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Abstra
t

While 
lassi
al Des
ription Logi
s (DLs) 
on
entrate on the representation of stati



on
eptual knowledge, re
ently there is a growing interest in DLs that, addition-

ally, allow to 
apture the temporal aspe
ts of 
on
eptual knowledge. Su
h temporal

DLs are based either on time points or on time intervals as the temporal primitive.

Whereas point-based temporal DLs are well-investigated, this is not the 
ase for

interval-based temporal DLs: all known logi
s either su�er from rather limited ex-

pressive power or have unde
idable reasoning problems. In parti
ular, there exists no

de
idable interval-based temporal DL that provides for general TBoxes|one of the

most important expressive means in modern des
ription logi
s. In this paper, for the

�rst time we de�ne an interval-temporal DL that is equipped with general TBoxes

and for whi
h reasoning is de
idable (and, more pre
isely, ExpTime-
omplete).

Key words: des
ription logi
, temporal reasoning, tree automata, 
omplexity

1 Introdu
tion

Des
ription Logi
s (DLs) are a family of logi
s that originated in arti�
ial intel-

ligen
e as a tool for reasoning about 
on
eptual knowledge, and are nowadays

used in a broad spe
trum of appli
ations [6℄. The fundamental notion of knowl-

edge representation with DLs is that of a 
on
ept, where 
omplex 
on
epts

are 
onstru
ted from the following atoms: 
on
ept names (unary predi
ates),
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role names (binary predi
ates), and a set of 
on
ept 
onstru
tors that are

provided by the 
hosen DL. For example, the following 
on
ept is formulated

in the basi
 des
ription logi
 ALC [34℄:

Human uMale u 9has-
hild:Human

In this example, Human and Male are 
on
ept names while has-
hild is a role

name. It should be easy to see that, intuitively, the above 
on
ept des
ribes

fathers.

Whereas 
lassi
al DLs 
on
entrate on the representation of \stati
" 
on
eptual

knowledge (su
h as in the above example), re
ently there is a growing interest

in \dynami
" DLs that allow to in
orporate, e.g., temporal and epistemi


aspe
ts of the appli
ation domain. Con
erning temporal des
ription logi
s, we


an distinguish several quite di�erent approa
hes (see e.g. the survey [2℄). The

most important de
ision to be made when devising a temporal DL is whether

time points or time intervals should be the temporal primitive, sin
e this

de
ision has a serious ontologi
al impa
t and may have dramati
 
onsequen
es

for issues of de
idability and 
omputational 
omplexity.

In modal and temporal logi
s, to whi
h des
ription logi
s are very 
losely re-

lated [32,13℄, time points are the most popular temporal atom, see e.g. the

handbook [12℄. Consequently, there has been a series of papers on temporal

DLs that use time points as their temporal primitive in the same spirit as

modal and temporal logi
s do [33,41,36,27℄. These logi
s o�er an interesting

expressivity and sometimes have quite attra
tive 
omputational properties.

However, their expressive power is not strong enough to talk about time in-

tervals in a satisfying way.

In arti�
ial intelligen
e, time intervals have a strong tradition as a temporal

primitive sin
e Allen's seminal 1983 paper [1℄, see e.g. the handbook [11℄.

As DLs form a sub�eld of arti�
ial intelligen
e, it is hardly surprising that

interval-based temporal DLs also re
eived a 
onsiderable amount of attention.

The expressive power of su
h DLs is usually based on 
on
ept 
onstru
tors that

refer to the 13 Allen relations, whi
h des
ribe all possible ways in whi
h two

time intervals 
an be related. While the advantage of interval-based temporal

DLs is that they provide an appealing expressivity, their disadvantage is that it


an be rather hard to avoid unde
idability of reasoning. For example, the �rst

interval-based temporal DL proposed by S
hmiedel [35℄ 
an easily be proved

to be unde
idable by redu
tion of Halpern and Shoham's (unde
idable) modal

logi
 of time intervals [15℄. Based on this observation, resear
hers have tried

either to live with unde
idability [8℄ or to �nd variants of S
hmiedel's original

logi
 that are still de
idable [3℄.

The main obsta
le for many potential appli
ations of de
idable interval-based

temporal DLs is that, in order to avoid unde
idability, these DLs do not pro-
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vide for so-
alled general TBoxes. General TBoxes are �nite sets of 
on
ept

equations and a very important expressive means provided by all state-of-the-

art \stati
" des
ription logi
s, and by all modern DL reasoning systems su
h

as FaCT and RACER [18,14℄. The importan
e of TBoxes stems from the fa
t

that they allow to 
apture terminologi
al knowledge and ba
kground knowl-

edge of an appli
ation domain. For example, the following 
on
ept equation

de�nes the notion \father" (thus 
apturing terminologi
al knowledge):

Father

:

= Human uMale u 9has-
hild:Human

However, 
on
ept equations need not de�ne notions. They 
an also des
ribe

ba
kground knowledge in the form of more general 
onstraints:

:9has-
hild:Human

:

= 9has-favorite:Night
lub

This 
on
ept equation states that people having no 
hildren are pre
isely those

people having a favorite night
lub.

The 
ontribution of this paper is to des
ribe a de
idable temporal des
ription

logi
 T DL that provides for general TBoxes and allows interval-based temporal

representation and reasoning. Indeed, T DL is natively point-based, but ad-

mits a straightforward representation of Allen's interval relations, thus being

a suitable tool for intermixed point- and interval-based temporal reasoning

with general TBoxes. More pre
isely, T DL extends the basi
 propositionally


losed des
ription logi
 ALC with

{ general TBoxes;

{ abstra
t features, i.e. role names interpreted in fun
tional relations;

{ temporal features: a new synta
ti
 type that allows to asso
iate time points

(rational numbers) with domain elements;

{ a temporal 
on
ept 
onstru
tor allowing to state that two time points at-

ta
hed via temporal features are in one of the relations <;�;=; 6=;�; >.

For example, the following T DL-
on
ept equation expresses that 
hildren are

born after their parents were:

>

:

= Human! 9((mother birthday) < birthday)u 9((father birthday) < birthday)

In this equation, mother and father are abstra
t features, and birthday is a

temporal feature whose value is the birthday of persons en
oded as a rational

number|a time point. The 
onjun
ts in the 
onsequen
e of the impli
ation

are both instantiations of the temporal 
on
ept 
onstru
tor and must not

be 
onfused with the existential restri
tion as in 9
hild:Human. Note that

(mother birthday) denotes 
omposition of the abstra
t feature mother with the

temporal feature birthday.

We have 
laimed that Allen's interval relations 
an straightforwardly be en-
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oded in T DL. Assume, for example, that we want to represent the life-time of

people by a time interval and then des
ribe persons whose life-time is properly

overlapping (this is one of the Allen relations) with that of their mother. The

obvious idea is to represent intervals in terms of their start- and end-point

and then to use the relations on time points <;�;=; 6=;�; > to de�ne Allen's

interval relations. To represent the above example, we 
ould thus write

Human u 9((mother `) < `) u 9((mother r) < r)

u 9(` < r) u 9((mother `) < (mother r));

where the temporal feature ` represents left interval endpoints and the tem-

poral feature r represents right interval endpoints. Sin
e this 
on
ept requires


lose inspe
tion to reveal that it talks about the Allen relation \overlaps", we

will de�ne a representation framework that builds on T DL and treats time

intervals (and time points) as �rst-
lass 
itizens. In this framework, we 
an

reformulate the above 
on
ept as

Human u 9(mother overlaps self):

Here, mother is still an abstra
t feature and self is a keyword of the framework.

Con
rete features do not appear expli
itly in this abbreviated syntax. More

details are provided in Se
tion 3. It is interesting to note that interval-based

temporal representation with T DL is similar in spirit to the Allen-based tem-

poral 
onstraint networks (see e.g. [1,40,38,29℄) rather than to S
hmiedel's or

Halpern and Shoham's interval-based des
ription/modal logi
s. A more de-

tailed 
omparison of these two families of interval-based temporal des
ription

logi
s 
an be found in [4℄, whi
h investigates the relationship between a rela-

tive of T DL and the logi
 T L-ALCF , a de
idable and interval-based temporal

DL that both restri
ts and extends S
hmiedel's original proposal [3℄. However,

also T L-ALCF does not provide for general TBoxes.

There exists a se
ond, non-temporal view on the des
ription logi
 T DL that

we should also like to dis
uss. One short
oming of simple des
ription logi
s

su
h as ALC is that they represent knowledge on an abstra
t logi
 level,

thus prohibiting an adequate representation of \
on
rete knowledge" su
h as

knowledge about sizes, weights, ages, or even spatial extensions. To eliminate

this de�
ien
y, DLs have been extended with so-
alled 
on
rete domains as

�rst proposed in [5℄, for a re
ent survey 
onsult [25℄. The relationship between

T DL and des
ription logi
s with 
on
rete domains is a rather intimate one:

indeed, T DL 
an be viewed as the extension of ALC with general TBoxes and

a parti
ular 
on
rete domain (more details are provided in Se
tion 2). Due to

this fa
t, the results proved in this paper 
an be viewed in a di�erent light.

In [26℄, the extension of ALC with 
on
rete domains and general TBoxes has

been 
onsidered. As it turns out, the resulting logi
 is unde
idable for many

interesting 
on
rete domains. It has been an open problem whether there
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exist any useful 
on
rete domains that 
an be 
ombined with general TBoxes

without loosing de
idability. Sin
e T DL 
an be viewed as being equipped with

a 
on
rete domain and, in our opinion, is a very useful DL, we answer this

question to the aÆrmative.

This paper is organized as follows. In Se
tion 2, we formally introdu
e the

des
ription logi
 T DL and dis
uss its relationship to 
on
rete domains on

more formal grounds. Se
tion 3 starts with a des
ription of the framework for

representing mixed point- and interval-based temporal information. To illus-

trate the usefulness of both T DL and the representation framework, we then

des
ribe an example appli
ation from the area of pro
ess engineering. In Se
-

tion 4, we use an approa
hed based on automata on in�nite trees to show that

satis�ability and subsumption of T DL-
on
epts w.r.t. general TBoxes is de-


idable. This proof also provides us with a tight ExpTime 
omplexity bound.

In Se
tion 5, we 
onsider another 
ommon DL reasoning problem: ABox 
on-

sisten
y. By redu
tion to 
on
ept satis�ability, we prove that, in T DL, ABox


onsisten
y is also ExpTime-
omplete. The redu
tion is mu
h less straightfor-

ward than e.g. in the 
ase of ALC due to the presen
e of temporal information.

Finally, we 
on
lude in Se
tion 6.

All results in this arti
le are from the PhD Thesis [22℄. The results obtained

in Se
tion 4 have previously been published in the 
onferen
e paper [20℄.

2 The Des
ription Logi
 T DL

We formally introdu
e the des
ription logi
 T DL, starting with the syntax.

Examples are delayed to the subsequent se
tion.

De�nition 1 (T DL Syntax) Let N

C

, N

R

, and N

tF

be mutually disjoint and


ountably in�nite sets of 
on
ept names, role names, and temporal features.

We assume that N

R

is partitioned into two 
ountably in�nite subsets N

aF

and

N

rR

. The elements of N

aF

are 
alled abstra
t features and the elements of

N

rR

regular roles. A path u is a 
omposition f

1

� � � f

n

g of n abstra
t features

f

1

; : : : ; f

n

(n � 0) and a temporal feature g. The set of T DL-
on
epts is the

smallest set su
h that

(1) every 
on
ept name is a 
on
ept

(2) if C and D are 
on
epts, R is a role name, g is a temporal feature, u

1

; u

2

are paths, and P 2 f<;�;=; 6=;�; >g, then the following expressions are

also 
on
epts: :C, C uD, C tD, 9R:C, 8R:C, 9(u

1

P u

2

), and g".

A 
on
ept equation is an expression of the form C

:

= D, where C and D are


on
epts. A �nite set of 
on
ept equations is 
alled TBox.
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The TBox formalism introdu
ed in De�nition 1 is often 
alled general TBox

sin
e it subsumes several other, mu
h weaker variants [9,19℄. Throughout this

paper, we use > as abbreviation for an arbitrary propositional tautology, ?

for :>, and u" for 8f

1

: � � � 8f

k

:g" if u = f

1

� � � f

k

g. As most des
ription logi
s,

T DL is equipped with a Tarski-style set-based semanti
s.

De�nition 2 (T DL Semanti
s) An interpretation I is a pair (�

I

; �

I

), where

�

I

is a set 
alled the domain and �

I

is the interpretation fun
tion. The in-

terpretation fun
tion maps

� ea
h 
on
ept name C to a subset C

I

of �

I

,

� ea
h role name R to a subset R

I

of �

I

��

I

,

� ea
h abstra
t feature f to a partial fun
tion f

I

from �

I

to �

I

, and

� ea
h temporal feature g to a partial fun
tion g

I

from �

I

to the rational

numbers Q.

1

For paths u = f

1

� � �f

n

g and domain elements d 2 �

I

, we set u

I

(d) :=

g

I

(f

I

n

(� � � (f

I

1

(d)) � � � )). The interpretation fun
tion is extended to arbitrary


on
epts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

9(u

1

P u

2

)

I

:= fd 2 �

I

j 9x

1

; x

2

2 Q : u

I

1

(d) = x

1

; u

I

2

(d) = x

2

; and x

1

P x

2

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg

An interpretation I is a model of a 
on
ept C i� C

I

6= ;. I is a model of a

TBox T i� it satis�es C

I

= D

I

for all 
on
ept equations C

:

= D in T .

Note that the temporal 
onstru
tor 9(u

1

P u

2

) has an existential semanti
s

sin
e it for
es the interpretation of the paths u

1

and u

2

to be de�ned. The most

important reasoning problems for des
ription logi
s are 
on
ept satis�ability

and 
on
ept subsumption, i.e. the questions whether a given 
on
ept 
an have

any instan
es and whether one 
on
ept is more general than another one [6℄.

For both reasoning tasks, a TBox T is used to des
ribe the \ba
kground

theory".

De�nition 3 (Reasoning Problems) Let C and D be 
on
epts and T a

TBox. C subsumes D w.r.t. T (written D v

T

C) i� D

I

� C

I

for all models

I of T . C is satis�able w.r.t. T i� there exists a 
ommon model of C and T .

1

It would not make a di�eren
e to use real numbers instead of rational numbers

as time points. This is dis
ussed in more detail in Se
tions 4.1 and 6.
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It is well-known that (un)satis�ability and subsumption 
an be mutually re-

du
ed to ea
h other: C v

T

D i� C u :D is unsatis�able w.r.t. T and C is

satis�able w.r.t. T i� C 6v

T

?. This fa
t allows us to 
on
entrate on satis-

�ability sin
e obtained de
idability and 
omplexity results are easily \pulled

over" to subsumption.

Another very important reasoning problem is so-
alled ABox 
onsisten
y [6℄.

Intuitively, an ABox des
ribes the state of a�airs in the real-world at a par-

ti
ular time, i.e. it is a \snapshot" of the real world. ABox 
onsisten
y is then

the ABox 
ounterpart to 
on
ept satis�ability.

De�nition 4 (ABox, ABox Consisten
y) Let O

a

and O

t

be a 
ountably

in�nite and mutually disjoint sets of obje
t names and time point names. If C

is a 
on
ept, R a role name, g a temporal feature,

P 2 f<;�;=; 6=;�; >g, a; b 2 O

a

, and x; y 2 O

t

, then the following are ABox

assertions:

a : C; ha; bi : R; ha; xi : g; x P y:

A �nite set of assertions is 
alled an ABox. Interpretations I 
an be extended

to ABoxes by demanding that, additionally, �

I

maps every obje
t name a to

an element a

I

of �

I

and every time point name x to a rational number x

I

.

An interpretation I then satis�es an assertion

a : C i� a

I

2 C

I

ha; bi : R i� (a

I

; b

I

) 2 R

I

ha; xi : g i� g

I

(a

I

) = x

I

xP y i� x

I

P y

I

:

An interpretation is a model of an ABox A i� it satis�es all assertions in A.

An ABox A is 
onsistent w.r.t. a TBox T i� there exists a 
ommon model of

A and T .

Let us view an example T DL ABox:

Mary : Human John : Human

hMary; t

1

i : birthday hJohn; t

2

i : birthday

hJohn;Maryi : father t

2

< t

1

where Human is a 
on
ept name, birthday a temporal feature, father an abstra
t

feature, Mary and John are from O

a

, and t

1

and t

2

are from O

t

. Obviously, this

ABox states that John is the father of Mary and that John was born before

Mary was born.
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Observe that 
on
ept satis�ability (and thus also 
on
ept subsumption) 
an

be redu
ed to ABox 
onsisten
y: a 
on
ept C is satis�able w.r.t. a TBox T i�

the ABox fa : Cg is satis�able w.r.t. T , where a 2 O

a

.

We now dis
uss the relationship between T DL and des
ription logi
s with


on
rete domains. To this end, let us introdu
e 
on
rete domains formally.

De�nition 5 (Con
rete Domain) A 
on
rete domain D is a pair (�

D

;�

D

),

where �

D

is a set 
alled the domain, and �

D

is a set of predi
ate names. Ea
h

predi
ate name P 2 �

D

is asso
iated with an arity n and an n-ary predi
ate

P

D

� �

n

D

.

In Baader and Hans
hke's original proposal [5℄, 
on
rete domains are inte-

grated into the des
ription logi
 by using a 
on
ept 
onstru
tor 9u

0

; : : : ; u

n

:P ,

where u

0

; : : : ; u

n

are paths and P 2 �

D

is a predi
ate of arity n + 1. The se-

manti
s of this 
on
rete domain 
onstru
tor is as follows:

(9u

0

; : : : ; u

n

:P )

I

:= fd 2 �

I

j 9x

0

; : : : ; x

n

2 Q : u

I

i

(d) = x

i

for i � n

and (x

0

; : : : ; x

n

) 2 P

D

g:

Hen
e, T DL 
an be viewed as being equipped with the 
on
rete domain

D

T DL

:= (Q; f<;�;=; 6=;�; >g), where all predi
ates are binary and have

the obvious semanti
s.

We should also like to 
omment on a di�eren
e between T DL and some other

des
ription logi
s with 
on
rete domains: in their original proposal of 
on
rete

domains, Baader and Hans
hke do not distinguish between abstra
t and tem-

poral features (whi
h are usually 
alled \
on
rete features" in a non-temporal


on
rete domain 
ontext [25℄), but rather provide only one type of feature

interpreted as a partial fun
tion from �

I

to �

I

[�

D

. We prefer the separate-

ness of features sin
e, in our opinion, this yields a 
learer formalism while the

di�eren
e in expressive power is negligible.

3 Temporal Reasoning with T DL

In this se
tion, we introdu
e a general framework for the representation of

temporal 
on
eptual knowledge using the des
ription logi
 T DL. As sket
hed

in the introdu
tion, despite its point-based semanti
s T DL 
an be used as

a full-
edged interval-based temporal des
ription logi
. This fa
t is re
e
ted

by our framework, whi
h allows to freely 
ombine point-based and interval-

based temporal representation. The usefulness of our framework is illustrated

by several examples from the area of pro
ess engineering. This appli
ation

of des
ription logi
s has already been 
onsidered, e.g., by Sattler and Moli-
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ATemporal

:

= t" u `" u r"

Temporal

:

=Point t Interval

Point

:

=9(t = t)

Interval

:

=9(` < r)

>

:

=9(t = t)! (`" u r")

u (9(` = `) t 9(r = r))! (9(` < r) u t")

Fig. 1. TBox T

�

with basi
 de�nitions of the framework.

tor [31,28℄. However, in Sattler's and Molitor's approa
h only stati
 knowledge

about pro
ess engineering is 
onsidered, i.e., there is no expli
it representation

of temporal relationships. We use our framework to show how the temporal

aspe
ts of this appli
ation domain 
an be represented in T DL, thus re�ning

Sattler's and Molitor's model.

The representation framework 
onsists of several 
onventions and abbrevia-

tions. We assume that ea
h entity of the appli
ation domain is either temporal

or atemporal. If it is temporal, its temporal extension may be either a time

point or a time interval. We generally assume that single time points are repre-

sented by the temporal feature t, left endpoints of intervals are represented by

the temporal feature `, and right endpoints of intervals are represented by the

temporal feature r.

2

This is 
aptured by the TBox T

�

displayed in Figure 1.

The �rst four 
on
ept equations in the TBox de�ne the relevant notions while

the �fth equation rules out pathologi
al 
ases su
h as obje
ts whose extension

is both a point and an interval. Note that 
on
epts of the form 9(t = t) are

used only to express that there exists an asso
iated value for the temporal

feature t. The TBox 
learly implies that the 
on
epts ATemporal, Point, and

Interval are mutually disjoint, and that their union is equivalent to >.

As noted in the introdu
tion, interval-based reasoning with T DL is based on

the Allen interval relations [1℄, whi
h are displayed in Figure 2. To keep 
on-


epts readable, we de�ne a suitable abbreviation for ea
h of the 13 relations.

For example,

9(p 
ontains p

0

) abbreviates 9(p` < p

0

`) u 9(pr > p

0

r)

where p and p

0

are sequen
es of abstra
t features. It is a straightforward job to

derive similar abbreviations for the other Allen relations given their de�nition

in Figure 2. In what follows, we use self to denote the empty sequen
e of

abstra
t features. For example,

9(p starts self) abbreviates 9(p` = `) u 9(pr < r):

2

It is only for simpli
ity that we assume temporal entities to have a unique tempo-

ral extension. In prin
iple, we 
ould also allow multiple extensions e.g. for lifetime,


hildhood, worktime, et
.
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bla
k before gray

gray after bla
k

bla
k meets gray

gray met-by bla
k

bla
k overlaps gray

gray overlapped-by bla
k

bla
k during gray

gray 
ontains bla
k

bla
k starts gray

gray started-by bla
k

bla
k �nishes gray

gray �nished-by bla
k

Fig. 2. The Allen relations (without equal).

Intuitively, self refers to the interval asso
iated with the domain element at

whi
h the 9(p starts self) 
on
ept is \evaluated".

Sin
e we have intervals and points at our disposal, we should be able to talk

about the relationship between points and intervals. More pre
isely, there

exist 5 possible relations between a point and an interval and we introdu
e

the following abbreviations for them:

9(p beforep p) for9(pt < p

0

`)

9(p startsp p

0

) for9(pt = p

0

`)

9(p duringp p

0

) for9(p

0

` < pt) u 9(pt < p

0

r)

9(p �nishesp p

0

) for9(pt = p

0

r)

9(p afterp p

0

) for9(p

0

r < pt)

where p and p

0

are again sequen
es of abstra
t features. We refrain from de�n-

ing abbreviations for the inverses of these relations sin
e they 
an easily be

expressed by ex
hanging the arguments in the above abbreviations.

Now for the appli
ation of our framework in pro
ess engineering. Our goal

is to represent information about an automated 
hemi
al produ
tion pro
ess

that is 
arried out by some 
omplex te
hni
al devi
e. The devi
e operates ea
h

day for some time, depending on the output quantity that is to be produ
ed.

It needs 
omplex startup and shutdown phases before and after operation.

Moreover, some weekly maintenan
e is needed to keep the devi
e fun
tional.

Let us �rst represent the underlying temporal stru
ture 
onsisting of weeks

and days. The 
orresponding TBox 
an be found in Figure 3. In the �gure,

we use C v D as an abbreviation for >

:

= (C ! D). The �rst 
on
ept

equation states that ea
h week 
onsists of seven days, where the i-th day

10



Week

:

= Interval u

u

1�i�7

9day

i

:Day u

9(day

1

starts self) u 9(day

7

�nishes self) u

u

1�i<7

9(day

i

meets day

i+1

) u

9next:Week u 9(self meets next)

Day v Interval

Fig. 3. Weeks and Days.

Day v 9start:Startup u 9op:Operation u 9shut:Shutdown u

9(start Æ ` � `) u

9(start meets op) u

9(op meets shut) u

9(shut Æ r � r)

Week v 9maint:Maintenan
e u 9(self 
ontains maint)

Interval w Startup t Operation t Shutdown tMaintenan
e

Fig. 4. Operation and Maintenan
e.

is a

essible from the 
orresponding week via the abstra
t feature day

i

. The

temporal relationship between the days are as expe
ted: Monday starts the

week, Sunday �nishes it, and ea
h day temporally meets the su

eeding one.

Moreover, ea
h week has a su

essor week (a

essible via the abstra
t feature

next) that it temporally meets. The TBox 
learly implies that days 2 to 6 are

during the 
orresponding week although this is not expli
itly stated.

Figure 4 de�nes the startup, operation, shutdown, and maintenan
e phases,

where start, op, shut, and maint are abstra
t features and \Æ" is used as a

separator for features that are used in sequen
es for better readability. In

lines 2 to 5 of the 
on
ept equation for Day, we freely 
ombine abbreviations

from the framework with predi
ates from T DL to obtain su

in
t de�nitions.

Taken together, these lines imply that phases are related to the 
orresponding

day as follows: startup via starts or during , shutdown via during or �nishes,

and operation via during . Moreover, the startup phase meets the operation

phase, whi
h in turn meets the shutdown phase.

Until now, we did not say anything about the temporal relationship of main-

tenan
e and operation. This may be inadequate, if, for example, maintenan
e

and operation are mutually ex
lusive. We 
an take this into a

ount by using

11



the additional 
on
ept equation

Week v u

1�i�7

�

9(maint before day

i

Æ op) t

9(maint after day

i

Æ op)

� (�)

whi
h expresses that the weekly maintenan
e phase must be either before or

after the operation phase of every weekday. It is not hard to 
he
k that this

is the 
ase if and only if the weekly maintenan
e phase is stri
tly separated

from the operation phase of any weekday.

This �nishes the modeling of the basi
 properties of our produ
tion pro
ess.

Let us de�ne some more advan
ed 
on
epts to illustrate reasoning with T DL.

For example, we 
an de�ne a busy week as follows:

BusyWeek

:

= Week u u

1�i�7

�

9(day

i

Æ start starts day

i

) u

9(day

i

Æ shut �nishes day

i

)

�

The 
on
ept equation says that on every day of a busy week, the startup phase

starts at the beginning of the day and the shutdown �nishes at the end of the

day. Say now that it is risky to do maintenan
e during startup and shutdown

phases and de�ne

RiskyWeek

:

= Week u : u

1�i�7

�

9(day

i

Æ start before maint) t

9(day

i

Æ shut after maint)

�

expressing that, in a risky week, the maintenan
e phase is not stri
tly sepa-

rated from the startup and shutdown phases. If T is the TBox obtained by

taking the 
on
ept equations from Figures 1, 3, and 4, then a T DL reasoner


an be used to dedu
e that BusyWeek v

T

RiskyWeek, i.e., every busy week is

a risky week: in a busy week, every day of the week is partitioned into startup,

shutdown, and operation phases. Sin
e maintenan
e may not overlap with op-

eration phases by (�), it must overlap with startup and/or shutdown phases,

whi
h means that the week is a risky week.

In order to demonstrate 
ombined reasoning with time points and intervals,

we propose a further re�nement of our model. Assume that the produ
tion

pro
ess is fully automated ex
ept that an operator intera
tion is ne
essary to

initiate the startup and shutdown phases. This is des
ribed by the 
on
ept

equations in Figure 5, where up-int and down-int are abstra
t features. Note

that the operator intera
tion is represented by a time point instead of a time

interval. To illustrate reasoning, assume that, on Friday of 
alendar week 23,

a shutdown intera
tion was performed by the maintenan
e team:

Week23 v Week u 9(day

5

Æ down-int duringp maint):

It is not hard to see that this is in
onsistent with the des
ription of faultless

12



Day v 9up-int:Intera
tion u 9down-int:Intera
tion u

9(up-int startsp start) u

9(down-int startsp shut)

Intera
tion v Point

Fig. 5. Operator intera
tion.

operation from above, i.e., that Week23 is unsatis�able: the shutdown inter-

a
tion �nishes the operation phase (sin
e it starts the shutdown phase and

the operation phase meets the shutdown phase), whi
h means that the main-

tenan
e phase, during whi
h the shutdown intera
tion was performed, is not

stri
tly separated from the operation phase. This separateness, however, is re-

quired by (�) sin
e maintenan
e and operation are mutually ex
lusive. Hen
e,

unsatis�ability of Week23 allows us to 
on
lude that something went wrong

on the Friday of 
alendar week 23.

It should be obvious how to extend the proposed framework to ABoxes and

ABox reasoning. Details are left to the reader.

4 The Con
ept Satis�ability Algorithm

In this se
tion, we prove the satis�ability of T DL-
on
epts w.r.t. TBoxes to

be de
idable and obtain a tight ExpTime 
omplexity bound for this reasoning

task. By the redu
tion given in Se
tion 2, we obtain ExpTime-
ompleteness

of T DL-
on
ept subsumption w.r.t. TBoxes as well. The upper bound is es-

tablished using an automata-theoreti
 approa
h: �rst, models are abstra
ted

to so-
alled Hintikka-trees su
h that there exists a model for a 
on
ept C and

a TBox T i� there exists a Hintikka-tree for C and T . Then we build, for

ea
h T DL-
on
ept C and TBox T , a looping tree automaton A

C;T

(i.e., a

B�u
hi tree automaton where every run is a

epting) that a

epts exa
tly the

Hintikka-trees for C and T . Hen
e, A

C;T

a

epts the empty (tree-) language

i� C is unsatis�able w.r.t. T . Sin
e the translation produ
es at most an ex-

ponential blow-up in size and the emptiness-test for looping automata 
an

be performed in polynomial time, we obtain the announ
ed ExpTime upper

bound.

Throughout this se
tion, we assume that T DL-
on
epts and TBoxes 
ontain

only the predi
ates < and =. It is easy to see that this 
an be done without

loss of generality sin
e other predi
ates 
an be eliminated by exhaustively

13



applying the following rewrite rules:

9(u

1

� u

2

) ; 9(u

1

< u

2

) t 9(u

1

= u

2

)

9(u

1

� u

2

) ; 9(u

1

> u

2

) t 9(u

1

= u

2

)

9(u

1

6= u

2

) ; 9(u

1

> u

2

) t 9(u

1

< u

2

)

For devising a satis�ability algorithm, it is interesting to note that T DL with

general TBoxes la
ks the �nite model property sin
e there exist satis�able

TBoxes su
h as >

:

= 9(g < fg) having only in�nite models (due to the se-

manti
s of the \<" predi
ate). Hen
e, Hintikka-trees and most other stru
tures

used for de
iding satis�ability are (potentially) in�nite.

4.1 Preliminaries

We introdu
e the basi
 notions needed for the automata-theoreti
 satis�ability

algorithm like in�nite trees, looping automata, and the language they a

ept.

We also introdu
e 
onstraint graphs whi
h will be needed to take into a

ount

temporal information when de�ning Hintikka trees.

De�nition 6 (Looping Automaton) Let M be a set and k � 1. A k-ary

M -tree is a mapping T : f1; : : : ; kg

�

!M that labels ea
h node � 2 f1; : : : ; kg

�

with T (�) 2 M . Intuitively, the node �i is the i-th 
hild of �. We use � to

denote the empty word (
orresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary M-trees is de�ned by a �nite

set Q of states, a �nite alphabet M , a subset I � Q of initial states, and a

transition relation � � Q�M �Q

k

.

A run of A on an M-tree T is a mapping r : f1; : : : ; kg

�

! Q with r(�) 2 I

and

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for ea
h � 2 f1; : : : ; kg

�

: A looping automaton a

epts all those M-trees for

whi
h there exists a run, i.e., the language L(A) of M-trees a

epted by A is

L(A) := fT j there is a run of A on Tg:

Vardi and Wolper [39℄ show that the emptiness problem for looping automata,

i.e., the problem to de
ide whether the language L(A) a

epted by a given

looping automaton A is empty, is de
idable in polynomial time.

A Hintikka-tree T for C and T 
orresponds to a 
anoni
al model I of C

and T . Apart from representing the abstra
t domain �

I

together with the

14



� � �

< <

<

<

<

<

<

v

1

v

2

Fig. 6. A 
onstraint graph 
ontaining no <-
y
le that is unsatis�able over N.

interpretation of 
on
epts and roles, T indu
es a dire
ted graph whose edges

are labeled with predi
ates from f<;=g. Su
h 
onstraint graphs des
ribe the

\temporal part" of I, i.e., temporal su

essors of elements of �

I

and their

relationship by temporal predi
ates.

De�nition 7 (Constraint Graph) A 
onstraint graph is a pair G = (V;E),

where

� V is a 
ountable set of nodes and

� E � V � f=; <g � V is a set of edges su
h that (v

1

;=; v

2

) 2 E implies

(v

2

;=; v

1

) 2 E.

A 
onstraint graph G = (V;E) is 
alled satis�able i� there exists a total

mapping Æ from V to Q su
h that Æ(v

1

)P Æ(v

2

) for all (v

1

; P; v

2

) 2 E. Su
h a

mapping Æ is 
alled a solution for G.

Let G = (V;E) be a 
onstraint graph. A sequen
e of nodes v

0

; : : : ; v

k

2 V is


alled a 
y
le in G if, for all i � k, we have (v

i

; P; v

(i+1) mod k

) 2 E for some

P 2 f<;=g. A 
y
le v

0

; : : : ; v

k

is 
alled a <-
y
le if there is an i � k with

(v

i

; <; v

(i+1) mod k

) 2 E.

The following theorem will be 
ru
ial for proving that, for every Hintikka-tree,

there exists a 
orresponding 
anoni
al model. More pre
isely, it will be used to

ensure that the 
onstraint graph indu
ed by a Hintikka-tree, whi
h des
ribes

the temporal part of the 
orresponding model, is satis�able. The proof 
an be

found in Appendix A.

Theorem 8 A 
onstraint graph is satis�able i� it does not 
ontain a <-
y
le.

Note that we use the rational numbers Q in the semanti
s of T DL, and

thus also for interpreting 
onstraint graphs. All obtained results also apply

if we 
hoose R instead: the proof of Theorem 8 may remain un
hanged and,

intuitively, T DL does not \feel" the di�eren
e between Q and R. However,

it is interesting to note that Theorem 8 does not hold if satis�ability over

non-dense stru
tures su
h as N is 
onsidered: if there exist two nodes v

1

and

v

2

su
h that the length of <-paths (whi
h are de�ned in analogy to <-
y
les)

between v

1

and v

2

is unbounded, then a 
onstraint graph is unsatis�able over

N even if it 
ontains no <-
y
le. Figure 6 shows su
h a 
onstraint graph. And
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indeed, T DL does feel the di�eren
e between N and dense stru
tures su
h as

Q and R: the 
on
ept > is satis�able w.r.t. the TBox

T = f> v 9(g

1

< g

2

) u 9(g

1

< fg

1

) u 9(fg

2

< g

2

)g

over the temporal stru
tures Q and R, but not over N. Note that T enfor
es

the 
onstraint graph in Figure 6.

4.2 Path Normal Form

Apart from the assumption that only the predi
ates < and = o

ur in 
on
epts

and TBoxes, we require some more normalization as a prerequisite for the

satis�ability algorithm. More spe
i�
ally, we assume 
on
epts and TBoxes to

be in negation normal form (NNF) and, more importantly, restri
t the length

of paths, whi
h will turn out to be rather 
onvenient for some 
onstru
tions like

de�ning Hintikka-trees. We start with des
ribing NNF 
onversion. A 
on
ept

is said to be in negation normal form if negation o

urs only in front of 
on
ept

names. The following lemma shows that assuming NNF is not a restri
tion.

Lemma 9 (NNF Conversion) Exhaustive appli
ation of the following re-

write rules translates T DL-
on
epts to equivalent ones in NNF.

::C ; C

:(C uD) ; :C t :D :(C tD) ; :C u :D

:(9R:C) ; (8R::C) :(8R:C) ; (9R::C)

:9(u

1

P u

2

) ; 9(u

1

e

P u

2

) t 9(u

2

< u

1

) t u

1

" t u

2

" :(g") ; 9(g = g)

where

e

� denotes the ex
hange of predi
ates, i.e.,

e

< is = and e= is <. By nnf(C),

we denote the result of 
onverting C into NNF using the above rules.

We now introdu
e path normal form for T DL-
on
epts and TBoxes.

De�nition 10 (Path Normal Form) A T DL-
on
ept C is in path normal

form (PNF) i� it is in NNF and, for all sub
on
epts 9(u

1

P u

2

) of C, we have

either

(1) u

1

= g

1

and u

2

= g

2

for some g

1

; g

2

2 N

tF

,

(2) u

1

= fg

1

and u

2

= g

2

for some f 2 N

aF

and g

1

; g

2

2 N

tF

, or

(3) u

1

= g

1

and u

2

= fg

2

for some f 2 N

aF

and g

1

; g

2

2 N

tF

.

A T DL-TBox T is in path normal form i� all 
on
epts in T are in PNF.
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The following lemma shows that it is not a restri
tion to 
onsider only 
on
epts

and TBoxes in PNF.

Lemma 11 Satis�ability of T DL-
on
epts w.r.t. TBoxes 
an be redu
ed in

polynomial time to satis�ability of T DL-
on
epts in PNF w.r.t. TBoxes in

PNF.

Proof. Let C be a T DL-
on
ept. For every path u = f

1

� � � f

n

g used in C, we

assume that [g℄; [f

n

g℄; : : : ; [f

1

� � �f

n

g℄ are temporal features not used in C. We

indu
tively de�ne a mapping � from paths u in C to 
on
epts as follows:

�(g)=>

�(fu)=9([fu℄ = f [u℄) u 9f:�(u)

For every T DL-
on
ept C, a 
orresponding 
on
ept �(C) is obtained by re-

pla
ing all sub
on
epts 9(u

1

P u

2

) of C with 9([u

1

℄ P [u

2

℄)u�(u

1

)u�(u

2

) and

g" with [g℄". We extend the mapping � to TBoxes in the obvious way, i.e., if

T = fC

1

v D

1

; : : : ; C

k

v D

k

g;

then

�(T ) = f�(C

1

) v �(D

1

); : : : ; �(C

k

) v �(D

k

)g:

Now let C be a T DL-
on
ept and T a T DL-TBox. Using the rewrite rules

from Lemma 9, we 
an 
onvert C into an equivalent 
on
ept C

0

in NNF and

T into an equivalent TBox T

0

in NNF. It is then easy to 
he
k that C

0

is

satis�able w.r.t. a TBox T

0

i� �(C

0

) is satis�able w.r.t. �(T

0

). Moreover, �(C

0

)

and �(T

0

) are 
learly in PNF and the translation 
an be done in polynomial

time. 2

In what follows, we generally assume that all 
on
epts and TBoxes are in path

normal form. Moreover, we will often refer to TBoxes T in their 
on
ept form

C

T

whi
h is de�ned as follows:

C

T

= u

C

:

=D2T

nnf(C $ D):

4.3 De�ning Hintikka-trees

In this se
tion, we de�ne Hintikka-trees for T DL-
on
epts C and TBoxes T

(whi
h are both required to be in PNF) and show that Hintikka-trees are

proper abstra
tions of models, i.e., that there exists a Hintikka-tree for C and

T i� there exists a model of C and T .

Let C be a 
on
ept and T be a TBox. By sub(C; T ), we denote the set of sub-


on
epts of C and C

T

. We assume that existential 
on
epts 9R:D 2 sub(C; T )
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with R 2 N

rR

are linearly ordered, and that E

i

(C; T ) yields the i-th su
h 
on-


ept (starting with i = 1). Similarly, we assume the abstra
t features used in

C or T to be linearly ordered and use F

i

(C; T ) to denote the i-th su
h feature

(also starting with i = 1). The set of temporal features used in C or T is

denoted by G(C; T ).

We now de�ne Hintikka-pairs whi
h will be used as labels of nodes in Hintikka-

trees.

De�nition 12 (Hintikka-set, Hintikka-pair) Let C be a 
on
ept and T a

TBox. A set 	 � sub(C; T ) is a Hintikka-set for C and T i� it satis�es the

following 
onditions:

(H1) C

T

2 	,

(H2) if C

1

u C

2

2 	, then fC

1

; C

2

g � 	,

(H3) if C

1

t C

2

2 	, then fC

1

; C

2

g \ 	 6= ;,

(H4) fA;:Ag 6� 	 for all 
on
ept names A 2 sub(C; T ),

(H5) g" 2 	 implies 9(u

1

P u

2

) =2 	 for all 
on
epts 9(u

1

P u

2

) with g 2 fu

1

; u

2

g.

A Hintikka-pair (	; �) for C and T 
onsists of a Hintikka-set 	 for C and T

and a set � of tuples (g

1

; P; g

2

) with g

1

; g

2

2 G(C; T ) su
h that

(H6) if (g

1

; P; g

2

) 2 �, then fg

1

"; g

2

"g \	 = ;.

By �

C;T

, we denote the set of all Hintikka-pairs for C and T .

We say that an abstra
t feature f 2 N

aF

is enfor
ed by a Hintikka-pair (	; �)

if 9f:C 2 	 for some 
on
ept C or f9(fg

1

P g

2

); 9(g

1

P fg

2

)g \ 	 6= ; for

some g

1

; g

2

2 N

tF

and P 2 f<;=g. Similarly, a path u is enfor
ed by (	; �)

if u appears in � or f9(uP u

0

); 9(u

0

P u)g \ 	 6= ; for some path u

0

and

P 2 f<;=g.

Observe that, if a path u is enfor
ed by a Hintikka-pair (	; �), then u has

length 1 or 2: if u appears in �, it has length 1 by de�nition; moreover, if

f9(uP u

0

); 9(u

0

P u)g \ 	 6= ; for some u

0

and P , then u has length 1 or 2

sin
e all 
on
epts are in path normal form.

Intuitively, ea
h node � of a (yet to be de�ned) Hintikka-tree T 
orresponds to

a domain element d of the 
orresponding 
anoni
al model I. The �rst 
ompo-

nent 	

�

of the Hintikka-pair labeling � is the set of 
on
epts from sub(C; T )

satis�ed by d. The se
ond 
omponent �

�

states relationships between tempo-

ral su

essors of d. If, for example, (g

1

; <; g

2

) 2 �

�

, then d must have g

1

- and

g

2

-su

essors su
h that g

I

1

(d) < g

I

2

(d). Note that the restri
tions in �

�

are

independent from 
on
epts 9(g

1

P g

2

) 2 	

�

, but rather des
ribe \additional

edges". As will be dis
ussed below, these additional edges are used to ensure

that the 
onstraint graph indu
ed by the Hintikka-tree T , whi
h des
ribes the
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temporal part of the model I, does not 
ontain a <-
y
le (i.e., that it is sat-

is�able). This indu
ed 
onstraint graph 
an be thought of as being the union

of smaller 
onstraint graphs, ea
h one des
ribed by a Hintikka-pair labeling a

node in T . These pair-graphs are de�ned next.

De�nition 13 (Pair-graph) Let C be a 
on
ept, T a TBox, and p = (	; �)

a Hintikka-pair for C and T . The pair-graph G(p) = (V;E) of p is a 
onstraint

graph de�ned as follows:

� V is the set of paths enfor
ed by p

� E = 
l

=

(� [ f(u

1

; P; u

2

) j 9(u

1

P u

2

) 2 	g),

where 
l

=

is equality 
losure, i.e. 
l

=

(E) = E [ f(v

2

;=; v

1

) j (v

1

;=; v

2

) 2 Eg.

A set E

0

� V �V �f<;=g is an edge extension of G(p) if, for all fg

1

; fg

2

2 V ,

we have (fg

1

; <; fg

2

) 2 E

0

, (fg

1

;=; fg

2

) 2 E

0

, or (fg

2

; <; fg

1

) 2 E

0

. If E

0

is

an edge extension of G(p), then the graph (V;E[E

0

) is a 
ompletion of G(p).

Observe that, sin
e all 
on
epts are in path normal form and sin
e no paths

of length greater than one may appear in �, we have E

0

\ E = ; for every

edge extension E

0

of pair-graphs (V;E).

There exists a 
lose 
onne
tion between 
ompletions of pair-graphs and the

�-
omponent of Hintikka-pairs. Let � and � be nodes in a Hintikka-tree T

representing domain elements d and e in the 
orresponding 
anoni
al model I.

Edges in Hintikka-trees represent role-relationships, i.e., if � is a su

essor of

� in T , then there exists an R 2 N

R

su
h that (d; e) 2 R

I

. Assume � is

a su

essor of � and the edge between � and � represents relationship via

the abstra
t feature f , i.e., we have f

I

(d) = e. The purpose of the se
ond


omponent �

�

of the Hintikka-pair labeling � is to �x the relationships between

all temporal su

essors of e that \d talks about". For example, if 9(fg

1

=

g

2

) 2 	

�

and 9(fg

3

< g

2

) 2 	

�

, where 	

�

is the �rst 
omponent of the

Hintikka-pair labeling �, then \d talks about" the temporal g

1

-su

essor and

the temporal g

3

-su

essor of e. Hen
e, �

�


ontains (g

1

; <; g

3

), (g

1

;=; g

3

), or

(g

3

; <; g

1

). This is formalized by demanding that the pair-graph G(T (�)) of

the Hintikka-pair labeling � together with all the edges from the �-
omponents

of the su

essors of � are a 
ompletion of G(T (�)). An appropriate way of

thinking about the �-
omponents is as follows: at �, a 
ompletion of G(T (�))

is \guessed". The additional edges are then \re
orded" in the �-
omponents of

the su

essor-nodes of �. As will be explained after the de�nition of Hintikka-

trees, the purpose of all this is to a
hieve a \lo
alized" dete
tion of <-
y
les

in 
onstraint-graphs indu
ed by Hintikka-trees.

De�nition 14 (Hintikka-tree) Let C be a 
on
ept, T a TBox, k the number

of existential sub
on
epts in sub(C; T ), and ` the number of abstra
t features in

sub(C; T ). A k+ `+1-tuple of Hintikka-pairs (p

0

; : : : ; p

k+`

) with p

i

= (	

i

; �

i

)
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f

f

f

0

�

� � �

9(g < fg);

9(g

0

< fg

0

)g

T

�

(�) = f9(g < fg);

9(g

0

< fg

0

)g

T

�

(
) = f9(g < g

0

)g

<

<

<

<

<

<




<

<;=

g

g

g

g

0

�

g

0

g

0

T

�

(�) = f9(g

0

< g);

Fig. 7. Lo
alized Cy
le Dete
tion.

and G(p

0

) = (V;E) is 
alled mat
hing i�

(H7) if 9R:D 2 	

0

and E

i

(C; T ) = 9R:D, then D 2 	

i

,

(H8) if f9R:D; 8R:Eg � 	

0

and E

i

(C; T ) = 9R:D, then E 2 	

i

,

(H9) if 9f:D 2 	

0

and F

i

(C; T ) = f , then D 2 	

k+i

,

(H10) if f is enfor
ed by p

0

, F

i

(C; T ) = f , and 8f:D 2 	

0

, then D 2 	

k+i

,

(H11) the 
onstraint graph (V;E [ E

0

) with

E

0

=

[

1�i�`

f(fg

1

; P; fg

2

) j F

i

(C; T ) = f and (g

1

; P; g

2

) 2 �

k+i

g

is a satis�able 
ompletion of G(p

0

).

A k + `-ary �

C;T

-tree T is a Hintikka-tree for C and T i� it satis�es the

following 
onditions:

(H12) C 2 	

�

, where T (�) = (	

�

; �

�

),

(H13) for all � 2 f1; : : : ; k + `g

�

, the tuple (T (�); T (�1); : : : ; T (�j)) is

mat
hing, where j abbreviates k + `.

For a Hintikka-tree T and a node � 2 f1; : : : ; k + `g

�

with T (�) = (	; �), we

use T

�

(�) to denote 	 and T

�

(�) to denote �. Moreover, if G(�) = (V;E), we

use 
pl(T; �) to denote the 
onstraint graph (V;E [E

0

) as de�ned in (H11).

Whereas most properties of Hintikka-trees deal with 
on
epts, roles, and ab-

stra
t features and are hardly surprising, (H11) ensures that 
onstraint graphs

indu
ed by Hintikka-trees 
ontain no <-
y
le. By \guessing" a 
ompletion as

explained above, possible <-
y
les are anti
ipated and 
an be dete
ted lo
ally,

i.e., it then suÆ
es to 
he
k that the 
ompletions 
pl(T; �) are satis�able as

demanded by (H11). An example for su
h a lo
alization 
an be found in

Figure 7. The Figure shows a non-lo
al <-
y
le (displayed as dashed edges)
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in the 
onstraint graph indu
ed by a Hintikka-tree T (displayed as thi
kened

solid edges). Assume for a moment that the dotted edges are not present,

i.e. the relationship between the g-su

essor and the g

0

-su

essor of � is un-

known. Then the 
onstraint graphs 
pl(T; �), 
pl(T; �), and 
pl(T; 
) are all

satis�able if 
onsidered in isolation. Sin
e (H11) indeed 
onsiders isolated

graphs, the <-
y
le 
annot be dete
ted. The problem is over
ome as follows:

let G(T (�)) = (V;E). Sin
e (V;E [ E

0

) with

E

0

= f(fg

1

; P; fg

2

) j (g

1

; P; g

2

) 2 T

�

(�)g

is required to be a 
ompletion of (V;E), we must have (g; <; g

0

) 2 T

�

(�),

(g;=; g

0

) 2 T

�

(�), or (g

0

; <; g) 2 T

�

(�). In the �rst two 
ases, we obtain the

lower dotted edge and 
pl(T; �) 
ontains a <-
y
le. In the third 
ase, we obtain

the upper dotted edge. Then we 
an repeat the whole pro
ess with � repla
ed

by � and � repla
ed by 
 su
h that, �nally, either 
pl(T; �) or 
pl(T; 
) 
ontains

a <-
y
le. Thus, the non-lo
al <-
y
le is broken down into smaller ones by

\guessing" additional edges. The smaller <-
y
les 
an then be dete
ted by

(H11). Indeed, it is 
ru
ial that (H11) is a lo
al 
ondition sin
e we need to

de�ne an automaton that a

epts exa
tly Hintikka-trees, and automata work

lo
ally. It is worth noting that the lo
alization of 
y
le dete
tion as des
ribed

above 
ru
ially depends on the path normal form.

The following lemma shows that Hintikka-trees are appropriate abstra
tions

of models. This result is the main step towards devising a de
ision pro
edure

sin
e, as we shall see next, de�ning looping automata a

epting exa
tly the

Hintikka-trees for a given 
on
ept C and TBox T is a straightforward task.

The proof 
an be found in Appendix A.

Lemma 15 A 
on
ept C is satis�able w.r.t. a TBox T i� there exists a

Hintikka-tree for C and T .

4.4 De�ning Looping Automata

To prove de
idability of T DL-
on
ept satis�ability w.r.t. TBoxes, it remains

to de�ne a looping automaton A

C;T

for ea
h 
on
ept C and TBox T su
h

that A

C;T

a

epts exa
tly the Hintikka-trees for C and T . Using the notion of

mat
hing tuples of Hintikka-pairs from De�nition 14, this is rather straight-

forward.

De�nition 16 Let C be a 
on
ept, T a TBox, k the number of existential

sub
on
epts in sub(C; T ), and ` the number of abstra
t features in sub(C; T ).

The looping automaton A

C;T

= (Q;M;�; I) is de�ned as follows:

� Q :=M := �

C;T

21



� I := f(	; �) 2 Q j C 2 	g.

� ((	; �); (	

0

; �

0

); (	

1

; �

1

); : : : ; (	

k+`

; �

k+`

)) 2 � i�

(	; �) = (	

0

; �

0

) and

((	; �); (	

1

; �

1

); : : : ; (	

k+`

; �

k+`

)) is mat
hing.

As a 
onsequen
e of the following lemma and Lemmas 15, we 
an redu
e

satis�ability of 
on
epts w.r.t. TBoxes (both in PNF) to the emptiness of the

language a

epted by looping automata.

Lemma 17 T is a Hintikka-tree for C and T i� T 2 L(A

C;T

).

Proof. Let C be a 
on
ept, T a TBox, and k, `, and A

C;T

as in De�nition 16.

For the \if" dire
tion, let r be a run of A

C;T

on T . By de�nition of runs and

of �, we have

r(�) = T (�) for all � 2 f1; : : : ; k + `g

�

:

Hen
e, it remains to be shown that r is a Hintikka-tree for C and T , whi
h is

straightforward: (i) by de�nition of Q, r is a �

C;T

-tree; (ii) sin
e, by de�nition

of runs, r(�) 2 I, (H12) is satis�ed; and (iii) by de�nition of runs and of �,

(H13) is satis�ed.

Now for the \only if" dire
tion. It is straightforward to 
he
k that the fun
-

tion r de�ned by r(�) := T (�) is a run of A

C;T

on T : (i) by de�nition of

Hintikka-trees and A

C;T

, r(�) 2 Q for all � 2 f1; : : : ; k + `g

�

; (ii) by (H12)

and de�nition of I, we have r(�) 2 I; (iii) by (H13) and by de�nition of r and

of �, we have (r(�); T (�); r(�

1

); : : : ; r(�

k

)) 2 � for all � 2 f1; : : : ; k+`g

�

. 2

It is an immediate 
onsequen
e of Lemmas 11, 15, and 17 and the de
idability

of the emptiness problem of looping automata [39℄ that satis�ability of T DL-


on
epts w.r.t. TBoxes is de
idable. However, the presented automata-based

algorithm has the ni
e property of additionally providing us with a tight 
om-

plexity bound. In the following, we use jCj to denote the length of the 
on
ept

C and T to denote

P

D

:

=E2T

jDj+ jEj.

Theorem 18 Satis�ability of T DL-
on
epts w.r.t. general TBoxes is Exp-

Time-
omplete.

Proof. The lower bound is an immediate 
onsequen
e of the fa
t that ALC

with TBoxes is ExpTime-hard [32℄. Hen
e, we may 
on
entrate on the upper

bound. We need to show that the size of A

(C;T )

is exponential in jCj + jT j

sin
e, on
e that this is established, we 
an use Lemmas 11, 15, and 17 together

with the fa
t that the emptiness problem for looping automata A

(C;T )

is in

PTime [39℄ to 
on
lude that satis�ability of T DL-
on
epts w.r.t. TBoxes 
an

be de
ided in deterministi
 exponential time. Hen
e, let us investigate the size

of A

(C;T )

= (Q;M;�; I). Obviously, the 
ardinality of sub(C; T ) is linear in

jCj + jT j. Hen
e, by de�nition of A

(C;T )

and Hintikka-pairs, the 
ardinality

of Q, M , and I are exponential in jCj + jT j. Together with the fa
t that �
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ontains k+`-tuples and k+` is polynomial in jCj+jT j, the exponential bound

on the 
ardinality of Q implies that the 
ardinality of � is also exponential in

jCj+ jT j. 2

Sin
e subsumption 
an be redu
ed to (un)satis�ability, T DL-
on
ept sub-

sumption w.r.t. TBoxes is also ExpTime-
omplete.

5 De
iding ABox Consisten
y

In this se
tion, we extend the ExpTime upper bound just obtained to T DL-

ABox 
onsisten
y w.r.t. TBoxes. The extended upper bound is established

using a so-
alled pre
ompletion algorithm [10,16℄. The idea behind su
h algo-

rithms is to pro
eed in two stages: �rst, a set of 
ompletion rules is exhaustively

applied to the input ABox in order to make impli
it information expli
it. If

an obvious 
ontradi
tion is en
ountered during this pro
ess, then the input

ABox is in
onsistent and the se
ond stage is not needed. If no 
ontradi
tion is

found, in the se
ond stage we 
onstru
t a redu
tion 
on
ept C

a

for ea
h obje
t

name a of the obtained ABox and 
he
k it for satis�ability w.r.t. the input

TBox using the algorithm developed in the previous se
tion. Then, the input

ABox is satis�able w.r.t. the input TBox if and only if all redu
tion 
on
epts

are satis�able.

As in the previous se
tion, we assume w.l.o.g. that all 
on
epts (also inside

TBoxes and ABoxes) 
ontain only the predi
ates < and =. Moreover, we

require TBoxes and ABoxes to be in path normal form, where an ABox A is

in PNF i� every 
on
ept o

urring in A is in PNF. The next lemma shows

that this assumption does not sa
ri�
e generality.

Lemma 19 Consisten
y of T DL-ABoxes w.r.t. TBoxes 
an be redu
ed to


onsisten
y of T DL-ABoxes in PNF w.r.t. TBoxes in PNF.

Proof. Let A be an ABox and T a TBox, and let k be the length of the longest

path o

urring in A or T . For every path u = f

1

� � �f

n

g used in A or T , we

assume that [g℄; [f

n

g℄; : : : ; [f

1

� � � f

n

g℄ are temporal features not appearing in

A or T . Let � be the mapping from 
on
epts to 
on
epts in PNF and from

TBoxes to TBoxes in PNF introdu
ed in the proof of Lemma 11. Constru
t

an ABox �(A) from A by performing the following steps:

(1) Repla
e every assertion a : C 2 A with a : �(C);

(2) Repla
e every assertion ha; xi : g 2 A with ha; xi : [g℄;

(3) For i = 1; : : : ; k � 1 do the following: for every pair of assertions

ha; bi : f; hb; xi : [u℄ 2 A
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where the length of u is i and fu is a post�x of a path o

urring in

A or T , add ha; xi : [fu℄ to A.

It is straightforward to prove that A is satis�able w.r.t. T i� �(A) is satis�able

w.r.t. �(T ). Moreover, the size of �(A) and �(T ) is polynomial in n = jAj+jT j

and �(A) and �(T ) 
an be 
onstru
ted in polynomial time. While �(T ) was

treated in the proof of Lemma 11, for �(A) this 
an be seen as follows. Sin
e

the number of post�xes of paths o

urring in A and T is bounded by n, the

number of obje
t names and time point names in A is also bounded by n,

and no new obje
t names are introdu
ed, the number of assertions of the

form ha; xi : [u℄ generated in Step 3 is bounded by n

3

. Sin
e the number of

assertions ha; bi : f is bounded by n, the number of pairs to be 
onsidered in

ea
h step of the \for" loop in Step 3 is thus bounded by n

4

. Sin
e we 
learly

have k � n, �(A) 
an be 
omputed in time n

5

. 2

The 
ompletion rules 
an be found in Figure 8. In the formulation of the rules,

we write A(a) for fC j a : C 2 Ag and 
all a time point name x 2 O

t

fresh

in an ABox A if x does not o

ur in A. Note that the rules Rt and R
h yield

more than one possible out
ome. Intuitively, the pre
ompletion algorithm has

to explore all possible out
omes|more details are given later on. Note that we


annot use the usual non-deterministi
 \guessing" here sin
e we are heading

for a deterministi
 time bound.

While the rules Ru, Rt, R8, and R

:

= are straightforward, the other rules de-

serve some 
omments. The R9f rule deals with 
on
epts 9f:C, where f 2 N

aF

.

Sin
e it is our goal to make expli
it information for existing obje
t names

rather than generating new ones, this rule only applies to a 
on
ept 9f:C 2

A(a) if the obje
t a already has an f -su

essor (i.e., an obje
t name b with

ha; bi : R 2 A). For the same reason, 
on
epts 9R:C with R 2 N

rR

are not

expanded at all, but rather \treated" as part of the redu
tion 
on
epts. The

rules R
1, R
2 and R
3 deal with 
on
epts 9(u

1

P u

2

): there exists one rule

for ea
h synta
ti
 form that PNF allows. Observe that R
2 and R
3 generate

new time point names, but, similar to the R9f rule, none of the R
 rules gen-

erates new obje
t names even if the paths u

1

and u

2

involve abstra
t features.

Intuitively, if 9(fg

1

P g

2

) 2 A(a) and a has no f -su

essor, then it suÆ
es to

treat the 
on
ept 9(fg

1

P g

2

) in the redu
tion 
on
ept. The R
h rule has the


hara
ter of a \
hoose rule" (
.f. for example [17℄) and is needed to ensure that

the relation between any two temporal su

essors of an obje
t a is re
orded

as a 
on
ept of the form 9(g

1

P g

2

) in the node label of a. This is ne
essary

sin
e the relation between su
h temporal su

essors must be passed to the

satis�ability algorithm as part of the redu
tion 
on
ept. Finally, the Rfe rule

is a \fork elimination rule" (
.f. for example [5,23℄) that is needed to enfor
e

the fun
tionality of abstra
t and temporal features.

If an ABox A

0


an be obtained from an ABox A by exhaustive rule appli-
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Ru if C

1

u C

2

2 A(a) and fC

1

; C

2

g 6� A(a)

then A := A [ fa : C

1

; a : C

2

g

Rt if C

1

t C

2

2 A(a) and fC

1

; C

2

g \ A(a) = ;

then A

1

:= A[ fa : C

1

g and A

2

:= A [ fa : C

2

g

R9f if 9f:C 2 A(a), ha; bi : f 2 A, and C =2 A(b)

then set A := A[ fb : Cg

R8 if 8R:C 2 A(a), ha; bi : R 2 A, and C =2 A(b)

then set A := A[ fb : Cg

R
1 if 9(g

1

P g

2

) 2 A(a), fha; x

1

i : g

1

; ha; x

2

i : g

2

g � A,

and x

1

P x

2

=2 A

then set A := A[ fx

1

P x

2

g

R
2 if 9(fg

1

P g

2

) 2 A(a), ha; bi : f 2 A, and there are no x

1

; x

2

2 O

t

su
h that fhb; x

1

i : g

1

; ha; x

2

i : g

2

; x

1

P x

2

g � A

then set A := A[ fhb; x

1

i : g

1

; ha; x

2

i : g

2

; x

1

P x

2

g

where x

1

and x

2

are fresh in A

R
3 Symmetri
 to R
2 but for 
on
epts 9(g

1

P fg

2

) 2 A(a)

R
h if fha; x

1

i : g

1

; ha; x

2

i : g

2

g � A and

f9(g

1

< g

2

); 9(g

1

= g

2

); 9(g

2

< g

1

)g \ A(a) = ;

then set A

1

:= A [ fa : 9(g

1

< g

2

)g,

A

2

:= A [ fa : 9(g

1

= g

2

)g, and

A

3

:= A [ fa : 9(g

2

< g

1

)g.

R

:

= if C

T

=2 A(a) then set A := A [ fa : C

T

g

Rfe if fha; bi : f; ha; 
i : fg � A and b 6= 


(resp. fha; xi : g; ha; yi : gg � A and x 6= y)

then repla
e b by 
 in A (resp. x by y)

Fig. 8. Completion rules for T DL.


ation using a TBox T , then A

0

is 
alled pre
omplete and a pre
ompletion

of A w.r.t. T . Interleaved with rule appli
ation, the pre
ompletion 
he
ks for

obvious 
ontradi
tions. These are formalized as follows.

De�nition 20 (Clash) Let A be an ABox. A is 
alled temporally satis�able

i� the 
onstraint graph G(A) = (V;E) is satis�able, where

� V = fx 2 O

t

j x o

urs in Ag;

� E = f(x

1

; P; x

2

) j x

1

P x

2

2 Ag.

A is said to 
ontain a 
lash i� one of the following 
onditions applies:
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de�ne pro
edure 
ons(A; T )

while a rule R 2 fRu;R9f;R8;R
1;R
2;R
3;R

:

=;Rfeg

is appli
able to A do

apply R to A

if a 
ompletion rule R 2 fRt;R
hg is appli
able to A then

apply R to A yielding A

1

; : : : ;A

k

(k 2 f2; 3g)

if 
ons(A

i

; T ) = 
onsistent for some i 2 f1; : : : ; kg then

return 
onsistent

return in
onsistent

if A 
ontains a 
lash then

return in
onsistent

if sat( u

C2A(a)

C; T ) = satis�able for every a 2 O

a

in A then

return 
onsistent

return in
onsistent

Fig. 9. The T DL pre
ompletion algorithm.

(1) fA;:Ag � A(a) for a 
on
ept name A and obje
t name a 2 O

a

,

(2) g" 2 A(a) for some a 2 O

a

and there exists an x 2 O

t

su
h that

ha; xi : g 2 A, or

(3) A is not temporally satis�able.

If A does not 
ontain a 
lash, then A is 
lash-free.

The pre
ompletion algorithm itself is given in Figure 9 in a pseudo
ode no-

tation. In the formulation of the algorithm, we use sat(C; T ) to denote the

result of applying the satis�ability algorithm from the previous se
tion to

the 
on
ept C and TBox T . The general idea behind the algorithm and the


orre
tness proofs is that models of the redu
tion 
on
epts 
an be \plugged

together" to form a model of the input ABox.

We now prove termination and investigate the time 
omplexity of the algo-

rithm. In order to do this, we need a size fun
tion for ABoxes. To this end,

set

ja : Cj := C

jha; bi : Rj := jha; xi : gj := jx

1

P x

2

j := 2

and jAj :=

P

�2A

j�j. First, we establish an upper bound for the number of

rules that may be applied to a given ABox.

Lemma 21 Let A be an ABox, T a TBox, and A

0

; : : : ;A

k

with A

0

= A a se-

quen
e of ABoxes obtained by repeated rule appli
ation. Then k � p(jAj+ jT j)

for some polynomial p(n).

Proof.We abbreviate jAj+ jT j by n. Ea
h of the rules Ru, Rt, R9f, R8, R
h,
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and R

:

= adds a new 
on
ept to the label of an obje
t name. Sin
e all added


on
epts are from the set

� := sub(A; T ) [ f9(g

1

P g

2

) j P 2 f<;=g and g

1

; g

2

used in sub(A; T )g

and j�j � 2n

2

+ n, the number of appli
ations of the above rules per obje
t

name is also bounded by 2n

2

+ n and their overall number of appli
ations is

bounded by 2n

3

+ n

2

. There are four remaining rules:

� R
1, R
2, R
3. These rules are applied at most on
e per 
on
ept 9(u

1

P u

2

) 2 �

and obje
t name a in A. Sin
e no new obje
t names are introdu
ed, there

are at most 2n

3

+n

2

appli
ations of R
1, R
2 and R
3. Moreover, sin
e ea
h

rule appli
ation introdu
es at most 2 new time point names and R
2 and

R
3 are the only rules to introdu
e new time point names, it also follows that

the number of newly introdu
ed time point names is bounded by 4n

3

+2n

2

.

� Rfe. The rule is applied at most on
e per obje
t and time point name.

The initial ABox 
ontains at most n obje
t and time point names, no new

obje
t names are generated, and at most 4n

3

+ 2n

2

new time point names

are generated. Hen
e, the number of appli
ations of Rfe is bounded by 4n

3

+

2n

2

+ n.

Taking together these observations, it is obvious that there exists a polynomial

p(n) as required. 2

We 
an now prove termination.

Proposition 22 (Termination) If started on an ABox A and a TBox T ,

the pre
ompletion algorithm terminates after time exponential in jAj+ jT j.

Proof. Assume that the pre
ompletion algorithm is started on an ABox A

and a TBox T . The pre
ompletion algorithm is a re
ursive pro
edure. In

every re
ursion step, either several re
ursion 
alls or several 
alls to the sat

algorithm are made. Obviously, a run of the algorithm indu
es a re
ursion

tree, where nodes in the tree are re
ursion steps and edges are re
ursion 
alls.

These re
ursion trees have the following properties:

(1) Sin
e at most three re
ursion 
alls are made per re
ursion step, the out-

degree is three.

(2) Every path of the re
ursion tree indu
es a sequen
e of ABoxes A

0

;A

1

; : : :

with A

0

= A that 
an be obtained by repeated rule appli
ation. By

Lemma 21, the length of this sequen
e is bounded by p(jAj+ jT j), and,

thus, the depth of re
ursion trees is also bounded by p(jAj+ jT j).

This implies that the total number of re
ursion steps made by the algorithm

is bounded by 3

p(jAj+jT j)

. Sin
e none of the rules introdu
es new obje
t names,

the number of sat 
alls per re
ursion step is bounded by jAj and the total
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number of 
alls to sat by 3

p(jAj+jT j)

� jAj. Together with Theorem 18, we obtain

termination and the exponential time bound. 2

We now establish a series of lemmas that will �nally allow to establish sound-

ness and 
ompleteness of the pre
ompletion algorithm. The proofs of all lem-

mas 
an be found in Appendix B. We start with showing that the 
onstru
tion

of pre
ompletions preserves (in)
onsisten
y.

Lemma 23 Let A be an ABox and T a TBox. Then A is 
onsistent w.r.t. T

i� there exists a pre
ompletion A

0

of A w.r.t. T su
h that A

0

is 
onsistent

w.r.t. T .

Our next aim is to show that every 
lash-free pre
omplete ABox, for whi
h

all redu
tion 
on
epts are satis�able, is 
onsistent. We start with a te
hni-


al lemma whi
h states that, intuitively, for every pre
omplete ABox A with

satis�able redu
tion 
on
epts, we 
an �nd models for the redu
tion 
on
epts

su
h that these model's temporal parts 
an be \plugged into" solutions for the


onstraint graph G(A) indu
ed by A. Re
all that we use 
on(A; a) to denote

the redu
tion 
on
ept for a 2 O

a

in A.

Lemma 24 Let A be a pre
omplete ABox, Æ a solution for G(A), and a 2 O

a

used in A. If 
on(A; a) is satis�able w.r.t. T , then there exists a model I of


on(A; a) and T and a d

a

2 
on(A; a)

I

su
h that, for all ha; xi : g 2 A, we

have g

I

(d

a

) = Æ(x).

The following lemma is 
entral for proving soundness and 
ompleteness. Its

proof follows the intuition given above: models for the redu
tion 
on
epts are

\plugged together" in order to form a model for the ABox. To deal with the

temporal parts of models, we relay on Lemma 24.

Lemma 25 Let A be a pre
ompletion of an ABox A

0

w.r.t. a TBox T . A is


onsistent w.r.t. T i� A is 
lash-free and 
on(A; a) is satis�able w.r.t. T for

every a 2 O

a

used in A.

Finally, we prove soundness and 
ompleteness.

Proposition 26 (Soundness and Completeness) If the pre
ompletion al-

gorithm is started on an ABox A and a TBox T , then it returns 
onsistent if

A is 
onsistent w.r.t. T and in
onsistent otherwise.

Proof. Let A and T be an input to the pre
ompletion algorithm. Sin
e the

order of rule appli
ation is 
learly irrelevant, the algorithm 
omputes all 
lash-

free pre
ompletions of A w.r.t. T . For ea
h su
h pre
ompletion A

0

, it 
he
ks

whether the redu
tion 
on
ept 
on(A; a) is satis�able for all a 2 O

a

o

urring

in A

0

. It returns 
onsistent if it �nds a pre
ompletion for whi
h this is true

and, by Proposition 22, in
onsistent otherwise. Soundness and 
ompleteness
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are thus an immediate 
onsequen
e of Lemmas 23 and 25. 2

Taking together Propositions 22 and 26, we obtain an ExpTime upper bound

for T DL-ABox 
onsisten
y w.r.t. TBoxes. Together with the lower bound

from Theorem 18, we obtain the following result.

Theorem 27 T DL-ABox 
onsisten
y w.r.t. general TBoxes is ExpTime-


omplete.

6 Dis
ussion

In this paper, we have introdu
ed the des
ription logi
 T DL whose distin-

guishing feature is that it admits both interval-based temporal representation

and general TBoxes, while still being de
idable (and ExpTime-
omplete). As

noted in the introdu
tion, this result also shows that there exist interesting


on
rete domains whose 
ombination with general TBoxes do not lead to un-

de
idability of reasoning. Starting from the basi
 de
idability results proved

in the 
urrent paper, there are lots of options for promising future resear
h.

Let us dis
uss a few of them.

(1) It would be interesting to enhan
e the expressive power of both the tem-

poral and the DL part of T DL. Con
erning the temporal part, one 
ould

add unary predi
ates P

q

, where P 2 f<;�;=; 6=;�; >g and q 2 Q. This

would allow quantitative temporal representation by referring to \
on
rete"

time points. On the DL side, ALC 
an be extended by various means of ex-

pressivity that usually appear in state-of-the-art des
ription logi
s su
h as

inverse roles, qualifying numbers restri
tions, and transitive roles. All these

extensions have been realized in the re
ent paper [21℄, where it is shown that

the popular DL SHIQ extended with a T DL-style 
on
rete domain and the

afore mentioned unary predi
ates is still de
idable and ExpTime-
omplete.

The resulting logi
 is 
alled Q-SHIQ and has found interesting appli
ations

in reasoning about 
on
eptual database s
hemas [24℄.

(2) The version of T DL de�ned in this paper uses Q as its temporal stru
-

ture. As dis
ussed in Se
tion 4.1, it makes a di�eren
e whether dense temporal

stru
tures su
h as Q and R or non-dense stru
tures su
h as N are used: there

exist T DL-
on
epts that are satis�able over Q but not over N. It would thus

be interesting to 
onsider a variant of T DL that is based on N, or even to

add to the 
urrent version of T DL a unary predi
ate int stating that a time

point/rational number is an integer. In this 
ase, the algorithm would, ad-

ditionally, have to dete
t unsatis�able 
onstraint graphs su
h as the one in

Figure 6. We 
onje
ture that this 
annot be done without adding a non-trivial

a

eptan
e 
ondition to our automata model, e.g. swit
hing from looping to
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B�u
hi automata. Using N as the temporal stru
ture would be useful if dis-


reteness of time is assumed (e.g. a time point is viewed as a referen
e to some

parti
ular se
ond in time), and if the resulting logi
 is used in non-temporal

appli
ations: we may, e.g., use temporal features to store the number of 
hil-

dren that a person has, rather than storing a time point. Clearly, fra
tional

numbers make no sense in this 
ontext.

(3) It would be natural to de�ne a spatial des
ription logi
 SDL by repla
ing

the temporal predi
ates of T DL with spatial ones. For example, one 
ould use

the set set of eight \topologi
al" relations 
alled RCC-8 [30,7℄, whi
h des
ribe

all possible ways in whi
h two regions 
an be related in topologi
al spa
es, and

whi
h in many aspe
ts resemble the Allen relations. Our guess is that again

a de
idable formalism is obtained, but many proof te
hniques would 
learly

have to be reworked. For example, the RCC-8 relations 
annot be broken down

to the predi
ates f<;=g.

It is also interesting to note that there are 
ertain well-known limitations

for extending the temporal part of T DL. For example, if we think of the

9(u

1

P u

2

) 
onstru
tor as a means for talking about rational numbers rather

than about temporal information, then it seems natural to add predi
ates for

arithmeti
s su
h as a ternary addition predi
ate. However, it is shown in [26℄

that it suÆ
es to add to T DL a unary predi
ate for equality to zero and a

binary predi
ate for in
rementation in order to make reasoning unde
idable.
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A Proofs for Se
tion 4

The �rst task is to prove Theorem 8. For the proof, it will be helpful to de�ne

the notion of paths in 
onstraint graphs G: a path Q in G is a �nite non-

empty sequen
e of nodes v

0

; : : : ; v

k

2 V su
h that, for all i with i < k, we

have (v

i

; P; v

i+1

) 2 E for some P 2 f<;=g. A path v

0

; : : : ; v

k

is a =-path i�

(v

i

;=; v

i+1

) 2 E for i < k.

Theorem 8 A 
onstraint graph is satis�able i� it does not 
ontain a <-
y
le.

Proof. Sin
e the \only if" dire
tion is trivial, we 
on
entrate on the \if"

dire
tion. Let G be a 
onstraint graph not 
ontaining a <-
y
le. Let � be the

relation on V with v

1

� v

2

i� v

1

= v

2

or there exists a =-path between v

1

and v

2

. Sin
e 
onstraint graphs are assumed to be equality 
losed, � is an

equivalen
e relation. For v 2 V , we denote the equivalen
e 
lass of v w.r.t. �

by [v℄

�

. De�ne a new 
onstraint graph G

0

= (V

0

; E

0

) as follows:

V

0

:= f[v℄

�

j v 2 V g

E

0

:= f([v

1

℄

�

; <; [v

2

℄

�

) j 9v

0

1

; v

0

2

2 V su
h that

v

0

1

2 [v

1

℄

�

; v

0

2

2 [v

2

℄

�

; and (v

0

1

; <; v

0

2

) 2 Eg

Using the fa
t that G does not 
ontain a <-
y
le, it is straightforward to prove

that G

0

does not 
ontain a <-
y
le. Sin
e G

0

does not 
ontain a <-
y
le, E

0

indu
es a partial order with domain V

0

. By Szpilrajn's Theorem, every partial

order 
an be extended to a total order (on the same domain) [37℄. Let �

E

0

be a total order obtained in this way from the partial order indu
ed by E

0

.

In the following, we show that every total order � with a 
ountable domain

D 
an be embedded into Q su
h that the ordering is preserved. This suÆ
es

to 
omplete the proof sin
e it implies that that there exists a total mapping

Æ from V to Q su
h that v

1

�

E

0

v

2

implies Æ(v

1

) < Æ(v

2

). It is obvious that Æ

is a solution for G

0

and it is straightforward to use Æ to 
onstru
t a solution

for G.

Let d

0

; d

1

; : : : be an enumeration of D. We use indu
tion on this enumeration

to de�ne a fun
tion Æ from D to Q su
h that d

1

� d

2

implies Æ(d

1

) < Æ(d

2

)

for all d

1

; d

2

2 D.

(1) For the indu
tion start, set Æ(d

0

) to some r 2 Q.

(2) Assume that Æ(d

i

) is de�ned for all i < k. We distinguish three 
ases:

(a) d

i

� d

k

for all i < k. Sin
e Q has no maximum, there exists an r 2 Q

su
h that r > Æ(d

i

) for all i < k. Set Æ(d

k

) := r.

(b) d

k

� d

i

for all i < k. Sin
e Q has no minimum, there exists an r 2 Q

su
h that r < Æ(d

i

) for all i < k. Set Æ(d

k

) := r.

(
) Neither of the previous two 
ases holds. Sin
e Q is dense, there exists
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an r 2 Q su
h that

maxfÆ(d

i

) j i < k and d

i

� d

k

g < r < minfÆ(d

i

) j i < k and d

k

� d

i

g:

Set Æ(d

k

) := r.

It is readily 
he
ked that Æ is as required. 2

Sin
e the proof of Lemma 15 is rather involved, we treat the \if" and the

\only-if" dire
tion in two separate lemmas. We again use the notions of paths

and =-paths in 
onstraint graphs. Moreover, we use the following notation: if

v

0

; : : : ; v

k

is a path or a 
y
le, we use i

+

O

to denote (i + 1)modk + 1, i.e., i

+

O

denotes the index following i in the path/
y
le O. The index �

O

is omitted if


lear from the 
ontext.

Lemma 28 A 
on
ept C is satis�able w.r.t. a general TBox T if there exists

a Hintikka-tree for C and T .

Proof. Let C be a 
on
ept, T a TBox, k the number of existential sub
on
epts

in sub(C; T ), and ` the number of abstra
t features in sub(C; T ). Moreover,

let T be a Hintikka-tree for C and T . We de�ne an interpretation I = (�

I

; �

I

)

as follows:

�

I

= f1; : : : ; k + `g

�

A

I

= f� j A 2 T

�

(�)g for all A 2 C

N

R

I

= f(�; �) j � = �i, E

i

(C; T ) = 9R:E for some 
on
ept E, and

9R:E 2 T

�

(�)g for all R 2 N

rR

f

I

= f(�; �) j � = �i, F

i�k

(C; T ) = f; and f is enfor
ed by T (�)g

for all f 2 N

aF

It remains to de�ne the interpretation of temporal features, whi
h is done as

follows: we de�ne an (in�nite) 
onstraint graph G(T ) indu
ed by T , show that

G(T ) is satis�able, and de�ne the interpretation of temporal features from a

solution of G(T ). The nodes of G(T ) have the form �ju, where � is a node in

T and u is a path in C or T . More pre
isely, G(T ) is de�ned as (V; 
l

=

(E)),

where

� V = f�ju j � 2 f1; : : : ; k + `g

�

; u appears in C or T g

� E =

[

�2f1;:::;k+`g

�

f(�ju; P; �ju

0

) j (u; P; u

0

) is an edge in 
pl(T; �)g

[ f(�jfg);=; �ijg) j F

i�k

(C; T ) = f; fg is a node in 
pl(T; �)g

It is not hard to see that G(T ) really is a 
onstraint graph, i.e., the node set

of G(T ) is 
ountable. Next, we show the following 
laim:
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Claim 1: G(T ) is satis�able.

By Theorem 8, it suÆ
es to show that G(T ) 
ontains no <-
y
le. Assume to

the 
ontrary that G(T ) 
ontains a <-
y
le and that O = �

0

ju

0

; : : : ; �

n

ju

n

is

the <-
y
le in G(T ) with minimal length. Fix a t � n su
h that

for ea
h i with i � n and ea
h � 2 f1; : : : ; k+`g

+

, we have �

i

6= �

t

�; (�)

i.e., there exist no �

i

in O su
h that �

t

is a true pre�x of �

i

(su
h a t exists

sin
e O is of �nite length). Sin
e O is a <-
y
le, there exists an s � n su
h

that we have (�

s

ju

s

; <; �

s

+

ju

s

+

) 2 E. We make a 
ase distin
tion and derive

a 
ontradi
tion in either 
ase.

� �

s

6= �

t

. De�ne a sequen
e of nodes O

0

from O by deleting all nodes �

i

ju

i

with �

i

= �

t

. O

0

is non-empty sin
e �

s

6= �

t

. We show that O

0

is a <-


y
le in G(T ), whi
h is a 
ontradi
tion to the minimality of O. Let O

0

=

�

0

0

ju

0

0

; : : : ; �

0

m

ju

0

m

. By de�nition of G(T ), the fa
t that (�

s

ju

s

; <; �

s

+

ju

s

+

) 2

E implies �

s

+

= �

s

. Sin
e �

s

6= �

t

, �

s

ju

s

and �

s

+

ju

s

+

are in O

0

and it

remains to show that O

0

is a 
y
le in G(T ), i.e., for all i � m, we have

(�

0

i

ju

0

i

; P; �

0

i

+

ju

0

i

+

) 2 E for some P 2 f<;=g.

Let �

0

i

ju

0

i

and �

0

i

+

ju

0

i

+

be nodes in O

0

. If these two nodes are already

neighbor nodes in O, we are obviously done. Hen
e, assume that this is not

the 
ase. By 
onstru
tion of O

0

, this implies the existen
e of a path

�

0

i

ju

0

i

; �

t

ju

�

1

; : : : ; �

t

ju

�

x

; �

0

i

+

ju

0

i

+

in G(T ), whi
h is at most as long as O. Sin
e �

0

i

6= �

t

and �

0

i

+

6= �

t

, by 
on-

stru
tion ofG(T ) and by (�), this implies that there exist � 2 f1; : : : ; k + `g

�

,

f 2 N

aF

, j 2 f1; : : : ; k + `g, and g; g

0

2 G(C; T ) su
h that the following


onditions are satis�ed:

(1) �

0

i

= �

0

i

+

= �,

(2) �

t

= �j and F

j�k

(C; T ) = f ,

(3) u

0

i

= fg, u

�

1

= g, u

�

x

= g

0

, and u

0

i

+

= fg

0

, and

(4) (�jfg;=; �jjg) 2 E and (�jfg

0

;=; �jjg

0

) 2 E.

By de�nition ofG(T ) and by Point 4, both fg and fg

0

are nodes in 
pl(T; �) =

(V

0

; E

0

). By de�nition of 
pl, this implies that either

(a) (fg

0

; <; fg) 2 E

0

or

(b) (fg; P; fg

0

) 2 E

0

for some P 2 f<;=g.

Together with Point 1 and 3 and the de�nition ofG(T ), (b) obviously implies

(�

0

i

ju

0

i

; P; �

0

i

+

ju

0

i

+

) 2 E, and we are done. Moreover, in the following we show

that 
ase (a) 
annot o

ur.

Let 
pl(T; �j) = (V

00

; E

00

). In 
ase (a), we have (g

0

; <; g) 2 E

00

: Let G(�) =

(V

0

�

; E

0

�

); by de�nition of pair-graphs and sin
e all 
on
epts are in path

normal form, (fg

0

; <; fg) 2 E

0

implies (fg

0

; <; fg) 2 E

0

n E

0

�

; by de�nition

of 
pl and by Point 2, this means that (g

0

; <; g) 2 T

�

(�). Hen
e, (g

0

; <; g) 2

E

00

. By de�nition of G(T ) and Point 1 and 3, (g

0

; <; g) 2 E

00

implies that

(�

t

ju

�

x

; <; �

t

ju

�

1

) 2 E. Hen
e, the path �

t

ju

�

1

; : : : ; �

t

ju

�

x

is a <-
y
le in G(T ),
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whi
h 
ontradi
ts the minimality of O.

� �

s

= �

t

. We �rst show that there exists a node �

z

ju

z

in O su
h that �

z

6= �

t

.

For suppose that no su
h node exists. Then, by de�nition ofG(T ), u

0

; : : : ; u

n

is a <-
y
le in 
pl(T; �

t

). This is 
learly a 
ontradi
tion to the fa
t that T

is a Hintikka-tree. Hen
e, we may 
on
lude the existen
e of an �

z

as above.

De�ne a sequen
e of nodes O

0

from O by deleting all nodes �

i

ju

i

with

�

i

6= �

t

. O

0

is non-empty sin
e �

s

= �

t

. Moreover, O

0

is shorter than O

due to the existen
e of �

z

. We show that O

0

is a <-
y
le in G(T ), whi
h

is a 
ontradi
tion to the minimality of O. Let O

0

= �

t

ju

0

0

; : : : ; �

t

ju

0

m

. By

de�nition of G(T ), the fa
t that (�

s

ju

s

; <; �

s

+

ju

s

+

) 2 E implies �

s

+

= �

s

=

�

t

. Hen
e, it remains to show that O

0

is a 
y
le in G(T ), i.e., that, for all

i � m, we have (�

t

ju

0

i

; P; �

t

ju

0

i

+

) 2 E for some P 2 f<;=g.

Let �

t

ju

0

i

and �

t

ju

0

i

+

be nodes in O

0

. If these two nodes are already neigh-

bor nodes in O, we are obviously done. Hen
e, assume that this is not the


ase. By 
onstru
tion of O

0

, this implies the existen
e of a path

�

t

ju

0

i

; �

�

1

ju

�

1

; : : : ; �

�

x

ju

�

x

; �

t

ju

0

i

+

in G(T ), whi
h is at most as long as O, su
h that �

�

i

6= �

t

for all i with

1 � i � x. By 
onstru
tion of G(T ) and by (�), this implies that there exist

� 2 f1; : : : ; k + `g

�

, f 2 N

aF

, j 2 f1; : : : ; k + `g, and g; g

0

2 G(C; T ) su
h

that the following 
onditions are satis�ed:

(1) �

�

1

= �

�

x

= �,

(2) �

t

= �j and F

j�k

(C; T ) = f ,

(3) u

0

i

= g, u

�

1

= fg, u

�

x

= fg

0

, and u

0

i

+

= g

0

, and

(4) (�jfg;=; �jjg) 2 E and (�jfg

0

;=; �jjg

0

) 2 E.

By de�nition ofG(T ) and by Point 4, both fg and fg

0

are nodes in 
pl(T; �) =

(V

0

; E

0

). By de�nition of 
pl, this implies that either

(a) (fg

0

; <; fg) 2 E

0

or

(b) (fg; P; fg

0

) 2 E

0

for some P 2 f<;=g.

Case (a) is impossible, whi
h 
an be seen as follows: together with Point 1

and 3 and the de�nition ofG(T ), (a) obviously implies (�

�

x

ju

�

x

; <; �

�

1

ju

�

1

) 2 E.

Hen
e, the path �

�

1

ju

�

1

; : : : ; �

�

x

ju

�

x

is a <-
y
le in G(T ) whi
h 
ontradi
ts the

minimality of O.

Hen
e, let us assume that (b) holds. Moreover, let 
pl(T; �j) = (V

00

; E

00

).

We have (g; P; g

0

) 2 E

00

, whi
h 
an be seen as follows: let G(�) = (V

0

�

; E

0

�

);

by de�nition of pair-graphs and sin
e all 
on
epts are in path normal form,

(fg; P; fg

0

) 2 E

0

implies (fg; P; fg

0

) 2 E

0

n E

0

�

; by de�nition of 
pl and

by Point 2, this means that (g; P; g

0

) 2 T

�

(�). Hen
e, (g; P; g

0

) 2 E

00

. By

de�nition of G(T ) and Point 1 and 3, (g; P; g

0

) 2 E

00

implies that we have

(�

t

ju

0

i

; P; �

t

ju

0

i

+

) 2 E, as was to be shown.

This �nishes the proof of Claim 1. We may now de�ne the interpretation of

temporal features. Let Æ be a solution for G(T ). We set
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g

I

= f(�; x) j g is enfor
ed by T (�) and Æ(�jg) = xg for all g 2 N

tF

:

To show that there exists a d 2 �

I

su
h that d 2 C

I

, we prove the following


laim:

Claim 2: D 2 T

�

(�) implies � 2 D

I

for all � 2 �

I

and D 2 sub(C; T ).

Proof: The 
laim is proved by indu
tion on the stru
ture of D. First for the

indu
tion start, whi
h splits into several sub
ases:

� D is a 
on
ept name. Immediate by de�nition of I.

� D = :E. Sin
e C is in NNF, D is also in NNF. Hen
e, E is a 
on
ept name.

By de�nition of I and sin
e T (�) is a Hintikka-set and thus satis�es (H4),

we have � 2 (:E)

I

.

� D = 9(u

1

P u

2

). Let G(T ) = (V;E) and 
pl(T; �) = (V

0

; E

0

). By de�nition

of pair-graphs and 
pl(), we have (u

1

; P; u

2

) 2 E

0

. Moreover, by de�nition

of G(T ), we have (�ju

1

; P; �ju

2

) 2 E. It thus remains to show that u

I

1

(�) =

Æ(�ju

1

), and u

I

2

(�) = Æ(�ju

2

): sin
e Æ is a solution for G(T ), this 
learly

implies u

I

1

(�)Pu

I

2

(�).

First, assume u

i

= g for some g 2 N

tF

. By de�nition of g

I

and sin
e g is

enfor
ed by T (�), we have u

I

i

(�) = Æ(�ju

i

) as required. Now let u

i

= fg with

F

j�k

(C; T ) = f . Sin
e fg is a node in 
pl(T; �), we have (�jfg;=; �jjg) 2 E.

Hen
e, Æ(�jjg) = Æ(�jfg). By de�nition of f

I

and sin
e f is obviously

enfor
ed by T (�), we have f

I

(�) = �j. By de�nition of 
pl and of pair-

graphs, fg 2 V

0

implies that g appears in T

�

(�j): sin
e 
pl(T; �) is both a


ompletion of G(�) and satis�able, fg 2 V

0

implies (fg;=; fg) 2 E

0

; due

to the de�nition of pair graphs and sin
e all 
on
epts are in path normal

form, (fg;=; fg) is not an edge of G(�); hen
e, by de�nition of 
pl and

sin
e F

j�k

(C; T ) = f , we must have (g;=; g) 2 T

�

(�j), i.e., g appears in

T

�

(�j). Sin
e g appears in T

�

(�j) and is thus enfor
ed by T (�j), we have

g

I

(�j) = Æ(�jjg) by de�nition of g

I

. Summing up, we obtain (fg)

I

(�) =

Æ(�jjg) = Æ(�jfg).

� D = g". If g

I

(�) is de�ned, then g is enfor
ed by T (�). We show that

this implies g" =2 T

�

(�). If g is enfor
ed by T (�), then either (i) g appears

in T

�

(�) or (ii) f9(g P u

0

); 9(u

0

P g)g \ T

�

(�) 6= ; for some path u

0

and

P 2 f<;=g. In 
ase (i), (H6) yields g" =2 T

�

(�). In 
ase (ii), (H5) yields

the same result.

For the indu
tion step, we make a 
ase distin
tion a

ording to the topmost

operator in D. Assume D 2 T

�

(�).

� D = C

1

u C

2

or D = C

1

t C

2

. Straightforward by (H2) and (H3) of

Hintikka-sets and by indu
tion hypothesis.

� D = 9R:E with R 2 N

rR

. By de�nition of R

I

, we have (�; �) 2 R

I

for

� = �i and E

i

(C; T ) = 9R:E. By (H7), we have E 2 T

�

(�), and, by

indu
tion, � 2 E

I

.

� D = 9f:E with f 2 N

aF

. Hen
e, f is enfor
ed by T (�). By de�nition of
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f

I

, we have f

I

(�) = � for � = �i and F

i�k

(C; T ) = f . By (H9), we have

E 2 T

�

(�), and, by indu
tion, � 2 E

I

.

� D = 8R:E with R 2 N

rR

. Let (�; �) 2 R

I

. By de�nition of R

I

, there exists

an i su
h that E

i

(C; T ) = 9R:D 2 T

�

(�) and � = �i. By (H8), we have

E 2 T

�

(�), and, by indu
tion, � 2 E

I

. Sin
e this holds independently of

the 
hoi
e of �, we have � 2 (8R:E)

I

.

� D = 8f:E with f 2 N

aF

. Let f

I

(�) = �. By de�nition of f

I

, we have

� = �i, F

i�k

(C; T ) = f , and f is enfor
ed by T (�). By (H10), we have

E 2 T

�

(�), and, by indu
tion, � 2 E

I

.

This 
ompletes the proof of the 
laim. Sin
e C 2 T

�

(�) by (H12) and, for all

� 2 �

I

, we have C

T

2 T

�

(�) by (H1), it is an immediate 
onsequen
e of the

semanti
s of TBoxes and Claim 2 that I is a model of C w.r.t. T . 2

Lemma 29 A 
on
ept C is satis�able w.r.t. a general TBox T only if there

exists a Hintikka-tree for C and T .

Proof. Let C be a 
on
ept, T a TBox, and k and ` as in the proof of Lemma 28.

Moreover, let I be a model of C w.r.t. T , i.e., there exists a d

0

2 �

I

su
h

that d

0

2 C

I

and D

I

= E

I

for all D

:

= E 2 T . We indu
tively de�ne a

Hintikka-tree T for C and T , i.e., a k + `-ary �

C;T

-tree that satis�es (H12)

and (H13). Along with T , we de�ne a mapping � from f1; : : : ; k + `g

�

to �

I

in su
h a way that

T

�

(�) = fD 2 sub(C; T ) j �(�) 2 D

I

g (�)

For the indu
tion start, set

�(�) := d

0

; T

�

(�) := fD 2 sub(C; T ) j d

0

2 D

I

g; and T

�

(�) := ;:

Obviously, (�) is satis�ed. Now for the indu
tion step. Let � 2 f1; : : : ; k+ `g

�

be a word of minimal length su
h that �(�) is de�ned and �(�i) is unde�ned

for some i 2 f1; : : : ; k + `g. We make a 
ase distin
tion as follows:

(1) E

i

(C; T ) = 9R:D 2 T

�

(�). By (�), we have �(�) 2 (9R:D)

I

. Thus, there

exists some e 2 �

I

su
h that (�(�); e) 2 R

I

and e 2 D

I

. Set �(�i) := e,

T

�

(�i) := fE 2 sub(C; T ) j e 2 E

I

g, and T

�

(�i) := ;.

(2) F

i�k

(C; T ) = f , and f is enfor
ed by T (�). By (�) and the de�nition of

\enfor
ed", there exists an e 2 �

I

su
h that f

I

(�(�)) = e. Set

�(�i) := e

T

�

(�i) := fE 2 sub(C; T ) j e 2 E

I

g

T

�

(�i) := f(g

1

; P; g

2

) j fg

1

, fg

2

are enfor
ed by T (�) and g

I

1

(e)Pg

I

2

(e)g
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(3) �, i do not mat
h the above 
ases. Set �(�i) := �(�) and T (�i) := T (�).

Clearly, (�) is satis�ed after ea
h indu
tion step, and hen
e T is well-de�ned.

Intuitively, Case 3 applies if the i-th su

essor of � is not needed to satisfy

the Properties of Hintikka-trees. In this 
ase, the 
hoi
e of �(�i) is arbitrary:

we 
ould have de�ned �(�i) as any element of �

I

(instead of 
hoosing �(�)).

We must show that T is a Hintikka-tree for C and T . From (�) together with

the semanti
s of 
on
epts and TBoxes, it is 
lear that T

�

(�) is a Hintikka-set

for C and T for ea
h � 2 f1; : : : ; k+ `g

�

. Let us show exemplarily that (H1)

holds. Assume to the 
ontrary that there exists an � 2 f1; : : : ; k + `g

�

su
h

that C

T

=2 T

�

(�). By (�), we have �(�) =2 C

I

T

. By de�nition of C

T

, this implies

the existen
e of D

:

= E 2 T su
h that �(�) =2 (D $ E)

I

, i.e., �(�) 2 D

I

nE

I

or �(�) 2 E

I

nD

I

. Hen
e, we do not have D

I

= E

I

and obtain a 
ontradi
tion

to the fa
t that I is a model of T .

Now we show that T (�) is a Hintikka-pair for ea
h node �, i.e., that (H6)

is satis�ed. The proof is by 
ontradi
tion. Assume that there exists an � 2

f1; : : : ; k+`g

�

su
h that (g

1

; P; g

2

) 2 T

�

(�) and g

j

" 2 T

�

(�) for j 2 f1; 2g. By

de�nition of T

�

, (g

1

; P; g

2

) 2 T

�

(�) implies that g

I

j

(�(�)) is de�ned. But from

g

j

" 2 T

�

(�) and (�), we obtain that g

I

j

(�(�)) is unde�ned: 
ontradi
tion.

It remains to show that T satis�es (H12) and (H13). The former is sim-

ple due to the de�nition of T (indu
tion start) and the fa
t that d

0

2 C

I

.

The latter amounts to showing that, for ea
h � 2 f1; : : : ; k + `g

�

, the tuple

(T (�); T (�1); : : : ; T (�j)) satis�es (H7) to (H11), where j abbreviates k + `.

(H7) Let 9R:D 2 T

�

(�) and E

i

(C; T ) = 9R:D. By de�nition of � (Case 1),

we have �(�i) = e for some e 2 �

I

with (�(�); e) 2 R

I

and e 2 D

I

. By (�),

we thus have D 2 T

�

(�i).

(H8) Let f9R:D; 8R:Eg � T

�

(�) and E

i

(C; T ) = 9R:D. By de�nition of �

(Case 1), we have �(�i) = e for some e 2 �

I

with (�(�); e) 2 R

I

. By

(�), we have �(�) 2 (8R:E)

I

whi
h implies e 2 E

I

. By (�), we thus have

E 2 T

�

(�i).

(H9) Let 9f:D 2 T

�

(�) and F

i

(C; T ) = f . Hen
e, f is enfor
ed by T (�). By

de�nition of � (Case 2), we have �(�j) = e for e = f

I

(�(�)) and j = k + i.

From 9f:D 2 T

�

(�) and (�), we obtain �(�) 2 (9f:D)

I

and thus e 2 D

I

.

Again by (�), we get D 2 T

�

(�j).

(H10) Let f be enfor
ed by T (�), F

i

(C; T ) = f , and 8f:D 2 T

�

(�). By

de�nition of � (Case 2), we have �(�j) = e for e = f

I

(�(�)) and j = k + i.

From 8f:D 2 T

�

(�) and (�), we obtain �(�) 2 (8f:D)

I

and thus e 2 D

I

.

Again by (�), we get D 2 T

�

(�j).

(H11) Let G(T (�)) = (V;E) and E

0

be de�ned as in (H11). To prove that

(H11) is satis�ed, we show that

(1) E

0

is an edge extension of G(T (�)), whi
h implies that (V;E [E

0

) is a

40




ompletion of G(T (�)) and

(2) (V;E [ E

0

) is satis�able.

We �rst prove Point 1. It needs to be shown that, for ea
h fg

1

; fg

2

2 V ,

f(fg

1

; <; fg

2

); (fg

1

;=; fg

2

); (fg

2

; <; fg

1

)g\E

0

6= ;. By de�nition ofG(T (�)),

fg

1

and fg

2

are enfor
ed by T (�). Sin
e T

�

(�) may only 
ontain paths of

length 1, we have f9(fg

1

P

0

u); 9(uP

0

fg

1

)g\T

�

(�) 6= ; for some path u and

P

0

2 f<;=g and similarly for fg

2

. By (�), this implies that f

I

(g

I

1

(�(�))) and

f

I

(g

I

2

(�(�))) are de�ned. By de�nition of T (Case 2) and sin
e f is obviously

enfor
ed by T (�), we have f

I

(�(�)) = �(�i) with F

i�k

(C; T ) = f . Hen
e,

g

I

1

(�(�i)) and g

I

2

(�(�i)) are de�ned. By the semanti
s, we have g

I

1

(�(�i)) <

g

I

2

(�(�i)), g

I

1

(�(�i)) = g

I

2

(�(�i)), or g

I

2

(�(�i)) < g

I

1

(�(�i)). By de�nition of

T

�

, this yields f(g

1

; <; g

2

); (g

1

;=; g

2

); (g

2

; <; g

1

)g \ T

�

(�i) 6= ;. Hen
e, by

de�nition of E

0

we have f(fg

1

; <; fg

2

); (fg

1

;=; fg

2

); (fg

2

; <; fg

1

)g \E

0

6= ;.

We now prove Point 2 from above. De�ne a mapping Æ from V to Q as

follows: Æ(u) := u

I

(�(�)). This mapping is well-de�ned, whi
h 
an be seen

as follows. Fix a u 2 V . Sin
e u is enfor
ed by T (�), either

(i) u o

urs in T

�

(�) or

(ii) f9(uP u

0

); 9(u

0

P u)g \ T

�

(�) 6= ; for some path u

0

and P 2 f<;=g.

In Case (i), we have u = g for some g 2 N

tF

. By de�nition of T , there

exists a prede
essor � of � in T su
h that � = �i, F

i�k

(C; T ) = f for some

f 2 N

aF

, and fg is enfor
ed by T (�). Sin
e T

�

(�) 
ontains only paths of

length 1, we have f9(fg P u); 9(uP fg)g \ T

�

(�) 6= ; for some path u and

P 2 f<;=g. By (�), g

I

(f

I

(�(�))) is de�ned. Sin
e, by de�nition of T , we

have f

I

(�(�))) = �(�), g

I

(�(�)) is de�ned. In Case (ii), it follows from (�)

that u

I

(�(�)) is de�ned.

We show that Æ is a solution for (V;E[E

0

) by distinguishing the following


ases:

(1) (u

1

; P; u

2

) 2 E \ T

�

(�). Then there exist g

1

; g

2

2 N

tF

su
h that u

1

= g

1

and u

2

= g

2

. By de�nition of T

�

, we have g

I

1

(�(�))Pg

I

2

(�(�)), and thus,

by de�nition of Æ, Æ(g

1

)PÆ(g

2

).

(2) (u

1

; P; u

2

) 2 E and 9(u

1

P u

2

) 2 T

�

(�). Then (�) implies that �(�) 2

9(u

1

P u

2

)

I

. Hen
e, u

I

1

(�(�))Pu

I

2

(�(�)). By de�nition of Æ, we thus ob-

tain Æ(u

1

)PÆ(u

2

).

(3) (u

1

; P; u

2

) 2 E

0

. By de�nition of E

0

, we have u

1

= fg

1

, u

2

= fg

2

, and

(g

1

; P; g

2

) 2 T

�

(�i) where F

k�i

(C; T ) = f . By de�nition of T

�

, this

yields that fg

1

and fg

2

are enfor
ed by T (�) and g

I

1

(�(�i))Pg

I

2

(�(�i)).

From this and the de�nition of T (Case 2), it follows that f

I

(�(�)) =

�(�i). We 
on
lude Æ(u

1

)PÆ(u

2

).

To sum up, we have shown that (H13) holds. 2
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B Proofs for Se
tion 5

Lemma 23 Let A be an ABox and T a TBox. Then A is 
onsistent w.r.t. T

i� there exists a pre
ompletion A

0

of A w.r.t. T su
h that A

0

is 
onsistent

w.r.t. T .

Proof. Re
all that A

0

is a pre
ompletion of A w.r.t. T if A

0


an be obtained

from A by exhaustive rule appli
ation (using the TBox T ). By Lemma 21,

exhaustive rule appli
ation always terminates. Hen
e, we only need to show

that, if a pre
ompletion rule R is appli
able to an ABox A, then A is 
onsistent

w.r.t. T i� one of the out
omes A

0

of applying R to A is 
onsistent w.r.t. T .

We make a 
ase distin
tion a

ording to the rule R. For all rules ex
ept Rfe,

the \if" dire
tion is trivial sin
e A � A

0

if A

0

is obtained from A by rule

appli
ation. Hen
e, every model of A

0

and T is 
learly also a model of A

and T . Thus, we 
on
entrate on the \only if" dire
tion in all 
ases ex
ept Rfe.

Assume that I is a model of A and T .

� R = Ru. Assume that the Ru rule is applied to a 
on
ept C u D 2 A(a).

Sin
e I is a model of A, we have a

I

2 (C u D)

I

and thus a

I

2 C

I

and

a

I

2 D

I

. Rule appli
ation adds a : C and a : D to A. Thus, I is a model

of the resulting ABox A

0

.

� R = Rt. Assume that the Rt rule is applied to a 
on
ept C t D 2 A(a).

Sin
e I is a model ofA, we have a

I

2 (CtD)

I

and thus a

I

2 C

I

or a

I

2 D

I

.

The rule appli
ation yields ABoxes A

1

= A[fa : Cg and A

2

= A[fa : Dg.

Thus, I is a model of A

1

or A

2

.

� R = R9f. Assume that the rule is applied to a 
on
ept 9f:C 2 A(a) adding

b : C to A for some b with ha; bi : f 2 A. Sin
e I is a model of A, we have

a

I

2 (9f:C)

I

and f

I

(a

I

) = b

I

. Due to the fun
tionality of f

I

, this yields

b

I

2 C

I

. Thus, I is a model of the resulting ABox A

0

.

� R = R8. Similar to the previous 
ase.

� R = R
1. Analogous to the next 
ase, only simpler.

� R = R
2. Assume that the R
2 rule is applied to a 
on
ept 9(fg

1

P g) 2 A(a)

and a node b with ha; bi : f 2 A. Sin
e I is a model of A, we have a

I

2

9(fg

1

P g)

I

, f

I

(a

I

) = b

I

, and g

I

1

(b

I

)P g

I

2

(a

I

). Rule appli
ation introdu
es

two new time point names x

1

and x

2

and adds fhb; x

1

i : g

1

; ha; x

2

i : g

2

,

x

1

P x

2

g to A. Let I

0

be obtained from I by setting x

I

1

= g

I

1

(b

I

) and x

I

2

=

g

I

2

(a

I

). Clearly, I

0

is a model of the resulting ABox A

0

.

� R = R
3. Analogous to the previous 
ase.

� R = R
h. Assume that the R
h rule is applied to the assertions ha; x

1

i : g

1

and ha; x

2

i : g

2

. Sin
e I is a model of A, there exist q

1

; q

2

2 Q su
h that

x

I

1

= q

1

and x

I

2

= q

2

. Trivially, we have either q

1

< q

2

, q

1

= q

2

, or q

2

< q

1

.

We obtain three new ABoxes by adding one of the assertions a : 9(g

1

< g

2

),

a : 9(g

1

= g

2

), and a : 9(g

2

< g

1

). Thus, I is a model of A

i

for some

i 2 f1; 2; 3g.
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� R = R

:

=. The rule appli
ation adds a : C

T

for some a 2 O

a

. Sin
e I is a

model of T , we have d 2 C

I

T

for every d 2 �

I

. Thus, I is also a model of

the resulting ABox A

0

.

� R = Rfe. Assume that the rule is applied to assertions ha; bi : f and ha; 
i : f .

Sin
e I is a model of A, we have f

I

(a

I

) = b

I

= 


I

. Thus, I is also a model

of the ABox A

0

obtained from A by repla
ing the obje
t name b with 
.

For this rule, we also treat the \if" dire
tion. Hen
e assume that the rule

has applied to two assertions ha; bi : f and ha; 
i : f in A, and let I

0

be

a model of the resulting ABox A

0

that has been obtained by repla
ing b

with 
. It is easily seen that we 
an 
onstru
t a model I

00

of A by setting

b

I

= 


I

.

The repla
ement of time point names rather than obje
t names 
an be

treated analogously. 2

Lemma 24 Let A be a pre
omplete ABox, Æ a solution for G(A), and a 2 O

a

used in A. If 
on(A; a) is satis�able w.r.t. T , then there exists a model I of


on(A; a) and T and a d

a

2 
on(A; a)

I

su
h that, for all ha; xi : g 2 A, we

have g

I

(d

a

) = Æ(x).

Proof. Let A, G(A), and Æ be as in the lemma, and let I be a model of


on(A; a) and T . Moreover, let d

a

be an arbitrary element of 
on(A; a)

I

. We

show that I 
an be transformed into a model J su
h that J and d

a

are as

required.

In the following, we assume that there exists a well-founded linear ordering on

the set �

I

�N

tF

. This 
an be done w.l.o.g. sin
e it is a byprodu
t of the proof of

Lemma 28 that, if a 
on
ept C is satis�able w.r.t. a TBox T , then there exist a

model of C and T (the one 
onstru
ted in the proof) for whi
h su
h an ordering

exists. We 
onstru
t the model J from I by modifying the interpretations of

temporal features in an appropriate way. To do this, we su

essively \mark"

pairs in �

I

� N

tF

su
h that a pair (d; g) is marked i� g

J

(d) has already been

determined. During the 
onstru
tion of J , the following invariant will always

hold:

if (d

1

; g

1

); (d

2

; g

2

) 2 �

I

� N

tF

are marked, then

g

I

1

(d

1

)

P

g

I

2

(d

2

) with P 2 f<;=; >g implies g

J

1

(d

1

)

P

g

J

2

(d

2

)

(�)

Initially, ea
h pair in �

I

� N

tF

is unmarked. The 
onstru
tion of J 
onsists

of an initial step and an indu
tive step.

(1) Initial step. For all ha; xi : g 2 A, set g

J

(d

a

) := Æ(x) and mark (d

a

; g).

We need to show that (�) is satis�ed. Hen
e, �x two marked pairs (d

a

; g

1

)

and (d

a

; g

2

) from �

I

�N

tF

. Then we have fha; x

1

i : g

1

, ha; x

2

i : g

2

g � A for

some x

1

; x

2

2 O

t

. Sin
e neither the R
h nor the R
1 rule is appli
able, we

have either (i) 9(g

1

< g

2

) 2 A(a) and x

1

< x

2

2 A, (ii) 9(g

1

= g

2

) 2 A(a)
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and x

1

= x

2

2 A, or (iii) 9(g

2

< g

1

) 2 A(a) and x

2

< x

1

2 A.

We only treat 
ase (i) exemplarily. By de�nition of 
on(A; a) and sin
e

d

a

2 
on(A; a)

I

, we have d

a

2 9(g

1

< g

2

)

I

and thus g

I

1

(d

a

) < g

I

2

(d

a

).

From x

1

< x

2

2 A and the de�nition of G(A), it follows that Æ(x

1

) <

Æ(x

2

) and hen
e g

J

1

(d

a

) < g

J

2

(d

a

) as required. Cases (ii) and (iii) are

analogous.

(2) Indu
tive step. Choose the least unmarked pair (d; g) from �

I

�N

tF

(w.r.t.

the assumed ordering) for whi
h g

I

(d) is de�ned. For P 2 f<;=; >g, let

	

P

be the set of marked pairs (d

1

; g

1

) 2 �

I

�N

tF

for whi
h g

I

1

(d

1

)P g

I

(d).

By (�), we have

� g

J

1

(d

1

) = g

J

2

(d

2

) for all (d

1

; g

1

); (d

2

; g

2

) 2 	

=

,

� g

J

1

(d

1

) < g

J

2

(d

2

) for all (d

1

; g

1

) 2 	

<

and (d

2

; g

2

) 2 	

=

[ 	

>

, and

� g

J

1

(d

1

) < g

J

2

(d

2

) for all (d

1

; g

1

) 2 	

=

and (d

2

; g

2

) 2 	

>

.

Hen
e, due to the density of Q there is a q 2 Q su
h that

� q > maxfg

J

1

(d

1

) j (d

1

; g

1

) 2 	

<

g,

� q = g

J

1

(d

1

) for all (d

1

; g

1

) 2 	

=

, and

� q < minfg

J

1

(d

1

) j (d

1

; g

1

) 2 	

>

g.

Set g

J

(d) := q. Obviously, (�) is satis�ed.

It is straightforward to show by stru
tural indu
tion that d 2 C

I

i� d 2 C

J

for all d 2 �

I

and all T DL-
on
epts C. Hen
e, J is a model of 
on(A; a)

and T . By the initial step of its 
onstru
tion, J is as required. 2

Lemma 25 Let A be a pre
ompletion of an ABox A

0

w.r.t. a TBox T . A is


onsistent w.r.t. T i� A is 
lash-free and 
on(A; a) is satis�able w.r.t. T for

every a 2 O

a

used in A.

Proof. Sin
e the \only if" dire
tion is straightforward, we 
on
entrate on the

\if" dire
tion. Let A denote the set of obje
t names a 2 O

a

appearing in A.

Sin
e A is 
lash-free, there exists a solution Æ for G(A). For every a 2 A, �x

a model I

a

of 
on(A; a) and T and a domain element d

a

2 �

I

a

su
h that

d

a

2 
on(A; a)

I

a

. By Lemma 24, we may assume w.l.o.g. that, for all a 2 A,

ha; xi : g 2 A implies g

I

a

(d

a

) = Æ(x): (�)

Moreover, we assume that (i) a 6= b implies �

I

a

\ �

I

b

= ; and (ii) none of

the d

a

has in
oming edges, i.e., (d; d

a

) =2 R

I

a

for all d 2 �

I

a

and R 2 N

R

. It is

straightforward to prove that none of these assumptions restri
ts generality:

for example, take for ea
h a 2 A the 
anoni
al model 
onstru
ted from a

Hintikka-tree for 
on(A; a) and T as in the proof of Lemma 28. Then apply

the modi�
ation from the proof of Lemma 24 and �nally make all domains I

a

disjoint by renaming. Clearly, (�), (i), and (ii) are satis�ed for the resulting

set of models. In the following, we de�ne an interpretation I by taking the

\union" of the models I

a

with a 2 A and the relational stru
ture de�ned by

the ABox. However, we have to be 
areful not to obtain too many abstra
t

feature su

essors and prefer su

essors from the ABox over su

essors from
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the models.

(1) �

I

:=

S

a2A

�

I

a

,

(2) A

I

:=

S

a2A

A

I

a

for all A 2 N

C

,

(3) R

I

:= f(d

a

; d

b

) j ha; bi : R 2 Ag [

S

a2A

R

I

a

for all R 2 N

rR

,

(4) f

I

:= f(d

a

; d

b

) j ha; bi : f 2 Ag [

S

a2A

f(d; e) 2 f

I

a

j d 6= d

a

or

ha; bi : f =2 A for all b 2 O

a

g for all f 2 N

aF

,

(5) g

I

:=

S

a2A

g

I

a

for all g 2 N

tF

,

(6) a

I

:= d

a

for all a 2 A, and

(7) x

I

:= Æ(x) for all x 2 O

t

appearing in A.

Note that, for all f 2 N

aF

, f

I

is fun
tional sin
e the Rfe rule is not appli
able

to A. Sin
e none of the d

a

has in
oming edges, the following 
laim 
an be

proved straightforwardly by stru
tural indu
tion:

Claim 1: For all obje
ts a 2 A, domain elements d 2 �

I

a

with d 6= d

a

, and

T DL-
on
epts C, we have d 2 C

I

a

i� d 2 C

I

.

However, we still need to deal with the elements d

a

themselves.

Claim 2: For all obje
ts a 2 A, C 2 A(a) implies d

a

2 C

I

.

The proof is by indu
tion on the stru
ture of C. The indu
tion start 
onsists

of three 
ases:

� C 2 N

C

. Straightforward by de�nition of 
on(A; a), the 
hoi
e of I

a

and d

a

,

and the 
onstru
tion of I.

� C = 9(u

1

P u

2

). By de�nition of 
on(A; a) and 
hoi
e of I

a

and d

a

, C 2 A(a)

implies d

a

2 C

I

a

. We make a 
ase distin
tion a

ording to the form of u

1

and u

2

(re
all that all 
on
epts are assumed to be in path normal form).

(1) u

1

= g

1

and u

2

= g

2

. Sin
e d

a

2 9(g

1

P g

2

)

I

a

, there exist q

1

; q

2

2 Q su
h

that g

I

a

1

(d

a

) = q

1

, g

I

a

2

(d

a

) = q

2

, and q

1

Pq

2

. By de�nition of I, this implies

g

I

1

(d

a

) = q

1

, g

I

2

(d

a

) = q

2

and thus d

a

2 9(g

1

P g

2

)

I

.

(2) u

1

= fg

1

and u

2

= g

2

. We have to distinguish two sub
ases. First assume

that ha; bi : f 2 A for some b 2 O

a

. Sin
e the R
2 rule is not appli
able,

there exist x

1

; x

2

2 O

t

su
h that fha; x

1

i : g

1

; hb; x

2

i : g

2

; x

1

P x

2

g 2 A.

Sin
e Æ is a solution for G(A), there are q

1

; q

2

2 Q su
h that q

1

= Æ(x

1

),

q

2

= Æ(x

2

), and q

1

Pq

2

. Sin
e I

a

and I

b

satisfy (�), we have g

I

b

1

(d

b

) = q

1

and

g

I

a

2

(d

a

) = q

2

. By 
onstru
tion of I, we have f

I

(d

a

) = d

b

, g

I

1

(d

a

) = g

I

a

1

(d

a

),

and g

I

2

(d

b

) = g

I

b

2

(d

b

). Hen
e, g

I

1

(d

a

)Pg

I

2

(d

b

) and d

a

2 9(fg

1

P g

2

)

I

.

Now assume that there is no b 2 O

a

su
h that ha; bi : f 2 A. From

d

a

2 9(fg

1

P g

2

)

I

a

and the 
onstru
tion of I, it follows straightforwardly

(similar to Case 1) that d

a

2 9(fg

1

P g

2

)

I

.

(3) u

1

= g

1

and u

2

= fg

2

. Analogous to the previous 
ase using R
3 instead

of R
2.

� C = g". As in the previous 
ase, C 2 A(a) implies d

a

2 C

I

a

. Hen
e, g

I

a

(d

a

)

is unde�ned. By de�nition of I, g

I

(d

a

) is also unde�ned and thus d

a

2 (g")

I

.
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For the indu
tion step, we make a 
ase distin
tion a

ording to the topmost


onstru
tor in C:

� C = C

1

uC

2

. Sin
e the Ru rule is not appli
able toA and C 2 A(a), we have

fC

1

; C

2

g � A(a). The indu
tion hypothesis yields d

a

2 C

I

1

and d

a

2 C

I

2

.

By the semanti
s, we obtain d

a

2 C

I

.

� C = C

1

t C

2

. Similar to the previous 
ase.

� C = 9R:D with R 2 N

rR

. By de�nition of 
on(A; a) and 
hoi
e of I

a

and

d

a

, C 2 A(a) implies d

a

2 C

I

a

. Hen
e, there exists an e 2 �

I

a

su
h that

(d

a

; e) 2 R

I

a

and e 2 D

I

a

. Sin
e d

a

has no in
oming edges in I

a

(see above),

we have d

a

6= e. Hen
e, by Claim 1, e 2 D

I

a

implies e 2 D

I

. By 
onstru
tion

of I, we additionally have (d

a

; e) 2 R

I

and thus d

a

2 (9R:D)

I

.

� C = 9f:D. If there is no b 2 O

a

su
h that ha; bi : f 2 A, then we 
an argue

as in the previous 
ase. Hen
e assume that su
h a b exists. Sin
e the R9f

rule is not appli
able, we have b : D 2 A. By indu
tion, we have d

b

2 D

I

.

Sin
e we have f

I

(d

a

) = d

b

by 
onstru
tion of I, we obtain d

a

2 (9f:D)

I

.

� C = 8R:D. Fix a pair (d

a

; e) 2 R

I

. By de�nition of I, we have either

(d

a

; e) 2 R

I

a

or e = d

b

and ha; bi : R 2 A. In the �rst 
ase, we have e 6= d

a

sin
e d

a

has no in
oming edges in I

a

and e 2 D

I

by the semanti
s and

Claim 1. In the se
ond 
ase, we have D 2 A(b) sin
e the R8 rule is not

appli
able to A. Hen
e, by indu
tion, e 2 D

I

and thus d

a

2 (8R:D)

I

.

This �nishes the proof of Claim 2.

Using the two 
laims, it is easy to show that I is a model of A and T . We �rst

show that I satis�es every assertion in A. For assertions of the form a : C, we

have a

I

= d

a

2 C

I

by Claim 2. Assertions ha; bi : R are obviously satis�ed by

de�nition of I. Assertions ha; xi : g are satis�ed by 
onstru
tion of I and sin
e

the models I

b

(for b 2 A) satisfy (�). Finally, assertions x

1

P x

2

are satis�ed

sin
e Æ is a solution for G(A).

It remains to show that I is a model of T . Fix a 
on
ept equation C

:

= D 2 T

and a d 2 �

I

. First assume that d 6= d

a

for all a 2 A. Let d 2 �

I

a

. Then

d 2 C

I

i� d 2 D

I

by Claim 1 and sin
e I

a

is a model of T . Now assume

d = d

a

. Sin
e the R

:

= rule is not appli
able to A, we have a : C

T

2 A. Hen
e,

by Claim 2, d

a

2 C

I

T

. By de�nition of C

T

, this 
learly implies d

a

2 C

I

i�

d

a

2 D

I

. 2

46


