Combining Interval-based Temporal
Reasoning with General TBoxes

Carsten Lutz

Institute for Theoretical Computer Science, TU Dresden, Germany

Abstract

While classical Description Logics (DLs) concentrate on the representation of static
conceptual knowledge, recently there is a growing interest in DLs that, addition-
ally, allow to capture the temporal aspects of conceptual knowledge. Such temporal
DLs are based either on time points or on time intervals as the temporal primitive.
Whereas point-based temporal DLs are well-investigated, this is not the case for
interval-based temporal DLs: all known logics either suffer from rather limited ex-
pressive power or have undecidable reasoning problems. In particular, there exists no
decidable interval-based temporal DL that provides for general TBoxes—one of the
most important expressive means in modern description logics. In this paper, for the
first time we define an interval-temporal DL that is equipped with general TBoxes
and for which reasoning is decidable (and, more precisely, EXPTIME-complete).

Key words: description logic, temporal reasoning, tree automata, complexity

1 Introduction

Description Logics (DLs) are a family of logics that originated in artificial intel-
ligence as a tool for reasoning about conceptual knowledge, and are nowadays
used in a broad spectrum of applications [6]. The fundamental notion of knowl-
edge representation with DLs is that of a concept, where complex concepts
are constructed from the following atoms: concept names (unary predicates),

Email address: 1lutz@tcs.inf.tu-dresden.de (Carsten Lutz).
URL: http://lat.inf.tu-dresden.de/~clu/ (Carsten Lutz).

Preprint submitted to Elsevier Science 8 August 2003

role names (binary predicates), and a set of concept constructors that are
provided by the chosen DL. For example, the following concept is formulated
in the basic description logic ALC [34]:

Human 1 Male M Jhas-child.Human

In this example, Human and Male are concept names while has-child is a role
name. It should be easy to see that, intuitively, the above concept describes
fathers.

Whereas classical DLs concentrate on the representation of “static” conceptual
knowledge (such as in the above example), recently there is a growing interest
in “dynamic” DLs that allow to incorporate, e.g., temporal and epistemic
aspects of the application domain. Concerning temporal description logics, we
can distinguish several quite different approaches (see e.g. the survey [2]). The
most important decision to be made when devising a temporal DL is whether
time points or time intervals should be the temporal primitive, since this
decision has a serious ontological impact and may have dramatic consequences
for issues of decidability and computational complexity.

In modal and temporal logics, to which description logics are very closely re-
lated [32,13], time points are the most popular temporal atom, see e.g. the
handbook [12]. Consequently, there has been a series of papers on temporal
DLs that use time points as their temporal primitive in the same spirit as
modal and temporal logics do [33,41,36,27]. These logics offer an interesting
expressivity and sometimes have quite attractive computational properties.
However, their expressive power is not strong enough to talk about time in-
tervals in a satisfying way.

In artificial intelligence, time intervals have a strong tradition as a temporal
primitive since Allen’s seminal 1983 paper [1], see e.g. the handbook [11].
As DLs form a subfield of artificial intelligence, it is hardly surprising that
interval-based temporal DLs also received a considerable amount of attention.
The expressive power of such DLs is usually based on concept constructors that
refer to the 13 Allen relations, which describe all possible ways in which two
time intervals can be related. While the advantage of interval-based temporal
DLs is that they provide an appealing expressivity, their disadvantage is that it
can be rather hard to avoid undecidability of reasoning. For example, the first
interval-based temporal DL proposed by Schmiedel [35] can easily be proved
to be undecidable by reduction of Halpern and Shoham’s (undecidable) modal
logic of time intervals [15]. Based on this observation, researchers have tried
either to live with undecidability [8] or to find variants of Schmiedel’s original
logic that are still decidable [3].

The main obstacle for many potential applications of decidable interval-based
temporal DLs is that, in order to avoid undecidability, these DLs do not pro-

vide for so-called general TBozxes. General TBoxes are finite sets of concept
equations and a very important expressive means provided by all state-of-the-
art “static” description logics, and by all modern DL reasoning systems such
as FaCT and RACER [18,14]. The importance of TBoxes stems from the fact
that they allow to capture terminological knowledge and background knowl-
edge of an application domain. For example, the following concept equation
defines the notion “father” (thus capturing terminological knowledge):

Father = Human M Male M 3has-child.Human

However, concept equations need not define notions. They can also describe
background knowledge in the form of more general constraints:

—dhas-child.Human = dJhas-favorite.Nightclub

This concept equation states that people having no children are precisely those
people having a favorite nightclub.

The contribution of this paper is to describe a decidable temporal description
logic TDL that provides for general TBoxes and allows interval-based temporal
representation and reasoning. Indeed, T DL is natively point-based, but ad-
mits a straightforward representation of Allen’s interval relations, thus being
a suitable tool for intermixed point- and interval-based temporal reasoning
with general TBoxes. More precisely, 7T DL extends the basic propositionally
closed description logic ALC with

— general TBoxes;

abstract features, i.e. role names interpreted in functional relations;
temporal features: a new syntactic type that allows to associate time points
(rational numbers) with domain elements;

a temporal concept constructor allowing to state that two time points at-
tached via temporal features are in one of the relations <, <,=,#,>, >.

For example, the following 7D L-concept equation expresses that children are
born after their parents were:

T = Human — 3((mother birthday) < birthday)r 3((father birthday) < birthday)

In this equation, mother and father are abstract features, and birthday is a
temporal feature whose value is the birthday of persons encoded as a rational
number—a time point. The conjuncts in the consequence of the implication
are both instantiations of the temporal concept constructor and must not
be confused with the existential restriction as in dchild.Human. Note that
(mother birthday) denotes composition of the abstract feature mother with the
temporal feature birthday.

We have claimed that Allen’s interval relations can straightforwardly be en-

coded in TDL. Assume, for example, that we want to represent the life-time of
people by a time interval and then describe persons whose life-time is properly
overlapping (this is one of the Allen relations) with that of their mother. The
obvious idea is to represent intervals in terms of their start- and end-point
and then to use the relations on time points <, <, =, #, >, > to define Allen’s
interval relations. To represent the above example, we could thus write

Human M 3((mother ¢) < ¢) M 3((mother r) < r)
M 3(¢ < r) M 3((mother) < (mother r)),

where the temporal feature ¢ represents left interval endpoints and the tem-
poral feature r represents right interval endpoints. Since this concept requires
close inspection to reveal that it talks about the Allen relation “overlaps”, we
will define a representation framework that builds on 7DL and treats time
intervals (and time points) as first-class citizens. In this framework, we can
reformulate the above concept as

Human 1 3(mother overlaps self).

Here, mother is still an abstract feature and self is a keyword of the framework.
Concrete features do not appear explicitly in this abbreviated syntax. More
details are provided in Section 3. It is interesting to note that interval-based
temporal representation with 7 DL is similar in spirit to the Allen-based tem-
poral constraint networks (see e.g. [1,40,38,29]) rather than to Schmiedel’s or
Halpern and Shoham’s interval-based description/modal logics. A more de-
tailed comparison of these two families of interval-based temporal description
logics can be found in [4], which investigates the relationship between a rela-
tive of TDL and the logic T L-ALCF, a decidable and interval-based temporal
DL that both restricts and extends Schmiedel’s original proposal [3]. However,
also TL-ALCF does not provide for general TBoxes.

There exists a second, non-temporal view on the description logic TDL that
we should also like to discuss. One shortcoming of simple description logics
such as ALC is that they represent knowledge on an abstract logic level,
thus prohibiting an adequate representation of “concrete knowledge” such as
knowledge about sizes, weights, ages, or even spatial extensions. To eliminate
this deficiency, DLs have been extended with so-called concrete domains as
first proposed in [5], for a recent survey consult [25]. The relationship between
TDL and description logics with concrete domains is a rather intimate one:
indeed, T DL can be viewed as the extension of ALC with general TBoxes and
a particular concrete domain (more details are provided in Section 2). Due to
this fact, the results proved in this paper can be viewed in a different light.
In [26], the extension of ALC with concrete domains and general TBoxes has
been considered. As it turns out, the resulting logic is undecidable for many
interesting concrete domains. It has been an open problem whether there

exist any useful concrete domains that can be combined with general TBoxes
without loosing decidability. Since T DL can be viewed as being equipped with
a concrete domain and, in our opinion, is a very useful DL, we answer this
question to the affirmative.

This paper is organized as follows. In Section 2, we formally introduce the
description logic 7DL and discuss its relationship to concrete domains on
more formal grounds. Section 3 starts with a description of the framework for
representing mixed point- and interval-based temporal information. To illus-
trate the usefulness of both 7T DL and the representation framework, we then
describe an example application from the area of process engineering. In Sec-
tion 4, we use an approached based on automata on infinite trees to show that
satisfiability and subsumption of 7 DL-concepts w.r.t. general TBoxes is de-
cidable. This proof also provides us with a tight EXPTIME complexity bound.
In Section 5, we consider another common DL reasoning problem: ABox con-
sistency. By reduction to concept satisfiability, we prove that, in 7DL, ABox
consistency is also EXPTIME-complete. The reduction is much less straightfor-
ward than e.g. in the case of ALC due to the presence of temporal information.
Finally, we conclude in Section 6.

All results in this article are from the PhD Thesis [22]. The results obtained
in Section 4 have previously been published in the conference paper [20].

2 The Description Logic TDL

We formally introduce the description logic T DL, starting with the syntax.
Examples are delayed to the subsequent section.

Definition 1 (7DL Syntax) Let Nc, Nr, and Ny be mutually disjoint and
countably infinite sets of concept names, role names, and temporal features.
We assume that Ng is partitioned into two countably infinite subsets Ny and
N,r. The elements of Nar are called abstract features and the elements of
N,r regular roles. A path w is a composition fi--- f,g of n abstract features
fiye-os fn (n>0) and a temporal feature g. The set of TDL-concepts is the
smallest set such that

(1) every concept name is a concept

(2) if C and D are concepts, R is a role name, g is a temporal feature, uy, us
are paths, and P € {<,<,=,%#,>,>}, then the following expressions are
also concepts: =C', CM D, C'U D, 3R.C, VR.C', I(uy P us), and gt.

A concept equation is an expression of the form C' = D, where C' and D are
concepts. A finite set of concept equations is called TBox.

The TBox formalism introduced in Definition 1 is often called general TBox
since it subsumes several other, much weaker variants [9,19]. Throughout this
paper, we use 1 as abbreviation for an arbitrary propositional tautology, L
for =T, and ut for Vfy.---Vfr.g1 if u = f1--- frg. As most description logics,
TDL is equipped with a Tarski-style set-based semantics.

Definition 2 (7DL Semantics) An interpretation Z is a pair (Az,-T), where
Az is a set called the domain and T is the interpretation function. The in-
terpretation function maps

each concept name C' to a subset CT of Az,

each role name R to a subset RT of Ar x Az,

each abstract feature f to a partial function f* from Az to Az, and

each temporal feature g to a partial function ¢ from Az to the rational
numbers Q.

For paths uw = fi--- f,g and domain elements d € Az, we set ul(d) :=
GE(fE(---(fE(d))--+)). The interpretation function is extended to arbitrary
concepts as follows:

(—C)F = A\ CF
(CnD)t.=c*nD*
(CuD)*:=c*uD*
(AR.C)F =={de Az |{e|(de) e RFYNCT # M)
(VR.O) .= {de Az |{e]| (d,e) € RT} C O}
A(uy Puy)

(g1)" :

An interpretation I is a model of a concept C iff CT # 0. T is a model of a
TBox T iff it satisfies CT = DT for all concept equations C = D in T.

Ti={de Az |, 0 € Q:uf(d) = 1,13 (d) = 2, and v1 Py}
T.={d e Az | g*(d) undefined}

Note that the temporal constructor 3(u; Pus) has an existential semantics
since it forces the interpretation of the paths u; and us to be defined. The most
important reasoning problems for description logics are concept satisfiability
and concept subsumption, i.e. the questions whether a given concept can have
any instances and whether one concept is more general than another one [6].
For both reasoning tasks, a TBox 7 is used to describe the “background
theory”.

Definition 3 (Reasoning Problems) Let C' and D be concepts and T a
TBoz. C subsumes D w.r.t. T (written D T4 C) iff D* C C? for all models
T of T. C is satisfiable w.r.t. T iff there exists a common model of C and T .

L Tt would not make a difference to use real numbers instead of rational numbers
as time points. This is discussed in more detail in Sections 4.1 and 6.

It is well-known that (un)satisfiability and subsumption can be mutually re-
duced to each other: C' T D iff C' =D is unsatisfiable w.r.t. 7 and C' is
satisfiable w.r.t. 7 iff C' [Z7 L. This fact allows us to concentrate on satis-
fiability since obtained decidability and complexity results are easily “pulled
over” to subsumption.

Another very important reasoning problem is so-called ABox consistency [6].
Intuitively, an ABox describes the state of affairs in the real-world at a par-
ticular time, i.e. it is a “snapshot” of the real world. ABox consistency is then
the ABox counterpart to concept satisfiability.

Definition 4 (ABox, ABox Consistency) Let O, and Oy be a countably
infinite and mutually disjoint sets of object names and time point names. If C
s a concept, R a role name, g a temporal feature,
Pe{<,<,=#,> >}, a,b € 0,, and x,y € O, then the following are ABox
assertions:

a:C, (a,by:R, {a,x):g, xPuy.

A finite set of assertions is called an ABox. Interpretations T can be extended

to ABozes by demanding that, additionally, T maps every object name a to

an element a® of Az and every time point name x to a rational number .

An interpretation T then satisfies an assertion

a:C iff at € C?
(a,b) : R iff (a,bT) € R
(a,2) 1 g iff g*(a®) =27
x Py iff 2t Pyt.
An interpretation is a model of an ABox A iff it satisfies all assertions in A.

An ABox A is consistent w.r.t. a TBox T iff there exists a common model of

Aand T.

Let us view an example 7 DL ABox:

Mary : Human John : Human
(Mary, t1) : birthday (John,ty) : birthday
(John, Mary) : father ty < ty

where Human is a concept name, birthday a temporal feature, father an abstract
feature, Mary and John are from O,, and #; and ¢, are from O;. Obviously, this
ABox states that John is the father of Mary and that John was born before
Mary was born.

Observe that concept satisfiability (and thus also concept subsumption) can
be reduced to ABox consistency: a concept C' is satisfiable w.r.t. a TBox T iff
the ABox {a : C'} is satisfiable w.r.t. 7, where a € O,.

We now discuss the relationship between 7 DL and description logics with
concrete domains. To this end, let us introduce concrete domains formally.

Definition 5 (Concrete Domain) A concrete domain D is a pair (Ap, @p),
where Ap is a set called the domain, and ®p is a set of predicate names. Fach

predicate name P € ®p is associated with an arity n and an n-ary predicate
PP C AL,

In Baader and Hanschke’s original proposal [5], concrete domains are inte-
grated into the description logic by using a concept constructor Juy, . .., u,.P,
where ug, ..., u, are paths and P € ®p is a predicate of arity n + 1. The se-
mantics of this concrete domain constructor is as follows:

(Jug, ..., un.P)Yr:={d € Az | Fvg,...,2p € Q:ul(d) =z; fori <n

and (zg,...,r,) € PP}

Hence, TDL can be viewed as being equipped with the concrete domain
Drpoc = (Q,{<,<,=,#,>,>}), where all predicates are binary and have
the obvious semantics.

We should also like to comment on a difference between 7T DL and some other
description logics with concrete domains: in their original proposal of concrete
domains, Baader and Hanschke do not distinguish between abstract and tem-
poral features (which are usually called “concrete features” in a non-temporal
concrete domain context [25]), but rather provide only one type of feature
interpreted as a partial function from Az to AzUAp. We prefer the separate-
ness of features since, in our opinion, this yields a clearer formalism while the
difference in expressive power is negligible.

3 Temporal Reasoning with 7DL

In this section, we introduce a general framework for the representation of
temporal conceptual knowledge using the description logic TDL. As sketched
in the introduction, despite its point-based semantics 7DL can be used as
a full-fledged interval-based temporal description logic. This fact is reflected
by our framework, which allows to freely combine point-based and interval-
based temporal representation. The usefulness of our framework is illustrated
by several examples from the area of process engineering. This application
of description logics has already been considered, e.g., by Sattler and Moli-

ATemporal =ttt rt
Temporal = Point LI Interval
Point =3(t = 1)
Interval =3(¢ < r)
T=3(t=t)— ((t1r)
NEC=0uU3a(r=r) — (3 <r)nty)

Fig. 1. TBox 7* with basic definitions of the framework.

tor [31,28]. However, in Sattler’s and Molitor’s approach only static knowledge
about process engineering is considered, i.e., there is no explicit representation
of temporal relationships. We use our framework to show how the temporal
aspects of this application domain can be represented in 7 DL, thus refining
Sattler’s and Molitor’s model.

The representation framework consists of several conventions and abbrevia-
tions. We assume that each entity of the application domain is either temporal
or atemporal. If it is temporal, its temporal extension may be either a time
point or a time interval. We generally assume that single time points are repre-
sented by the temporal feature ¢, left endpoints of intervals are represented by
the temporal feature /, and right endpoints of intervals are represented by the
temporal feature r.? This is captured by the TBox 7* displayed in Figure 1.
The first four concept equations in the TBox define the relevant notions while
the fifth equation rules out pathological cases such as objects whose extension
is both a point and an interval. Note that concepts of the form 3(t = ¢) are
used only to express that there exists an associated value for the temporal
feature t. The TBox clearly implies that the concepts ATemporal, Point, and
Interval are mutually disjoint, and that their union is equivalent to T.

As noted in the introduction, interval-based reasoning with 7 DL is based on
the Allen interval relations [1], which are displayed in Figure 2. To keep con-
cepts readable, we define a suitable abbreviation for each of the 13 relations.
For example,

I(p contains p') abbreviates I(pl < p'¢) M 3(pr > p'r)

where p and p’ are sequences of abstract features. It is a straightforward job to
derive similar abbreviations for the other Allen relations given their definition
in Figure 2. In what follows, we use self to denote the empty sequence of
abstract features. For example,

(p starts self) abbreviates I(pl =€) M I(pr < r).

2 Tt is only for simplicity that we assume temporal entities to have a unique tempo-
ral extension. In principle, we could also allow multiple extensions e.g. for lifetime,
childhood, worktime, etc.

black before gray
gray after black

black meets gray
gray met-by black

| | black overlaps gray
\ \ gray overlapped-by black

| | black during gray
\ | gray contains black

| | black starts gray
\ | gray started-by black

| i black finishes gray
\ | gray finished-by black

Fig. 2. The Allen relations (without equal).

Intuitively, self refers to the interval associated with the domain element at
which the J(p starts self) concept is “evaluated”.

Since we have intervals and points at our disposal, we should be able to talk
about the relationship between points and intervals. More precisely, there
exist 5 possible relations between a point and an interval and we introduce
the following abbreviations for them:

A(p beforep p) for I(pt < p'l

(pt)
A(p startsp p') for A(pt)
A(p duringp p') for I(p'C < pt) 1 I(pt < p'r)
A(p finishesp p') for A(pt = p'r)

A(p afterp p') for A(p'r < pt)

~

)
)
)
)

where p and p’ are again sequences of abstract features. We refrain from defin-
ing abbreviations for the inverses of these relations since they can easily be
expressed by exchanging the arguments in the above abbreviations.

Now for the application of our framework in process engineering. Our goal
is to represent information about an automated chemical production process
that is carried out by some complex technical device. The device operates each
day for some time, depending on the output quantity that is to be produced.
It needs complex startup and shutdown phases before and after operation.
Moreover, some weekly maintenance is needed to keep the device functional.

Let us first represent the underlying temporal structure consisting of weeks
and days. The corresponding TBox can be found in Figure 3. In the figure,
we use C' C D as an abbreviation for T = (C' — D). The first concept
equation states that each week consists of seven days, where the i-th day

10

Week = Interval M
[1 3day,.Day

1<i<7
d(day, starts self) M 3(day, finishes self) I
1§|7|<7E|(dayi meets day,, ;) I

dnext.Week M J(self meets next)

Day L Interval

Fig. 3. Weeks and Days.

Day C dstart.Startup M Jop.Operation M Ishut.Shutdown 1
d(starto (> () M
J(start meets op) I
J(op meets shut) M
A(shutor <r)

Week C Imaint.Maintenance M 3(self contains maint)

Interval J Startup LI Operation LI Shutdown LI Maintenance

Fig. 4. Operation and Maintenance.

is accessible from the corresponding week via the abstract feature day,. The
temporal relationship between the days are as expected: Monday starts the
week, Sunday finishes it, and each day temporally meets the succeeding one.
Moreover, each week has a successor week (accessible via the abstract feature
next) that it temporally meets. The TBox clearly implies that days 2 to 6 are
during the corresponding week although this is not explicitly stated.

Figure 4 defines the startup, operation, shutdown, and maintenance phases,
where start, op, shut, and maint are abstract features and “o” is used as a
separator for features that are used in sequences for better readability. In
lines 2 to 5 of the concept equation for Day, we freely combine abbreviations
from the framework with predicates from 7 DL to obtain succinct definitions.
Taken together, these lines imply that phases are related to the corresponding
day as follows: startup via starts or during, shutdown via during or finishes,
and operation via during. Moreover, the startup phase meets the operation
phase, which in turn meets the shutdown phase.

Until now, we did not say anything about the temporal relationship of main-

tenance and operation. This may be inadequate, if, for example, maintenance
and operation are mutually exclusive. We can take this into account by using

11

the additional concept equation

Week C 127 (I(maint before day, o op) L)

d(maint after day, o op))

which expresses that the weekly maintenance phase must be either before or
after the operation phase of every weekday. It is not hard to check that this
is the case if and only if the weekly maintenance phase is strictly separated
from the operation phase of any weekday.

This finishes the modeling of the basic properties of our production process.
Let us define some more advanced concepts to illustrate reasoning with 7DL.
For example, we can define a busy week as follows:

BusyWeek = Week M ads (I(day, o start starts day,) M

~ 3(day, o shut finishes day;))

The concept equation says that on every day of a busy week, the startup phase
starts at the beginning of the day and the shutdown finishes at the end of the
day. Say now that it is risky to do maintenance during startup and shutdown
phases and define

RiskyWeek = Week M — 1<|j<7 (d(day; o start before maint) L
~~ J(day, o shut after maint))

expressing that, in a risky week, the maintenance phase is not strictly sepa-
rated from the startup and shutdown phases. If 7 is the TBox obtained by
taking the concept equations from Figures 1, 3, and 4, then a T DL reasoner
can be used to deduce that BusyWeek T+ RiskyWeek, i.e., every busy week is
a risky week: in a busy week, every day of the week is partitioned into startup,
shutdown, and operation phases. Since maintenance may not overlap with op-
eration phases by (x), it must overlap with startup and/or shutdown phases,
which means that the week is a risky week.

In order to demonstrate combined reasoning with time points and intervals,
we propose a further refinement of our model. Assume that the production
process is fully automated except that an operator interaction is necessary to
initiate the startup and shutdown phases. This is described by the concept
equations in Figure 5, where up-int and down-int are abstract features. Note
that the operator interaction is represented by a time point instead of a time
interval. To illustrate reasoning, assume that, on Friday of calendar week 23,
a shutdown interaction was performed by the maintenance team:

Week23 C Week M 3(day; o down-int duringp maint).

It is not hard to see that this is inconsistent with the description of faultless

12

Day C dup-int.Interaction M ddown-int.Interaction 1
A(up-int startsp start) M
(down-int startsp shut)

Interaction C Point

Fig. 5. Operator interaction.

operation from above, i.e., that Week23 is unsatisfiable: the shutdown inter-
action finishes the operation phase (since it starts the shutdown phase and
the operation phase meets the shutdown phase), which means that the main-
tenance phase, during which the shutdown interaction was performed, is not
strictly separated from the operation phase. This separateness, however, is re-
quired by () since maintenance and operation are mutually exclusive. Hence,
unsatisfiability of Week23 allows us to conclude that something went wrong
on the Friday of calendar week 23.

It should be obvious how to extend the proposed framework to ABoxes and
ABox reasoning. Details are left to the reader.

4 The Concept Satisfiability Algorithm

In this section, we prove the satisfiability of 7 DL-concepts w.r.t. TBoxes to
be decidable and obtain a tight EXPTIME complexity bound for this reasoning
task. By the reduction given in Section 2, we obtain EXPTIME-completeness
of T DL-concept subsumption w.r.t. TBoxes as well. The upper bound is es-
tablished using an automata-theoretic approach: first, models are abstracted
to so-called Hintikka-trees such that there exists a model for a concept C' and
a TBox 7T iff there exists a Hintikka-tree for C' and 7. Then we build, for
each TDL-concept C' and TBox 7, a looping tree automaton Acr (i.e., a
Biichi tree automaton where every run is accepting) that accepts exactly the
Hintikka-trees for C' and 7. Hence, Ac 7 accepts the empty (tree-) language
iff C' is unsatisfiable w.r.t. 7. Since the translation produces at most an ex-
ponential blow-up in size and the emptiness-test for looping automata can

be performed in polynomial time, we obtain the announced EXPTIME upper
bound.

Throughout this section, we assume that 7 D/L-concepts and TBoxes contain
only the predicates < and =. It is easy to see that this can be done without
loss of generality since other predicates can be eliminated by exhaustively

13

applying the following rewrite rules:

Ay < ug) ~ Iuy < ug) LI (ug = us)
E‘(Ul Z UQ) s E‘(Ul > Ug) LI El(u1 = UQ)

A(ur # ug) ~ I(ug > ug) U I(uy < ug)

For devising a satisfiability algorithm, it is interesting to note that 7 DL with
general TBoxes lacks the finite model property since there exist satisfiable
TBoxes such as T = J(¢g < fg) having only infinite models (due to the se-
mantics of the “<” predicate). Hence, Hintikka-trees and most other structures
used for deciding satisfiability are (potentially) infinite.

4.1 Preliminaries

We introduce the basic notions needed for the automata-theoretic satisfiability
algorithm like infinite trees, looping automata, and the language they accept.
We also introduce constraint graphs which will be needed to take into account
temporal information when defining Hintikka trees.

Definition 6 (Looping Automaton) Let M be a set and k > 1. A k-ary
M-tree is a mapping T : {1,..., k}* — M that labels each node a € {1, ... k}*
with T'(«) € M. Intuitively, the node «i is the i-th child of a. We use € to
denote the empty word (corresponding to the root of the tree).

A looping automaton A = (Q, M, I, A) for k-ary M-trees is defined by a finite
set (Q of states, a finite alphabet M, a subset I C () of initial states, and a
transition relation A C Q x M x Q.

A run of A on an M-tree T is a mapping r : {1,.... k}* — Q with r(e) € I
and
(r(a), T(a),r(al),...,r(ak)) € A

for each o € {1,... k}*. A looping automaton accepts all those M-trees for
which there exists a run, i.e., the language L(A) of M-trees accepted by A is

L(A) :={T | there is a run of A on T}.
Vardi and Wolper [39] show that the emptiness problem for looping automata,

i.e., the problem to decide whether the language L(A) accepted by a given
looping automaton A is empty, is decidable in polynomial time.

A Hintikka-tree T for C' and T corresponds to a canonical model Z of C
and 7. Apart from representing the abstract domain Az together with the

14

U1 < <

< < <

U2

Fig. 6. A constraint graph containing no <-cycle that is unsatisfiable over N.

interpretation of concepts and roles, T induces a directed graph whose edges
are labeled with predicates from {<,=}. Such constraint graphs describe the
“temporal part” of Z, i.e., temporal successors of elements of Az and their
relationship by temporal predicates.

Definition 7 (Constraint Graph) A constraint graph is a pair G = (V, E),
where

e V is a countable set of nodes and
o ECV x{=<}xV isa set of edges such that (vi,=,vy) € E implies
(vg,=,v1) € E.

A constraint graph G = (V| E) is called satisfiable iff there ezists a total
mapping 0 from V to Q such that 6(vy) Po(ve) for all (vy, P,vs) € E. Such a
mapping 0 is called a solution for GG.

Let G = (V, E) be a constraint graph. A sequence of nodes vg,...,vp € V is
called a cycle in G if, for all i <k, we have (v;, P,v(iy1)mod k) € E for some
P e {<,=}. A cycle vy, ... v is called a <-cycle if there is an i < k with
(vi, <, U(i+1) mod y) € E.

The following theorem will be crucial for proving that, for every Hintikka-tree,
there exists a corresponding canonical model. More precisely, it will be used to
ensure that the constraint graph induced by a Hintikka-tree, which describes
the temporal part of the corresponding model, is satisfiable. The proof can be
found in Appendix A.

Theorem 8 A constraint graph is satisfiable iff it does not contain a <-cycle.

Note that we use the rational numbers (Q in the semantics of 7TDL, and
thus also for interpreting constraint graphs. All obtained results also apply
if we choose R instead: the proof of Theorem 8 may remain unchanged and,
intuitively, 7DL does not “feel” the difference between) and R. However,
it is interesting to note that Theorem 8 does not hold if satisfiability over
non-dense structures such as IN is considered: if there exist two nodes v; and
vy such that the length of <-paths (which are defined in analogy to <-cycles)
between v; and v, is unbounded, then a constraint graph is unsatisfiable over
N even if it contains no <-cycle. Figure 6 shows such a constraint graph. And

15

indeed, TDL does feel the difference between N and dense structures such as
Q and R: the concept T is satisfiable w.r.t. the TBox

T={TC3g1 <g2) N 3Ig1 < fg1) M 3Ifgo <o)}

over the temporal structures € and R, but not over IN. Note that 7 enforces
the constraint graph in Figure 6.

4.2 Path Normal Form

Apart from the assumption that only the predicates < and = occur in concepts
and TBoxes, we require some more normalization as a prerequisite for the
satisfiability algorithm. More specifically, we assume concepts and TBoxes to
be in negation normal form (NNF) and, more importantly, restrict the length
of paths, which will turn out to be rather convenient for some constructions like
defining Hintikka-trees. We start with describing NNF conversion. A concept
is said to be in negation normal form if negation occurs only in front of concept
names. The following lemma shows that assuming NNF is not a restriction.

Lemma 9 (NNF Conversion) Erhaustive application of the following re-
write rules translates TDL-concepts to equivalent ones in NNF.

—|—|C N> C
-(CM D)~ =CU-D -(CUD)~ =CMN=D
—(3R.C') ~ (VR.-(C) —(VR.C') ~ (3IR.-C)

—I(uy P ug) ~ Iug Puy) U Iuy < wy) Uugt Uugt =(gh) ~ g =g)

where™~ denotes the exchange of predicates, i.e., < is = and = is <. By nnf(C),
we denote the result of converting C' into NNF using the above rules.

We now introduce path normal form for 7 DL-concepts and TBoxes.

Definition 10 (Path Normal Form) A TDL-concept C is in path normal
form (PNF) iff it is in NNF and, for all subconcepts I(uy P usy) of C, we have
either

(1) uy = g1 and uy = g for some gy, g € NiF,
(2) uy = fg1 and uy = go for some f € Nag and g1, g2 € Nig, or
(3) up = g1 and uy = fgs for some f € Nap and g1, g2 € Nif.

A TDL-TBox T is in path normal form iff all concepts in T are in PNF.

16

The following lemma shows that it is not a restriction to consider only concepts
and TBoxes in PNF.

Lemma 11 Satisfiability of TDL-concepts w.r.t. TBozxes can be reduced in
polynomial time to satisfiability of T DL-concepts in PNF w.r.t. TBoxes in
PNF.

Proof. Let C' be a T DL-concept. For every path u = f;--- f,g used in C', we
assume that [g], [fng], ..., [f1- - fng] are temporal features not used in C'. We
inductively define a mapping A from paths u in C' to concepts as follows:

Mg)=T
M fu)=3([fu] = flu]) M If.\(u)

For every TDL-concept C, a corresponding concept p(C') is obtained by re-
placing all subconcepts (uy P usy) of C' with J([uq] P [us]) WA (uy) M A(uz) and
gT with [g]1T. We extend the mapping p to TBoxes in the obvious way, i.e., if

T={CiCDi,....C, C Dy},

then
p(T) = {p(C1) E p(D1), ..., p(Ck) E p(Dy)}.

Now let C' be a TDL-concept and T a TDL-TBox. Using the rewrite rules
from Lemma 9, we can convert C' into an equivalent concept C’ in NNF and
T into an equivalent TBox 7' in NNF. It is then easy to check that C’ is
satisfiable w.r.t. a TBox T iff p(C") is satisfiable w.r.t. p(T"). Moreover, p(C")
and p(7") are clearly in PNF and the translation can be done in polynomial
time. 0O

In what follows, we generally assume that all concepts and TBoxes are in path
normal form. Moreover, we will often refer to TBoxes 7T in their concept form
C7 which is defined as follows:

Cr = [nnf(C' < D).
C=DeT

4.3 Defining Hintikka-trees

In this section, we define Hintikka-trees for 7 DL-concepts C' and TBoxes T
(which are both required to be in PNF) and show that Hintikka-trees are

proper abstractions of models, i.e., that there exists a Hintikka-tree for C' and
T iff there exists a model of C' and 7.

Let C be a concept and T be a TBox. By sub(C, T, we denote the set of sub-
concepts of C' and C'r. We assume that existential concepts IR.D € sub(C,T)

17

with R € N,g are linearly ordered, and that &(C,T) yields the i-th such con-
cept (starting with ¢ = 1). Similarly, we assume the abstract features used in
C or T to be linearly ordered and use F;(C, T) to denote the i-th such feature

(also starting with ¢ = 1). The set of temporal features used in C' or T is
denoted by G(C, T).

We now define Hintikka-pairs which will be used as labels of nodes in Hintikka-
trees.

Definition 12 (Hintikka-set, Hintikka-pair) Let C' be a concept and T a
TBoz. A set ¥ C sub(C,T) is a Hintikka-set for C' and T iff it satisfies the
following conditions:

(HI) Crev,

(HQ) Zf Cl M CQ € \I/, then {01,02} Q \I/,

(H3) chl UdC, e v, then {01,02} Nnw 7£ (Z),

(H4) {A,—A} € U for all concept names A € sub(C,T),

(H5) g1 € U implies I(uy Pug) ¢ ¥ for all concepts I(uy Pug) with g € {uy, us}.

A Hintikka-pair (¥, y) for C' and T consists of a Hintikka-set ¥ for C' and T
and a set x of tuples (g1, P, go) with g1,92 € G(C,T) such that

(HG) Zf (glv Pv gQ) € X then {ng, QQT} Nr = (Z)
By U'cr, we denote the set of all Hintikka-pairs for C' and T .

We say that an abstract feature f € Nuf is enforced by a Hintikka-pair (U, x)
if Af.C € U for some concept C or {3(fg1 Pg2), 1 P fg2)} N # O for
some g1,92 € Neg and P € {<,=}. Similarly, a path u is enforced by (¥, y)
if u appears in x or {I(uPu'),I (' Pu)} NV # O for some path v’ and
Pe{<, =}

Observe that, if a path u is enforced by a Hintikka-pair (U, x), then u has
length 1 or 2: if u appears in Y, it has length 1 by definition; moreover, if

{F(wPu'),I(u' Pu)} N¥ # B for some «' and P, then u has length 1 or 2
since all concepts are in path normal form.

Intuitively, each node « of a (yet to be defined) Hintikka-tree T corresponds to
a domain element d of the corresponding canonical model Z. The first compo-
nent ¥, of the Hintikka-pair labeling « is the set of concepts from sub(C, T)
satisfied by d. The second component Y, states relationships between tempo-
ral successors of d. If, for example, (g1, <, g2) € Ya, then d must have g;- and
go-successors such that ¢gf(d) < gZ(d). Note that the restrictions in y, are
independent from concepts 3(g; P go) € ¥,, but rather describe “additional
edges”. As will be discussed below, these additional edges are used to ensure
that the constraint graph induced by the Hintikka-tree 7', which describes the

18

temporal part of the model Z, does not contain a <-cycle (i.e., that it is sat-
isfiable). This induced constraint graph can be thought of as being the union
of smaller constraint graphs, each one described by a Hintikka-pair labeling a
node in T'. These pair-graphs are defined next.

Definition 13 (Pair-graph) Let C' be a concept, T a TBoz, and p = (¥, x)
a Hintikka-pair for C" and T. The pair-graph G(p) = (V, E) of p is a constraint
graph defined as follows:

e V is the set of paths enforced by p
o F=cl_(xU{(uy, Pus) | I(uy Pus) € ¥}),

where cl— is equality closure, i.e. cl_(E) = EU {(vy,=,v1) | (v1,=,v2) € E}.

A set E' CVxV x{<,=} is an edge extension of G(p) if, for all fq1, fg2 € V,

we have (fg1,<,fg2) € E', (fg1,=,fg2) € E', or (fg2, <, foq1) € E'. If E' is
an edge extension of G(p), then the graph (V, EUFE") is a completion of G(p).

Observe that, since all concepts are in path normal form and since no paths
of length greater than one may appear in y, we have F' N E = () for every
edge extension E’ of pair-graphs (V, E).

There exists a close connection between completions of pair-graphs and the
x-component of Hintikka-pairs. Let o and be nodes in a Hintikka-tree T’
representing domain elements d and e in the corresponding canonical model Z.
Edges in Hintikka-trees represent role-relationships, i.e., if 3 is a successor of
o in T, then there exists an R € Ng such that (d,e) € R*. Assume f3 is
a successor of o and the edge between o and [represents relationship via
the abstract feature f, i.e., we have fZ(d) = e. The purpose of the second
component Yz of the Hintikka-pair labeling /3 is to fix the relationships between
all temporal successors of e that “d talks about”. For example, if 3(fg; =
g2) € U, and I(fgs < g2) € W,, where ¥, is the first component of the
Hintikka-pair labeling «, then “d talks about” the temporal g;-successor and
the temporal gs-successor of e. Hence, Yz contains (g1, <, ¢g3), (g1,=.¢3), or
(93, <, ¢1). This is formalized by demanding that the pair-graph G(T'(«v)) of
the Hintikka-pair labeling a together with all the edges from the y-components
of the successors of a are a completion of G(T(«)). An appropriate way of
thinking about the y-components is as follows: at a, a completion of G(T(«))
is “guessed”. The additional edges are then “recorded” in the y-components of
the successor-nodes of o. As will be explained after the definition of Hintikka-
trees, the purpose of all this is to achieve a “localized” detection of <-cycles
in constraint-graphs induced by Hintikka-trees.

Definition 14 (Hintikka-tree) Let C be a concept, T a TBox, k the number
of existential subconcepts in sub(C,T), and (the number of abstract features in
sub(C,T). A k+(+ 1-tuple of Hintikka-pairs (po, ..., prre) with p; = (V;, x;)

19

Tq(a) ={3(¢' < 9),
3(g < f9),
3 < fg")}

T4(B) ={3(g < f9),
39 < fg")}

Tq(y)={3g <g")}

Fig. 7. Localized Cycle Detection.
and G(po) = (V, E) is called matching iff

(H7) if 3R.D € ¥ and &(C,T)=3R.D, then D € U,

(H8) if (3R.D,YR.E} C Uy and &(C,T) = 3R.D, then E € U,

(H9) if3f.D € Yy and F;(C,T)=f, then D € Uy,

(H10) if f is enforced by po, F:(C,T)=f, and Vf.D € Wy, then D € ¥y,
(H11) the constraint graph (V, E'U E') with

E'= J{(fo1, P, fg2) | Fi(C,T) = f and (g1, P, g2) € Xp+i}

1<i<t
is a satisfiable completion of G(py).

A k + l-ary T r-tree T' is a Hintikka-tree for C' and T iff it satisfies the
following conditions:

(H12) C € V., where T(e) = (U,),
(H13) for all o € {1,...,k + (}*, the tuple (T'(«), T(al),...,T(aj)) is
matching, where j abbreviates k + (.

For a Hintikka-tree T and a node o € {1,..., k+ (}* with T(a) = (¥, x), we
use Tq(a) to denote U and Ty («v) to denote x. Moreover, if G(a) = (V, E), we
use cpl(T, «) to denote the constraint graph (V, EUE") as defined in (H11).

Whereas most properties of Hintikka-trees deal with concepts, roles, and ab-
stract features and are hardly surprising, (H11) ensures that constraint graphs
induced by Hintikka-trees contain no <-cycle. By “guessing” a completion as
explained above, possible <-cycles are anticipated and can be detected locally,
i.e., it then suffices to check that the completions cpl(T,) are satisfiable as
demanded by (H11). An example for such a localization can be found in
Figure 7. The Figure shows a non-local <-cycle (displayed as dashed edges)

20

in the constraint graph induced by a Hintikka-tree T (displayed as thickened
solid edges). Assume for a moment that the dotted edges are not present,
i.e. the relationship between the g-successor and the g’-successor of [is un-
known. Then the constraint graphs cpl(7, «), cpl(T, 3), and cpl(T,~) are all
satisfiable if considered in isolation. Since (H11) indeed considers isolated
graphs, the <-cycle cannot be detected. The problem is overcome as follows:
let G(T'(«)) = (V, E). Since (V, EU E") with

E' = {(fgl,P, f92) | (91,P, 92) € TD(ﬁ)}

is required to be a completion of (V| F), we must have (g,<,¢') € Tx(5),
(9,=,4") € To(B), or (¢',<,g) € T=(B). In the first two cases, we obtain the
lower dotted edge and cpl(T, «) contains a <-cycle. In the third case, we obtain
the upper dotted edge. Then we can repeat the whole process with o replaced
by and 3 replaced by v such that, finally, either cpl(T, 3) or cpl(T,) contains
a <-cycle. Thus, the non-local <-cycle is broken down into smaller ones by
“guessing” additional edges. The smaller <-cycles can then be detected by
(H11). Indeed, it is crucial that (H11) is a local condition since we need to
define an automaton that accepts exactly Hintikka-trees, and automata work
locally. It is worth noting that the localization of cycle detection as described
above crucially depends on the path normal form.

The following lemma shows that Hintikka-trees are appropriate abstractions
of models. This result is the main step towards devising a decision procedure
since, as we shall see next, defining looping automata accepting exactly the
Hintikka-trees for a given concept C' and TBox 7T is a straightforward task.
The proof can be found in Appendix A.

Lemma 15 A concept C is satisfiable w.r.t. a TBox T iff there exists a
Hintikka-tree for C' and T.

4.4 Defining Looping Automata

To prove decidability of 7 DL-concept satisfiability w.r.t. TBoxes, it remains
to define a looping automaton Aq 7 for each concept C' and TBox T such
that A 7 accepts exactly the Hintikka-trees for C' and 7. Using the notion of
matching tuples of Hintikka-pairs from Definition 14, this is rather straight-
forward.

Definition 16 Let C' be a concept, T a TBozx, k the number of existential
subconcepts in sub(C,T), and (the number of abstract features in sub(C,T).
The looping automaton Ac7 = (Q, M, A, I) is defined as follows:

o Q:=M:=T¢r

21

{(T,x) Q| CeT}.

X)a v Xl>a (‘1’1, Xl)a) (\Ijk-l-Zv Xk—l—é)) € A iff
(I, x) = (¥, X) and

((\Ija X)a (lllla X1)7 sy (lI[kJrla chJrZ)) is matChing'

As a consequence of the following lemma and Lemmas 15, we can reduce
satisfiability of concepts w.r.t. TBoxes (both in PNF) to the emptiness of the
language accepted by looping automata.

Lemma 17 T is a Hintikka-tree for C and T iff T € L(Ac1).

Proof. Let C' be a concept, T a TBox, and k, ¢, and A¢ 7 as in Definition 16.
For the “if” direction, let r be a run of A7 on T'. By definition of runs and
of A, we have
r(a) =T(a) for all « € {1,... k4 (}".

Hence, it remains to be shown that r is a Hintikka-tree for C' and 7, which is
straightforward: (i) by definition of @, r is a I'c r-tree; (ii) since, by definition
of runs, r(e) € I, (H12) is satisfied; and (iii) by definition of runs and of A,
(H13) is satisfied.

Now for the “only if” direction. It is straightforward to check that the func-
tion r defined by r(a) := T(«) is a run of Ac7 on T: (i) by definition of
Hintikka-trees and Acr, r(a) € Q for all a € {1,...,k+ (}*; (i) by (H12)
and definition of I, we have r(e) € I; (iii) by (H13) and by definition of r and
of A, we have (r(«), T(a), r(cv1),...,7m(cy)) € Aforall o € {1,..., k+(}. O

It is an immediate consequence of Lemmas 11, 15, and 17 and the decidability
of the emptiness problem of looping automata [39] that satisfiability of 7DL-
concepts w.r.t. TBoxes is decidable. However, the presented automata-based
algorithm has the nice property of additionally providing us with a tight com-
plexity bound. In the following, we use |C| to denote the length of the concept
C and T to denote Y. p-per | D]+ |E|.

Theorem 18 Satisfiability of T DL-concepts w.r.t. general TBozes is EXP-
TIME-complete.

Proof. The lower bound is an immediate consequence of the fact that ALC
with TBoxes is EXPT1ME-hard [32]. Hence, we may concentrate on the upper
bound. We need to show that the size of Ac7) is exponential in |C] + |T|
since, once that this is established, we can use Lemmas 11, 15, and 17 together
with the fact that the emptiness problem for looping automata A(c,7) is in
PTIME [39] to conclude that satisfiability of 7 DL-concepts w.r.t. TBoxes can
be decided in deterministic exponential time. Hence, let us investigate the size
of A,y = (Q, M, A, I). Obviously, the cardinality of sub(C,T) is linear in
|C'| +|T|. Hence, by definition of A7) and Hintikka-pairs, the cardinality
of @, M, and I are exponential in |C'| + |T|. Together with the fact that A

22

contains k+(-tuples and k4 ¢ is polynomial in |C'|4+|T|, the exponential bound
on the cardinality of) implies that the cardinality of A is also exponential in

[Cl+IT]. O

Since subsumption can be reduced to (un)satisfiability, 7DL-concept sub-
sumption w.r.t. TBoxes is also EXPTIME-complete.

5 Deciding ABox Consistency

In this section, we extend the EXPTIME upper bound just obtained to 7DL-
ABox consistency w.r.t. TBoxes. The extended upper bound is established
using a so-called precompletion algorithm [10,16]. The idea behind such algo-
rithms is to proceed in two stages: first, a set of completion rules is exhaustively
applied to the input ABox in order to make implicit information explicit. If
an obvious contradiction is encountered during this process, then the input
ABox is inconsistent and the second stage is not needed. If no contradiction is
found, in the second stage we construct a reduction concept C, for each object
name a of the obtained ABox and check it for satisfiability w.r.t. the input
TBox using the algorithm developed in the previous section. Then, the input
ABox is satisfiable w.r.t. the input TBox if and only if all reduction concepts
are satisfiable.

As in the previous section, we assume w.l.o.g. that all concepts (also inside
TBoxes and ABoxes) contain only the predicates < and =. Moreover, we
require TBoxes and ABoxes to be in path normal form, where an ABox A is
in PNF iff every concept occurring in A is in PNF. The next lemma shows
that this assumption does not sacrifice generality.

Lemma 19 Consistency of TDL-ABoxes w.r.t. TBoxes can be reduced to
consistency of TDL-ABoxes in PNF w.r.t. TBoxes in PNF.

Proof. Let A be an ABox and 7 a TBox, and let k& be the length of the longest
path occurring in A or 7. For every path u = f;--- f,¢ used in A or T, we
assume that [g], [fng], ..., [f1- - fag] are temporal features not appearing in
A or T. Let p be the mapping from concepts to concepts in PNF and from
TBoxes to TBoxes in PNF introduced in the proof of Lemma 11. Construct
an ABox p(A) from A by performing the following steps:

(1) Replace every assertion a : C' € A with a : p(C);
(2) Replace every assertion (a,) : g € A with (a,x) : [g];

(3) Fori=1,...,k —1 do the following: for every pair of assertions

(a, by : f, (byx):[u] € A

23

where the length of u is 7 and fu is a postfix of a path occurring in

Aor T, add (a,z) : [fu] to A.

It is straightforward to prove that A is satisfiable w.r.t. T iff p(.A) is satisfiable
w.r.t. p(T). Moreover, the size of p(A) and p(T) is polynomial in n = |A|+|T]|
and p(A) and p(7) can be constructed in polynomial time. While p(7) was
treated in the proof of Lemma 11, for p(.A) this can be seen as follows. Since
the number of postfixes of paths occurring in A and 7 is bounded by n, the
number of object names and time point names in A is also bounded by n,
and no new object names are introduced, the number of assertions of the
form (a,z) : [u] generated in Step 3 is bounded by n®. Since the number of
assertions (a, b) : f is bounded by n, the number of pairs to be considered in
each step of the “for” loop in Step 3 is thus bounded by n*. Since we clearly
have k < n, p(A) can be computed in time n°>. O

The completion rules can be found in Figure 8. In the formulation of the rules,
we write A(a) for {C' | a: C € A} and call a time point name = € Oy fresh
in an ABox A if 2 does not occur in A. Note that the rules RU and Rch yield
more than one possible outcome. Intuitively, the precompletion algorithm has
to explore all possible outcomes—more details are given later on. Note that we
cannot, use the usual non-deterministic “guessing” here since we are heading
for a deterministic time bound.

While the rules R, RLU, RV, and R= are straightforward, the other rules de-
serve some comments. The R3f rule deals with concepts 3f.C, where f € Ngf.
Since it is our goal to make explicit information for ezisting object names
rather than generating new ones, this rule only applies to a concept Af.C' €
A(a) if the object a already has an f-successor (i.e., an object name b with
(a,b) : R € A). For the same reason, concepts IR.C' with R € N,g are not
expanded at all, but rather “treated” as part of the reduction concepts. The
rules Rcl, Re2 and Re3 deal with concepts 3(u; P us): there exists one rule
for each syntactic form that PNF allows. Observe that Rc2 and Rc3 generate
new time point names, but, similar to the R3f rule, none of the Rc rules gen-
erates new object names even if the paths u; and us involve abstract features.
Intuitively, if 3(fg1 P g2) € A(a) and a has no f-successor, then it suffices to
treat the concept 3(fg; P go) in the reduction concept. The Rch rule has the
character of a “choose rule” (c.f. for example [17]) and is needed to ensure that
the relation between any two temporal successors of an object a is recorded
as a concept of the form 3(g; P go) in the node label of a. This is necessary
since the relation between such temporal successors must be passed to the
satisfiability algorithm as part of the reduction concept. Finally, the Rfe rule
is a “fork elimination rule” (c.f. for example [5,23]) that is needed to enforce
the functionality of abstract and temporal features.

If an ABox A’ can be obtained from an ABox A by exhaustive rule appli-

24

RM

RU

R3f

RV

Rcl

Rc2

Rc3
Rch

Rfe

if C; M Cy € A(a) and {Cy,C2} € A(a)

then A:= AU{a: C,a: Cy}

it C1UCy € A(a) and {C1,Co} N A(a) =10

then Ay := AU{a:C} and Ay := AU {a: Cy}

if 3f.C € A(a), {a,b): f € A, and C ¢ A(D)

then set A:=AU{b:C}

if VR.C € A(a), {a,b) : R € A, and C ¢ A(b)

then set A:=AU{b:C}

if (g1 P g2) € Ala), {{a,21) : g1, (a,72) : go} C A,
and vy Pao ¢ A

then set A := AU {x; Pay}

if 3(fg1 P g2) € Ala), {(a,b) : f € A, and there are no xy, x5 € Oy
such that {(b,x1) : g1, (a,22) : g2, 11 Py} C A

then set A := AU {(b,x1) : g1, (a,x2) : go,x1 P22}

where x; and x5 are fresh in A

Symmetric to Re2 but for concepts 3(g; P fg2) € A(a)

if {{a,z1): g1, {a,23) : g2} C A and
{31 < 92), g1 = g2), g2 < g1)} N Ala) =0
then set A := AU {a:3 (g1 < g2)},
Ay = AU{a:3(g1 = g2)}, and
Az = AU{a:3(g < 1)}
it Cr ¢ A(a) then set A:= AU {a: Csr}

if {{a,b): f,{a,c): f} C Aandb#c
(resp. {(a,z) : g, (a,y) : g} C A and x # y)
then replace b by ¢ in A (resp. x by y)

cation using a TBox 7, then A’ is called precomplete and a precompletion
of A w.r.t. 7. Interleaved with rule application, the precompletion checks for

Fig. 8. Completion rules for TDL.

obvious contradictions. These are formalized as follows.

Definition 20 (Clash) Let A be an ABox. A is called temporally satisfiable

iff the constraint graph G(A) = (V, E) is satisfiable, where

o V={xeO|x occurs in A};
[E:{({L‘l,P,IQ) |I1P$2€A}

A is said to contain a clash iff one of the following conditions applies:

25

define procedure cons(A, T)
while a rule R € {RM, R3f, RV, Rcl, Re2, Re3, R=, Rfe}
is applicable to A do
apply R to A
if a completion rule R € {RLI, Rch} is applicable to A then
apply R to A yielding A,,..., Ay (k € {2,3})
if cons(A;, T) = consistent for some i € {1,...,k} then
return consistent
return inconsistent
if A contains a clash then
return inconsistent

ifsat([| ©,7) = satisfiable for every a € O, in A then
CeA(a)

return consistent
return inconsistent

Fig. 9. The TDL precompletion algorithm.

(1) {A,—~A} C A(a) for a concept name A and object name a € O,,

(2) gt € A(a) for some a € O, and there exists an x € O such that
(a,x): g € A, or

(3) A is not temporally satisfiable.

If A does not contain a clash, then A is clash-free.

The precompletion algorithm itself is given in Figure 9 in a pseudocode no-
tation. In the formulation of the algorithm, we use sat(C,7T) to denote the
result of applying the satisfiability algorithm from the previous section to
the concept C' and TBox 7. The general idea behind the algorithm and the
correctness proofs is that models of the reduction concepts can be “plugged
together” to form a model of the input ABox.

We now prove termination and investigate the time complexity of the algo-
rithm. In order to do this, we need a size function for ABoxes. To this end,
set

la:C| = C
|{a,b) : R| = |{a,z):g| = |v1 Pxs| = 2
and |A| := Y4 || First, we establish an upper bound for the number of

rules that may be applied to a given ABox.

Lemma 21 Let A be an ABox, T a TBozx, and Ay, ..., A, with Ay = A a se-
quence of ABozes obtained by repeated rule application. Then k < p(|A| + |T|)
for some polynomial p(n).

Proof. We abbreviate |A|+|7]| by n. Each of the rules RM, RLI, R3f, RY, Rch,

26

and R= adds a new concept to the label of an object name. Since all added
concepts are from the set

X :=sub(A, T)U{3(g1 Pg) | P € {<,=} and gy, g> used in sub(A, T)}

and |x| < 2n? + n, the number of applications of the above rules per object
name is also bounded by 2n? + n and their overall number of applications is
bounded by 2n® + n?. There are four remaining rules:

e Rcl, Rc2, Re3. These rules are applied at most once per concept 3(uy P us) € x
and object name a in A. Since no new object names are introduced, there
are at most 2n3 +n? applications of Rcl, Rc2 and Rec3. Moreover, since each
rule application introduces at most 2 new time point names and Rc2 and
Rc3 are the only rules to introduce new time point names, it also follows that
the number of newly introduced time point names is bounded by 4n? + 2n>.

e Rfe. The rule is applied at most once per object and time point name.
The initial ABox contains at most n object and time point names, no new
object names are generated, and at most 4n® + 2n? new time point names
are generated. Hence, the number of applications of Rfe is bounded by 4n>+
2n% + n.

Taking together these observations, it is obvious that there exists a polynomial
p(n) as required. 0O

We can now prove termination.

Proposition 22 (Termination) If started on an ABox A and a TBox T,
the precompletion algorithm terminates after time exponential in |A| + |T|.

Proof. Assume that the precompletion algorithm is started on an ABox A
and a TBox 7. The precompletion algorithm is a recursive procedure. In
every recursion step, either several recursion calls or several calls to the sat
algorithm are made. Obviously, a run of the algorithm induces a recursion
tree, where nodes in the tree are recursion steps and edges are recursion calls.
These recursion trees have the following properties:

(1) Since at most three recursion calls are made per recursion step, the out-
degree is three.

(2) Every path of the recursion tree induces a sequence of ABoxes Ay, Ay, . ..
with Ay = A that can be obtained by repeated rule application. By
Lemma 21, the length of this sequence is bounded by p(|A| + |T|), and,
thus, the depth of recursion trees is also bounded by p(|A| + |T1).

This implies that the total number of recursion steps made by the algorithm

is bounded by 3P(41+7D) Since none of the rules introduces new object names,
the number of sat calls per recursion step is bounded by |A| and the total

27

number of calls to sat by 374470 .| A|. Together with Theorem 18, we obtain
termination and the exponential time bound. O

We now establish a series of lemmas that will finally allow to establish sound-
ness and completeness of the precompletion algorithm. The proofs of all lem-
mas can be found in Appendix B. We start with showing that the construction
of precompletions preserves (in)consistency.

Lemma 23 Let A be an ABox and T a TBox. Then A is consistent w.r.t. T
iff there exists a precompletion A" of A w.r.t. T such that A’ is consistent
w.r.t. T.

Our next aim is to show that every clash-free precomplete ABox, for which
all reduction concepts are satisfiable, is consistent. We start with a techni-
cal lemma which states that, intuitively, for every precomplete ABox A with
satisfiable reduction concepts, we can find models for the reduction concepts
such that these model’s temporal parts can be “plugged into” solutions for the
constraint graph G(A) induced by A. Recall that we use con(A,a) to denote
the reduction concept for a € O, in A.

Lemma 24 Let A be a precomplete ABox, 6 a solution for G(A), and a € O,
used in A. If con(A, a) is satisfiable w.r.t. T, then there exists a model T of
con(A,a) and T and a d, € con(A,a)? such that, for all (a,z) : g € A, we
have g*(d,) = 6(x).

The following lemma is central for proving soundness and completeness. Its
proof follows the intuition given above: models for the reduction concepts are
“plugged together” in order to form a model for the ABox. To deal with the
temporal parts of models, we relay on Lemma 24.

Lemma 25 Let A be a precompletion of an ABox A" w.r.t. a TBox T. A is
consistent w.r.t. T iff A is clash-free and con(A,a) is satisfiable w.r.t. T for
every a € O, used in A.

Finally, we prove soundness and completeness.

Proposition 26 (Soundness and Completeness) If the precompletion al-
gorithm is started on an ABox A and a TBox T, then it returns consistent if
A is consistent w.r.t. T and inconsistent otherwise.

Proof. Let A and 7 be an input to the precompletion algorithm. Since the
order of rule application is clearly irrelevant, the algorithm computes all clash-
free precompletions of A w.r.t. 7. For each such precompletion A’, it checks
whether the reduction concept con(.A, a) is satisfiable for all a € O, occurring
in A’. It returns consistent if it finds a precompletion for which this is true
and, by Proposition 22, inconsistent otherwise. Soundness and completeness

28

are thus an immediate consequence of Lemmas 23 and 25. O

Taking together Propositions 22 and 26, we obtain an EXPTIME upper bound
for TDL-ABox consistency w.r.t. TBoxes. Together with the lower bound
from Theorem 18, we obtain the following result.

Theorem 27 TDL-ABox consistency w.r.t. general TBozxes is EXPTIME-
complete.

6 Discussion

In this paper, we have introduced the description logic TDL whose distin-
guishing feature is that it admits both interval-based temporal representation
and general TBoxes, while still being decidable (and EXPTIME-complete). As
noted in the introduction, this result also shows that there exist interesting
concrete domains whose combination with general TBoxes do not lead to un-
decidability of reasoning. Starting from the basic decidability results proved
in the current paper, there are lots of options for promising future research.
Let us discuss a few of them.

(1) Tt would be interesting to enhance the expressive power of both the tem-
poral and the DL part of 7TDL. Concerning the temporal part, one could
add unary predicates P,, where P € {<,<,=,#,>,>} and ¢ € Q. This
would allow quantitative temporal representation by referring to “concrete”
time points. On the DL side, ALC can be extended by various means of ex-
pressivity that usually appear in state-of-the-art description logics such as
inverse roles, qualifying numbers restrictions, and transitive roles. All these
extensions have been realized in the recent paper [21], where it is shown that
the popular DL SHZ Q extended with a 7 DL-style concrete domain and the
afore mentioned unary predicates is still decidable and EXPTIME-complete.
The resulting logic is called Q-SHZQ and has found interesting applications
in reasoning about conceptual database schemas [24].

(2) The version of TDL defined in this paper uses @ as its temporal struc-
ture. As discussed in Section 4.1, it makes a difference whether dense temporal
structures such as @@ and R or non-dense structures such as N are used: there
exist T DL-concepts that are satisfiable over @ but not over N. It would thus
be interesting to consider a variant of 7 DL that is based on N, or even to
add to the current version of 7 DL a unary predicate int stating that a time
point /rational number is an integer. In this case, the algorithm would, ad-
ditionally, have to detect unsatisfiable constraint graphs such as the one in
Figure 6. We conjecture that this cannot be done without adding a non-trivial
acceptance condition to our automata model, e.g. switching from looping to

29

Biichi automata. Using IN as the temporal structure would be useful if dis-
creteness of time is assumed (e.g. a time point is viewed as a reference to some
particular second in time), and if the resulting logic is used in non-temporal
applications: we may, e.g., use temporal features to store the number of chil-
dren that a person has, rather than storing a time point. Clearly, fractional
numbers make no sense in this context.

(3) It would be natural to define a spatial description logic SDL by replacing
the temporal predicates of T DL with spatial ones. For example, one could use
the set set of eight “topological” relations called RCC-8 [30,7], which describe
all possible ways in which two regions can be related in topological spaces, and
which in many aspects resemble the Allen relations. Our guess is that again
a decidable formalism is obtained, but many proof techniques would clearly
have to be reworked. For example, the RCC-8 relations cannot be broken down
to the predicates {<,=}.

It is also interesting to note that there are certain well-known limitations
for extending the temporal part of 7TDL. For example, if we think of the
(uy P usy) constructor as a means for talking about rational numbers rather
than about temporal information, then it seems natural to add predicates for
arithmetics such as a ternary addition predicate. However, it is shown in [26]
that it suffices to add to 7 DL a unary predicate for equality to zero and a
binary predicate for incrementation in order to make reasoning undecidable.

References

[1] J. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11), 1983.

[2] A. Artale and E. Franconi. Temporal description logics. In Gabbay et al. [11].
To appear.

[3] A. Artale and E. Franconi. A temporal description logic for reasoning about
actions and plans. Journal of Artificial Intelligence Research (JAIR), 9:463-506,
1998.

[4] A. Artale and C. Lutz. A correspondence between temporal description
logics. In P. Lambrix, A. Borgida, M. Lenzerini, R. Moller, and P. Patel-
Schneider, editors, Proceedings of the International Workshop on Description
Logics (DL’99), number 22 in CEUR-WS (http://ceur-ws.org/), pages 145-149,
1999.

[5] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91), pages 452-457, Sydney, Australia, 1991.

30

[6] F.Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge
University Press, 2003.

[7] B. Bennett. Modal logics for qualitative spatial reasoning. Journal of the
Interest Group in Pure and Applied Logic, 4(1), 1997.

[8] C. Bettini. Time-dependent concepts: representation and reasoning using
temporal description logics. Data & Knowledge Engineering, 22:1-38, 1997.

[9] D. Calvanese. Reasoning with inclusion axioms in description logics: Algorithms
and complexity. In Proceedings of the Twelfth European Conference on Artificial
Intelligence (ECAI-96), pages 303-307, 1996.

[10] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept
languages: from subsumption to instance checking. Journal of Logic and
Computation, 4(4):423-452, 1994.

[11] D. Gabbay, M. Fisher, and L. Vila, editors. Handbook of Time and Temporal
Reasoning in Artificial Intelligence. MIT Press. To appear.

[12] D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds, editors. Temporal Logic:
Mathematical Foundations and Computational Aspects, Volume 1. Oxford
University Press, Logic Guides 28, 1994.

[13] G. D. Giacomo and M. Lenzerini. Boosting the correspondence between
description logics and propositional dynamic logics. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI’94). Volume 1,
pages 205-212. AAAT Press, 1994.

[14] V. Haarslev and R. Moller. RACER system description. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Proceedings of the First International Joint
Conference on Automated Reasoning (IJCAR’01), number 2083 in Lecture
Notes in Artifical Intelligence, pages 701-705. Springer-Verlag, 2001.

[15] J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals.
Journal of ACM, 38(4):935-962, 1991.

[16] B. Hollunder. Consistency checking reduced to satisfiability of concepts in
terminological systems. Annals of Mathematics and Artificial Intelligence,
18:133-157, 1996.

[17] B. Hollunder and F. Baader. Qualifying number restrictions in concept
languages. In Proceedings of the Second International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), pages 335-346, Boston,
MA, USA, 1991.

[18] I. Horrocks. Using an expressive description logic: Fact or fiction? In

Proceedings of the Sixth International Conference on the Principles of
Knowledge Representation and Reasoning (KR98), pages 636-647, 1998.

31

[19] C. Lutz. Complexity of terminological reasoning revisited. In H. Ganzinger,
D. McAllester, and A. Voronkov, editors, Proceedings of the 6th International
Conference on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes in Artificial Intelligence, pages 181-200. Springer-
Verlag, 1999.

[20] C. Lutz. Interval-based temporal reasoning with general TBoxes. In B. Nebel,
editor, Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI'01), pages 89-94. Morgan-Kaufmann, 2001.

[21] C. Lutz. Adding numbers to the SHZQ description logic—First results. In
Proceedings of the Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), pages 191-202. Morgan Kaufman,
2002.

[22] C. Lutz. The Complezity of Reasoning with Concrete Domains. PhD thesis,
LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2002.

[23] C. Lutz. PSPACE reasoning with the description logic ALCF (D). Logic Journal
of the IGPL, 10(5):535-568, 2002.

[24] C. Lutz. Reasoning about entity relationship diagrams with complex attribute
dependencies. In I. Horrocks and S. Tessaris, editors, Proceedings of the
International Workshop in Description Logics 2002 (DL2002), number 53 in
CEUR-WS (http://ceur-ws.org/), pages 185-194, 2002.

[25] C. Lutz. Description logics with concrete domains—a survey. In Advances in
Modal Logics Volume 4. World Scientific Publishing Co. Pte. Ltd., 2003. To
appear.

[26] C. Lutz. NExpTime-complete description logics with concrete domains. ACM
Transactions on Computational Logic, 2003. To appear.

[27] C. Lutz, H. Sturm, F. Wolter, and M. Zakharyaschev. Tableaux for temporal
description logic with constant domain. In R. Goré, A. Leitsch, and T. Nipkow,
editors, Proceedings of the First International Joint Conference on Automated
Reasoning (IJCAR’01), number 2083 in Lecture Notes in Artifical Intelligence,
pages 121-136. Springer-Verlag, 2001.

[28] R. Molitor. Unterstiitzung der Modellierung verfahrenstechnischer Prozesse
durch Nicht-Standardinferenzen in Beschreibungslogiken. PhD thesis, LuFG
Theoretical Computer Science, RWTH Aachen, Germany, 2000.

[29] B. Nebel and H.-J. Biirckert. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43-66,
1995.

[30] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions and
connection. In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of the
Third International Conference on Principles of Knowledge Representation and
Reasoning (KR’92), pages 165-176. Morgan Kaufman, 1992.

32

[31] U. Sattler. Terminological knowledge representation systems in a process
engineering application. PhD thesis, LuFG Theoretical Computer Science,
RWTH-Aachen, 1998.

[32] K. D. Schild. A correspondence theory for terminological logics: Preliminary
report. In J. Mylopoulos and R. Reiter, editors, Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91), pages 466—
471. Morgan Kaufmann, 1991.

[33] K. D. Schild. Combining terminological logics with tense logic. In M. Filgueiras
and L. Damas, editors, Progress in Artificial Intelligence — 6th Portuguese
Conference on Artificial Intelligence, EPIA’93, volume 727 of Lecture Notes
in Artificial Intelligence, pages 105-120. Springer-Verlag, 1993.

[34] M. Schmidt-Schaul and G. Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1-26, 1991.

[35] A. Schmiedel. Temporal terminological logic. In W. Dietterich, Tom; Swartout,
editor, Proceedings of the Eighth National Conference on Artificial Intelligence
(AAAI’90), pages 640-645. MIT Press, 1990.

[36] H. Sturm and F. Wolter. A tableau calculus for temporal description logic: The
expanding domain case. Journal of Logic and Computation, 2001.

[37] E. Szpilrajn. Sur lextension de lordre partiel. Fundamenta Mathematica,
16:386-389, 1930.

[38] P. van Beek and D. W. Manchak. The design and experimental analysis of
algorithms for temporal reasoning. Journal of Artificial Intelligence Research
(JAIR), (4):1-18, 1996.

[39] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of
programs. Journal of Computer and System Sciences, 32:183-221, 1986.

[40] M. Vilain, H. Kautz, and P. Van Beek. Constraint propagation algorithms
for temporal reasoning: A revised report. In D. S. Weld and J. de Kleer,
editors, Readings in Qualitative Reasoning about Physical Systems, pages 373—
381. Morgan Kaufmann, 1990.

[41] F. Wolter and M. Zakharyaschev. Temporalizing description logic. In D. Gabbay
and M. de Rijke, editors, Frontiers of Combining Systems, pages 379 — 402.
Studies Press/Wiley, 1999.

33

A Proofs for Section 4

The first task is to prove Theorem 8. For the proof, it will be helpful to define
the notion of paths in constraint graphs G: a path @) in G is a finite non-
empty sequence of nodes vg,...,v, € V such that, for all i with ¢ < k, we
have (v;, P,v;y1) € FE for some P € {<,=}. A path vy, ..., v is a =-path iff
(Ui, :,Ui+1) € E fori < k.

Theorem 8 A constraint graph is satisfiable iff it does not contain a <-cycle.

Proof. Since the “only if” direction is trivial, we concentrate on the “if”
direction. Let GG be a constraint graph not containing a <-cycle. Let ~ be the
relation on V with vy ~ vy iff v1 = vy or there exists a =-path between v,
and vy. Since constraint graphs are assumed to be equality closed, ~ is an
equivalence relation. For v € V', we denote the equivalence class of v w.r.t. ~
by [v].. Define a new constraint graph G' = (V’, E’) as follows:

Vii={[v]. |veV}
E":={([v1]~, <, [2]~) | Fvi, vy € V such that
vy € [v1]~,vh € [1o]e, and (vy, <,v}) € E}

Using the fact that G does not contain a <-cycle, it is straightforward to prove
that G' does not contain a <-cycle. Since G’ does not contain a <-cycle, E’
induces a partial order with domain V'. By Szpilrajn’s Theorem, every partial
order can be extended to a total order (on the same domain) [37]. Let <p
be a total order obtained in this way from the partial order induced by E’.
In the following, we show that every total order < with a countable domain
D can be embedded into @@ such that the ordering is preserved. This suffices
to complete the proof since it implies that that there exists a total mapping
d from V to @ such that vy <g vs implies §(vy) < d(vg). It is obvious that 0
is a solution for G’ and it is straightforward to use ¢ to construct a solution
for G.

Let dy,dq, ... be an enumeration of D. We use induction on this enumeration
to define a function ¢ from D to @ such that d; < dy implies §(d;) < 6(dy)
for all dy,d> € D.

(1) For the induction start, set 6(dy) to some r € Q.
(2) Assume that §(d;) is defined for all i < k. We distinguish three cases:
(a) d; < dj for all i < k. Since (3 has no maximum, there exists an r € Q
such that r > §(d;) for all i < k. Set §(dy) :=r.
(b) dy < d; for all i < k. Since @ has no minimum, there exists an r € Q
such that r < §(d;) for all i < k. Set §(dy) :=r.
(c) Neither of the previous two cases holds. Since (Q is dense, there exists

34

an r € @Q such that
max{é(dz) | 1< kandd; < dk} <r< mln{é(dz) | 1 < kand di < dl}
Set §(dy) :=r.

It is readily checked that § is as required. O

Since the proof of Lemma 15 is rather involved, we treat the “if” and the
“only-if” direction in two separate lemmas. We again use the notions of paths
and =-paths in constraint graphs. Moreover, we use the following notation: if
vg, ...,V is a path or a cycle, we use i, to denote (i + 1)modk + 1, i.e., i},
denotes the index following i in the path/cycle O. The index -o is omitted if

clear from the context.

Lemma 28 A concept C' s satisfiable w.r.t. a general TBox T if there exists
a Hintikka-tree for C' and T .

Proof. Let C be a concept, 7 a TBox, k£ the number of existential subconcepts
in sub(C, T), and ¢ the number of abstract features in sub(C, 7). Moreover,
let T be a Hintikka-tree for C' and 7. We define an interpretation Z = (Az, -7)
as follows:

Ar={1,... k+0V*
AT={a | A€ T4(a)} forall Ac Oy
Rf={(a,B) | B = ai, &(C,T) = AR.E for some concept E, and
dR.E € T4(a)} for all R € Nig
ff={(e,B) | B=ai, F;_x(C,T) = f, and f is enforced by T(a)}
for all f € Nu¢

It remains to define the interpretation of temporal features, which is done as
follows: we define an (infinite) constraint graph G(T') induced by 7', show that
G(T) is satisfiable, and define the interpretation of temporal features from a
solution of G(T'). The nodes of G(T') have the form a|u, where « is a node in
T and w is a path in C' or 7. More precisely, G(T') is defined as (V,cl_(E)),
where

o V={alu|ae{l,....,k+(}* uappears in C or T}
o [/ = U {(a|lu, Pialu’) | (u, P,u) is an edge in cpl(T, @)}
ac{l,. . k+0}*

U{(alfg),= ailg) | Fiee(C,T) = f, fgis anode in cpl(T’,)}

It is not hard to see that G(T') really is a constraint graph, i.e., the node set
of G(T) is countable. Next, we show the following claim:

35

Claim 1: G(T) is satisfiable.

By Theorem 8, it suffices to show that G(7T') contains no <-cycle. Assume to
the contrary that G(T') contains a <-cycle and that O = «ag|ug, ..., ay|u, is
the <-cycle in G(T') with minimal length. Fix a t < n such that

for each i with i < nand each 5 € {1,..., k+(}, we have o; # o3, (%)

i.e., there exist no «; in O such that oy is a true prefix of «; (such a ¢ exists
since O is of finite length). Since O is a <-cycle, there exists an s < n such
that we have (a;|us, <, ag+|us+) € E. We make a case distinction and derive
a contradiction in either case.

e «; # ;. Define a sequence of nodes O’ from O by deleting all nodes o;u;
with a; = a;. O’ is non-empty since a; # a;. We show that O’ is a <-
cycle in G(T'), which is a contradiction to the minimality of O. Let O' =
aplug, - .., al|ul . By definition of G(T), the fact that (as|us, <, g+ |us+) €
E implies ag+ = ag. Since a; # ay, aglus and ag+|ug+ are in O' and it
remains to show that O’ is a cycle in G(T), i.e., for all i < m, we have
(af|ul, P, aly|uly) € E for some P € {<,=}.

Let of|u; and o/i|u}+ be nodes in O'. If these two nodes are already
neighbor nodes in O, we are obviously done. Hence, assume that this is not
the case. By construction of O, this implies the existence of a path

aﬂ% Oét|u’{a BRI at|u;’ Oé;+|u;+

in G(T), which is at most as long as O. Since o} # a; and a4 # a4, by con-
struction of G(T') and by (), this implies that there exist 5 € {1,..., k + (}*,
f € Nup,j€{l,....;k+(}, and g,9' € G(C,T) such that the following
conditions are satisfied:

1) aj=ajs =0,

2) Qp = Bj and fj,k(C, T) - f,

3) u; = [y, U){ =9, u;kc = gla and U;+ = fgla and

1) (814, = jlg) € E and (8fg’. = Bilg) € .
By definition of G(T') and by Point 4, both fg and fg¢' are nodes in cpl(T, 8) =
(V' E"). By definition of cpl, this implies that either

(a) (fg'.<,fg) € E or

(b) (fg, P, fg") € E' for some P € {<,=}.
Together with Point 1 and 3 and the definition of G(T), (b) obviously implies
(af|ui, P, oy |uly) € E, and we are done. Moreover, in the following we show
that case (a) cannot occur.

Let cpl(T, Bj) = (V", E"). In case (a), we have (¢, <,g) € E": Let G(f8) =
(V!,E.); by definition of pair-graphs and since all concepts are in path
normal form, (f¢', <, fg) € E' implies (f¢’, <, fg) € E'\ E.; by definition
of cpl and by Point 2, this means that (¢', <, g) € Tx(3). Hence, (¢, <,g) €
E". By definition of G(T') and Point 1 and 3, (¢, <,g) € E” implies that
(oy|ul, <, a¢|uy) € E. Hence, the path a;|uf, ..., a|ul is a <-cycle in G(T),

(
(
(
(

36

which contradicts the minimality of O.

e o, = ;. We first show that there exists a node a,|u, in O such that «, # «.
For suppose that no such node exists. Then, by definition of G(T'), uy, . .., u,
is a <-cycle in cpl(T, ay). This is clearly a contradiction to the fact that T’
is a Hintikka-tree. Hence, we may conclude the existence of an «, as above.
Define a sequence of nodes O' from O by deleting all nodes o;|u; with
a; # az. O is non-empty since a, = ;. Moreover, O’ is shorter than O
due to the existence of a,. We show that O’ is a <-cycle in G(T'), which
is a contradiction to the minimality of O. Let O' = ay|uy, ..., a|ul,. By
definition of G(T'), the fact that (as|us, <, ag+|us+) € E implies ag+ = g =
;. Hence, it remains to show that O’ is a cycle in G(T), i.e., that, for all
i < m, we have (aq|u}, P, oy|uly) € E for some P € {<,=}.

Let ay|u; and a;|uls be nodes in O'. If these two nodes are already neigh-
bor nodes in O, we are obviously done. Hence, assume that this is not the
case. By construction of O, this implies the existence of a path

at|u;7 CY)HUT, R a;k:|u;k37 at|u;ﬁL

in G(T), which is at most as long as O, such that of # «; for all i with
1 <i < 2. By construction of G(T') and by (x), this implies that there exist
ge{l,....k+0}, f €Ny, je{l,....k+(}, and g,¢' € G(C,T) such
that the following conditions are satisfied:

(1) af = o} =5,

(2) Qp = Bj and fj,k(C, T) - f,

(3) ui =g, ui = fg, ui = fg¢', and ujy = ¢', and

(4) (BIfg. = Bilg) € E and (3/fg',=, Bjlg') € E.
By definition of G(T') and by Point 4, both fg and fg¢' are nodes in cpl(T, §) =
(V' E"). By definition of cpl, this implies that either

(a) (fg'.<,fg) € E or

(b) (fg,P, fg') € E' for some P € {<,=}.
Case (a) is impossible, which can be seen as follows: together with Point 1
and 3 and the definition of G(T'), (a) obviously implies (o |uf, <, af|u}) € E.
Hence, the path af|ui, ..., ak|ul is a <-cycle in G(T) which contradicts the
minimality of O.

Hence, let us assume that (b) holds. Moreover, let cpl(T, 5j) = (V", E").

We have (g, P, ¢') € E", which can be seen as follows: let G(5) = (V/, E.);
by definition of pair-graphs and since all concepts are in path normal form,
(fg, P, fg') € E' implies (fg, P, fg') € E"\ E.; by definition of cpl and
by Point 2, this means that (g, P,¢’') € T (3). Hence, (g, P,g') € E". By
definition of G(T') and Point 1 and 3, (g, P,¢') € E” implies that we have
(aluf, P,ayluly) € E, as was to be shown.

This finishes the proof of Claim 1. We may now define the interpretation of
temporal features. Let § be a solution for G(7"). We set

37

g ={(a,2) | g is enforced by T(a) and 6(a|g) = 2} for all g € Ner.

To show that there exists a d € Az such that d € CZ, we prove the following
claim:

Claim 2: D € T4(a) implies o € D? for all « € Az and D € sub(C, T).

Proof: The claim is proved by induction on the structure of D. First for the
induction start, which splits into several subcases:

e D is a concept name. Immediate by definition of Z.

e D =-F. Since Cisin NNF, D is also in NNF. Hence, F is a concept name.
By definition of 7 and since T'(«) is a Hintikka-set and thus satisfies (H4),
we have o € (=E)Z.

e D =3(uy Puy). Let G(T) = (V, E) and cpl(T,a) = (V', E'). By definition
of pair-graphs and cpl(), we have (uy, P,us) € E'. Moreover, by definition
of G(T), we have (aluy, P, a|us) € E. Tt thus remains to show that uf(a) =
d(aluy), and uZ(a) = §(alus): since is a solution for G(T), this clearly
implies uf () Pul (o).

First, assume u; = ¢ for some g € Nir. By definition of g% and since g is
enforced by T'(«), we have u? (a) = 6(alu;) as required. Now let u; = fg with
F;_1(C, T) = f.Since fgisanodein cpl(T,), we have (a|fg,=, aj|g) € E.
Hence, 6(ajlg) = 6(alfg). By definition of fZ and since f is obviously
enforced by T'(a), we have fZ(a) = aj. By definition of cpl and of pair-
graphs, fg € V' implies that g appears in T}, («j): since cpl(T, «) is both a
completion of G(«) and satisfiable, fg € V' implies (fg,=, fg) € E’; due
to the definition of pair graphs and since all concepts are in path normal
form, (fg,=, fg) is not an edge of G(«); hence, by definition of cpl and
since F,;_(C,T) = f, we must have (g,=,g) € T.(aj), i.e., g appears in
T-(aj). Since g appears in T («j) and is thus enforced by T'(«j), we have
g*(aj) = 6(ajlg) by definition of g%. Summing up, we obtain (fg¢)%(a) =
6(ajlg) = d(alfg).

e D = g7. If g*(a) is defined, then g is enforced by T(a). We show that
this implies g1 ¢ T4(«). If g is enforced by T'(«), then either (i) g appears
in Ty (a) or (i) {(gPu'), I’ Pg)} NT4(a) # O for some path «' and
P e {<,=}. In case (i), (H6) yields g1 ¢ T4(a). In case (ii), (H5) yields
the same result.

For the induction step, we make a case distinction according to the topmost
operator in D. Assume D € T (a).

e D =CiNCyor D= C;UCs,. Straightforward by (H2) and (H3) of
Hintikka-sets and by induction hypothesis.

e D = 3R.E with R € Ng. By definition of RZ, we have (a,3) € RZ for
f = «ai and &(C,T) = IR.E. By (HT), we have E € T4(f), and, by
induction, 3 € E7.

e D = Jf.E with f € Nur. Hence, f is enforced by T'(«). By definition of

38

[, we have fZ(a) = S for 8 = ai and F;_(C,T) = f. By (H9), we have
E € T4(5), and, by induction, 3 € EZ.

e D =VR.E with R € N\g. Let (,) € RE. By definition of R%, there exists
an i such that &(C,T) = 3R.D € T4(a) and § = ai. By (H8), we have
E € T4(B), and, by induction, 3 € E*. Since this holds independently of
the choice of 3, we have o € (VR.E)~.

e D = VfE with f € Ngr. Let ff(a) = 5. By definition of fZ, we have
B = ai, F; 1(C,T) = f, and f is enforced by T(«). By (H10), we have
E € T4(3), and, by induction, 3 € EZ.

This completes the proof of the claim. Since C' € T4(¢e) by (H12) and, for all
a € Az, we have Cr € T4(«) by (H1), it is an immediate consequence of the
semantics of TBoxes and Claim 2 that Z is a model of C' w.r.t. 7. O

Lemma 29 A concept C' is satisfiable w.r.t. a general TBox T only if there
exists a Hintikka-tree for C' and T.

Proof. Let C' be a concept, 7 a TBox, and k and ¢ as in the proof of Lemma 28.
Moreover, let Z be a model of C' w.r.t. T, i.e., there exists a dy € Az such
that dy € CT and D¥f = E7 for all D = E € T. We inductively define a
Hintikka-tree T" for C' and T, i.e., a k + (-ary I'c r-tree that satisfies (H12)
and (H13). Along with T, we define a mapping 7 from {1,...,k+ (}* to Az
in such a way that

T4(a) ={D € sub(C,T) | 7(a) € D*} (%)
For the induction start, set
7(€) :=dy, T4(e):={D €sub(C,T)|dy € D"}, and T.(e) := 0.

Obviously, (*) is satisfied. Now for the induction step. Let o € {1,...,k+(}*
be a word of minimal length such that 7(«) is defined and 7(ai) is undefined
for some i € {1,...,k + (}. We make a case distinction as follows:

(1) &(C,T)=3R.D € T4(a). By (%), we have 7(a) € (3R.D)%. Thus, there
exists some e € Az such that (7(a),e) € RF and e € D*. Set 7(«vi) := e,
To(ai) :={F € sub(C,T) | e € E*}, and Ty (i) := 0.

(2) Firp(C,T) = f,and f is enforced by T(a). By (%) and the definition of
“enforced”, there exists an e € Az such that fZ(r(a)) = e. Set

(i) :==e
Ta(ai) :
To (i) :

Il
—_

E €sub(C,T)|ee ET}
(91, P, g2) | fo1, fgo are enforced by T'(a) and gf(e)szf(e)}

39

(3) «, i do not match the above cases. Set 7(«i) := 7(¢) and T'(ai) := T (e).

Clearly, (x) is satisfied after each induction step, and hence T is well-defined.
Intuitively, Case 3 applies if the i-th successor of « is not needed to satisfy
the Properties of Hintikka-trees. In this case, the choice of 7(«i) is arbitrary:
we could have defined 7(«i) as any element of Az (instead of choosing 7(¢)).

We must show that T is a Hintikka-tree for C' and 7. From (x) together with
the semantics of concepts and TBoxes, it is clear that T («) is a Hintikka-set
for C'and T for each a € {1,...,k+ (}*. Let us show exemplarily that (H1)
holds. Assume to the contrary that there exists an o € {1,...,k + (}* such
that Cr ¢ T4(«). By (x), we have 7(«) ¢ C%. By definition of C'r, this implies
the existence of D = F € T such that 7(a) ¢ (D «+ E)%, ie., 7(a) € D*\ E*
or 7(a) € ET\ D*. Hence, we do not have D* = E7 and obtain a contradiction
to the fact that Z is a model of 7.

Now we show that T'(«) is a Hintikka-pair for each node «, i.e., that (H6)
is satisfied. The proof is by contradiction. Assume that there exists an a €
{1,..., k+{}* such that (g1, P, g2) € T (o) and g;1 € T4(a) for j € {1,2}. By
definition of Ty, (g1, P, g2) € T () implies that g7 (7(a)) is defined. But from
g;1 € T4() and (%), we obtain that gf(()) is undefined: contradiction.

It remains to show that T satisfies (H12) and (H13). The former is sim-
ple due to the definition of T (induction start) and the fact that dy € C7Z.
The latter amounts to showing that, for each o € {1,...,k + (}*, the tuple
(T(), T(al),...,T(ayj)) satisfies (H7) to (H11), where j abbreviates k + (.

(H7) Let 3R.D € T4(«) and &(C,T) = IR.D. By definition of 7 (Case 1),
we have 7(ai) = e for some e € Az with (7(a),e) € RT and e € D*. By (),
we thus have D € T(ai).

(H8) Let {3R.D,VR.E} C T () and &;(C,T) = IR.D. By definition of 7
(Case 1), we have 7(ai) = e for some e € Az with (7(a),e) € RE. By
(%), we have 7(a) € (VR.E)T which implies e € EZ. By (*), we thus have
E € T (ai).

(H9) Let 3f.D € T4(a) and F;(C,T) = f. Hence, f is enforced by T'(«). By
definition of 7 (Case 2), we have 7(aj) = e for e = fZ(7(a)) and j = k + 1.
From 3f.D € T4(a) and (), we obtain 7(a) € (3f.D)? and thus e € DT,
Again by (x), we get D € T4(aj).

(H10) Let f be enforced by T(a), F(C,T) = f, and Vf.D € T4(«). By
definition of 7 (Case 2), we have 7(aj) = e for e = fZ(7(a)) and j = k + 1.
From Vf.D € T4(a) and (), we obtain 7(a) € (Vf.D)* and thus e € D,
Again by (%), we get D € T4(aj).

(H11) Let G(T(«)) = (V, E) and E’ be defined as in (H11). To prove that
(H11) is satisfied, we show that
(1) E'is an edge extension of G(T'(«)), which implies that (V, FU E’) is a

40

completion of G(7T'(«)) and

(2) (V,EUE") is satisfiable.

We first prove Point 1. It needs to be shown that, for each fgi, fg2 € V,
{(fo1,<, [92), (fg1,=, fg2), (fga, <, fg1)}NE" # (. By definition of G(T'(«)),
fg1 and fgs are enforced by T'(«). Since T («) may only contain paths of
length 1, we have {3(fg1 P'u), I(u P fg1)}NT4(r) # O for some path u and
P' € {<,=} and similarly for fg,. By (), this implies that fZ(g(7(cr))) and
f*(g5(7(a))) are defined. By definition of T' (Case 2) and since f is obviously
enforced by T'(a), we have fZ(7(a)) = 7(ai) with F;_»(C,T) = f. Hence,
gF(r(ai)) and g2 (7(ai)) are defined. By the semantics, we have g7 (7(ai)) <
g5 (1(ai)), gi (r(ai)) = g3 (r(ai)), or g3 (7(ai)) < gf(7(ai)). By definition of
TD? this y1e1ds {(glv <792>7 (gla = 92>7 (927 < gl>} N TD (CYZ) 7é 0. Hence, by

definition of EI we have {(fgla < f92)7 (fgla = f92)7 (fg% < fgl)} mEl 7& @
We now prove Point 2 from above. Define a mapping 6 from V to QQ as

follows: 6(u) := u”(7(a)). This mapping is well-defined, which can be seen

as follows. Fix a u € V. Since u is enforced by T'(«), either

(i) u occurs in Ty () or

(ii) {F(wPu'), I Pu)} NT4(a) # O for some path v’ and P € {<,=}.

In Case (i), we have u = g for some g € Ni. By definition of T, there

exists a predecessor § of o in T such that o = pi, F; (C,T) = f for some

f € Nug, and fg is enforced by T(3). Since T (/) contains only paths of

length 1, we have {3(fg Pu),(u P fg)} N T4(B) # O for some path u and

P e {<,=}. By (), ¢*(fX(7(B))) is defined. Since, by definition of T', we

have fZ(7(8))) = 7(a), g*(7(a)) is defined. In Case (ii), it follows from (x)

that u”(7(a)) is defined.

We show that § is a solution for (V; EUE’) by distinguishing the following
cases:

(1) (w1, P,us) € ENT. (). Then there exist g1, g2 € Ny such that u; = ¢y
and uy = go. By definition of T}, we have g7 (7(a))Pg3 (7()), and thus,
by definition of 4, 6(g1)Pd(g2).

(2) (u1, Pyus) € E and 3(uy Puy) € Tq(a). Then (x) implies that 7(«a) €

J(uy P us)t. Hence, uZ(7(a))PuZ(7(a)). By definition of 6, we thus ob-
tain §(uq)Po(us).

(3) (w1, P,uy) € E'. By definition of E', we have u; = fg1, us = fgo, and
(91, P, g2) € Ts(ai) where Fy ;(C, T) = f. By definition of T, this
yvields that fg; and fgs are enforced by T'(a) and g7 (7(ai)) Pgd (7(au)).
From this and the definition of T' (Case 2), it follows that fZ(r(a)) =
7(cvi). We conclude §(u1)Po(us).

To sum up, we have shown that (H13) holds. O

41

B Proofs for Section 5

Lemma 23 Let A be an ABox and 7 a TBox. Then A is consistent w.r.t. T
iff there exists a precompletion A’ of A w.r.t. 7 such that A’ is consistent
w.r.t. T.

Proof. Recall that A’ is a precompletion of A w.r.t. 7 if A’ can be obtained
from A by exhaustive rule application (using the TBox 7). By Lemma 21,
exhaustive rule application always terminates. Hence, we only need to show
that, if a precompletion rule R is applicable to an ABox A, then A is consistent
w.r.t. 7 iff one of the outcomes A’ of applying R to A is consistent w.r.t. 7.

We make a case distinction according to the rule R. For all rules except Rfe,
the “if” direction is trivial since A C A" if A’ is obtained from A by rule
application. Hence, every model of A" and T is clearly also a model of A
and 7. Thus, we concentrate on the “only if” direction in all cases except Rfe.
Assume that Z is a model of A and T.

e R = RM. Assume that the R rule is applied to a concept C'M D € A(a).
Since 7 is a model of A, we have o € (C'M D) and thus o* € C7 and
a’ € DT. Rule application adds a : C' and a : D to A. Thus, Z is a model
of the resulting ABox A'.

e R = RU. Assume that the RU rule is applied to a concept C' LI D € A(a).
Since 7 is amodel of A, we have a* € (CUD)* and thus a* € C* or aF € D%,
The rule application yields ABoxes A; = AU{a : C'} and A, = AU{a : D}.
Thus, Z is a model of A; or As.

e R = R3f. Assume that the rule is applied to a concept 3f.C' € A(a) adding
b: C to A for some b with (a,b) : f € A. Since Z is a model of A, we have
at € (Af.C)* and f*(a’) = b*. Due to the functionality of fZ, this yields
bt € CT. Thus, 7 is a model of the resulting ABox A'.

e R = RV. Similar to the previous case.

e R = Rcl. Analogous to the next case, only simpler.

e R = Rc2. Assume that the Rc2 rule is applied to a concept 3(fg1 P g) € A(a)
and a node b with {a,b) : f € A. Since Z is a model of A, we have a® €
A(fg1 Pg)*, ff(a) = bF, and ¢f (b") P g% (a”). Rule application introduces
two new time point names x; and x, and adds {(b,z1) : g1, (@, x2) : ¢o,
71 Pxy} to A. Let Z' be obtained from Z by setting 27 = ¢ (b7) and 2% =
gZ(a?). Clearly, ' is a model of the resulting ABox A'.

e R = Rc3. Analogous to the previous case.

e R = Rch. Assume that the Rch rule is applied to the assertions (a,z1) : ¢
and (a,xs) : g2. Since Z is a model of A, there exist ¢, ¢ € Q such that
2t = ¢ and 22 = ¢y. Trivially, we have either ¢; < ¢2, ¢1 = ¢2, Or @2 < q1.
We obtain three new ABoxes by adding one of the assertions a : (g1 < ¢s),
a: (g1 = ¢2), and a : (g2 < g1). Thus, Z is a model of A; for some
ie{1,2,3}.

42

e R = R=. The rule application adds a : Cy for some a € O,. Since 7 is a
model of T, we have d € C% for every d € Az. Thus, Z is also a model of
the resulting ABox A’

e R = Rfe. Assume that the rule is applied to assertions (a,b) : f and (a,c) : f.
Since Z is a model of A, we have fZ(a*) = b* = ¢*. Thus, Z is also a model
of the ABox A’ obtained from A by replacing the object name b with c.

For this rule, we also treat the “if” direction. Hence assume that the rule
has applied to two assertions (a,b) : f and (a,c) : f in A, and let Z' be
a model of the resulting ABox A’ that has been obtained by replacing b
with c. It is easily seen that we can construct a model Z"” of A by setting
bt = L.

The replacement of time point names rather than object names can be
treated analogously. O

Lemma 24 Let A be a precomplete ABox, ¢ a solution for G(A), and a € O,
used in A. If con(A4,a) is satisfiable w.r.t. 7, then there exists a model Z of
con(A,a) and T and a d, € con(A,a)* such that, for all (a,z) : g € A, we
have g% (d,) = §(x).

Proof. Let A, G(A), and ¢ be as in the lemma, and let Z be a model of
con(A, a) and T. Moreover, let d, be an arbitrary element of con(A,a)?. We
show that Z can be transformed into a model J such that J and d, are as
required.

In the following, we assume that there exists a well-founded linear ordering on
the set Az x N¢r. This can be done w.l.0.g. since it is a byproduct of the proof of
Lemma 28 that, if a concept C'is satisfiable w.r.t. a TBox 7, then there exist a
model of C'and 7 (the one constructed in the proof) for which such an ordering
exists. We construct the model 7 from Z by modifying the interpretations of
temporal features in an appropriate way. To do this, we successively “mark”
pairs in Az x Ni such that a pair (d, g) is marked iff ¢7(d) has already been
determined. During the construction of 7, the following invariant will always
hold:

if (dy, g1), (da, g2) € Az x Ny are marked, then
g1 (dr) P g3 (dy) with P € {<,=,>} implies g{ (d:) P g5 (d>)

(+)

Initially, each pair in Az X N is unmarked. The construction of J consists
of an initial step and an inductive step.

(1) Initial step. For all {(a,z) : g € A, set g7 (d,) := §(x) and mark (d,, g).

We need to show that (x) is satisfied. Hence, fix two marked pairs (d,, g1)
and (dy,, go) from AzxN¢e. Then we have {{a,x1) : g1, {(a,x2) : g2} C A for
some 1, r9 € Oy. Since neither the Rch nor the Rcl rule is applicable, we
have either (i) 3(g; < ¢2) € A(a) and x; < 29 € A, (ii) (g1 = ¢2) € A(a)

43

and r1 = x9 € A, or (iii) (g2 < ¢1) € A(a) and 3 < 27 € A.
We only treat case (i) exemplarily. By definition of con(A,a) and since
d, € con(A,a)f, we have d, € (g1 < g2)* and thus g (d,) < g5(d,).
From z; < x5 € A and the definition of G(A), it follows that 6(z;) <
() and hence g (d,) < gy (d,) as required. Cases (ii) and (iii) are
analogous.

(2) Inductive step. Choose the least unmarked pair (d, ¢) from Az x N (w.r.t.
the assumed ordering) for which gZ(d) is defined. For P € {<,=, >}, let
U p be the set of marked pairs (di, g1) € Az x N for which ¢f (dy) P g*(d).
By (*), we have
o g7 (d1) = gJ (do) for all (di, g1), (d2, g2) € ¥,

o g7 (d1) < g5 (do) for all (dy,g1) € U and (da, g2) € V- U ¥, and
o g7 (dy) < g5 (dy) for all (dy,g1) € W= and (da, go) € V.

Hence, due to the density of @ there is a ¢ € QQ such that

o ¢ > max{gy (d1) | (di, 1) € ¥},

o ¢ =g (dy) for all (dy,g,) € ¥_, and

o g < mln{g{(dl) | (dlagl) € lIf>}

Set g7 (d) := q. Obviously, (*) is satisfied.

~— ~—

It is straightforward to show by structural induction that d € CT iff d € C7
for all d € Az and all TDL-concepts C. Hence, J is a model of con(A,a)
and 7. By the initial step of its construction, [J is as required. O

Lemma 25 Let A be a precompletion of an ABox A" w.r.t. a TBox 7. A is
consistent w.r.t. 7 iff A is clash-free and con(A, a) is satisfiable w.r.t. T for
every a € O, used in A.

Proof. Since the “only if” direction is straightforward, we concentrate on the
“if” direction. Let 2 denote the set of object names a € O, appearing in A.
Since A is clash-free, there exists a solution § for G(A). For every a € 2, fix
a model Z, of con(A,a) and T and a domain element d, € Az, such that
d, € con(A,a)?*. By Lemma 24, we may assume w.l.o.g. that, for all a € 2,

(a,z) : g € Aimplies g% (d,) = 6(x). (%)

Moreover, we assume that (i) a # b implies Az, N Az, = () and (ii) none of
the d, has incoming edges, i.e., (d,d,) ¢ R for all d € Az, and R € Ng. Tt is
straightforward to prove that none of these assumptions restricts generality:
for example, take for each a € 2 the canonical model constructed from a
Hintikka-tree for con(A,a) and 7 as in the proof of Lemma 28. Then apply
the modification from the proof of Lemma 24 and finally make all domains Z,
disjoint by renaming. Clearly, (x), (i), and (ii) are satisfied for the resulting
set, of models. In the following, we define an interpretation Z by taking the
“union” of the models Z, with a € 2 and the relational structure defined by
the ABox. However, we have to be careful not to obtain too many abstract
feature successors and prefer successors from the ABox over successors from

44

the models.

(1) AI = Uae%l AIa7

(2) AT := U, eq AT for all A € Nc,

(3) RT :={(du,dp) | (a,0) : R € A} U Uyeq B*= for all R € N,

(4) fF:={(da,dp) | {a,b) : f € A} U Ueai(d,e) € ff | d #d, or
(a,b) : f & Aforall be O,} for all f € Ny,

(5) g7 = Usea g™ for all g € N,
(6) al :=d, for all a € A, and
(7) 2T :=4(x) for all x € O, appearing in A.

Note that, for all f € N, fZ is functional since the Rfe rule is not applicable
to A. Since none of the d, has incoming edges, the following claim can be
proved straightforwardly by structural induction:

Claim 1: For all objects a € A, domain elements d € Az, with d # d,, and
TDL-concepts C, we have d € C%a iff d € C7.

However, we still need to deal with the elements d, themselves.
Claim 2: For all objects a € A, C' € A(a) implies d, € CZ.

The proof is by induction on the structure of C'. The induction start consists
of three cases:

e (' € Nc. Straightforward by definition of con(.A, a), the choice of Z, and d,,
and the construction of Z.

e C' = F(uy P uy). By definition of con(A, a) and choice of Z, and d,, C' € A(a)
implies d, € C%«. We make a case distinction according to the form of u;
and wusy (recall that all concepts are assumed to be in path normal form).

(1) uy = g1 and uy = go. Since d, € (g, P g2)**, there exist q1,q2 € Q such
that ¢7*(ds) = q1, 92*(da) = ¢z, and ¢, Pgy. By definition of Z, this implies
gi(d,) = q1, g2(d,) = q2 and thus d, € (g1 P g2)*.

(2) wy = fg1 and uy = go. We have to distinguish two subcases. First assume
that {a,b) : f € A for some b € O,. Since the Rc2 rule is not applicable,
there exist x1,x2 € O such that {(a,x1) : g1, (b, 22) : go,x1 P22} € A.
Since 0 is a solution for G(A), there are ¢, ¢ € @ such that ¢; = d(xy),
(2 = 0(23), and ¢, Pgy. Since Z, and 7, satisfy (), we have g7*(d,) = ¢, and
g5°(d,) = g». By construction of Z, we have fZ(d,) = dy, g% (d,) = gi*(d,),
and gf (dy) = g5"(d). Hence, gf (da) P (dy) and d, € 3(fg1 P g2)*.

Now assume that there is no b € O, such that (a,b) : f € A. From
d, € I(fg1 P g2)** and the construction of Z, it follows straightforwardly
(similar to Case 1) that d, € A(fg1 P g2)*.

(3) uy = g1 and us = fgs. Analogous to the previous case using Rc3 instead
of Rec2.

e C' = gt. Asin the previous case, C' € A(a) implies d, € CT. Hence, g% (d,)

is undefined. By definition of Z, ¢ (d,) is also undefined and thus d, € (g1)*.

45

For the induction step, we make a case distinction according to the topmost
constructor in C"

e C' = (1MNC5. Since the RM rule is not applicable to A and C' € A(a), we have
{C1,Cy} C A(a). The induction hypothesis yields d, € C{ and d, € C7.
By the semantics, we obtain d, € CZ.

e (' = (1 U (5. Similar to the previous case.

e C' = 3JR.D with R € N,g. By definition of con(A,a) and choice of Z, and
dy, C € A(a) implies d, € C%=. Hence, there exists an e € Az, such that
(da,e) € R and e € D*=. Since d, has no incoming edges in Z, (see above),
we have d, # e. Hence, by Claim 1, e € D% implies e € D%. By construction
of Z, we additionally have (d,,e) € R* and thus d, € (IR.D)*.

e C' =3f.D. If there is no b € O, such that (a,b) : f € A, then we can argue
as in the previous case. Hence assume that such a b exists. Since the R3f
rule is not applicable, we have b : D € A. By induction, we have d, € DZ.
Since we have f%(d,) = dj by construction of Z, we obtain d, € (3f.D)*.

e C = VR.D. Fix a pair (d,,e) € R%. By definition of Z, we have either
(da,e) € R% or e = dj and (a,b) : R € A. In the first case, we have e # d,
since d, has no incoming edges in Z, and e € D? by the semantics and
Claim 1. In the second case, we have D € A(b) since the RY rule is not
applicable to A. Hence, by induction, e € D* and thus d, € (VR.D)”.

This finishes the proof of Claim 2.

Using the two claims, it is easy to show that Z is a model of A and 7. We first
show that 7 satisfies every assertion in A. For assertions of the form a : C, we
have a = d, € CT by Claim 2. Assertions (a, b) : R are obviously satisfied by
definition of Z. Assertions (a,) : g are satisfied by construction of Z and since
the models Z, (for b € 2A) satisfy (x). Finally, assertions x; P x5 are satisfied
since ¢ is a solution for G(A).

It remains to show that Z is a model of 7. Fix a concept equation C'= D € T
and a d € Az. First assume that d # d, for all a € . Let d € Az,. Then
d € CT iff d € D* by Claim 1 and since Z, is a model of 7. Now assume
d = d,. Since the R= rule is not applicable to A, we have a : C+ € A. Hence,
by Claim 2, d, € C%. By definition of C7, this clearly implies d, € CT iff
d, € D*. O

46

