PDL with Negation of Atomic Programs

Carsten Lutz and Dirk Walther

Inst. for Theoretical Computer Science Dept. of Computer Science
TU Dresden, Germany University of Liverpool, UK
lutzO@tcs.inf.tu-dresden.de dwalther@csc.liv.ac.uk

Abstract. Propositional dynamic logic (PDL) is one of the most suc-
cessful variants of modal logic. To make it even more useful for appli-
cations, many extensions of PDL have been considered in the literature.
A very natural and useful such extension is with negation of programs.
Unfortunately, as long-known, reasoning with the resulting logic is unde-
cidable. In this paper, we consider the extension of PDL with negation of
atomic programs, only. We argue that this logic is still useful, e.g. in the
context of description logics, and prove that satisfiability is decidable and
ExPTIME-complete using an approach based on Biichi tree automata.

1 Introduction

Propositional dynamic logic (PDL) is a variant of propositional modal logic
that has been developed in the late seventies as a tool for reasoning about pro-
grams [1-5]. Since then, PDL was used rather successfully in a large number
of application areas such as reasoning about knowledge [6], reasoning about ac-
tions [7, 8], description logics [9], and others. Starting almost with its invention
around 1979 [3], many extensions of PDL have been proposed with the goal to
enhance the expressive power and make PDL even more applicable; see e.g. [10,
4, 5]. Some of these extensions are tailored toward specific application areas, such
as the halt predicate that allows to state termination in the context of reason-
ing about programs [11]. The majority of proposed extensions, however, is of a
general nature and has been employed in many different application areas—for
instance, the extension of PDL with the widely applied converse operator [12].
Among the general purpose extensions of PDL, two of the most obvious ones
are the addition of program intersection “N” and of program negation “—" [13,
4,5]. Since PDL already provides for program union “U”, the latter is more
general than the former: N g can simply be expressed as =(—aU-3). The main
obstacle for using these two extensions in practical applications is that they
are problematic w.r.t. their computational properties: first, adding intersection
destroys many of the nice model-theoretic properties of PDL. The only known
algorithm for reasoning in the resulting logic PDL" is the quite intricate one
given in [13]. Up to now, it is unknown whether the provided 2-ExpTIME upper
bound is tight—in contrast to EXPTIME-complete reasoning in PDL. Second,
the situation with PDL extended with negation (PDL™) is even worse: it was
observed quite early in 1984 that reasoning in PDL™ is undecidable [4].

This undecidability was often regretted [4, 10,14], in particular since reason-
ing in PDL™ would be quite interesting for a number of application areas. To
illustrate the usefulness of this logic, let us give three examples of its expres-
sive power: first, it was already noted that negation can be employed to express
intersection. Intersection, in turn, is very useful for reasoning about programs
since it allows to capture the parallel execution of programs. Second, program
negation allows to express the universal modality Oy by writing [a]e A [-a]e,
with @ an arbitrary atomic program. The universal modality is a very useful
extension of modal logics that comes handy in many applications; see e.g. [15].
Third, program negation can be used to express the window operator M, [16-18],
whose semantics is as follows: T, ¢ holds at a world w iff ¢ holding at a world w’
implies that w' is a-accessible from w. In PDL™, we can thus just write [—a]-p
instead of @, . The window operator can be viewed as expressing sufficiency in
contrast to the standard box operator of modal logic, which expresses necessity.
Moreover, the window operator has important applications, e.g. in description
logics [19].

Due to the usefulness of program negation, it is natural to attempt the identi-
fication of fragments of PDL™ that still capture some of the desirable properties
of program negation, but are well-behaved in a computational sense. One candi-
date for such a fragment is PDL". As has already been noted, this fragment is
indeed decidable, but has a quite intricate model theory. The purpose of this pa-
per is to explore another interesting option: PDL(ﬁ), the fragment of PDL™ that
allows the application of program negation to atomic programs, only. Indeed,
we show that reasoning in PDL(™ is decidable, and EXPTIME-complete—thus
not harder than reasoning in PDL itself. Moreover, PDL(™ has a simpler model
theory than PDL™: we are able to use a decision procedure that is an exten-
sion of the standard automata-based decision procedure for PDL [20], and of
the standard automata-based decision procedure for Boolean modal logic [21].
Finally, we claim that PDL(™ is still useful for applications: while intersection
cannot be expressed any more, the universal modality and the window operator
are still available.

To give some more concrete examples of the practicability of PDL(ﬁ), let us
take a description logic perspective. Description logics are a family of logics that
originated in artificial intelligence as a tool for the representation of conceptual
knowledge [22]. It is well-known that many description logics (DLs) are nota-
tional variants of modal logics [23,9]. In particular, the description logic ALC\cg,
which extends the basic DL ALC with regular expressions on roles, corresponds
to PDL [9]. More precisely, DL concepts can be understood as PDL formulas,
and DL roles as PDL programs. Thus, the extension ALCSg) of ALC,eg with
negation of atomic (!) roles is a notational variant of PDL(™). We give two ex-
amples of knowledge representation with AL’C]E;g). These examples, which use
DL syntax rather than PDL syntax, illustrate that the combination of regular
expressions on roles and of atomic negation of roles is a very useful one.

1. Some private universities prefer to admit students whose ancestors donated
money to the university. Using ALC:q, the class of all applicants having a do-

nating ancestor can be described with the concept Iparent™.Donator. To describe
the set of preferred students, we can now combine this concept with the window
operator: the ALCﬁ;g)—concept

UniversityX — Vprefer.Applicant M V-prefer.—(Iparent™.Donator)

states that, in the case of University X, only people who actually applied are
preferred, and all applicants with donating ancestors are preferred.

2. Suppose that we want to use ALC&;g) to talk about trust and mistrust among
negotiating parties. Also assume that we have a very strong notion of trust,
namely that it is transitive: if I trust z, and z trusts y, then I trust y as well.
An analogous assumption for mistrust should clearly not be made. Then, we can
model mistrust by using an atomic role mistrust, and trust by using (—mistrust)*
and say, e.g., that I trust some politicians and never mistrust a family member :

J(—mistrust)*.Politician M Vmistrust.mFamilymember.

Note that reversing the roles of trust and mistrust does not work: first, to achieve
transitivity of trust, we’d have to introduce an atomic direct-trust relation. And
second, we could then only speak about the negation of direct-trust, but not
about the negation of direct-trust®, which corresponds to mistrust.

2 PDL with Negation

In this section, we introduce propositional dynamic logic (PDL) with negation
of programs. We start with defining full PDL™, i.e. PDL extended with negation
of (possibly complex) programs. Then, the logics PDL and PDL(ﬁ), are defined
as fragments of PDL™.

Definition 1 (PDL™ Syntax). Let &y and IIy be countably infinite and dis-
joint sets of propositional letters and atomic programs, respectively. Then the
set IT™ of PDL -programs and the set &~ of PDL -formulas are defined by
simultaneous induction, i.e., they are the smallest sets such that:

- ¢0 g ¢_|;

— Iy CIT;

—if o, € D7, then {—~p,p AP,V 1p} CP7;

— if my,me € II™, then {—m,m Une,m1;ma, wf} CIT™;
—ifmelIl”, and p € &7, then {(7)p, [r]p} C I~;

— if o € &7, then p? € II™

We use T as abbreviation for an arbitrary propositional tautology, and L as
abbreviation for —=T. Moreover, for m,7' € I we use TN\« as abbreviation for
=(=m U 7).

A formula ¢ € ™ is called a PDL(™-formula (PDL-formula) if, in ¢, nega-
tion occurs only in front of atomic programs and formulas (only in front of
formulas).

Throughout this paper, the operator (r) is called the diamond operator, 7] is
called the box operator, and programs of the form 7 are called tests. Let us
note how formulas of PDL™ can be converted into concepts of the description
logic Aﬁcﬁgg) mentioned in the introduction: simply replace A, V, (7)1, and [x]¢
with M, U, Im.¢, and Vr.1), respectively.

Definition 2 (PDL™ Semantics). Let M = (W, R,V) be a Kripke structure
where W is the set of worlds, R is a family of accessibility relations for atomic
programs {R, C W? | m € IIy}, and V : &y — 2V is a valuation function.
In the following, we define accessibility relations for compound programs and the
satisfaction relation |= by simultaneous induction, where -* denotes the reflexive-
transitive closure:

Ry = {(u,u) eW? [M,u = ¢}
Ren = W2\R,

R7r1 Ury - — R7r1 U R7r2

Rrymy = Rg o Rp,
R, = (Rw)*

Mul=p iff weV(p) foranype &
MuE - iff MulEp
MulEe1 Vs iff MulE @ or MiuE @o
MiulE i Aps iff Myu o1 and M, u = o
M,u = (m)p iff thereis av € W with (u,v) € Ry and M,v|=¢
M,u = [rle iff foralveW, (u,v) € R, implies M,v = ¢

If M,u|= ¢ for some formula ¢ € & and world u € W, then ¢ is true at u in
M, and M is called model of p. A formula is satisfiable if it has a model.

It is well-known that satisfiability of PDL™-formulas is undecidable [4]. Since
this can be established in a very simple way, we give a proof for illustrative
purposes.

The proof is by reduction of the undecidable word-problem for finitely pre-
sented semi-groups [24]: given a set of word identities {u; = vy,...,ur = vg},
the task is to decide whether they imply another word identity u = v. To reduce
this problem to PDL -satisfiability, we need to introduce the universal modality
Oy, which has the following semantics:

M,uEDOpge it M,vEforalveW.

Clearly, in PDL™ we can replace Oy with the equivalent [a]pA[—a]p, where a €
Iy is an arbitrary atomic program. Using the universal modality, the reduction
is now easy: we assume that, for every generator of the semi-group, there is an
atomic program of the same name, and then note that {u; = vy,...,u; = v}
implies u = v if and only if the following formula is unsatisfiable:

((u N=-v)T V {(~uN U)T) A DU(/\ [u; N —w;]L A Jo; N —lui]J_).
i=1..k

Here, we assume that the symbols of the words u; and v; (and of v and v) are
separated by program composition “;”.

Since PDL™ is a very useful logic for a large number of purposes, this unde-
cidability result is rather disappointing. As has been argued in the introduction,
it is thus a natural idea to search for decidable fragments of PDL™ that still
extend PDL in a useful way. In the remainder of this paper, we will prove that
PDL(™ is such a fragment. Note that, in PDL(ﬁ), we can still define the uni-
versal modality as described above. Also note that we can use negated atomic
programs nested inside other program operators.

3 An Automata-based Variant of PDL(™

Similar to some related results in [20], our decidability proof is based on Biichi-
automata on infinite trees. It has turned out that, for such proofs, it is rather
convenient to use variants of PDL in which complex programs are described by
means of automata on finite words, rather than by regular expressions. Therefore,
in this section we define a corresponding variant APDL"™ of PDL(™.

Definition 3 (Finite automata). A (nondeterministic) finite automaton (NFA)
A is a quintuple (Q, X, qo, A, F) where

— @ is a finite set of states,

— XY is a finite alphabet,

— (o s an initial state,

— A:Q x X — 29 is a (partial) transition function, and
— F C (Q is the set of accepting states.

The function A can be inductively extended to a function from Q x X* to 29 in
a natural way:

— A(q,e) := {q}, where € is the empty word;
— Aq,wa) :={¢" € Q| ¢" € A(¢',a) for some ¢’ € A(q,w)}.

A sequence pg,...,pp € Q, n >0, is a run of A on the word ay ---a, € X* if
Do = qo, pi € A(pi—1,a;) for0 <i<mn, andp, € F. A word w € X* is accepted
by A if there exists a run of A on w. The language accepted by A is the set
L(A) :={w € X* | w is accepted by A}.

To obtain APDL(™ from PDL(ﬁ), we replace complex programs (i.e. regular
expressions) inside boxes and diamonds with automata. For the sake of exactness,
we give the complete definition.

Definition 4 (APDL(ﬁ) Syntax). The set Héﬁ) of program literals is de-
fined as {a,—a | a € IIy}. The sets AII'™) of program automata and AS™) of
APDL™)-formulas are defined by simultaneous induction, i.e., AIT™) and A®)
are the smallest sets such that:

- ¢0 g AQS(_‘)J

— if p, 0 € AB) | then {—~p, oV, 0 A} C AP,

—ifa € AIT™) and p € AS) | then {{a)p, [a]p} C AB);

— if a is a finite automaton with alphabet X C Héﬁ) U{y? | € AST)}, then
ae AT

Note that the alphabet of program automata is composed of atomic programs,
of negated atomic programs, and of tests.

Definition 5 (APDL(™) Semantics). Let M = (W,R,V) be a Kripke struc-
ture as in Definition 2. We inductively define a relation R mapping each program
literal, each test, and each program automaton to a binary relation over W. This
is done simultaneously with the definition of the satisfaction relation =:

R(a) := R, for each a € Il
R(-a) = W?2\R, for each a € I,
R?) = {(uu) €W | Myu = g}
R(a) = {(u,v) € W? | there is a word w = wy - - wp, € L(a),

m >0, and worlds ug, ..., un € W such that
u = ugR(w1)us R(w2) - - - Upy—1 R(Wy) Uy, = v}
M,ulEp iff uweV(p) for any p € &,
Mul=—p iff MulE e,
MiulE i Voo iff MyulE o1 or Myu = @2,
MiulE i Aps iff MyuE @1 and M,u = pa,
Mu e (a)p iff thereis au' € W with (u,u') € R(a) and M,u' [o,
Mul=[ale iff for allu' € W, (u,u’) € R(a) implies M,u' |= .

Since every language defined by a regular expression can also be accepted by a
finite automaton and vice versa [25], it is straightforward to verify that PDL(™)
and APDL(™ have the same expressive power. Moreover, upper complexity
bounds carry over from APDL™ to PDL(™ since conversion of regular ex-
pressions to finite automata can be done with at most a polynomial blow-up in
size (the converse does not hold true).

It is interesting to note that, in many automata-based decision procedures for
variants of PDL, a deterministic version of APDL is used, i.e. a variant of APDL
in which there may be at most one successor for each world and each atomic
program [20]. In a second step, satisfiability in the non-deterministic APDL-
variant is then reduced to satisfiability in the deterministic one. We cannot take
this approach here since we cannot w.l.o.g. assume that both atomic programs
and their negations are deterministic. Indeed, this would correspond to limiting
the size of Kripke structures to only two worlds.

4 Hintikka-trees

This section provides a core step toward using Biichi-tree automata for deciding
the satisfiability of APDL(™)-formulas. The intuition behind this approach is as
follows: to decide the satisfiability of an APDL™)-formula p, we translate it

into a Biichi-tree automaton B, such that the trees accepted by the automaton
correspond in some way to models of the formula . To decide satisfiability of
¢, it then remains to perform a simple emptiness-test on the automaton B,: the
accepted language will be non-empty if and only if ¢ has a model.

In the case of APDL(ﬁ), one obstacle to this approach is that APDL™ does
not enjoy the tree model property (TMP), i.e., there are APDL(™)-formulas that
are satisfiable only in non-tree models. For example, for each n € IN the following
PDL(™-formula enforces a cycle of length n:

1 Aa) (3 A(a) (- (Y Almal=¢r) ---)),

where, for 1 <i < n, Y =pi A--- A=p; A+ A p, with propositional variables
Pi,--.,Pn. Note that the formula inside the diamond simulates the window op-
erator and in this way closes the cycle. Thus, we have to invest some work to
obtain tree-shaped representations of (possibly non-tree) models that can then
be accepted by Biichi-automata.

As a preliminary, we assume that all APDL™)-formulas are in negation nor-
mal form (NNF), i.e. that negation occurs only in front of propositional letters.
This assumption can be made w.l.o.g. since each formula can be converted into
an equivalent one in NNF by exhaustively eliminating double negation, applying
DeMorgan’s rules, and exploiting the duality between diamonds and boxes. For
the sake of brevity, we introduce the following notational conventions:

— for each APDL(™)-formula ¢, - denotes the NNF of —y;

— for each program literal =, T denotes —r if 7 is an atomic program, and a if
m = —a for some atomic program a;

— for each program automaton a, we use Qu, Yo, Go, Ao, and F, to denote
the components of a = (Q, X, qo, A, F);

— for each program automaton « and state ¢ € @), we use a, to denote the
automaton (Qq, Xa, q, Aa, Fa), i.e. the automaton obtained from « by using
q as the new initial state.

Before we can develop the tree-shaped abstraction of models, we need to fix a
closure, i.e. a set of formulas cl(p) relevant for deciding the satisfiability of an
input formula . This is done analogous to [3, 20]. In the following, when we talk
of a subformula v of a formula ¢, we mean that ¢ can be obtained from ¢ by
decomposing only formula operators, but not program operators. For example,
a is a subformula of (b?)a, while b is not.

Definition 6 (Closure). Let ¢ be a APDL™) -formula. The set cl(y) is the
smallest set which is closed under the following conditions:

(C1) ¢ € cl(y)

(C2) if ¢ is a subformula of ¢' € cl(p), then ¢ € cl(p)
(C3) if ¥ € cl(p), then) € cl(p)

(C4) if (a)y € cl(p), then ¢' € cl(p) for all P'? € X,
(C5) if (a)y € cl(p), then (o)) € cl(p) for all g € Qa
(C6) if [a]y € cl(p), then)" € cl(p) for all Y'? € X,

(C7) if [a]y € cl(p), then [agzly € cl(p) for all ¢ € Qu

It is standard to verify that the cardinality of cl(y) is polynomial in the length
of ¢, see e.g. [5]. We generally assume the diamond formulas (i.e. formulas of the
form {(a)®) in cl(¢) to be linearly ordered and use ¢; to denote the i-th diamond
formula in cl(y), with €; being the first one. Note that a changed initial state of
an automaton results in a different diamond formula.

To define Hintikka-trees, the tree-shaped abstraction of models underlying
our decision procedure, we proceed in three steps. First, we introduce Hintikka-
sets that will be used as (parts of) node labels. Intuitively, each node in the tree
describes a world of the corresponding model, and its label contains the formulas
from the closure of the input formula ¢ that are true in this world. Second, we
introduce a matching relation that describes the possible “neighborhoods” that
we may find in Hintikka-trees, where a neighborhood consists of a labeled node
and its labeled successors. And third, we use these ingredients to define Hintikka-
trees.

Definition 7 (Hintikka-set). Let) € (™) be an APDL™ -formula, and o €
AIT™) a program automaton. The set W C cl(y) is a Hintikka-set for ¢ if

(H1) if 1 Nps € W, then o1 € ¥ and 1py € ¥

(H2) if 1 V1bs € U, then o1 € U orpy € ¥

(H3) € U iff =) ¢ ¥

(HY) if [a]y € ¥ and qo € Fy, then) € ¥

(H5) if [a]y) € U then, for any state q € Qo and test 07 € X,
q € Ay(qa,0?) implies that =0 € ¥ or [ay]p € ¥

The set of all Hintikka-sets for ¢ is designated by H,,.

The conditions (H1) to (H3) are standard, with one exception: (H3) is stronger
than usual since it enforces maximality of Hintikka-sets by stating that, for each
formula ¢ € cl(p), either 1) or -v) must be in the Hintikka-set. This will be used
later on to deal with negated programs. The last two conditions (H4) and (H5)
deal with the “local” impact of box formulas.

Next, we define the matching relation. The purpose of this relation can be
understood as follows: in the Hintikka-tree, each node has exactly one successor
for every diamond formula in cl(¢). The matching relation helps to ensure that
all diamond formulas in a node’s label can be satisfied “via” the corresponding
successor in the Hintikka-tree, and that none of the box formulas is violated via
any successors. We talk of “via” here since going to an immediate successor cor-
responds to travelling along a single program literal. Since programs in APDL(™
are automata that may only accept words of length greater one, in general we
cannot satisfy diamonds by going only to the immediate successor, but rather
we must perform a sequence of such moves.

Before we define the matching relation formally, let us fix the structure of
node labels of Hintikka-trees. For reasons that will be discussed below, node

labels not only contain a Hintikka-set, but also two additional components. More
precisely, if ¢ is an APDL{™)-formula and cl(y) contains k diamond formulas,
then we use

- Héﬁ) to denote the set of all program literals occurring in ¢; and

— A, to abbreviate H, x (Hf;) U{L}) x{0,...,k}, i.e. the set of triples
containing a Hintikka-set for ¢, a program literal of ¢ or L, and a number
at most k.

The elements of A, will be used as node labels in Hintikka-trees. Intuitively, the
first component lists the formulas that are true at a node, the second component
fixes the program literal with which the node can be reached from its predecessor
(or L if this information is not important), and the third component will help to
ensure that diamond formulas are eventually satisfied when moving through the
tree. For a triple A € A, we refer to the first, second and third triple component
with A", A2, and A3, respectively. For the following definition, recall that we use
€; to denote the i-th diamond in cl(y).

Definition 8 (Matching). Let ¢ be a formula and k the number of diamond
formulas in cl(p). A k+ 1-tuple of A,-triples (X, A1,..., Ay) is matching if, for
1<i <k and all automata o € AII), the following holds:

(M1) if €; = (a)i € X, then there is a word w = 1 ?---1p,? € £* n >0,
and a state 1 € Qo such that {¢1,..., ¥} C A, q1 € An(qa,w),
and one of the following holds:

(a) qi is a final state, Y € X', A} = L, and X} =0
(b) there is a program literal 7 € X, and a state gz € Q4 such that
@ € An(q1,m), € = (g)h € A}, A =, and A} = j.

(M2) if [a] € X', q € Qu, and T € X a program literal such that

q € Ao(qa, ™), then m = A} implies [v € Aj.

(2

As already noted, the purpose of the matching relation is to describe the possible
neighborhoods in Hintikka-trees. To this end, think of A as the label of a node,
and of A1, ..., A as the labels of its successors. The purpose of Conditions (M1)
and (M2) is to ensure that diamonds are satisfied and that boxes are not vio-
lated, respectively. Let us consider only (M1). If a diamond €; = (@)1 is in the
first component of), it can either be satisfied in the node labeled with A itself
(Condition (a)) or we can “delay” its satisfaction to the i-th successor node that
is reserved specifically for this purpose (Condition (b)). In Case (a), it is not
important over which program literal we can reach the i-th successor, and thus
the second component of \; can be set to L. In the second case, we must choose
a suitable program literal = and a suitable state ¢ of «, make sure that the i-th
successor is reachable over 7 via its second A;-component, and guarantee that
the first component of \; contains the diamond under consideration with the
automata a “advanced” to initial state q.

10

The remaining building block for ensuring that diamonds are satisfied is to
enforce that the satisfaction of diamonds is not delayed forever. This is one of
the two core parts of the definition of Hintikka-trees, the other being the proper
treatment of negation. Before we can discuss the prevention of infinitely delayed
diamonds in some more detail, we have to introduce some basic notions.

Let M be a set and k € N. An (infinite) k-ary M-tree T is a mapping
T : [k]* — M, where [k] is used (now and in the following) as an abbreviation
for the set {1,...,k}. Intuitively, the node ai is the i-th child of a. We use ¢
to denote the empty word (corresponding to the root of the tree). An infinite
path in a k-ary M-tree is an infinite word over the alphabet [k]. We use y[n],
n > 0, to denote the prefix of v up to the n-th element of the sequence (with
~[0] yielding the empty sequence).

Now back to the prevention of infinitely delayed diamonds. Given a formula ¢
with k& diamond formulas in cl(p), a Hintikka-tree will be defined as a k-ary A,-
tree in which every neighborhood is matching and some additional conditions
are satisfied. To detect infinite delays of diamonds in such trees, it does not
suffice to simply look for infinite sequences of nodes that all contain the same
diamond: firstly, diamonds are evolving while being “pushed” through the tree
since their initial state might be changed. Secondly, such a sequence does not
necessarily correspond to an infinite delay of diamond satisfaction: it could as
well be the case that the diamond is satisfied an infinite number of times, but
always immediately “regenerated” by some other formula. Also note that we
cannot use the standard technique from [20] since it only works for deterministic
variants of PDL.

Precisely for this purpose, the easy detection of infinitely delayed diamonds,
we have introduced the third component of node labels in Hintikka trees: if a
diamond was pushed to the current node z from its predecessor, then by (M1)
the third component of z’s label contains the number of the pushed diamond.
Moreover, if the pushed diamond is not satisfied in x, we again use the third
component of z: it contains the number of the successor of z to which the
diamond’s satisfaction is (further) delayed. If no diamond was pushed to z,
its third component is simply zero. Thus, the following definition captures our
intuitive notion of infinitely delayed diamonds.

Definition 9 (Diamond Starvation). Let ¢ be an APDL™ -formula with
k diamond formulas in cl(e), T a k-ary Ay-tree, © € [k]* a node in T, and
€; = (a)) € T(z)'. Then the diamond formula ()t is called starving in = if
there exists a path v = y17y2 - -+ € [k]¥ such that

1. ’)/1 = 'L',
2. T(zv[n])® = yn41 forn > 1.

We have now gathered all ingredients to define Hintikka-trees formally.

Definition 10 (Hintikka-tree). Let ¢ be an APDL) -formula with k dia-
mond formulas in cl(p). A k-ary A,-tree T is o Hintikka-tree for ¢ if T satisfies,

11

for all nodes x,y € [k]*, the following conditions:

(T1) p € T(e)!

(T2) the k + 1-tuple (T'(x),T(x1),...,T(xk)) is matching

(T3) no diamond formula from cl(p) is starving in

(T4) if [a]0, (810 € T(x)', 7 € IS, q\ € Qu, and ¢}y € Qs such that
o € Aalga, ™) and q5 € Ag(qs,T), then
g 100 ¢ T(y)" implies [8,,10 € T(y)".

Conditions (T1) to (T3) are easily understood. The purpose of Condition (T4)
is to deal with negated programs. In particular, for each atomic program a we
have to ensure that any pair of nodes x,y of a Hintikka-tree T can be related
by one of a and —a without violating any boxes. This is done by (T4) together
with (H3)—indeed, this is the reason for formulating (H3) stronger than usual.
Intuitively, the treatment of negation can be understood as follows: suppose that
[a]y € T(x)!, let ¢ € An(qa,a) for some atomic program a, and let y be a node.
By (H3), we have either [a,]y € T(y)! or =[ay]y € T(y)!. In the first case, =
and y can be related by a. In the second case, (T4) ensures that they can be
related by —a. This technique is inspired by [21], but generalized to program
automata.

The following proposition shows that Hintikka-trees are indeed proper ab-
stractions of models. A proof can be found in [26].

Proposition 1. An APDL(ﬁ)—formula @ s satisfiable iff it has a Hintikka-tree.

5 Biichi Automata for Hintikka-trees

In this section, we show that it is possible to construct, for every APDL(-
formula ¢, a Biichi tree automaton B, that accepts exactly the Hintikka-trees
for . By Proposition 1, since the size of B,, is at most exponential in the length of
o, and since the emptiness of Biichi-tree automata can be verified in quadratic
time [20], this yields an EXPTIME decision procedure for the satisfiability of
APDL™)-formulas. We start with introducing Biichi tree automata.

Definition 11 (Biichi Tree Automaton). A Biichi tree automaton B for
k-ary M-trees is a quintuple (Q, M,I, A, F), where

— @ is a finite set of states,

— M is a finite alphabet,

— I C @ is the set of initial states,

— ACQ x M x QF is the transition relation, and
— F C (Q is the set of accepting states.

Let M be a set of labels, and T a k-ary M -tree. Then, a run of B on T is a
k-ary Q-tree r such that

12

1. r(e) €I, and
2. (r(z),T(x),r(xl),...,r(zk)) € A for all nodes z € [k]*.

Let v € [k]“ be a path. The set inf.(y) contains the states in Q that occur
infinitely often in run r along path v. A run r of B on T is accepting if, for
each path v € [k]¥, we have inf.(y) N F # (). The language accepted by B is the
set L(B) = {T | there is an accepting run of B on T'}.

Given a Biichi automaton B, the problem whether its language is empty, i.e.,
whether it holds that £(B) = 0, is called the emptiness problem. This problem
is solvable in time quadratic in the size of the automaton [20].

We now give the translation of APDL)-formulas into Biichi-automata B.,.
To simplify the notation, we write Pa(y) to denote the set of sets {{[a]v, [5]0} |
[a]e, [B]0 € cl(p)}. We first introduce our automata formally and then explain
the intuition.

Definition 12. Let ¢ be an APDL™) -formula with c\(¢) containing k diamond
formulas. The Biichi tree automaton B, = (Q, Ay, I, A, F) on k-ary A, -trees is
defined as follows:

— @ contains those triples (¥, m, (), P,d) € A, x 2P3(#) x {2,1} that satisfy
the following conditions:
(1) if {[a], [B]0} C ¥, then {[a]i),[B]0} € P
(2) if {[a]y,[Bl0} € P, 7 € U(_‘)’ 7, € Aa(qa,), qlﬁ € Aﬁ(qﬁvﬁL and
a0 ¢ 0, then [3,)0 €

- I ={((@,m,¢),P,d) e Q| €W, and d = 0}.

— (Mo, Po,do), (T, m,0),(\,Pr,dv),...,(Mg, Piydi)) € A if and only if, for
each i € [k], the following holds:
1. /\0 = (W,ﬂ',é),
2. Py=P,
3. the tuple (Ao, ..., Ar) is matching,
t ifdo=0, N #0ande; €W
4. di=< 1 ifdy =1, /\gzi, andz\?#o
@ otherwise.
— The set F of accepting states is F := {(\, P,d) € Q | d = ©}.

While it is not hard to see how the set of initial states enforces (T1) of Hintikka-
trees and how the transition relation enforces (T2), Conditions (T3) and (T4)
are more challenging. In the following, we discuss them in detail.

Condition (T3) is enforced with the help of the third component of states,
which may take the values “©” and “1”. Intuitively, the fourth point in the
definition of A ensures that, whenever the satisfaction of a diamond is delayed in
anode z and r is a run, then r assigns states with third component 1 to all nodes
on the path that “tracks” the diamond delay. Note that, for this purpose, the
definition of A refers to the third component of A,-tuples, which is “controlled”

13

by (M1) in the appropriate way. All nodes that do not appear on delayed diamond
paths are labeled with @. Then, the set of accepting states ensures that there is
no path that, from some point on, is constantly labeled with 1. Thus, we enforce
that no diamonds are delayed infinitely in trees accepted by our automata, i.e.
no starvation occurs.

There is one special case that should be mentioned. Assume that a node z
contains a diamond ¢; = ()t that is not satisfied “within this node” (Case (a) of
(M1) does not apply). Then there is a potential starvation path for €; that starts
at = and goes through the node xi: (M1) “advances” the automaton « to g,
and ensures that €; = (o) € T'(zi)' and that T'(zi)® = j. Now suppose that
T(xi)' contains another diamond e = (B)# with €; # €. If € is not satisfied
within xi, there is a potential starvation path for € starting at zi and going
through zik. Since the starvation path for ¢; and the starvation path for € are
for different diamonds, we must be careful to separate them—failure in doing
this would result in some starvation-free Hintikka-trees to be rejected. Thus, the
definition of A ensures that runs label zik with @, and the constant 1-labeling of
the starvation path for €, is delayed by one node: it starts only at the successor
of zik on the starvation path for €.

Now for Condition (T4). In contrast to Conditions (T1) and (T2), this condi-
tion has a global flavor in the sense that it does not only concern a node and its
successors. Thus, we need to employ a special technique to enforce that (T4) is
satisfied: we use the second component of states as a “bookkeeping component”
that allows to propagate global information. More precisely, Point (1) of the
definition of) and Point (1) of the definition of A ensure that, whenever two
boxes appear in a Hintikka-set labeling a node x in a Hintikka-tree T', then this
joint occurrence is recorded in the second component of the state that any run
assigns to z. Via the definition of the transition relation (second point), we fur-
ther ensure that all states appearing in a run share the same second component.
Thus, we may use Point (2) of the definition of ¢ and Point (1) of the definition
of A to ensure that any node y satisfies the property stated by Condition (T4).

The following proposition shows that the Biichi tree automaton B, indeed

accepts precisely the Hintikka-trees for APDL™)-formula @. A proof can be
found in [26].

Proposition 2. Let ¢ be an APDL(™) -formula and T a k-ary A,-tree. Then T
is a Hintikka-tree for ¢ iff T € L(B,).

Putting together Propositions 1 and 2, it is now easy to establish decidability
and EXPTIME-complexity of APDL™ and thus also of PDL(™).

Theorem 1. Satisfiability of PDL(ﬁ)—formulas is EXPTIME-complete.

Proof. From Propositions 1 and 2, it follows that an APDL™-formula @ is
satisfiable if and only if £(B,) # 0. The emptiness problem for Biichi automata
is decidable in time quadratic in the size of the automaton [20]. To show that

14

APDL(™-formula satisfiability is in EXPTIME, it thus remains to show that the
size of B, = (Q, Ay, I, A, F) is at most exponential in ¢.

Let n be the length of ¢. Since the cardinality of cl(¢) is polynomial in n,
the cardinality of #,, (the set of Hintikka-sets for ¢) is at most exponential in n.
Thus, it is readily checked that the same holds for A and Q. The exponential
upper bound on the cardinalities of I and F' is trivial. It remains to determine
the size of A: since the size of @) is exponential in n and the out-degree of trees
accepted by automata is polynomial in n, we obtain an exponential bound.

Thus, APDL™-formula satisfiability and hence also PDL(™)-formula satisfia-
bility are in EXPTIME. For the lower bound, it suffices to recall that PDL-formula
satisfiability is already EXPTIME-hard [3]. o

6 Conclusion

This paper introduces the propositional dynamic logic PDL(ﬁ), which extends
standard PDL with negation of atomic programs. We were able to show that this
logic extends PDL in an interesting and useful way, yet retaining its appealing
computational properties. There are some natural directions for future work. For
instance, it should be simple to further extend PDL(™ with the converse operator
without destroying the EXPTIME upper bound. It would be more interesting,
however, to investigate the interplay between (full) negation and PDL’s program
operators in some more detail. For example, to the best our our knowledge it is
unknown whether the fragment of PDL™ that has only the program operators
“=" and “;” is decidable.

?

References

1. Pratt: Considerations on floyd-hoare logic. In: FOCS: IEEE Symposium on Foun-
dations of Computer Science (FOCS). (1976)

2. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: Conference
record of the ninth annual ACM Symposium on Theory of Computing, ACM Press
(1977) 286—294

3. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences 18 (1979) 194-211

4. Harel, D.: Dynamic logic. In Gabbay, D.M., Guenthner, F.; eds.: Handbook of
Philosophical Logic, Volume II. D. Reidel Publishers (1984) 496-604

5. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

7. De Giacomo, G., Lenzerini, M.: PDL-based framework for reasoning about ac-
tions. In: Proceedings of the 4th Congress of the Italian Association for Artificial
Intelligence (AT*TA’95). Volume 992., Springer (1995) 103-114

8. Prendinger, H., Schurz, G.: Reasoning about action and change: A dynamic logic
approach. Journal of Logic, Language, and Information 5 (1996) 209-245

9. Giacomo, G.D., Lenzerini, M.: Boosting the correspondence between description
logics and propositional dynamic logics. In: Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAT’94). Volume 1, AAATI Press (1994)
205-212

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

15

Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Information and
Computation 93 (1991)

Harel, D., Pratt, V.: Nondeterminism in logics of programs. In: Proceedings of the
Fifth Symposium on Principles of Programming Languages, ACM (1978) 203-213
Vardi, M.Y.: The taming of converse: Reasoning about two-way computations. In
Parikh, R., ed.: Proceedings of the Conference on Logic of Programs. Volume 193
of LNCS., Springer (1985) 413-424

Danecki, S.: Nondeterministic propositional dynamic logic with intersection is de-
cidable. In Skowron, A., ed.: Proceedings of the Fifth Symposium on Computation
Theory. Volume 208 of LNCS., Springer (1984) 34-53

Broersen, J.: Relativized action complement for dynamic logics. In Philippe Bal-
biani, Nobu-Yuki Suzuki, F.W., Zakharyaschev, M., eds.: Advances in Modal Logics
Volume 4, King’s College Publications (2003) 51-69

Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal
of Logic and Computation 2 (1992) 5-30

Humberstone, I.LL.: Inaccessible worlds. Notre Dame Journal of Formal Logic 24
(1983) 346-352

Gargov, G., Passy, S., Tinchev, T.: Modal environment for Boolean speculations. In
Skordev, D., ed.: Mathematical Logic and Applications, New York, USA, Plenum
Press (1987) 253-263

Goranko, V.: Modal definability in enriched languages. Notre Dame Journal of
Formal Logic 31 (1990) 81-105

Lutz, C., Sattler, U.: Mary likes all cats. In Baader, F., Sattler, U., eds.: Proceed-
ings of the 2000 International Workshop in Description Logics (DL2000). Num-
ber 33 in CEUR-WS (http://ceur-ws.org/) (2000) 213-226

Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logic of pro-
grams. Journal of Computer and System Sciences 32 (1986) 183-221

Lutz, C., Sattler, U.: The complexity of reasoning with boolean modal logics. In
Wolter, F., Wansing, H., de Rijke, M., Zakharyaschev, M., eds.: Advances in Modal
Logics Volume 3, CSLI Publications, Stanford, CA, USA (2001)

Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic
Handbook: Theory, implementation and applications. Cambridge University Press
(2003)

Schild, K.D.: A correspondence theory for terminological logics: Preliminary re-
port. In Mylopoulos, J., Reiter, R., eds.: Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence (IJCAI-91), Morgan Kaufmann (1991)
466471

Matijasevich, Y.: Simple examples of undecidable associative calculi. Soviet math-
ematics (Doklady) (1967) 555-557

Kleene, S.: Representation of events in nerve nets and finite automata. In
C.E.Shannon, J.McCarthy, eds.: Automata Studies. Princeton University Press
(1956) 3—41

Lutz, C., Walther, D.: PDL with negation of atomic programs. LTCS-Report
03-04, Technical University Dresden (2003) Available from http://lat.inf.tu-
dresden.de/research /reports.html.

