
PDL with Negation of Atomi Programs

Carsten Lutz and Dirk Walther

Inst. for Theoretial Computer Siene Dept. of Computer Siene

TU Dresden, Germany University of Liverpool, UK

lutz�ts.inf.tu-dresden.de dwalther�s.liv.a.uk

Abstrat. Propositional dynami logi (PDL) is one of the most su-

essful variants of modal logi. To make it even more useful for appli-

ations, many extensions of PDL have been onsidered in the literature.

A very natural and useful suh extension is with negation of programs.

Unfortunately, as long-known, reasoning with the resulting logi is unde-

idable. In this paper, we onsider the extension of PDL with negation of

atomi programs, only. We argue that this logi is still useful, e.g. in the

ontext of desription logis, and prove that satis�ability is deidable and

ExpTime-omplete using an approah based on B�uhi tree automata.

1 Introdution

Propositional dynami logi (PDL) is a variant of propositional modal logi

that has been developed in the late seventies as a tool for reasoning about pro-

grams [1{5℄. Sine then, PDL was used rather suessfully in a large number

of appliation areas suh as reasoning about knowledge [6℄, reasoning about a-

tions [7, 8℄, desription logis [9℄, and others. Starting almost with its invention

around 1979 [3℄, many extensions of PDL have been proposed with the goal to

enhane the expressive power and make PDL even more appliable; see e.g. [10,

4, 5℄. Some of these extensions are tailored toward spei� appliation areas, suh

as the halt prediate that allows to state termination in the ontext of reason-

ing about programs [11℄. The majority of proposed extensions, however, is of a

general nature and has been employed in many di�erent appliation areas|for

instane, the extension of PDL with the widely applied onverse operator [12℄.

Among the general purpose extensions of PDL, two of the most obvious ones

are the addition of program intersetion \\" and of program negation \:" [13,

4, 5℄. Sine PDL already provides for program union \[", the latter is more

general than the former: �\� an simply be expressed as :(:�[:�). The main

obstale for using these two extensions in pratial appliations is that they

are problemati w.r.t. their omputational properties: �rst, adding intersetion

destroys many of the nie model-theoreti properties of PDL. The only known

algorithm for reasoning in the resulting logi PDL

\

is the quite intriate one

given in [13℄. Up to now, it is unknown whether the provided 2-ExpTime upper

bound is tight|in ontrast to ExpTime-omplete reasoning in PDL. Seond,

the situation with PDL extended with negation (PDL

:

) is even worse: it was

observed quite early in 1984 that reasoning in PDL

:

is undeidable [4℄.

2

This undeidability was often regretted [4, 10, 14℄, in partiular sine reason-

ing in PDL

:

would be quite interesting for a number of appliation areas. To

illustrate the usefulness of this logi, let us give three examples of its expres-

sive power: �rst, it was already noted that negation an be employed to express

intersetion. Intersetion, in turn, is very useful for reasoning about programs

sine it allows to apture the parallel exeution of programs. Seond, program

negation allows to express the universal modality 2

U

' by writing [a℄' ^ [:a℄',

with a an arbitrary atomi program. The universal modality is a very useful

extension of modal logis that omes handy in many appliations; see e.g. [15℄.

Third, program negation an be used to express the window operator

a

[16{18℄,

whose semantis is as follows:

a

' holds at a world w i� ' holding at a world w

0

implies that w

0

is a-aessible from w. In PDL

:

, we an thus just write [:a℄:'

instead of

a

'. The window operator an be viewed as expressing suÆieny in

ontrast to the standard box operator of modal logi, whih expresses neessity.

Moreover, the window operator has important appliations, e.g. in desription

logis [19℄.

Due to the usefulness of program negation, it is natural to attempt the identi-

�ation of fragments of PDL

:

that still apture some of the desirable properties

of program negation, but are well-behaved in a omputational sense. One andi-

date for suh a fragment is PDL

\

. As has already been noted, this fragment is

indeed deidable, but has a quite intriate model theory. The purpose of this pa-

per is to explore another interesting option: PDL

(:)

, the fragment of PDL

:

that

allows the appliation of program negation to atomi programs, only. Indeed,

we show that reasoning in PDL

(:)

is deidable, and ExpTime-omplete|thus

not harder than reasoning in PDL itself. Moreover, PDL

(:)

has a simpler model

theory than PDL

\

: we are able to use a deision proedure that is an exten-

sion of the standard automata-based deision proedure for PDL [20℄, and of

the standard automata-based deision proedure for Boolean modal logi [21℄.

Finally, we laim that PDL

(:)

is still useful for appliations: while intersetion

annot be expressed any more, the universal modality and the window operator

are still available.

To give some more onrete examples of the pratiability of PDL

(:)

, let us

take a desription logi perspetive. Desription logis are a family of logis that

originated in arti�ial intelligene as a tool for the representation of oneptual

knowledge [22℄. It is well-known that many desription logis (DLs) are nota-

tional variants of modal logis [23, 9℄. In partiular, the desription logi ALC

reg

,

whih extends the basi DL ALC with regular expressions on roles, orresponds

to PDL [9℄. More preisely, DL onepts an be understood as PDL formulas,

and DL roles as PDL programs. Thus, the extension ALC

(:)

reg

of ALC

reg

with

negation of atomi (!) roles is a notational variant of PDL

(:)

. We give two ex-

amples of knowledge representation with ALC

(:)

reg

. These examples, whih use

DL syntax rather than PDL syntax, illustrate that the ombination of regular

expressions on roles and of atomi negation of roles is a very useful one.

1. Some private universities prefer to admit students whose anestors donated

money to the university. Using ALC

reg

, the lass of all appliants having a do-

3

nating anestor an be desribed with the onept 9parent

+

:Donator. To desribe

the set of preferred students, we an now ombine this onept with the window

operator: the ALC

(:)

reg

-onept

UniversityX ! 8prefer:Appliant u 8:prefer::(9parent

+

:Donator)

states that, in the ase of University X, only people who atually applied are

preferred, and all appliants with donating anestors are preferred.

2. Suppose that we want to use ALC

(:)

reg

to talk about trust and mistrust among

negotiating parties. Also assume that we have a very strong notion of trust,

namely that it is transitive: if I trust x, and x trusts y, then I trust y as well.

An analogous assumption for mistrust should learly not be made. Then, we an

model mistrust by using an atomi role mistrust, and trust by using (:mistrust)

�

and say, e.g., that I trust some politiians and never mistrust a family member :

9(:mistrust)

�

:Politiian u 8mistrust::Familymember:

Note that reversing the roles of trust and mistrust does not work: �rst, to ahieve

transitivity of trust, we'd have to introdue an atomi diret-trust relation. And

seond, we ould then only speak about the negation of diret-trust, but not

about the negation of diret-trust

�

, whih orresponds to mistrust.

2 PDL with Negation

In this setion, we introdue propositional dynami logi (PDL) with negation

of programs. We start with de�ning full PDL

:

, i.e. PDL extended with negation

of (possibly omplex) programs. Then, the logis PDL and PDL

(:)

, are de�ned

as fragments of PDL

:

.

De�nition 1 (PDL

:

Syntax). Let �

0

and �

0

be ountably in�nite and dis-

joint sets of propositional letters and atomi programs, respetively. Then the

set �

:

of PDL

:

-programs and the set �

:

of PDL

:

-formulas are de�ned by

simultaneous indution, i.e., they are the smallest sets suh that:

{ �

0

� �

:

;

{ �

0

� �

:

;

{ if '; 2 �

:

, then f:'; ' ^ ; ' _ g � �

:

;

{ if �

1

; �

2

2 �

:

, then f:�

1

; �

1

[�

2

; �

1

;�

2

; �

�

1

g � �

:

;

{ if � 2 �

:

, and ' 2 �

:

, then fh�i'; [�℄'g � �

:

;

{ if ' 2 �

:

, then '? 2 �

:

We use > as abbreviation for an arbitrary propositional tautology, and ? as

abbreviation for :>. Moreover, for �; �

0

2 �

:

we use � \ �

0

as abbreviation for

:(:� [:�

0

).

A formula ' 2 �

:

is alled a PDL

(:)

-formula (PDL-formula) if, in ', nega-

tion ours only in front of atomi programs and formulas (only in front of

formulas).

4

Throughout this paper, the operator h�i is alled the diamond operator, [�℄ is

alled the box operator, and programs of the form ? are alled tests. Let us

note how formulas of PDL

:

an be onverted into onepts of the desription

logi ALC

(:)

reg

mentioned in the introdution: simply replae ^, _, h�i , and [�℄

with u, t, 9�: , and 8�: , respetively.

De�nition 2 (PDL

:

Semantis). Let M = (W;R; V) be a Kripke struture

where W is the set of worlds, R is a family of aessibility relations for atomi

programs fR

�

� W

2

j � 2 �

0

g, and V : �

0

! 2

W

is a valuation funtion.

In the following, we de�ne aessibility relations for ompound programs and the

satisfation relation j= by simultaneous indution, where �

�

denotes the reexive-

transitive losure:

R

'?

:= f(u; u) 2W

2

j M; u j= 'g

R

:�

:= W

2

nR

�

R

�

1

[�

2

:= R

�

1

[R

�

2

R

�

1

;�

2

:= R

�

1

ÆR

�

2

R

�

�

:= (R

�

)

�

M; u j= p i� u 2 V (p) for any p 2 �

M; u j= :' i� M; u 6j= '

M; u j= '

1

_ '

2

i� M; u j= '

1

or M; u j= '

2

M; u j= '

1

^ '

2

i� M; u j= '

1

and M; u j= '

2

M; u j= h�i' i� there is a v 2W with (u; v) 2 R

�

and M; v j= '

M; u j= [�℄' i� for all v 2 W; (u; v) 2 R

�

implies M; v j= '

If M; u j= ' for some formula ' 2 �

:

and world u 2 W , then ' is true at u in

M, and M is alled model of '. A formula is satis�able if it has a model.

It is well-known that satis�ability of PDL

:

-formulas is undeidable [4℄. Sine

this an be established in a very simple way, we give a proof for illustrative

purposes.

The proof is by redution of the undeidable word-problem for �nitely pre-

sented semi-groups [24℄: given a set of word identities fu

1

= v

1

; : : : ; u

k

= v

k

g,

the task is to deide whether they imply another word identity u = v. To redue

this problem to PDL

:

-satis�ability, we need to introdue the universal modality

2

U

', whih has the following semantis:

M; u j= 2

U

' i� M; v j= ' for all v 2 W:

Clearly, in PDL

:

we an replae 2

U

' with the equivalent [a℄'^[:a℄', where a 2

�

0

is an arbitrary atomi program. Using the universal modality, the redution

is now easy: we assume that, for every generator of the semi-group, there is an

atomi program of the same name, and then note that fu

1

= v

1

; : : : ; u

k

= v

k

g

implies u = v if and only if the following formula is unsatis�able:

�

hu \ :vi> _ h:u \ vi>

�

^ 2

U

�

^

i=1::k

[u

i

\ :v

i

℄? ^ [v

i

\ :u

i

℄?

�

:

5

Here, we assume that the symbols of the words u

i

and v

i

(and of u and v) are

separated by program omposition \;".

Sine PDL

:

is a very useful logi for a large number of purposes, this unde-

idability result is rather disappointing. As has been argued in the introdution,

it is thus a natural idea to searh for deidable fragments of PDL

:

that still

extend PDL in a useful way. In the remainder of this paper, we will prove that

PDL

(:)

is suh a fragment. Note that, in PDL

(:)

, we an still de�ne the uni-

versal modality as desribed above. Also note that we an use negated atomi

programs nested inside other program operators.

3 An Automata-based Variant of PDL

(:)

Similar to some related results in [20℄, our deidability proof is based on B�uhi-

automata on in�nite trees. It has turned out that, for suh proofs, it is rather

onvenient to use variants of PDL in whih omplex programs are desribed by

means of automata on �nite words, rather than by regular expressions. Therefore,

in this setion we de�ne a orresponding variant APDL

(:)

of PDL

(:)

.

De�nition 3 (Finite automata). A (nondeterministi) �nite automaton (NFA)

A is a quintuple (Q;�; q

0

; �; F) where

{ Q is a �nite set of states,

{ � is a �nite alphabet,

{ q

0

is an initial state,

{ � : Q�� ! 2

Q

is a (partial) transition funtion, and

{ F � Q is the set of aepting states.

The funtion � an be indutively extended to a funtion from Q��

�

to 2

Q

in

a natural way:

{ �(q; ") := fqg, where " is the empty word;

{ �(q; wa) := fq

00

2 Q j q

00

2 �(q

0

; a) for some q

0

2 �(q; w)g.

A sequene p

0

; : : : ; p

n

2 Q, n � 0, is a run of A on the word a

1

� � �a

n

2 �

�

if

p

0

= q

0

, p

i

2 �(p

i�1

; a

i

) for 0 < i � n, and p

n

2 F . A word w 2 �

�

is aepted

by A if there exists a run of A on w. The language aepted by A is the set

L(A) := fw 2 �

�

j w is aepted by Ag.

To obtain APDL

(:)

from PDL

(:)

, we replae omplex programs (i.e. regular

expressions) inside boxes and diamonds with automata. For the sake of exatness,

we give the omplete de�nition.

De�nition 4 (APDL

(:)

Syntax). The set �

(:)

0

of program literals is de-

�ned as fa;:a j a 2 �

0

g. The sets A�

(:)

of program automata and A�

(:)

of

APDL

(:)

-formulas are de�ned by simultaneous indution, i.e., A�

(:)

and A�

(:)

are the smallest sets suh that:

{ �

0

� A�

(:)

;

6

{ if '; 2 A�

(:)

, then f:'; ' _ ; ' ^ g � A�

(:)

;

{ if � 2 A�

(:)

and ' 2 A�

(:)

, then fh�i'; [�℄'g � A�

(:)

;

{ if � is a �nite automaton with alphabet � � �

(:)

0

[f ? j 2 A�

(:)

g, then

� 2 A�

(:)

Note that the alphabet of program automata is omposed of atomi programs,

of negated atomi programs, and of tests.

De�nition 5 (APDL

(:)

Semantis). Let M = (W;R; V) be a Kripke stru-

ture as in De�nition 2. We indutively de�ne a relation R mapping eah program

literal, eah test, and eah program automaton to a binary relation over W . This

is done simultaneously with the de�nition of the satisfation relation j=:

R(a) := R

a

for eah a 2 �

0

R(:a) := W

2

nR

a

for eah a 2 �

0

R(?) := f(u; u) 2W

2

j M; u j= g

R(�) := f(u; v) 2W

2

j there is a word w = w

1

� � �w

m

2 L(�);

m � 0; and worlds u

0

; : : : ; u

m

2W suh that

u = u

0

R(w

1

)u

1

R(w

2

) � � �u

m�1

R(w

m

)u

m

= vg

M; u j= p i� u 2 V (p) for any p 2 �;

M; u j= :' i� M; u 6j= ';

M; u j= '

1

_ '

2

i� M; u j= '

1

or M; u j= '

2

;

M; u j= '

1

^ '

2

i� M; u j= '

1

and M; u j= '

2

;

M; u j= h�i' i� there is a u

0

2W with (u; u

0

) 2 R(�) and M; u

0

j= ';

M; u j= [�℄' i� for all u

0

2 W; (u; u

0

) 2 R(�) implies M; u

0

j= ':

Sine every language de�ned by a regular expression an also be aepted by a

�nite automaton and vie versa [25℄, it is straightforward to verify that PDL

(:)

and APDL

(:)

have the same expressive power. Moreover, upper omplexity

bounds arry over from APDL

(:)

to PDL

(:)

sine onversion of regular ex-

pressions to �nite automata an be done with at most a polynomial blow-up in

size (the onverse does not hold true).

It is interesting to note that, in many automata-based deision proedures for

variants of PDL, a deterministi version of APDL is used, i.e. a variant of APDL

in whih there may be at most one suessor for eah world and eah atomi

program [20℄. In a seond step, satis�ability in the non-deterministi APDL-

variant is then redued to satis�ability in the deterministi one. We annot take

this approah here sine we annot w.l.o.g. assume that both atomi programs

and their negations are deterministi. Indeed, this would orrespond to limiting

the size of Kripke strutures to only two worlds.

4 Hintikka-trees

This setion provides a ore step toward using B�uhi-tree automata for deiding

the satis�ability of APDL

(:)

-formulas. The intuition behind this approah is as

follows: to deide the satis�ability of an APDL

(:)

-formula ', we translate it

7

into a B�uhi-tree automaton B

'

suh that the trees aepted by the automaton

orrespond in some way to models of the formula '. To deide satis�ability of

', it then remains to perform a simple emptiness-test on the automaton B

'

: the

aepted language will be non-empty if and only if ' has a model.

In the ase of APDL

(:)

, one obstale to this approah is that APDL

(:)

does

not enjoy the tree model property (TMP), i.e., there are APDL

(:)

-formulas that

are satis�able only in non-tree models. For example, for eah n 2 N the following

PDL

(:)

-formula enfores a yle of length n:

n

1

^ hai(

n

2

^ hai(� � � (

n

n

^ [:a℄:

n

1

) � � �));

where, for 1 � i � n,

n

i

= p

1

^ � � � ^ :p

i

^ � � � ^ p

n

with propositional variables

p

1

; : : : ; p

n

. Note that the formula inside the diamond simulates the window op-

erator and in this way loses the yle. Thus, we have to invest some work to

obtain tree-shaped representations of (possibly non-tree) models that an then

be aepted by B�uhi-automata.

As a preliminary, we assume that all APDL

(:)

-formulas are in negation nor-

mal form (NNF), i.e. that negation ours only in front of propositional letters.

This assumption an be made w.l.o.g. sine eah formula an be onverted into

an equivalent one in NNF by exhaustively eliminating double negation, applying

DeMorgan's rules, and exploiting the duality between diamonds and boxes. For

the sake of brevity, we introdue the following notational onventions:

{ for eah APDL

(:)

-formula ', _:' denotes the NNF of :';

{ for eah program literal �, � denotes :� if � is an atomi program, and a if

� = :a for some atomi program a;

{ for eah program automaton �, we use Q

�

, �

�

, q

�

, �

�

, and F

�

to denote

the omponents of � = (Q;�; q

0

; �; F);

{ for eah program automaton � and state q 2 Q

�

, we use �

q

to denote the

automaton (Q

�

; �

�

; q;�

�

; F

�

), i.e. the automaton obtained from � by using

q as the new initial state.

Before we an develop the tree-shaped abstration of models, we need to �x a

losure, i.e. a set of formulas l(') relevant for deiding the satis�ability of an

input formula '. This is done analogous to [3, 20℄. In the following, when we talk

of a subformula of a formula ', we mean that an be obtained from ' by

deomposing only formula operators, but not program operators. For example,

a is a subformula of hb?ia, while b is not.

De�nition 6 (Closure). Let ' be a APDL

(:)

-formula. The set l(') is the

smallest set whih is losed under the following onditions:

(C1) ' 2 l(')

(C2) if is a subformula of

0

2 l('), then 2 l(')

(C3) if 2 l('), then _: 2 l(')

(C4) if h�i 2 l('), then

0

2 l(') for all

0

? 2 �

�

(C5) if h�i 2 l('), then h�

q

i 2 l(') for all q 2 Q

�

(C6) if [�℄ 2 l('), then

0

2 l(') for all

0

? 2 �

�

8

(C7) if [�℄ 2 l('), then [�

q

℄ 2 l(') for all q 2 Q

�

It is standard to verify that the ardinality of l(') is polynomial in the length

of ', see e.g. [5℄. We generally assume the diamond formulas (i.e. formulas of the

form h�i) in l(') to be linearly ordered and use �

i

to denote the i-th diamond

formula in l('), with �

1

being the �rst one. Note that a hanged initial state of

an automaton results in a di�erent diamond formula.

To de�ne Hintikka-trees, the tree-shaped abstration of models underlying

our deision proedure, we proeed in three steps. First, we introdue Hintikka-

sets that will be used as (parts of) node labels. Intuitively, eah node in the tree

desribes a world of the orresponding model, and its label ontains the formulas

from the losure of the input formula ' that are true in this world. Seond, we

introdue a mathing relation that desribes the possible \neighborhoods" that

we may �nd in Hintikka-trees, where a neighborhood onsists of a labeled node

and its labeled suessors. And third, we use these ingredients to de�ne Hintikka-

trees.

De�nition 7 (Hintikka-set). Let 2 �

(:)

be an APDL

(:)

-formula, and � 2

A�

(:)

a program automaton. The set 	 � l(') is a Hintikka-set for ' if

(H1) if

1

^

2

2 	 , then

1

2 	 and

2

2 	

(H2) if

1

_

2

2 	 , then

1

2 	 or

2

2 	

(H3) 2 	 i� _: =2 	

(H4) if [�℄ 2 	 and q

�

2 F

�

, then 2 	

(H5) if [�℄ 2 	 then, for any state q 2 Q

�

and test �? 2 �

�

,

q 2 �

�

(q

�

; �?) implies that _:� 2 	 or [�

q

℄ 2 	

The set of all Hintikka-sets for ' is designated by H

'

.

The onditions (H1) to (H3) are standard, with one exeption: (H3) is stronger

than usual sine it enfores maximality of Hintikka-sets by stating that, for eah

formula 2 l('), either or _: must be in the Hintikka-set. This will be used

later on to deal with negated programs. The last two onditions (H4) and (H5)

deal with the \loal" impat of box formulas.

Next, we de�ne the mathing relation. The purpose of this relation an be

understood as follows: in the Hintikka-tree, eah node has exatly one suessor

for every diamond formula in l('). The mathing relation helps to ensure that

all diamond formulas in a node's label an be satis�ed \via" the orresponding

suessor in the Hintikka-tree, and that none of the box formulas is violated via

any suessors. We talk of \via" here sine going to an immediate suessor or-

responds to travelling along a single program literal. Sine programs in APDL

(:)

are automata that may only aept words of length greater one, in general we

annot satisfy diamonds by going only to the immediate suessor, but rather

we must perform a sequene of suh moves.

Before we de�ne the mathing relation formally, let us �x the struture of

node labels of Hintikka-trees. For reasons that will be disussed below, node

9

labels not only ontain a Hintikka-set, but also two additional omponents. More

preisely, if ' is an APDL

(:)

-formula and l(') ontains k diamond formulas,

then we use

{ �

(:)

'

to denote the set of all program literals ourring in '; and

{ �

'

to abbreviate H

'

� (�

(:)

'

[f?g) � f0; : : : ; kg, i.e. the set of triples

ontaining a Hintikka-set for ', a program literal of ' or ?, and a number

at most k.

The elements of �

'

will be used as node labels in Hintikka-trees. Intuitively, the

�rst omponent lists the formulas that are true at a node, the seond omponent

�xes the program literal with whih the node an be reahed from its predeessor

(or ? if this information is not important), and the third omponent will help to

ensure that diamond formulas are eventually satis�ed when moving through the

tree. For a triple � 2 �

'

, we refer to the �rst, seond and third triple omponent

with �

1

, �

2

, and �

3

, respetively. For the following de�nition, reall that we use

�

i

to denote the i-th diamond in l(').

De�nition 8 (Mathing). Let ' be a formula and k the number of diamond

formulas in l('). A k + 1-tuple of �

'

-triples (�; �

1

; : : : ; �

k

) is mathing if, for

1 � i � k and all automata � 2 A�

(:)

, the following holds:

(M1) if �

i

= h�i 2 �

1

, then there is a word w =

1

? � � �

n

? 2 �

�

�

, n � 0,

and a state q

1

2 Q

�

suh that f

1

; : : : ;

n

g � �

1

, q

1

2 �

�

(q

�

; w),

and one of the following holds:

(a) q

1

is a �nal state, 2 �

1

, �

2

i

= ?, and �

3

i

= 0

(b) there is a program literal � 2 �

�

and a state q

2

2 Q

�

suh that

q

2

2 �

�

(q

1

; �), �

j

= h�

q

2

i 2 �

1

i

, �

2

i

= �, and �

3

i

= j.

(M2) if [�℄ 2 �

1

, q 2 Q

�

, and � 2 �

�

a program literal suh that

q 2 �

�

(q

�

; �), then � = �

2

i

implies [�

q

℄ 2 �

1

i

:

As already noted, the purpose of the mathing relation is to desribe the possible

neighborhoods in Hintikka-trees. To this end, think of � as the label of a node,

and of �

1

; : : : ; �

k

as the labels of its suessors. The purpose of Conditions (M1)

and (M2) is to ensure that diamonds are satis�ed and that boxes are not vio-

lated, respetively. Let us onsider only (M1). If a diamond �

i

= h�i is in the

�rst omponent of �, it an either be satis�ed in the node labeled with � itself

(Condition (a)) or we an \delay" its satisfation to the i-th suessor node that

is reserved spei�ally for this purpose (Condition (b)). In Case (a), it is not

important over whih program literal we an reah the i-th suessor, and thus

the seond omponent of �

i

an be set to ?. In the seond ase, we must hoose

a suitable program literal � and a suitable state q of �, make sure that the i-th

suessor is reahable over � via its seond �

i

-omponent, and guarantee that

the �rst omponent of �

i

ontains the diamond under onsideration with the

automata � \advaned" to initial state q.

10

The remaining building blok for ensuring that diamonds are satis�ed is to

enfore that the satisfation of diamonds is not delayed forever. This is one of

the two ore parts of the de�nition of Hintikka-trees, the other being the proper

treatment of negation. Before we an disuss the prevention of in�nitely delayed

diamonds in some more detail, we have to introdue some basi notions.

Let M be a set and k 2 N. An (in�nite) k-ary M-tree T is a mapping

T : [k℄

�

! M , where [k℄ is used (now and in the following) as an abbreviation

for the set f1; : : : ; kg. Intuitively, the node �i is the i-th hild of �. We use "

to denote the empty word (orresponding to the root of the tree). An in�nite

path in a k-ary M -tree is an in�nite word over the alphabet [k℄. We use [n℄,

n � 0, to denote the pre�x of up to the n-th element of the sequene (with

[0℄ yielding the empty sequene).

Now bak to the prevention of in�nitely delayed diamonds. Given a formula '

with k diamond formulas in l('), a Hintikka-tree will be de�ned as a k-ary �

'

-

tree in whih every neighborhood is mathing and some additional onditions

are satis�ed. To detet in�nite delays of diamonds in suh trees, it does not

suÆe to simply look for in�nite sequenes of nodes that all ontain the same

diamond: �rstly, diamonds are evolving while being \pushed" through the tree

sine their initial state might be hanged. Seondly, suh a sequene does not

neessarily orrespond to an in�nite delay of diamond satisfation: it ould as

well be the ase that the diamond is satis�ed an in�nite number of times, but

always immediately \regenerated" by some other formula. Also note that we

annot use the standard tehnique from [20℄ sine it only works for deterministi

variants of PDL.

Preisely for this purpose, the easy detetion of in�nitely delayed diamonds,

we have introdued the third omponent of node labels in Hintikka trees: if a

diamond was pushed to the urrent node x from its predeessor, then by (M1)

the third omponent of x's label ontains the number of the pushed diamond.

Moreover, if the pushed diamond is not satis�ed in x, we again use the third

omponent of x: it ontains the number of the suessor of x to whih the

diamond's satisfation is (further) delayed. If no diamond was pushed to x,

its third omponent is simply zero. Thus, the following de�nition aptures our

intuitive notion of in�nitely delayed diamonds.

De�nition 9 (Diamond Starvation). Let ' be an APDL

(:)

-formula with

k diamond formulas in l('), T a k-ary �

'

-tree, x 2 [k℄

�

a node in T , and

�

i

= h�i 2 T (x)

1

. Then the diamond formula h�i is alled starving in x if

there exists a path =

1

2

� � � 2 [k℄

!

suh that

1.

1

= i,

2. T (x[n℄)

3

=

n+1

for n � 1.

We have now gathered all ingredients to de�ne Hintikka-trees formally.

De�nition 10 (Hintikka-tree). Let ' be an APDL

(:)

-formula with k dia-

mond formulas in l('). A k-ary �

'

-tree T is a Hintikka-tree for ' if T satis�es,

11

for all nodes x; y 2 [k℄

�

, the following onditions:

(T1) ' 2 T (")

1

(T2) the k + 1-tuple (T (x); T (x1); : : : ; T (xk)) is mathing

(T3) no diamond formula from l(') is starving in x

(T4) if [�℄ ; [�℄� 2 T (x)

1

, � 2 �

(:)

0

, q

0

�

2 Q

�

, and q

0

�

2 Q

�

suh that

q

0

�

2 �

�

(q

�

; �) and q

0

�

2 �

�

(q

�

; �), then

[�

q

0

�

℄ =2 T (y)

1

implies [�

q

0

�

℄� 2 T (y)

1

.

Conditions (T1) to (T3) are easily understood. The purpose of Condition (T4)

is to deal with negated programs. In partiular, for eah atomi program a we

have to ensure that any pair of nodes x; y of a Hintikka-tree T an be related

by one of a and :a without violating any boxes. This is done by (T4) together

with (H3)|indeed, this is the reason for formulating (H3) stronger than usual.

Intuitively, the treatment of negation an be understood as follows: suppose that

[�℄ 2 T (x)

1

, let q 2 �

�

(q

�

; a) for some atomi program a, and let y be a node.

By (H3), we have either [�

q

℄ 2 T (y)

1

or _:[�

q

℄ 2 T (y)

1

. In the �rst ase, x

and y an be related by a. In the seond ase, (T4) ensures that they an be

related by :a. This tehnique is inspired by [21℄, but generalized to program

automata.

The following proposition shows that Hintikka-trees are indeed proper ab-

strations of models. A proof an be found in [26℄.

Proposition 1. An APDL

(:)

-formula ' is satis�able i� it has a Hintikka-tree.

5 B�uhi Automata for Hintikka-trees

In this setion, we show that it is possible to onstrut, for every APDL

(:)

-

formula ', a B�uhi tree automaton B

'

that aepts exatly the Hintikka-trees

for '. By Proposition 1, sine the size of B

'

is at most exponential in the length of

', and sine the emptiness of B�uhi-tree automata an be veri�ed in quadrati

time [20℄, this yields an ExpTime deision proedure for the satis�ability of

APDL

(:)

-formulas. We start with introduing B�uhi tree automata.

De�nition 11 (B�uhi Tree Automaton). A B�uhi tree automaton B for

k-ary M -trees is a quintuple (Q;M; I;�; F), where

{ Q is a �nite set of states,

{ M is a �nite alphabet,

{ I � Q is the set of initial states,

{ � � Q�M �Q

k

is the transition relation, and

{ F � Q is the set of aepting states.

Let M be a set of labels, and T a k-ary M-tree. Then, a run of B on T is a

k-ary Q-tree r suh that

12

1. r(") 2 I, and

2. (r(x); T (x); r(x1); : : : ; r(xk)) 2 � for all nodes x 2 [k℄

�

.

Let 2 [k℄

!

be a path. The set inf

r

() ontains the states in Q that our

in�nitely often in run r along path . A run r of B on T is aepting if, for

eah path 2 [k℄

!

, we have inf

r

()\ F 6= ;. The language aepted by B is the

set L(B) = fT j there is an aepting run of B on Tg.

Given a B�uhi automaton B, the problem whether its language is empty, i.e.,

whether it holds that L(B) = ;, is alled the emptiness problem. This problem

is solvable in time quadrati in the size of the automaton [20℄.

We now give the translation of APDL

(:)

-formulas ' into B�uhi-automata B

'

.

To simplify the notation, we write P

2

(') to denote the set of sets ff[�℄ ; [�℄�g j

[�℄ ; [�℄� 2 l(')g. We �rst introdue our automata formally and then explain

the intuition.

De�nition 12. Let ' be an APDL

(:)

-formula with l(') ontaining k diamond

formulas. The B�uhi tree automaton B

'

= (Q;�

'

; I;�; F) on k-ary �

'

-trees is

de�ned as follows:

{ Q ontains those triples ((; �; `); P; d) 2 �

'

� 2

P

2

(')

� f�; "g that satisfy

the following onditions:

(1) if f[�℄ ; [�℄�g � 	 , then f[�℄ ; [�℄�g 2 P

(2) if f[�℄ ; [�℄�g 2 P , � 2 �

(:)

, q

0

�

2 �

�

(q

�

; �), q

0

�

2 �

�

(q

�

; �), and

[�

q

0

�

℄ =2 	 , then [�

q

0

�

℄� 2 	

{ I := f((; �; `); P; d) 2 Q j ' 2 	 , and d = �g.

{ ((�

0

; P

0

; d

0

); (; �; `); (�

1

; P

1

; d

1

); : : : ; (�

k

; P

k

; d

k

)) 2 � if and only if, for

eah i 2 [k℄, the following holds:

1. �

0

= (; �; `),

2. P

0

= P

i

,

3. the tuple (�

0

; : : : ; �

k

) is mathing,

4. d

i

=

8

>

<

>

:

" if d

0

= �, �

3

i

6= 0 and �

i

2 	

" if d

0

= ", �

3

0

= i, and �

3

i

6= 0

� otherwise:

{ The set F of aepting states is F := f(�; P; d) 2 Q j d = �g.

While it is not hard to see how the set of initial states enfores (T1) of Hintikka-

trees and how the transition relation enfores (T2), Conditions (T3) and (T4)

are more hallenging. In the following, we disuss them in detail.

Condition (T3) is enfored with the help of the third omponent of states,

whih may take the values \�" and \"". Intuitively, the fourth point in the

de�nition of � ensures that, whenever the satisfation of a diamond is delayed in

a node x and r is a run, then r assigns states with third omponent " to all nodes

on the path that \traks" the diamond delay. Note that, for this purpose, the

de�nition of � refers to the third omponent of �

'

-tuples, whih is \ontrolled"

13

by (M1) in the appropriate way. All nodes that do not appear on delayed diamond

paths are labeled with �. Then, the set of aepting states ensures that there is

no path that, from some point on, is onstantly labeled with ". Thus, we enfore

that no diamonds are delayed in�nitely in trees aepted by our automata, i.e.

no starvation ours.

There is one speial ase that should be mentioned. Assume that a node x

ontains a diamond �

i

= h�i that is not satis�ed \within this node" (Case (a) of

(M1) does not apply). Then there is a potential starvation path for �

i

that starts

at x and goes through the node xi: (M1) \advanes" the automaton � to �

q

,

and ensures that �

j

= h�

q

i 2 T (xi)

1

and that T (xi)

3

= j. Now suppose that

T (xi)

1

ontains another diamond �

k

= h�i� with �

j

6= �

k

. If �

k

is not satis�ed

within xi, there is a potential starvation path for �

k

starting at xi and going

through xik. Sine the starvation path for �

i

and the starvation path for �

k

are

for di�erent diamonds, we must be areful to separate them|failure in doing

this would result in some starvation-free Hintikka-trees to be rejeted. Thus, the

de�nition of � ensures that runs label xik with �, and the onstant "-labeling of

the starvation path for �

k

is delayed by one node: it starts only at the suessor

of xik on the starvation path for �

k

.

Now for Condition (T4). In ontrast to Conditions (T1) and (T2), this ondi-

tion has a global avor in the sense that it does not only onern a node and its

suessors. Thus, we need to employ a speial tehnique to enfore that (T4) is

satis�ed: we use the seond omponent of states as a \bookkeeping omponent"

that allows to propagate global information. More preisely, Point (1) of the

de�nition of Q and Point (1) of the de�nition of � ensure that, whenever two

boxes appear in a Hintikka-set labeling a node x in a Hintikka-tree T , then this

joint ourrene is reorded in the seond omponent of the state that any run

assigns to x. Via the de�nition of the transition relation (seond point), we fur-

ther ensure that all states appearing in a run share the same seond omponent.

Thus, we may use Point (2) of the de�nition of Q and Point (1) of the de�nition

of � to ensure that any node y satis�es the property stated by Condition (T4).

The following proposition shows that the B�uhi tree automaton B

'

indeed

aepts preisely the Hintikka-trees for APDL

(:)

-formula '. A proof an be

found in [26℄.

Proposition 2. Let ' be an APDL

(:)

-formula and T a k-ary �

'

-tree. Then T

is a Hintikka-tree for ' i� T 2 L(B

'

).

Putting together Propositions 1 and 2, it is now easy to establish deidability

and ExpTime-omplexity of APDL

(:)

and thus also of PDL

(:)

.

Theorem 1. Satis�ability of PDL

(:)

-formulas is ExpTime-omplete.

Proof. From Propositions 1 and 2, it follows that an APDL

(:)

-formula ' is

satis�able if and only if L(B

'

) 6= ;. The emptiness problem for B�uhi automata

is deidable in time quadrati in the size of the automaton [20℄. To show that

14

APDL

(:)

-formula satis�ability is in ExpTime, it thus remains to show that the

size of B

'

= (Q;�

'

; I;�; F) is at most exponential in '.

Let n be the length of '. Sine the ardinality of l(') is polynomial in n,

the ardinality of H

'

(the set of Hintikka-sets for ') is at most exponential in n.

Thus, it is readily heked that the same holds for �

�

and Q. The exponential

upper bound on the ardinalities of I and F is trivial. It remains to determine

the size of �: sine the size of Q is exponential in n and the out-degree of trees

aepted by automata is polynomial in n, we obtain an exponential bound.

Thus, APDL

(:)

-formula satis�ability and hene also PDL

(:)

-formula satis�a-

bility are in ExpTime. For the lower bound, it suÆes to reall that PDL-formula

satis�ability is already ExpTime-hard [3℄. ut

6 Conlusion

This paper introdues the propositional dynami logi PDL

(:)

, whih extends

standard PDL with negation of atomi programs. We were able to show that this

logi extends PDL in an interesting and useful way, yet retaining its appealing

omputational properties. There are some natural diretions for future work. For

instane, it should be simple to further extend PDL

(:)

with the onverse operator

without destroying the ExpTime upper bound. It would be more interesting,

however, to investigate the interplay between (full) negation and PDL's program

operators in some more detail. For example, to the best our our knowledge it is

unknown whether the fragment of PDL

:

that has only the program operators

\:" and \;" is deidable.

Referenes

1. Pratt: Considerations on oyd-hoare logi. In: FOCS: IEEE Symposium on Foun-

dations of Computer Siene (FOCS). (1976)

2. Fisher, M.J., Ladner, R.E.: Propositional modal logi of programs. In: Conferene

reord of the ninth annual ACM Symposium on Theory of Computing, ACM Press

(1977) 286{294

3. Fisher, M.J., Ladner, R.E.: Propositional dynami logi of regular programs.

Journal of Computer and System Sienes 18 (1979) 194{211

4. Harel, D.: Dynami logi. In Gabbay, D.M., Guenthner, F., eds.: Handbook of

Philosophial Logi, Volume II. D. Reidel Publishers (1984) 496{604

5. Harel, D., Kozen, D., Tiuryn, J.: Dynami Logi. MIT Press (2000)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.

MIT Press (1995)

7. De Giaomo, G., Lenzerini, M.: PDL-based framework for reasoning about a-

tions. In: Proeedings of the 4th Congress of the Italian Assoiation for Arti�ial

Intelligene (AI*IA'95). Volume 992., Springer (1995) 103{114

8. Prendinger, H., Shurz, G.: Reasoning about ation and hange: A dynami logi

approah. Journal of Logi, Language, and Information 5 (1996) 209{245

9. Giaomo, G.D., Lenzerini, M.: Boosting the orrespondene between desription

logis and propositional dynami logis. In: Proeedings of the Twelfth National

Conferene on Arti�ial Intelligene (AAAI'94). Volume 1, AAAI Press (1994)

205{212

15

10. Passy, S., Tinhev, T.: An essay in ombinatory dynami logi. Information and

Computation 93 (1991)

11. Harel, D., Pratt, V.: Nondeterminism in logis of programs. In: Proeedings of the

Fifth Symposium on Priniples of Programming Languages, ACM (1978) 203{213

12. Vardi, M.Y.: The taming of onverse: Reasoning about two-way omputations. In

Parikh, R., ed.: Proeedings of the Conferene on Logi of Programs. Volume 193

of LNCS., Springer (1985) 413{424

13. Daneki, S.: Nondeterministi propositional dynami logi with intersetion is de-

idable. In Skowron, A., ed.: Proeedings of the Fifth Symposium on Computation

Theory. Volume 208 of LNCS., Springer (1984) 34{53

14. Broersen, J.: Relativized ation omplement for dynami logis. In Philippe Bal-

biani, Nobu-Yuki Suzuki, F.W., Zakharyashev, M., eds.: Advanes in Modal Logis

Volume 4, King's College Publiations (2003) 51{69

15. Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal

of Logi and Computation 2 (1992) 5{30

16. Humberstone, I.L.: Inaessible worlds. Notre Dame Journal of Formal Logi 24

(1983) 346{352

17. Gargov, G., Passy, S., Tinhev, T.: Modal environment for Boolean speulations. In

Skordev, D., ed.: Mathematial Logi and Appliations, New York, USA, Plenum

Press (1987) 253{263

18. Goranko, V.: Modal de�nability in enrihed languages. Notre Dame Journal of

Formal Logi 31 (1990) 81{105

19. Lutz, C., Sattler, U.: Mary likes all ats. In Baader, F., Sattler, U., eds.: Proeed-

ings of the 2000 International Workshop in Desription Logis (DL2000). Num-

ber 33 in CEUR-WS (http://eur-ws.org/) (2000) 213{226

20. Vardi, M.Y., Wolper, P.: Automata-theoreti tehniques for modal logi of pro-

grams. Journal of Computer and System Sienes 32 (1986) 183{221

21. Lutz, C., Sattler, U.: The omplexity of reasoning with boolean modal logis. In

Wolter, F., Wansing, H., de Rijke, M., Zakharyashev, M., eds.: Advanes in Modal

Logis Volume 3, CSLI Publiations, Stanford, CA, USA (2001)

22. Baader, F., MGuiness, D.L., Nardi, D., Patel-Shneider, P.: The Desription Logi

Handbook: Theory, implementation and appliations. Cambridge University Press

(2003)

23. Shild, K.D.: A orrespondene theory for terminologial logis: Preliminary re-

port. In Mylopoulos, J., Reiter, R., eds.: Proeedings of the Twelfth International

Joint Conferene on Arti�ial Intelligene (IJCAI-91), Morgan Kaufmann (1991)

466{471

24. Matijasevih, Y.: Simple examples of undeidable assoiative aluli. Soviet math-

ematis (Doklady) (1967) 555{557

25. Kleene, S.: Representation of events in nerve nets and �nite automata. In

C.E.Shannon, J.MCarthy, eds.: Automata Studies. Prineton University Press

(1956) 3{41

26. Lutz, C., Walther, D.: PDL with negation of atomi programs. LTCS-Report

03-04, Tehnial University Dresden (2003) Available from http://lat.inf.tu-

dresden.de/researh/reports.html.

