E〉i (s). Let us fix some notational conventions:

• As in the previous section, we use cli(Γ), i = 1, 2, to denote the closure under
negation of the set of i-terms occurring in Γ. Without loss of generality we
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can identify ¬¬t with t and thus cli(Γ) is finite.
• For an i-term t, we define a surrogate suri(t) as described at the beginning

of Section B, but now replacing subterms s of the form 〈≥ r〉i (s′) with
surrogate variables xs.

• For i ∈ {1, 2} , we use degi(Γ) to denote the maximum number r such that
〈≥ r〉i (s) ∈ cli(Γ), for some term s.

• Given domain elements d ∈ Wi and d′ ∈ Wi (or object variables a of Si
and b of Si) we use the expression [d, d′] (or [a, b]) to denote the pair (d, d′)
(respectively, (a, b)), if i = 1, and the pair (d′, d) (or (b, a)), if i = 2.

As observed in Section B.2, without loss of generality we may assume that
the ADSs S1 and S2 support assertions of the form a = a′ and a 6= a′, where
a and a′ are object names. Note that, since we do not allow the application
of link operators on object variables, we cannot replace link assertions with
object assertions as in the previous sections. Hence, we will treat link assertions
(a, b) : E explicitly in the proof.

We can now reduce satisfiability for the connection C{E}
Q (S1,S2) to satisfiability

for the components S1 and S2.

Theorem 51 Let Γ be a C{E}
Q (S1,S2)-knowledge base, where the Si are number

tolerant. Then Γ is satisfiable iff there are sets ∆1 ⊆ C1(Γ) and ∆2 ⊆ C2(Γ)
and equivalence relations ∼1 ⊆ ob1(Γ)×ob1(Γ) and ∼2 ⊆ ob2(Γ)×ob2(Γ) such
that, for i ∈ {1, 2}, the following conditions are satisfied:

(1) For each t ∈ ∆i, there exists a set Wt = {(Z1, γ1), . . . , (Zk(t), γk(t))},
where Zj ⊆ ∆i and the γj are functions from Zj to {1, . . . , degi(Γ)} such
that, for each (Zj, γj) ∈ Wt, we have the following:

(a) For each term 〈≥ r〉i (s) ∈ cli(Γ), we have

〈≥ r〉i (s) ∈ t iff
∑

{t′∈Zj |s∈t′}

γj(t
′) ≥ r;

(b) for each t′ ∈ Zj, there exists (Z, γ) ∈ Wt′ such that t ∈ Z.
(2) For each equivalence class C of ∼i, there exist a type tC ∈ ∆i, a set of

types ZC ⊆ ∆i, and a function γC : ZC → {1, . . . , degi(Γ)} such that

(a) for each term 〈≥ r〉i (s) ∈ cli(Γ), we have

〈≥ r〉i (s) ∈ tC iff
∑

{t′∈ZC |s∈t′}

γC(t′) + |{C ′ ∈ connΓ(C) | s ∈ tC′}| ≥ r,

where the set connΓ(C) contains precisely those equivalence classes
C ′ of ∼i for which [a, b] : E ∈ Γ, for some a ∈ C and b ∈ C ′;

(b) for each t′ ∈ ZC, there is (Z, γ) ∈ Wt′ such that tC ∈ Z.
(3) The union Γi of the sets

– {suri(
∨

∆i) = ⊤i}
– {at : suri(t) | t ∈ ∆i}
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– {a = a′ | a ∼i a
′}

– {a 6= a′ | a 6∼i a
′}

– {a : suri(t[a]i) | a ∈ obi(Γ)}
– {suri(s1) ⊑ suri(s2) | (s1 ⊑ s2) ∈ Γ an i-term assertion}
– {Rj(a1, . . . , amj

) | Rj(a1, . . . , amj
) ∈ Γ an i-object assertion}

– {a : suri(s) | (a : s) ∈ Γ an i-object assertion}
is Si-satisfiable, where [a]i denotes the equivalence class of a with respect
to ∼i and at is a fresh object name from Xi(Γ) for each t ∈ ∆i.

Proof. (⇒) Let M =
〈

W1,W2, E
M

〉

be a model for Γ, where W1 is based
on the domain W1 and W2 is based on the domain W2. We use M to choose
sets ∆1 and ∆2 and equivalence relations ∼1 and ∼2 satisfying the conditions
given in the formulation of the theorem.

We start with some preliminaries. A domain element d ∈Wi is called anonym-
ous if d 6= aM for all a ∈ obi(Γ). For i ∈ {1, 2}, d ∈ Wi, and t′ ∈ Ci(Γ), define
the abbreviations

t(d) =
∧

{s ∈ cli(Γ) | d ∈ sM};

R(d) = {d′ ∈Wi | [d, d′] ∈ EM};

P (d) = {t(d′) | d′ ∈ R(d)};

PA(d) = {t(d′) | d′ ∈ R(d) is anonymous};

c(d, t′) = min{degi(Γ),
∣

∣

∣{d′ ∈ R(d) | t(d′) = t′}
∣

∣

∣};

cA(d, t′) = min{degi(Γ),
∣

∣

∣{d′ ∈ R(d) | t(d′) = t′ and d′ is anonymous}
∣

∣

∣}.

Then we set

• ∆i = {t(d) | d ∈Wi};
• ∼i = {(a, b) ∈ obi(Γ) × obi(Γ) | aM = bM};
• Wt = {(P (d), γd) | d ∈Wi and t(d) = t} for each t ∈ ∆i, where

γd = {t′ 7→ c(d, t′) | t′ ∈ P (d)};

• tC = t(aM), with a ∈ C, for each equivalence class C of ∼i;
• ZC = PA(aM), with a ∈ C, for each equivalence class C of ∼i;
• γC = {t′ 7→ cA(aM, t′) | t′ ∈ PA(aM)}, with a ∈ C, for each equivalence class
C of ∼i.

Note that tC , ZC, and γC are well-defined by the definition of the relations
∼i. It remains to show that these definitions satisfy conditions (1)–(3) from
the formulation of the theorem. We only do this for i = 1, since the case i = 2
is symmetric.

1. Fix terms 〈≥ r〉1 (s) ∈ cl1(Γ), t ∈ ∆1, and a pair (Z, γ) ∈ Wt. Then there is
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a d ∈W1 such that t(d) = t, Z = P (d), and γ = γd. Let

Σs
d = {d′ ∈W2 | (d, d′) ∈ EM and s ∈ t(d′)}.

By definition we have

〈≥ r〉1 (s) ∈ t iff d ∈ (〈≥ r〉1 (s))M iff |Σs
d| ≥ r.

By the definition of P (d) and γd,

∑

{t′∈Z|s∈t′}

γ(t′) = |{d′ ∈W2 | (d, d′) ∈ EM and s ∈ t(d′)}|

if for all t′ ∈ Z with s ∈ t′ we have |{d′ ∈ R(d) | t(d′) = t′}| < degi(Γ), and

∑

{t′∈Z|s∈t′}

γ(t′) ≥ deg2(Γ) ≥ r

otherwise. The latter case implies |Σs
d| ≥ deg2(Γ) ≥ r. We thus obtain

|Σs
d| ≥ r iff

∑

{t′∈Z|s∈t′}

γ(t′) ≥ r,

which gives (1.a).

To prove (1.b), let t′ ∈ Z. Then there exists a d′ ∈W2 such that (d, d′) ∈ EM

and t(d′) = t′. It is readily checked that (P (d′), γd′) ∈ Wt′ is as required, i.e.,
t ∈ P (d′).

2. Fix an equivalence class C of ∼1, an a ∈ C and a term 〈≥ r〉1 (s) ∈ cl1(Γ).
Let

Σs
a = {d′ ∈W2 | (aM, d′) ∈ EM and s ∈ t(d′)}.

As above, we have by definition that 〈≥ r〉1 (s) ∈ tC iff |Σs
a| ≥ r and, moreover,

|Σs
a|= |{d′ ∈W2 | (aM, d′) ∈ EM, s ∈ t(d′), and d′ anonymous}| +

|{d′ ∈W2 | (aM, d′) ∈ EM, s ∈ t(d′), and d′ not anonymous}|.

By the definition of PA, cA, ∼1, ZC , and γC, the sum

∑

{t′∈ZC |s∈t′}

γC(t′)

is equal to the former component of |Σs
a| or is at least deg2(Γ). Further, by the

definition of ∼1 and tC , the second component is equal to

|{C ′ ∈ connΓ(C) | s ∈ tC′}|.
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Thus, as in the proof of (1.a), we obtain

|Σs
a| ≥ r iff

∑

{t′∈ZC |s∈t′}

γC(t′) + |{C ′ ∈ connΓ(C) | s ∈ tC′}| ≥ r

which gives (2.a).

To prove (2.b), let t′ ∈ ZC . Then there is a d′ ∈ W2 such that (aM, d′) ∈ EM

and t(d′) = t′. It is readily checked that (P (d′), γd′) ∈ Wt′ is as required, i.e.,
tC ∈ P (d′).

3. Take the model W1 and extend it as follows:

• for each surrogate variable xs occurring in Γ1 with s of the form 〈≥ r〉i (s′),
set xW1

s = sW;
• for each newly introduced object name at (with t ∈ ∆1), set aW1

t to some
element of tW.

Note that the resulting model W′
1 can be found in the set of models M1 by

the closure conditions that are required to hold for M1. It is easy to prove by
induction that, for all d ∈W1 and s ∈ cl1(Γ), we have d ∈ sur1(s)

W′
1 iff d ∈ sM;

details are left to the reader. Using this fact, in turn, it is straightforward to
verify that W′

1 is a model of Γ1.

(⇐) Suppose that there exist ∆1, ∆2, ∼1, and ∼2 satisfying the conditions of
the theorem. Hence, there also exist sets Wt, for t ∈ ∆i, and types tC , sets of
types ZC , and functions γC , for equivalence classes C of ∼i, satisfying condi-
tions (1.a), (1.b) and (2.a), (2.b). Our aim is to construct a model satisfying
Γ. For each ADS Si, i = 1, 2, let κi denote the cardinal number for Si from the
definition of ‘number tolerance.’ Take an infinite cardinal κ such that κ ≥ κi,
for i = 1, 2, and models Wi ∈ Mi with domains Wi satisfying Γi, for i = 1, 2.
Let, for d ∈Wi,

t(d) =
∧

{s ∈ cli(Γ) | d ∈ (suri(s))
Wi}.

By the definition of the Γi, we clearly have t(d) ∈ ∆i for each d ∈Wi. Since S1

and S2 are number tolerant and t ∈ ∆i implies the existence of some d ∈ Wi

such that t(d) = t by the definition of the Γi, by the choice of κ we may assume
that

∣

∣

∣{d ∈Wi | t(d) = t}
∣

∣

∣ = κ for each t ∈ ∆i. (∗)

Again, a domain element d ∈ Wi is called anonymous if d 6= aM for all
a ∈ obi(Γ). We now show that there exists a relation EM ⊆W1×W2 satisfying
the following conditions:

(I) For all a ∈ ob1(Γ) and b ∈ ob2(Γ), we have

(aW1 , bW2) ∈ EM iff there are a′ ∈ [a]1, b
′ ∈ [b]2 such that (a′, b′) : E ∈ Γ.
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(II) For all i ∈ {1, 2} and a ∈ obi(Γ), we have
• [aWi , d′] ∈ EM implies t(d′) ∈ Z[a]i;
• for each t ∈ Z[a]i,

γ[a]i(t) =
∣

∣

∣{d′ ∈Wi | [aWi , d′] ∈ EM, d′ anonymous and t(d′) = t}
∣

∣

∣.

(III) For all i ∈ {1, 2} and d ∈Wi, there exists a (Z, γ) ∈ Wt(d) such that
• [d, d′] ∈ EM implies t(d′) ∈ Z;
• for each t ∈ Z,

γ(t) =
∣

∣

∣{d′ ∈Wi | [d, d′] ∈ EM and t(d′) = t}
∣

∣

∣.

Since there are only finitely many types t ∈ ∆i and each t is of the form t(d)
for some d ∈ Wi, we have |Wi| = |∆i| · κ = κ. Hence, we can assume that
the sets Wi are ordered by <i such that (κ,∈) is order-isomorphic to (Wi, <i)
(i.e., <i is a well-ordering on Wi such that no <i-initial subset of Wi is of
cardinality κ). We construct the relation EM by transfinite induction as

EM =
⋃

α<κ

EM

α ,

and simultaneously define (partial) functions παi , α < κ, i = 1, 2, that take
anonymous domain elements d ∈ Wi to elements of Wt(d). We start with
α = 0, 1:

• Set EM

0 = {(aW1 , bW2) | (a, b) : E ∈ Γ} and π0
1 = π0

2 = ∅.
• For all i ∈ {1, 2}, a ∈ obi(Γ), t ∈ Z[a]i, and j, 1 ≤ j ≤ γ[a]i(t), choose

an anonymous element da,t,j ∈ Wi with t(da,t,j) = t such that (a, t, j) 6=
(a′, t′, j′) implies da,t,j 6= da′,t′,j′—this is possible since Z[a]i ⊆ ∆i and in
view of (∗). Then set, for each a, t, j as above, π1

i (da,t,j) to some (Z, γ) ∈ Wt

such that t[a] ∈ Z, which exists by property (2.b). Further, set

EM

1 = EM

0 ∪
⋃

i∈{1,2}

⋃

a∈obi(Γ)

⋃

t∈Z[a]i

⋃

1≤j≤γ[a]i
(t)

{[aWi , da,t,j]}.

• Suppose that α < κ is the minimal ordinal for which EM
α is not yet defined.

If α is a limit ordinal, then set

EM

α =
⋃

β<α

EM

β and παi =
⋃

β<α

πβi for i = 1, 2.

Now suppose that α = α′ + 1. Let β be the largest limit ordinal which is
smaller than α, or 0 if no such limit ordinal exists. If α = β + 2n for some
natural number n, set i = 1. Otherwise set i = 2. Choose the <i-minimal
domain element d ∈Wi such that

(i) πα
′

i (d) is undefined, or
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(ii) πα
′

i (d) = (Z, γ) and there is a t′ ∈ Z such that

∣

∣

∣{d′ ∈Wi | [d, d′] ∈ EM

α′ and t(d′) = t′}
∣

∣

∣ < γ(t′).

In case (i), set

EM

α = EM

α′ , παi = πα
′

i ∪ {(d, (Z, γ))}, πα
i

= πα
′

i
,

where (Z, γ) is an element of Wt(d). In case (ii), we do the following: choose
an anonymous element d′ ∈ Wi with t(d′) = t′ and [d, d′] /∈ EM

α′ such that
πα

′

i
(d′) is undefined—this is possible since Z ⊆ ∆i and by (∗). Then set

EM

α = EM

α′ ∪ {[d, d′]}, παi = πα
′

i , πα
i

= πα
′

i
∪ {(d′, (Z, γ))},

for some (Z, γ) ∈ Wt′ such that t(d) ∈ Z, which is possible by property (1.b).

It is not hard to verify that the relation EM =
⋃

α<κE
M

α constructed in this
way indeed satisfies Properties (I)–(III).

We now show that M =
〈

W1,W2, E
M

〉

is a model for Γ. Since (a, b) : E ∈ Γ

implies (aM, bM) ∈ EM by property (I) of EM, it clearly suffices to show that

d ∈ suri(s)
Wi iff d ∈ sM

for all d ∈ Wi, s ∈ cli(Γ), and i ∈ {1, 2}, which can be done by simultaneous
structural induction. The case of set variables and the Boolean cases are trivial,
so we only consider the case s = 〈≥ r〉i (s′) and i = 1.

Let s = 〈≥ r〉1 (s′) for s′ a 2-term. First assume that d ∈ sur1(s)
W1, i.e.,

s ∈ t(d), and consider the case where d is not anonymous, i.e., there exists an
a ∈ ob1(Γ) such that aM = d. By condition (2.a), we then have

r ≤
∑

{t∈Z[a]1
|s′∈t}

γ[a]1(t) + |{C ′ ∈ connΓ([a]1) | s
′ ∈ tC′}|.

By the definitions of Γ2 and of M, we have bM = b′M if and only if b ∼2 b
′ for

all b, b′ ∈ ob2(Γ). Thus, property (I) of EM and the definition of Γ2 yield

∣

∣

∣{d′ ∈W2 | (d, d′) ∈ EM, s′ ∈ t(d′), and d′ not anonymous}
∣

∣

∣ =
∣

∣

∣{[b]2 | s′ ∈ t[b]2 and (a′, b′) : E ∈ Γ for some a′ ∈ [a]1, b
′ ∈ [b]2}

∣

∣

∣ =
∣

∣

∣{C ′ ∈ connΓ([a]1) | s′ ∈ tC′}
∣

∣

∣.

By property (II) of EM, we have for each t ∈ Z[a]1:

γ[a]1(t) =
∣

∣

∣{d′ ∈W2 | (aW1 , d′) ∈ EM, d′ anonymous and t(d′) = t}
∣

∣

∣.
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Moreover, (aW1 , d′) ∈ EM implies t(d′) ∈ Z[a]1. This yields

∣

∣

∣{d′ ∈W2 | (d, d′) ∈ EM and s′ ∈ t(d′)}
∣

∣

∣ ≥ r.

Since, by the induction hypotheses, s′ ∈ t(d′) iff d′ ∈ s′M, this yields d ∈ sM,
as required.

Now assume that d ∈ sur1(s)
W1 and d is anonymous. Then s ∈ t(d), property

(1.a), and property (III) of EM yield

∣

∣

∣{d′ ∈W2 | (d, d′) ∈ EM and s′ ∈ t(d′)}
∣

∣

∣ ≥ r,

which is equivalent to d ∈ sM, and we are done.

Conversely, assume that d ∈ sM. By definition and the induction hypotheses,
we have that

|Σs′

d | ≥ r, where Σs′

d = {d′ ∈W2 | (d, d′) ∈ EM and s′ ∈ t(d′)}.

Assume first that d = aM for some a ∈ ob1(Γ). Clearly, for each d′ ∈ Σs′

d that
is not anonymous, i.e., bM = d′ for some b ∈ ob2(Γ), there are a′ ∈ [a]1 and
b′ ∈ [b]2 such that (a′, b′) : E ∈ Γ and s′ ∈ t[b′]2, by condition (I) and the
definition of Γ2. By condition (II) of EM we further have that for all d′ ∈ Σs′

d ,
s′ ∈ t(d′) ∈ Z[a]1 and for any t ∈ Z[a]1,

γ[a]1(t) =
∣

∣

∣{d′ ∈W2 | (aW1 , d′) ∈ EM, d′ anonymous and t(d′) = t}
∣

∣

∣.

Hence

r ≤ |Σs′

d | =
∑

{t∈Z[a]1
|s′∈t}

γ[a]1(t) +
∣

∣

∣{C ′ ∈ connΓ([a]1) | s
′ ∈ tC′}

∣

∣

∣.

By condition (2.a), s ∈ t[a]1 . Since, by the definition of Γ1, we have t(d) = t[a]1 ,
this yields d ∈ sur1(s)

W1, as required.

Assume now that d is anonymous. By condition (III) of EM there exists
(Z, γ) ∈ Wt(d) such that s′ ∈ t(d′) ∈ Z for all d′ ∈ Σs′

d . As above we ob-
tain

r ≤ |Σs′

d | =
∑

{t∈Z|s′∈t}

γ(t),

and so s ∈ t(d) by condition (1.a), which completes the proof. ✷

Assuming that there exist decision procedures for S1 and S2, it is now easy to
use Theorem 51 to derive a decision procedure for the connection C{E}

Q (S1,S2).

Since the sets Ci(Γ) are finite, to decide whether a set Γ of C{E}
Q (S1,S2)-

assertions is satisfiable, we may ‘guess’ sets ∆1 ⊆ C1(Γ) and ∆2 ⊆ C2(Γ),
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equivalence relations ∼1 and ∼2, sets Wt for each t ∈ ∆1 ∪ ∆2, and types
tC , sets ZC , and functions γC for each equivalence class C of ∼1 and ∼2, and
then check whether they satisfy the conditions listed in the formulation of the
theorem.

The time complexity of the obtained decision procedure is the same as in
the previous two sections (see Section B.1 for details): it is one exponential
higher than the complexity of the original decision procedures for S1- and
S2-satisfiability. Moreover, the decision procedure for the connection is non-
deterministic.

C Undecidability and lower bounds

In this section, we prove the undecidability results and lower bounds for the
computational complexity. In Section C.1, we consider A-satisfiability and
show that, for this reasoning problem, decidability of the component ADSs
does not always transfer to their E-connection CE(S1,S2). In Section C.2, we
prove that, for some more powerful types of E-connections, even the decidabil-
ity transfer for the satisfiability problem fails. An example of such a connection
type is CE

QB(S1,S2), which allows both the Boolean operations on link rela-
tions and qualified number restrictions. Finally, in Section C.3 we prove that
the basic connection CE(B,B) is EXPTIME-hard, while its extension with the
Boolean operators on links is already NEXPTIME-hard.

C.1 Undecidability of A-satisfiability

Our aim is to prove the following:

Theorems 14 and 17. Let E be a non-empty set of links. Then A-satisfiability
is undecidable for

(1) the E-connection CE(ALCF ♯,ALCO♯);
(2) the E-connection CE

O(ALCF ♯,S), for any ADS S.

Recall that ALCO is the extension of the basic DL ALC with nominals,
whereas ALCF extends ALC with functional roles and the feature agree-
ment/disagreement constructors introduced on Page 19. The proof below de-
pends on the possibility of applying link operators to object variables (or
nominals) of the connection’s second component. We therefore either have to
allow such applications explicitly as in (2) or, alternatively, equip the second
ADS with nominals as in (1).

70



Proof. Since the proofs of (1) and (2) are similar, we concentrate on (1). As
noted above, the satisfiability problem for ABoxes relative to TBox axioms in
ALCF is undecidable. For simplicity, however, we will consider the concept
satisfiability problem relative to TBox axioms which is formulated as follows:
given an ALCF-concept C and a set Γ of ALCF TBox assertions of the form
D ⊑ D′, does there exist a model I for Γ such that CI 6= ∅? As shown in [8],
this problem is undecidable for ALCF . To prove (1), we reduce this problem
to the A-satisfiability problem for the connection CE(ALCF ♯,ALCO♯).

Let C be an ALCF-concept and Γ a set of ALCF TBox assertions. We use R
to denote the set of roles occurring in C or Γ, and [E]iD as an abbreviation
for ¬ 〈E〉i ¬D. Let a be an object variable of ALCF ♯ and b an object variable
of ALCO♯. Define the following set of CE(ALCF ♯,ALCO♯)-object assertions:

Γ∗ = {a : C♯ ∧ 〈E〉1 {b}}

∪ {b : [E]2(D♯ → D′♯) | D ⊑ D′ ∈ Γ}

∪ {b : [E]2f∀R(〈E〉1 {b}) | R ∈ R},

where E is some link from E . We show that

C is satisfiable relative to Γ in ALCF iff

Γ∗ is A-satisfiable in CE(ALCF ♯,ALCO♯).

(⇒) Suppose that {a : C} ∪ Γ is satisfiable relative to Γ. Due to the corres-
pondence between ALCF and the ADS ALCF ♯, there is an ALCF ♯-model W1

of {a : C} ∪ Γ with domain ∆1. Define a model M for CE(ALCF ♯,ALCO♯)
by taking an arbitrary ALCO♯-model W2 with domain ∆2 and putting EM =
∆1 × ∆2. It is easily checked that M |= Γ∗.

(⇐) Suppose M |= Γ∗ for a CE(ALCF ♯,ALCO♯)-model M = (W1,W2, E
M).

Let ∆ be the domain of W1. Denote by ∆′ the minimal subset of ∆ containing
aM and satisfying the following closure condition for all d, d′ ∈ ∆:

if (d, d′) ∈ SM for some d ∈ ∆′ and S ∈ R, then d′ ∈ ∆′.

Let W′
1 be the substructure of W1 induced by ∆′. Since it is straightforward

to prove that ALCF ♯ is invariant under taking generated substructures, we
have aW′

1 ∈ CW′
1 . To show that W′

1 satisfies Γ, it obviously suffices to prove

that, for every assertion D ⊑ D′ ∈ Γ, we have (D♯)W ∩ ∆′ ⊆ (D′♯)
W

∩ ∆′.
To this end, note that d ∈ (D♯ → D′♯)M whenever (d, bM) ∈ EM due to the
third component of Γ∗. Hence, it is sufficient to prove that, for all d ∈ ∆′, we
have (d, bM) ∈ EM. This, however, is an easy consequence of the facts that
(aM, bM) ∈ EM and M satisfies the third component of Γ∗. ✷
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C.2 Undecidable E-connections

The undecidability proofs in this section use a new reasoning problem: singleton
satisfiability of terms. For an ADS S = (L,M), we call an L-term t singleton
satisfiable if there exists M ∈ M such that |tM| = 1. As the following lemma
shows, there exist ADSs that are number tolerant (cf. Definition 23) and have
decidable satisfiability problems, but for which singleton satisfiability is, nev-
ertheless, undecidable:

Lemma 52 There exist number tolerant ADSs with decidable satisfiability
problems for which singleton satisfiability is undecidable. In particular, there
exist number tolerant ADSs with decidable satisfiability problems whose exten-
sions with nominals have undecidable satisfiability problems.

Proof. Consider the ADS ALC♯ = (L,M) corresponding to the description
logic ALC. It follows from, e.g., Theorem 13.15 of [19] that there exists an
uncountable set K = {Si | i ∈ I} of ADSs Si = (L,Mi) such that Mi ⊆ M
for i ∈ I and

(1) for all i ∈ I and any L-term t, satisfiability of a : t in Si implies singleton
satisfiability of t in Si;

(2) for all i, j ∈ I with i 6= j, there exists a constant term t (i.e., a term
composed using the Booleans and function symbols from the symbol ⊤)
such that a : t is Si-satisfiable and not Sj-satisfiable or vice versa.

By property (2), i 6= j implies that the set of constant terms satisfiable in
Si is not identical to the set of constant terms satisfiable in Sj . Since there
exist only countably many algorithms (i.e., Turing machines), the fact that K
is uncountable implies that there exists an i0 ∈ I such that satisfiability of
constant terms in Si0 is undecidable. Since for any satisfiable a : t the term
t is singleton satisfiable by (1), it is undecidable whether a constant term is
singleton satisfiable in Si0 .

Let M′ denote those members of M which are disjoint unions of at least ℵ0

isomorphic copies of some model in M. By M′′ ⊆ M we denote the closure
of M′ under disjoint unions and arbitrary re-interpretations of object and set
variables. The important properties of M′′ are as follows:

(a) A knowledge base Γ is satisfiable in (L,M′′) iff it is satisfiable in ALC♯.
(b) If a : t is satisfied in some M ∈ M′′ and t is a constant term, then

|tM| ≥ ℵ0. Hence no satisfiable constant term t is singleton satisfiable in
M′′.

That property (a) holds should be clear. Property (b) follows from the fact
that the extension of constant terms does not depend on the interpretation of
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set or object variables. Now set N = Mi0∪M
′′ and S = (L,N ). We claim that

S is as required. Obviously, S is number tolerant and singleton satisfiability
is undecidable. It remains to observe that the satisfiability problem for S
coincides with the satisfiability problem for ALC♯, which is decidable.

The extension of S by means of nominals has the undecidable satisfiability
problem, since {a} = t is satisfiable iff t is singleton satisfiable, for any term t.

✷

Apart from ADSs for which singleton satisfiability is undecidable, there exists
one more ADS that will play an important role in this section:

Definition 53 The ADS B1 = (LB,MB1) is defined as follows:

• LB is, as defined above already, the ADL without function symbols (apart
from the Booleans) and relation symbols;

• MB1 consists of all ADMs of the signature of LB based on a singleton
domain.

It is obviously trivial to decide satisfiability in B1. Note also that B1 is not
number tolerant.

We are now in a position to prove the undecidability results. We start with
E-connections that allow qualified number restrictions, but do not require
number tolerance: together with Lemma 52, the following lemma implies The-
orem 22:

Lemma 54 Let S = (L,M) be an ADS for which singleton satisfiability is
undecidable and let E be a non-empty set of link symbols. Then the satisfiability
problem for CE

Q(S,B1) is undecidable.

Proof. We prove the lemma by reducing singleton satisfiability in S to sat-
isfiability in CE

Q(S,B1): it is readily checked that an L-term t is singleton satis-
fiable if and only if the set of CE

Q(S,B1)-assertions (consisting of a 1-assertion
and a 2-assertion)

{t ⊑ 〈E〉1 (⊤2) , ⊤2 ⊑ 〈=1E〉2 (t)}

is satisfiable, where E is a link relation from E and 〈=1E〉i (t) is an abbrevi-
ation for 〈≤ 1E〉i (t) ∧ 〈≥ 1E〉i (t). ✷

The proofs of the other undecidability results are similar to the proof of
Lemma 54. Therefore, we give only the set of reduction assertions which var-
ies with the type of E-connection under consideration. Again together with
Lemma 52, the following lemma yields Theorem 29 (i) and (ii), which deal with
E-connections of number-tolerant ADSs allowing (i) both qualified number re-
strictions and the Boolean operators on link relations, or (ii) both qualified

73



number restrictions and the application of link operators to object variables.

Lemma 55

(i) Let S1 = (L,M) be an ADS for which singleton satisfiability is undecidable
and E a non-empty set of link symbols. Then the satisfiability problem for
CE
QB(S1,S2) is undecidable for any ADS S2.

(ii) Let S1 = (L,M) be an ADS for which singleton satisfiability is undecidable
and E a non-empty set of link symbols. Then the satisfiability problem for
CE
QO(S1,S2) is undecidable for any ADS S2.

Proof. The proof of (i) is analogous to the proof of Lemma 54: we use the
following set, which consists only of a single 2-assertion:

{b : (〈E〉2 (t) ∧ 〈=1E〉2 (⊤1) ∧ ¬ 〈¬E〉2 (t))}

The proof of (ii) is similar to the proof of Lemma 54, using the following set
of assertions (one 1-assertion and one 2-assertion):

{t ⊑ 〈E〉1 (b) , b : 〈= 1E〉2 (t)}

Here b is an object variable from L2. ✷

The following lemma takes care of Theorem 39. This theorem is concerned with
E-connections that provide for CIC (complete individual correspondence, see
Section 6.2) assertions.

Lemma 56

(i) Let S = (L,M) be an ADS for which singleton satisfiability is undecidable
and E a non-empty set of link symbols. Then the satisfiability problem for
CE
I (S,B1) is undecidable.

(ii) Let S1 = (L,M) be an ADS for which singleton satisfiability is undecidable
and E a non-empty set of link symbols. Then the satisfiability problem for
CE
IB(S1,S2) is undecidable for any ADS S2.

(iii) Let S1 = (L,M) be an ADS for which singleton satisfiability is undecid-
able and E a non-empty set of link symbols. Then the satisfiability problem for
CE
IO(S1,S2) is undecidable for any ADS S2.

Proof. (i) is similar to the proof of Lemma 54: we use the following set of
assertions (three 1-assertions):

{a : t , t ⊑ 〈E〉1 (⊤2) , 〈E〉1 b = {a}}

Here, the last assertion is a CIC assertion, a is an object variable from L1,
and b is an object variable from LB.

74



(ii) is analogous to the proof of Lemma 54; it uses the following set of assertions
(two 1-assertions and one 2-assertion):

{a : t , 〈E〉1 (b) = {a} , b : ¬ 〈¬E〉2 (t)}

Here, a is an object variable from L1 and b is an object variable from L2.

(iii) is similar to the proof of Lemma 54; it uses the following set of assertions
(three 1-assertions):

{a : t , t ⊑ 〈E〉1 (b) , 〈E〉1 (b) = {a}}.

Again, a is an object variable from L1 and b is such a variable from L2. ✷

C.3 Lower bounds

In this section we give proofs of Theorem 13 and Theorem 20.

Theorem 13. The satisfiability problem for CE(B,B) is EXPTIME-hard for
any infinite set E of links.

Proof. We reduce the EXPTIME-complete satisfiability problem for ALC-
concepts relative to TBoxes [64] to the satisfiability problem for CE(B,B). To
this end, select for any role name R ∈ R of ALC two links ER

1 and ER
2 , set

E = {ER
1 , E

R
2 | R ∈ R},

and associate with any concept name Ai of ALC a set variable XAi of the first
component of CE(B,B). Now define a translation .† by taking

A†
i = XAi (C1 ∧ C2)

† = C†
1 ∧ C

†
2

(¬C)† = ¬C† (∃R.C)† =
〈

ER
1

〉1 ( 〈

ER
2

〉2
(C†)

)

(C1 ⊑ C2)
† = C†

1 ⊑ C†
2 (a : C)† = a : C†

We claim that for every set Γ of ALC-assertions and the corresponding set
Γ† = {ϕ† | ϕ ∈ Γ} of CE(B,B) assertions,

Γ is ALC-satisfiable iff Γ† is CE(B,B)-satisfiable. (♠)

For assume that Γ is satisfied in an ALC-model

I =
〈

∆, AI
1 , . . . , R

I
1 , . . . , a

I
1 , . . .

〉

.

Define a model

M =
〈

M1,M2, {(E
R
1 )M, (ER

2 )M}R∈R
〉

,
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where M1 =
〈

∆, (XA1)M1 , . . . , aM1
1 , . . .

〉

with (XAi)M1 = AI
i and aM1

i = aIi ,
M2 is some arbitrary ADM for B with domain ∆, and

(ER
1 )M = {(x, x) | x ∈ ∆}, (ER

2 )M = {(x, y) | (y, x) ∈ RI}.

Clearly, it suffices to show that, for any concept C of ALC,

CI = (C†)M.

The proof is by induction on the construction of C. We consider the case
C = ∃R.D, leaving the remaining ones to the reader:

(〈

ER
1

〉1
(
〈

ER
2

〉2
(D†))

)M

= {x | ∃y. y ∈
(〈

ER
2

〉2
(D†)

)M

∧ (x, y) ∈ (ER
1 )M}

= {x | x ∈
(〈

ER
2

〉2
(D†)

)M

}

= {x | ∃y ∈ (D†)M (x, y) ∈ RI}

= (∃R.D)I .

Conversely, suppose Γ† is satisfied in a model M of CE(B,B). Define a model
I of ALC by taking AI

i = (XAi)M1 , aIi = aM1
i , and

RI = {(x, y) | ∃z ∈ ∆2. (x, z) ∈ (ER
1 )M ∧ (y, z) ∈ (ER

2 )M}.

Again, it suffices to show that, for any concept C of ALC, CI = (C†)M. We
consider only the case C = ∃R.D of the inductive proof:

(∃R.D)I = {x ∈ ∆1 | ∃y ∈ DI (x, y) ∈ RI}

= {x ∈ ∆1 | ∃y ∈ (D†)M∃z ∈ ∆2. (x, z) ∈ (ER
1 )M ∧ (y, z) ∈ (ER

2 )M}

= {x ∈ ∆1 | ∃z ∈ ∆2. z ∈
(〈

ER
2

〉2
(D†)

)M

∧ (x, z) ∈ (ER
1 )M}

=
(〈

ER
1

〉1
(
〈

ER
2

〉2
(D†))

)M

.

This completes the proof. ✷

Let us now prove Theorem 20. To this end, we are going to reduce the
NEXPTIME-complete satisfiability problem for the modal logic S5× S5 [57]
to the satisfiability problem for CE

B(B,B).

Theorem 20. The satisfiability problem for CE
B(B,B) is NEXPTIME-hard,

for any infinite E .

Proof. Recall that S5×S5–formulas are composed from propositional vari-
ables p1, . . . by means of the Boolean operators and the modal operators ✷1

and ✷2. S5 × S5-models N = 〈W1 ×W2,V〉 consist of the Cartesian product
of two non-empty sets W1 and W2 and a valuation V which maps any proposi-
tional variable to a subset ofW1×W2. The extension ϕN of an S5×S5-formula
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ϕ in N is computed inductively as follows:

pN

i = V(pi), (ψ1 ∧ ψ2)
N = ψN

1 ∩ ψN

2 , (¬ψ)N = (W1 ×W2) \ ψ
N,

(✷1ψ)N = {(w1, w2) | ∀v ∈W1 (v, w2) ∈ ψN},

(✷2ψ)N = {(w1, w2) | ∀v ∈W2 (w1, v) ∈ ψN}.

A formula ϕ is S5 × S5-satisfiable if there exists an S5 × S5-model in which
ϕ has a non-empty extension.

Suppose now that ϕ is an S5 × S5-formula. Denote by sub(ϕ) the set of
all subformulas of ϕ. For any ψ ∈ sub(ϕ), take a link Eψ ∈ E and let the
CE
B(B,B)-knowledge base Γ consist of:

(1) Eψ1∧ψ2 = Eψ1 ∧ Eψ2 , for ψ1 ∧ ψ2 ∈ sub(ϕ),
(2) E¬ψ = ¬Eψ, for ¬ψ ∈ sub(ϕ);
(3) 〈¬Eψ〉

2 (⊤1) = [E✷1ψ]
2(⊥1), [E✷1ψ]2(⊥1) = 〈¬E✷1ψ〉

2 (⊤1), for ✷1ψ ∈
sub(ϕ);

(4) 〈¬Eψ〉
1 (⊤2) = [E✷2ψ]

1(⊥2), [E✷2ψ]1(⊥2) = 〈¬E✷2ψ〉
1 (⊤2), for ✷2ψ ∈

sub(ϕ).

It was shown in Section 5.2 that such equations can be added to the vocabulary
when working with connections allowing the Boolean closure of links. More
precisely, an equation of the form F = G is a shorthand for the conjunction
of the two link inclusions F ⊑ G and G ⊑ F . We now claim that

ϕ is S5 × S5-satisfiable iff

Γ ∪ {a : 〈Eϕ〉
1 (⊤2)} is satisfiable in CE

B(B,B), (♣)

where a is an object name of the first component of CE
B(B,B).

To prove (♣), assume first that ϕ is satisfied in N = 〈W1 ×W2,V〉. We con-

struct a model M =
〈

M1,M2, {EM

ψ }ψ∈sub(ϕ)

〉

that satisfies Γ∪{a : 〈Eϕ〉
1 (⊤2)}.

Let M2 be any model for B with domain W2. By assumption, ϕN 6= ∅, so we
can pick some (u, v) ∈ ϕN and choose M1 to be any model for B with domain
W1, where aM1 = u. Finally, we can define EM

ψ = ψN ⊆ W1 ×W2, for every

ψ ∈ sub(ϕ). By construction, M |= a : 〈Eϕ〉
1 (⊤2), so it suffices to show that

equations (1)–(4) hold in M, which can be done by structural induction.

If ψ1 ∧ ψ2 ∈ sub(ϕ), then

EM

ψ1∧ψ2
= (ψ1 ∧ ψ2)

N = ψN

1 ∩ ψN

2 = EM

ψ1
∩ EM

ψ2
.

Equation (2) is shown in the same way. To prove (3), notice that the following
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equivalences hold:

v ∈ (〈¬Eψ〉
2 (⊤1))

M iff ∃u (u, v) /∈ EM

ψ iff ∃u (u, v) /∈ ψN

iff ∀u (u, v) /∈ (✷1ψ)N iff ∀u (u, v) /∈ EM

✷1ψ
iff v ∈ ([E✷1ψ]

2(⊥1))
M

and

v ∈ ([E✷1ψ]2(⊥1))
M iff ∀u (u, v) /∈ (✷1ψ)N iff ∃u (u, v) /∈ (✷1ψ)N

iff ∃u (u, v) /∈ (E✷1ψ)
M iff v ∈ (〈¬E✷1ψ〉

2 (⊤1))
M

The equations in (4) are proved in exactly the same way.

Conversely, assume that Γ∪ {a : 〈Eϕ〉
1 (⊤2)} is satisfied in a model M, where

M =
〈

M1,M2, {EM
ψ }ψ∈sub(ϕ)

〉

is based on the domains W1 and W2. We define

a model N for S5×S5 based on the domain W1 ×W2 by letting pN

i = EM

pi
for

pi ∈ sub(ϕ) and arbitrary otherwise. It can now be shown by induction that,
for all ψ ∈ sub(ϕ),

EM

ψ = ψN. (♥)

The base case, ψ = pi, follows from the definition of N. If ψ = ψ1 ∧ ψ2, then
(ψ1 ∧ ψ2)

N = ψN
1 ∩ ψN

2 = EM
ψ1

∩ EM
ψ2

= EM
ψ1∧ψ2

by (1). The case of ψ = ¬χ is
shown in the same way using (2). The case of ψ = ✷1χ is shown using (3) as
follows:

(u, v) /∈ (✷1ψ)N iff ∃û ∈W1 (û, v) /∈ ψN

iff ∃û ∈W1 (û, v) /∈ EM

ψ (by induction)

iff v ∈ (〈¬Eψ〉
2 (⊤1))

M

iff v ∈ ([E✷1ψ]2(⊥1))
M (by (3.1))

iff ∀û ∈W1 (û, v) /∈ (E✷1ψ)
M

⇒ (u, v) /∈ (E✷1ψ)M

and

(u, v) /∈ (E✷1ψ)M ⇒ ∃û ∈W1 (û, v) /∈ (E✷1ψ)M

iff v ∈ (〈¬E✷1ψ〉
2 (⊤1))

M

iff v ∈ ([E✷1ψ]2(⊥1))
M (by (3.2))

iff (u, v) /∈ (✷1ψ)N (from above).

The case of ψ = ✷2χ is treated in the same way. This shows (♥).

As M |= a : 〈Eϕ〉
1 (⊤2), there is a v ∈ W2 such that (aM, v) ∈ EM

ϕ = ϕN 6= ∅.
It follows that ϕ is satisfied in N, which proves (♣). ✷

78



References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.
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