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Abstrat

While lassial Desription Logis (DLs) onentrate on the representation of stati

oneptual knowledge, reently there is a growing interest in DLs that, addition-

ally, allow to apture the temporal aspets of oneptual knowledge. Suh temporal

DLs are based either on time points or on time intervals as the temporal primitive.

Whereas point-based temporal DLs are well-investigated, this is not the ase for

interval-based temporal DLs: all known logis either su�er from rather limited ex-

pressive power or have undeidable reasoning problems. In partiular, there exists no

deidable interval-based temporal DL that provides for general TBoxes|one of the

most important expressive means in modern desription logis. In this paper, for the

�rst time we de�ne an interval-temporal DL that is equipped with general TBoxes

and for whih reasoning is deidable (and, more preisely, ExpTime-omplete).

Key words: desription logi, temporal reasoning, tree automata, omplexity

1 Introdution

Desription Logis (DLs) are a family of logis that originated in arti�ial intel-

ligene as a tool for reasoning about oneptual knowledge, and are nowadays

used in a broad spetrum of appliations [6℄. The fundamental notion of knowl-

edge representation with DLs is that of a onept, where omplex onepts

are onstruted from the following atoms: onept names (unary prediates),
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role names (binary prediates), and a set of onept onstrutors that are

provided by the hosen DL. For example, the following onept is formulated

in the basi desription logi ALC [34℄:

Human uMale u 9has-hild:Human

In this example, Human and Male are onept names while has-hild is a role

name. It should be easy to see that, intuitively, the above onept desribes

fathers.

Whereas lassial DLs onentrate on the representation of \stati" oneptual

knowledge (suh as in the above example), reently there is a growing interest

in \dynami" DLs that allow to inorporate, e.g., temporal and epistemi

aspets of the appliation domain. Conerning temporal desription logis, we

an distinguish several quite di�erent approahes (see e.g. the survey [2℄). The

most important deision to be made when devising a temporal DL is whether

time points or time intervals should be the temporal primitive, sine this

deision has a serious ontologial impat and may have dramati onsequenes

for issues of deidability and omputational omplexity.

In modal and temporal logis, to whih desription logis are very losely re-

lated [32,13℄, time points are the most popular temporal atom, see e.g. the

handbook [12℄. Consequently, there has been a series of papers on temporal

DLs that use time points as their temporal primitive in the same spirit as

modal and temporal logis do [33,41,36,27℄. These logis o�er an interesting

expressivity and sometimes have quite attrative omputational properties.

However, their expressive power is not strong enough to talk about time in-

tervals in a satisfying way.

In arti�ial intelligene, time intervals have a strong tradition as a temporal

primitive sine Allen's seminal 1983 paper [1℄, see e.g. the handbook [11℄.

As DLs form a sub�eld of arti�ial intelligene, it is hardly surprising that

interval-based temporal DLs also reeived a onsiderable amount of attention.

The expressive power of suh DLs is usually based on onept onstrutors that

refer to the 13 Allen relations, whih desribe all possible ways in whih two

time intervals an be related. While the advantage of interval-based temporal

DLs is that they provide an appealing expressivity, their disadvantage is that it

an be rather hard to avoid undeidability of reasoning. For example, the �rst

interval-based temporal DL proposed by Shmiedel [35℄ an easily be proved

to be undeidable by redution of Halpern and Shoham's (undeidable) modal

logi of time intervals [15℄. Based on this observation, researhers have tried

either to live with undeidability [8℄ or to �nd variants of Shmiedel's original

logi that are still deidable [3℄.

The main obstale for many potential appliations of deidable interval-based

temporal DLs is that, in order to avoid undeidability, these DLs do not pro-
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vide for so-alled general TBoxes. General TBoxes are �nite sets of onept

equations and a very important expressive means provided by all state-of-the-

art \stati" desription logis, and by all modern DL reasoning systems suh

as FaCT and RACER [18,14℄. The importane of TBoxes stems from the fat

that they allow to apture terminologial knowledge and bakground knowl-

edge of an appliation domain. For example, the following onept equation

de�nes the notion \father" (thus apturing terminologial knowledge):

Father

:

= Human uMale u 9has-hild:Human

However, onept equations need not de�ne notions. They an also desribe

bakground knowledge in the form of more general onstraints:

:9has-hild:Human

:

= 9has-favorite:Nightlub

This onept equation states that people having no hildren are preisely those

people having a favorite nightlub.

The ontribution of this paper is to desribe a deidable temporal desription

logi T DL that provides for general TBoxes and allows interval-based temporal

representation and reasoning. Indeed, T DL is natively point-based, but ad-

mits a straightforward representation of Allen's interval relations, thus being

a suitable tool for intermixed point- and interval-based temporal reasoning

with general TBoxes. More preisely, T DL extends the basi propositionally

losed desription logi ALC with

{ general TBoxes;

{ abstrat features, i.e. role names interpreted in funtional relations;

{ temporal features: a new syntati type that allows to assoiate time points

(rational numbers) with domain elements;

{ a temporal onept onstrutor allowing to state that two time points at-

tahed via temporal features are in one of the relations <;�;=; 6=;�; >.

For example, the following T DL-onept equation expresses that hildren are

born after their parents were:

>

:

= Human! 9((mother birthday) < birthday)u 9((father birthday) < birthday)

In this equation, mother and father are abstrat features, and birthday is a

temporal feature whose value is the birthday of persons enoded as a rational

number|a time point. The onjunts in the onsequene of the impliation

are both instantiations of the temporal onept onstrutor and must not

be onfused with the existential restrition as in 9hild:Human. Note that

(mother birthday) denotes omposition of the abstrat feature mother with the

temporal feature birthday.

We have laimed that Allen's interval relations an straightforwardly be en-
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oded in T DL. Assume, for example, that we want to represent the life-time of

people by a time interval and then desribe persons whose life-time is properly

overlapping (this is one of the Allen relations) with that of their mother. The

obvious idea is to represent intervals in terms of their start- and end-point

and then to use the relations on time points <;�;=; 6=;�; > to de�ne Allen's

interval relations. To represent the above example, we ould thus write

Human u 9((mother `) < `) u 9((mother r) < r)

u 9(` < r) u 9((mother `) < (mother r));

where the temporal feature ` represents left interval endpoints and the tem-

poral feature r represents right interval endpoints. Sine this onept requires

lose inspetion to reveal that it talks about the Allen relation \overlaps", we

will de�ne a representation framework that builds on T DL and treats time

intervals (and time points) as �rst-lass itizens. In this framework, we an

reformulate the above onept as

Human u 9(mother overlaps self):

Here, mother is still an abstrat feature and self is a keyword of the framework.

Conrete features do not appear expliitly in this abbreviated syntax. More

details are provided in Setion 3. It is interesting to note that interval-based

temporal representation with T DL is similar in spirit to the Allen-based tem-

poral onstraint networks (see e.g. [1,40,38,29℄) rather than to Shmiedel's or

Halpern and Shoham's interval-based desription/modal logis. A more de-

tailed omparison of these two families of interval-based temporal desription

logis an be found in [4℄, whih investigates the relationship between a rela-

tive of T DL and the logi T L-ALCF , a deidable and interval-based temporal

DL that both restrits and extends Shmiedel's original proposal [3℄. However,

also T L-ALCF does not provide for general TBoxes.

There exists a seond, non-temporal view on the desription logi T DL that

we should also like to disuss. One shortoming of simple desription logis

suh as ALC is that they represent knowledge on an abstrat logi level,

thus prohibiting an adequate representation of \onrete knowledge" suh as

knowledge about sizes, weights, ages, or even spatial extensions. To eliminate

this de�ieny, DLs have been extended with so-alled onrete domains as

�rst proposed in [5℄, for a reent survey onsult [25℄. The relationship between

T DL and desription logis with onrete domains is a rather intimate one:

indeed, T DL an be viewed as the extension of ALC with general TBoxes and

a partiular onrete domain (more details are provided in Setion 2). Due to

this fat, the results proved in this paper an be viewed in a di�erent light.

In [26℄, the extension of ALC with onrete domains and general TBoxes has

been onsidered. As it turns out, the resulting logi is undeidable for many

interesting onrete domains. It has been an open problem whether there
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exist any useful onrete domains that an be ombined with general TBoxes

without loosing deidability. Sine T DL an be viewed as being equipped with

a onrete domain and, in our opinion, is a very useful DL, we answer this

question to the aÆrmative.

This paper is organized as follows. In Setion 2, we formally introdue the

desription logi T DL and disuss its relationship to onrete domains on

more formal grounds. Setion 3 starts with a desription of the framework for

representing mixed point- and interval-based temporal information. To illus-

trate the usefulness of both T DL and the representation framework, we then

desribe an example appliation from the area of proess engineering. In Se-

tion 4, we use an approahed based on automata on in�nite trees to show that

satis�ability and subsumption of T DL-onepts w.r.t. general TBoxes is de-

idable. This proof also provides us with a tight ExpTime omplexity bound.

In Setion 5, we onsider another ommon DL reasoning problem: ABox on-

sisteny. By redution to onept satis�ability, we prove that, in T DL, ABox

onsisteny is also ExpTime-omplete. The redution is muh less straightfor-

ward than e.g. in the ase of ALC due to the presene of temporal information.

Finally, we onlude in Setion 6.

All results in this artile are from the PhD Thesis [22℄. The results obtained

in Setion 4 have previously been published in the onferene paper [20℄.

2 The Desription Logi T DL

We formally introdue the desription logi T DL, starting with the syntax.

Examples are delayed to the subsequent setion.

De�nition 1 (T DL Syntax) Let N

C

, N

R

, and N

tF

be mutually disjoint and

ountably in�nite sets of onept names, role names, and temporal features.

We assume that N

R

is partitioned into two ountably in�nite subsets N

aF

and

N

rR

. The elements of N

aF

are alled abstrat features and the elements of

N

rR

regular roles. A path u is a omposition f

1

� � � f

n

g of n abstrat features

f

1

; : : : ; f

n

(n � 0) and a temporal feature g. The set of T DL-onepts is the

smallest set suh that

(1) every onept name is a onept

(2) if C and D are onepts, R is a role name, g is a temporal feature, u

1

; u

2

are paths, and P 2 f<;�;=; 6=;�; >g, then the following expressions are

also onepts: :C, C uD, C tD, 9R:C, 8R:C, 9(u

1

P u

2

), and g".

A onept equation is an expression of the form C

:

= D, where C and D are

onepts. A �nite set of onept equations is alled TBox.
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The TBox formalism introdued in De�nition 1 is often alled general TBox

sine it subsumes several other, muh weaker variants [9,19℄. Throughout this

paper, we use > as abbreviation for an arbitrary propositional tautology, ?

for :>, and u" for 8f

1

: � � � 8f

k

:g" if u = f

1

� � � f

k

g. As most desription logis,

T DL is equipped with a Tarski-style set-based semantis.

De�nition 2 (T DL Semantis) An interpretation I is a pair (�

I

; �

I

), where

�

I

is a set alled the domain and �

I

is the interpretation funtion. The in-

terpretation funtion maps

� eah onept name C to a subset C

I

of �

I

,

� eah role name R to a subset R

I

of �

I

��

I

,

� eah abstrat feature f to a partial funtion f

I

from �

I

to �

I

, and

� eah temporal feature g to a partial funtion g

I

from �

I

to the rational

numbers Q.

1

For paths u = f

1

� � �f

n

g and domain elements d 2 �

I

, we set u

I

(d) :=

g

I

(f

I

n

(� � � (f

I

1

(d)) � � � )). The interpretation funtion is extended to arbitrary

onepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

9(u

1

P u

2

)

I

:= fd 2 �

I

j 9x

1

; x

2

2 Q : u

I

1

(d) = x

1

; u

I

2

(d) = x

2

; and x

1

P x

2

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg

An interpretation I is a model of a onept C i� C

I

6= ;. I is a model of a

TBox T i� it satis�es C

I

= D

I

for all onept equations C

:

= D in T .

Note that the temporal onstrutor 9(u

1

P u

2

) has an existential semantis

sine it fores the interpretation of the paths u

1

and u

2

to be de�ned. The most

important reasoning problems for desription logis are onept satis�ability

and onept subsumption, i.e. the questions whether a given onept an have

any instanes and whether one onept is more general than another one [6℄.

For both reasoning tasks, a TBox T is used to desribe the \bakground

theory".

De�nition 3 (Reasoning Problems) Let C and D be onepts and T a

TBox. C subsumes D w.r.t. T (written D v

T

C) i� D

I

� C

I

for all models

I of T . C is satis�able w.r.t. T i� there exists a ommon model of C and T .

1

It would not make a di�erene to use real numbers instead of rational numbers

as time points. This is disussed in more detail in Setions 4.1 and 6.
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It is well-known that (un)satis�ability and subsumption an be mutually re-

dued to eah other: C v

T

D i� C u :D is unsatis�able w.r.t. T and C is

satis�able w.r.t. T i� C 6v

T

?. This fat allows us to onentrate on satis-

�ability sine obtained deidability and omplexity results are easily \pulled

over" to subsumption.

Another very important reasoning problem is so-alled ABox onsisteny [6℄.

Intuitively, an ABox desribes the state of a�airs in the real-world at a par-

tiular time, i.e. it is a \snapshot" of the real world. ABox onsisteny is then

the ABox ounterpart to onept satis�ability.

De�nition 4 (ABox, ABox Consisteny) Let O

a

and O

t

be a ountably

in�nite and mutually disjoint sets of objet names and time point names. If C

is a onept, R a role name, g a temporal feature,

P 2 f<;�;=; 6=;�; >g, a; b 2 O

a

, and x; y 2 O

t

, then the following are ABox

assertions:

a : C; ha; bi : R; ha; xi : g; x P y:

A �nite set of assertions is alled an ABox. Interpretations I an be extended

to ABoxes by demanding that, additionally, �

I

maps every objet name a to

an element a

I

of �

I

and every time point name x to a rational number x

I

.

An interpretation I then satis�es an assertion

a : C i� a

I

2 C

I

ha; bi : R i� (a

I

; b

I

) 2 R

I

ha; xi : g i� g

I

(a

I

) = x

I

xP y i� x

I

P y

I

:

An interpretation is a model of an ABox A i� it satis�es all assertions in A.

An ABox A is onsistent w.r.t. a TBox T i� there exists a ommon model of

A and T .

Let us view an example T DL ABox:

Mary : Human John : Human

hMary; t

1

i : birthday hJohn; t

2

i : birthday

hJohn;Maryi : father t

2

< t

1

where Human is a onept name, birthday a temporal feature, father an abstrat

feature, Mary and John are from O

a

, and t

1

and t

2

are from O

t

. Obviously, this

ABox states that John is the father of Mary and that John was born before

Mary was born.
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Observe that onept satis�ability (and thus also onept subsumption) an

be redued to ABox onsisteny: a onept C is satis�able w.r.t. a TBox T i�

the ABox fa : Cg is satis�able w.r.t. T , where a 2 O

a

.

We now disuss the relationship between T DL and desription logis with

onrete domains. To this end, let us introdue onrete domains formally.

De�nition 5 (Conrete Domain) A onrete domain D is a pair (�

D

;�

D

),

where �

D

is a set alled the domain, and �

D

is a set of prediate names. Eah

prediate name P 2 �

D

is assoiated with an arity n and an n-ary prediate

P

D

� �

n

D

.

In Baader and Hanshke's original proposal [5℄, onrete domains are inte-

grated into the desription logi by using a onept onstrutor 9u

0

; : : : ; u

n

:P ,

where u

0

; : : : ; u

n

are paths and P 2 �

D

is a prediate of arity n + 1. The se-

mantis of this onrete domain onstrutor is as follows:

(9u

0

; : : : ; u

n

:P )

I

:= fd 2 �

I

j 9x

0

; : : : ; x

n

2 Q : u

I

i

(d) = x

i

for i � n

and (x

0

; : : : ; x

n

) 2 P

D

g:

Hene, T DL an be viewed as being equipped with the onrete domain

D

T DL

:= (Q; f<;�;=; 6=;�; >g), where all prediates are binary and have

the obvious semantis.

We should also like to omment on a di�erene between T DL and some other

desription logis with onrete domains: in their original proposal of onrete

domains, Baader and Hanshke do not distinguish between abstrat and tem-

poral features (whih are usually alled \onrete features" in a non-temporal

onrete domain ontext [25℄), but rather provide only one type of feature

interpreted as a partial funtion from �

I

to �

I

[�

D

. We prefer the separate-

ness of features sine, in our opinion, this yields a learer formalism while the

di�erene in expressive power is negligible.

3 Temporal Reasoning with T DL

In this setion, we introdue a general framework for the representation of

temporal oneptual knowledge using the desription logi T DL. As skethed

in the introdution, despite its point-based semantis T DL an be used as

a full-edged interval-based temporal desription logi. This fat is reeted

by our framework, whih allows to freely ombine point-based and interval-

based temporal representation. The usefulness of our framework is illustrated

by several examples from the area of proess engineering. This appliation

of desription logis has already been onsidered, e.g., by Sattler and Moli-
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ATemporal

:

= t" u `" u r"

Temporal

:

=Point t Interval

Point

:

=9(t = t)

Interval

:

=9(` < r)

>

:

=9(t = t)! (`" u r")

u (9(` = `) t 9(r = r))! (9(` < r) u t")

Fig. 1. TBox T

�

with basi de�nitions of the framework.

tor [31,28℄. However, in Sattler's and Molitor's approah only stati knowledge

about proess engineering is onsidered, i.e., there is no expliit representation

of temporal relationships. We use our framework to show how the temporal

aspets of this appliation domain an be represented in T DL, thus re�ning

Sattler's and Molitor's model.

The representation framework onsists of several onventions and abbrevia-

tions. We assume that eah entity of the appliation domain is either temporal

or atemporal. If it is temporal, its temporal extension may be either a time

point or a time interval. We generally assume that single time points are repre-

sented by the temporal feature t, left endpoints of intervals are represented by

the temporal feature `, and right endpoints of intervals are represented by the

temporal feature r.

2

This is aptured by the TBox T

�

displayed in Figure 1.

The �rst four onept equations in the TBox de�ne the relevant notions while

the �fth equation rules out pathologial ases suh as objets whose extension

is both a point and an interval. Note that onepts of the form 9(t = t) are

used only to express that there exists an assoiated value for the temporal

feature t. The TBox learly implies that the onepts ATemporal, Point, and

Interval are mutually disjoint, and that their union is equivalent to >.

As noted in the introdution, interval-based reasoning with T DL is based on

the Allen interval relations [1℄, whih are displayed in Figure 2. To keep on-

epts readable, we de�ne a suitable abbreviation for eah of the 13 relations.

For example,

9(p ontains p

0

) abbreviates 9(p` < p

0

`) u 9(pr > p

0

r)

where p and p

0

are sequenes of abstrat features. It is a straightforward job to

derive similar abbreviations for the other Allen relations given their de�nition

in Figure 2. In what follows, we use self to denote the empty sequene of

abstrat features. For example,

9(p starts self) abbreviates 9(p` = `) u 9(pr < r):

2

It is only for simpliity that we assume temporal entities to have a unique tempo-

ral extension. In priniple, we ould also allow multiple extensions e.g. for lifetime,

hildhood, worktime, et.
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blak before gray

gray after blak

blak meets gray

gray met-by blak

blak overlaps gray

gray overlapped-by blak

blak during gray

gray ontains blak

blak starts gray

gray started-by blak

blak �nishes gray

gray �nished-by blak

Fig. 2. The Allen relations (without equal).

Intuitively, self refers to the interval assoiated with the domain element at

whih the 9(p starts self) onept is \evaluated".

Sine we have intervals and points at our disposal, we should be able to talk

about the relationship between points and intervals. More preisely, there

exist 5 possible relations between a point and an interval and we introdue

the following abbreviations for them:

9(p beforep p) for9(pt < p

0

`)

9(p startsp p

0

) for9(pt = p

0

`)

9(p duringp p

0

) for9(p

0

` < pt) u 9(pt < p

0

r)

9(p �nishesp p

0

) for9(pt = p

0

r)

9(p afterp p

0

) for9(p

0

r < pt)

where p and p

0

are again sequenes of abstrat features. We refrain from de�n-

ing abbreviations for the inverses of these relations sine they an easily be

expressed by exhanging the arguments in the above abbreviations.

Now for the appliation of our framework in proess engineering. Our goal

is to represent information about an automated hemial prodution proess

that is arried out by some omplex tehnial devie. The devie operates eah

day for some time, depending on the output quantity that is to be produed.

It needs omplex startup and shutdown phases before and after operation.

Moreover, some weekly maintenane is needed to keep the devie funtional.

Let us �rst represent the underlying temporal struture onsisting of weeks

and days. The orresponding TBox an be found in Figure 3. In the �gure,

we use C v D as an abbreviation for >

:

= (C ! D). The �rst onept

equation states that eah week onsists of seven days, where the i-th day
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Week

:

= Interval u

u

1�i�7

9day

i

:Day u

9(day

1

starts self) u 9(day

7

�nishes self) u

u

1�i<7

9(day

i

meets day

i+1

) u

9next:Week u 9(self meets next)

Day v Interval

Fig. 3. Weeks and Days.

Day v 9start:Startup u 9op:Operation u 9shut:Shutdown u

9(start Æ ` � `) u

9(start meets op) u

9(op meets shut) u

9(shut Æ r � r)

Week v 9maint:Maintenane u 9(self ontains maint)

Interval w Startup t Operation t Shutdown tMaintenane

Fig. 4. Operation and Maintenane.

is aessible from the orresponding week via the abstrat feature day

i

. The

temporal relationship between the days are as expeted: Monday starts the

week, Sunday �nishes it, and eah day temporally meets the sueeding one.

Moreover, eah week has a suessor week (aessible via the abstrat feature

next) that it temporally meets. The TBox learly implies that days 2 to 6 are

during the orresponding week although this is not expliitly stated.

Figure 4 de�nes the startup, operation, shutdown, and maintenane phases,

where start, op, shut, and maint are abstrat features and \Æ" is used as a

separator for features that are used in sequenes for better readability. In

lines 2 to 5 of the onept equation for Day, we freely ombine abbreviations

from the framework with prediates from T DL to obtain suint de�nitions.

Taken together, these lines imply that phases are related to the orresponding

day as follows: startup via starts or during , shutdown via during or �nishes,

and operation via during . Moreover, the startup phase meets the operation

phase, whih in turn meets the shutdown phase.

Until now, we did not say anything about the temporal relationship of main-

tenane and operation. This may be inadequate, if, for example, maintenane

and operation are mutually exlusive. We an take this into aount by using

11



the additional onept equation

Week v u

1�i�7

�

9(maint before day

i

Æ op) t

9(maint after day

i

Æ op)

� (�)

whih expresses that the weekly maintenane phase must be either before or

after the operation phase of every weekday. It is not hard to hek that this

is the ase if and only if the weekly maintenane phase is stritly separated

from the operation phase of any weekday.

This �nishes the modeling of the basi properties of our prodution proess.

Let us de�ne some more advaned onepts to illustrate reasoning with T DL.

For example, we an de�ne a busy week as follows:

BusyWeek

:

= Week u u

1�i�7

�

9(day

i

Æ start starts day

i

) u

9(day

i

Æ shut �nishes day

i

)

�

The onept equation says that on every day of a busy week, the startup phase

starts at the beginning of the day and the shutdown �nishes at the end of the

day. Say now that it is risky to do maintenane during startup and shutdown

phases and de�ne

RiskyWeek

:

= Week u : u

1�i�7

�

9(day

i

Æ start before maint) t

9(day

i

Æ shut after maint)

�

expressing that, in a risky week, the maintenane phase is not stritly sepa-

rated from the startup and shutdown phases. If T is the TBox obtained by

taking the onept equations from Figures 1, 3, and 4, then a T DL reasoner

an be used to dedue that BusyWeek v

T

RiskyWeek, i.e., every busy week is

a risky week: in a busy week, every day of the week is partitioned into startup,

shutdown, and operation phases. Sine maintenane may not overlap with op-

eration phases by (�), it must overlap with startup and/or shutdown phases,

whih means that the week is a risky week.

In order to demonstrate ombined reasoning with time points and intervals,

we propose a further re�nement of our model. Assume that the prodution

proess is fully automated exept that an operator interation is neessary to

initiate the startup and shutdown phases. This is desribed by the onept

equations in Figure 5, where up-int and down-int are abstrat features. Note

that the operator interation is represented by a time point instead of a time

interval. To illustrate reasoning, assume that, on Friday of alendar week 23,

a shutdown interation was performed by the maintenane team:

Week23 v Week u 9(day

5

Æ down-int duringp maint):

It is not hard to see that this is inonsistent with the desription of faultless

12



Day v 9up-int:Interation u 9down-int:Interation u

9(up-int startsp start) u

9(down-int startsp shut)

Interation v Point

Fig. 5. Operator interation.

operation from above, i.e., that Week23 is unsatis�able: the shutdown inter-

ation �nishes the operation phase (sine it starts the shutdown phase and

the operation phase meets the shutdown phase), whih means that the main-

tenane phase, during whih the shutdown interation was performed, is not

stritly separated from the operation phase. This separateness, however, is re-

quired by (�) sine maintenane and operation are mutually exlusive. Hene,

unsatis�ability of Week23 allows us to onlude that something went wrong

on the Friday of alendar week 23.

It should be obvious how to extend the proposed framework to ABoxes and

ABox reasoning. Details are left to the reader.

4 The Conept Satis�ability Algorithm

In this setion, we prove the satis�ability of T DL-onepts w.r.t. TBoxes to

be deidable and obtain a tight ExpTime omplexity bound for this reasoning

task. By the redution given in Setion 2, we obtain ExpTime-ompleteness

of T DL-onept subsumption w.r.t. TBoxes as well. The upper bound is es-

tablished using an automata-theoreti approah: �rst, models are abstrated

to so-alled Hintikka-trees suh that there exists a model for a onept C and

a TBox T i� there exists a Hintikka-tree for C and T . Then we build, for

eah T DL-onept C and TBox T , a looping tree automaton A

C;T

(i.e., a

B�uhi tree automaton where every run is aepting) that aepts exatly the

Hintikka-trees for C and T . Hene, A

C;T

aepts the empty (tree-) language

i� C is unsatis�able w.r.t. T . Sine the translation produes at most an ex-

ponential blow-up in size and the emptiness-test for looping automata an

be performed in polynomial time, we obtain the announed ExpTime upper

bound.

Throughout this setion, we assume that T DL-onepts and TBoxes ontain

only the prediates < and =. It is easy to see that this an be done without

loss of generality sine other prediates an be eliminated by exhaustively

13



applying the following rewrite rules:

9(u

1

� u

2

) ; 9(u

1

< u

2

) t 9(u

1

= u

2

)

9(u

1

� u

2

) ; 9(u

1

> u

2

) t 9(u

1

= u

2

)

9(u

1

6= u

2

) ; 9(u

1

> u

2

) t 9(u

1

< u

2

)

For devising a satis�ability algorithm, it is interesting to note that T DL with

general TBoxes laks the �nite model property sine there exist satis�able

TBoxes suh as >

:

= 9(g < fg) having only in�nite models (due to the se-

mantis of the \<" prediate). Hene, Hintikka-trees and most other strutures

used for deiding satis�ability are (potentially) in�nite.

4.1 Preliminaries

We introdue the basi notions needed for the automata-theoreti satis�ability

algorithm like in�nite trees, looping automata, and the language they aept.

We also introdue onstraint graphs whih will be needed to take into aount

temporal information when de�ning Hintikka trees.

De�nition 6 (Looping Automaton) Let M be a set and k � 1. A k-ary

M -tree is a mapping T : f1; : : : ; kg

�

!M that labels eah node � 2 f1; : : : ; kg

�

with T (�) 2 M . Intuitively, the node �i is the i-th hild of �. We use � to

denote the empty word (orresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary M-trees is de�ned by a �nite

set Q of states, a �nite alphabet M , a subset I � Q of initial states, and a

transition relation � � Q�M �Q

k

.

A run of A on an M-tree T is a mapping r : f1; : : : ; kg

�

! Q with r(�) 2 I

and

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for eah � 2 f1; : : : ; kg

�

: A looping automaton aepts all those M-trees for

whih there exists a run, i.e., the language L(A) of M-trees aepted by A is

L(A) := fT j there is a run of A on Tg:

Vardi and Wolper [39℄ show that the emptiness problem for looping automata,

i.e., the problem to deide whether the language L(A) aepted by a given

looping automaton A is empty, is deidable in polynomial time.

A Hintikka-tree T for C and T orresponds to a anonial model I of C

and T . Apart from representing the abstrat domain �

I

together with the
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<

<

v

1

v

2

Fig. 6. A onstraint graph ontaining no <-yle that is unsatis�able over N.

interpretation of onepts and roles, T indues a direted graph whose edges

are labeled with prediates from f<;=g. Suh onstraint graphs desribe the

\temporal part" of I, i.e., temporal suessors of elements of �

I

and their

relationship by temporal prediates.

De�nition 7 (Constraint Graph) A onstraint graph is a pair G = (V;E),

where

� V is a ountable set of nodes and

� E � V � f=; <g � V is a set of edges suh that (v

1

;=; v

2

) 2 E implies

(v

2

;=; v

1

) 2 E.

A onstraint graph G = (V;E) is alled satis�able i� there exists a total

mapping Æ from V to Q suh that Æ(v

1

)P Æ(v

2

) for all (v

1

; P; v

2

) 2 E. Suh a

mapping Æ is alled a solution for G.

Let G = (V;E) be a onstraint graph. A sequene of nodes v

0

; : : : ; v

k

2 V is

alled a yle in G if, for all i � k, we have (v

i

; P; v

(i+1) mod k

) 2 E for some

P 2 f<;=g. A yle v

0

; : : : ; v

k

is alled a <-yle if there is an i � k with

(v

i

; <; v

(i+1) mod k

) 2 E.

The following theorem will be ruial for proving that, for every Hintikka-tree,

there exists a orresponding anonial model. More preisely, it will be used to

ensure that the onstraint graph indued by a Hintikka-tree, whih desribes

the temporal part of the orresponding model, is satis�able. The proof an be

found in Appendix A.

Theorem 8 A onstraint graph is satis�able i� it does not ontain a <-yle.

Note that we use the rational numbers Q in the semantis of T DL, and

thus also for interpreting onstraint graphs. All obtained results also apply

if we hoose R instead: the proof of Theorem 8 may remain unhanged and,

intuitively, T DL does not \feel" the di�erene between Q and R. However,

it is interesting to note that Theorem 8 does not hold if satis�ability over

non-dense strutures suh as N is onsidered: if there exist two nodes v

1

and

v

2

suh that the length of <-paths (whih are de�ned in analogy to <-yles)

between v

1

and v

2

is unbounded, then a onstraint graph is unsatis�able over

N even if it ontains no <-yle. Figure 6 shows suh a onstraint graph. And
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indeed, T DL does feel the di�erene between N and dense strutures suh as

Q and R: the onept > is satis�able w.r.t. the TBox

T = f> v 9(g

1

< g

2

) u 9(g

1

< fg

1

) u 9(fg

2

< g

2

)g

over the temporal strutures Q and R, but not over N. Note that T enfores

the onstraint graph in Figure 6.

4.2 Path Normal Form

Apart from the assumption that only the prediates < and = our in onepts

and TBoxes, we require some more normalization as a prerequisite for the

satis�ability algorithm. More spei�ally, we assume onepts and TBoxes to

be in negation normal form (NNF) and, more importantly, restrit the length

of paths, whih will turn out to be rather onvenient for some onstrutions like

de�ning Hintikka-trees. We start with desribing NNF onversion. A onept

is said to be in negation normal form if negation ours only in front of onept

names. The following lemma shows that assuming NNF is not a restrition.

Lemma 9 (NNF Conversion) Exhaustive appliation of the following re-

write rules translates T DL-onepts to equivalent ones in NNF.

::C ; C

:(C uD) ; :C t :D :(C tD) ; :C u :D

:(9R:C) ; (8R::C) :(8R:C) ; (9R::C)

:9(u

1

P u

2

) ; 9(u

1

e

P u

2

) t 9(u

2

< u

1

) t u

1

" t u

2

" :(g") ; 9(g = g)

where

e

� denotes the exhange of prediates, i.e.,

e

< is = and e= is <. By nnf(C),

we denote the result of onverting C into NNF using the above rules.

We now introdue path normal form for T DL-onepts and TBoxes.

De�nition 10 (Path Normal Form) A T DL-onept C is in path normal

form (PNF) i� it is in NNF and, for all subonepts 9(u

1

P u

2

) of C, we have

either

(1) u

1

= g

1

and u

2

= g

2

for some g

1

; g

2

2 N

tF

,

(2) u

1

= fg

1

and u

2

= g

2

for some f 2 N

aF

and g

1

; g

2

2 N

tF

, or

(3) u

1

= g

1

and u

2

= fg

2

for some f 2 N

aF

and g

1

; g

2

2 N

tF

.

A T DL-TBox T is in path normal form i� all onepts in T are in PNF.
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The following lemma shows that it is not a restrition to onsider only onepts

and TBoxes in PNF.

Lemma 11 Satis�ability of T DL-onepts w.r.t. TBoxes an be redued in

polynomial time to satis�ability of T DL-onepts in PNF w.r.t. TBoxes in

PNF.

Proof. Let C be a T DL-onept. For every path u = f

1

� � � f

n

g used in C, we

assume that [g℄; [f

n

g℄; : : : ; [f

1

� � �f

n

g℄ are temporal features not used in C. We

indutively de�ne a mapping � from paths u in C to onepts as follows:

�(g)=>

�(fu)=9([fu℄ = f [u℄) u 9f:�(u)

For every T DL-onept C, a orresponding onept �(C) is obtained by re-

plaing all subonepts 9(u

1

P u

2

) of C with 9([u

1

℄ P [u

2

℄)u�(u

1

)u�(u

2

) and

g" with [g℄". We extend the mapping � to TBoxes in the obvious way, i.e., if

T = fC

1

v D

1

; : : : ; C

k

v D

k

g;

then

�(T ) = f�(C

1

) v �(D

1

); : : : ; �(C

k

) v �(D

k

)g:

Now let C be a T DL-onept and T a T DL-TBox. Using the rewrite rules

from Lemma 9, we an onvert C into an equivalent onept C

0

in NNF and

T into an equivalent TBox T

0

in NNF. It is then easy to hek that C

0

is

satis�able w.r.t. a TBox T

0

i� �(C

0

) is satis�able w.r.t. �(T

0

). Moreover, �(C

0

)

and �(T

0

) are learly in PNF and the translation an be done in polynomial

time. 2

In what follows, we generally assume that all onepts and TBoxes are in path

normal form. Moreover, we will often refer to TBoxes T in their onept form

C

T

whih is de�ned as follows:

C

T

= u

C

:

=D2T

nnf(C $ D):

4.3 De�ning Hintikka-trees

In this setion, we de�ne Hintikka-trees for T DL-onepts C and TBoxes T

(whih are both required to be in PNF) and show that Hintikka-trees are

proper abstrations of models, i.e., that there exists a Hintikka-tree for C and

T i� there exists a model of C and T .

Let C be a onept and T be a TBox. By sub(C; T ), we denote the set of sub-

onepts of C and C

T

. We assume that existential onepts 9R:D 2 sub(C; T )
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with R 2 N

rR

are linearly ordered, and that E

i

(C; T ) yields the i-th suh on-

ept (starting with i = 1). Similarly, we assume the abstrat features used in

C or T to be linearly ordered and use F

i

(C; T ) to denote the i-th suh feature

(also starting with i = 1). The set of temporal features used in C or T is

denoted by G(C; T ).

We now de�ne Hintikka-pairs whih will be used as labels of nodes in Hintikka-

trees.

De�nition 12 (Hintikka-set, Hintikka-pair) Let C be a onept and T a

TBox. A set 	 � sub(C; T ) is a Hintikka-set for C and T i� it satis�es the

following onditions:

(H1) C

T

2 	,

(H2) if C

1

u C

2

2 	, then fC

1

; C

2

g � 	,

(H3) if C

1

t C

2

2 	, then fC

1

; C

2

g \ 	 6= ;,

(H4) fA;:Ag 6� 	 for all onept names A 2 sub(C; T ),

(H5) g" 2 	 implies 9(u

1

P u

2

) =2 	 for all onepts 9(u

1

P u

2

) with g 2 fu

1

; u

2

g.

A Hintikka-pair (	; �) for C and T onsists of a Hintikka-set 	 for C and T

and a set � of tuples (g

1

; P; g

2

) with g

1

; g

2

2 G(C; T ) suh that

(H6) if (g

1

; P; g

2

) 2 �, then fg

1

"; g

2

"g \	 = ;.

By �

C;T

, we denote the set of all Hintikka-pairs for C and T .

We say that an abstrat feature f 2 N

aF

is enfored by a Hintikka-pair (	; �)

if 9f:C 2 	 for some onept C or f9(fg

1

P g

2

); 9(g

1

P fg

2

)g \ 	 6= ; for

some g

1

; g

2

2 N

tF

and P 2 f<;=g. Similarly, a path u is enfored by (	; �)

if u appears in � or f9(uP u

0

); 9(u

0

P u)g \ 	 6= ; for some path u

0

and

P 2 f<;=g.

Observe that, if a path u is enfored by a Hintikka-pair (	; �), then u has

length 1 or 2: if u appears in �, it has length 1 by de�nition; moreover, if

f9(uP u

0

); 9(u

0

P u)g \ 	 6= ; for some u

0

and P , then u has length 1 or 2

sine all onepts are in path normal form.

Intuitively, eah node � of a (yet to be de�ned) Hintikka-tree T orresponds to

a domain element d of the orresponding anonial model I. The �rst ompo-

nent 	

�

of the Hintikka-pair labeling � is the set of onepts from sub(C; T )

satis�ed by d. The seond omponent �

�

states relationships between tempo-

ral suessors of d. If, for example, (g

1

; <; g

2

) 2 �

�

, then d must have g

1

- and

g

2

-suessors suh that g

I

1

(d) < g

I

2

(d). Note that the restritions in �

�

are

independent from onepts 9(g

1

P g

2

) 2 	

�

, but rather desribe \additional

edges". As will be disussed below, these additional edges are used to ensure

that the onstraint graph indued by the Hintikka-tree T , whih desribes the
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temporal part of the model I, does not ontain a <-yle (i.e., that it is sat-

is�able). This indued onstraint graph an be thought of as being the union

of smaller onstraint graphs, eah one desribed by a Hintikka-pair labeling a

node in T . These pair-graphs are de�ned next.

De�nition 13 (Pair-graph) Let C be a onept, T a TBox, and p = (	; �)

a Hintikka-pair for C and T . The pair-graph G(p) = (V;E) of p is a onstraint

graph de�ned as follows:

� V is the set of paths enfored by p

� E = l

=

(� [ f(u

1

; P; u

2

) j 9(u

1

P u

2

) 2 	g),

where l

=

is equality losure, i.e. l

=

(E) = E [ f(v

2

;=; v

1

) j (v

1

;=; v

2

) 2 Eg.

A set E

0

� V �V �f<;=g is an edge extension of G(p) if, for all fg

1

; fg

2

2 V ,

we have (fg

1

; <; fg

2

) 2 E

0

, (fg

1

;=; fg

2

) 2 E

0

, or (fg

2

; <; fg

1

) 2 E

0

. If E

0

is

an edge extension of G(p), then the graph (V;E[E

0

) is a ompletion of G(p).

Observe that, sine all onepts are in path normal form and sine no paths

of length greater than one may appear in �, we have E

0

\ E = ; for every

edge extension E

0

of pair-graphs (V;E).

There exists a lose onnetion between ompletions of pair-graphs and the

�-omponent of Hintikka-pairs. Let � and � be nodes in a Hintikka-tree T

representing domain elements d and e in the orresponding anonial model I.

Edges in Hintikka-trees represent role-relationships, i.e., if � is a suessor of

� in T , then there exists an R 2 N

R

suh that (d; e) 2 R

I

. Assume � is

a suessor of � and the edge between � and � represents relationship via

the abstrat feature f , i.e., we have f

I

(d) = e. The purpose of the seond

omponent �

�

of the Hintikka-pair labeling � is to �x the relationships between

all temporal suessors of e that \d talks about". For example, if 9(fg

1

=

g

2

) 2 	

�

and 9(fg

3

< g

2

) 2 	

�

, where 	

�

is the �rst omponent of the

Hintikka-pair labeling �, then \d talks about" the temporal g

1

-suessor and

the temporal g

3

-suessor of e. Hene, �

�

ontains (g

1

; <; g

3

), (g

1

;=; g

3

), or

(g

3

; <; g

1

). This is formalized by demanding that the pair-graph G(T (�)) of

the Hintikka-pair labeling � together with all the edges from the �-omponents

of the suessors of � are a ompletion of G(T (�)). An appropriate way of

thinking about the �-omponents is as follows: at �, a ompletion of G(T (�))

is \guessed". The additional edges are then \reorded" in the �-omponents of

the suessor-nodes of �. As will be explained after the de�nition of Hintikka-

trees, the purpose of all this is to ahieve a \loalized" detetion of <-yles

in onstraint-graphs indued by Hintikka-trees.

De�nition 14 (Hintikka-tree) Let C be a onept, T a TBox, k the number

of existential subonepts in sub(C; T ), and ` the number of abstrat features in

sub(C; T ). A k+ `+1-tuple of Hintikka-pairs (p

0

; : : : ; p

k+`

) with p

i

= (	

i

; �

i

)
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Fig. 7. Loalized Cyle Detetion.

and G(p

0

) = (V;E) is alled mathing i�

(H7) if 9R:D 2 	

0

and E

i

(C; T ) = 9R:D, then D 2 	

i

,

(H8) if f9R:D; 8R:Eg � 	

0

and E

i

(C; T ) = 9R:D, then E 2 	

i

,

(H9) if 9f:D 2 	

0

and F

i

(C; T ) = f , then D 2 	

k+i

,

(H10) if f is enfored by p

0

, F

i

(C; T ) = f , and 8f:D 2 	

0

, then D 2 	

k+i

,

(H11) the onstraint graph (V;E [ E

0

) with

E

0

=

[

1�i�`

f(fg

1

; P; fg

2

) j F

i

(C; T ) = f and (g

1

; P; g

2

) 2 �

k+i

g

is a satis�able ompletion of G(p

0

).

A k + `-ary �

C;T

-tree T is a Hintikka-tree for C and T i� it satis�es the

following onditions:

(H12) C 2 	

�

, where T (�) = (	

�

; �

�

),

(H13) for all � 2 f1; : : : ; k + `g

�

, the tuple (T (�); T (�1); : : : ; T (�j)) is

mathing, where j abbreviates k + `.

For a Hintikka-tree T and a node � 2 f1; : : : ; k + `g

�

with T (�) = (	; �), we

use T

�

(�) to denote 	 and T

�

(�) to denote �. Moreover, if G(�) = (V;E), we

use pl(T; �) to denote the onstraint graph (V;E [E

0

) as de�ned in (H11).

Whereas most properties of Hintikka-trees deal with onepts, roles, and ab-

strat features and are hardly surprising, (H11) ensures that onstraint graphs

indued by Hintikka-trees ontain no <-yle. By \guessing" a ompletion as

explained above, possible <-yles are antiipated and an be deteted loally,

i.e., it then suÆes to hek that the ompletions pl(T; �) are satis�able as

demanded by (H11). An example for suh a loalization an be found in

Figure 7. The Figure shows a non-loal <-yle (displayed as dashed edges)
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in the onstraint graph indued by a Hintikka-tree T (displayed as thikened

solid edges). Assume for a moment that the dotted edges are not present,

i.e. the relationship between the g-suessor and the g

0

-suessor of � is un-

known. Then the onstraint graphs pl(T; �), pl(T; �), and pl(T; ) are all

satis�able if onsidered in isolation. Sine (H11) indeed onsiders isolated

graphs, the <-yle annot be deteted. The problem is overome as follows:

let G(T (�)) = (V;E). Sine (V;E [ E

0

) with

E

0

= f(fg

1

; P; fg

2

) j (g

1

; P; g

2

) 2 T

�

(�)g

is required to be a ompletion of (V;E), we must have (g; <; g

0

) 2 T

�

(�),

(g;=; g

0

) 2 T

�

(�), or (g

0

; <; g) 2 T

�

(�). In the �rst two ases, we obtain the

lower dotted edge and pl(T; �) ontains a <-yle. In the third ase, we obtain

the upper dotted edge. Then we an repeat the whole proess with � replaed

by � and � replaed by  suh that, �nally, either pl(T; �) or pl(T; ) ontains

a <-yle. Thus, the non-loal <-yle is broken down into smaller ones by

\guessing" additional edges. The smaller <-yles an then be deteted by

(H11). Indeed, it is ruial that (H11) is a loal ondition sine we need to

de�ne an automaton that aepts exatly Hintikka-trees, and automata work

loally. It is worth noting that the loalization of yle detetion as desribed

above ruially depends on the path normal form.

The following lemma shows that Hintikka-trees are appropriate abstrations

of models. This result is the main step towards devising a deision proedure

sine, as we shall see next, de�ning looping automata aepting exatly the

Hintikka-trees for a given onept C and TBox T is a straightforward task.

The proof an be found in Appendix A.

Lemma 15 A onept C is satis�able w.r.t. a TBox T i� there exists a

Hintikka-tree for C and T .

4.4 De�ning Looping Automata

To prove deidability of T DL-onept satis�ability w.r.t. TBoxes, it remains

to de�ne a looping automaton A

C;T

for eah onept C and TBox T suh

that A

C;T

aepts exatly the Hintikka-trees for C and T . Using the notion of

mathing tuples of Hintikka-pairs from De�nition 14, this is rather straight-

forward.

De�nition 16 Let C be a onept, T a TBox, k the number of existential

subonepts in sub(C; T ), and ` the number of abstrat features in sub(C; T ).

The looping automaton A

C;T

= (Q;M;�; I) is de�ned as follows:

� Q :=M := �

C;T
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� I := f(	; �) 2 Q j C 2 	g.

� ((	; �); (	

0

; �

0

); (	

1

; �

1

); : : : ; (	

k+`

; �

k+`

)) 2 � i�

(	; �) = (	

0

; �

0

) and

((	; �); (	

1

; �

1

); : : : ; (	

k+`

; �

k+`

)) is mathing.

As a onsequene of the following lemma and Lemmas 15, we an redue

satis�ability of onepts w.r.t. TBoxes (both in PNF) to the emptiness of the

language aepted by looping automata.

Lemma 17 T is a Hintikka-tree for C and T i� T 2 L(A

C;T

).

Proof. Let C be a onept, T a TBox, and k, `, and A

C;T

as in De�nition 16.

For the \if" diretion, let r be a run of A

C;T

on T . By de�nition of runs and

of �, we have

r(�) = T (�) for all � 2 f1; : : : ; k + `g

�

:

Hene, it remains to be shown that r is a Hintikka-tree for C and T , whih is

straightforward: (i) by de�nition of Q, r is a �

C;T

-tree; (ii) sine, by de�nition

of runs, r(�) 2 I, (H12) is satis�ed; and (iii) by de�nition of runs and of �,

(H13) is satis�ed.

Now for the \only if" diretion. It is straightforward to hek that the fun-

tion r de�ned by r(�) := T (�) is a run of A

C;T

on T : (i) by de�nition of

Hintikka-trees and A

C;T

, r(�) 2 Q for all � 2 f1; : : : ; k + `g

�

; (ii) by (H12)

and de�nition of I, we have r(�) 2 I; (iii) by (H13) and by de�nition of r and

of �, we have (r(�); T (�); r(�

1

); : : : ; r(�

k

)) 2 � for all � 2 f1; : : : ; k+`g

�

. 2

It is an immediate onsequene of Lemmas 11, 15, and 17 and the deidability

of the emptiness problem of looping automata [39℄ that satis�ability of T DL-

onepts w.r.t. TBoxes is deidable. However, the presented automata-based

algorithm has the nie property of additionally providing us with a tight om-

plexity bound. In the following, we use jCj to denote the length of the onept

C and T to denote

P

D

:

=E2T

jDj+ jEj.

Theorem 18 Satis�ability of T DL-onepts w.r.t. general TBoxes is Exp-

Time-omplete.

Proof. The lower bound is an immediate onsequene of the fat that ALC

with TBoxes is ExpTime-hard [32℄. Hene, we may onentrate on the upper

bound. We need to show that the size of A

(C;T )

is exponential in jCj + jT j

sine, one that this is established, we an use Lemmas 11, 15, and 17 together

with the fat that the emptiness problem for looping automata A

(C;T )

is in

PTime [39℄ to onlude that satis�ability of T DL-onepts w.r.t. TBoxes an

be deided in deterministi exponential time. Hene, let us investigate the size

of A

(C;T )

= (Q;M;�; I). Obviously, the ardinality of sub(C; T ) is linear in

jCj + jT j. Hene, by de�nition of A

(C;T )

and Hintikka-pairs, the ardinality

of Q, M , and I are exponential in jCj + jT j. Together with the fat that �
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ontains k+`-tuples and k+` is polynomial in jCj+jT j, the exponential bound

on the ardinality of Q implies that the ardinality of � is also exponential in

jCj+ jT j. 2

Sine subsumption an be redued to (un)satis�ability, T DL-onept sub-

sumption w.r.t. TBoxes is also ExpTime-omplete.

5 Deiding ABox Consisteny

In this setion, we extend the ExpTime upper bound just obtained to T DL-

ABox onsisteny w.r.t. TBoxes. The extended upper bound is established

using a so-alled preompletion algorithm [10,16℄. The idea behind suh algo-

rithms is to proeed in two stages: �rst, a set of ompletion rules is exhaustively

applied to the input ABox in order to make impliit information expliit. If

an obvious ontradition is enountered during this proess, then the input

ABox is inonsistent and the seond stage is not needed. If no ontradition is

found, in the seond stage we onstrut a redution onept C

a

for eah objet

name a of the obtained ABox and hek it for satis�ability w.r.t. the input

TBox using the algorithm developed in the previous setion. Then, the input

ABox is satis�able w.r.t. the input TBox if and only if all redution onepts

are satis�able.

As in the previous setion, we assume w.l.o.g. that all onepts (also inside

TBoxes and ABoxes) ontain only the prediates < and =. Moreover, we

require TBoxes and ABoxes to be in path normal form, where an ABox A is

in PNF i� every onept ourring in A is in PNF. The next lemma shows

that this assumption does not sari�e generality.

Lemma 19 Consisteny of T DL-ABoxes w.r.t. TBoxes an be redued to

onsisteny of T DL-ABoxes in PNF w.r.t. TBoxes in PNF.

Proof. Let A be an ABox and T a TBox, and let k be the length of the longest

path ourring in A or T . For every path u = f

1

� � �f

n

g used in A or T , we

assume that [g℄; [f

n

g℄; : : : ; [f

1

� � � f

n

g℄ are temporal features not appearing in

A or T . Let � be the mapping from onepts to onepts in PNF and from

TBoxes to TBoxes in PNF introdued in the proof of Lemma 11. Construt

an ABox �(A) from A by performing the following steps:

(1) Replae every assertion a : C 2 A with a : �(C);

(2) Replae every assertion ha; xi : g 2 A with ha; xi : [g℄;

(3) For i = 1; : : : ; k � 1 do the following: for every pair of assertions

ha; bi : f; hb; xi : [u℄ 2 A
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where the length of u is i and fu is a post�x of a path ourring in

A or T , add ha; xi : [fu℄ to A.

It is straightforward to prove that A is satis�able w.r.t. T i� �(A) is satis�able

w.r.t. �(T ). Moreover, the size of �(A) and �(T ) is polynomial in n = jAj+jT j

and �(A) and �(T ) an be onstruted in polynomial time. While �(T ) was

treated in the proof of Lemma 11, for �(A) this an be seen as follows. Sine

the number of post�xes of paths ourring in A and T is bounded by n, the

number of objet names and time point names in A is also bounded by n,

and no new objet names are introdued, the number of assertions of the

form ha; xi : [u℄ generated in Step 3 is bounded by n

3

. Sine the number of

assertions ha; bi : f is bounded by n, the number of pairs to be onsidered in

eah step of the \for" loop in Step 3 is thus bounded by n

4

. Sine we learly

have k � n, �(A) an be omputed in time n

5

. 2

The ompletion rules an be found in Figure 8. In the formulation of the rules,

we write A(a) for fC j a : C 2 Ag and all a time point name x 2 O

t

fresh

in an ABox A if x does not our in A. Note that the rules Rt and Rh yield

more than one possible outome. Intuitively, the preompletion algorithm has

to explore all possible outomes|more details are given later on. Note that we

annot use the usual non-deterministi \guessing" here sine we are heading

for a deterministi time bound.

While the rules Ru, Rt, R8, and R

:

= are straightforward, the other rules de-

serve some omments. The R9f rule deals with onepts 9f:C, where f 2 N

aF

.

Sine it is our goal to make expliit information for existing objet names

rather than generating new ones, this rule only applies to a onept 9f:C 2

A(a) if the objet a already has an f -suessor (i.e., an objet name b with

ha; bi : R 2 A). For the same reason, onepts 9R:C with R 2 N

rR

are not

expanded at all, but rather \treated" as part of the redution onepts. The

rules R1, R2 and R3 deal with onepts 9(u

1

P u

2

): there exists one rule

for eah syntati form that PNF allows. Observe that R2 and R3 generate

new time point names, but, similar to the R9f rule, none of the R rules gen-

erates new objet names even if the paths u

1

and u

2

involve abstrat features.

Intuitively, if 9(fg

1

P g

2

) 2 A(a) and a has no f -suessor, then it suÆes to

treat the onept 9(fg

1

P g

2

) in the redution onept. The Rh rule has the

harater of a \hoose rule" (.f. for example [17℄) and is needed to ensure that

the relation between any two temporal suessors of an objet a is reorded

as a onept of the form 9(g

1

P g

2

) in the node label of a. This is neessary

sine the relation between suh temporal suessors must be passed to the

satis�ability algorithm as part of the redution onept. Finally, the Rfe rule

is a \fork elimination rule" (.f. for example [5,23℄) that is needed to enfore

the funtionality of abstrat and temporal features.

If an ABox A

0

an be obtained from an ABox A by exhaustive rule appli-
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Ru if C

1

u C

2

2 A(a) and fC

1

; C

2

g 6� A(a)

then A := A [ fa : C

1

; a : C

2

g

Rt if C

1

t C

2

2 A(a) and fC

1

; C

2

g \ A(a) = ;

then A

1

:= A[ fa : C

1

g and A

2

:= A [ fa : C

2

g

R9f if 9f:C 2 A(a), ha; bi : f 2 A, and C =2 A(b)

then set A := A[ fb : Cg

R8 if 8R:C 2 A(a), ha; bi : R 2 A, and C =2 A(b)

then set A := A[ fb : Cg

R1 if 9(g

1

P g

2

) 2 A(a), fha; x

1

i : g

1

; ha; x

2

i : g

2

g � A,

and x

1

P x

2

=2 A

then set A := A[ fx

1

P x

2

g

R2 if 9(fg

1

P g

2

) 2 A(a), ha; bi : f 2 A, and there are no x

1

; x

2

2 O

t

suh that fhb; x

1

i : g

1

; ha; x

2

i : g

2

; x

1

P x

2

g � A

then set A := A[ fhb; x

1

i : g

1

; ha; x

2

i : g

2

; x

1

P x

2

g

where x

1

and x

2

are fresh in A

R3 Symmetri to R2 but for onepts 9(g

1

P fg

2

) 2 A(a)

Rh if fha; x

1

i : g

1

; ha; x

2

i : g

2

g � A and

f9(g

1

< g

2

); 9(g

1

= g

2

); 9(g

2

< g

1

)g \ A(a) = ;

then set A

1

:= A [ fa : 9(g

1

< g

2

)g,

A

2

:= A [ fa : 9(g

1

= g

2

)g, and

A

3

:= A [ fa : 9(g

2

< g

1

)g.

R

:

= if C

T

=2 A(a) then set A := A [ fa : C

T

g

Rfe if fha; bi : f; ha; i : fg � A and b 6= 

(resp. fha; xi : g; ha; yi : gg � A and x 6= y)

then replae b by  in A (resp. x by y)

Fig. 8. Completion rules for T DL.

ation using a TBox T , then A

0

is alled preomplete and a preompletion

of A w.r.t. T . Interleaved with rule appliation, the preompletion heks for

obvious ontraditions. These are formalized as follows.

De�nition 20 (Clash) Let A be an ABox. A is alled temporally satis�able

i� the onstraint graph G(A) = (V;E) is satis�able, where

� V = fx 2 O

t

j x ours in Ag;

� E = f(x

1

; P; x

2

) j x

1

P x

2

2 Ag.

A is said to ontain a lash i� one of the following onditions applies:
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de�ne proedure ons(A; T )

while a rule R 2 fRu;R9f;R8;R1;R2;R3;R

:

=;Rfeg

is appliable to A do

apply R to A

if a ompletion rule R 2 fRt;Rhg is appliable to A then

apply R to A yielding A

1

; : : : ;A

k

(k 2 f2; 3g)

if ons(A

i

; T ) = onsistent for some i 2 f1; : : : ; kg then

return onsistent

return inonsistent

if A ontains a lash then

return inonsistent

if sat( u

C2A(a)

C; T ) = satis�able for every a 2 O

a

in A then

return onsistent

return inonsistent

Fig. 9. The T DL preompletion algorithm.

(1) fA;:Ag � A(a) for a onept name A and objet name a 2 O

a

,

(2) g" 2 A(a) for some a 2 O

a

and there exists an x 2 O

t

suh that

ha; xi : g 2 A, or

(3) A is not temporally satis�able.

If A does not ontain a lash, then A is lash-free.

The preompletion algorithm itself is given in Figure 9 in a pseudoode no-

tation. In the formulation of the algorithm, we use sat(C; T ) to denote the

result of applying the satis�ability algorithm from the previous setion to

the onept C and TBox T . The general idea behind the algorithm and the

orretness proofs is that models of the redution onepts an be \plugged

together" to form a model of the input ABox.

We now prove termination and investigate the time omplexity of the algo-

rithm. In order to do this, we need a size funtion for ABoxes. To this end,

set

ja : Cj := C

jha; bi : Rj := jha; xi : gj := jx

1

P x

2

j := 2

and jAj :=

P

�2A

j�j. First, we establish an upper bound for the number of

rules that may be applied to a given ABox.

Lemma 21 Let A be an ABox, T a TBox, and A

0

; : : : ;A

k

with A

0

= A a se-

quene of ABoxes obtained by repeated rule appliation. Then k � p(jAj+ jT j)

for some polynomial p(n).

Proof.We abbreviate jAj+ jT j by n. Eah of the rules Ru, Rt, R9f, R8, Rh,
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and R

:

= adds a new onept to the label of an objet name. Sine all added

onepts are from the set

� := sub(A; T ) [ f9(g

1

P g

2

) j P 2 f<;=g and g

1

; g

2

used in sub(A; T )g

and j�j � 2n

2

+ n, the number of appliations of the above rules per objet

name is also bounded by 2n

2

+ n and their overall number of appliations is

bounded by 2n

3

+ n

2

. There are four remaining rules:

� R1, R2, R3. These rules are applied at most one per onept 9(u

1

P u

2

) 2 �

and objet name a in A. Sine no new objet names are introdued, there

are at most 2n

3

+n

2

appliations of R1, R2 and R3. Moreover, sine eah

rule appliation introdues at most 2 new time point names and R2 and

R3 are the only rules to introdue new time point names, it also follows that

the number of newly introdued time point names is bounded by 4n

3

+2n

2

.

� Rfe. The rule is applied at most one per objet and time point name.

The initial ABox ontains at most n objet and time point names, no new

objet names are generated, and at most 4n

3

+ 2n

2

new time point names

are generated. Hene, the number of appliations of Rfe is bounded by 4n

3

+

2n

2

+ n.

Taking together these observations, it is obvious that there exists a polynomial

p(n) as required. 2

We an now prove termination.

Proposition 22 (Termination) If started on an ABox A and a TBox T ,

the preompletion algorithm terminates after time exponential in jAj+ jT j.

Proof. Assume that the preompletion algorithm is started on an ABox A

and a TBox T . The preompletion algorithm is a reursive proedure. In

every reursion step, either several reursion alls or several alls to the sat

algorithm are made. Obviously, a run of the algorithm indues a reursion

tree, where nodes in the tree are reursion steps and edges are reursion alls.

These reursion trees have the following properties:

(1) Sine at most three reursion alls are made per reursion step, the out-

degree is three.

(2) Every path of the reursion tree indues a sequene of ABoxes A

0

;A

1

; : : :

with A

0

= A that an be obtained by repeated rule appliation. By

Lemma 21, the length of this sequene is bounded by p(jAj+ jT j), and,

thus, the depth of reursion trees is also bounded by p(jAj+ jT j).

This implies that the total number of reursion steps made by the algorithm

is bounded by 3

p(jAj+jT j)

. Sine none of the rules introdues new objet names,

the number of sat alls per reursion step is bounded by jAj and the total
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number of alls to sat by 3

p(jAj+jT j)

� jAj. Together with Theorem 18, we obtain

termination and the exponential time bound. 2

We now establish a series of lemmas that will �nally allow to establish sound-

ness and ompleteness of the preompletion algorithm. The proofs of all lem-

mas an be found in Appendix B. We start with showing that the onstrution

of preompletions preserves (in)onsisteny.

Lemma 23 Let A be an ABox and T a TBox. Then A is onsistent w.r.t. T

i� there exists a preompletion A

0

of A w.r.t. T suh that A

0

is onsistent

w.r.t. T .

Our next aim is to show that every lash-free preomplete ABox, for whih

all redution onepts are satis�able, is onsistent. We start with a tehni-

al lemma whih states that, intuitively, for every preomplete ABox A with

satis�able redution onepts, we an �nd models for the redution onepts

suh that these model's temporal parts an be \plugged into" solutions for the

onstraint graph G(A) indued by A. Reall that we use on(A; a) to denote

the redution onept for a 2 O

a

in A.

Lemma 24 Let A be a preomplete ABox, Æ a solution for G(A), and a 2 O

a

used in A. If on(A; a) is satis�able w.r.t. T , then there exists a model I of

on(A; a) and T and a d

a

2 on(A; a)

I

suh that, for all ha; xi : g 2 A, we

have g

I

(d

a

) = Æ(x).

The following lemma is entral for proving soundness and ompleteness. Its

proof follows the intuition given above: models for the redution onepts are

\plugged together" in order to form a model for the ABox. To deal with the

temporal parts of models, we relay on Lemma 24.

Lemma 25 Let A be a preompletion of an ABox A

0

w.r.t. a TBox T . A is

onsistent w.r.t. T i� A is lash-free and on(A; a) is satis�able w.r.t. T for

every a 2 O

a

used in A.

Finally, we prove soundness and ompleteness.

Proposition 26 (Soundness and Completeness) If the preompletion al-

gorithm is started on an ABox A and a TBox T , then it returns onsistent if

A is onsistent w.r.t. T and inonsistent otherwise.

Proof. Let A and T be an input to the preompletion algorithm. Sine the

order of rule appliation is learly irrelevant, the algorithm omputes all lash-

free preompletions of A w.r.t. T . For eah suh preompletion A

0

, it heks

whether the redution onept on(A; a) is satis�able for all a 2 O

a

ourring

in A

0

. It returns onsistent if it �nds a preompletion for whih this is true

and, by Proposition 22, inonsistent otherwise. Soundness and ompleteness
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are thus an immediate onsequene of Lemmas 23 and 25. 2

Taking together Propositions 22 and 26, we obtain an ExpTime upper bound

for T DL-ABox onsisteny w.r.t. TBoxes. Together with the lower bound

from Theorem 18, we obtain the following result.

Theorem 27 T DL-ABox onsisteny w.r.t. general TBoxes is ExpTime-

omplete.

6 Disussion

In this paper, we have introdued the desription logi T DL whose distin-

guishing feature is that it admits both interval-based temporal representation

and general TBoxes, while still being deidable (and ExpTime-omplete). As

noted in the introdution, this result also shows that there exist interesting

onrete domains whose ombination with general TBoxes do not lead to un-

deidability of reasoning. Starting from the basi deidability results proved

in the urrent paper, there are lots of options for promising future researh.

Let us disuss a few of them.

(1) It would be interesting to enhane the expressive power of both the tem-

poral and the DL part of T DL. Conerning the temporal part, one ould

add unary prediates P

q

, where P 2 f<;�;=; 6=;�; >g and q 2 Q. This

would allow quantitative temporal representation by referring to \onrete"

time points. On the DL side, ALC an be extended by various means of ex-

pressivity that usually appear in state-of-the-art desription logis suh as

inverse roles, qualifying numbers restritions, and transitive roles. All these

extensions have been realized in the reent paper [21℄, where it is shown that

the popular DL SHIQ extended with a T DL-style onrete domain and the

afore mentioned unary prediates is still deidable and ExpTime-omplete.

The resulting logi is alled Q-SHIQ and has found interesting appliations

in reasoning about oneptual database shemas [24℄.

(2) The version of T DL de�ned in this paper uses Q as its temporal stru-

ture. As disussed in Setion 4.1, it makes a di�erene whether dense temporal

strutures suh as Q and R or non-dense strutures suh as N are used: there

exist T DL-onepts that are satis�able over Q but not over N. It would thus

be interesting to onsider a variant of T DL that is based on N, or even to

add to the urrent version of T DL a unary prediate int stating that a time

point/rational number is an integer. In this ase, the algorithm would, ad-

ditionally, have to detet unsatis�able onstraint graphs suh as the one in

Figure 6. We onjeture that this annot be done without adding a non-trivial

aeptane ondition to our automata model, e.g. swithing from looping to

29



B�uhi automata. Using N as the temporal struture would be useful if dis-

reteness of time is assumed (e.g. a time point is viewed as a referene to some

partiular seond in time), and if the resulting logi is used in non-temporal

appliations: we may, e.g., use temporal features to store the number of hil-

dren that a person has, rather than storing a time point. Clearly, frational

numbers make no sense in this ontext.

(3) It would be natural to de�ne a spatial desription logi SDL by replaing

the temporal prediates of T DL with spatial ones. For example, one ould use

the set set of eight \topologial" relations alled RCC-8 [30,7℄, whih desribe

all possible ways in whih two regions an be related in topologial spaes, and

whih in many aspets resemble the Allen relations. Our guess is that again

a deidable formalism is obtained, but many proof tehniques would learly

have to be reworked. For example, the RCC-8 relations annot be broken down

to the prediates f<;=g.

It is also interesting to note that there are ertain well-known limitations

for extending the temporal part of T DL. For example, if we think of the

9(u

1

P u

2

) onstrutor as a means for talking about rational numbers rather

than about temporal information, then it seems natural to add prediates for

arithmetis suh as a ternary addition prediate. However, it is shown in [26℄

that it suÆes to add to T DL a unary prediate for equality to zero and a

binary prediate for inrementation in order to make reasoning undeidable.
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A Proofs for Setion 4

The �rst task is to prove Theorem 8. For the proof, it will be helpful to de�ne

the notion of paths in onstraint graphs G: a path Q in G is a �nite non-

empty sequene of nodes v

0

; : : : ; v

k

2 V suh that, for all i with i < k, we

have (v

i

; P; v

i+1

) 2 E for some P 2 f<;=g. A path v

0

; : : : ; v

k

is a =-path i�

(v

i

;=; v

i+1

) 2 E for i < k.

Theorem 8 A onstraint graph is satis�able i� it does not ontain a <-yle.

Proof. Sine the \only if" diretion is trivial, we onentrate on the \if"

diretion. Let G be a onstraint graph not ontaining a <-yle. Let � be the

relation on V with v

1

� v

2

i� v

1

= v

2

or there exists a =-path between v

1

and v

2

. Sine onstraint graphs are assumed to be equality losed, � is an

equivalene relation. For v 2 V , we denote the equivalene lass of v w.r.t. �

by [v℄

�

. De�ne a new onstraint graph G

0

= (V

0

; E

0

) as follows:

V

0

:= f[v℄

�

j v 2 V g

E

0

:= f([v

1

℄

�

; <; [v

2

℄

�

) j 9v

0

1

; v

0

2

2 V suh that

v

0

1

2 [v

1

℄

�

; v

0

2

2 [v

2

℄

�

; and (v

0

1

; <; v

0

2

) 2 Eg

Using the fat that G does not ontain a <-yle, it is straightforward to prove

that G

0

does not ontain a <-yle. Sine G

0

does not ontain a <-yle, E

0

indues a partial order with domain V

0

. By Szpilrajn's Theorem, every partial

order an be extended to a total order (on the same domain) [37℄. Let �

E

0

be a total order obtained in this way from the partial order indued by E

0

.

In the following, we show that every total order � with a ountable domain

D an be embedded into Q suh that the ordering is preserved. This suÆes

to omplete the proof sine it implies that that there exists a total mapping

Æ from V to Q suh that v

1

�

E

0

v

2

implies Æ(v

1

) < Æ(v

2

). It is obvious that Æ

is a solution for G

0

and it is straightforward to use Æ to onstrut a solution

for G.

Let d

0

; d

1

; : : : be an enumeration of D. We use indution on this enumeration

to de�ne a funtion Æ from D to Q suh that d

1

� d

2

implies Æ(d

1

) < Æ(d

2

)

for all d

1

; d

2

2 D.

(1) For the indution start, set Æ(d

0

) to some r 2 Q.

(2) Assume that Æ(d

i

) is de�ned for all i < k. We distinguish three ases:

(a) d

i

� d

k

for all i < k. Sine Q has no maximum, there exists an r 2 Q

suh that r > Æ(d

i

) for all i < k. Set Æ(d

k

) := r.

(b) d

k

� d

i

for all i < k. Sine Q has no minimum, there exists an r 2 Q

suh that r < Æ(d

i

) for all i < k. Set Æ(d

k

) := r.

() Neither of the previous two ases holds. Sine Q is dense, there exists
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an r 2 Q suh that

maxfÆ(d

i

) j i < k and d

i

� d

k

g < r < minfÆ(d

i

) j i < k and d

k

� d

i

g:

Set Æ(d

k

) := r.

It is readily heked that Æ is as required. 2

Sine the proof of Lemma 15 is rather involved, we treat the \if" and the

\only-if" diretion in two separate lemmas. We again use the notions of paths

and =-paths in onstraint graphs. Moreover, we use the following notation: if

v

0

; : : : ; v

k

is a path or a yle, we use i

+

O

to denote (i + 1)modk + 1, i.e., i

+

O

denotes the index following i in the path/yle O. The index �

O

is omitted if

lear from the ontext.

Lemma 28 A onept C is satis�able w.r.t. a general TBox T if there exists

a Hintikka-tree for C and T .

Proof. Let C be a onept, T a TBox, k the number of existential subonepts

in sub(C; T ), and ` the number of abstrat features in sub(C; T ). Moreover,

let T be a Hintikka-tree for C and T . We de�ne an interpretation I = (�

I

; �

I

)

as follows:

�

I

= f1; : : : ; k + `g

�

A

I

= f� j A 2 T

�

(�)g for all A 2 C

N

R

I

= f(�; �) j � = �i, E

i

(C; T ) = 9R:E for some onept E, and

9R:E 2 T

�

(�)g for all R 2 N

rR

f

I

= f(�; �) j � = �i, F

i�k

(C; T ) = f; and f is enfored by T (�)g

for all f 2 N

aF

It remains to de�ne the interpretation of temporal features, whih is done as

follows: we de�ne an (in�nite) onstraint graph G(T ) indued by T , show that

G(T ) is satis�able, and de�ne the interpretation of temporal features from a

solution of G(T ). The nodes of G(T ) have the form �ju, where � is a node in

T and u is a path in C or T . More preisely, G(T ) is de�ned as (V; l

=

(E)),

where

� V = f�ju j � 2 f1; : : : ; k + `g

�

; u appears in C or T g

� E =

[

�2f1;:::;k+`g

�

f(�ju; P; �ju

0

) j (u; P; u

0

) is an edge in pl(T; �)g

[ f(�jfg);=; �ijg) j F

i�k

(C; T ) = f; fg is a node in pl(T; �)g

It is not hard to see that G(T ) really is a onstraint graph, i.e., the node set

of G(T ) is ountable. Next, we show the following laim:
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Claim 1: G(T ) is satis�able.

By Theorem 8, it suÆes to show that G(T ) ontains no <-yle. Assume to

the ontrary that G(T ) ontains a <-yle and that O = �

0

ju

0

; : : : ; �

n

ju

n

is

the <-yle in G(T ) with minimal length. Fix a t � n suh that

for eah i with i � n and eah � 2 f1; : : : ; k+`g

+

, we have �

i

6= �

t

�; (�)

i.e., there exist no �

i

in O suh that �

t

is a true pre�x of �

i

(suh a t exists

sine O is of �nite length). Sine O is a <-yle, there exists an s � n suh

that we have (�

s

ju

s

; <; �

s

+

ju

s

+

) 2 E. We make a ase distintion and derive

a ontradition in either ase.

� �

s

6= �

t

. De�ne a sequene of nodes O

0

from O by deleting all nodes �

i

ju

i

with �

i

= �

t

. O

0

is non-empty sine �

s

6= �

t

. We show that O

0

is a <-

yle in G(T ), whih is a ontradition to the minimality of O. Let O

0

=

�

0

0

ju

0

0

; : : : ; �

0

m

ju

0

m

. By de�nition of G(T ), the fat that (�

s

ju

s

; <; �

s

+

ju

s

+

) 2

E implies �

s

+

= �

s

. Sine �

s

6= �

t

, �

s

ju

s

and �

s

+

ju

s

+

are in O

0

and it

remains to show that O

0

is a yle in G(T ), i.e., for all i � m, we have

(�

0

i

ju

0

i

; P; �

0

i

+

ju

0

i

+

) 2 E for some P 2 f<;=g.

Let �

0

i

ju

0

i

and �

0

i

+

ju

0

i

+

be nodes in O

0

. If these two nodes are already

neighbor nodes in O, we are obviously done. Hene, assume that this is not

the ase. By onstrution of O

0

, this implies the existene of a path

�

0

i

ju

0

i

; �

t

ju

�

1

; : : : ; �

t

ju

�

x

; �

0

i

+

ju

0

i

+

in G(T ), whih is at most as long as O. Sine �

0

i

6= �

t

and �

0

i

+

6= �

t

, by on-

strution ofG(T ) and by (�), this implies that there exist � 2 f1; : : : ; k + `g

�

,

f 2 N

aF

, j 2 f1; : : : ; k + `g, and g; g

0

2 G(C; T ) suh that the following

onditions are satis�ed:

(1) �

0

i

= �

0

i

+

= �,

(2) �

t

= �j and F

j�k

(C; T ) = f ,

(3) u

0

i

= fg, u

�

1

= g, u

�

x

= g

0

, and u

0

i

+

= fg

0

, and

(4) (�jfg;=; �jjg) 2 E and (�jfg

0

;=; �jjg

0

) 2 E.

By de�nition ofG(T ) and by Point 4, both fg and fg

0

are nodes in pl(T; �) =

(V

0

; E

0

). By de�nition of pl, this implies that either

(a) (fg

0

; <; fg) 2 E

0

or

(b) (fg; P; fg

0

) 2 E

0

for some P 2 f<;=g.

Together with Point 1 and 3 and the de�nition ofG(T ), (b) obviously implies

(�

0

i

ju

0

i

; P; �

0

i

+

ju

0

i

+

) 2 E, and we are done. Moreover, in the following we show

that ase (a) annot our.

Let pl(T; �j) = (V

00

; E

00

). In ase (a), we have (g

0

; <; g) 2 E

00

: Let G(�) =

(V

0

�

; E

0

�

); by de�nition of pair-graphs and sine all onepts are in path

normal form, (fg

0

; <; fg) 2 E

0

implies (fg

0

; <; fg) 2 E

0

n E

0

�

; by de�nition

of pl and by Point 2, this means that (g

0

; <; g) 2 T

�

(�). Hene, (g

0

; <; g) 2

E

00

. By de�nition of G(T ) and Point 1 and 3, (g

0

; <; g) 2 E

00

implies that

(�

t

ju

�

x

; <; �

t

ju

�

1

) 2 E. Hene, the path �

t

ju

�

1

; : : : ; �

t

ju

�

x

is a <-yle in G(T ),
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whih ontradits the minimality of O.

� �

s

= �

t

. We �rst show that there exists a node �

z

ju

z

in O suh that �

z

6= �

t

.

For suppose that no suh node exists. Then, by de�nition ofG(T ), u

0

; : : : ; u

n

is a <-yle in pl(T; �

t

). This is learly a ontradition to the fat that T

is a Hintikka-tree. Hene, we may onlude the existene of an �

z

as above.

De�ne a sequene of nodes O

0

from O by deleting all nodes �

i

ju

i

with

�

i

6= �

t

. O

0

is non-empty sine �

s

= �

t

. Moreover, O

0

is shorter than O

due to the existene of �

z

. We show that O

0

is a <-yle in G(T ), whih

is a ontradition to the minimality of O. Let O

0

= �

t

ju

0

0

; : : : ; �

t

ju

0

m

. By

de�nition of G(T ), the fat that (�

s

ju

s

; <; �

s

+

ju

s

+

) 2 E implies �

s

+

= �

s

=

�

t

. Hene, it remains to show that O

0

is a yle in G(T ), i.e., that, for all

i � m, we have (�

t

ju

0

i

; P; �

t

ju

0

i

+

) 2 E for some P 2 f<;=g.

Let �

t

ju

0

i

and �

t

ju

0

i

+

be nodes in O

0

. If these two nodes are already neigh-

bor nodes in O, we are obviously done. Hene, assume that this is not the

ase. By onstrution of O

0

, this implies the existene of a path

�

t

ju

0

i

; �

�

1

ju

�

1

; : : : ; �

�

x

ju

�

x

; �

t

ju

0

i

+

in G(T ), whih is at most as long as O, suh that �

�

i

6= �

t

for all i with

1 � i � x. By onstrution of G(T ) and by (�), this implies that there exist

� 2 f1; : : : ; k + `g

�

, f 2 N

aF

, j 2 f1; : : : ; k + `g, and g; g

0

2 G(C; T ) suh

that the following onditions are satis�ed:

(1) �

�

1

= �

�

x

= �,

(2) �

t

= �j and F

j�k

(C; T ) = f ,

(3) u

0

i

= g, u

�

1

= fg, u

�

x

= fg

0

, and u

0

i

+

= g

0

, and

(4) (�jfg;=; �jjg) 2 E and (�jfg

0

;=; �jjg

0

) 2 E.

By de�nition ofG(T ) and by Point 4, both fg and fg

0

are nodes in pl(T; �) =

(V

0

; E

0

). By de�nition of pl, this implies that either

(a) (fg

0

; <; fg) 2 E

0

or

(b) (fg; P; fg

0

) 2 E

0

for some P 2 f<;=g.

Case (a) is impossible, whih an be seen as follows: together with Point 1

and 3 and the de�nition ofG(T ), (a) obviously implies (�

�

x

ju

�

x

; <; �

�

1

ju

�

1

) 2 E.

Hene, the path �

�

1

ju

�

1

; : : : ; �

�

x

ju

�

x

is a <-yle in G(T ) whih ontradits the

minimality of O.

Hene, let us assume that (b) holds. Moreover, let pl(T; �j) = (V

00

; E

00

).

We have (g; P; g

0

) 2 E

00

, whih an be seen as follows: let G(�) = (V

0

�

; E

0

�

);

by de�nition of pair-graphs and sine all onepts are in path normal form,

(fg; P; fg

0

) 2 E

0

implies (fg; P; fg

0

) 2 E

0

n E

0

�

; by de�nition of pl and

by Point 2, this means that (g; P; g

0

) 2 T

�

(�). Hene, (g; P; g

0

) 2 E

00

. By

de�nition of G(T ) and Point 1 and 3, (g; P; g

0

) 2 E

00

implies that we have

(�

t

ju

0

i

; P; �

t

ju

0

i

+

) 2 E, as was to be shown.

This �nishes the proof of Claim 1. We may now de�ne the interpretation of

temporal features. Let Æ be a solution for G(T ). We set
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g

I

= f(�; x) j g is enfored by T (�) and Æ(�jg) = xg for all g 2 N

tF

:

To show that there exists a d 2 �

I

suh that d 2 C

I

, we prove the following

laim:

Claim 2: D 2 T

�

(�) implies � 2 D

I

for all � 2 �

I

and D 2 sub(C; T ).

Proof: The laim is proved by indution on the struture of D. First for the

indution start, whih splits into several subases:

� D is a onept name. Immediate by de�nition of I.

� D = :E. Sine C is in NNF, D is also in NNF. Hene, E is a onept name.

By de�nition of I and sine T (�) is a Hintikka-set and thus satis�es (H4),

we have � 2 (:E)

I

.

� D = 9(u

1

P u

2

). Let G(T ) = (V;E) and pl(T; �) = (V

0

; E

0

). By de�nition

of pair-graphs and pl(), we have (u

1

; P; u

2

) 2 E

0

. Moreover, by de�nition

of G(T ), we have (�ju

1

; P; �ju

2

) 2 E. It thus remains to show that u

I

1

(�) =

Æ(�ju

1

), and u

I

2

(�) = Æ(�ju

2

): sine Æ is a solution for G(T ), this learly

implies u

I

1

(�)Pu

I

2

(�).

First, assume u

i

= g for some g 2 N

tF

. By de�nition of g

I

and sine g is

enfored by T (�), we have u

I

i

(�) = Æ(�ju

i

) as required. Now let u

i

= fg with

F

j�k

(C; T ) = f . Sine fg is a node in pl(T; �), we have (�jfg;=; �jjg) 2 E.

Hene, Æ(�jjg) = Æ(�jfg). By de�nition of f

I

and sine f is obviously

enfored by T (�), we have f

I

(�) = �j. By de�nition of pl and of pair-

graphs, fg 2 V

0

implies that g appears in T

�

(�j): sine pl(T; �) is both a

ompletion of G(�) and satis�able, fg 2 V

0

implies (fg;=; fg) 2 E

0

; due

to the de�nition of pair graphs and sine all onepts are in path normal

form, (fg;=; fg) is not an edge of G(�); hene, by de�nition of pl and

sine F

j�k

(C; T ) = f , we must have (g;=; g) 2 T

�

(�j), i.e., g appears in

T

�

(�j). Sine g appears in T

�

(�j) and is thus enfored by T (�j), we have

g

I

(�j) = Æ(�jjg) by de�nition of g

I

. Summing up, we obtain (fg)

I

(�) =

Æ(�jjg) = Æ(�jfg).

� D = g". If g

I

(�) is de�ned, then g is enfored by T (�). We show that

this implies g" =2 T

�

(�). If g is enfored by T (�), then either (i) g appears

in T

�

(�) or (ii) f9(g P u

0

); 9(u

0

P g)g \ T

�

(�) 6= ; for some path u

0

and

P 2 f<;=g. In ase (i), (H6) yields g" =2 T

�

(�). In ase (ii), (H5) yields

the same result.

For the indution step, we make a ase distintion aording to the topmost

operator in D. Assume D 2 T

�

(�).

� D = C

1

u C

2

or D = C

1

t C

2

. Straightforward by (H2) and (H3) of

Hintikka-sets and by indution hypothesis.

� D = 9R:E with R 2 N

rR

. By de�nition of R

I

, we have (�; �) 2 R

I

for

� = �i and E

i

(C; T ) = 9R:E. By (H7), we have E 2 T

�

(�), and, by

indution, � 2 E

I

.

� D = 9f:E with f 2 N

aF

. Hene, f is enfored by T (�). By de�nition of
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f

I

, we have f

I

(�) = � for � = �i and F

i�k

(C; T ) = f . By (H9), we have

E 2 T

�

(�), and, by indution, � 2 E

I

.

� D = 8R:E with R 2 N

rR

. Let (�; �) 2 R

I

. By de�nition of R

I

, there exists

an i suh that E

i

(C; T ) = 9R:D 2 T

�

(�) and � = �i. By (H8), we have

E 2 T

�

(�), and, by indution, � 2 E

I

. Sine this holds independently of

the hoie of �, we have � 2 (8R:E)

I

.

� D = 8f:E with f 2 N

aF

. Let f

I

(�) = �. By de�nition of f

I

, we have

� = �i, F

i�k

(C; T ) = f , and f is enfored by T (�). By (H10), we have

E 2 T

�

(�), and, by indution, � 2 E

I

.

This ompletes the proof of the laim. Sine C 2 T

�

(�) by (H12) and, for all

� 2 �

I

, we have C

T

2 T

�

(�) by (H1), it is an immediate onsequene of the

semantis of TBoxes and Claim 2 that I is a model of C w.r.t. T . 2

Lemma 29 A onept C is satis�able w.r.t. a general TBox T only if there

exists a Hintikka-tree for C and T .

Proof. Let C be a onept, T a TBox, and k and ` as in the proof of Lemma 28.

Moreover, let I be a model of C w.r.t. T , i.e., there exists a d

0

2 �

I

suh

that d

0

2 C

I

and D

I

= E

I

for all D

:

= E 2 T . We indutively de�ne a

Hintikka-tree T for C and T , i.e., a k + `-ary �

C;T

-tree that satis�es (H12)

and (H13). Along with T , we de�ne a mapping � from f1; : : : ; k + `g

�

to �

I

in suh a way that

T

�

(�) = fD 2 sub(C; T ) j �(�) 2 D

I

g (�)

For the indution start, set

�(�) := d

0

; T

�

(�) := fD 2 sub(C; T ) j d

0

2 D

I

g; and T

�

(�) := ;:

Obviously, (�) is satis�ed. Now for the indution step. Let � 2 f1; : : : ; k+ `g

�

be a word of minimal length suh that �(�) is de�ned and �(�i) is unde�ned

for some i 2 f1; : : : ; k + `g. We make a ase distintion as follows:

(1) E

i

(C; T ) = 9R:D 2 T

�

(�). By (�), we have �(�) 2 (9R:D)

I

. Thus, there

exists some e 2 �

I

suh that (�(�); e) 2 R

I

and e 2 D

I

. Set �(�i) := e,

T

�

(�i) := fE 2 sub(C; T ) j e 2 E

I

g, and T

�

(�i) := ;.

(2) F

i�k

(C; T ) = f , and f is enfored by T (�). By (�) and the de�nition of

\enfored", there exists an e 2 �

I

suh that f

I

(�(�)) = e. Set

�(�i) := e

T

�

(�i) := fE 2 sub(C; T ) j e 2 E

I

g

T

�

(�i) := f(g

1

; P; g

2

) j fg

1

, fg

2

are enfored by T (�) and g

I

1

(e)Pg

I

2

(e)g
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(3) �, i do not math the above ases. Set �(�i) := �(�) and T (�i) := T (�).

Clearly, (�) is satis�ed after eah indution step, and hene T is well-de�ned.

Intuitively, Case 3 applies if the i-th suessor of � is not needed to satisfy

the Properties of Hintikka-trees. In this ase, the hoie of �(�i) is arbitrary:

we ould have de�ned �(�i) as any element of �

I

(instead of hoosing �(�)).

We must show that T is a Hintikka-tree for C and T . From (�) together with

the semantis of onepts and TBoxes, it is lear that T

�

(�) is a Hintikka-set

for C and T for eah � 2 f1; : : : ; k+ `g

�

. Let us show exemplarily that (H1)

holds. Assume to the ontrary that there exists an � 2 f1; : : : ; k + `g

�

suh

that C

T

=2 T

�

(�). By (�), we have �(�) =2 C

I

T

. By de�nition of C

T

, this implies

the existene of D

:

= E 2 T suh that �(�) =2 (D $ E)

I

, i.e., �(�) 2 D

I

nE

I

or �(�) 2 E

I

nD

I

. Hene, we do not have D

I

= E

I

and obtain a ontradition

to the fat that I is a model of T .

Now we show that T (�) is a Hintikka-pair for eah node �, i.e., that (H6)

is satis�ed. The proof is by ontradition. Assume that there exists an � 2

f1; : : : ; k+`g

�

suh that (g

1

; P; g

2

) 2 T

�

(�) and g

j

" 2 T

�

(�) for j 2 f1; 2g. By

de�nition of T

�

, (g

1

; P; g

2

) 2 T

�

(�) implies that g

I

j

(�(�)) is de�ned. But from

g

j

" 2 T

�

(�) and (�), we obtain that g

I

j

(�(�)) is unde�ned: ontradition.

It remains to show that T satis�es (H12) and (H13). The former is sim-

ple due to the de�nition of T (indution start) and the fat that d

0

2 C

I

.

The latter amounts to showing that, for eah � 2 f1; : : : ; k + `g

�

, the tuple

(T (�); T (�1); : : : ; T (�j)) satis�es (H7) to (H11), where j abbreviates k + `.

(H7) Let 9R:D 2 T

�

(�) and E

i

(C; T ) = 9R:D. By de�nition of � (Case 1),

we have �(�i) = e for some e 2 �

I

with (�(�); e) 2 R

I

and e 2 D

I

. By (�),

we thus have D 2 T

�

(�i).

(H8) Let f9R:D; 8R:Eg � T

�

(�) and E

i

(C; T ) = 9R:D. By de�nition of �

(Case 1), we have �(�i) = e for some e 2 �

I

with (�(�); e) 2 R

I

. By

(�), we have �(�) 2 (8R:E)

I

whih implies e 2 E

I

. By (�), we thus have

E 2 T

�

(�i).

(H9) Let 9f:D 2 T

�

(�) and F

i

(C; T ) = f . Hene, f is enfored by T (�). By

de�nition of � (Case 2), we have �(�j) = e for e = f

I

(�(�)) and j = k + i.

From 9f:D 2 T

�

(�) and (�), we obtain �(�) 2 (9f:D)

I

and thus e 2 D

I

.

Again by (�), we get D 2 T

�

(�j).

(H10) Let f be enfored by T (�), F

i

(C; T ) = f , and 8f:D 2 T

�

(�). By

de�nition of � (Case 2), we have �(�j) = e for e = f

I

(�(�)) and j = k + i.

From 8f:D 2 T

�

(�) and (�), we obtain �(�) 2 (8f:D)

I

and thus e 2 D

I

.

Again by (�), we get D 2 T

�

(�j).

(H11) Let G(T (�)) = (V;E) and E

0

be de�ned as in (H11). To prove that

(H11) is satis�ed, we show that

(1) E

0

is an edge extension of G(T (�)), whih implies that (V;E [E

0

) is a
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ompletion of G(T (�)) and

(2) (V;E [ E

0

) is satis�able.

We �rst prove Point 1. It needs to be shown that, for eah fg

1

; fg

2

2 V ,

f(fg

1

; <; fg

2

); (fg

1

;=; fg

2

); (fg

2

; <; fg

1

)g\E

0

6= ;. By de�nition ofG(T (�)),

fg

1

and fg

2

are enfored by T (�). Sine T

�

(�) may only ontain paths of

length 1, we have f9(fg

1

P

0

u); 9(uP

0

fg

1

)g\T

�

(�) 6= ; for some path u and

P

0

2 f<;=g and similarly for fg

2

. By (�), this implies that f

I

(g

I

1

(�(�))) and

f

I

(g

I

2

(�(�))) are de�ned. By de�nition of T (Case 2) and sine f is obviously

enfored by T (�), we have f

I

(�(�)) = �(�i) with F

i�k

(C; T ) = f . Hene,

g

I

1

(�(�i)) and g

I

2

(�(�i)) are de�ned. By the semantis, we have g

I

1

(�(�i)) <

g

I

2

(�(�i)), g

I

1

(�(�i)) = g

I

2

(�(�i)), or g

I

2

(�(�i)) < g

I

1

(�(�i)). By de�nition of

T

�

, this yields f(g

1

; <; g

2

); (g

1

;=; g

2

); (g

2

; <; g

1

)g \ T

�

(�i) 6= ;. Hene, by

de�nition of E

0

we have f(fg

1

; <; fg

2

); (fg

1

;=; fg

2

); (fg

2

; <; fg

1

)g \E

0

6= ;.

We now prove Point 2 from above. De�ne a mapping Æ from V to Q as

follows: Æ(u) := u

I

(�(�)). This mapping is well-de�ned, whih an be seen

as follows. Fix a u 2 V . Sine u is enfored by T (�), either

(i) u ours in T

�

(�) or

(ii) f9(uP u

0

); 9(u

0

P u)g \ T

�

(�) 6= ; for some path u

0

and P 2 f<;=g.

In Case (i), we have u = g for some g 2 N

tF

. By de�nition of T , there

exists a predeessor � of � in T suh that � = �i, F

i�k

(C; T ) = f for some

f 2 N

aF

, and fg is enfored by T (�). Sine T

�

(�) ontains only paths of

length 1, we have f9(fg P u); 9(uP fg)g \ T

�

(�) 6= ; for some path u and

P 2 f<;=g. By (�), g

I

(f

I

(�(�))) is de�ned. Sine, by de�nition of T , we

have f

I

(�(�))) = �(�), g

I

(�(�)) is de�ned. In Case (ii), it follows from (�)

that u

I

(�(�)) is de�ned.

We show that Æ is a solution for (V;E[E

0

) by distinguishing the following

ases:

(1) (u

1

; P; u

2

) 2 E \ T

�

(�). Then there exist g

1

; g

2

2 N

tF

suh that u

1

= g

1

and u

2

= g

2

. By de�nition of T

�

, we have g

I

1

(�(�))Pg

I

2

(�(�)), and thus,

by de�nition of Æ, Æ(g

1

)PÆ(g

2

).

(2) (u

1

; P; u

2

) 2 E and 9(u

1

P u

2

) 2 T

�

(�). Then (�) implies that �(�) 2

9(u

1

P u

2

)

I

. Hene, u

I

1

(�(�))Pu

I

2

(�(�)). By de�nition of Æ, we thus ob-

tain Æ(u

1

)PÆ(u

2

).

(3) (u

1

; P; u

2

) 2 E

0

. By de�nition of E

0

, we have u

1

= fg

1

, u

2

= fg

2

, and

(g

1

; P; g

2

) 2 T

�

(�i) where F

k�i

(C; T ) = f . By de�nition of T

�

, this

yields that fg

1

and fg

2

are enfored by T (�) and g

I

1

(�(�i))Pg

I

2

(�(�i)).

From this and the de�nition of T (Case 2), it follows that f

I

(�(�)) =

�(�i). We onlude Æ(u

1

)PÆ(u

2

).

To sum up, we have shown that (H13) holds. 2
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B Proofs for Setion 5

Lemma 23 Let A be an ABox and T a TBox. Then A is onsistent w.r.t. T

i� there exists a preompletion A

0

of A w.r.t. T suh that A

0

is onsistent

w.r.t. T .

Proof. Reall that A

0

is a preompletion of A w.r.t. T if A

0

an be obtained

from A by exhaustive rule appliation (using the TBox T ). By Lemma 21,

exhaustive rule appliation always terminates. Hene, we only need to show

that, if a preompletion rule R is appliable to an ABox A, then A is onsistent

w.r.t. T i� one of the outomes A

0

of applying R to A is onsistent w.r.t. T .

We make a ase distintion aording to the rule R. For all rules exept Rfe,

the \if" diretion is trivial sine A � A

0

if A

0

is obtained from A by rule

appliation. Hene, every model of A

0

and T is learly also a model of A

and T . Thus, we onentrate on the \only if" diretion in all ases exept Rfe.

Assume that I is a model of A and T .

� R = Ru. Assume that the Ru rule is applied to a onept C u D 2 A(a).

Sine I is a model of A, we have a

I

2 (C u D)

I

and thus a

I

2 C

I

and

a

I

2 D

I

. Rule appliation adds a : C and a : D to A. Thus, I is a model

of the resulting ABox A

0

.

� R = Rt. Assume that the Rt rule is applied to a onept C t D 2 A(a).

Sine I is a model ofA, we have a

I

2 (CtD)

I

and thus a

I

2 C

I

or a

I

2 D

I

.

The rule appliation yields ABoxes A

1

= A[fa : Cg and A

2

= A[fa : Dg.

Thus, I is a model of A

1

or A

2

.

� R = R9f. Assume that the rule is applied to a onept 9f:C 2 A(a) adding

b : C to A for some b with ha; bi : f 2 A. Sine I is a model of A, we have

a

I

2 (9f:C)

I

and f

I

(a

I

) = b

I

. Due to the funtionality of f

I

, this yields

b

I

2 C

I

. Thus, I is a model of the resulting ABox A

0

.

� R = R8. Similar to the previous ase.

� R = R1. Analogous to the next ase, only simpler.

� R = R2. Assume that the R2 rule is applied to a onept 9(fg

1

P g) 2 A(a)

and a node b with ha; bi : f 2 A. Sine I is a model of A, we have a

I

2

9(fg

1

P g)

I

, f

I

(a

I

) = b

I

, and g

I

1

(b

I

)P g

I

2

(a

I

). Rule appliation introdues

two new time point names x

1

and x

2

and adds fhb; x

1

i : g

1

; ha; x

2

i : g

2

,

x

1

P x

2

g to A. Let I

0

be obtained from I by setting x

I

1

= g

I

1

(b

I

) and x

I

2

=

g

I

2

(a

I

). Clearly, I

0

is a model of the resulting ABox A

0

.

� R = R3. Analogous to the previous ase.

� R = Rh. Assume that the Rh rule is applied to the assertions ha; x

1

i : g

1

and ha; x

2

i : g

2

. Sine I is a model of A, there exist q

1

; q

2

2 Q suh that

x

I

1

= q

1

and x

I

2

= q

2

. Trivially, we have either q

1

< q

2

, q

1

= q

2

, or q

2

< q

1

.

We obtain three new ABoxes by adding one of the assertions a : 9(g

1

< g

2

),

a : 9(g

1

= g

2

), and a : 9(g

2

< g

1

). Thus, I is a model of A

i

for some

i 2 f1; 2; 3g.
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� R = R

:

=. The rule appliation adds a : C

T

for some a 2 O

a

. Sine I is a

model of T , we have d 2 C

I

T

for every d 2 �

I

. Thus, I is also a model of

the resulting ABox A

0

.

� R = Rfe. Assume that the rule is applied to assertions ha; bi : f and ha; i : f .

Sine I is a model of A, we have f

I

(a

I

) = b

I

= 

I

. Thus, I is also a model

of the ABox A

0

obtained from A by replaing the objet name b with .

For this rule, we also treat the \if" diretion. Hene assume that the rule

has applied to two assertions ha; bi : f and ha; i : f in A, and let I

0

be

a model of the resulting ABox A

0

that has been obtained by replaing b

with . It is easily seen that we an onstrut a model I

00

of A by setting

b

I

= 

I

.

The replaement of time point names rather than objet names an be

treated analogously. 2

Lemma 24 Let A be a preomplete ABox, Æ a solution for G(A), and a 2 O

a

used in A. If on(A; a) is satis�able w.r.t. T , then there exists a model I of

on(A; a) and T and a d

a

2 on(A; a)

I

suh that, for all ha; xi : g 2 A, we

have g

I

(d

a

) = Æ(x).

Proof. Let A, G(A), and Æ be as in the lemma, and let I be a model of

on(A; a) and T . Moreover, let d

a

be an arbitrary element of on(A; a)

I

. We

show that I an be transformed into a model J suh that J and d

a

are as

required.

In the following, we assume that there exists a well-founded linear ordering on

the set �

I

�N

tF

. This an be done w.l.o.g. sine it is a byprodut of the proof of

Lemma 28 that, if a onept C is satis�able w.r.t. a TBox T , then there exist a

model of C and T (the one onstruted in the proof) for whih suh an ordering

exists. We onstrut the model J from I by modifying the interpretations of

temporal features in an appropriate way. To do this, we suessively \mark"

pairs in �

I

� N

tF

suh that a pair (d; g) is marked i� g

J

(d) has already been

determined. During the onstrution of J , the following invariant will always

hold:

if (d

1

; g

1

); (d

2

; g

2

) 2 �

I

� N

tF

are marked, then

g

I

1

(d

1

)

P

g

I

2

(d

2

) with P 2 f<;=; >g implies g

J

1

(d

1

)

P

g

J

2

(d

2

)

(�)

Initially, eah pair in �

I

� N

tF

is unmarked. The onstrution of J onsists

of an initial step and an indutive step.

(1) Initial step. For all ha; xi : g 2 A, set g

J

(d

a

) := Æ(x) and mark (d

a

; g).

We need to show that (�) is satis�ed. Hene, �x two marked pairs (d

a

; g

1

)

and (d

a

; g

2

) from �

I

�N

tF

. Then we have fha; x

1

i : g

1

, ha; x

2

i : g

2

g � A for

some x

1

; x

2

2 O

t

. Sine neither the Rh nor the R1 rule is appliable, we

have either (i) 9(g

1

< g

2

) 2 A(a) and x

1

< x

2

2 A, (ii) 9(g

1

= g

2

) 2 A(a)
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and x

1

= x

2

2 A, or (iii) 9(g

2

< g

1

) 2 A(a) and x

2

< x

1

2 A.

We only treat ase (i) exemplarily. By de�nition of on(A; a) and sine

d

a

2 on(A; a)

I

, we have d

a

2 9(g

1

< g

2

)

I

and thus g

I

1

(d

a

) < g

I

2

(d

a

).

From x

1

< x

2

2 A and the de�nition of G(A), it follows that Æ(x

1

) <

Æ(x

2

) and hene g

J

1

(d

a

) < g

J

2

(d

a

) as required. Cases (ii) and (iii) are

analogous.

(2) Indutive step. Choose the least unmarked pair (d; g) from �

I

�N

tF

(w.r.t.

the assumed ordering) for whih g

I

(d) is de�ned. For P 2 f<;=; >g, let

	

P

be the set of marked pairs (d

1

; g

1

) 2 �

I

�N

tF

for whih g

I

1

(d

1

)P g

I

(d).

By (�), we have

� g

J

1

(d

1

) = g

J

2

(d

2

) for all (d

1

; g

1

); (d

2

; g

2

) 2 	

=

,

� g

J

1

(d

1

) < g

J

2

(d

2

) for all (d

1

; g

1

) 2 	

<

and (d

2

; g

2

) 2 	

=

[ 	

>

, and

� g

J

1

(d

1

) < g

J

2

(d

2

) for all (d

1

; g

1

) 2 	

=

and (d

2

; g

2

) 2 	

>

.

Hene, due to the density of Q there is a q 2 Q suh that

� q > maxfg

J

1

(d

1

) j (d

1

; g

1

) 2 	

<

g,

� q = g

J

1

(d

1

) for all (d

1

; g

1

) 2 	

=

, and

� q < minfg

J

1

(d

1

) j (d

1

; g

1

) 2 	

>

g.

Set g

J

(d) := q. Obviously, (�) is satis�ed.

It is straightforward to show by strutural indution that d 2 C

I

i� d 2 C

J

for all d 2 �

I

and all T DL-onepts C. Hene, J is a model of on(A; a)

and T . By the initial step of its onstrution, J is as required. 2

Lemma 25 Let A be a preompletion of an ABox A

0

w.r.t. a TBox T . A is

onsistent w.r.t. T i� A is lash-free and on(A; a) is satis�able w.r.t. T for

every a 2 O

a

used in A.

Proof. Sine the \only if" diretion is straightforward, we onentrate on the

\if" diretion. Let A denote the set of objet names a 2 O

a

appearing in A.

Sine A is lash-free, there exists a solution Æ for G(A). For every a 2 A, �x

a model I

a

of on(A; a) and T and a domain element d

a

2 �

I

a

suh that

d

a

2 on(A; a)

I

a

. By Lemma 24, we may assume w.l.o.g. that, for all a 2 A,

ha; xi : g 2 A implies g

I

a

(d

a

) = Æ(x): (�)

Moreover, we assume that (i) a 6= b implies �

I

a

\ �

I

b

= ; and (ii) none of

the d

a

has inoming edges, i.e., (d; d

a

) =2 R

I

a

for all d 2 �

I

a

and R 2 N

R

. It is

straightforward to prove that none of these assumptions restrits generality:

for example, take for eah a 2 A the anonial model onstruted from a

Hintikka-tree for on(A; a) and T as in the proof of Lemma 28. Then apply

the modi�ation from the proof of Lemma 24 and �nally make all domains I

a

disjoint by renaming. Clearly, (�), (i), and (ii) are satis�ed for the resulting

set of models. In the following, we de�ne an interpretation I by taking the

\union" of the models I

a

with a 2 A and the relational struture de�ned by

the ABox. However, we have to be areful not to obtain too many abstrat

feature suessors and prefer suessors from the ABox over suessors from
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the models.

(1) �

I

:=

S

a2A

�

I

a

,

(2) A

I

:=

S

a2A

A

I

a

for all A 2 N

C

,

(3) R

I

:= f(d

a

; d

b

) j ha; bi : R 2 Ag [

S

a2A

R

I

a

for all R 2 N

rR

,

(4) f

I

:= f(d

a

; d

b

) j ha; bi : f 2 Ag [

S

a2A

f(d; e) 2 f

I

a

j d 6= d

a

or

ha; bi : f =2 A for all b 2 O

a

g for all f 2 N

aF

,

(5) g

I

:=

S

a2A

g

I

a

for all g 2 N

tF

,

(6) a

I

:= d

a

for all a 2 A, and

(7) x

I

:= Æ(x) for all x 2 O

t

appearing in A.

Note that, for all f 2 N

aF

, f

I

is funtional sine the Rfe rule is not appliable

to A. Sine none of the d

a

has inoming edges, the following laim an be

proved straightforwardly by strutural indution:

Claim 1: For all objets a 2 A, domain elements d 2 �

I

a

with d 6= d

a

, and

T DL-onepts C, we have d 2 C

I

a

i� d 2 C

I

.

However, we still need to deal with the elements d

a

themselves.

Claim 2: For all objets a 2 A, C 2 A(a) implies d

a

2 C

I

.

The proof is by indution on the struture of C. The indution start onsists

of three ases:

� C 2 N

C

. Straightforward by de�nition of on(A; a), the hoie of I

a

and d

a

,

and the onstrution of I.

� C = 9(u

1

P u

2

). By de�nition of on(A; a) and hoie of I

a

and d

a

, C 2 A(a)

implies d

a

2 C

I

a

. We make a ase distintion aording to the form of u

1

and u

2

(reall that all onepts are assumed to be in path normal form).

(1) u

1

= g

1

and u

2

= g

2

. Sine d

a

2 9(g

1

P g

2

)

I

a

, there exist q

1

; q

2

2 Q suh

that g

I

a

1

(d

a

) = q

1

, g

I

a

2

(d

a

) = q

2

, and q

1

Pq

2

. By de�nition of I, this implies

g

I

1

(d

a

) = q

1

, g

I

2

(d

a

) = q

2

and thus d

a

2 9(g

1

P g

2

)

I

.

(2) u

1

= fg

1

and u

2

= g

2

. We have to distinguish two subases. First assume

that ha; bi : f 2 A for some b 2 O

a

. Sine the R2 rule is not appliable,

there exist x

1

; x

2

2 O

t

suh that fha; x

1

i : g

1

; hb; x

2

i : g

2

; x

1

P x

2

g 2 A.

Sine Æ is a solution for G(A), there are q

1

; q

2

2 Q suh that q

1

= Æ(x

1

),

q

2

= Æ(x

2

), and q

1

Pq

2

. Sine I

a

and I

b

satisfy (�), we have g

I

b

1

(d

b

) = q

1

and

g

I

a

2

(d

a

) = q

2

. By onstrution of I, we have f

I

(d

a

) = d

b

, g

I

1

(d

a

) = g

I

a

1

(d

a

),

and g

I

2

(d

b

) = g

I

b

2

(d

b

). Hene, g

I

1

(d

a

)Pg

I

2

(d

b

) and d

a

2 9(fg

1

P g

2

)

I

.

Now assume that there is no b 2 O

a

suh that ha; bi : f 2 A. From

d

a

2 9(fg

1

P g

2

)

I

a

and the onstrution of I, it follows straightforwardly

(similar to Case 1) that d

a

2 9(fg

1

P g

2

)

I

.

(3) u

1

= g

1

and u

2

= fg

2

. Analogous to the previous ase using R3 instead

of R2.

� C = g". As in the previous ase, C 2 A(a) implies d

a

2 C

I

a

. Hene, g

I

a

(d

a

)

is unde�ned. By de�nition of I, g

I

(d

a

) is also unde�ned and thus d

a

2 (g")

I

.
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For the indution step, we make a ase distintion aording to the topmost

onstrutor in C:

� C = C

1

uC

2

. Sine the Ru rule is not appliable toA and C 2 A(a), we have

fC

1

; C

2

g � A(a). The indution hypothesis yields d

a

2 C

I

1

and d

a

2 C

I

2

.

By the semantis, we obtain d

a

2 C

I

.

� C = C

1

t C

2

. Similar to the previous ase.

� C = 9R:D with R 2 N

rR

. By de�nition of on(A; a) and hoie of I

a

and

d

a

, C 2 A(a) implies d

a

2 C

I

a

. Hene, there exists an e 2 �

I

a

suh that

(d

a

; e) 2 R

I

a

and e 2 D

I

a

. Sine d

a

has no inoming edges in I

a

(see above),

we have d

a

6= e. Hene, by Claim 1, e 2 D

I

a

implies e 2 D

I

. By onstrution

of I, we additionally have (d

a

; e) 2 R

I

and thus d

a

2 (9R:D)

I

.

� C = 9f:D. If there is no b 2 O

a

suh that ha; bi : f 2 A, then we an argue

as in the previous ase. Hene assume that suh a b exists. Sine the R9f

rule is not appliable, we have b : D 2 A. By indution, we have d

b

2 D

I

.

Sine we have f

I

(d

a

) = d

b

by onstrution of I, we obtain d

a

2 (9f:D)

I

.

� C = 8R:D. Fix a pair (d

a

; e) 2 R

I

. By de�nition of I, we have either

(d

a

; e) 2 R

I

a

or e = d

b

and ha; bi : R 2 A. In the �rst ase, we have e 6= d

a

sine d

a

has no inoming edges in I

a

and e 2 D

I

by the semantis and

Claim 1. In the seond ase, we have D 2 A(b) sine the R8 rule is not

appliable to A. Hene, by indution, e 2 D

I

and thus d

a

2 (8R:D)

I

.

This �nishes the proof of Claim 2.

Using the two laims, it is easy to show that I is a model of A and T . We �rst

show that I satis�es every assertion in A. For assertions of the form a : C, we

have a

I

= d

a

2 C

I

by Claim 2. Assertions ha; bi : R are obviously satis�ed by

de�nition of I. Assertions ha; xi : g are satis�ed by onstrution of I and sine

the models I

b

(for b 2 A) satisfy (�). Finally, assertions x

1

P x

2

are satis�ed

sine Æ is a solution for G(A).

It remains to show that I is a model of T . Fix a onept equation C

:

= D 2 T

and a d 2 �

I

. First assume that d 6= d

a

for all a 2 A. Let d 2 �

I

a

. Then

d 2 C

I

i� d 2 D

I

by Claim 1 and sine I

a

is a model of T . Now assume

d = d

a

. Sine the R

:

= rule is not appliable to A, we have a : C

T

2 A. Hene,

by Claim 2, d

a

2 C

I

T

. By de�nition of C

T

, this learly implies d

a

2 C

I

i�

d

a

2 D

I

. 2
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