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Abstra
t

We introdu
e a family of modal logi
s that are interpreted in domains 
onsisting of

regions in topologi
al spa
es, in parti
ular the real plane. The underlying modal language

has 8 operators interpreted by the RCC8(or Egenhofer-Franzosa)-relations between regions.

The following results on the expressive power and 
omputational 
omplexity of the resulting

modal systems are obtained: they are expressively 
omplete for the two-variable fragment

of �rst-order logi
, and are usually unde
idable and often not even re
ursively enumerable.

This also holds if we interpret our language in the 
lass of all (�nite) substru
tures of full

region spa
es. If interpreted in region spa
es 
onsisting of intervals in the real line, our

results signi�
antly extend unde
idability results of Halpern and Shoham in that we prove

the unde
idability of interval temporal logi
 over the 
lass of all substru
tures of all full

interval stru
tures. We also analyze modal logi
s based on the set of RCC5-relations whi
h

are more 
oarse than the RCC8 relations.

1 Introdu
tion

Reasoning about topologi
al relations between regions in spa
e is re
ognized as one of the most

important and 
hallenging resear
h areas within Spatial Reasoning in AI and Philosophy, Spatial

and Constraint Databases, and Geographi
al Information Systems (GISs). Resear
h in this area


an be 
lassi�ed a

ording to the logi
al apparatus employed:

{ General �rst-order theories of topologi
al relations between regions are studied in AI and

Philosophy

[

6; 27; 26

℄

, Spatial Databases

[

25; 30

℄

and, from an algebrai
 viewpoint, in

[

8; 31

℄

;

{ Purely existential theories formulated as 
onstraint satisfa
tion systems over jointly exhaustive

and mutually disjoint sets of topologi
al relations between regions

[

9; 28; 15; 30; 27

℄

{ Modal logi
s of spa
e with operators interpreted by the 
losure and interior operator of the

underlying topologi
al spa
e and propositions interpreted as subsets of the topologi
al spa
e,

see e.g.,

[

18; 5; 1

℄

.

A similar 
lassi�
ation 
an be made for Temporal Reasoning: general �rst-order theories

[

3

℄

,

temporal 
onstraint systems

[

2; 24

℄

and modal temporal logi
s like Prior's tense logi
s, LTL, and
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Figure 1: Examples for the RCC8 relations in the plane.

CTL

[

12

℄

. However, one of the most important and in
uential approa
hes in temporal reasoning

has not yet found a fully developed analogue on the spatial reasoning resear
h agenda: Halpern

and Shoham's Modal Logi
 of intervals

[

16

℄

, in whi
h propositions are interpreted as sets of

intervals (those in whi
h they are true) and referen
e to other intervals is enabled by modal

operators interpreted by Allen's 13 relations between intervals. Despite its bad 
omputational

behavior (unde
idable, usually not even r.e.), this framework proved extremely fruitful and

in
uential in temporal reasoning, see e.g.

[

32; 4; 19

℄

.

To develop an equally powerful and useful modal language for reasoning about topologi
al

relations between regions, we �rst have to sele
t a set of basi
 relations. In the initially mentioned

resear
h areas, there seems to be 
onsensus that the eight RCC8-relations, whi
h are also known

as \Egenhofer-Franzosa"-relations and have been independently introdu
ed in

[

27

℄

and

[

10

℄

, are

very natural and important|both from a theoreti
al and a pra
ti
al viewpoint, see e.g.

[

25;

9

℄

. Thus, in this paper we will 
onsider modal logi
s with eight modal operators interpreted by

the eight RCC8-relations, and whose formulas are interpreted as sets of regions (those in whi
h

they are true). This modal framework for reasoning about regions has been suggested in an early

paper by Cohn

[

7

℄

and further 
onsidered in

[

33

℄

. However, it proved diÆ
ult to analyze the


omputational behavior of su
h logi
s and, despite several e�orts, to the best of our knowledge

no results have been obtained so far.

To relate this approa
h to previous and ongoing work on �rst-order theories of regions

[

27;

26; 25; 30

℄

, it is important to observe that the modal logi
 we propose is a fragment of �rst-order

logi
 with the eight binary RCC8-relations and in�nitely many unary predi
ates. More pre
isely,

we will show that our logi
 has exa
tly the same expressive power as the two-variable fragment of

this FO logi
|although the latter is exponentially more su

in
t. Sin
e usual �rst-order theories

of regions admit arbitrarily many variables but no unary predi
ates, their expressive power is

in
omparable to the one of our modal logi
s. We argue that the availability of unary predi
ates

is essential for a wide range of appli
ation areas: in 
ontrast to des
ribing only purely topologi
al

properties of regions, it allows to also 
apture other properties su
h as being a 
ountry (in a

GIS), a ball (for a so

er-playing robot), or a prote
ted area (in a spatial database). In our

modal logi
, we 
an then formulate 
onstraints su
h as \there are no two overlapping regions

that are both 
ountries" and \every river is 
onne
ted to an o
ean or a lake".

The purpose of this paper is to introdu
e modal logi
s of topologi
al relations in a systemati


way, perform an initial investigation of their expressiveness and relationships, and analyze their


omputational behavior. More pre
isely, this paper is organized as follows: in Se
tion 2, we

introdu
e region spa
es, whi
h form the semanti
al basis for our logi
s. The modal language is

introdu
ed in Se
tion 3, and a brief analysis of its expressiveness is performed. In Se
tion 4, we

identify a number of natural logi
s indu
ed by di�erent 
lasses of region stru
tures, and analyze

their relationship. In Se
tion 5, we then prove the main result of this paper showing that modal

logi
s of topologi
al relations are usually unde
idable. We also show that unde
idability 
an

not be over
ome by admitting only �nitely (but unboundedly) many regions. These results are

strengthened in Se
tion 6 where we prove that many logi
s of topologi
al relations are even

�

1

1

-hard. Finally, in Se
tion 7 we give unde
idability results for modal logi
s obtained from the

RCC5 set of relations.

2
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Figure 2: The RCC8 
omposition table.

2 Stru
tures

We want to reason about models whose domains 
onsist of regions that are related by the eight

RCC8-relations d
 (`dis
onne
ted'), e
 (`externally 
onne
ted'), tpp (`tangential proper part'),

tppi (`inverse of tangential proper part'), po (`partial overlap'), eq (`equal'), ntpp (`non-tangential

proper part'), and nttpi (`inverse of non-tangential proper part'). Figure 1 gives examples of the

RCC8 relations in the real plane R

2

, where regions are re
tangles. Di�erent spatial ontologies

give rise to di�erent notions of regions and, therefore, di�erent 
lasses of models. Almost all

de�nitions of regions provided in the literature, however, have in 
ommon that the resulting

models are region stru
tures R = hW; d


R

; e


R

; : : :i; where W is a non-empty set (of regions)

and the r

R

are binary relations on W that are mutually disjoint (i.e., r

R

\ q

R

= ;, for r 6= q),

jointly exhaustive (i.e., the union of all r

R

is W �W ), and satisfy the following:

� eq is interpreted as the identity on W , d
, e
, and po are symmetri
, and tppi and ntppi

are the inverse relations of ttp and ntpp, respe
tively;

� the rules of the RCC8 
omposition table (Figure 2) are satis�ed in the sense that, for any

entry q

1

; : : : ; q

k

in row r

1

and 
olumn r

2

, the �rst-order senten
e

8x8y8z((r

1

(x; y) ^ r

2

(y; z))! (q

1

(x; z) _ � � � _ q

k

(x; z))

is valid (� is the disjun
tion over all RCC8-relations).

Denote the 
lass of all region stru
tures by RS . Although of de�nite interest as a basi
 
lass

of models representing the relation between regions in spa
e, often more restri
ted de�nitions

of region stru
tures are 
onsidered. On the one hand, one 
an 
onsider further �rst-order


onditions on region stru
tures, say, (fragments) of the RCC-theory

[

27

℄

. Another possibility is

to 
onsider only region stru
tures that are indu
ed by (
lasses of) topologi
al spa
es. Re
all

that a topologi
al spa
e is a pair T = (U; I), where U is a set and I is an interior operator on

U , i.e., for all s; t � U , we have

I(U) = U; I(s)� s; I(s)\ I(t) = I(s\ t); and II(s) = I(s):

3



The 
losure C (s) of s is then C (s) = U � (I(U � s)): Of parti
ular interest are n-dimensional

Eu
lidean spa
es R

n

based on Cartesian produ
ts of the real line with the standard topology

indu
ed by the Eu
lidean metri
.

Depending on the appli
ation domain, di�erent de�nitions of regions in topologi
al spa
es

have been introdu
ed. A rather general notion identi�es regions with non-empty, regular 
losed

sets, i.e. non-empty subsets s � U su
h that C I(s) = s. We write T

reg

to denote the set of non-

empty, regular 
losed subsets of the topologi
al spa
e T. Various more restri
tive de�nitions of

regions are important in the Eu
lidean spa
es R

n

, e.g.,

� the set R

n


onv

of non-empty 
onvex regular 
losed subsets of R

n

;

� the set R

n

re
t

of 
losed hyper-re
tangular subsets of R

n

, i.e., regions of the form

Q

n

i=1

C

i

,

where C

1

; : : : ; C

n

are non-singleton 
losed intervals in R.

In both 
ases we allow unbounded regions, in parti
ular R

n

. However, we should note that the

te
hni
al results proved in this paper also hold if we 
onsider bounded regions, only.

Given a topologi
al spa
e T and a set of regions U

T

in T as introdu
ed above, we obtain a

region stru
ture R(T; U

T

) = hU

T

; d


T

; : : :i by putting:

(s; t) 2 d


T

i� s \ t = ;

(s; t) 2 e


T

i� I(s)\ I(t) = ; ^ s \ t 6= ;

(s; t) 2 po

T

i� I(s)\ I(t) 6= ; ^ s n t 6= ; ^ t n s 6= ;

(s; t) 2 eq

T

i� s = t

(s; t) 2 tpp

T

i� s \ t = ; ^ s \ I(t) 6= ;

(s; t) 2 ntpp

T

i� s \ I(t) = ;

(s; t) 2 tppi

T

i� (t; s) 2 tpp

(s; t) 2 ntppi

T

i� (t; s) 2 ntpp

R(T; U

T

) is 
alled the region stru
ture indu
ed by (T; U

T

). It is easy (but tedious) to verify that

the 
onditions of region stru
tures are satis�ed. We set T OP = fR(T;T

reg

) j T topologi
al spa
e g:

3 Languages

The modal language L

RCC8

extends propositional logi
 with 
ountably many variables p

1

; p

2

; : : :

and the Boolean 
onne
tives ^ and : by means of the modal operators [d
℄, [e
℄, et
. (one

for ea
h RCC8 relation). A region model M = hR; p

M

1

; p

M

2

; : : :i for L

RCC8


onsists of a region

stru
ture R = hW; d


R

; : : :i and the interpretation p

M

i

of the variables of L

RCC8

as subsets of W .

A formula ' is either true at s 2 W (written M; s j= ') or false at s (written M; s 6j= '), the

indu
tive de�nition being as follows:

1. If ' is a prop. variable, then M; s j= ' i� s 2 '

M

.

2. M; s j= :' i� M; s 6j= '.

3. M; s j= '

1

^ '

2

i� s j= '

1

and s j= '

2

.

4. M; s j= [r℄' i�, for all t 2W , (s; t) 2 r

R

implies M; t j= '.

We use the usual abbreviations: '!  for :' _  and hri' for :[r℄:'.

The dis
ussion of the expressive power of our logi
 starts with three simple examples. First,

the useful universal box 2

u

' 
an obviously be expressed as

V

r2RCC8

[r℄': Se
ond, we 
an express

that a formula ' holds in pre
isely one region (is a nominal) by

nom(') = 3

u

(' ^

^

r2RCC8nfeqg

[r℄:');

4



where 3

u

' = :2

u

:'. The de�nability of nominals means, in parti
ular, that we 
an express

RCC8-
onstraints

[

28

℄

in our language: just observe that 
onstraints (x r y), where r is an RCC8-

relation, 
orrespond to the assertion (p

x

^ hrip

y

)^ nom(p

x

)^ nom(p

y

): Another main advantage

of having nominals is that we 
an introdu
e names for regions; e.g., the formulas nom(Elbe) and

nom(Dresden) state that \Elbe" (the name of a river) and \Dresden" ea
h apply to exa
tly one

region. Third, it is useful to de�ne operators [pp℄ and [ppi℄ as abbreviations:

[pp℄' = [tpp℄' ^ [nttp℄' [ppi℄' = [tppi℄' ^ [nttpi℄':

As in the temporal 
ase

[

16

℄

and following Cohn

[

7

℄

, we 
an 
lassify propositions ' a

ording to

whether

� they are homogeneous, i.e. they hold 
ontinuously throughout subregions: 2

u

('! [pp℄').

� they are anti-homogeneous, i.e. they hold only in regions whose interiors are mutually

disjoint: 2

u

('! ([pp℄:' ^ [po℄:')

Instan
es of anti-homogeneous propositions are \river" and \
ity", while \o

upied-by-water" is

homogeneous. The following are some example statements in our logi
 (negle
ting for simpli
ity

the existen
e of sea harbors):

2

u

(harbor-
ity $ (
ity ^ hntppii(harbor ^ he
iriver)))

2

u

(Dresden! harbor-
ity)

2

u

(Elbe! river)

2

u

(Dresden! (hpoiElbe ^ [po℄(river! Elbe)))

2

u

(Dresden! [ppi℄:river)

From these formulas, it follows that Dresden has a harbor that is related via e
 to the river

Elbe.

We now relate the expressive power of the modal language L

RCC8

to the expressive power

of �rst-order languages over region stru
tures. Sin
e spatial �rst-order theories are usually

formulated in �rst-order languages equivalent to FO

RCC8

with eight binary relations for the RCC8

relations and no unary predi
ates

[

25; 26; 30; 27

℄

, we 
annot redu
e L

RCC8

to su
h languages.

A formal proof is provided by the observation that FO

RCC8

is de
idable over the region spa
e


onsisting of re
tangles in R

2

(in fa
t it is redu
ible to the de
idable �rst order theory of

hR; <i), while in Se
tion 5 we show that L

RCC8

is not even r.e. over that spa
e. Thus, the

proper �rst-order language to 
ompare L

RCC8

with is the monadi
 extension FO

m

RCC8

of FO

RCC8

that is obtained by adding unary predi
ates p

1

; p

2

; : : :. By well-known results from modal


orresponden
e theory, any modal formula ' 
an be polynomially translated into an equivalent

formula '

�

of FO

m

RCC8

with only two variables su
h that, for any region modelM and any region

s,M; s j= ' i� M j= '

�

[s℄:More surprisingly, the 
onverse holds as well: this follows from re
ent

results of

[

20

℄

sin
e the RCC8 relations are mutually ex
lusive and jointly exhaustive.

Theorem 1. For every FO

m

RCC8

-formula '(x) with free variable x that uses only two variables,

one 
an e�e
tively 
onstru
t a L

RCC8

-formula '

�

of length at most exponential in the length of

'(x) su
h that, for every region model M and any region s, M; s j= '

�

i� M j= '

�

[s℄:

A proof sket
h 
an be found in

[

21

℄

. There, we also argue that, due to a result of Etessami,

Vardi, and Wilke

[

11

℄

, there exist properties that 
an be formulated exponentially more su

in
t

in the two-variable fragment of FO

m

RCC8

than in L

RCC8

.

4 Logi
s

In this se
tion, we analyze the impa
t of 
hoosing di�erent underlying 
lasses of region stru
tures.

As dis
ussed in Se
tion 2, the most important su
h 
lasses are indu
ed by topologi
al spa
es.

5



L

�n

RCC8

(R;R

re
t

) = L

�n

RCC8

(R;R


onv

)

[ [

L

�n

RCC8

(R

2

;R

2

re
t

) � L

�n

RCC8

(R

2

;R

2


onv

)

[ [

L

�n

RCC8

(R

3

;R

3

re
t

) � L

�n

RCC8

(R

3

;R

3


onv

)

[ [

L

�n

RCC8

(RS) = L

�n

RCC8

(T OP) = L

�n

RCC8

(R

n

;R

n

reg

)

[ [ [

L

RCC8

(RS) = L

S

RCC8

(T OP) = L

S

RCC8

(R

n

;R

n

reg

)

\

L

RCC8

(T OP)

\

L

RCC8

(R

n

;R

n

reg

)

Figure 3: In
lusions between logi
s.

A formula ' is valid in a 
lass of regions stru
tures S if it is true in all points of all models

based on region stru
tures from S. We use L

RCC8

(S) to denote the logi
 of the 
lass S, i.e.

the set of all L

RCC8

-formulas valid in S. If S = fR(T; U

T

)g for some topologi
al spa
e T with

regions U

T

, then we write L

RCC8

(T; U

T

) instead of L

RCC8

(S):

The basi
 logi
 we 
onsider is L

RCC8

(RS), the logi
 of all region stru
tures. On arbitrary

topologi
al spa
es, we investigate L

RCC8

(T OP), the logi
 of all region stru
tures indu
ed by

topologi
al spa
es in whi
h regions are non-empty regular 
losed sets. On R

n

, n � 1, we

investigate the family of logi
s L

RCC8

(R

n

; U

n

); where R

n

reg

� U

n

� R

n

re
t

: In parti
ular, we may

have U

n

= R

n


onv

.

In many appli
ations, it does not seem natural to enfor
e the presen
e of all regions with

some 
hara
teristi
s (say, non-empty and regular 
losed) in every model. Instead, one 
ould

in
lude only those regions that are \relevant" for the appli
ation. Thus, given a 
lass S of

region stru
tures, we are interested in the 
lasses S(S) of all substru
tures of stru
tures in S.

Then we write L

S

RCC8

(S) as abbreviation of L

RCC8

(S(S)). Going one step further, one 
ould

even postulate that the set of relevant regions is �nite (but unbounded). Thus we use S

�n

(S) to

denote all �nite substru
tures of stru
tures in S and write L

�n

RCC8

(S) for L

RCC8

(S

�n

(S)).

It is natural to ask for the relationship between the logi
s just introdu
ed. We start with

two examples: �rst, L

�n

RCC8

(RS) (and any other logi
 of spa
es with �nitely many regions) di�ers

from L

RCC8

(RS), L

RCC8

(T OP) and the logi
s L

RCC8

(R

n

; U

n

) sin
e

[pp℄([pp℄p! p)! [pp℄p

is valid in S

�n

(RS) (it states that there does not exist an in�nite as
ending pp-
hain). Se
ond,

the logi
 L

RCC8

(RS) di�ers from L

RCC8

(T OP) and the logi
s L

RCC8

(R

n

; U

n

) sin
e

3

u

(p ^ hd
iq)! 3

u

(hppiip ^ hppiiq)

is not valid in RS (it states that any two dis
onne
ted regions are proper parts of a region).

These and some more relationships are summarized in Figure 3. Perhaps most interesting

is the fa
t that L

�n

RCC8

(RS) and L

RCC8

(RS) 
an be regarded as logi
s of topologi
al spa
es, and

even of R

n

:

Theorem 2. For n > 0:

(i) L

�n

RCC8

(RS) = L

�n

RCC8

(T OP) = L

�n

RCC8

(R

n

;R

n

reg

)

(ii) L

RCC8

(RS) = L

S

RCC8

(T OP) = L

S

RCC8

(R

n

;R

n

reg

):

6
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Figure 4: Enumerating tile positions.

A proof of the theorem and a justi�
ation of the in
lusions in Figure 3 
an be found in

[

21

℄

.

5 Unde
idability

In this se
tion, we prove the unde
idability of the logi
s introdu
ed previously. The results are

summarized by the following theorem. We start with establishing a quite general unde
idability

result.

Theorem 3. Let R(R

n

; U) 2 S � RS with R

n

re
t

� U , for some n > 0. Then L

RCC8

(S) is

unde
idable. Thus the logi
s L

RCC8

(S) and L

S

RCC8

(S) are unde
idable, for S one of RS, T OP,

R(R

n

;R

n

reg

), R(R

n

;R

n


onv

), and R(R

n

;R

n

re
t

), with n > 0.

The proof is by redu
tion of the domino problem that requires tiling of the �rst quadrant of the

plane to the satis�ability problem.

De�nition 4. Let D = (T;H; V ) be a domino system, where T is a �nite set of tile types and

H;V � T �T represent the horizontal and verti
al mat
hing 
onditions. We say that D tiles the

�rst quadrant of the plane i� there exists a mapping � : N

2

! T su
h that, for all (x; y) 2 N

2

:

� if �(x; y) = t and �(x + 1; y) = t

0

, then (t; t

0

) 2 H

� if �(x; y) = t and �(x; y + 1) = t

0

, then (t; t

0

) 2 V

Su
h a mapping � is 
alled a solution for D. 3

For redu
ing this domino problem to satis�ability in L

RCC8

logi
s, we �x an enumeration of all

the tile positions in the �rst quadrant of the plane as indi
ated in Figure 4. The fun
tion �

takes positive integers to N�N-positions, i.e. �(1) = (0; 0), �(2) = (1; 0), �(3) = (1; 1), et
.

Our proof strategy is inspired by

[

23; 29

℄

. Let D = (T;H; V ) be a domino system. In the

redu
tion, we use the following propositional letters:

� for ea
h tile type t 2 T , a letter p

t

;

� propositional letters a, b, and 
 that are used to mark 
ertain, important regions;

� propositional letters wall and 
oor that are used to identify regions 
orresponding to tiles

with positions from the sets f0g �N and N� f0g, respe
tively.

The redu
tion formula '

D

is de�ned as

a ^ b ^ wall ^ 
oor ^ [ntppi℄:a ^ 2

u

�;

where � is the 
onjun
tion of a number of formulas. We list these formulas together with some

intuitive explanations:

7



a ^ b

a ^ b

a ^ b

a ^ b







1

2

3

4

a ^ b

a ^ :b

a ^ b

a ^ :b

a ^ b

pos. 1

pos. 2

pos. 3

Figure 5: Left: a dis
rete ordering in the plane Right: the \going right" regions.

1. ensure that the regions fs 2 W jM; s j= ag are ordered by the relation pp (i.e. the union

of tpp and ntpp):

a! [d
℄:a ^ [e
℄:a ^ [po℄:a (1)

2. enfor
e that the regions fs j M; s j= a ^ bg are dis
retely ordered by ntpp. These regions

will 
orrespond to positions of the grid. In order to ensure dis
reteness, we use sequen
e

of alternating a ^ b and a ^ :b regions as shown in the left part of Figure 5.

a ^ b! htppi(a ^ :b) (2)

a ^ :b! htppi(a ^ b) (3)

a ^ :b! [tpp℄(a! b) (4)

a ^ b! [tpp℄(a! :b) (5)

If we are at an a^b region, we 
an a

ess the region 
orresponding to the next grid position

(w.r.t. the �xed ordering) and to the previous grid position using

3

+

(') = htppi(a ^ :b ^ htppi(a ^ b ^ '))

3

�

(') = htppii(a ^ :b ^ htppii(a ^ b ^ ')):

3. we need a way to \go right" in the grid. To this end, we introdu
e additional regions

satisfying 
 as displayed in the right part of Figure 5. For example, Grid 
ell 2 in the

�gure is right of Grid 
ell 1, and Grid 
ell 4 is right of Grid 
ell 2.

a ^ b! htppi
 (6)


! htppi(a ^ b) (7)


! [d
℄:
 ^ [e
℄:
 ^ [po℄:
 ^ [tpp℄:
 ^ [tppi℄:
 (8)

We 
an go to the right and upper element with

3

R

(') = htppi(
 ^ htppi(a ^ b ^ '))

3

U

(') = 3

R

(3

+

(')):

Similarly, we 
an go to the left and down:

3

L

(') = htppii(
 ^ htppii(a ^ b ^ '))

3

D

(') = 3

L

(3

�

(')):

8



Considering Formulas (6) to (8), it 
an be 
he
ked that going to the right is a monotone

and inje
tive total fun
tion (see

[

21

℄

).

4. axiomatize the behavior of tiles on the 
oor and on the wall to enfor
e that our \going to

the right" relation brings us to the expe
ted position:

[ntppi℄:a _ (:(
oor ^ wall)) (9)

wall! 3

+


oor (10)

wall! 3

U

(wall) (11)

[ntppi℄:a _ (wall! 3

D

(wall)) (12)

3

R

(:wall) (13)

:wall! 3

L

> (14)

5. �nally, we enfor
e the tiling:

^

t;t2T

:(p

t

^ p

t

0

) (15)

_

(t;t

0

)2H

p

t

^3

R

p

t

0

(16)

_

(t;t

0

)2V

p

t

^3

U

p

t

0

(17)

The main strength of our redu
tion is that it requires only very limited prerequisites. Indeed,

we will show that satis�ability of '

D

in any region model implies that D has a solution. Thus,

to prove unde
idability of some logi
 L

RCC8

(S), it suÆ
es to show that '

D

is satis�able in S if

D has a solution. This 
an be done for ea
h region spa
e R(R

n

; U) with R

n

re
t

� U and n > 0:

Lemma 5. Let D be a domino system. Then:

(i) if the formula '

D

is satis�able in a region model, then the domino system D has a solution;

(ii) if the domino system D has a solution, then the formula '

D

is satis�able in a region model

based on R(R

n

; U), for ea
h n > 0 and ea
h U with R

n

re
t

� U .

Theorem 3 is an immediate 
onsequen
e of this lemma, whi
h is proved in

[

21

℄

.

Although Theorem 3 
overs the 
ase of substru
ture logi
s, it does not 
over the 
ase of

�nite region spa
es, in
luding �nite substru
tures. By using a di�erent variant of the domino

problem, however, we 
an also establish a quite general unde
idability result for this 
ase.

Theorem 6. If S

�n

(R(R

n

;R

n

re
t

)) � S � S

�n

(RS) for some n � 1, then L

RCC8

(S) is unde
id-

able. Thus, the following logi
s are unde
idable for ea
h n � 1:

L

�n

RCC8

(RS), L

�n

RCC8

(T OP), L

�n

RCC8

(R

n

;R

n

reg

), L

�n

RCC8

(R

n

;R

n


onv

), and L

�n

RCC8

(R

n

;R

n

re
t

).

The employed variant of the domino problem is as follows: for k 2 N, the k-triangle is the set

f(i; j) j i+ j � kg � N

2

. The task of the new domino problem is to tile an arbitrary k-triangle,

k 2 N, su
h that the position (0; 0) is o

upied with a distinguished tile s

0

and some position is

o

upied with a distinguished tile f

0

. A proof that this domino problem is unde
idable and the

details of the proof of Theorem 6 
an be found in

[

21

℄

.

9



6 Axiomatizability

In this se
tion, we show that many of the introdu
ed logi
s are �

1

1

-hard, thus highly unde
idable

and not even re
ursively enumerable. We start with some easy \positive" results and then prove

a general \negative" result. First, we remind the reader of the following 
onsequen
e of the

translation of L

RCC8

into FO

m

RCC8

:

Proposition 7. If a 
lass S of region stru
tures is 
hara
terized by a �nite set of axioms from

FO

RCC8

, then L

RCC8

(S) is re
ursively axiomatizable.

Re
all that RS was de�ned by �rst-order axioms. Hen
e, L

RCC8

(RS) and any L

RCC8

(S) with S

a �rst-order de�nable sub
lass of S are re
ursively enumerable. A
tually, using general results

on modal logi
s with names

[

14

℄

and the fa
t that RS is axiomatized by universal �rst-order

senten
es, it is not diÆ
ult to provide a �nitary axiomatization of L

RCC8

(RS) using non-standard

rules. By Theorem 2, we obtain axiomatizations for L

S

RCC8

(T OP) and every L

S

RCC8

(R

n

;R

n

reg

),

n > 0.

We now establish a non-axiomatizability result that applies to many logi
s L

RCC8

(S) whose


lass of region spa
es S is indu
ed by a 
lass of topologi
al spa
es:

Theorem 8. The following logi
s are �

1

1

-hard: L

RCC8

(T OP) and L

RCC8

(R

n

; U

n

) with U

n

2

fR

n

reg

;R

n


onv

;R

n

re
t

g and n � 1.

To prove this result, the domino problem of De�nition 4 is modi�ed by requiring that, in

solutions, a distinguished tile t

0

2 T o

urs in�nitely often in the �rst 
olumn of the grid. It

has been shown in

[

17

℄

that this variant of the domino problem is �

1

1

-hard. Sin
e we redu
e it

to satis�ability, this yields a �

1

1

-hardness bound for validity.

As a �rst step toward redu
ing this stronger variant of the domino problem, we extend '

D

with

the following 
onjun
t:

2

u

�

hntppi(a ^ b ^ wall ^ p

t

0

) ^ [ntpp℄

�

(a ^ b ^ wall ^ p

t

0

)! hntppi(a ^ b ^ wall ^ p

t

0

)

�

�

(18)

However, this is not yet suÆ
ient: in models of '

D

, we 
an have not only one dis
rete ordering

of a^ b regions, but rather many \sta
ked" su
h orderings. Due to this e�e
t, the above formula

does not enfor
e that the main ordering (there is only one for whi
h we 
an ensure a proper

\going to the right relation") has in�nitely many o

urren
es of t

0

.

It is thus obvious that we have to prevent sta
ked orderings. This is done by enfor
ing

that there is only one \limit region", i.e. only one region approa
hed by an in�nite sequen
e of

a-regions in the limit. We add the following formula to '

D

:

2

u

�

[tppi℄hpoia! (:a ^ [tpp℄:a ^ [ntpp℄:a)

�

(19)

Let '

0

D

be the resulting extension of '

D

. The 
lasses of region spa
es to whi
h the extended

redu
tion applies is more restri
ted than for the original one. We adopt the following property:

De�nition 9 (Closed under in�nite unions). Suppose that R = hW; d


R

; e


R

; : : :i is a

region spa
e. Then R is 
alled 
losed under in�nite unions if R = R(T; U

T

) is a region spa
e

indu
ed by a topologi
al spa
e T, and, additionally, R satis�es the following property: for any

sequen
e r

1

; r

2

; : : : 2 W su
h that r

1

ntpp r

2

ntpp r

3

� � � , we have C I(

S

i2!

r

i

)) 2 W . 3

We 
an now formulate the �rst part of 
orre
tness for the extended redu
tion. The proofs of

this and the following lemma 
an be found in

[

21

℄

.

Lemma 10. Let R(T; U

T

) = hW; d


R

; e


R

; : : :i be a region spa
e that is 
losed under in�nite

unions su
h that all regions in U

T

are regular 
losed. Then the formula '

0

D

is satis�able in a

region model based on R only if the domino system D has a solution with t

0

o

urring in�nitely

often on the wall.

10



For the se
ond part of 
orre
tness, we again 
onsider region spa
es R(R

n

; U) with R

n

re
t

� U .

Lemma 11. If the domino system D has a solution with t

0

o

urring in�nitely often on the

wall, then the formula '

0

D

is satis�able in a region model based on R(R

n

; U), for ea
h n � 1

and ea
h U with R

n

re
t

� U � R

n

reg

.

Note that the region spa
es R(R

n

;R

n

re
t

), R(R

n

;R

n


onv

) and R(R

n

;R

n

re
t

) are 
losed under in�-

nite unions. Sin
e R

n

re
t

� R

n


onv

� R

n

reg

, Lemmas 10 and 11 immediately yield Theorem 8.

It is worth noting that there are a number of interesting region spa
es to whi
h this proof

method does not apply. Interesting examples are the region spa
e based on simply 
onne
ted

regions in R

2

[

30

℄

and the spa
e of polygons in R

2

[

26

℄

. Sin
e these spa
es are not 
losed under

in�nite unions, the above proof does not show the non-axiomatizability of the indu
ed logi
s.

We 
onje
ture, however, that slight modi�
ations of the proof introdu
ed here 
an be used to

prove their �

1

1

-hardness as well.

Finally, we 
onsider the re
ursive enumerability of logi
s of �nite region spa
es: obviously,

unde
idability of a logi
 of �nite region spa
es implies that it is not re
ursively enumerable if it is

based on a 
lass of region stru
tures S

�n

(S) with S �rst-order de�nable (sin
e we 
an enumerate

all �nite models). Thus, Theorems 6 and Theorem 2 give us the following:

Corollary 12. The following logi
s are not r.e., for ea
h n � 1: L

�n

RCC8

(RS), L

�n

RCC8

(T OP),

L

�n

RCC8

(R

n

;R

n

reg

).

7 The RCC5 set of Relations

For several appli
ations, the RCC8 relations are weakened into a set of only 5 relations 
alled

RCC5 (or medium resolution topologi
al relations)

[

15; 8

℄

. This is done by keeping the relation

eq and po but 
oarsening (1) the tpp and ntpp relations into a new \proper-part of" relation

pp; (2) the tppi and ntppi relations into a new \has proper-part" relation ppi; and (3) the d


and e
 relations into a new disjointness relation dr. The modal language L

RCC5

for reasoning

about RCC8-style region stru
tures R = hW; e


R

; : : :i thus extends propositional logi
 with the

operators [r℄, where r ranges over the �ve RCC5-relations. They are interpreted by the relations

eq

R

, po

R

, and

� dr

R

= d


R

[ e


R

;

� pp

R

= tpp

R

[ nttp

R

;

� ppi

R

= tppi

R

[ nttpi

R

.

Given a 
lass S of region stru
tures, we denote by L

RCC5

(S) the set of L

RCC5

-formulas whi
h

are valid in all members of S. The sets L

S

RCC5

(S) and L

�n

RCC5

(S) are de�ned analogously to the

RCC8 
ase.

A number of results from our investigation of L

RCC8

have obvious analogues for L

RCC5

: First,

we 
an 
hara
terize the logi
s L

S

RCC5

(T OP) and L

�n

RCC5

(T OP) by means of a 
omposition table:

denote by RS

5

the 
lass of all stru
tures R = hW; dr

R

; eq

R

; pp

R

; ppi

R

; po

R

i; where W is non-

empty and the r

R

are mutually ex
lusive and jointly exhaustive binary relations onW su
h that

(1) eq is interpreted as the identity relation on W , (2) po and dr are symmetri
, (3) pp is the

inverse of ppi and (4) the rules of the RCC5-
omposition table (Figure 6) are valid. Se
ond, it

is possible to prove an analogue of Theorem 2, i.e. that, for n � 1, we have

(i) L

�n

RCC5

(RS

5

) = L

�n

RCC5

(T OP) = L

�n

RCC5

(R

n

;R

n

reg

)

(ii) L

RCC5

(RS

5

) = L

S

RCC5

(T OP) = L

S

RCC5

(R

n

;R

n

reg

):

11



Æ dr po pp ppi

dr � dr,po,pp dr,po,pp dr

po dr,po,ppi, � po,pp dr,po,ppi

pp dr dr,po,pp pp �

ppi dr,po,ppi, po,pp eq,po,pp,ppi ppi

Figure 6: The RCC5 
omposition table.

Third, on region models, L

RCC5

has the same expressive power as the two-variable fragment of

FL

m

RCC5

, i.e. the �rst-order language with the �ve binary RCC5-relation symbols and in�nitely

many unary predi
ates.

We now investigate the 
omputational properties of logi
s based on L

RCC5

. Analogously

to the RCC8 
ase, the most natural logi
s are unde
idable. Still, our RCC5 unde
idability

result is less powerful than the one for RCC8. More pre
isely, we have to restri
t ourselves

to region stru
tures with 
ertain properties: denote by RS

9

the 
lass of all region stru
tures

R = hW; e


R

; : : :i su
h that, for any set S �W of 
ardinality two or three, there exists a unique

region Sup(S) su
h that

� s eq Sup(S) or s pp Sup(S) for ea
h s 2 S;

� for every region t 2 W with s pp t for ea
h s 2 S, we have Sup(S) eq t or Sup(S) pp t,

� for every region t 2 W with t dr s for ea
h s 2 S, we have t dr Sup(S).

It is easy to verify that T OP � RS

9

and R(R

n

;R

n

reg

) 2 RS

9

for ea
h n > 0.

Theorem 13. Suppose R(R

n

;R

n

reg

) 2 S � RS

9

, for some n � 1. Then L

RCC5

(S) is unde
id-

able. Thus, the following logi
s are unde
idable, for ea
h n � 1: L

RCC5

(T OP) and L

RCC5

(R

n

;R

n

reg

).

The proof is by redu
tion of the satis�ability problem for the unde
idable modal logi
 S5

3

(see

[

22

℄

for the original proof in an algebrai
 setting. We use the modal notation of

[

13

℄

). Due to

spa
e limitations, we refer the reader to

[

13

℄

or to

[

21

℄

for a formal de�nition of S5

3

, and just

re
all here that the domain of S5

3

is a produ
t W

1

�W

2

�W

3

, and that there are three modal

operators for referring to triples that are identi
al to the 
urrent one, but for one 
omponent.

With every S5

3

-formula ', we asso
iate a L

RCC5

-formula

2

u

� ^ d ^ '

℄

(�)

su
h that ' is S5

3

-satis�able i� 2

u

� ^ d ^ '

℄

is satis�able in a model from S. In (�), � is the


onjun
tion of the following formulas:

1. Ea
h sets W

i

of S5

3

-models is simulated by the set fr 2W jM; r j= a

i

g. Thus, we intro-

du
e fresh variables a

i

, i = 1; 2; 3, and state

a

i

!

^

j=1;2;3

([pp℄:a

j

^ [ppi℄:a

j

^ [po℄:a

j

) (20)

a

1

! :a

2

; a

2

! :a

3

; a

2

! :a

3

; (21)

^

i=1;2;3

3

u

a

i

(22)

12



2. the set W

1

�W

2

�W

3

is simulated by a fresh variable d, so we add

d$ (

^

i=1;2;3

hppiia

i

) ^ :hppii(

^

i=1;2;3

hppiia

i

) (23)

3. the sets W

i

�W

j

, 1 � i < j � 3 are simulated by fresh variables d

ij

, so we add

d

ij

$ (

^

k=i;j

hppiia

k

) ^ :hppii(

^

k=i;j

hppiia

k

): (24)

Now, we de�ne '

℄

indu
tively by

p

℄

i

:= p

i

(:')

℄

:= d ^ :'

℄

(' ^  )

℄

:= '

℄

^  

℄

(3

1

')

℄

:= hppii(d

23

^ hppi(d ^ '

℄

))

(3

2

')

℄

:= hppii(d

13

^ hppi(d ^ '

℄

))

(3

3

')

℄

:= hppii(d

12

^ hppi(d ^ '

℄

))

The following Lemma immediately yields Theorem 13 and is proved in

[

21

℄

.

Lemma 14. Suppose R(R

n

;R

n

reg

) 2 S � RS

9

, for some n � 1. Then an S5

3

-formula ' is

satis�able in an S5

3

-model i� 2

u

� ^ d ^ '

℄

is satis�able in S.

8 Con
lusion

Several open questions for future resear
h remain. The main 
hallenge is to exhibit a de
id-

able and still useful variant of the logi
s proposed in this paper. Perhaps the most interest-

ing 
andidate is L

RCC5

(RS), whi
h 
oin
ides with the substru
ture logi
s L

S

RCC5

(T OP) and

L

S

RCC5

(R

n

;R

n

reg

), and to whi
h the proof of Theorem 13 does not apply. Other 
andidates 
ould

be obtained by modifying the set of relations, e.g. giving up some of them. It has for example

been argued that dropping po still results in a useful formalism for geographi
 appli
ations.

Finally, it as an open problem whether L

RCC5

(T OP) and L

RCC5

(R

n

;R

n

reg

) are re
ursively enu-

merable.

Let us also relate (some spe
ial 
ases of) our results to Halpern and Shoham's results on

interval temporal logi


[

16

℄

: Theorems 3, 8, and 6 apply to logi
s indu
ed by the region spa
e

R(R;R


onv

), whi
h is 
learly an interval stru
ture. Interestingly, on this interval stru
ture our

results are stronger than those of Halpern and Shoham in two respe
ts: �rst, we only need

the RCC8 relations, whi
h 
an be viewed as a \
oarsening" of the Allen interval relations used

by Halpern and Shoham. Se
ond and more interestingly, by Theorem 3 we have also proved

unde
idability of the substru
ture logi
 L

S

RCC8

(R;R


onv

), whi
h is a natural but mu
h weaker

variant of the full (interval temporal) logi
 L

RCC8

(R;R


onv

), and not 
aptured by Halpern and

Shoham's unde
idability proof.
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