
PDL with Negation of Atomi
 Programs

Carsten Lutz and Dirk Walther

Inst. for Theoreti
al Computer S
ien
e Dept. of Computer S
ien
e

TU Dresden, Germany University of Liverpool, UK

lutz�t
s.inf.tu-dresden.de dwalther�
s
.liv.a
.uk

Abstra
t. Propositional dynami
 logi
 (PDL) is one of the most su
-

essful variants of modal logi
. To make it even more useful for appli-

ations, many extensions of PDL have been
onsidered in the literature.

A very natural and useful su
h extension is with negation of programs.

Unfortunately, as long-known, reasoning with the resulting logi
 is unde-

idable. In this paper, we
onsider the extension of PDL with negation of

atomi
 programs, only. We argue that this logi
 is still useful, e.g. in the

ontext of des
ription logi
s, and prove that satis�ability is de
idable and

ExpTime-
omplete using an approa
h based on B�u
hi tree automata.

1 Introdu
tion

Propositional dynami
 logi
 (PDL) is a variant of propositional modal logi

that has been developed in the late seventies as a tool for reasoning about pro-

grams [1{5℄. Sin
e then, PDL was used rather su

essfully in a large number

of appli
ation areas su
h as reasoning about knowledge [6℄, reasoning about a
-

tions [7, 8℄, des
ription logi
s [9℄, and others. Starting almost with its invention

around 1979 [3℄, many extensions of PDL have been proposed with the goal to

enhan
e the expressive power and make PDL even more appli
able; see e.g. [10,

4, 5℄. Some of these extensions are tailored toward spe
i�
 appli
ation areas, su
h

as the halt predi
ate that allows to state termination in the
ontext of reason-

ing about programs [11℄. The majority of proposed extensions, however, is of a

general nature and has been employed in many di�erent appli
ation areas|for

instan
e, the extension of PDL with the widely applied
onverse operator [12℄.

Among the general purpose extensions of PDL, two of the most obvious ones

are the addition of program interse
tion \\" and of program negation \:" [13,

4, 5℄. Sin
e PDL already provides for program union \[", the latter is more

general than the former: �\�
an simply be expressed as :(:�[:�). The main

obsta
le for using these two extensions in pra
ti
al appli
ations is that they

are problemati
 w.r.t. their
omputational properties: �rst, adding interse
tion

destroys many of the ni
e model-theoreti
 properties of PDL. The only known

algorithm for reasoning in the resulting logi
 PDL

\

is the quite intri
ate one

given in [13℄. Up to now, it is unknown whether the provided 2-ExpTime upper

bound is tight|in
ontrast to ExpTime-
omplete reasoning in PDL. Se
ond,

the situation with PDL extended with negation (PDL

:

) is even worse: it was

observed quite early in 1984 that reasoning in PDL

:

is unde
idable [4℄.

2

This unde
idability was often regretted [4, 10, 14℄, in parti
ular sin
e reason-

ing in PDL

:

would be quite interesting for a number of appli
ation areas. To

illustrate the usefulness of this logi
, let us give three examples of its expres-

sive power: �rst, it was already noted that negation
an be employed to express

interse
tion. Interse
tion, in turn, is very useful for reasoning about programs

sin
e it allows to
apture the parallel exe
ution of programs. Se
ond, program

negation allows to express the universal modality 2

U

' by writing [a℄' ^ [:a℄',

with a an arbitrary atomi
 program. The universal modality is a very useful

extension of modal logi
s that
omes handy in many appli
ations; see e.g. [15℄.

Third, program negation
an be used to express the window operator

a

[16{18℄,

whose semanti
s is as follows:

a

' holds at a world w i� ' holding at a world w

0

implies that w

0

is a-a

essible from w. In PDL

:

, we
an thus just write [:a℄:'

instead of

a

'. The window operator
an be viewed as expressing suÆ
ien
y in

ontrast to the standard box operator of modal logi
, whi
h expresses ne
essity.

Moreover, the window operator has important appli
ations, e.g. in des
ription

logi
s [19℄.

Due to the usefulness of program negation, it is natural to attempt the identi-

�
ation of fragments of PDL

:

that still
apture some of the desirable properties

of program negation, but are well-behaved in a
omputational sense. One
andi-

date for su
h a fragment is PDL

\

. As has already been noted, this fragment is

indeed de
idable, but has a quite intri
ate model theory. The purpose of this pa-

per is to explore another interesting option: PDL

(:)

, the fragment of PDL

:

that

allows the appli
ation of program negation to atomi
 programs, only. Indeed,

we show that reasoning in PDL

(:)

is de
idable, and ExpTime-
omplete|thus

not harder than reasoning in PDL itself. Moreover, PDL

(:)

has a simpler model

theory than PDL

\

: we are able to use a de
ision pro
edure that is an exten-

sion of the standard automata-based de
ision pro
edure for PDL [20℄, and of

the standard automata-based de
ision pro
edure for Boolean modal logi
 [21℄.

Finally, we
laim that PDL

(:)

is still useful for appli
ations: while interse
tion

annot be expressed any more, the universal modality and the window operator

are still available.

To give some more
on
rete examples of the pra
ti
ability of PDL

(:)

, let us

take a des
ription logi
 perspe
tive. Des
ription logi
s are a family of logi
s that

originated in arti�
ial intelligen
e as a tool for the representation of
on
eptual

knowledge [22℄. It is well-known that many des
ription logi
s (DLs) are nota-

tional variants of modal logi
s [23, 9℄. In parti
ular, the des
ription logi
 ALC

reg

,

whi
h extends the basi
 DL ALC with regular expressions on roles,
orresponds

to PDL [9℄. More pre
isely, DL
on
epts
an be understood as PDL formulas,

and DL roles as PDL programs. Thus, the extension ALC

(:)

reg

of ALC

reg

with

negation of atomi
 (!) roles is a notational variant of PDL

(:)

. We give two ex-

amples of knowledge representation with ALC

(:)

reg

. These examples, whi
h use

DL syntax rather than PDL syntax, illustrate that the
ombination of regular

expressions on roles and of atomi
 negation of roles is a very useful one.

1. Some private universities prefer to admit students whose an
estors donated

money to the university. Using ALC

reg

, the
lass of all appli
ants having a do-

3

nating an
estor
an be des
ribed with the
on
ept 9parent

+

:Donator. To des
ribe

the set of preferred students, we
an now
ombine this
on
ept with the window

operator: the ALC

(:)

reg

-
on
ept

UniversityX ! 8prefer:Appli
ant u 8:prefer::(9parent

+

:Donator)

states that, in the
ase of University X, only people who a
tually applied are

preferred, and all appli
ants with donating an
estors are preferred.

2. Suppose that we want to use ALC

(:)

reg

to talk about trust and mistrust among

negotiating parties. Also assume that we have a very strong notion of trust,

namely that it is transitive: if I trust x, and x trusts y, then I trust y as well.

An analogous assumption for mistrust should
learly not be made. Then, we
an

model mistrust by using an atomi
 role mistrust, and trust by using (:mistrust)

�

and say, e.g., that I trust some politi
ians and never mistrust a family member :

9(:mistrust)

�

:Politi
ian u 8mistrust::Familymember:

Note that reversing the roles of trust and mistrust does not work: �rst, to a
hieve

transitivity of trust, we'd have to introdu
e an atomi
 dire
t-trust relation. And

se
ond, we
ould then only speak about the negation of dire
t-trust, but not

about the negation of dire
t-trust

�

, whi
h
orresponds to mistrust.

2 PDL with Negation

In this se
tion, we introdu
e propositional dynami
 logi
 (PDL) with negation

of programs. We start with de�ning full PDL

:

, i.e. PDL extended with negation

of (possibly
omplex) programs. Then, the logi
s PDL and PDL

(:)

, are de�ned

as fragments of PDL

:

.

De�nition 1 (PDL

:

Syntax). Let �

0

and �

0

be
ountably in�nite and dis-

joint sets of propositional letters and atomi
 programs, respe
tively. Then the

set �

:

of PDL

:

-programs and the set �

:

of PDL

:

-formulas are de�ned by

simultaneous indu
tion, i.e., they are the smallest sets su
h that:

{ �

0

� �

:

;

{ �

0

� �

:

;

{ if '; 2 �

:

, then f:'; ' ^ ; ' _ g � �

:

;

{ if �

1

; �

2

2 �

:

, then f:�

1

; �

1

[�

2

; �

1

;�

2

; �

�

1

g � �

:

;

{ if � 2 �

:

, and ' 2 �

:

, then fh�i'; [�℄'g � �

:

;

{ if ' 2 �

:

, then '? 2 �

:

We use > as abbreviation for an arbitrary propositional tautology, and ? as

abbreviation for :>. Moreover, for �; �

0

2 �

:

we use � \ �

0

as abbreviation for

:(:� [:�

0

).

A formula ' 2 �

:

is
alled a PDL

(:)

-formula (PDL-formula) if, in ', nega-

tion o

urs only in front of atomi
 programs and formulas (only in front of

formulas).

4

Throughout this paper, the operator h�i is
alled the diamond operator, [�℄ is

alled the box operator, and programs of the form ? are
alled tests. Let us

note how formulas of PDL

:

an be
onverted into
on
epts of the des
ription

logi
 ALC

(:)

reg

mentioned in the introdu
tion: simply repla
e ^, _, h�i , and [�℄

with u, t, 9�: , and 8�: , respe
tively.

De�nition 2 (PDL

:

Semanti
s). Let M = (W;R; V) be a Kripke stru
ture

where W is the set of worlds, R is a family of a

essibility relations for atomi

programs fR

�

� W

2

j � 2 �

0

g, and V : �

0

! 2

W

is a valuation fun
tion.

In the following, we de�ne a

essibility relations for
ompound programs and the

satisfa
tion relation j= by simultaneous indu
tion, where �

�

denotes the re
exive-

transitive
losure:

R

'?

:= f(u; u) 2W

2

j M; u j= 'g

R

:�

:= W

2

nR

�

R

�

1

[�

2

:= R

�

1

[R

�

2

R

�

1

;�

2

:= R

�

1

ÆR

�

2

R

�

�

:= (R

�

)

�

M; u j= p i� u 2 V (p) for any p 2 �

M; u j= :' i� M; u 6j= '

M; u j= '

1

_ '

2

i� M; u j= '

1

or M; u j= '

2

M; u j= '

1

^ '

2

i� M; u j= '

1

and M; u j= '

2

M; u j= h�i' i� there is a v 2W with (u; v) 2 R

�

and M; v j= '

M; u j= [�℄' i� for all v 2 W; (u; v) 2 R

�

implies M; v j= '

If M; u j= ' for some formula ' 2 �

:

and world u 2 W , then ' is true at u in

M, and M is
alled model of '. A formula is satis�able if it has a model.

It is well-known that satis�ability of PDL

:

-formulas is unde
idable [4℄. Sin
e

this
an be established in a very simple way, we give a proof for illustrative

purposes.

The proof is by redu
tion of the unde
idable word-problem for �nitely pre-

sented semi-groups [24℄: given a set of word identities fu

1

= v

1

; : : : ; u

k

= v

k

g,

the task is to de
ide whether they imply another word identity u = v. To redu
e

this problem to PDL

:

-satis�ability, we need to introdu
e the universal modality

2

U

', whi
h has the following semanti
s:

M; u j= 2

U

' i� M; v j= ' for all v 2 W:

Clearly, in PDL

:

we
an repla
e 2

U

' with the equivalent [a℄'^[:a℄', where a 2

�

0

is an arbitrary atomi
 program. Using the universal modality, the redu
tion

is now easy: we assume that, for every generator of the semi-group, there is an

atomi
 program of the same name, and then note that fu

1

= v

1

; : : : ; u

k

= v

k

g

implies u = v if and only if the following formula is unsatis�able:

�

hu \ :vi> _ h:u \ vi>

�

^ 2

U

�

^

i=1::k

[u

i

\ :v

i

℄? ^ [v

i

\ :u

i

℄?

�

:

5

Here, we assume that the symbols of the words u

i

and v

i

(and of u and v) are

separated by program
omposition \;".

Sin
e PDL

:

is a very useful logi
 for a large number of purposes, this unde-

idability result is rather disappointing. As has been argued in the introdu
tion,

it is thus a natural idea to sear
h for de
idable fragments of PDL

:

that still

extend PDL in a useful way. In the remainder of this paper, we will prove that

PDL

(:)

is su
h a fragment. Note that, in PDL

(:)

, we
an still de�ne the uni-

versal modality as des
ribed above. Also note that we
an use negated atomi

programs nested inside other program operators.

3 An Automata-based Variant of PDL

(:)

Similar to some related results in [20℄, our de
idability proof is based on B�u
hi-

automata on in�nite trees. It has turned out that, for su
h proofs, it is rather

onvenient to use variants of PDL in whi
h
omplex programs are des
ribed by

means of automata on �nite words, rather than by regular expressions. Therefore,

in this se
tion we de�ne a
orresponding variant APDL

(:)

of PDL

(:)

.

De�nition 3 (Finite automata). A (nondeterministi
) �nite automaton (NFA)

A is a quintuple (Q;�; q

0

; �; F) where

{ Q is a �nite set of states,

{ � is a �nite alphabet,

{ q

0

is an initial state,

{ � : Q�� ! 2

Q

is a (partial) transition fun
tion, and

{ F � Q is the set of a

epting states.

The fun
tion �
an be indu
tively extended to a fun
tion from Q��

�

to 2

Q

in

a natural way:

{ �(q; ") := fqg, where " is the empty word;

{ �(q; wa) := fq

00

2 Q j q

00

2 �(q

0

; a) for some q

0

2 �(q; w)g.

A sequen
e p

0

; : : : ; p

n

2 Q, n � 0, is a run of A on the word a

1

� � �a

n

2 �

�

if

p

0

= q

0

, p

i

2 �(p

i�1

; a

i

) for 0 < i � n, and p

n

2 F . A word w 2 �

�

is a

epted

by A if there exists a run of A on w. The language a

epted by A is the set

L(A) := fw 2 �

�

j w is a

epted by Ag.

To obtain APDL

(:)

from PDL

(:)

, we repla
e
omplex programs (i.e. regular

expressions) inside boxes and diamonds with automata. For the sake of exa
tness,

we give the
omplete de�nition.

De�nition 4 (APDL

(:)

Syntax). The set �

(:)

0

of program literals is de-

�ned as fa;:a j a 2 �

0

g. The sets A�

(:)

of program automata and A�

(:)

of

APDL

(:)

-formulas are de�ned by simultaneous indu
tion, i.e., A�

(:)

and A�

(:)

are the smallest sets su
h that:

{ �

0

� A�

(:)

;

6

{ if '; 2 A�

(:)

, then f:'; ' _ ; ' ^ g � A�

(:)

;

{ if � 2 A�

(:)

and ' 2 A�

(:)

, then fh�i'; [�℄'g � A�

(:)

;

{ if � is a �nite automaton with alphabet � � �

(:)

0

[f ? j 2 A�

(:)

g, then

� 2 A�

(:)

Note that the alphabet of program automata is
omposed of atomi
 programs,

of negated atomi
 programs, and of tests.

De�nition 5 (APDL

(:)

Semanti
s). Let M = (W;R; V) be a Kripke stru
-

ture as in De�nition 2. We indu
tively de�ne a relation R mapping ea
h program

literal, ea
h test, and ea
h program automaton to a binary relation over W . This

is done simultaneously with the de�nition of the satisfa
tion relation j=:

R(a) := R

a

for ea
h a 2 �

0

R(:a) := W

2

nR

a

for ea
h a 2 �

0

R(?) := f(u; u) 2W

2

j M; u j= g

R(�) := f(u; v) 2W

2

j there is a word w = w

1

� � �w

m

2 L(�);

m � 0; and worlds u

0

; : : : ; u

m

2W su
h that

u = u

0

R(w

1

)u

1

R(w

2

) � � �u

m�1

R(w

m

)u

m

= vg

M; u j= p i� u 2 V (p) for any p 2 �;

M; u j= :' i� M; u 6j= ';

M; u j= '

1

_ '

2

i� M; u j= '

1

or M; u j= '

2

;

M; u j= '

1

^ '

2

i� M; u j= '

1

and M; u j= '

2

;

M; u j= h�i' i� there is a u

0

2W with (u; u

0

) 2 R(�) and M; u

0

j= ';

M; u j= [�℄' i� for all u

0

2 W; (u; u

0

) 2 R(�) implies M; u

0

j= ':

Sin
e every language de�ned by a regular expression
an also be a

epted by a

�nite automaton and vi
e versa [25℄, it is straightforward to verify that PDL

(:)

and APDL

(:)

have the same expressive power. Moreover, upper
omplexity

bounds
arry over from APDL

(:)

to PDL

(:)

sin
e
onversion of regular ex-

pressions to �nite automata
an be done with at most a polynomial blow-up in

size (the
onverse does not hold true).

It is interesting to note that, in many automata-based de
ision pro
edures for

variants of PDL, a deterministi
 version of APDL is used, i.e. a variant of APDL

in whi
h there may be at most one su

essor for ea
h world and ea
h atomi

program [20℄. In a se
ond step, satis�ability in the non-deterministi
 APDL-

variant is then redu
ed to satis�ability in the deterministi
 one. We
annot take

this approa
h here sin
e we
annot w.l.o.g. assume that both atomi
 programs

and their negations are deterministi
. Indeed, this would
orrespond to limiting

the size of Kripke stru
tures to only two worlds.

4 Hintikka-trees

This se
tion provides a
ore step toward using B�u
hi-tree automata for de
iding

the satis�ability of APDL

(:)

-formulas. The intuition behind this approa
h is as

follows: to de
ide the satis�ability of an APDL

(:)

-formula ', we translate it

7

into a B�u
hi-tree automaton B

'

su
h that the trees a

epted by the automaton

orrespond in some way to models of the formula '. To de
ide satis�ability of

', it then remains to perform a simple emptiness-test on the automaton B

'

: the

a

epted language will be non-empty if and only if ' has a model.

In the
ase of APDL

(:)

, one obsta
le to this approa
h is that APDL

(:)

does

not enjoy the tree model property (TMP), i.e., there are APDL

(:)

-formulas that

are satis�able only in non-tree models. For example, for ea
h n 2 N the following

PDL

(:)

-formula enfor
es a
y
le of length n:

n

1

^ hai(

n

2

^ hai(� � � (

n

n

^ [:a℄:

n

1

) � � �));

where, for 1 � i � n,

n

i

= p

1

^ � � � ^ :p

i

^ � � � ^ p

n

with propositional variables

p

1

; : : : ; p

n

. Note that the formula inside the diamond simulates the window op-

erator and in this way
loses the
y
le. Thus, we have to invest some work to

obtain tree-shaped representations of (possibly non-tree) models that
an then

be a

epted by B�u
hi-automata.

As a preliminary, we assume that all APDL

(:)

-formulas are in negation nor-

mal form (NNF), i.e. that negation o

urs only in front of propositional letters.

This assumption
an be made w.l.o.g. sin
e ea
h formula
an be
onverted into

an equivalent one in NNF by exhaustively eliminating double negation, applying

DeMorgan's rules, and exploiting the duality between diamonds and boxes. For

the sake of brevity, we introdu
e the following notational
onventions:

{ for ea
h APDL

(:)

-formula ', _:' denotes the NNF of :';

{ for ea
h program literal �, � denotes :� if � is an atomi
 program, and a if

� = :a for some atomi
 program a;

{ for ea
h program automaton �, we use Q

�

, �

�

, q

�

, �

�

, and F

�

to denote

the
omponents of � = (Q;�; q

0

; �; F);

{ for ea
h program automaton � and state q 2 Q

�

, we use �

q

to denote the

automaton (Q

�

; �

�

; q;�

�

; F

�

), i.e. the automaton obtained from � by using

q as the new initial state.

Before we
an develop the tree-shaped abstra
tion of models, we need to �x a

losure, i.e. a set of formulas
l(') relevant for de
iding the satis�ability of an

input formula '. This is done analogous to [3, 20℄. In the following, when we talk

of a subformula of a formula ', we mean that
an be obtained from ' by

de
omposing only formula operators, but not program operators. For example,

a is a subformula of hb?ia, while b is not.

De�nition 6 (Closure). Let ' be a APDL

(:)

-formula. The set
l(') is the

smallest set whi
h is
losed under the following
onditions:

(C1) ' 2
l(')

(C2) if is a subformula of

0

2
l('), then 2
l(')

(C3) if 2
l('), then _: 2
l(')

(C4) if h�i 2
l('), then

0

2
l(') for all

0

? 2 �

�

(C5) if h�i 2
l('), then h�

q

i 2
l(') for all q 2 Q

�

(C6) if [�℄ 2
l('), then

0

2
l(') for all

0

? 2 �

�

8

(C7) if [�℄ 2
l('), then [�

q

℄ 2
l(') for all q 2 Q

�

It is standard to verify that the
ardinality of
l(') is polynomial in the length

of ', see e.g. [5℄. We generally assume the diamond formulas (i.e. formulas of the

form h�i) in
l(') to be linearly ordered and use �

i

to denote the i-th diamond

formula in
l('), with �

1

being the �rst one. Note that a
hanged initial state of

an automaton results in a di�erent diamond formula.

To de�ne Hintikka-trees, the tree-shaped abstra
tion of models underlying

our de
ision pro
edure, we pro
eed in three steps. First, we introdu
e Hintikka-

sets that will be used as (parts of) node labels. Intuitively, ea
h node in the tree

des
ribes a world of the
orresponding model, and its label
ontains the formulas

from the
losure of the input formula ' that are true in this world. Se
ond, we

introdu
e a mat
hing relation that des
ribes the possible \neighborhoods" that

we may �nd in Hintikka-trees, where a neighborhood
onsists of a labeled node

and its labeled su

essors. And third, we use these ingredients to de�ne Hintikka-

trees.

De�nition 7 (Hintikka-set). Let 2 �

(:)

be an APDL

(:)

-formula, and � 2

A�

(:)

a program automaton. The set 	 �
l(') is a Hintikka-set for ' if

(H1) if

1

^

2

2 	 , then

1

2 	 and

2

2 	

(H2) if

1

_

2

2 	 , then

1

2 	 or

2

2 	

(H3) 2 	 i� _: =2 	

(H4) if [�℄ 2 	 and q

�

2 F

�

, then 2 	

(H5) if [�℄ 2 	 then, for any state q 2 Q

�

and test �? 2 �

�

,

q 2 �

�

(q

�

; �?) implies that _:� 2 	 or [�

q

℄ 2 	

The set of all Hintikka-sets for ' is designated by H

'

.

The
onditions (H1) to (H3) are standard, with one ex
eption: (H3) is stronger

than usual sin
e it enfor
es maximality of Hintikka-sets by stating that, for ea
h

formula 2
l('), either or _: must be in the Hintikka-set. This will be used

later on to deal with negated programs. The last two
onditions (H4) and (H5)

deal with the \lo
al" impa
t of box formulas.

Next, we de�ne the mat
hing relation. The purpose of this relation
an be

understood as follows: in the Hintikka-tree, ea
h node has exa
tly one su

essor

for every diamond formula in
l('). The mat
hing relation helps to ensure that

all diamond formulas in a node's label
an be satis�ed \via" the
orresponding

su

essor in the Hintikka-tree, and that none of the box formulas is violated via

any su

essors. We talk of \via" here sin
e going to an immediate su

essor
or-

responds to travelling along a single program literal. Sin
e programs in APDL

(:)

are automata that may only a

ept words of length greater one, in general we

annot satisfy diamonds by going only to the immediate su

essor, but rather

we must perform a sequen
e of su
h moves.

Before we de�ne the mat
hing relation formally, let us �x the stru
ture of

node labels of Hintikka-trees. For reasons that will be dis
ussed below, node

9

labels not only
ontain a Hintikka-set, but also two additional
omponents. More

pre
isely, if ' is an APDL

(:)

-formula and
l(')
ontains k diamond formulas,

then we use

{ �

(:)

'

to denote the set of all program literals o

urring in '; and

{ �

'

to abbreviate H

'

� (�

(:)

'

[f?g) � f0; : : : ; kg, i.e. the set of triples

ontaining a Hintikka-set for ', a program literal of ' or ?, and a number

at most k.

The elements of �

'

will be used as node labels in Hintikka-trees. Intuitively, the

�rst
omponent lists the formulas that are true at a node, the se
ond
omponent

�xes the program literal with whi
h the node
an be rea
hed from its prede
essor

(or ? if this information is not important), and the third
omponent will help to

ensure that diamond formulas are eventually satis�ed when moving through the

tree. For a triple � 2 �

'

, we refer to the �rst, se
ond and third triple
omponent

with �

1

, �

2

, and �

3

, respe
tively. For the following de�nition, re
all that we use

�

i

to denote the i-th diamond in
l(').

De�nition 8 (Mat
hing). Let ' be a formula and k the number of diamond

formulas in
l('). A k + 1-tuple of �

'

-triples (�; �

1

; : : : ; �

k

) is mat
hing if, for

1 � i � k and all automata � 2 A�

(:)

, the following holds:

(M1) if �

i

= h�i 2 �

1

, then there is a word w =

1

? � � �

n

? 2 �

�

�

, n � 0,

and a state q

1

2 Q

�

su
h that f

1

; : : : ;

n

g � �

1

, q

1

2 �

�

(q

�

; w),

and one of the following holds:

(a) q

1

is a �nal state, 2 �

1

, �

2

i

= ?, and �

3

i

= 0

(b) there is a program literal � 2 �

�

and a state q

2

2 Q

�

su
h that

q

2

2 �

�

(q

1

; �), �

j

= h�

q

2

i 2 �

1

i

, �

2

i

= �, and �

3

i

= j.

(M2) if [�℄ 2 �

1

, q 2 Q

�

, and � 2 �

�

a program literal su
h that

q 2 �

�

(q

�

; �), then � = �

2

i

implies [�

q

℄ 2 �

1

i

:

As already noted, the purpose of the mat
hing relation is to des
ribe the possible

neighborhoods in Hintikka-trees. To this end, think of � as the label of a node,

and of �

1

; : : : ; �

k

as the labels of its su

essors. The purpose of Conditions (M1)

and (M2) is to ensure that diamonds are satis�ed and that boxes are not vio-

lated, respe
tively. Let us
onsider only (M1). If a diamond �

i

= h�i is in the

�rst
omponent of �, it
an either be satis�ed in the node labeled with � itself

(Condition (a)) or we
an \delay" its satisfa
tion to the i-th su

essor node that

is reserved spe
i�
ally for this purpose (Condition (b)). In Case (a), it is not

important over whi
h program literal we
an rea
h the i-th su

essor, and thus

the se
ond
omponent of �

i

an be set to ?. In the se
ond
ase, we must
hoose

a suitable program literal � and a suitable state q of �, make sure that the i-th

su

essor is rea
hable over � via its se
ond �

i

-
omponent, and guarantee that

the �rst
omponent of �

i

ontains the diamond under
onsideration with the

automata � \advan
ed" to initial state q.

10

The remaining building blo
k for ensuring that diamonds are satis�ed is to

enfor
e that the satisfa
tion of diamonds is not delayed forever. This is one of

the two
ore parts of the de�nition of Hintikka-trees, the other being the proper

treatment of negation. Before we
an dis
uss the prevention of in�nitely delayed

diamonds in some more detail, we have to introdu
e some basi
 notions.

Let M be a set and k 2 N. An (in�nite) k-ary M-tree T is a mapping

T : [k℄

�

! M , where [k℄ is used (now and in the following) as an abbreviation

for the set f1; : : : ; kg. Intuitively, the node �i is the i-th
hild of �. We use "

to denote the empty word (
orresponding to the root of the tree). An in�nite

path in a k-ary M -tree is an in�nite word
 over the alphabet [k℄. We use
[n℄,

n � 0, to denote the pre�x of
 up to the n-th element of the sequen
e (with

[0℄ yielding the empty sequen
e).

Now ba
k to the prevention of in�nitely delayed diamonds. Given a formula '

with k diamond formulas in
l('), a Hintikka-tree will be de�ned as a k-ary �

'

-

tree in whi
h every neighborhood is mat
hing and some additional
onditions

are satis�ed. To dete
t in�nite delays of diamonds in su
h trees, it does not

suÆ
e to simply look for in�nite sequen
es of nodes that all
ontain the same

diamond: �rstly, diamonds are evolving while being \pushed" through the tree

sin
e their initial state might be
hanged. Se
ondly, su
h a sequen
e does not

ne
essarily
orrespond to an in�nite delay of diamond satisfa
tion: it
ould as

well be the
ase that the diamond is satis�ed an in�nite number of times, but

always immediately \regenerated" by some other formula. Also note that we

annot use the standard te
hnique from [20℄ sin
e it only works for deterministi

variants of PDL.

Pre
isely for this purpose, the easy dete
tion of in�nitely delayed diamonds,

we have introdu
ed the third
omponent of node labels in Hintikka trees: if a

diamond was pushed to the
urrent node x from its prede
essor, then by (M1)

the third
omponent of x's label
ontains the number of the pushed diamond.

Moreover, if the pushed diamond is not satis�ed in x, we again use the third

omponent of x: it
ontains the number of the su

essor of x to whi
h the

diamond's satisfa
tion is (further) delayed. If no diamond was pushed to x,

its third
omponent is simply zero. Thus, the following de�nition
aptures our

intuitive notion of in�nitely delayed diamonds.

De�nition 9 (Diamond Starvation). Let ' be an APDL

(:)

-formula with

k diamond formulas in
l('), T a k-ary �

'

-tree, x 2 [k℄

�

a node in T , and

�

i

= h�i 2 T (x)

1

. Then the diamond formula h�i is
alled starving in x if

there exists a path
 =

1

2

� � � 2 [k℄

!

su
h that

1.

1

= i,

2. T (x
[n℄)

3

=

n+1

for n � 1.

We have now gathered all ingredients to de�ne Hintikka-trees formally.

De�nition 10 (Hintikka-tree). Let ' be an APDL

(:)

-formula with k dia-

mond formulas in
l('). A k-ary �

'

-tree T is a Hintikka-tree for ' if T satis�es,

11

for all nodes x; y 2 [k℄

�

, the following
onditions:

(T1) ' 2 T (")

1

(T2) the k + 1-tuple (T (x); T (x1); : : : ; T (xk)) is mat
hing

(T3) no diamond formula from
l(') is starving in x

(T4) if [�℄ ; [�℄� 2 T (x)

1

, � 2 �

(:)

0

, q

0

�

2 Q

�

, and q

0

�

2 Q

�

su
h that

q

0

�

2 �

�

(q

�

; �) and q

0

�

2 �

�

(q

�

; �), then

[�

q

0

�

℄ =2 T (y)

1

implies [�

q

0

�

℄� 2 T (y)

1

.

Conditions (T1) to (T3) are easily understood. The purpose of Condition (T4)

is to deal with negated programs. In parti
ular, for ea
h atomi
 program a we

have to ensure that any pair of nodes x; y of a Hintikka-tree T
an be related

by one of a and :a without violating any boxes. This is done by (T4) together

with (H3)|indeed, this is the reason for formulating (H3) stronger than usual.

Intuitively, the treatment of negation
an be understood as follows: suppose that

[�℄ 2 T (x)

1

, let q 2 �

�

(q

�

; a) for some atomi
 program a, and let y be a node.

By (H3), we have either [�

q

℄ 2 T (y)

1

or _:[�

q

℄ 2 T (y)

1

. In the �rst
ase, x

and y
an be related by a. In the se
ond
ase, (T4) ensures that they
an be

related by :a. This te
hnique is inspired by [21℄, but generalized to program

automata.

The following proposition shows that Hintikka-trees are indeed proper ab-

stra
tions of models. A proof
an be found in [26℄.

Proposition 1. An APDL

(:)

-formula ' is satis�able i� it has a Hintikka-tree.

5 B�u
hi Automata for Hintikka-trees

In this se
tion, we show that it is possible to
onstru
t, for every APDL

(:)

-

formula ', a B�u
hi tree automaton B

'

that a

epts exa
tly the Hintikka-trees

for '. By Proposition 1, sin
e the size of B

'

is at most exponential in the length of

', and sin
e the emptiness of B�u
hi-tree automata
an be veri�ed in quadrati

time [20℄, this yields an ExpTime de
ision pro
edure for the satis�ability of

APDL

(:)

-formulas. We start with introdu
ing B�u
hi tree automata.

De�nition 11 (B�u
hi Tree Automaton). A B�u
hi tree automaton B for

k-ary M -trees is a quintuple (Q;M; I;�; F), where

{ Q is a �nite set of states,

{ M is a �nite alphabet,

{ I � Q is the set of initial states,

{ � � Q�M �Q

k

is the transition relation, and

{ F � Q is the set of a

epting states.

Let M be a set of labels, and T a k-ary M-tree. Then, a run of B on T is a

k-ary Q-tree r su
h that

12

1. r(") 2 I, and

2. (r(x); T (x); r(x1); : : : ; r(xk)) 2 � for all nodes x 2 [k℄

�

.

Let
 2 [k℄

!

be a path. The set inf

r

(
)
ontains the states in Q that o

ur

in�nitely often in run r along path
. A run r of B on T is a

epting if, for

ea
h path
 2 [k℄

!

, we have inf

r

(
)\ F 6= ;. The language a

epted by B is the

set L(B) = fT j there is an a

epting run of B on Tg.

Given a B�u
hi automaton B, the problem whether its language is empty, i.e.,

whether it holds that L(B) = ;, is
alled the emptiness problem. This problem

is solvable in time quadrati
 in the size of the automaton [20℄.

We now give the translation of APDL

(:)

-formulas ' into B�u
hi-automata B

'

.

To simplify the notation, we write P

2

(') to denote the set of sets ff[�℄ ; [�℄�g j

[�℄ ; [�℄� 2
l(')g. We �rst introdu
e our automata formally and then explain

the intuition.

De�nition 12. Let ' be an APDL

(:)

-formula with
l(')
ontaining k diamond

formulas. The B�u
hi tree automaton B

'

= (Q;�

'

; I;�; F) on k-ary �

'

-trees is

de�ned as follows:

{ Q
ontains those triples ((; �; `); P; d) 2 �

'

� 2

P

2

(')

� f�; "g that satisfy

the following
onditions:

(1) if f[�℄ ; [�℄�g � 	 , then f[�℄ ; [�℄�g 2 P

(2) if f[�℄ ; [�℄�g 2 P , � 2 �

(:)

, q

0

�

2 �

�

(q

�

; �), q

0

�

2 �

�

(q

�

; �), and

[�

q

0

�

℄ =2 	 , then [�

q

0

�

℄� 2 	

{ I := f((; �; `); P; d) 2 Q j ' 2 	 , and d = �g.

{ ((�

0

; P

0

; d

0

); (; �; `); (�

1

; P

1

; d

1

); : : : ; (�

k

; P

k

; d

k

)) 2 � if and only if, for

ea
h i 2 [k℄, the following holds:

1. �

0

= (; �; `),

2. P

0

= P

i

,

3. the tuple (�

0

; : : : ; �

k

) is mat
hing,

4. d

i

=

8

>

<

>

:

" if d

0

= �, �

3

i

6= 0 and �

i

2 	

" if d

0

= ", �

3

0

= i, and �

3

i

6= 0

� otherwise:

{ The set F of a

epting states is F := f(�; P; d) 2 Q j d = �g.

While it is not hard to see how the set of initial states enfor
es (T1) of Hintikka-

trees and how the transition relation enfor
es (T2), Conditions (T3) and (T4)

are more
hallenging. In the following, we dis
uss them in detail.

Condition (T3) is enfor
ed with the help of the third
omponent of states,

whi
h may take the values \�" and \"". Intuitively, the fourth point in the

de�nition of � ensures that, whenever the satisfa
tion of a diamond is delayed in

a node x and r is a run, then r assigns states with third
omponent " to all nodes

on the path that \tra
ks" the diamond delay. Note that, for this purpose, the

de�nition of � refers to the third
omponent of �

'

-tuples, whi
h is \
ontrolled"

13

by (M1) in the appropriate way. All nodes that do not appear on delayed diamond

paths are labeled with �. Then, the set of a

epting states ensures that there is

no path that, from some point on, is
onstantly labeled with ". Thus, we enfor
e

that no diamonds are delayed in�nitely in trees a

epted by our automata, i.e.

no starvation o

urs.

There is one spe
ial
ase that should be mentioned. Assume that a node x

ontains a diamond �

i

= h�i that is not satis�ed \within this node" (Case (a) of

(M1) does not apply). Then there is a potential starvation path for �

i

that starts

at x and goes through the node xi: (M1) \advan
es" the automaton � to �

q

,

and ensures that �

j

= h�

q

i 2 T (xi)

1

and that T (xi)

3

= j. Now suppose that

T (xi)

1

ontains another diamond �

k

= h�i� with �

j

6= �

k

. If �

k

is not satis�ed

within xi, there is a potential starvation path for �

k

starting at xi and going

through xik. Sin
e the starvation path for �

i

and the starvation path for �

k

are

for di�erent diamonds, we must be
areful to separate them|failure in doing

this would result in some starvation-free Hintikka-trees to be reje
ted. Thus, the

de�nition of � ensures that runs label xik with �, and the
onstant "-labeling of

the starvation path for �

k

is delayed by one node: it starts only at the su

essor

of xik on the starvation path for �

k

.

Now for Condition (T4). In
ontrast to Conditions (T1) and (T2), this
ondi-

tion has a global
avor in the sense that it does not only
on
ern a node and its

su

essors. Thus, we need to employ a spe
ial te
hnique to enfor
e that (T4) is

satis�ed: we use the se
ond
omponent of states as a \bookkeeping
omponent"

that allows to propagate global information. More pre
isely, Point (1) of the

de�nition of Q and Point (1) of the de�nition of � ensure that, whenever two

boxes appear in a Hintikka-set labeling a node x in a Hintikka-tree T , then this

joint o

urren
e is re
orded in the se
ond
omponent of the state that any run

assigns to x. Via the de�nition of the transition relation (se
ond point), we fur-

ther ensure that all states appearing in a run share the same se
ond
omponent.

Thus, we may use Point (2) of the de�nition of Q and Point (1) of the de�nition

of � to ensure that any node y satis�es the property stated by Condition (T4).

The following proposition shows that the B�u
hi tree automaton B

'

indeed

a

epts pre
isely the Hintikka-trees for APDL

(:)

-formula '. A proof
an be

found in [26℄.

Proposition 2. Let ' be an APDL

(:)

-formula and T a k-ary �

'

-tree. Then T

is a Hintikka-tree for ' i� T 2 L(B

'

).

Putting together Propositions 1 and 2, it is now easy to establish de
idability

and ExpTime-
omplexity of APDL

(:)

and thus also of PDL

(:)

.

Theorem 1. Satis�ability of PDL

(:)

-formulas is ExpTime-
omplete.

Proof. From Propositions 1 and 2, it follows that an APDL

(:)

-formula ' is

satis�able if and only if L(B

'

) 6= ;. The emptiness problem for B�u
hi automata

is de
idable in time quadrati
 in the size of the automaton [20℄. To show that

14

APDL

(:)

-formula satis�ability is in ExpTime, it thus remains to show that the

size of B

'

= (Q;�

'

; I;�; F) is at most exponential in '.

Let n be the length of '. Sin
e the
ardinality of
l(') is polynomial in n,

the
ardinality of H

'

(the set of Hintikka-sets for ') is at most exponential in n.

Thus, it is readily
he
ked that the same holds for �

�

and Q. The exponential

upper bound on the
ardinalities of I and F is trivial. It remains to determine

the size of �: sin
e the size of Q is exponential in n and the out-degree of trees

a

epted by automata is polynomial in n, we obtain an exponential bound.

Thus, APDL

(:)

-formula satis�ability and hen
e also PDL

(:)

-formula satis�a-

bility are in ExpTime. For the lower bound, it suÆ
es to re
all that PDL-formula

satis�ability is already ExpTime-hard [3℄. ut

6 Con
lusion

This paper introdu
es the propositional dynami
 logi
 PDL

(:)

, whi
h extends

standard PDL with negation of atomi
 programs. We were able to show that this

logi
 extends PDL in an interesting and useful way, yet retaining its appealing

omputational properties. There are some natural dire
tions for future work. For

instan
e, it should be simple to further extend PDL

(:)

with the
onverse operator

without destroying the ExpTime upper bound. It would be more interesting,

however, to investigate the interplay between (full) negation and PDL's program

operators in some more detail. For example, to the best our our knowledge it is

unknown whether the fragment of PDL

:

that has only the program operators

\:" and \;" is de
idable.

Referen
es

1. Pratt: Considerations on
oyd-hoare logi
. In: FOCS: IEEE Symposium on Foun-

dations of Computer S
ien
e (FOCS). (1976)

2. Fis
her, M.J., Ladner, R.E.: Propositional modal logi
 of programs. In: Conferen
e

re
ord of the ninth annual ACM Symposium on Theory of Computing, ACM Press

(1977) 286{294

3. Fis
her, M.J., Ladner, R.E.: Propositional dynami
 logi
 of regular programs.

Journal of Computer and System S
ien
es 18 (1979) 194{211

4. Harel, D.: Dynami
 logi
. In Gabbay, D.M., Guenthner, F., eds.: Handbook of

Philosophi
al Logi
, Volume II. D. Reidel Publishers (1984) 496{604

5. Harel, D., Kozen, D., Tiuryn, J.: Dynami
 Logi
. MIT Press (2000)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.

MIT Press (1995)

7. De Gia
omo, G., Lenzerini, M.: PDL-based framework for reasoning about a
-

tions. In: Pro
eedings of the 4th Congress of the Italian Asso
iation for Arti�
ial

Intelligen
e (AI*IA'95). Volume 992., Springer (1995) 103{114

8. Prendinger, H., S
hurz, G.: Reasoning about a
tion and
hange: A dynami
 logi

approa
h. Journal of Logi
, Language, and Information 5 (1996) 209{245

9. Gia
omo, G.D., Lenzerini, M.: Boosting the
orresponden
e between des
ription

logi
s and propositional dynami
 logi
s. In: Pro
eedings of the Twelfth National

Conferen
e on Arti�
ial Intelligen
e (AAAI'94). Volume 1, AAAI Press (1994)

205{212

15

10. Passy, S., Tin
hev, T.: An essay in
ombinatory dynami
 logi
. Information and

Computation 93 (1991)

11. Harel, D., Pratt, V.: Nondeterminism in logi
s of programs. In: Pro
eedings of the

Fifth Symposium on Prin
iples of Programming Languages, ACM (1978) 203{213

12. Vardi, M.Y.: The taming of
onverse: Reasoning about two-way
omputations. In

Parikh, R., ed.: Pro
eedings of the Conferen
e on Logi
 of Programs. Volume 193

of LNCS., Springer (1985) 413{424

13. Dane
ki, S.: Nondeterministi
 propositional dynami
 logi
 with interse
tion is de-

idable. In Skowron, A., ed.: Pro
eedings of the Fifth Symposium on Computation

Theory. Volume 208 of LNCS., Springer (1984) 34{53

14. Broersen, J.: Relativized a
tion
omplement for dynami
 logi
s. In Philippe Bal-

biani, Nobu-Yuki Suzuki, F.W., Zakharyas
hev, M., eds.: Advan
es in Modal Logi
s

Volume 4, King's College Publi
ations (2003) 51{69

15. Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal

of Logi
 and Computation 2 (1992) 5{30

16. Humberstone, I.L.: Ina

essible worlds. Notre Dame Journal of Formal Logi
 24

(1983) 346{352

17. Gargov, G., Passy, S., Tin
hev, T.: Modal environment for Boolean spe
ulations. In

Skordev, D., ed.: Mathemati
al Logi
 and Appli
ations, New York, USA, Plenum

Press (1987) 253{263

18. Goranko, V.: Modal de�nability in enri
hed languages. Notre Dame Journal of

Formal Logi
 31 (1990) 81{105

19. Lutz, C., Sattler, U.: Mary likes all
ats. In Baader, F., Sattler, U., eds.: Pro
eed-

ings of the 2000 International Workshop in Des
ription Logi
s (DL2000). Num-

ber 33 in CEUR-WS (http://
eur-ws.org/) (2000) 213{226

20. Vardi, M.Y., Wolper, P.: Automata-theoreti
 te
hniques for modal logi
 of pro-

grams. Journal of Computer and System S
ien
es 32 (1986) 183{221

21. Lutz, C., Sattler, U.: The
omplexity of reasoning with boolean modal logi
s. In

Wolter, F., Wansing, H., de Rijke, M., Zakharyas
hev, M., eds.: Advan
es in Modal

Logi
s Volume 3, CSLI Publi
ations, Stanford, CA, USA (2001)

22. Baader, F., M
Guiness, D.L., Nardi, D., Patel-S
hneider, P.: The Des
ription Logi

Handbook: Theory, implementation and appli
ations. Cambridge University Press

(2003)

23. S
hild, K.D.: A
orresponden
e theory for terminologi
al logi
s: Preliminary re-

port. In Mylopoulos, J., Reiter, R., eds.: Pro
eedings of the Twelfth International

Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI-91), Morgan Kaufmann (1991)

466{471

24. Matijasevi
h, Y.: Simple examples of unde
idable asso
iative
al
uli. Soviet math-

emati
s (Doklady) (1967) 555{557

25. Kleene, S.: Representation of events in nerve nets and �nite automata. In

C.E.Shannon, J.M
Carthy, eds.: Automata Studies. Prin
eton University Press

(1956) 3{41

26. Lutz, C., Walther, D.: PDL with negation of atomi
 programs. LTCS-Report

03-04, Te
hni
al University Dresden (2003) Available from http://lat.inf.tu-

dresden.de/resear
h/reports.html.

