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Abstrat

We introdue a family of modal logis that are interpreted in domains onsisting of

regions in topologial spaes, in partiular the real plane. The underlying modal language

has 8 operators interpreted by the RCC8(or Egenhofer-Franzosa)-relations between regions.

The following results on the expressive power and omputational omplexity of the resulting

modal systems are obtained: they are expressively omplete for the two-variable fragment

of �rst-order logi, and are usually undeidable and often not even reursively enumerable.

This also holds if we interpret our language in the lass of all (�nite) substrutures of full

region spaes. If interpreted in region spaes onsisting of intervals in the real line, our

results signi�antly extend undeidability results of Halpern and Shoham in that we prove

the undeidability of interval temporal logi over the lass of all substrutures of all full

interval strutures. We also analyze modal logis based on the set of RCC5-relations whih

are more oarse than the RCC8 relations.

1 Introdution

Reasoning about topologial relations between regions in spae is reognized as one of the most

important and hallenging researh areas within Spatial Reasoning in AI and Philosophy, Spatial

and Constraint Databases, and Geographial Information Systems (GISs). Researh in this area

an be lassi�ed aording to the logial apparatus employed:

{ General �rst-order theories of topologial relations between regions are studied in AI and

Philosophy

[

6; 27; 26

℄

, Spatial Databases

[

25; 30

℄

and, from an algebrai viewpoint, in

[

8; 31

℄

;

{ Purely existential theories formulated as onstraint satisfation systems over jointly exhaustive

and mutually disjoint sets of topologial relations between regions

[

9; 28; 15; 30; 27

℄

{ Modal logis of spae with operators interpreted by the losure and interior operator of the

underlying topologial spae and propositions interpreted as subsets of the topologial spae,

see e.g.,

[

18; 5; 1

℄

.

A similar lassi�ation an be made for Temporal Reasoning: general �rst-order theories

[

3

℄

,

temporal onstraint systems

[

2; 24

℄

and modal temporal logis like Prior's tense logis, LTL, and
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Figure 1: Examples for the RCC8 relations in the plane.

CTL

[

12

℄

. However, one of the most important and inuential approahes in temporal reasoning

has not yet found a fully developed analogue on the spatial reasoning researh agenda: Halpern

and Shoham's Modal Logi of intervals

[

16

℄

, in whih propositions are interpreted as sets of

intervals (those in whih they are true) and referene to other intervals is enabled by modal

operators interpreted by Allen's 13 relations between intervals. Despite its bad omputational

behavior (undeidable, usually not even r.e.), this framework proved extremely fruitful and

inuential in temporal reasoning, see e.g.

[

32; 4; 19

℄

.

To develop an equally powerful and useful modal language for reasoning about topologial

relations between regions, we �rst have to selet a set of basi relations. In the initially mentioned

researh areas, there seems to be onsensus that the eight RCC8-relations, whih are also known

as \Egenhofer-Franzosa"-relations and have been independently introdued in

[

27

℄

and

[

10

℄

, are

very natural and important|both from a theoretial and a pratial viewpoint, see e.g.

[

25;

9

℄

. Thus, in this paper we will onsider modal logis with eight modal operators interpreted by

the eight RCC8-relations, and whose formulas are interpreted as sets of regions (those in whih

they are true). This modal framework for reasoning about regions has been suggested in an early

paper by Cohn

[

7

℄

and further onsidered in

[

33

℄

. However, it proved diÆult to analyze the

omputational behavior of suh logis and, despite several e�orts, to the best of our knowledge

no results have been obtained so far.

To relate this approah to previous and ongoing work on �rst-order theories of regions

[

27;

26; 25; 30

℄

, it is important to observe that the modal logi we propose is a fragment of �rst-order

logi with the eight binary RCC8-relations and in�nitely many unary prediates. More preisely,

we will show that our logi has exatly the same expressive power as the two-variable fragment of

this FO logi|although the latter is exponentially more suint. Sine usual �rst-order theories

of regions admit arbitrarily many variables but no unary prediates, their expressive power is

inomparable to the one of our modal logis. We argue that the availability of unary prediates

is essential for a wide range of appliation areas: in ontrast to desribing only purely topologial

properties of regions, it allows to also apture other properties suh as being a ountry (in a

GIS), a ball (for a soer-playing robot), or a proteted area (in a spatial database). In our

modal logi, we an then formulate onstraints suh as \there are no two overlapping regions

that are both ountries" and \every river is onneted to an oean or a lake".

The purpose of this paper is to introdue modal logis of topologial relations in a systemati

way, perform an initial investigation of their expressiveness and relationships, and analyze their

omputational behavior. More preisely, this paper is organized as follows: in Setion 2, we

introdue region spaes, whih form the semantial basis for our logis. The modal language is

introdued in Setion 3, and a brief analysis of its expressiveness is performed. In Setion 4, we

identify a number of natural logis indued by di�erent lasses of region strutures, and analyze

their relationship. In Setion 5, we then prove the main result of this paper showing that modal

logis of topologial relations are usually undeidable. We also show that undeidability an

not be overome by admitting only �nitely (but unboundedly) many regions. These results are

strengthened in Setion 6 where we prove that many logis of topologial relations are even

�

1

1

-hard. Finally, in Setion 7 we give undeidability results for modal logis obtained from the

RCC5 set of relations.
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Æ d e tpp tppi po ntpp ntppi

d,e, d,e, d,e, d,e,

d � po,tpp, po,tpp, d po,tpp, po,tpp, d

ntpp ntpp ntpp ntpp

d,e, d,e, e,po, d,e, po,

e po,tppi, po,tpp, tpp, d,e po,tpp, tpp, d

ntppi tppi,eq ntpp ntpp ntpp

d,e, d,e, d,e,

tpp d d,e tpp,ntpp po,tpp, po,tpp, ntpp po,tppi,

tppi,eq ntpp ntppi

d,e, e,po, po,eq, po, po,

tppi po,tppi, tppi, tpp, tppi,ntppi tppi, tpp, ntppi

ntppi ntppi tppi ntppi ntpp

d,e, d,e, po, d,e, po, d,e,

po po,tppi, po,tppi, tpp, po,tppi, � tpp, po,tppi,

ntppi ntppi ntpp ntppi ntpp ntppi

d,e, d,e,

ntpp d d ntpp po,tpp, po,tpp, ntpp �

ntpp ntpp

d,e, po, po, po, po, tppi,

ntppi po,tppi, tppi, tppi, ntppi tppi, tpp,ntpp, ntppi

ntppi ntppi ntppi ntppi ntppi,eq

Figure 2: The RCC8 omposition table.

2 Strutures

We want to reason about models whose domains onsist of regions that are related by the eight

RCC8-relations d (`disonneted'), e (`externally onneted'), tpp (`tangential proper part'),

tppi (`inverse of tangential proper part'), po (`partial overlap'), eq (`equal'), ntpp (`non-tangential

proper part'), and nttpi (`inverse of non-tangential proper part'). Figure 1 gives examples of the

RCC8 relations in the real plane R

2

, where regions are retangles. Di�erent spatial ontologies

give rise to di�erent notions of regions and, therefore, di�erent lasses of models. Almost all

de�nitions of regions provided in the literature, however, have in ommon that the resulting

models are region strutures R = hW; d

R

; e

R

; : : :i; where W is a non-empty set (of regions)

and the r

R

are binary relations on W that are mutually disjoint (i.e., r

R

\ q

R

= ;, for r 6= q),

jointly exhaustive (i.e., the union of all r

R

is W �W ), and satisfy the following:

� eq is interpreted as the identity on W , d, e, and po are symmetri, and tppi and ntppi

are the inverse relations of ttp and ntpp, respetively;

� the rules of the RCC8 omposition table (Figure 2) are satis�ed in the sense that, for any

entry q

1

; : : : ; q

k

in row r

1

and olumn r

2

, the �rst-order sentene

8x8y8z((r

1

(x; y) ^ r

2

(y; z))! (q

1

(x; z) _ � � � _ q

k

(x; z))

is valid (� is the disjuntion over all RCC8-relations).

Denote the lass of all region strutures by RS . Although of de�nite interest as a basi lass

of models representing the relation between regions in spae, often more restrited de�nitions

of region strutures are onsidered. On the one hand, one an onsider further �rst-order

onditions on region strutures, say, (fragments) of the RCC-theory

[

27

℄

. Another possibility is

to onsider only region strutures that are indued by (lasses of) topologial spaes. Reall

that a topologial spae is a pair T = (U; I), where U is a set and I is an interior operator on

U , i.e., for all s; t � U , we have

I(U) = U; I(s)� s; I(s)\ I(t) = I(s\ t); and II(s) = I(s):

3



The losure C (s) of s is then C (s) = U � (I(U � s)): Of partiular interest are n-dimensional

Eulidean spaes R

n

based on Cartesian produts of the real line with the standard topology

indued by the Eulidean metri.

Depending on the appliation domain, di�erent de�nitions of regions in topologial spaes

have been introdued. A rather general notion identi�es regions with non-empty, regular losed

sets, i.e. non-empty subsets s � U suh that C I(s) = s. We write T

reg

to denote the set of non-

empty, regular losed subsets of the topologial spae T. Various more restritive de�nitions of

regions are important in the Eulidean spaes R

n

, e.g.,

� the set R

n

onv

of non-empty onvex regular losed subsets of R

n

;

� the set R

n

ret

of losed hyper-retangular subsets of R

n

, i.e., regions of the form

Q

n

i=1

C

i

,

where C

1

; : : : ; C

n

are non-singleton losed intervals in R.

In both ases we allow unbounded regions, in partiular R

n

. However, we should note that the

tehnial results proved in this paper also hold if we onsider bounded regions, only.

Given a topologial spae T and a set of regions U

T

in T as introdued above, we obtain a

region struture R(T; U

T

) = hU

T

; d

T

; : : :i by putting:

(s; t) 2 d

T

i� s \ t = ;

(s; t) 2 e

T

i� I(s)\ I(t) = ; ^ s \ t 6= ;

(s; t) 2 po

T

i� I(s)\ I(t) 6= ; ^ s n t 6= ; ^ t n s 6= ;

(s; t) 2 eq

T

i� s = t

(s; t) 2 tpp

T

i� s \ t = ; ^ s \ I(t) 6= ;

(s; t) 2 ntpp

T

i� s \ I(t) = ;

(s; t) 2 tppi

T

i� (t; s) 2 tpp

(s; t) 2 ntppi

T

i� (t; s) 2 ntpp

R(T; U

T

) is alled the region struture indued by (T; U

T

). It is easy (but tedious) to verify that

the onditions of region strutures are satis�ed. We set T OP = fR(T;T

reg

) j T topologial spae g:

3 Languages

The modal language L

RCC8

extends propositional logi with ountably many variables p

1

; p

2

; : : :

and the Boolean onnetives ^ and : by means of the modal operators [d℄, [e℄, et. (one

for eah RCC8 relation). A region model M = hR; p

M

1

; p

M

2

; : : :i for L

RCC8

onsists of a region

struture R = hW; d

R

; : : :i and the interpretation p

M

i

of the variables of L

RCC8

as subsets of W .

A formula ' is either true at s 2 W (written M; s j= ') or false at s (written M; s 6j= '), the

indutive de�nition being as follows:

1. If ' is a prop. variable, then M; s j= ' i� s 2 '

M

.

2. M; s j= :' i� M; s 6j= '.

3. M; s j= '

1

^ '

2

i� s j= '

1

and s j= '

2

.

4. M; s j= [r℄' i�, for all t 2W , (s; t) 2 r

R

implies M; t j= '.

We use the usual abbreviations: '!  for :' _  and hri' for :[r℄:'.

The disussion of the expressive power of our logi starts with three simple examples. First,

the useful universal box 2

u

' an obviously be expressed as

V

r2RCC8

[r℄': Seond, we an express

that a formula ' holds in preisely one region (is a nominal) by

nom(') = 3

u

(' ^

^

r2RCC8nfeqg

[r℄:');

4



where 3

u

' = :2

u

:'. The de�nability of nominals means, in partiular, that we an express

RCC8-onstraints

[

28

℄

in our language: just observe that onstraints (x r y), where r is an RCC8-

relation, orrespond to the assertion (p

x

^ hrip

y

)^ nom(p

x

)^ nom(p

y

): Another main advantage

of having nominals is that we an introdue names for regions; e.g., the formulas nom(Elbe) and

nom(Dresden) state that \Elbe" (the name of a river) and \Dresden" eah apply to exatly one

region. Third, it is useful to de�ne operators [pp℄ and [ppi℄ as abbreviations:

[pp℄' = [tpp℄' ^ [nttp℄' [ppi℄' = [tppi℄' ^ [nttpi℄':

As in the temporal ase

[

16

℄

and following Cohn

[

7

℄

, we an lassify propositions ' aording to

whether

� they are homogeneous, i.e. they hold ontinuously throughout subregions: 2

u

('! [pp℄').

� they are anti-homogeneous, i.e. they hold only in regions whose interiors are mutually

disjoint: 2

u

('! ([pp℄:' ^ [po℄:')

Instanes of anti-homogeneous propositions are \river" and \ity", while \oupied-by-water" is

homogeneous. The following are some example statements in our logi (negleting for simpliity

the existene of sea harbors):

2

u

(harbor-ity $ (ity ^ hntppii(harbor ^ heiriver)))

2

u

(Dresden! harbor-ity)

2

u

(Elbe! river)

2

u

(Dresden! (hpoiElbe ^ [po℄(river! Elbe)))

2

u

(Dresden! [ppi℄:river)

From these formulas, it follows that Dresden has a harbor that is related via e to the river

Elbe.

We now relate the expressive power of the modal language L

RCC8

to the expressive power

of �rst-order languages over region strutures. Sine spatial �rst-order theories are usually

formulated in �rst-order languages equivalent to FO

RCC8

with eight binary relations for the RCC8

relations and no unary prediates

[

25; 26; 30; 27

℄

, we annot redue L

RCC8

to suh languages.

A formal proof is provided by the observation that FO

RCC8

is deidable over the region spae

onsisting of retangles in R

2

(in fat it is reduible to the deidable �rst order theory of

hR; <i), while in Setion 5 we show that L

RCC8

is not even r.e. over that spae. Thus, the

proper �rst-order language to ompare L

RCC8

with is the monadi extension FO

m

RCC8

of FO

RCC8

that is obtained by adding unary prediates p

1

; p

2

; : : :. By well-known results from modal

orrespondene theory, any modal formula ' an be polynomially translated into an equivalent

formula '

�

of FO

m

RCC8

with only two variables suh that, for any region modelM and any region

s,M; s j= ' i� M j= '

�

[s℄:More surprisingly, the onverse holds as well: this follows from reent

results of

[

20

℄

sine the RCC8 relations are mutually exlusive and jointly exhaustive.

Theorem 1. For every FO

m

RCC8

-formula '(x) with free variable x that uses only two variables,

one an e�etively onstrut a L

RCC8

-formula '

�

of length at most exponential in the length of

'(x) suh that, for every region model M and any region s, M; s j= '

�

i� M j= '

�

[s℄:

A proof sketh an be found in

[

21

℄

. There, we also argue that, due to a result of Etessami,

Vardi, and Wilke

[

11

℄

, there exist properties that an be formulated exponentially more suint

in the two-variable fragment of FO

m

RCC8

than in L

RCC8

.

4 Logis

In this setion, we analyze the impat of hoosing di�erent underlying lasses of region strutures.

As disussed in Setion 2, the most important suh lasses are indued by topologial spaes.

5



L

�n

RCC8

(R;R

ret

) = L

�n

RCC8

(R;R

onv

)

[ [

L

�n

RCC8

(R

2

;R

2

ret

) � L

�n

RCC8

(R

2

;R

2

onv

)

[ [

L

�n

RCC8

(R

3

;R

3

ret

) � L

�n

RCC8

(R

3

;R

3

onv

)

[ [

L

�n

RCC8

(RS) = L

�n

RCC8

(T OP) = L

�n

RCC8

(R

n

;R

n

reg

)

[ [ [

L

RCC8

(RS) = L

S

RCC8

(T OP) = L

S

RCC8

(R

n

;R

n

reg

)

\

L

RCC8

(T OP)

\

L

RCC8

(R

n

;R

n

reg

)

Figure 3: Inlusions between logis.

A formula ' is valid in a lass of regions strutures S if it is true in all points of all models

based on region strutures from S. We use L

RCC8

(S) to denote the logi of the lass S, i.e.

the set of all L

RCC8

-formulas valid in S. If S = fR(T; U

T

)g for some topologial spae T with

regions U

T

, then we write L

RCC8

(T; U

T

) instead of L

RCC8

(S):

The basi logi we onsider is L

RCC8

(RS), the logi of all region strutures. On arbitrary

topologial spaes, we investigate L

RCC8

(T OP), the logi of all region strutures indued by

topologial spaes in whih regions are non-empty regular losed sets. On R

n

, n � 1, we

investigate the family of logis L

RCC8

(R

n

; U

n

); where R

n

reg

� U

n

� R

n

ret

: In partiular, we may

have U

n

= R

n

onv

.

In many appliations, it does not seem natural to enfore the presene of all regions with

some harateristis (say, non-empty and regular losed) in every model. Instead, one ould

inlude only those regions that are \relevant" for the appliation. Thus, given a lass S of

region strutures, we are interested in the lasses S(S) of all substrutures of strutures in S.

Then we write L

S

RCC8

(S) as abbreviation of L

RCC8

(S(S)). Going one step further, one ould

even postulate that the set of relevant regions is �nite (but unbounded). Thus we use S

�n

(S) to

denote all �nite substrutures of strutures in S and write L

�n

RCC8

(S) for L

RCC8

(S

�n

(S)).

It is natural to ask for the relationship between the logis just introdued. We start with

two examples: �rst, L

�n

RCC8

(RS) (and any other logi of spaes with �nitely many regions) di�ers

from L

RCC8

(RS), L

RCC8

(T OP) and the logis L

RCC8

(R

n

; U

n

) sine

[pp℄([pp℄p! p)! [pp℄p

is valid in S

�n

(RS) (it states that there does not exist an in�nite asending pp-hain). Seond,

the logi L

RCC8

(RS) di�ers from L

RCC8

(T OP) and the logis L

RCC8

(R

n

; U

n

) sine

3

u

(p ^ hdiq)! 3

u

(hppiip ^ hppiiq)

is not valid in RS (it states that any two disonneted regions are proper parts of a region).

These and some more relationships are summarized in Figure 3. Perhaps most interesting

is the fat that L

�n

RCC8

(RS) and L

RCC8

(RS) an be regarded as logis of topologial spaes, and

even of R

n

:

Theorem 2. For n > 0:

(i) L

�n

RCC8

(RS) = L

�n

RCC8

(T OP) = L

�n

RCC8

(R

n

;R

n

reg

)

(ii) L

RCC8

(RS) = L

S

RCC8

(T OP) = L

S

RCC8

(R

n

;R

n

reg

):

6
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Figure 4: Enumerating tile positions.

A proof of the theorem and a justi�ation of the inlusions in Figure 3 an be found in

[

21

℄

.

5 Undeidability

In this setion, we prove the undeidability of the logis introdued previously. The results are

summarized by the following theorem. We start with establishing a quite general undeidability

result.

Theorem 3. Let R(R

n

; U) 2 S � RS with R

n

ret

� U , for some n > 0. Then L

RCC8

(S) is

undeidable. Thus the logis L

RCC8

(S) and L

S

RCC8

(S) are undeidable, for S one of RS, T OP,

R(R

n

;R

n

reg

), R(R

n

;R

n

onv

), and R(R

n

;R

n

ret

), with n > 0.

The proof is by redution of the domino problem that requires tiling of the �rst quadrant of the

plane to the satis�ability problem.

De�nition 4. Let D = (T;H; V ) be a domino system, where T is a �nite set of tile types and

H;V � T �T represent the horizontal and vertial mathing onditions. We say that D tiles the

�rst quadrant of the plane i� there exists a mapping � : N

2

! T suh that, for all (x; y) 2 N

2

:

� if �(x; y) = t and �(x + 1; y) = t

0

, then (t; t

0

) 2 H

� if �(x; y) = t and �(x; y + 1) = t

0

, then (t; t

0

) 2 V

Suh a mapping � is alled a solution for D. 3

For reduing this domino problem to satis�ability in L

RCC8

logis, we �x an enumeration of all

the tile positions in the �rst quadrant of the plane as indiated in Figure 4. The funtion �

takes positive integers to N�N-positions, i.e. �(1) = (0; 0), �(2) = (1; 0), �(3) = (1; 1), et.

Our proof strategy is inspired by

[

23; 29

℄

. Let D = (T;H; V ) be a domino system. In the

redution, we use the following propositional letters:

� for eah tile type t 2 T , a letter p

t

;

� propositional letters a, b, and  that are used to mark ertain, important regions;

� propositional letters wall and oor that are used to identify regions orresponding to tiles

with positions from the sets f0g �N and N� f0g, respetively.

The redution formula '

D

is de�ned as

a ^ b ^ wall ^ oor ^ [ntppi℄:a ^ 2

u

�;

where � is the onjuntion of a number of formulas. We list these formulas together with some

intuitive explanations:

7



a ^ b

a ^ b

a ^ b

a ^ b





1

2

3

4

a ^ b

a ^ :b

a ^ b

a ^ :b

a ^ b

pos. 1

pos. 2

pos. 3

Figure 5: Left: a disrete ordering in the plane Right: the \going right" regions.

1. ensure that the regions fs 2 W jM; s j= ag are ordered by the relation pp (i.e. the union

of tpp and ntpp):

a! [d℄:a ^ [e℄:a ^ [po℄:a (1)

2. enfore that the regions fs j M; s j= a ^ bg are disretely ordered by ntpp. These regions

will orrespond to positions of the grid. In order to ensure disreteness, we use sequene

of alternating a ^ b and a ^ :b regions as shown in the left part of Figure 5.

a ^ b! htppi(a ^ :b) (2)

a ^ :b! htppi(a ^ b) (3)

a ^ :b! [tpp℄(a! b) (4)

a ^ b! [tpp℄(a! :b) (5)

If we are at an a^b region, we an aess the region orresponding to the next grid position

(w.r.t. the �xed ordering) and to the previous grid position using

3

+

(') = htppi(a ^ :b ^ htppi(a ^ b ^ '))

3

�

(') = htppii(a ^ :b ^ htppii(a ^ b ^ ')):

3. we need a way to \go right" in the grid. To this end, we introdue additional regions

satisfying  as displayed in the right part of Figure 5. For example, Grid ell 2 in the

�gure is right of Grid ell 1, and Grid ell 4 is right of Grid ell 2.

a ^ b! htppi (6)

! htppi(a ^ b) (7)

! [d℄: ^ [e℄: ^ [po℄: ^ [tpp℄: ^ [tppi℄: (8)

We an go to the right and upper element with

3

R

(') = htppi( ^ htppi(a ^ b ^ '))

3

U

(') = 3

R

(3

+

(')):

Similarly, we an go to the left and down:

3

L

(') = htppii( ^ htppii(a ^ b ^ '))

3

D

(') = 3

L

(3

�

(')):

8



Considering Formulas (6) to (8), it an be heked that going to the right is a monotone

and injetive total funtion (see

[

21

℄

).

4. axiomatize the behavior of tiles on the oor and on the wall to enfore that our \going to

the right" relation brings us to the expeted position:

[ntppi℄:a _ (:(oor ^ wall)) (9)

wall! 3

+

oor (10)

wall! 3

U

(wall) (11)

[ntppi℄:a _ (wall! 3

D

(wall)) (12)

3

R

(:wall) (13)

:wall! 3

L

> (14)

5. �nally, we enfore the tiling:

^

t;t2T

:(p

t

^ p

t

0

) (15)

_

(t;t

0

)2H

p

t

^3

R

p

t

0

(16)

_

(t;t

0

)2V

p

t

^3

U

p

t

0

(17)

The main strength of our redution is that it requires only very limited prerequisites. Indeed,

we will show that satis�ability of '

D

in any region model implies that D has a solution. Thus,

to prove undeidability of some logi L

RCC8

(S), it suÆes to show that '

D

is satis�able in S if

D has a solution. This an be done for eah region spae R(R

n

; U) with R

n

ret

� U and n > 0:

Lemma 5. Let D be a domino system. Then:

(i) if the formula '

D

is satis�able in a region model, then the domino system D has a solution;

(ii) if the domino system D has a solution, then the formula '

D

is satis�able in a region model

based on R(R

n

; U), for eah n > 0 and eah U with R

n

ret

� U .

Theorem 3 is an immediate onsequene of this lemma, whih is proved in

[

21

℄

.

Although Theorem 3 overs the ase of substruture logis, it does not over the ase of

�nite region spaes, inluding �nite substrutures. By using a di�erent variant of the domino

problem, however, we an also establish a quite general undeidability result for this ase.

Theorem 6. If S

�n

(R(R

n

;R

n

ret

)) � S � S

�n

(RS) for some n � 1, then L

RCC8

(S) is undeid-

able. Thus, the following logis are undeidable for eah n � 1:

L

�n

RCC8

(RS), L

�n

RCC8

(T OP), L

�n

RCC8

(R

n

;R

n

reg

), L

�n

RCC8

(R

n

;R

n

onv

), and L

�n

RCC8

(R

n

;R

n

ret

).

The employed variant of the domino problem is as follows: for k 2 N, the k-triangle is the set

f(i; j) j i+ j � kg � N

2

. The task of the new domino problem is to tile an arbitrary k-triangle,

k 2 N, suh that the position (0; 0) is oupied with a distinguished tile s

0

and some position is

oupied with a distinguished tile f

0

. A proof that this domino problem is undeidable and the

details of the proof of Theorem 6 an be found in

[

21

℄

.

9



6 Axiomatizability

In this setion, we show that many of the introdued logis are �

1

1

-hard, thus highly undeidable

and not even reursively enumerable. We start with some easy \positive" results and then prove

a general \negative" result. First, we remind the reader of the following onsequene of the

translation of L

RCC8

into FO

m

RCC8

:

Proposition 7. If a lass S of region strutures is haraterized by a �nite set of axioms from

FO

RCC8

, then L

RCC8

(S) is reursively axiomatizable.

Reall that RS was de�ned by �rst-order axioms. Hene, L

RCC8

(RS) and any L

RCC8

(S) with S

a �rst-order de�nable sublass of S are reursively enumerable. Atually, using general results

on modal logis with names

[

14

℄

and the fat that RS is axiomatized by universal �rst-order

sentenes, it is not diÆult to provide a �nitary axiomatization of L

RCC8

(RS) using non-standard

rules. By Theorem 2, we obtain axiomatizations for L

S

RCC8

(T OP) and every L

S

RCC8

(R

n

;R

n

reg

),

n > 0.

We now establish a non-axiomatizability result that applies to many logis L

RCC8

(S) whose

lass of region spaes S is indued by a lass of topologial spaes:

Theorem 8. The following logis are �

1

1

-hard: L

RCC8

(T OP) and L

RCC8

(R

n

; U

n

) with U

n

2

fR

n

reg

;R

n

onv

;R

n

ret

g and n � 1.

To prove this result, the domino problem of De�nition 4 is modi�ed by requiring that, in

solutions, a distinguished tile t

0

2 T ours in�nitely often in the �rst olumn of the grid. It

has been shown in

[

17

℄

that this variant of the domino problem is �

1

1

-hard. Sine we redue it

to satis�ability, this yields a �

1

1

-hardness bound for validity.

As a �rst step toward reduing this stronger variant of the domino problem, we extend '

D

with

the following onjunt:

2

u

�

hntppi(a ^ b ^ wall ^ p

t

0

) ^ [ntpp℄

�

(a ^ b ^ wall ^ p

t

0

)! hntppi(a ^ b ^ wall ^ p

t

0

)

�

�

(18)

However, this is not yet suÆient: in models of '

D

, we an have not only one disrete ordering

of a^ b regions, but rather many \staked" suh orderings. Due to this e�et, the above formula

does not enfore that the main ordering (there is only one for whih we an ensure a proper

\going to the right relation") has in�nitely many ourrenes of t

0

.

It is thus obvious that we have to prevent staked orderings. This is done by enforing

that there is only one \limit region", i.e. only one region approahed by an in�nite sequene of

a-regions in the limit. We add the following formula to '

D

:

2

u

�

[tppi℄hpoia! (:a ^ [tpp℄:a ^ [ntpp℄:a)

�

(19)

Let '

0

D

be the resulting extension of '

D

. The lasses of region spaes to whih the extended

redution applies is more restrited than for the original one. We adopt the following property:

De�nition 9 (Closed under in�nite unions). Suppose that R = hW; d

R

; e

R

; : : :i is a

region spae. Then R is alled losed under in�nite unions if R = R(T; U

T

) is a region spae

indued by a topologial spae T, and, additionally, R satis�es the following property: for any

sequene r

1

; r

2

; : : : 2 W suh that r

1

ntpp r

2

ntpp r

3

� � � , we have C I(

S

i2!

r

i

)) 2 W . 3

We an now formulate the �rst part of orretness for the extended redution. The proofs of

this and the following lemma an be found in

[

21

℄

.

Lemma 10. Let R(T; U

T

) = hW; d

R

; e

R

; : : :i be a region spae that is losed under in�nite

unions suh that all regions in U

T

are regular losed. Then the formula '

0

D

is satis�able in a

region model based on R only if the domino system D has a solution with t

0

ourring in�nitely

often on the wall.

10



For the seond part of orretness, we again onsider region spaes R(R

n

; U) with R

n

ret

� U .

Lemma 11. If the domino system D has a solution with t

0

ourring in�nitely often on the

wall, then the formula '

0

D

is satis�able in a region model based on R(R

n

; U), for eah n � 1

and eah U with R

n

ret

� U � R

n

reg

.

Note that the region spaes R(R

n

;R

n

ret

), R(R

n

;R

n

onv

) and R(R

n

;R

n

ret

) are losed under in�-

nite unions. Sine R

n

ret

� R

n

onv

� R

n

reg

, Lemmas 10 and 11 immediately yield Theorem 8.

It is worth noting that there are a number of interesting region spaes to whih this proof

method does not apply. Interesting examples are the region spae based on simply onneted

regions in R

2

[

30

℄

and the spae of polygons in R

2

[

26

℄

. Sine these spaes are not losed under

in�nite unions, the above proof does not show the non-axiomatizability of the indued logis.

We onjeture, however, that slight modi�ations of the proof introdued here an be used to

prove their �

1

1

-hardness as well.

Finally, we onsider the reursive enumerability of logis of �nite region spaes: obviously,

undeidability of a logi of �nite region spaes implies that it is not reursively enumerable if it is

based on a lass of region strutures S

�n

(S) with S �rst-order de�nable (sine we an enumerate

all �nite models). Thus, Theorems 6 and Theorem 2 give us the following:

Corollary 12. The following logis are not r.e., for eah n � 1: L

�n

RCC8

(RS), L

�n

RCC8

(T OP),

L

�n

RCC8

(R

n

;R

n

reg

).

7 The RCC5 set of Relations

For several appliations, the RCC8 relations are weakened into a set of only 5 relations alled

RCC5 (or medium resolution topologial relations)

[

15; 8

℄

. This is done by keeping the relation

eq and po but oarsening (1) the tpp and ntpp relations into a new \proper-part of" relation

pp; (2) the tppi and ntppi relations into a new \has proper-part" relation ppi; and (3) the d

and e relations into a new disjointness relation dr. The modal language L

RCC5

for reasoning

about RCC8-style region strutures R = hW; e

R

; : : :i thus extends propositional logi with the

operators [r℄, where r ranges over the �ve RCC5-relations. They are interpreted by the relations

eq

R

, po

R

, and

� dr

R

= d

R

[ e

R

;

� pp

R

= tpp

R

[ nttp

R

;

� ppi

R

= tppi

R

[ nttpi

R

.

Given a lass S of region strutures, we denote by L

RCC5

(S) the set of L

RCC5

-formulas whih

are valid in all members of S. The sets L

S

RCC5

(S) and L

�n

RCC5

(S) are de�ned analogously to the

RCC8 ase.

A number of results from our investigation of L

RCC8

have obvious analogues for L

RCC5

: First,

we an haraterize the logis L

S

RCC5

(T OP) and L

�n

RCC5

(T OP) by means of a omposition table:

denote by RS

5

the lass of all strutures R = hW; dr

R

; eq

R

; pp

R

; ppi

R

; po

R

i; where W is non-

empty and the r

R

are mutually exlusive and jointly exhaustive binary relations onW suh that

(1) eq is interpreted as the identity relation on W , (2) po and dr are symmetri, (3) pp is the

inverse of ppi and (4) the rules of the RCC5-omposition table (Figure 6) are valid. Seond, it

is possible to prove an analogue of Theorem 2, i.e. that, for n � 1, we have

(i) L

�n

RCC5

(RS

5

) = L

�n

RCC5

(T OP) = L

�n

RCC5

(R

n

;R

n

reg

)

(ii) L

RCC5

(RS

5

) = L

S

RCC5

(T OP) = L

S

RCC5

(R

n

;R

n

reg

):

11



Æ dr po pp ppi

dr � dr,po,pp dr,po,pp dr

po dr,po,ppi, � po,pp dr,po,ppi

pp dr dr,po,pp pp �

ppi dr,po,ppi, po,pp eq,po,pp,ppi ppi

Figure 6: The RCC5 omposition table.

Third, on region models, L

RCC5

has the same expressive power as the two-variable fragment of

FL

m

RCC5

, i.e. the �rst-order language with the �ve binary RCC5-relation symbols and in�nitely

many unary prediates.

We now investigate the omputational properties of logis based on L

RCC5

. Analogously

to the RCC8 ase, the most natural logis are undeidable. Still, our RCC5 undeidability

result is less powerful than the one for RCC8. More preisely, we have to restrit ourselves

to region strutures with ertain properties: denote by RS

9

the lass of all region strutures

R = hW; e

R

; : : :i suh that, for any set S �W of ardinality two or three, there exists a unique

region Sup(S) suh that

� s eq Sup(S) or s pp Sup(S) for eah s 2 S;

� for every region t 2 W with s pp t for eah s 2 S, we have Sup(S) eq t or Sup(S) pp t,

� for every region t 2 W with t dr s for eah s 2 S, we have t dr Sup(S).

It is easy to verify that T OP � RS

9

and R(R

n

;R

n

reg

) 2 RS

9

for eah n > 0.

Theorem 13. Suppose R(R

n

;R

n

reg

) 2 S � RS

9

, for some n � 1. Then L

RCC5

(S) is undeid-

able. Thus, the following logis are undeidable, for eah n � 1: L

RCC5

(T OP) and L

RCC5

(R

n

;R

n

reg

).

The proof is by redution of the satis�ability problem for the undeidable modal logi S5

3

(see

[

22

℄

for the original proof in an algebrai setting. We use the modal notation of

[

13

℄

). Due to

spae limitations, we refer the reader to

[

13

℄

or to

[

21

℄

for a formal de�nition of S5

3

, and just

reall here that the domain of S5

3

is a produt W

1

�W

2

�W

3

, and that there are three modal

operators for referring to triples that are idential to the urrent one, but for one omponent.

With every S5

3

-formula ', we assoiate a L

RCC5

-formula

2

u

� ^ d ^ '

℄

(�)

suh that ' is S5

3

-satis�able i� 2

u

� ^ d ^ '

℄

is satis�able in a model from S. In (�), � is the

onjuntion of the following formulas:

1. Eah sets W

i

of S5

3

-models is simulated by the set fr 2W jM; r j= a

i

g. Thus, we intro-

due fresh variables a

i

, i = 1; 2; 3, and state

a

i

!

^

j=1;2;3

([pp℄:a

j

^ [ppi℄:a

j

^ [po℄:a

j

) (20)

a

1

! :a

2

; a

2

! :a

3

; a

2

! :a

3

; (21)

^

i=1;2;3

3

u

a

i

(22)

12



2. the set W

1

�W

2

�W

3

is simulated by a fresh variable d, so we add

d$ (

^

i=1;2;3

hppiia

i

) ^ :hppii(

^

i=1;2;3

hppiia

i

) (23)

3. the sets W

i

�W

j

, 1 � i < j � 3 are simulated by fresh variables d

ij

, so we add

d

ij

$ (

^

k=i;j

hppiia

k

) ^ :hppii(

^

k=i;j

hppiia

k

): (24)

Now, we de�ne '

℄

indutively by

p

℄

i

:= p

i

(:')

℄

:= d ^ :'

℄

(' ^  )

℄

:= '

℄

^  

℄

(3

1

')

℄

:= hppii(d

23

^ hppi(d ^ '

℄

))

(3

2

')

℄

:= hppii(d

13

^ hppi(d ^ '

℄

))

(3

3

')

℄

:= hppii(d

12

^ hppi(d ^ '

℄

))

The following Lemma immediately yields Theorem 13 and is proved in

[

21

℄

.

Lemma 14. Suppose R(R

n

;R

n

reg

) 2 S � RS

9

, for some n � 1. Then an S5

3

-formula ' is

satis�able in an S5

3

-model i� 2

u

� ^ d ^ '

℄

is satis�able in S.

8 Conlusion

Several open questions for future researh remain. The main hallenge is to exhibit a deid-

able and still useful variant of the logis proposed in this paper. Perhaps the most interest-

ing andidate is L

RCC5

(RS), whih oinides with the substruture logis L

S

RCC5

(T OP) and

L

S

RCC5

(R

n

;R

n

reg

), and to whih the proof of Theorem 13 does not apply. Other andidates ould

be obtained by modifying the set of relations, e.g. giving up some of them. It has for example

been argued that dropping po still results in a useful formalism for geographi appliations.

Finally, it as an open problem whether L

RCC5

(T OP) and L

RCC5

(R

n

;R

n

reg

) are reursively enu-

merable.

Let us also relate (some speial ases of) our results to Halpern and Shoham's results on

interval temporal logi

[

16

℄

: Theorems 3, 8, and 6 apply to logis indued by the region spae

R(R;R

onv

), whih is learly an interval struture. Interestingly, on this interval struture our

results are stronger than those of Halpern and Shoham in two respets: �rst, we only need

the RCC8 relations, whih an be viewed as a \oarsening" of the Allen interval relations used

by Halpern and Shoham. Seond and more interestingly, by Theorem 3 we have also proved

undeidability of the substruture logi L

S

RCC8

(R;R

onv

), whih is a natural but muh weaker

variant of the full (interval temporal) logi L

RCC8

(R;R

onv

), and not aptured by Halpern and

Shoham's undeidability proof.
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