Description Logics with Concrete Domains and
Functional Dependencies

Carsten Lutz and Maja Mili Cic!

Abstract.
useful tool in many applications. To further enhance theesgve
power of such DLs, it has been proposed to add databasekstyle
constraints. Up to now, however, only uniqueness consgrdiave
been considered in this context, thus neglecting the sefuomdh-
mental family of key constraints: functional dependenciesthis
paper, we consider the basic DL with concrete domadt¥’ (D),
extend it with functional dependencies, and analyze theangf this
extension on the decidability and complexity of reasonifigough
intuitively the expressivity of functional dependenciegms weaker
than that of uniqueness constraints, we are able to showttibat
former have a similarly severe impact on the computatiomapp
erties: reasoning is undecidable in the general case, antPNIRIE -
complete in some slightly restricted variants of our logic.

1 Introduction

Description Logics (DLs) are a family of logic-based knoude rep-
resentation formalisms designed to represent and reasan ebn-
ceptual knowledge [4]. In recent application areas of DLshsas

the semantic web and reasoning about database schemastethe i

gration of so-called concrete domains (or, synonymousincrete
datatypes) has turned out to be a crucial task. A concreteiois
provided by a set (e.g. the integers, reals, or strings)fiaed predi-
cates on this set (e.g:, +, prime, andis-prefix) [2, 10]. In the context
of the semantic web, DLs with concrete domains thus allowote f
mulate ontologies that refer to concrete qualities of djsach as
their size, weight, temperature, etc. [3]. In reasoningualdatabase

schemas such as ER and UML diagrams, concrete domains allow bL ACC(D)}'D which augmentsA£C (D)

capture integrity constraints on numerical data [12].

It has recently been suggested that the expressive powet®f D

with concrete domains can be further improved by addinghdesta:
style key constraints [15]. The most important such comgsare
uniqueness constraints and functional dependencies,gdéleThe
former allow to describe a set of properties that uniquelgitheine
the identity of an object, such as in “Americans are uniquddnti-
fied by their social security number”. In contrast, functibdepen-
dencies allow to express that the value of a property is oeted by
a set of properties, e.g. as in “all books with the same I1SBilrer
have the same title”. Clearly, both kinds of key constraares very
useful in the afore mentioned application areas.

Description Logics (DLs) with concrete domains are a reasoning jumps from FF8ce-complete to NKPTIME-complete or

even to undecidable—depending on the variant of uniquec@ss
straints admitted. To the best of our knowledge, howeverebult of
adding the equally natural and important functional depeniks to
DLs with concrete domains has never been investigated gththis
has been done for DLwithoutconcrete domains, c.f. [6, 7, 9, 18]).

In this paper, we extendlLC(D) with functional dependencies
such as

(isbn skeyforBook, title),

which states that all instances of the cl&ok that share the same
isbn also share the santile. Formally, bothisbn andtitle are partial
functions connecting logical objects with elements of tbaarete
domain, say strings. The purpose of this paper is them#dyze the
impact on decidability and complexity of adding functiodalpen-
dencies to description logics with concrete domainsuitively, the
expressive power of functional dependencies is much wethker
that of the uniqueness constraints considered in [15]:enthié lat-
ter enable the simulation of nominals (as known from modaiclp
and thus have a considerable impact on the model theory afrthe
derlying logic, the former merely allow to state some caaists on
concrete data that have no direct effect on the logical gaheoDL.
Rather surprisingly, we are nevertheless able to show tiea¢ffect
of adding functional dependencies to DLs with concrete domi
similarly dramatic as in the case of uniqueness constraieéson-
ing in ALC(D) with full functional dependencies turns out to be
undecidable, while a slight restriction on the structurdusictional
dependencies brings us down to K IME-completeness.

This paper is organized as follows: In Section 2, we intrediine
with functional depen-
dencies. In Section 3, we show thdt’C(D)”? is undecidable in
the general case and METIME-hard if we restrict ourselves to a
certain, natural class of functional dependencies. A niagcN EX -
PTIME upper bound is established in Section 4, where we also éxhibi
a tableau algorithm for the restricted logic (which, for flrst time,
combines concrete domains with a blocking mechanism) llinee
give concluding remarks in Section 5.

2 The Description Logic ALC(D)”P

We start with formally introducing concrete domains.

The analysis of DLs with concrete domains and key conssaint Definition 1 (Concrete Domain) A concrete domairD is a pair

performed in [15] revealed thahiquenessonstraints can have a se-

vere impact on computational complexity: if they are addedhe
basic DL with concrete domaind £C (D), then the complexity of

L Institute for Theoretical Computer Science, TU Dresdenn@ey. Emails:
{lutz, milicic} @tcs.inf.tu-dresden.de

(Ap, ®p), whereAp is a set andbp a set of predicate names. Each
predicate name is associated with an anityand ann-ary predicate
PP C AL. AD-conjunctionis a finite predicate conjunction of the

form i ;
c= /\(:v(()),...,a:,gi)) : P
i<k

where P; is an n;-ary predicate fori < k& and the xJ@ are

variables. AD-conjunctionc is satisfiableif there exists a func-
tion § mapping the variables i to elements ofAp such that
(6(1:(()”), . ,5(95,(52)) € PP for eachi < k. Such a function is
called asolutionfor c.

Based on concrete domains, we define the syntax&t (D)7 P,

Definition 2 (A£C (D)7 P Syntax) Let N¢, Nr and N.r be pair-
wise disjoint and countably infinite sets @bncept names, role
namesandconcrete featuresurthermore, we assume thatz con-
tains a countably infinite subséf, » of abstract feature#\ pathu is

a compositionfy - - - frg of n abstract featuresi, ..., fn (n > 0)
and a concrete featurg. Let D be a concrete domain. The set of
ALC(D)*P-concepts is the smallest set such that

e every concept name is a concept

e if C'and D are conceptsR is a role namey is a concrete feature,
u1 ... u, are paths, and® € & is a predicate of arityr, then the
following expressions are also concepts:

-~C, 0N D, CUD,3RC,YR.C, Ju,...

A functional dependendg an expression
(u1,...,ur wkeyforC,u) (weakfun. dep.)
or (ui,...,ur skeyforC,u) (strongfun. dep.)
whereu, ... u, (k > 1) andu are paths and”' is a concept. A finite
set of functional dependencies is callay box If a key box contains
only weak functional dependencies, it is calleeak

, un. P, andg?.

We useT as abbreviation for an arbitrary propositional tautoldgy.
tuitively, the two kinds of functional dependencies diféer follows:

if there are instances andy of C' that have the same values for the
pathsus, ..., u,, then weak f.d.s enforce thevalues ofr andy to

be identical only ifbothz andy are already known to have a value
for w. In contrast, a strong functional dependency would enfgrice
have au-value if z has one (indeed, they have to be the same), an
vice versa.

Definition 3 (ALC(D)* P Semantics) Aninterpretatior is a pair
(Az,'T), where A7 is a non-empty set, called thdomain and -*
is theinterpretation functionThe interpretation function maps each
concept name€’ to a subsetC'” of Az, each role name? to a subset
RT of Az x Az, each abstract featurg to a partial function f*
from Az to Az, and each concrete featuteto a partial functiong®
fromAz to Ap.

If u = fi---fngis apath andd € Az, thenu”(d) is defined
asgr(fF---(f£(d))---). The interpretation function is extended
to arbitrary concepts as follows:

(=C)T == Az \ CT
cnpyf:=ctnpr (Cub:.=cTub*
(AR.C)Y :={d e Az |3e: (d,e) € RT Ne e CT}
(VR.C)T:={d € Ar|Ve: (de) € RT = ec CT}
7un.P)I ={d € Az |Iz1,...,2n € Ap:
uf(d) = z;and(z1,...,z,) € PP}
(gN)* := {d € Az | g*(d) undefined}.

(Elul, N

An interpretatiorlZ is amodelof a concept” iff CT # (. We say that
7 satisfiesa weak functional dependen¢y, . . . , u; wkeyforC', u)
if, for all a,b € CT with uZ (a) = uf (b) for 1 < i < n andu?(a)
andu” (b) defined, we have” (¢) = u” (b). Z satisfiesa strong func-
tional dependencyus, ..., us skeyforC, u) if, for all a,b € C*

with v (a) = wf(b) for 1 < i < n andu?(a) defined, we have
u” (b) defined and:” (a) = u” (b).

T is amodelof a key boxC iff Z satisfies all functional dependen-
cies inkC. A concept” is satisfiable w.r.t. a key bok iff C' and K
have a common model.

Due to space limitations, we have to refer the reader to fb8lex-
amples ofALC(D)”P-concepts and key boxes.

3 Lower Bounds

In this section, we prove undecidability of£C(D)” ™ as intro-
duced in the previous section, and KiETIME-hardness of a vari-
ant of ACC(D)” P that is obtained by putting a mild restriction on
functional dependencies. Full proof details can be fourjd &h.
Undecidability of ALC(D)” ™ is proved by reduction of the well-
known Post Correspondence Problem (PCRY]. Recall that an in-
stance of the PCP is given by a ligt, r1), ..., (¢, r) of pairs of
words over some alphabgt and that solutionto such an instance is
a non-empty sequence of integérs. . ., i, fromtherangd, ... &
such that the “left concatenatioid;, - - - ¢;,, is identical to the “right
concatenation’;, - --r;, . To reduce this problem tel£C (D)7 P-
concept satisfiability w.r.t. key boxes, we use the concdet@ain
W defined in [13]:Aw is ¥*, and there is a binary concatenation
predicateconc,, for eachw € £* such that(z,y) € conc iff
y = zw. Intuitively, the reduction works as follows: given a PCP
instanceP, we define a reduction conceir andweakkey boxX p
such that their common mod#l has the shape of k-ary infinite
tree. Each node represents a different sequence of indlicesi,,,
i.e. a potential solution foP. Additionally, there are concrete fea-
tures? andr such that each node representing; - - - i, satisfies
0*(z) = €y -~ 0;, andr®(z) = ry, ---r;, . Finally, the definition
of Cp ensures that” (z) # r%(z) for every nodez, and thus no
otential solution is a solution. Henc®, has a solution if and only
C'p is unsatisfiable w.r.t'C». Note that, without key boxes, it is
impossible to enforce an infinite tree as needed. In [13§ #hiown
thatw itself is computationally very simple, i.e. that the sagibfiity
of w-conjunctions can be decided in RTE.

Theorem 4 There exists a concrete domainsuch that satisfiability
of W-conjunctions is irP TIME and ALC(W)7 P -concept satisfiabil-
ity w.r.t. weak key boxes is undecidable.

It is interesting to note that we do not need strong funclialea
pendencies for the reduction. Moreover, we only need sioglkey
boxes whose functional dependency has only a single cenferat
ture on the left- and right-hand side. As discussed in [1#,don-
crete domairw can be replaced by more natural ones, Ag.= N
and predicates, =, #, +, andx.

We now investigate a mild restriction of the logieCC(D)” that
is obtained by considering only a “safe” form of key boxes:

Definition 5 A key box is calledsafeif none of the concepts in-
side functional dependencies in it has a subconcept of tha fo
Jur, ..., Un. P.

As safe key boxes suffice to model the simple example in the in-
troduction as well as the more complex ones in [16], we believ
that this restriction is not very severe. Also note that itdgsid-
erably more relaxed than the “Boolean” key boxes from [15 wAll

be shown in Section 44£C(D)” P-concept satisfiability w.r.t. safe
key boxes is decidable in NP TIME. Here, we establish a matching

lower bound. This time, we reduce a NETIME-complete variant of
thetiling problem(5, 11], which is formulated as follows: @mino
systenD = (T, H, V') is given by a finite set of tile typeE and hor-
izontal and vertical matching relatiots, V' C T' x T'. The task is to

2. ®&p is closed under negation, i.e., for eachary predicate
P € ®&p, there is a predicateP € &p of arity n such that
P” = Ap\ PP,

3. there exists an algorithm that takes as inp@-&onjunctionc, re-

1 1 A . . . e . L
cover a2"*! x 2"*!-torus (i.e., a rectangle whose parallel edges are turnsclash if ¢ is unsatisfiable, and otherwise non-deterministically

“glued” together) with tiles such that adjacent tiles “nfétaccord-
ing to H and V. For the reduction, it suffices to use a very simple
concrete domaim such thatAp = {0,1} and®p contains predi-

cates=¢ and=;. The definition of the reduction concept ensures that

its models have the shape of a binary tree such that, for @asiy

outputs an equivalence relatien on the set of variable¥ used in
¢ such that there exists a solutidnfor ¢ with the following prop-
erty: forall v,v' € V

S(v) =) iffv ~ .

tion (z,y) in the torus, there is a leaf of the tree that corresponds to

position (x,y). This correspondence is established via the concret
domainD, which is used to binarily encode the andy-components

of positions in the torus. In a similar way, we encode thetiijges.
The key box is then used to ensure that leaves corresporalithg t
same position are labeled identically. Once this is doreepthtching
conditions are easily enforced.

Theorem 6 ALC(D)”P-concept satisfiability w.r.t. weak safe key
boxes isNExPTIME-hard if {0,1} C Ap and there are predicates
=g and=;.

Again, we only need weak key boxes for the reduction and aliga
in the employed functional dependencies are of length oaeq@n-
crete features). However, this time e need more than one func-
tional dependency and more than one concrete feature orefthe |
hand side. As discussed in [16], these restrictions canlbeiaied
by going to slightly more powerful concrete domains.

4 A Tableau Algorithm for ALC(D)*P

In this section, we use a tableau algorithm to show that (D)
concept satisfiability w.r.t. safe key boxes (c.f. Definitib) is de-
cidable. As a by-product of the algorithm, we also prove tha
problem is in NEXPTIME.

In general, tableau algorithms for description logics ang/popu-
lar because they can often be implemented in an efficient exd8h
To decide whether a concept is satisfiable, tableau algositiny to
construct a model for it. To this end, they start with soméahdata
structure representing a fraction of a model, and then tedaap-
ply completion rules that gradually augment the model. Hyely,
either a contradiction is obtained or a contradiction-{representa-
tion of a) model is found to which no more rules are applicable
algorithm returns “unsatisfiable” in the former case andiséable”
in the latter.

FD_

Before presenting the tableau algorithm, we need some nrere p

requisites. A concept is inegation normal form (NNFf negation
occurs only in front of concept names.Tifis a key-admissible con-
crete domain, then evert £C(D)” P-concept can be converted into
an equivalent one in NNF, see [16] for details. We tigéto denote
the result of converting the concep into NNF. A key boxK is in
NNF if all concepts occurring in functional dependenciefiare in
NNF. From now on, we assume that all input concepts and kegox
are in NNF, and that the concrete domalris key-admissible.

Let C' be an ALC(D)”P-concept andC a key box. We use
sub(C') to denote the set of subconceptsdindcon(K) to denote
the set of concepts appearing on the right-hand side of ifurat
dependencies ift. We usecl(C, K) as abbreviation for the set

sub(C') U {D, D | thereis anE € con(K) with D € sub(E)}.

Our algorithm works on completion trees, whose nodes reptes-
ements of the interpretation domain. Due to the presencerafrete
domains, trees have two types of nodes: abstract ones firasemnt
individuals of the logic domair\ 7, and concrete ones representing
values of the concrete domain.

Definition 8 (Completion system) Let O, and O. be disjoint and
countably infinite sets ofbstractand concrete nodesA comple-
tion treefor an ALC(D)”P-conceptC' and a key box< is a fi-
nite, labeled tred” = (V,, V., E, £) with nodesl, U V,, such that
Vo C Oq, Ve C O¢, and all nodes fronl/, are leaves. The tree is
labeled as follows:

1. each node € V, is labeled with a subset(a) of cl(C, K);

2. each edgéa,b) € E witha,b € V, is labeled with a role name
L(a,b) occurring inC' or ;

3. each edgéa,z) € E witha € V, andz € V. is labeled with a
concrete featuref (a,) occurring inC' or K

Anodeb € V, is an R-successor of anode€ V, if (a,b) € F and

Since we want the tableau algorithm to be independent of a spel(a,b) = R, while anxz € V. is a g-successor of if (a,z) € £

cific concrete domain, we need a clean interface to a cond®te
main reasoner whose job is to detect inconsistencies detatéhe
concrete domain. Traditionally, this interface is estti#d by re-
quiring that satisfiability of>-conjunctions is decidabl@dmissibil-

and L(a,x) = g. The notionu-successor for a path is defined in
the obvious way.

Acompletion systerfor an ALC(D)” P-conceptC' and a key box
K is atuple(T, P, ~) where

ity of D [2, 10]). However, due to the functional dependencies this, 7 _ (Va, V., E, L) is a completion tree fof’ and K

is not enough: the concrete domain reasoner should alsonirtfee
tableau algorithm about which variables have to be mappeteo
same value in order to satisfy a cert@nconjunction. Thus, we em-
ploy the stronger condition dfey-admissibilityintroduced in [15].
As discussed e.g. in [16], every admissible concrete domwaich
provides for an equality predicate is also key-admissible.

Definition 7 (key-admissible) A concrete domainD
admissibléff it satisfies the following properties:

is key-

1. ®p contains a namé p for Ap;

e P maps eaclP € ®p of arity n in C to a subset of/.",
e ~ is an equivalence relation oW..

Let D be a key-admissible concrete domain. To decide the sat-
isfiability of an ALC (D)7 -conceptCy w.r.t. a safe key boxc,
the tableau algorithm is started with the initial complatigystem
Scy = (Tey, Po, B), where the initial completion tree is

Teo = ({ao}, 0,0, {ao — {Co}}),

andP, maps eactP occurring inCy to 0.

We will define the completion rules after some prerequisites
us first introduce an operation that is used by completiogsrtd add
new nodes to completion trees. The operation respects tintida-
ality of abstract and concrete features.

Definition 9 (& Operation) An abstract or concrete node is called
freshw.r.t. a completion tred’ if it does not appear i7". LetS =
(T, P,~) be a completion system with= (V,, V¢, E, L). We use
the following operations:

e S®aRb(a €V, be O, freshinT, R € Ng) yields a comple-
tion system obtained froii in the following way:

e if R¢Z N,r Or R € N,r anda has noR-successors, then add
btoV,, (a,b) to E and setl(a,b) = R, L(b) = 0.

e if R € N,r and there is a € V, such that(a,c) € E and
L(a,c) = Rthen rename in T with b.

e SPagr (a € Vy,z € O freshinT, g € N.r) yields a comple-
tion system obtained froii in the following way:

e if o has nog-successors, then addto V;, (a,z) to E and set
‘C(av 2?) =9,
e if a has ag-successoy, then renameg in T', P, and~ with x.
Letu = f1--- fng be a path. WithS' & aux, wherea € V,, and
x € O, is freshinT, we denote the completion system obtained from
S by taking distinct nodes;, . . ., b, € O, which are fresh ifl” and
settingS’ := S @ afib1 ® - + bp_1fnbn B bngz.

Now we define what is meant by an obvious inconsistency.

Definition 10 (Clash) Let S = (T, P,~) be a completion system
for a conceptC' and a key boXC with T = (V,, V., E, £). We say
that S contains aclashiff
1. thereisaru € V, and anA € N¢ such that{ A, = A} C L(a),
2. there area € V, andz € V. such thatgt € L(a) andz is a
g-successor of,
3. Sis notconcrete domain satisfiabiee. the following conjunction
is not satisfiable:
A\

Cs /\

P usedinC (z1,...,xn)EP(P)

— P(a:l,...,a:n)/\/\=(ﬂfay)

Ty

In order to ensure the termination of the algorithm, we neeycte
detection mechanism. Informally, we detect nodes in theptetion
tree that are “similar” to one of their ancestors and “blotiém, i.e.
we do not apply completion rules to such nodes.

Definition 11 (= relation, Blocking) LetS = (T, P, ~) be a com-
pletion system for a concepf, and a key boxX with T =

(Va, Ve, E, L). Letu be a path. We say that nodesb € V, have
similar u-successoréwritten a =, b) if the following holds:

e if a has au-successot:, thenb has au-successoy andz ~ y;
¢ if b has au-successor, thena has au-successor andz ~ y.

RM if C1 M Cs € L(a), ais unblocked, andC1,C>} € L(a)
thenL(a) := L(a) U {C1, C2}

RU if C1 U Cs € L(a), ais unblocked, andC'1,Co} N L(a) =0
thenL(a) := L(a) U {C} for someC € {C1,C>}

R3 if 3R.C € L(a), a is unblocked, and there is @-successor

of a such thaC' € L(b)
then setS := S @ aRb for a freshb € O, andL(b) := {C}

if VR.C' € L(a), a is unblocked, and is an R-successor
of a such thatC' & L(b)

then setZ(b) := L(b) U {C}

if Jui,...,un.P € L(a), a is unblocked, and there exist no
x1,...,T, €V such that:; is au;-successor of,
1<i<n,and(z1,...,z,) € P(P)

then setS := (S D auiz1 & -+ B aunyn), 1,...
Oc¢ freshandP(P) := P(P)U {(z1,...,zn)}

if (u1,...,un keyforC,u) € K with “keyfor” either wkeyfor
or skeyfor, and there exist, ..., z, € V. such thatz; is an
unblockedu;-successor of for 1 < i < n, and

{C,-C}YyN L(a) =10

then set’(a) := L(a) U {D} for someD € {C,~C?}

Rwk if C' € L(a) N L(D), (u1,...,u, wkeyforC,u) € K, a andb
are unblockedg hasu;-successos;, b hasu;-successoy;,
andz; ~ y; for 1 <i < n, there is au-successor of ¢ and a
u-successoy of b, and(z,y) & ~

then setv := (~ U {(z,y)})*

if C € L(a)NL(D), (ut,...,u, skeyforC,u) € K, a andb
are unblockedg hasu;-successot;, b hasu;-successoy;,
andz; ~ y; for 1 < i < n, there is au-successos of a, and
there is nou-successot of b such that(z, z) € ~

then setS := S @ buy with y € O, fresh and

~ = (~U{(z,9)})"

if ~'= check((s) €~

then setv := ~/

RY

,Tn €

Rch

Rsk

~

Figure 1. The completion rules.

An intuitive explanation of the blocking mechanism is giadter we
have introduced the completion rules, which are displayeBig-
ure 1. In the figure, we useheck to refer to the function that com-
putes a concrete equivalence for a giZartonjunction (c.f. Point 3
of Definition 7). Moreoverp* denotes the reflexive, symmetric, and
transitive closure of the binary relatign

Among the rules, there are two non-deterministic ones, hame
RU andRch. The rulesRm, RL, R3, RV, andR3. are variants of
the corresponding rules from the classical algorithm AatC(D)-
concept satisfiability [2]. The ruld®ch, Rwk, andRsk deal with key
boxes and deserve some comments.

Rch is a so-called “choice” rule: if there is a functional de-

Withsuff(Clo, K') we denote the set of all suffixes of paths that appeaPendency(us, . . ., un WiskeyforC,u) € K and there is an ab-

ina3dui,...,un.P € sub(Co) orinafunctional dependency (either
on the left- and right-hand side) in the key bx We call abstract
nodesaz andb similar (writtena = b) if

o L(a) = L(b); and

e a =2, bforall u € suff(Co, K).

An abstract node, € V, is directly blockedby its ancestob € V,

if a =~ b. An abstract node iblockedif it or one of its ancestors is
directly blocked.

stract node: with all appropriateu;-successors, then the rule non-
deterministically add¢’ or =C'to £(a). This is necessary since both
possibilities may induce clashes after further rule appidns that
would otherwise go unnoticed. Observe that, without blogkihis

rule can cause infinite runs of algorithm, e.g. due to a depend

(u wkeyfor3R.T,u) € K and “bad guessing”. The first part of the
blocking condition deals with this problem.

The Rwk rule deals with weak functional dependencies. Suppose

there is a(u1, . . ., u, Wkeyfor C,u) € K and two abstract nodes

andb, both having successors for the paths.1, . . . , u,, and whose

[15]. In particular, we have shown that the impact on comipnal

u;-successors are related wai.e. represent the same element of the complexity of adding functional dependencies is just asnditic as

concrete domain. Then tievk rule makes sure that thesuccessors
of @ andb are also related by.

Analogously, theRsk rule deals with strong functional dependen-
cies. The difference t®&wk is that it is applied even ib does not
already have a-successor. In this case, the necessasuccessor
of b is created. This rule endangers the termination of the kgor
To see this, consider satisfiability of

Co=39.=0M3(fg).=0 w.rt. K ={(gskeyforT, fg)}.

Without blocking, applications oRsk will generate an infinitef-
chain such that each element hagsuccessor that is zero. The sec-
ond part of the blocking condition deals with this effect.

for the seemingly more powerful uniqueness constraintf, &e
were able to come up with a tableau algorithm fo£C (D) ? with
safe key boxes that should be amenable to known optimiztgidin
niques [8] and thus has the potential to be implemented efiigi. It
should also be noted that, for the first time, we have combfukd
concrete domains (as introduced in [2]) with a blocking needsm.

For future work, it would be interesting to combine both wrgg
ness and functional dependencies in a single DL with coeatet
mains. We conjecture that the upper bounds are preservethand
the more restricted Boolean key boxes in [15] can be replabged
our safe ones. Itis also worthwhile to integrate functiategpenden-
cies into more expressive DLs such$® O Q(D) or ALC(D) with
(acyclic) TBoxes.

Finally, theR~ rule computes an update of the concrete equiva-

lence~ by calling thecheck function with argumen{s as defined in
Definition 10. This is necessary since the rR&. adds new tuples
into P(P), and the ruleRwk andRsk add new tuples inte-, thus
modifying theD-conjunction(s. The update is performetlringthe
run of the algorithm—in contrast to the origindlCC (D) algorithm,
where a single call to the concrete domain reasoner at thefehe
computation is sufficient. The “interleaving” approach of @lgo-
rithm is essential since the equality of concrete nodestiddy the
concrete domain reasoner can trigger further applicatibttse Rwk
andRsk rules.

The algorithm repeats the following two steps: first, it dtsec
whether the completion system contains a clash, returmisgtis-

fiable if this is the case. Otherwise, it checks whether a compietio

rule is applicable. If no, then it returrsatisfiable. If yes, then it ap-
plies the rule and starts over. Note that checking for clagh®r to
rule application ensures that the functidreck(¢s) in R~ does not
returnclash.

In [16], it is proved that this algorithm terminates on anyut
and that it is sound and complete.

Theorem 12 If D is a key-admissible concrete domain, the tableau

REFERENCES
(1]
(2]

S. Abiteboul, R. Hull, and V. Vianu,Foundations of Databases
Addison-Wesley, (1995).

F. Baader and P. Hanschke, ‘A scheme for integrating maaomains
into concept languages’, iAroc. of the Twelfth Int. Joint Conf. on Al
(IICAI-91) pp. 452-457, Sydney, Australia, (1991).

F. Baader, I. Horrocks, and U. Sattler, ‘Descriptionitsyas ontology
languages for the semantic web’, Festschrift in honor of Jorg Siek-
mann LNAI. Springer-Verlag, (2003).

F. Baader, D.L. McGuiness, D. Nardi, and Peter Patelr8itter, The
Description Logic Handbook: Theory, implementation anglaa-
tions Cambridge University Press, (2003).

E. Borger, E. Gradel, and Y. Gurevichhe Classical Decision Problem
Perspectives in Mathematical Logic, Springer-Verlag 99

A. Borgida and G.E. Weddell, ‘Adding uniqueness corigtsato de-
scription logics (preliminary report)’, ifProc. of the 5th Int. Conf. on
Deductive and Object-Oriented Databases (DOODY0lume 1341
of LNCS pp. 85-102. Springer, (1997).

D. Calvanese, G. Giacomo, and M. Lenzerini, ‘Identificat con-
straints and functional dependencies in description &gia Proc.
of the Seventeenth Int. Joint Conf. on Al (IJCAI'0Opp. 155-160.
Morgan-Kaufmann, (2001).

I. Horrocks and P. F. Patel-Schneider, ‘Optimising dggion logic
subsumption’ Jour. of Logic and Computatio(3), 267—293, (1999).

(3]

[4]

(5]

[7]

(8]

algorithm decides satisfiability afl.LC(D)7 P concepts w.r.t. safe [9] V.L.Khizder, D. Toman, and G.E. Weddell, ‘On decidatyiland com-
key boxes plexity of description logics with uniqueness constrdjnits Proc. of

' the 8th Int. Conf. on Database Theory (ICDT200d9lume 1973 of

. . LNCS pp. 54-67. Springer, (2001).

Moreove;,Dlt follows from the soundngss proof In]__7£16] that [10] C. Lutz, ‘Description logics with concrete domains—a\ey’, in Ad-
ALC(D)” " has abounded model propertyf an ALC(D)” ™ con- vances in Modal Logics Vol., £65-296. King's College Publications,
cept(C) is satisfiable w.r.t. a safe key bdg, thenCy and K have (2003).
a common model whose size is at most exponential in the sizB1] C. Lutz, The Complexity of Reasoning with Concrete DomaitsD.
of Cy and K. This result almost immediately yields a NETIME dissertation, LUFG Theoretical Computer Science, RWTH h&ka¢
upper bound forALC(D)”P with safe key boxes if extende®- Germany, (2002).

PPEr bouna 1o o y boxes . [12] C. Lutz, ‘Reasoning about entity relationship diagsawith complex
satisfiability is in NP, i.e. if the (non-deterministic) algthm for attribute dependencies’, iRroc. of the Int. Workshop on Description
checking D-satisfiability described in Definition 7 runs in polyno- Logics 2002 (DL2002)number 53 in CEUR-WS (http://ceur-ws.org/),
mial time. Note that we say “almost immediately” since weéay 13 gp-l_lsf—llf\’l‘é (22_02)- lete descriotion logics witorrete d

. Qi . . " . Lutz, Xplime-complete description logics witiorwrete do-
ensure an ap“proprla.ltelyyy/ sized representatlo.n of.condmms.un ele mains’, ACM Transactions on Computational Log{@003). To appear.
ments when “guessing” models of exponential size. Moreildetan [14] C. Lutz, C. Areces, I. Horrocks, and U. Sattler, ‘Keyspinals, and

be found in [16].

Theorem 13 If D is a key-admissible concrete domain and extendedlS]

D-satisfiability is in NP, then ALC(D)”P-concept satisfiability
w.r.t. safe key boxes is NEXPTIME.

5 Conclusion

In this paper, we have completed the investigation of dgsori log-
ics with concrete domains and key constraints that was bagun

concrete domains’, LTCS-Report 02-04, Technical UnivgSresden,
(2002). see http://lat.inf.tu-dresden.de/researcbftshtml.

C. Lutz, C. Areces, |. Horrocks, and U. Sattler, ‘Keygyminals, and
concrete domains’, ifProc. of the Eighteenth Int. Joint Conf. on Al
(IJCAI'03), pp. 349-354. Morgan-Kaufmann, (2003).

C. Lutz and M. Milicic, ‘Description logics with concte domains and
functional dependencies’, LTCS-Report 04-06, TU Dresd2004).
see http://lat.inf.tu-dresden.de/research/reports.ht

E.M. Post, ‘A variant of a recursively unsolvable prefi’, Bulletin of
the American Mathematical SocieB2, 264-268, (1946).

D. Toman and G.E. Weddell, ‘On reasoning about strattequality in
XML: A description logic approach’, ifProc. of the 9th Int. Conf. on
Database Theorynumber 2572 in LNCS, pp. 96-110, (2002).

[16]

[17]

(18]

