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Abstra
t. Propositional dynami
 logi
 (PDL) is one of the most su
-


essful variants of modal logi
. To make it even more useful for appli-


ations, many extensions of PDL have been 
onsidered in the literature.

A very natural and useful su
h extension is with negation of programs.

Unfortunately, as long-known, reasoning with the resulting logi
 is unde-


idable. In this paper, we 
onsider the extension of PDL with negation of

atomi
 programs, only. We argue that this logi
 is still useful, e.g. in the


ontext of des
ription logi
s, and prove that satis�ability is de
idable and

ExpTime-
omplete using an approa
h based on B�u
hi tree automata.

1 Introdu
tion

Propositional dynami
 logi
 (PDL) is a variant of propositional modal logi


that has been developed in the late seventies as a tool for reasoning about pro-

grams [1{5℄. Sin
e then, PDL was used rather su

essfully in a large number

of appli
ation areas su
h as reasoning about knowledge [6℄, reasoning about a
-

tions [7, 8℄, des
ription logi
s [9℄, and others. Starting almost with its invention

around 1979 [3℄, many extensions of PDL have been proposed with the goal to

enhan
e the expressive power and make PDL even more appli
able; see e.g. [10,

4, 5℄. Some of these extensions are tailored toward spe
i�
 appli
ation areas, su
h

as the halt predi
ate that allows to state termination in the 
ontext of reason-

ing about programs [11℄. The majority of proposed extensions, however, is of a

general nature and has been employed in many di�erent appli
ation areas|for

instan
e, the extension of PDL with the widely applied 
onverse operator [12℄.

Among the general purpose extensions of PDL, two of the most obvious ones

are the addition of program interse
tion \\" and of program negation \:" [13,

4, 5℄. Sin
e PDL already provides for program union \[", the latter is more

general than the former: �\� 
an simply be expressed as :(:�[:�). The main

obsta
le for using these two extensions in pra
ti
al appli
ations is that they

are problemati
 w.r.t. their 
omputational properties: �rst, adding interse
tion

destroys many of the ni
e model-theoreti
 properties of PDL. The only known

algorithm for reasoning in the resulting logi
 PDL

\

is the quite intri
ate one

given in [13℄. Up to now, it is unknown whether the provided 2-ExpTime upper

bound is tight|in 
ontrast to ExpTime-
omplete reasoning in PDL. Se
ond,

the situation with PDL extended with negation (PDL

:

) is even worse: it was

observed quite early in 1984 that reasoning in PDL

:

is unde
idable [4℄.
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This unde
idability was often regretted [4, 10, 14℄, in parti
ular sin
e reason-

ing in PDL

:

would be quite interesting for a number of appli
ation areas. To

illustrate the usefulness of this logi
, let us give three examples of its expres-

sive power: �rst, it was already noted that negation 
an be employed to express

interse
tion. Interse
tion, in turn, is very useful for reasoning about programs

sin
e it allows to 
apture the parallel exe
ution of programs. Se
ond, program

negation allows to express the universal modality 2

U

' by writing [a℄' ^ [:a℄',

with a an arbitrary atomi
 program. The universal modality is a very useful

extension of modal logi
s that 
omes handy in many appli
ations; see e.g. [15℄.

Third, program negation 
an be used to express the window operator

a

[16{18℄,

whose semanti
s is as follows:

a

' holds at a world w i� ' holding at a world w

0

implies that w

0

is a-a

essible from w. In PDL

:

, we 
an thus just write [:a℄:'

instead of

a

'. The window operator 
an be viewed as expressing suÆ
ien
y in


ontrast to the standard box operator of modal logi
, whi
h expresses ne
essity.

Moreover, the window operator has important appli
ations, e.g. in des
ription

logi
s [19℄.

Due to the usefulness of program negation, it is natural to attempt the identi-

�
ation of fragments of PDL

:

that still 
apture some of the desirable properties

of program negation, but are well-behaved in a 
omputational sense. One 
andi-

date for su
h a fragment is PDL

\

. As has already been noted, this fragment is

indeed de
idable, but has a quite intri
ate model theory. The purpose of this pa-

per is to explore another interesting option: PDL

(:)

, the fragment of PDL

:

that

allows the appli
ation of program negation to atomi
 programs, only. Indeed,

we show that reasoning in PDL

(:)

is de
idable, and ExpTime-
omplete|thus

not harder than reasoning in PDL itself. Moreover, PDL

(:)

has a simpler model

theory than PDL

\

: we are able to use a de
ision pro
edure that is an exten-

sion of the standard automata-based de
ision pro
edure for PDL [20℄, and of

the standard automata-based de
ision pro
edure for Boolean modal logi
 [21℄.

Finally, we 
laim that PDL

(:)

is still useful for appli
ations: while interse
tion


annot be expressed any more, the universal modality and the window operator

are still available.

To give some more 
on
rete examples of the pra
ti
ability of PDL

(:)

, let us

take a des
ription logi
 perspe
tive. Des
ription logi
s are a family of logi
s that

originated in arti�
ial intelligen
e as a tool for the representation of 
on
eptual

knowledge [22℄. It is well-known that many des
ription logi
s (DLs) are nota-

tional variants of modal logi
s [23, 9℄. In parti
ular, the des
ription logi
 ALC

reg

,

whi
h extends the basi
 DL ALC with regular expressions on roles, 
orresponds

to PDL [9℄. More pre
isely, DL 
on
epts 
an be understood as PDL formulas,

and DL roles as PDL programs. Thus, the extension ALC

(:)

reg

of ALC

reg

with

negation of atomi
 (!) roles is a notational variant of PDL

(:)

. We give two ex-

amples of knowledge representation with ALC

(:)

reg

. These examples, whi
h use

DL syntax rather than PDL syntax, illustrate that the 
ombination of regular

expressions on roles and of atomi
 negation of roles is a very useful one.

1. Some private universities prefer to admit students whose an
estors donated

money to the university. Using ALC

reg

, the 
lass of all appli
ants having a do-
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nating an
estor 
an be des
ribed with the 
on
ept 9parent

+

:Donator. To des
ribe

the set of preferred students, we 
an now 
ombine this 
on
ept with the window

operator: the ALC

(:)

reg

-
on
ept

UniversityX ! 8prefer:Appli
ant u 8:prefer::(9parent

+

:Donator)

states that, in the 
ase of University X, only people who a
tually applied are

preferred, and all appli
ants with donating an
estors are preferred.

2. Suppose that we want to use ALC

(:)

reg

to talk about trust and mistrust among

negotiating parties. Also assume that we have a very strong notion of trust,

namely that it is transitive: if I trust x, and x trusts y, then I trust y as well.

An analogous assumption for mistrust should 
learly not be made. Then, we 
an

model mistrust by using an atomi
 role mistrust, and trust by using (:mistrust)

�

and say, e.g., that I trust some politi
ians and never mistrust a family member :

9(:mistrust)

�

:Politi
ian u 8mistrust::Familymember:

Note that reversing the roles of trust and mistrust does not work: �rst, to a
hieve

transitivity of trust, we'd have to introdu
e an atomi
 dire
t-trust relation. And

se
ond, we 
ould then only speak about the negation of dire
t-trust, but not

about the negation of dire
t-trust

�

, whi
h 
orresponds to mistrust.

2 PDL with Negation

In this se
tion, we introdu
e propositional dynami
 logi
 (PDL) with negation

of programs. We start with de�ning full PDL

:

, i.e. PDL extended with negation

of (possibly 
omplex) programs. Then, the logi
s PDL and PDL

(:)

, are de�ned

as fragments of PDL

:

.

De�nition 1 (PDL

:

Syntax). Let �

0

and �

0

be 
ountably in�nite and dis-

joint sets of propositional letters and atomi
 programs, respe
tively. Then the

set �

:

of PDL

:

-programs and the set �

:

of PDL

:

-formulas are de�ned by

simultaneous indu
tion, i.e., they are the smallest sets su
h that:

{ �

0

� �

:

;

{ �

0

� �

:

;

{ if ';  2 �

:

, then f:'; ' ^  ; ' _  g � �

:

;

{ if �

1

; �

2

2 �

:

, then f:�

1

; �

1

[ �

2

; �

1

;�

2

; �

�

1

g � �

:

;

{ if � 2 �

:

, and ' 2 �

:

, then fh�i'; [�℄'g � �

:

;

{ if ' 2 �

:

, then '? 2 �

:

We use > as abbreviation for an arbitrary propositional tautology, and ? as

abbreviation for :>. Moreover, for �; �

0

2 �

:

we use � \ �

0

as abbreviation for

:(:� [ :�

0

).

A formula ' 2 �

:

is 
alled a PDL

(:)

-formula (PDL-formula) if, in ', nega-

tion o

urs only in front of atomi
 programs and formulas (only in front of

formulas).
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Throughout this paper, the operator h�i is 
alled the diamond operator, [�℄ is


alled the box operator, and programs of the form  ? are 
alled tests. Let us

note how formulas of PDL

:


an be 
onverted into 
on
epts of the des
ription

logi
 ALC

(:)

reg

mentioned in the introdu
tion: simply repla
e ^, _, h�i , and [�℄ 

with u, t, 9�: , and 8�: , respe
tively.

De�nition 2 (PDL

:

Semanti
s). Let M = (W;R; V ) be a Kripke stru
ture

where W is the set of worlds, R is a family of a

essibility relations for atomi


programs fR

�

� W

2

j � 2 �

0

g, and V : �

0

! 2

W

is a valuation fun
tion.

In the following, we de�ne a

essibility relations for 
ompound programs and the

satisfa
tion relation j= by simultaneous indu
tion, where �

�

denotes the re
exive-

transitive 
losure:

R

'?

:= f(u; u) 2W

2

j M; u j= 'g

R

:�

:= W

2

nR

�

R

�

1

[�

2

:= R

�

1

[ R

�

2

R

�

1

;�

2

:= R

�

1

ÆR

�

2

R

�

�

:= (R

�

)

�

M; u j= p i� u 2 V (p) for any p 2 �

M; u j= :' i� M; u 6j= '

M; u j= '

1

_ '

2

i� M; u j= '

1

or M; u j= '

2

M; u j= '

1

^ '

2

i� M; u j= '

1

and M; u j= '

2

M; u j= h�i' i� there is a v 2W with (u; v) 2 R

�

and M; v j= '

M; u j= [�℄' i� for all v 2 W; (u; v) 2 R

�

implies M; v j= '

If M; u j= ' for some formula ' 2 �

:

and world u 2 W , then ' is true at u in

M, and M is 
alled model of '. A formula is satis�able if it has a model.

It is well-known that satis�ability of PDL

:

-formulas is unde
idable [4℄. Sin
e

this 
an be established in a very simple way, we give a proof for illustrative

purposes.

The proof is by redu
tion of the unde
idable word-problem for �nitely pre-

sented semi-groups [24℄: given a set of word identities fu

1

= v

1

; : : : ; u

k

= v

k

g,

the task is to de
ide whether they imply another word identity u = v. To redu
e

this problem to PDL

:

-satis�ability, we need to introdu
e the universal modality

2

U

', whi
h has the following semanti
s:

M; u j= 2

U

' i� M; v j= ' for all v 2 W:

Clearly, in PDL

:

we 
an repla
e 2

U

' with the equivalent [a℄'^[:a℄', where a 2

�

0

is an arbitrary atomi
 program. Using the universal modality, the redu
tion

is now easy: we assume that, for every generator of the semi-group, there is an

atomi
 program of the same name, and then note that fu

1

= v

1

; : : : ; u

k

= v

k

g

implies u = v if and only if the following formula is unsatis�able:

�

hu \ :vi> _ h:u \ vi>

�

^ 2

U

�

^

i=1::k

[u

i

\ :v

i

℄? ^ [v

i

\ :u

i

℄?

�

:
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Here, we assume that the symbols of the words u

i

and v

i

(and of u and v) are

separated by program 
omposition \;".

Sin
e PDL

:

is a very useful logi
 for a large number of purposes, this unde-


idability result is rather disappointing. As has been argued in the introdu
tion,

it is thus a natural idea to sear
h for de
idable fragments of PDL

:

that still

extend PDL in a useful way. In the remainder of this paper, we will prove that

PDL

(:)

is su
h a fragment. Note that, in PDL

(:)

, we 
an still de�ne the uni-

versal modality as des
ribed above. Also note that we 
an use negated atomi


programs nested inside other program operators.

3 An Automata-based Variant of PDL

(:)

Similar to some related results in [20℄, our de
idability proof is based on B�u
hi-

automata on in�nite trees. It has turned out that, for su
h proofs, it is rather


onvenient to use variants of PDL in whi
h 
omplex programs are des
ribed by

means of automata on �nite words, rather than by regular expressions. Therefore,

in this se
tion we de�ne a 
orresponding variant APDL

(:)

of PDL

(:)

.

De�nition 3 (Finite automata). A (nondeterministi
) �nite automaton (NFA)

A is a quintuple (Q;�; q

0

; �; F ) where

{ Q is a �nite set of states,

{ � is a �nite alphabet,

{ q

0

is an initial state,

{ � : Q�� ! 2

Q

is a (partial) transition fun
tion, and

{ F � Q is the set of a

epting states.

The fun
tion � 
an be indu
tively extended to a fun
tion from Q��

�

to 2

Q

in

a natural way:

{ �(q; ") := fqg, where " is the empty word;

{ �(q; wa) := fq

00

2 Q j q

00

2 �(q

0

; a) for some q

0

2 �(q; w)g.

A sequen
e p

0

; : : : ; p

n

2 Q, n � 0, is a run of A on the word a

1

� � �a

n

2 �

�

if

p

0

= q

0

, p

i

2 �(p

i�1

; a

i

) for 0 < i � n, and p

n

2 F . A word w 2 �

�

is a

epted

by A if there exists a run of A on w. The language a

epted by A is the set

L(A) := fw 2 �

�

j w is a

epted by Ag.

To obtain APDL

(:)

from PDL

(:)

, we repla
e 
omplex programs (i.e. regular

expressions) inside boxes and diamonds with automata. For the sake of exa
tness,

we give the 
omplete de�nition.

De�nition 4 (APDL

(:)

Syntax). The set �

(:)

0

of program literals is de-

�ned as fa;:a j a 2 �

0

g. The sets A�

(:)

of program automata and A�

(:)

of

APDL

(:)

-formulas are de�ned by simultaneous indu
tion, i.e., A�

(:)

and A�

(:)

are the smallest sets su
h that:

{ �

0

� A�

(:)

;
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{ if ';  2 A�

(:)

, then f:'; ' _  ; ' ^  g � A�

(:)

;

{ if � 2 A�

(:)

and ' 2 A�

(:)

, then fh�i'; [�℄'g � A�

(:)

;

{ if � is a �nite automaton with alphabet � � �

(:)

0

[ f ? j  2 A�

(:)

g, then

� 2 A�

(:)

Note that the alphabet of program automata is 
omposed of atomi
 programs,

of negated atomi
 programs, and of tests.

De�nition 5 (APDL

(:)

Semanti
s). Let M = (W;R; V ) be a Kripke stru
-

ture as in De�nition 2. We indu
tively de�ne a relation R mapping ea
h program

literal, ea
h test, and ea
h program automaton to a binary relation over W . This

is done simultaneously with the de�nition of the satisfa
tion relation j=:

R(a) := R

a

for ea
h a 2 �

0

R(:a) := W

2

nR

a

for ea
h a 2 �

0

R( ?) := f(u; u) 2W

2

j M; u j=  g

R(�) := f(u; v) 2W

2

j there is a word w = w

1

� � �w

m

2 L(�);

m � 0; and worlds u

0

; : : : ; u

m

2W su
h that

u = u

0

R(w

1

)u

1

R(w

2

) � � �u

m�1

R(w

m

)u

m

= vg

M; u j= p i� u 2 V (p) for any p 2 �;

M; u j= :' i� M; u 6j= ';

M; u j= '

1

_ '

2

i� M; u j= '

1

or M; u j= '

2

;

M; u j= '

1

^ '

2

i� M; u j= '

1

and M; u j= '

2

;

M; u j= h�i' i� there is a u

0

2W with (u; u

0

) 2 R(�) and M; u

0

j= ';

M; u j= [�℄' i� for all u

0

2 W; (u; u

0

) 2 R(�) implies M; u

0

j= ':

Sin
e every language de�ned by a regular expression 
an also be a

epted by a

�nite automaton and vi
e versa [25℄, it is straightforward to verify that PDL

(:)

and APDL

(:)

have the same expressive power. Moreover, upper 
omplexity

bounds 
arry over from APDL

(:)

to PDL

(:)

sin
e 
onversion of regular ex-

pressions to �nite automata 
an be done with at most a polynomial blow-up in

size (the 
onverse does not hold true).

It is interesting to note that, in many automata-based de
ision pro
edures for

variants of PDL, a deterministi
 version of APDL is used, i.e. a variant of APDL

in whi
h there may be at most one su

essor for ea
h world and ea
h atomi


program [20℄. In a se
ond step, satis�ability in the non-deterministi
 APDL-

variant is then redu
ed to satis�ability in the deterministi
 one. We 
annot take

this approa
h here sin
e we 
annot w.l.o.g. assume that both atomi
 programs

and their negations are deterministi
. Indeed, this would 
orrespond to limiting

the size of Kripke stru
tures to only two worlds.

4 Hintikka-trees

This se
tion provides a 
ore step toward using B�u
hi-tree automata for de
iding

the satis�ability of APDL

(:)

-formulas. The intuition behind this approa
h is as

follows: to de
ide the satis�ability of an APDL

(:)

-formula ', we translate it



7

into a B�u
hi-tree automaton B

'

su
h that the trees a

epted by the automaton


orrespond in some way to models of the formula '. To de
ide satis�ability of

', it then remains to perform a simple emptiness-test on the automaton B

'

: the

a

epted language will be non-empty if and only if ' has a model.

In the 
ase of APDL

(:)

, one obsta
le to this approa
h is that APDL

(:)

does

not enjoy the tree model property (TMP), i.e., there are APDL

(:)

-formulas that

are satis�able only in non-tree models. For example, for ea
h n 2 N the following

PDL

(:)

-formula enfor
es a 
y
le of length n:

 

n

1

^ hai( 

n

2

^ hai(� � � ( 

n

n

^ [:a℄: 

n

1

) � � � ));

where, for 1 � i � n,  

n

i

= p

1

^ � � � ^ :p

i

^ � � � ^ p

n

with propositional variables

p

1

; : : : ; p

n

. Note that the formula inside the diamond simulates the window op-

erator and in this way 
loses the 
y
le. Thus, we have to invest some work to

obtain tree-shaped representations of (possibly non-tree) models that 
an then

be a

epted by B�u
hi-automata.

As a preliminary, we assume that all APDL

(:)

-formulas are in negation nor-

mal form (NNF), i.e. that negation o

urs only in front of propositional letters.

This assumption 
an be made w.l.o.g. sin
e ea
h formula 
an be 
onverted into

an equivalent one in NNF by exhaustively eliminating double negation, applying

DeMorgan's rules, and exploiting the duality between diamonds and boxes. For

the sake of brevity, we introdu
e the following notational 
onventions:

{ for ea
h APDL

(:)

-formula ', _:' denotes the NNF of :';

{ for ea
h program literal �, � denotes :� if � is an atomi
 program, and a if

� = :a for some atomi
 program a;

{ for ea
h program automaton �, we use Q

�

, �

�

, q

�

, �

�

, and F

�

to denote

the 
omponents of � = (Q;�; q

0

; �; F );

{ for ea
h program automaton � and state q 2 Q

�

, we use �

q

to denote the

automaton (Q

�

; �

�

; q;�

�

; F

�

), i.e. the automaton obtained from � by using

q as the new initial state.

Before we 
an develop the tree-shaped abstra
tion of models, we need to �x a


losure, i.e. a set of formulas 
l(') relevant for de
iding the satis�ability of an

input formula '. This is done analogous to [3, 20℄. In the following, when we talk

of a subformula  of a formula ', we mean that  
an be obtained from ' by

de
omposing only formula operators, but not program operators. For example,

a is a subformula of hb?ia, while b is not.

De�nition 6 (Closure). Let ' be a APDL

(:)

-formula. The set 
l(') is the

smallest set whi
h is 
losed under the following 
onditions:

(C1) ' 2 
l(')

(C2) if  is a subformula of  

0

2 
l('), then  2 
l(')

(C3) if  2 
l('), then _: 2 
l(')

(C4) if h�i 2 
l('), then  

0

2 
l(') for all  

0

? 2 �

�

(C5) if h�i 2 
l('), then h�

q

i 2 
l(') for all q 2 Q

�

(C6) if [�℄ 2 
l('), then  

0

2 
l(') for all  

0

? 2 �

�
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(C7) if [�℄ 2 
l('), then [�

q

℄ 2 
l(') for all q 2 Q

�

It is standard to verify that the 
ardinality of 
l(') is polynomial in the length

of ', see e.g. [5℄. We generally assume the diamond formulas (i.e. formulas of the

form h�i ) in 
l(') to be linearly ordered and use �

i

to denote the i-th diamond

formula in 
l('), with �

1

being the �rst one. Note that a 
hanged initial state of

an automaton results in a di�erent diamond formula.

To de�ne Hintikka-trees, the tree-shaped abstra
tion of models underlying

our de
ision pro
edure, we pro
eed in three steps. First, we introdu
e Hintikka-

sets that will be used as (parts of) node labels. Intuitively, ea
h node in the tree

des
ribes a world of the 
orresponding model, and its label 
ontains the formulas

from the 
losure of the input formula ' that are true in this world. Se
ond, we

introdu
e a mat
hing relation that des
ribes the possible \neighborhoods" that

we may �nd in Hintikka-trees, where a neighborhood 
onsists of a labeled node

and its labeled su

essors. And third, we use these ingredients to de�ne Hintikka-

trees.

De�nition 7 (Hintikka-set). Let  2 �

(:)

be an APDL

(:)

-formula, and � 2

A�

(:)

a program automaton. The set 	 � 
l(') is a Hintikka-set for ' if

(H1) if  

1

^  

2

2 	 , then  

1

2 	 and  

2

2 	

(H2) if  

1

_  

2

2 	 , then  

1

2 	 or  

2

2 	

(H3)  2 	 i� _: =2 	

(H4) if [�℄ 2 	 and q

�

2 F

�

, then  2 	

(H5) if [�℄ 2 	 then, for any state q 2 Q

�

and test �? 2 �

�

,

q 2 �

�

(q

�

; �?) implies that _:� 2 	 or [�

q

℄ 2 	

The set of all Hintikka-sets for ' is designated by H

'

.

The 
onditions (H1) to (H3) are standard, with one ex
eption: (H3) is stronger

than usual sin
e it enfor
es maximality of Hintikka-sets by stating that, for ea
h

formula  2 
l('), either  or _: must be in the Hintikka-set. This will be used

later on to deal with negated programs. The last two 
onditions (H4) and (H5)

deal with the \lo
al" impa
t of box formulas.

Next, we de�ne the mat
hing relation. The purpose of this relation 
an be

understood as follows: in the Hintikka-tree, ea
h node has exa
tly one su

essor

for every diamond formula in 
l('). The mat
hing relation helps to ensure that

all diamond formulas in a node's label 
an be satis�ed \via" the 
orresponding

su

essor in the Hintikka-tree, and that none of the box formulas is violated via

any su

essors. We talk of \via" here sin
e going to an immediate su

essor 
or-

responds to travelling along a single program literal. Sin
e programs in APDL

(:)

are automata that may only a

ept words of length greater one, in general we


annot satisfy diamonds by going only to the immediate su

essor, but rather

we must perform a sequen
e of su
h moves.

Before we de�ne the mat
hing relation formally, let us �x the stru
ture of

node labels of Hintikka-trees. For reasons that will be dis
ussed below, node
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labels not only 
ontain a Hintikka-set, but also two additional 
omponents. More

pre
isely, if ' is an APDL

(:)

-formula and 
l(') 
ontains k diamond formulas,

then we use

{ �

(:)

'

to denote the set of all program literals o

urring in '; and

{ �

'

to abbreviate H

'

� (�

(:)

'

[ f?g) � f0; : : : ; kg, i.e. the set of triples


ontaining a Hintikka-set for ', a program literal of ' or ?, and a number

at most k.

The elements of �

'

will be used as node labels in Hintikka-trees. Intuitively, the

�rst 
omponent lists the formulas that are true at a node, the se
ond 
omponent

�xes the program literal with whi
h the node 
an be rea
hed from its prede
essor

(or ? if this information is not important), and the third 
omponent will help to

ensure that diamond formulas are eventually satis�ed when moving through the

tree. For a triple � 2 �

'

, we refer to the �rst, se
ond and third triple 
omponent

with �

1

, �

2

, and �

3

, respe
tively. For the following de�nition, re
all that we use

�

i

to denote the i-th diamond in 
l(').

De�nition 8 (Mat
hing). Let ' be a formula and k the number of diamond

formulas in 
l('). A k + 1-tuple of �

'

-triples (�; �

1

; : : : ; �

k

) is mat
hing if, for

1 � i � k and all automata � 2 A�

(:)

, the following holds:

(M1) if �

i

= h�i 2 �

1

, then there is a word w =  

1

? � � � 

n

? 2 �

�

�

, n � 0,

and a state q

1

2 Q

�

su
h that f 

1

; : : : ;  

n

g � �

1

, q

1

2 �

�

(q

�

; w),

and one of the following holds:

(a) q

1

is a �nal state,  2 �

1

, �

2

i

= ?, and �

3

i

= 0

(b) there is a program literal � 2 �

�

and a state q

2

2 Q

�

su
h that

q

2

2 �

�

(q

1

; �), �

j

= h�

q

2

i 2 �

1

i

, �

2

i

= �, and �

3

i

= j.

(M2) if [�℄ 2 �

1

, q 2 Q

�

, and � 2 �

�

a program literal su
h that

q 2 �

�

(q

�

; �), then � = �

2

i

implies [�

q

℄ 2 �

1

i

:

As already noted, the purpose of the mat
hing relation is to des
ribe the possible

neighborhoods in Hintikka-trees. To this end, think of � as the label of a node,

and of �

1

; : : : ; �

k

as the labels of its su

essors. The purpose of Conditions (M1)

and (M2) is to ensure that diamonds are satis�ed and that boxes are not vio-

lated, respe
tively. Let us 
onsider only (M1). If a diamond �

i

= h�i is in the

�rst 
omponent of �, it 
an either be satis�ed in the node labeled with � itself

(Condition (a)) or we 
an \delay" its satisfa
tion to the i-th su

essor node that

is reserved spe
i�
ally for this purpose (Condition (b)). In Case (a), it is not

important over whi
h program literal we 
an rea
h the i-th su

essor, and thus

the se
ond 
omponent of �

i


an be set to ?. In the se
ond 
ase, we must 
hoose

a suitable program literal � and a suitable state q of �, make sure that the i-th

su

essor is rea
hable over � via its se
ond �

i

-
omponent, and guarantee that

the �rst 
omponent of �

i


ontains the diamond under 
onsideration with the

automata � \advan
ed" to initial state q.
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The remaining building blo
k for ensuring that diamonds are satis�ed is to

enfor
e that the satisfa
tion of diamonds is not delayed forever. This is one of

the two 
ore parts of the de�nition of Hintikka-trees, the other being the proper

treatment of negation. Before we 
an dis
uss the prevention of in�nitely delayed

diamonds in some more detail, we have to introdu
e some basi
 notions.

Let M be a set and k 2 N. An (in�nite) k-ary M-tree T is a mapping

T : [k℄

�

! M , where [k℄ is used (now and in the following) as an abbreviation

for the set f1; : : : ; kg. Intuitively, the node �i is the i-th 
hild of �. We use "

to denote the empty word (
orresponding to the root of the tree). An in�nite

path in a k-ary M -tree is an in�nite word 
 over the alphabet [k℄. We use 
[n℄,

n � 0, to denote the pre�x of 
 up to the n-th element of the sequen
e (with


[0℄ yielding the empty sequen
e).

Now ba
k to the prevention of in�nitely delayed diamonds. Given a formula '

with k diamond formulas in 
l('), a Hintikka-tree will be de�ned as a k-ary �

'

-

tree in whi
h every neighborhood is mat
hing and some additional 
onditions

are satis�ed. To dete
t in�nite delays of diamonds in su
h trees, it does not

suÆ
e to simply look for in�nite sequen
es of nodes that all 
ontain the same

diamond: �rstly, diamonds are evolving while being \pushed" through the tree

sin
e their initial state might be 
hanged. Se
ondly, su
h a sequen
e does not

ne
essarily 
orrespond to an in�nite delay of diamond satisfa
tion: it 
ould as

well be the 
ase that the diamond is satis�ed an in�nite number of times, but

always immediately \regenerated" by some other formula. Also note that we


annot use the standard te
hnique from [20℄ sin
e it only works for deterministi


variants of PDL.

Pre
isely for this purpose, the easy dete
tion of in�nitely delayed diamonds,

we have introdu
ed the third 
omponent of node labels in Hintikka trees: if a

diamond was pushed to the 
urrent node x from its prede
essor, then by (M1)

the third 
omponent of x's label 
ontains the number of the pushed diamond.

Moreover, if the pushed diamond is not satis�ed in x, we again use the third


omponent of x: it 
ontains the number of the su

essor of x to whi
h the

diamond's satisfa
tion is (further) delayed. If no diamond was pushed to x,

its third 
omponent is simply zero. Thus, the following de�nition 
aptures our

intuitive notion of in�nitely delayed diamonds.

De�nition 9 (Diamond Starvation). Let ' be an APDL

(:)

-formula with

k diamond formulas in 
l('), T a k-ary �

'

-tree, x 2 [k℄

�

a node in T , and

�

i

= h�i 2 T (x)

1

. Then the diamond formula h�i is 
alled starving in x if

there exists a path 
 = 


1




2

� � � 2 [k℄

!

su
h that

1. 


1

= i,

2. T (x
[n℄)

3

= 


n+1

for n � 1.

We have now gathered all ingredients to de�ne Hintikka-trees formally.

De�nition 10 (Hintikka-tree). Let ' be an APDL

(:)

-formula with k dia-

mond formulas in 
l('). A k-ary �

'

-tree T is a Hintikka-tree for ' if T satis�es,
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for all nodes x; y 2 [k℄

�

, the following 
onditions:

(T1) ' 2 T (")

1

(T2) the k + 1-tuple (T (x); T (x1); : : : ; T (xk)) is mat
hing

(T3) no diamond formula from 
l(') is starving in x

(T4) if [�℄ ; [�℄� 2 T (x)

1

, � 2 �

(:)

0

, q

0

�

2 Q

�

, and q

0

�

2 Q

�

su
h that

q

0

�

2 �

�

(q

�

; �) and q

0

�

2 �

�

(q

�

; �), then

[�

q

0

�

℄ =2 T (y)

1

implies [�

q

0

�

℄� 2 T (y)

1

.

Conditions (T1) to (T3) are easily understood. The purpose of Condition (T4)

is to deal with negated programs. In parti
ular, for ea
h atomi
 program a we

have to ensure that any pair of nodes x; y of a Hintikka-tree T 
an be related

by one of a and :a without violating any boxes. This is done by (T4) together

with (H3)|indeed, this is the reason for formulating (H3) stronger than usual.

Intuitively, the treatment of negation 
an be understood as follows: suppose that

[�℄ 2 T (x)

1

, let q 2 �

�

(q

�

; a) for some atomi
 program a, and let y be a node.

By (H3), we have either [�

q

℄ 2 T (y)

1

or _:[�

q

℄ 2 T (y)

1

. In the �rst 
ase, x

and y 
an be related by a. In the se
ond 
ase, (T4) ensures that they 
an be

related by :a. This te
hnique is inspired by [21℄, but generalized to program

automata.

The following proposition shows that Hintikka-trees are indeed proper ab-

stra
tions of models. A proof 
an be found in [26℄.

Proposition 1. An APDL

(:)

-formula ' is satis�able i� it has a Hintikka-tree.

5 B�u
hi Automata for Hintikka-trees

In this se
tion, we show that it is possible to 
onstru
t, for every APDL

(:)

-

formula ', a B�u
hi tree automaton B

'

that a

epts exa
tly the Hintikka-trees

for '. By Proposition 1, sin
e the size of B

'

is at most exponential in the length of

', and sin
e the emptiness of B�u
hi-tree automata 
an be veri�ed in quadrati


time [20℄, this yields an ExpTime de
ision pro
edure for the satis�ability of

APDL

(:)

-formulas. We start with introdu
ing B�u
hi tree automata.

De�nition 11 (B�u
hi Tree Automaton). A B�u
hi tree automaton B for

k-ary M -trees is a quintuple (Q;M; I;�; F ), where

{ Q is a �nite set of states,

{ M is a �nite alphabet,

{ I � Q is the set of initial states,

{ � � Q�M �Q

k

is the transition relation, and

{ F � Q is the set of a

epting states.

Let M be a set of labels, and T a k-ary M-tree. Then, a run of B on T is a

k-ary Q-tree r su
h that
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1. r(") 2 I, and

2. (r(x); T (x); r(x1); : : : ; r(xk)) 2 � for all nodes x 2 [k℄

�

.

Let 
 2 [k℄

!

be a path. The set inf

r

(
) 
ontains the states in Q that o

ur

in�nitely often in run r along path 
. A run r of B on T is a

epting if, for

ea
h path 
 2 [k℄

!

, we have inf

r

(
)\ F 6= ;. The language a

epted by B is the

set L(B) = fT j there is an a

epting run of B on Tg.

Given a B�u
hi automaton B, the problem whether its language is empty, i.e.,

whether it holds that L(B) = ;, is 
alled the emptiness problem. This problem

is solvable in time quadrati
 in the size of the automaton [20℄.

We now give the translation of APDL

(:)

-formulas ' into B�u
hi-automata B

'

.

To simplify the notation, we write P

2

(') to denote the set of sets ff[�℄ ; [�℄�g j

[�℄ ; [�℄� 2 
l(')g. We �rst introdu
e our automata formally and then explain

the intuition.

De�nition 12. Let ' be an APDL

(:)

-formula with 
l(') 
ontaining k diamond

formulas. The B�u
hi tree automaton B

'

= (Q;�

'

; I;�; F ) on k-ary �

'

-trees is

de�ned as follows:

{ Q 
ontains those triples ((	; �; `); P; d) 2 �

'

� 2

P

2

(')

� f�; "g that satisfy

the following 
onditions:

(1) if f[�℄ ; [�℄�g � 	 , then f[�℄ ; [�℄�g 2 P

(2) if f[�℄ ; [�℄�g 2 P , � 2 �

(:)

, q

0

�

2 �

�

(q

�

; �), q

0

�

2 �

�

(q

�

; �), and

[�

q

0

�

℄ =2 	 , then [�

q

0

�

℄� 2 	

{ I := f((	; �; `); P; d) 2 Q j ' 2 	 , and d = �g.

{ ((�

0

; P

0

; d

0

); (	; �; `); (�

1

; P

1

; d

1

); : : : ; (�

k

; P

k

; d

k

)) 2 � if and only if, for

ea
h i 2 [k℄, the following holds:

1. �

0

= (	; �; `),

2. P

0

= P

i

,

3. the tuple (�

0

; : : : ; �

k

) is mat
hing,

4. d

i

=

8

>

<

>

:

" if d

0

= �, �

3

i

6= 0 and �

i

2 	

" if d

0

= ", �

3

0

= i, and �

3

i

6= 0

� otherwise:

{ The set F of a

epting states is F := f(�; P; d) 2 Q j d = �g.

While it is not hard to see how the set of initial states enfor
es (T1) of Hintikka-

trees and how the transition relation enfor
es (T2), Conditions (T3) and (T4)

are more 
hallenging. In the following, we dis
uss them in detail.

Condition (T3) is enfor
ed with the help of the third 
omponent of states,

whi
h may take the values \�" and \"". Intuitively, the fourth point in the

de�nition of � ensures that, whenever the satisfa
tion of a diamond is delayed in

a node x and r is a run, then r assigns states with third 
omponent " to all nodes

on the path that \tra
ks" the diamond delay. Note that, for this purpose, the

de�nition of � refers to the third 
omponent of �

'

-tuples, whi
h is \
ontrolled"
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by (M1) in the appropriate way. All nodes that do not appear on delayed diamond

paths are labeled with �. Then, the set of a

epting states ensures that there is

no path that, from some point on, is 
onstantly labeled with ". Thus, we enfor
e

that no diamonds are delayed in�nitely in trees a

epted by our automata, i.e.

no starvation o

urs.

There is one spe
ial 
ase that should be mentioned. Assume that a node x


ontains a diamond �

i

= h�i that is not satis�ed \within this node" (Case (a) of

(M1) does not apply). Then there is a potential starvation path for �

i

that starts

at x and goes through the node xi: (M1) \advan
es" the automaton � to �

q

,

and ensures that �

j

= h�

q

i 2 T (xi)

1

and that T (xi)

3

= j. Now suppose that

T (xi)

1


ontains another diamond �

k

= h�i� with �

j

6= �

k

. If �

k

is not satis�ed

within xi, there is a potential starvation path for �

k

starting at xi and going

through xik. Sin
e the starvation path for �

i

and the starvation path for �

k

are

for di�erent diamonds, we must be 
areful to separate them|failure in doing

this would result in some starvation-free Hintikka-trees to be reje
ted. Thus, the

de�nition of � ensures that runs label xik with �, and the 
onstant "-labeling of

the starvation path for �

k

is delayed by one node: it starts only at the su

essor

of xik on the starvation path for �

k

.

Now for Condition (T4). In 
ontrast to Conditions (T1) and (T2), this 
ondi-

tion has a global 
avor in the sense that it does not only 
on
ern a node and its

su

essors. Thus, we need to employ a spe
ial te
hnique to enfor
e that (T4) is

satis�ed: we use the se
ond 
omponent of states as a \bookkeeping 
omponent"

that allows to propagate global information. More pre
isely, Point (1) of the

de�nition of Q and Point (1) of the de�nition of � ensure that, whenever two

boxes appear in a Hintikka-set labeling a node x in a Hintikka-tree T , then this

joint o

urren
e is re
orded in the se
ond 
omponent of the state that any run

assigns to x. Via the de�nition of the transition relation (se
ond point), we fur-

ther ensure that all states appearing in a run share the same se
ond 
omponent.

Thus, we may use Point (2) of the de�nition of Q and Point (1) of the de�nition

of � to ensure that any node y satis�es the property stated by Condition (T4).

The following proposition shows that the B�u
hi tree automaton B

'

indeed

a

epts pre
isely the Hintikka-trees for APDL

(:)

-formula '. A proof 
an be

found in [26℄.

Proposition 2. Let ' be an APDL

(:)

-formula and T a k-ary �

'

-tree. Then T

is a Hintikka-tree for ' i� T 2 L(B

'

).

Putting together Propositions 1 and 2, it is now easy to establish de
idability

and ExpTime-
omplexity of APDL

(:)

and thus also of PDL

(:)

.

Theorem 1. Satis�ability of PDL

(:)

-formulas is ExpTime-
omplete.

Proof. From Propositions 1 and 2, it follows that an APDL

(:)

-formula ' is

satis�able if and only if L(B

'

) 6= ;. The emptiness problem for B�u
hi automata

is de
idable in time quadrati
 in the size of the automaton [20℄. To show that
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APDL

(:)

-formula satis�ability is in ExpTime, it thus remains to show that the

size of B

'

= (Q;�

'

; I;�; F ) is at most exponential in '.

Let n be the length of '. Sin
e the 
ardinality of 
l(') is polynomial in n,

the 
ardinality of H

'

(the set of Hintikka-sets for ') is at most exponential in n.

Thus, it is readily 
he
ked that the same holds for �

�

and Q. The exponential

upper bound on the 
ardinalities of I and F is trivial. It remains to determine

the size of �: sin
e the size of Q is exponential in n and the out-degree of trees

a

epted by automata is polynomial in n, we obtain an exponential bound.

Thus, APDL

(:)

-formula satis�ability and hen
e also PDL

(:)

-formula satis�a-

bility are in ExpTime. For the lower bound, it suÆ
es to re
all that PDL-formula

satis�ability is already ExpTime-hard [3℄. ut

6 Con
lusion

This paper introdu
es the propositional dynami
 logi
 PDL

(:)

, whi
h extends

standard PDL with negation of atomi
 programs. We were able to show that this

logi
 extends PDL in an interesting and useful way, yet retaining its appealing


omputational properties. There are some natural dire
tions for future work. For

instan
e, it should be simple to further extend PDL

(:)

with the 
onverse operator

without destroying the ExpTime upper bound. It would be more interesting,

however, to investigate the interplay between (full) negation and PDL's program

operators in some more detail. For example, to the best our our knowledge it is

unknown whether the fragment of PDL

:

that has only the program operators

\:" and \;" is de
idable.
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