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Abstract. Description Logics (DLs) with concrete domains are a
useful tool in many applications. To further enhance the expressive
power of such DLs, it has been proposed to add database-stylekey
constraints. Up to now, however, only uniqueness constraints have
been considered in this context, thus neglecting the secondfunda-
mental family of key constraints: functional dependencies. In this
paper, we consider the basic DL with concrete domainsALC(D),
extend it with functional dependencies, and analyze the impact of this
extension on the decidability and complexity of reasoning.Though
intuitively the expressivity of functional dependencies seems weaker
than that of uniqueness constraints, we are able to show thatthe
former have a similarly severe impact on the computational prop-
erties: reasoning is undecidable in the general case, and NEXPTIME-
complete in some slightly restricted variants of our logic.

1 Introduction

Description Logics (DLs) are a family of logic-based knowledge rep-
resentation formalisms designed to represent and reason about con-
ceptual knowledge [4]. In recent application areas of DLs such as
the semantic web and reasoning about database schemas, the inte-
gration of so-called concrete domains (or, synonymously, concrete
datatypes) has turned out to be a crucial task. A concrete domain is
provided by a set (e.g. the integers, reals, or strings), andfixed predi-
cates on this set (e.g.<,+, prime, andis-prefix) [2, 10]. In the context
of the semantic web, DLs with concrete domains thus allow to for-
mulate ontologies that refer to concrete qualities of objects such as
their size, weight, temperature, etc. [3]. In reasoning about database
schemas such as ER and UML diagrams, concrete domains allow to
capture integrity constraints on numerical data [12].

It has recently been suggested that the expressive power of DLs
with concrete domains can be further improved by adding database-
style key constraints [15]. The most important such constraints are
uniqueness constraints and functional dependencies, see e.g. [1]. The
former allow to describe a set of properties that uniquely determine
the identity of an object, such as in “Americans are uniquelyidenti-
fied by their social security number”. In contrast, functional depen-
dencies allow to express that the value of a property is determined by
a set of properties, e.g. as in “all books with the same ISBN number
have the same title”. Clearly, both kinds of key constraintsare very
useful in the afore mentioned application areas.

The analysis of DLs with concrete domains and key constraints
performed in [15] revealed thatuniquenessconstraints can have a se-
vere impact on computational complexity: if they are added to the
basic DL with concrete domainsALC(D), then the complexity of
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reasoning jumps from PSPACE-complete to NEXPTIME-complete or
even to undecidable—depending on the variant of uniquenesscon-
straints admitted. To the best of our knowledge, however, the result of
adding the equally natural and important functional dependencies to
DLs with concrete domains has never been investigated (though this
has been done for DLswithoutconcrete domains, c.f. [6, 7, 9, 18]).

In this paper, we extendALC(D) with functional dependencies
such as

(isbn skeyforBook; title);

which states that all instances of the classBook that share the same
isbn also share the sametitle. Formally, bothisbn andtitle are partial
functions connecting logical objects with elements of the concrete
domain, say strings. The purpose of this paper is then toanalyze the
impact on decidability and complexity of adding functionaldepen-
dencies to description logics with concrete domains. Intuitively, the
expressive power of functional dependencies is much weakerthan
that of the uniqueness constraints considered in [15]: while the lat-
ter enable the simulation of nominals (as known from modal logic)
and thus have a considerable impact on the model theory of theun-
derlying logic, the former merely allow to state some constraints on
concrete data that have no direct effect on the logical part of the DL.
Rather surprisingly, we are nevertheless able to show that the effect
of adding functional dependencies to DLs with concrete domains is
similarly dramatic as in the case of uniqueness constraints: reason-
ing in ALC(D) with full functional dependencies turns out to be
undecidable, while a slight restriction on the structure offunctional
dependencies brings us down to NEXPTIME-completeness.

This paper is organized as follows: In Section 2, we introduce the
DL ALC(D)

FD which augmentsALC(D) with functional depen-
dencies. In Section 3, we show thatALC(D)FD is undecidable in
the general case and NEXPTIME-hard if we restrict ourselves to a
certain, natural class of functional dependencies. A matching NEX-
PTIME upper bound is established in Section 4, where we also exhibit
a tableau algorithm for the restricted logic (which, for thefirst time,
combines concrete domains with a blocking mechanism). Finally, we
give concluding remarks in Section 5.

2 The Description LogicALC(D)

FD

We start with formally introducing concrete domains.

Definition 1 (Concrete Domain) A concrete domainD is a pair
(�

D

,�
D

), where�
D

is a set and�
D

a set of predicate names. Each
predicate name is associated with an arityn and ann-ary predicate
P
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. AD-conjunctionis a finite predicate conjunction of the
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Based on concrete domains, we define the syntax ofALC(D)

FD.

Definition 2 (ALC(D)FD Syntax) LetN
C

, N
R

andN

F

be pair-
wise disjoint and countably infinite sets ofconcept names, role
names, andconcrete features. Furthermore, we assume thatN

R
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tains a countably infinite subsetN
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of abstract features. Apathu is
a compositionf
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and a concrete featureg. LetD be a concrete domain. The set of
ALC(D)

FD-concepts is the smallest set such that

� every concept name is a concept
� if C andD are concepts,R is a role name,g is a concrete feature,
u
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: : : u
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are paths, andP 2 �

D

is a predicate of arityn, then the
following expressions are also concepts:

:C; C uD; C tD; 9R:C; 8R:C; 9u
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n

:P; andg":

A functional dependencyis an expression

(u

1

; : : : ; u

k

wkeyforC; u) (weakfun. dep.)
or (u

1

; : : : ; u

k

skeyforC; u) (strongfun. dep.)

whereu
1

: : : u

k

(k � 1) andu are paths andC is a concept. A finite
set of functional dependencies is calledkey box. If a key box contains
only weak functional dependencies, it is calledweak.

We use> as abbreviation for an arbitrary propositional tautology.In-
tuitively, the two kinds of functional dependencies differas follows:
if there are instancesx andy of C that have the same values for the
pathsu

1

; : : : ; u

n

, then weak f.d.s enforce theu-values ofx andy to
be identical only ifbothx andy are already known to have a value
for u. In contrast, a strong functional dependency would enforcey to
have au-value if x has one (indeed, they have to be the same), and
vice versa.

Definition 3 (ALC(D)FD Semantics) An interpretationI is a pair
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is theinterpretation function. The interpretation function maps each
concept nameC to a subsetCI of�
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An interpretationI is amodelof a conceptC iff CI 6= ;. We say that
I satisfiesa weak functional dependency(u
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I is amodelof a key boxK iff I satisfies all functional dependen-

cies inK. A conceptC is satisfiable w.r.t. a key boxK iff C andK
have a common model.

Due to space limitations, we have to refer the reader to [16].for ex-
amples ofALC(D)FD-concepts and key boxes.

3 Lower Bounds

In this section, we prove undecidability ofALC(D)FD as intro-
duced in the previous section, and NEXPTIME-hardness of a vari-
ant ofALC(D)FD that is obtained by putting a mild restriction on
functional dependencies. Full proof details can be found in[16].

Undecidability ofALC(D)FD is proved by reduction of the well-
knownPost Correspondence Problem (PCP)[17]. Recall that an in-
stance of the PCP is given by a list(`
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; r
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) of pairs of
words over some alphabet�, and that asolutionto such an instance is
a non-empty sequence of integersi
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from the range1; : : : ; k
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i
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. To reduce this problem toALC(D)FD-
concept satisfiability w.r.t. key boxes, we use the concretedomain
W defined in [13]:�

W

is �

�, and there is a binary concatenation
predicateconc

w

for eachw 2 �

� such that(x; y) 2 concW
w

iff
y = xw. Intuitively, the reduction works as follows: given a PCP
instanceP , we define a reduction conceptC

P

andweakkey boxK
P

such that their common modelI has the shape of ak-ary infinite
tree. Each node represents a different sequence of indicesi
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,
i.e. a potential solution forP . Additionally, there are concrete fea-
tures` and r such that each nodez representingi
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. Finally, the definition
of C

P

ensures that̀I(z) 6= r

I

(z) for every nodez, and thus no
potential solution is a solution. Hence,P has a solution if and only
if C

P

is unsatisfiable w.r.t.K
P

. Note that, without key boxes, it is
impossible to enforce an infinite tree as needed. In [13], it is shown
thatW itself is computationally very simple, i.e. that the satisfiability
of W-conjunctions can be decided in PTIME.

Theorem 4 There exists a concrete domainW such that satisfiability
of W-conjunctions is inPTIME andALC(W)

FD-concept satisfiabil-
ity w.r.t. weak key boxes is undecidable.

It is interesting to note that we do not need strong functional de-
pendencies for the reduction. Moreover, we only need singleton key
boxes whose functional dependency has only a single concrete fea-
ture on the left- and right-hand side. As discussed in [14], the con-
crete domainW can be replaced by more natural ones, e.g.�

D

= N

and predicates=
0

, =, 6=, +, and�.
We now investigate a mild restriction of the logicALC(D)FD that

is obtained by considering only a “safe” form of key boxes:

Definition 5 A key box is calledsafe if none of the concepts in-
side functional dependencies in it has a subconcept of the form
9u

1

; : : : ; u

n

:P .

As safe key boxes suffice to model the simple example in the in-
troduction as well as the more complex ones in [16], we believe
that this restriction is not very severe. Also note that it isconsid-
erably more relaxed than the “Boolean” key boxes from [15]. As will
be shown in Section 4,ALC(D)FD-concept satisfiability w.r.t. safe
key boxes is decidable in NEXPTIME. Here, we establish a matching



lower bound. This time, we reduce a NEXPTIME-complete variant of
the tiling problem[5, 11], which is formulated as follows: adomino
systemD = (T;H; V ) is given by a finite set of tile typesT and hor-
izontal and vertical matching relationsH;V � T �T . The task is to
cover a2n+1

�2

n+1-torus (i.e., a rectangle whose parallel edges are
“glued” together) with tiles such that adjacent tiles “match” accord-
ing to H andV . For the reduction, it suffices to use a very simple
concrete domainD such that�

D

= f0; 1g and�
D

contains predi-
cates=

0

and=
1

. The definition of the reduction concept ensures that
its models have the shape of a binary tree such that, for everyposi-
tion (x; y) in the torus, there is a leaf of the tree that corresponds to
position(x; y). This correspondence is established via the concrete
domainD, which is used to binarily encode thex- andy-components
of positions in the torus. In a similar way, we encode the tiletypes.
The key box is then used to ensure that leaves corresponding to the
same position are labeled identically. Once this is done, the matching
conditions are easily enforced.

Theorem 6 ALC(D)

FD-concept satisfiability w.r.t. weak safe key
boxes isNEXPTIME-hard if f0; 1g � �

D

and there are predicates
=

0

and=
1

.

Again, we only need weak key boxes for the reduction and all paths
in the employed functional dependencies are of length one (i.e. con-
crete features). However, this time wedo need more than one func-
tional dependency and more than one concrete feature on the left-
hand side. As discussed in [16], these restrictions can be alleviated
by going to slightly more powerful concrete domains.

4 A Tableau Algorithm for ALC(D)

FD

In this section, we use a tableau algorithm to show thatALC(D)

FD-
concept satisfiability w.r.t. safe key boxes (c.f. Definition 5) is de-
cidable. As a by-product of the algorithm, we also prove thatthis
problem is in NEXPTIME.

In general, tableau algorithms for description logics are very popu-
lar because they can often be implemented in an efficient manner [8].
To decide whether a concept is satisfiable, tableau algorithms try to
construct a model for it. To this end, they start with some initial data
structure representing a fraction of a model, and then repeatedly ap-
ply completion rules that gradually augment the model. Eventually,
either a contradiction is obtained or a contradiction-free(representa-
tion of a) model is found to which no more rules are applicable. The
algorithm returns “unsatisfiable” in the former case and “satisfiable”
in the latter.

Since we want the tableau algorithm to be independent of a spe-
cific concrete domain, we need a clean interface to a concretedo-
main reasoner whose job is to detect inconsistencies related to the
concrete domain. Traditionally, this interface is established by re-
quiring that satisfiability ofD-conjunctions is decidable (admissibil-
ity of D [2, 10]). However, due to the functional dependencies this
is not enough: the concrete domain reasoner should also inform the
tableau algorithm about which variables have to be mapped tothe
same value in order to satisfy a certainD-conjunction. Thus, we em-
ploy the stronger condition ofkey-admissibilityintroduced in [15].
As discussed e.g. in [16], every admissible concrete domainwhich
provides for an equality predicate is also key-admissible.

Definition 7 (key-admissible) A concrete domainD is key-
admissibleiff it satisfies the following properties:

1. �
D

contains a name>
D

for �
D

;

2. �
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is closed under negation, i.e., for eachn-ary predicate
P 2 �

D

, there is a predicateP 2 �
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of arity n such that

P
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= �
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n P

D ;
3. there exists an algorithm that takes as input aD-conjunction
, re-
turnsclash if 
 is unsatisfiable, and otherwise non-deterministically
outputs an equivalence relation� on the set of variablesV used in

 such that there exists a solutionÆ for 
 with the following prop-
erty: for all v; v0 2 V

Æ(v) = Æ(v

0

) iff v � v

0

:

Before presenting the tableau algorithm, we need some more pre-
requisites. A concept is innegation normal form (NNF)if negation
occurs only in front of concept names. IfD is a key-admissible con-
crete domain, then everyALC(D)FD-concept can be converted into
an equivalent one in NNF, see [16] for details. We use_:C to denote
the result of converting the concept:C into NNF. A key boxK is in
NNF if all concepts occurring in functional dependencies inK are in
NNF. From now on, we assume that all input concepts and key boxes
are in NNF, and that the concrete domainD is key-admissible.

Let C be anALC(D)FD-concept andK a key box. We use
sub(C) to denote the set of subconcepts ofC and
on(K) to denote
the set of concepts appearing on the right-hand side of functional
dependencies inK. We use
l(C;K) as abbreviation for the set

sub(C) [ fD; _:D j there is anE 2 
on(K) with D 2 sub(E)g:

Our algorithm works on completion trees, whose nodes represent el-
ements of the interpretation domain. Due to the presence of concrete
domains, trees have two types of nodes: abstract ones that represent
individuals of the logic domain�

I

, and concrete ones representing
values of the concrete domain.

Definition 8 (Completion system) Let O
a

andO



be disjoint and
countably infinite sets ofabstractand concrete nodes. A comple-
tion tree for an ALC(D)FD-conceptC and a key boxK is a fi-
nite, labeled treeT = (V
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, and all nodes fromV



are leaves. The tree is
labeled as follows:

1. each nodea 2 V

a

is labeled with a subsetL(a) of 
l(C;K);
2. each edge(a; b) 2 E with a; b 2 V

a

is labeled with a role name
L(a; b) occurring inC or K;

3. each edge(a; x) 2 E with a 2 V
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andx 2 V




is labeled with a
concrete featureL(a; x) occurring inC or K

A nodeb 2 V

a

is anR-successor of a nodea 2 V

a

if (a; b) 2 E and
L(a; b) = R, while anx 2 V




is a g-successor ofa if (a; x) 2 E

andL(a; x) = g. The notionu-successor for a pathu is defined in
the obvious way.

A completion systemfor anALC(D)FD-conceptC and a key box
K is a tuple(T;P;�) where

� T = (V

a

; V




; E;L) is a completion tree forC andK,
� P maps eachP 2 �
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of arity n in C to a subset ofV n




,
� � is an equivalence relation onV




.

Let D be a key-admissible concrete domain. To decide the sat-
isfiability of anALC(D)FD-conceptC

0

w.r.t. a safe key boxK,
the tableau algorithm is started with the initial completion system
S
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; ;), where the initial completion tree is
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0

g; ;; ;; fa
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maps eachP occurring inC
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We will define the completion rules after some prerequisites. Let
us first introduce an operation that is used by completion rules to add
new nodes to completion trees. The operation respects the function-
ality of abstract and concrete features.

Definition 9 (� Operation) An abstract or concrete node is called
freshw.r.t. a completion treeT if it does not appear inT . LetS =

(T;P;�) be a completion system withT = (V
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; V




; E;L). We use
the following operations:

� S � aRb (a 2 V
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� if R 62 N
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b to V
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such that(a; 
) 2 E and
L(a; 
) = R then rename
 in T with b.
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, (a; x) to E and set
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� if a has ag-successory, then renamey in T , P, and� with x.
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is fresh inT , we denote the completion system obtained from
S by taking distinct nodesb
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Now we define what is meant by an obvious inconsistency.

Definition 10 (Clash) Let S = (T;P;�) be a completion system
for a conceptC and a key boxK with T = (V

a

; V




; E;L). We say
thatS contains aclashiff

1. there is ana 2 V
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and anA 2 N
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such thatfA;:Ag � L(a),
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such thatg" 2 L(a) andx is a
g-successor ofa,

3. S is notconcrete domain satisfiable, i.e. the following conjunction
is not satisfiable:
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In order to ensure the termination of the algorithm, we need acycle
detection mechanism. Informally, we detect nodes in the completion
tree that are “similar” to one of their ancestors and “block”them, i.e.
we do not apply completion rules to such nodes.

Definition 11 (� relation, Blocking) LetS = (T;P;�) be a com-
pletion system for a conceptC

0

and a key boxK with T =

(V
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; V




; E;L). Let u be a path. We say that nodesa; b 2 V
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have
similaru-successors(writtena �
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� if a has au-successorx, thenb has au-successory andx � y;
� if b has au-successorx, thena has au-successorx andx � y.

Withsu�(C
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in a9u
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) or in a functional dependency (either
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nodesa andb similar (writtena � b) if
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� a �

u

b for all u 2 su�(C
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An abstract nodea 2 V
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if a � b. An abstract node isblockedif it or one of its ancestors is
directly blocked.
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then setS := S � aRb for a freshb 2 O

a

andL(b) := fCg

R8 if 8R:C 2 L(a), a is unblocked, andb is anR-successor
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such thatx
i

is an
unblockedu

i

-successor ofa for 1 � i � n, and
fC; _:Cg \ L(a) = ;

then setL(a) := L(a) [ fDg for someD 2 fC; _:Cg

Rwk if C 2 L(a) \ L(b), (u
1
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wkeyforC; u) 2 K, a andb
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-successorx
i

, b hasu
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-successory
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,
andx

i

� y

i

for 1 � i � n, there is au-successorx of a and a
u-successory of b, and(x; y) 62 �
then set� := (� [ f(x; y)g)

�

Rsk if C 2 L(a) \ L(b), (u
1
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skeyforC; u) 2 K, a andb
are unblocked,a hasu
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andx
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for 1 � i � n, there is au-successorx of a, and
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then set� := �
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Figure 1. The completion rules.

An intuitive explanation of the blocking mechanism is givenafter we
have introduced the completion rules, which are displayed in Fig-
ure 1. In the figure, we usecheck to refer to the function that com-
putes a concrete equivalence for a givenD-conjunction (c.f. Point 3
of Definition 7). Moreover,�� denotes the reflexive, symmetric, and
transitive closure of the binary relation�.

Among the rules, there are two non-deterministic ones, namely
Rt andR
h. The rulesRu, Rt, R9, R8, andR9




are variants of
the corresponding rules from the classical algorithm forALC(D)-
concept satisfiability [2]. The rulesR
h, Rwk, andRsk deal with key
boxes and deserve some comments.
R
h is a so-called “choice” rule: if there is a functional de-

pendency(u
1

; : : : ; u

n

w/skeyforC; u) 2 K and there is an ab-
stract nodea with all appropriateu

i

-successors, then the rule non-
deterministically addsC or _:C toL(a). This is necessary since both
possibilities may induce clashes after further rule applications that
would otherwise go unnoticed. Observe that, without blocking, this
rule can cause infinite runs of algorithm, e.g. due to a dependency
(u wkeyfor9R:>; u) 2 K and “bad guessing”. The first part of the
blocking condition deals with this problem.

TheRwk rule deals with weak functional dependencies. Suppose
there is a(u

1

; : : : ; u

n

wkeyforC; u) 2 K and two abstract nodesa



andb, both having successors for the pathsu; u

1

; : : : ; u

n

, and whose
u

i

-successors are related via�, i.e. represent the same element of the
concrete domain. Then theRwk rule makes sure that theu-successors
of a andb are also related by�.

Analogously, theRsk rule deals with strong functional dependen-
cies. The difference toRwk is that it is applied even ifb does not
already have au-successor. In this case, the necessaryu-successor
of b is created. This rule endangers the termination of the algorithm.
To see this, consider satisfiability of

C

0

= 9g:=

0

u 9(fg):=

0

w.r.t. K = f(g skeyfor>; fg)g:

Without blocking, applications ofRsk will generate an infinitef -
chain such that each element has ag-successor that is zero. The sec-
ond part of the blocking condition deals with this effect.

Finally, theR� rule computes an update of the concrete equiva-
lence� by calling thecheck function with argument�

S

as defined in
Definition 10. This is necessary since the ruleR9




adds new tuples
into P(P ), and the rulesRwk andRsk add new tuples into�, thus
modifying theD-conjunction�

S

. The update is performedduring the
run of the algorithm—in contrast to the originalALC(D) algorithm,
where a single call to the concrete domain reasoner at the endof the
computation is sufficient. The “interleaving” approach of our algo-
rithm is essential since the equality of concrete nodes detected by the
concrete domain reasoner can trigger further applicationsof theRwk
andRsk rules.

The algorithm repeats the following two steps: first, it checks
whether the completion system contains a clash, returningunsatis-
fiable if this is the case. Otherwise, it checks whether a completion
rule is applicable. If no, then it returnssatisfiable. If yes, then it ap-
plies the rule and starts over. Note that checking for clashes prior to
rule application ensures that the function
he
k(�

S

) in R� does not
returnclash.

In [16], it is proved that this algorithm terminates on any input,
and that it is sound and complete.

Theorem 12 If D is a key-admissible concrete domain, the tableau
algorithm decides satisfiability ofALC(D)FD concepts w.r.t. safe
key boxes.

Moreover, it follows from the soundness proof in [16] that
ALC(D)

FD has abounded model property: if anALC(D)FD con-
ceptC

0

is satisfiable w.r.t. a safe key boxK, thenC
0

andK have
a common model whose size is at most exponential in the size
of C

0

andK. This result almost immediately yields a NEXPTIME

upper bound forALC(D)FD with safe key boxes if extendedD-
satisfiability is in NP, i.e. if the (non-deterministic) algorithm for
checkingD-satisfiability described in Definition 7 runs in polyno-
mial time. Note that we say “almost immediately” since we have to
ensure an appropriately-sized representation of concretedomain ele-
ments when “guessing” models of exponential size. More details can
be found in [16].

Theorem 13 If D is a key-admissible concrete domain and extended
D-satisfiability is in NP, then ALC(D)FD-concept satisfiability
w.r.t. safe key boxes is inNEXPTIME.

5 Conclusion

In this paper, we have completed the investigation of description log-
ics with concrete domains and key constraints that was begunin

[15]. In particular, we have shown that the impact on computational
complexity of adding functional dependencies is just as dramatic as
for the seemingly more powerful uniqueness constraints. Still, we
were able to come up with a tableau algorithm forALC(D)

FD with
safe key boxes that should be amenable to known optimizationtech-
niques [8] and thus has the potential to be implemented efficiently. It
should also be noted that, for the first time, we have combinedfull
concrete domains (as introduced in [2]) with a blocking mechanism.

For future work, it would be interesting to combine both unique-
ness and functional dependencies in a single DL with concrete do-
mains. We conjecture that the upper bounds are preserved andthat
the more restricted Boolean key boxes in [15] can be replacedby
our safe ones. It is also worthwhile to integrate functionaldependen-
cies into more expressive DLs such asSHOQ(D) orALC(D) with
(acyclic) TBoxes.
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