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Abstract

We introduce a family of modal logics that are interpreted in domains consisting of
regions in topological spaces, in particular the real plane. The underlying modal language
has 8 operators interpreted by the RCC8(or Egenhofer-Franzosa)-relations between regions.
The following results on the expressive power and computational complexity of the resulting
modal systems are obtained: they are ezpressively complete for the two-variable fragment
of first-order logic, and are usually undecidable and often not even recursively enumerable.
This also holds if we interpret our language in the class of all (finite) substructures of full
region spaces. If interpreted in region spaces consisting of intervals in the real line, our
results significantly extend undecidability results of Halpern and Shoham in that we prove
the undecidability of interval temporal logic over the class of all substructures of all full
interval structures. We also analyze modal logics based on the set of RCC5-relations which
are more coarse than the RCC8 relations.

1 Introduction

Reasoning about topological relations between regions in space is recognized as one of the most
important and challenging research areas within Spatial Reasoning in AT and Philosophy, Spatial
and Constraint Databases, and Geographical Information Systems (GISs). Research in this area
can be classified according to the logical apparatus employed:

— General first-order theories of topological relations between regions are studied in Al and
Philosophy [6; 27; 26], Spatial Databases [25; 30] and, from an algebraic viewpoint, in [8; 31];
— Purely existential theories formulated as constraint satisfaction systems over jointly exhaustive
and mutually disjoint sets of topological relations between regions [9; 28; 15; 30; 27]

— Modal logics of space with operators interpreted by the closure and interior operator of the
underlying topological space and propositions interpreted as subsets of the topological space,
see e.g., [18; 5; 1].

A similar classification can be made for Temporal Reasoning: general first-order theories [3],
temporal constraint systems [2; 24] and modal temporal logics like Prior’s tense logics, LTL, and
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Figure 1: Examples for the RCC8 relations in the plane.

CTL [12]. However, one of the most important and influential approaches in temporal reasoning
has not yet found a fully developed analogue on the spatial reasoning research agenda: Halpern
and Shoham’s Modal Logic of intervals [16], in which propositions are interpreted as sets of
intervals (those in which they are true) and reference to other intervals is enabled by modal
operators interpreted by Allen’s 13 relations between intervals. Despite its bad computational
behavior (undecidable, usually not even r.e.), this framework proved extremely fruitful and
influential in temporal reasoning, see e.g. [32; 4; 19].

To develop an equally powerful and useful modal language for reasoning about topological
relations between regions, we first have to select a set, of basic relations. In the initially mentioned
research areas, there seems to be consensus that the eight RCC8-relations, which are also known
as “Egenhofer-Franzosa”-relations and have been independently introduced in [27] and [10], are
very natural and important—both from a theoretical and a practical viewpoint, see e.g. [25;
9]. Thus, in this paper we will consider modal logics with eight modal operators interpreted by
the eight RCC8-relations, and whose formulas are interpreted as sets of regions (those in which
they are true). This modal framework for reasoning about regions has been suggested in an early
paper by Cohn [7] and further considered in [33]. However, it proved difficult to analyze the
computational behavior of such logics and, despite several efforts, to the best of our knowledge
no results have been obtained so far.

To relate this approach to previous and ongoing work on first-order theories of regions [27;
26; 25; 30], it is important to observe that, the modal logic we propose is a fragment of first-order
logic with the eight binary RCC8-relations and infinitely many unary predicates. More precisely,
we will show that our logic has exactly the same expressive power as the two-variable fragment of
this FO logic—although the latter is exponentially more succinct. Since usual first-order theories
of regions admit arbitrarily many variables but no unary predicates, their expressive power is
incomparable to the one of our modal logics. We argue that the availability of unary predicates
is essential for a wide range of application areas: in contrast to describing only purely topological
properties of regions, it allows to also capture other properties such as being a country (in a
GIS), a ball (for a soccer-playing robot), or a protected area (in a spatial database). In our
modal logic, we can then formulate constraints such as “there are no two overlapping regions
that are both countries” and “every river is connected to an ocean or a lake”.

The purpose of this paper is to introduce modal logics of topological relations in a systematic
way, perform an initial investigation of their expressiveness and relationships, and analyze their
computational behavior. More precisely, this paper is organized as follows: in Section 2, we
introduce region spaces, which form the semantical basis for our logics. The modal language is
introduced in Section 3, and a brief analysis of its expressiveness is performed. In Section 4, we
identify a number of natural logics induced by different classes of region structures, and analyze
their relationship. In Section 5, we then prove the main result of this paper showing that modal
logics of topological relations are usually undecidable. We also show that undecidability can
not be overcome by admitting only finitely (but unboundedly) many regions. These results are
strengthened in Section 6 where we prove that many logics of topological relations are even
[T}-hard. Finally, in Section 7 we give undecidability results for modal logics obtained from the
RCC5 set of relations.
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Figure 2: The RCC8 composition table.

2 Structures

We want to reason about models whose domains consist of regions that are related by the eight
RCC8-relations dc (‘disconnected’), ec (‘externally connected’), tpp (‘tangential proper part’),
tppi (‘inverse of tangential proper part’), po (‘partial overlap’), eq (‘equal’), ntpp (‘non-tangential
proper part’), and nttpi (‘inverse of non-tangential proper part’). Figure 1 gives examples of the
RCC8 relations in the real plane IR?, where regions are rectangles. Different spatial ontologies
give rise to different notions of regions and, therefore, different classes of models. Almost all
definitions of regions provided in the literature, however, have in common that the resulting
models are region structures | = (W,dc™, ec™, .. ), where W is a non-empty set (of regions)
and the r™ are binary relations on W that are mutually disjoint (i.e., ¥ N g™ = @, for r # q),
jointly exhaustive (i.e., the union of all r® is W x W), and satisfy the following:

e eq is interpreted as the identity on W, dc, ec, and po are symmetric, and tppi and ntppi
are the inverse relations of ttp and ntpp, respectively;

e the rules of the RCC8 composition table (Figure 2) are satisfied in the sense that, for any
entry di,...,qg in row r; and column rs, the first-order sentence

Vavyvz((r(z,y) Ara(y, 2)) = (au(z,2) V-~V ax(z, 2))
is valid (x is the disjunction over all RCC8-relations).

Denote the class of all region structures by RS. Although of definite interest as a basic class
of models representing the relation between regions in space, often more restricted definitions
of region structures are considered. On the one hand, one can consider further first-order
conditions on region structures, say, (fragments) of the RCC-theory [27]. Another possibility is
to consider only region structures that are induced by (classes of) topological spaces. Recall
that a topological space is a pair ¥ = (U,I), where U is a set and I is an interior operator on
U,i.e., for all s,t C U, we have

L(U)=U, I(s)Cs, I(s)NI(t)=1I(sNt), and TI(s)=1(s).



The closure C(s) of s is then C(s) = U — (I(U — s)). Of particular interest are n-dimensional
Euclidean spaces R™ based on Cartesian products of the real line with the standard topology
induced by the Euclidean metric.

Depending on the application domain, different definitions of regions in topological spaces
have been introduced. A rather general notion identifies regions with non-empty, regular closed
sets, i.e. non-empty subsets s C U such that CI(s) = s. We write T,z to denote the set of non-
empty, regular closed subsets of the topological space €. Various more restrictive definitions of
regions are important in the Euclidean spaces R", e.g.,

e the set R7,, of non-empty convex regular closed subsets of R";

e the set R%, of closed hyper-rectangular subsets of R", i.e., regions of the form [];_, C;,
where (', ..., C, are non-singleton closed intervals in R.

In both cases we allow unbounded regions, in particular R™. However, we should note that the
technical results proved in this paper also hold if we consider bounded regions, only.

Given a topological space T and a set of regions Ug in ¥ as introduced above, we obtain a
region structure R(T, Uz) = (Ug,dc*, .. ) by putting:

(s,t) edc® iff snt=0
(s,t) €ect iff T(s)NT({t)=0 A sNt#D
(s,t) € pot iff T(s)NI(E) £ D A s\t#D At\s#D
(s,t) €eq® iff s=t

(s,t)etppi iff  sNE=0 A sNI(t)#0

(s,t) € ntppt  iff sNI(t)=0

(s,t) € tppi® iff  (t,s) € tpp

(s,t) € ntppi®  iff  (¢,s) € ntpp

R(T, Ug) is called the region structure induced by (T, Ug). It is easy (but tedious) to verify that
the conditions of region structures are satisfied. We set TOP = {R(%,T(eg) | T topological space }.

3 Languages

The modal language Lrccg extends propositional logic with countably many variables py, po, . ..
and the Boolean connectives A and — by means of the modal operators [dc], [ec], etc. (one
for each RCC8 relation). A region model 9 = (R, pI™, p3t,...) for Lrccs consists of a region
structure | = (W, dc™, ...) and the interpretation P of the variables of Lrccg as subsets of W.
A formula ¢ is either true at s € W (written 9, s |= ) or false at s (written 9, s = ¢), the
inductive definition being as follows:

1. If ¢ is a prop. variable, then 9, s = ¢ iff s € ™.

2. M, s |= - iff M, s £ .

3. M, s =91 A iff s = and s = po.

4. M, s = [rlp iff, for all t € W, (s,t) € r™* implies M, t = .

We use the usual abbreviations: ¢ — ¢ for = V ¢ and (r)¢ for =[r]—ep.

The discussion of the expressive power of our logic starts with three simple examples. First,
the useful universal boz O, can obviously be expressed as A\, cgccglr]e- Second, we can express
that a formula ¢ holds in precisely one region (is a nominal) by

nom(p) = Oule A N\ [-e).
rERCCB\ {eq}



where &y, = —0,—p. The definability of nominals means, in particular, that we can express
RCC8-constraints [28] in our language: just observe that constraints (x r y), where r is an RCC8-
relation, correspond to the assertion (p, A (r)py) A nom(pz) A nom(p,). Another main advantage
of having nominals is that we can introduce names for regions; e.g., the formulas nom(Elbe) and
nom(Dresden) state that “Elbe” (the name of a river) and “Dresden” each apply to exactly one
region. Third, it is useful to define operators [pp] and [ppi] as abbreviations:

[pply = [tpp A nttple  [ppily = [tppilp A [nttpilp.

As in the temporal case [16] and following Cohn [7], we can classify propositions ¢ according to
whether

e they are homogeneous, i.e. they hold continuously throughout subregions: O, (¢ — [pp]y).

e they are anti-homogeneous, i.e. they hold only in regions whose interiors are mutually
disjoint: Oy (¢ — ([pp]=p A [po]-p)

Instances of anti-homogeneous propositions are “river” and “city”, while “occupied-by-water” is
homogeneous. The following are some example statements in our logic (neglecting for simplicity
the existence of sea harbors):

Oy (harbor-city < (city A (ntppi)(harbor A {ec)river)))
Dresden — harbor-city)

Elbe — river)

Dresden — ({po) Elbe A [po](river — Elbe)))
Dresden — [ppi]|—river)

u
u

u

|
|
|
|
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u

From these formulas, it follows that Dresden has a harbor that is related via ec to the river
Elbe.

We now relate the expressive power of the modal language Lrccg to the expressive power
of first-order languages over region structures. Since spatial first-order theories are usually
formulated in first-order languages equivalent to F Orccs with eight binary relations for the RCC8
relations and no unary predicates [25; 26; 30; 27], we cannot, reduce Lrccg to such languages.
A formal proof is provided by the observation that FOgrccg is decidable over the region space
consisting of rectangles in R? (in fact it is reducible to the decidable first order theory of
(R, <)), while in Section 5 we show that Lrccg is not even r.e. over that space. Thus, the
proper first-order language to compare Lrccg with is the monadic extension FORecg of FOrccs
that is obtained by adding unary predicates pi,ps,.... By well-known results from modal
correspondence theory, any modal formula ¢ can be polynomially translated into an equivalent
formula ¢* of FORecg with only two variables such that, for any region model 9t and any region
s, M, s |=  iff M |= ¢*[s]. More surprisingly, the converse holds as well: this follows from recent
results of [20] since the RCC8 relations are mutually exclusive and jointly exhaustive.

Theorem 1. For every FOgccg-formula o(x) with free variable x that uses only two variables,
one can effectively construct a Lrccg-formula ¢* of length at most exponential in the length of
o(x) such that, for every region model M and any region s, M, s = ¢* iff M |= ¢*[s].

A proof sketch can be found in [21]. There, we also argue that, due to a result of Etessami,
Vardi, and Wilke [11], there exist properties that can be formulated exponentially more succinct
in the two-variable fragment of FOR¢cg than in Lrecs.

4 Logics

In this section, we analyze the impact of choosing different underlying classes of region structures.
As discussed in Section 2, the most important such classes are induced by topological spaces.
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Figure 3: Inclusions between logics.

A formula ¢ is valid in a class of regions structures S if it is true in all points of all models
based on region structures from S. We use Lrccg(S) to denote the logic of the class S, i.e.
the set of all Lrccg-formulas valid in S. If § = {9R(%,Ux)} for some topological space ¥ with
regions Ug, then we write Lrccg(T, Ug) instead of Lrccg(S).-

The basic logic we consider is Lrccg(RS), the logic of all region structures. On arbitrary
topological spaces, we investigate Lrccg(TOP), the logic of all region structures induced by
topological spaces in which regions are non-empty regular closed sets. On R™, n > 1, we
investigate the family of logics Lrccs(R™,Un), where Ry, O Upn D Ry, In particular, we may
have U, = R, -

In many applications, it does not seem natural to enforce the presence of all regions with
some characteristics (say, non-empty and regular closed) in every model. Instead, one could
include only those regions that are “relevant” for the application. Thus, given a class S of
region structures, we are interested in the classes S(S) of all substructures of structures in S.
Then we write L3.c4(S) as abbreviation of Lrccs(S(S)). Going one step further, one could
even postulate that the set of relevant regions is finite (but unbounded). Thus we use Sg,(S) to
denote all finite substructures of structures in S and write L% o (S) for Lrccs(Sfin(S))-

It is natural to ask for the relationship between the logics just introduced. We start with
two examples: first, Lt -(RS) (and any other logic of spaces with finitely many regions) differs
from Lrccs (RS), Lrccs (TOP) and the logics Lrccs (]Rn, U,) since

[ppl([pRlP — p) — [pPIP

is valid in Skn(RS) (it states that there does not exist an infinite ascending pp-chain). Second,
the logic Lrccs(RS) differs from Lrccg(7 OP) and the logics Lrecs(R™, Uy,) since

Culp A (de)q) = Ou({ppi)p A (ppi)q)

is not valid in RS (it states that any two disconnected regions are proper parts of a region).

These and some more relationships are summarized in Figure 3. Perhaps most interesting
is the fact that Lt -o(RS) and Lrccg(RS) can be regarded as logics of topological spaces, and
even of R™:

Theorer_n 2. Forn > 0 _
(i) Litcg(RS) = Lt g(TOP) = Ligcs(R™, Ry,)
(i) Lrccs(RS) = Liccg(TOP) = Lccs (R, Riz,).



Figure 4: Enumerating tile positions.

A proof of the theorem and a justification of the inclusions in Figure 3 can be found in [21].

5 Undecidability

In this section, we prove the undecidability of the logics introduced previously. The results are
summarized by the following theorem. We start with establishing a quite general undecidability
result.

Theorem 3. Let R(R™,U) € S C RS with Ry, C U, for some n > 0. Then Lrccs(S) is

rect

undecidable. Thus the logics Lrccs(S) and L%CCS(S) are undecidable, for S one of RS, TOP,
R(R™, Rigg), R(R™, Rgny)s and R(R™, Ryye,), with n > 0.

The proof is by reduction of the domino problem that requires tiling of the first quadrant of the
plane to the satisfiability problem.

Definition 4. Let D = (T, H,V) be a domino system, where T is a finite set of tile types and
H,V C T xT represent the horizontal and vertical matching conditions. We say that D tiles the
first quadrant of the plane iff there exists a mapping 7 : N2 — T such that, for all (z,y) € N2

o if 7(z,y) =t and 7(x + 1,y) =t', then (¢,t') € H
o if 7(z,y)=tand 7(x,y +1) =1t', then (¢,t') € V
Such a mapping 7 is called a solution for D. O

For reducing this domino problem to satisfiability in Lrccg logics, we fix an enumeration of all
the tile positions in the first quadrant of the plane as indicated in Figure 4. The function A
takes positive integers to IN x N-positions, i.e. A(1) = (0,0), A\(2) = (1,0), A\(3) = (1,1), etc.

Our proof strategy is inspired by [23; 29]. Let D = (T, H,V) be a domino system. In the
reduction, we use the following propositional letters:

e for each tile type t € T', a letter py;
e propositional letters a, b, and ¢ that are used to mark certain, important regions;

e propositional letters wall and floor that are used to identify regions corresponding to tiles
with positions from the sets {0} x N and N x {0}, respectively.

The reduction formula ¢p is defined as
a A'b A wall A floor A [ntppi]—a A O, Y,

where Y is the conjunction of a number of formulas. We list these formulas together with some
intuitive explanations:



alAb aAb 4
o aNb . ﬁl aANb 3
fans T Tore 2]
] | |
pos. 1 i i ! i . i !
a A =b i i i i
77777777777777777 P 7ojs. 2 i i i
a A -b i i i
77777777777777777777777777 [;(;S. 3 i c i
Figure 5: Left: a discrete ordering in the plane Right: the “going right” regions.

1. ensure that the regions {s € W | M, s |= a} are ordered by the relation pp (i.e. the union
of tpp and ntpp):
a — [dc]-a A [ec]—a A [po]—a (1)

2. enforce that the regions {s | M, s = a A b} are discretely ordered by ntpp. These regions
will correspond to positions of the grid. In order to ensure discreteness, we use sequence
of alternating a A b and a A —b regions as shown in the left part of Figure 5.

aAb— (tpp)(a A —b) (2)
aA—b— (tpp)(a A D) (3)
a A =b — [tpp](a = b) (4)
aAb— [tpp](a — —b) (5)

If we are at an aAb region, we can access the region corresponding to the next grid position
(w.r.t. the fixed ordering) and to the previous grid position using

OF(p) = (tpp)(aA=bA (tpp)(a ADA )
O (p) = (tppi)(a A —bA(tppi)(a ADA ).

3. we need a way to “go right” in the grid. To this end, we introduce additional regions
satisfying ¢ as displayed in the right part of Figure 5. For example, Grid cell 2 in the
figure is right of Grid cell 1, and Grid cell 4 is right of Grid cell 2.

aNb— (tpp)c (6)
c = (tpp)(a A b) (7)
¢ — [dc]—e A [ec]—e A [po]—e A [tpp]—e A [tppi]—c (8)
We can go to the right and upper element with
OF(p) = (tpp)(c A (tpp)(a A DA )
OY(p) = OF(OH(y)).

Similarly, we can go to the left and down:

Ol (p) (tppiY(c A (tppi)(a A D A p))
OP(p) = OL(O(9)).



Considering Formulas (6) to (8), it can be checked that going to the right is a monotone
and injective total function (see [21]).

4. axiomatize the behavior of tiles on the floor and on the wall to enforce that our “going to
the right” relation brings us to the expected position:

[ntppi]=a V (=(floor A wall)) 9)
wall — & Ffloor (10)

wall — O (wall) (11)

[ntppi]—a V (wall — O (wall)) (12)
Of (—wall) (13)

—wall — " T (14)

5. finally, we enforce the tiling:

/\ =(pt A prr) (15)

t,teT

\/ Pt A <>Rptr (16)
(t,t")eH

\/ pe A OUpy (17)
(t,t"eV

The main strength of our reduction is that it requires only very limited prerequisites. Indeed,
we will show that satisfiability of pp in any region model implies that D has a solution. Thus,
to prove undecidability of some logic Lrccg(S), it suffices to show that ¢p is satisfiable in S if
D has a solution. This can be done for each region space R(R",U) with R, C U and n > 0:

rect

Lemma 5. Let D be a domino system. Then:
(i) if the formula pp is satisfiable in a region model, then the domino system D has a solution;

(i) if the domino system D has a solution, then the formula pp is satisfiable in a region model
based on R(R™,U), for each n > 0 and each U with R, C U.

Theorem 3 is an immediate consequence of this lemma, which is proved in [21].

Although Theorem 3 covers the case of substructure logics, it does not cover the case of
finite region spaces, including finite substructures. By using a different variant of the domino
problem, however, we can also establish a quite general undecidability result for this case.
Theorem 6. If Sin(R(R", Ritey)) €S C Skn(RS) for some n > 1, then Lrecs(S) is undecid-
able. Thus, the following logics are undecidable for each n > 1: _

Litcs(RS), Liecs(TOP), Litcs(R™ Ritg), Litgcs(R™, Rign,), and Liggcs (R, Rieey)-

reg conv

The employed variant of the domino problem is as follows: for & € N, the k-triangle is the set
{(i,5) | i +j < k} C N2. The task of the new domino problem is to tile an arbitrary k-triangle,
k € N, such that the position (0,0) is occupied with a distinguished tile so and some position is
occupied with a distinguished tile fy. A proof that this domino problem is undecidable and the
details of the proof of Theorem 6 can be found in [21].



6 Axiomatizability

In this section, we show that many of the introduced logics are IT}-hard, thus highly undecidable
and not even recursively enumerable. We start with some easy “positive” results and then prove
a general “negative” result. First, we remind the reader of the following consequence of the
translation of Lreccs into FORecs:

Proposition 7. If a class S of region structures is characterized by a finite set of axioms from
FOrccs, then Lrecs(S) is recursively aziomatizable.

Recall that RS was defined by first-order axioms. Hence, Lgrccg(RS) and any Lgccs(S) with S
a first-order definable subclass of S are recursively enumerable. Actually, using general results
on modal logics with names [14] and the fact that RS is axiomatized by universal first-order
sentences, it is not difficult to provide a finitary axiomatization of Lrccg(RS) using non-standard
rules. By Theorem 2, we obtain axiomatizations for L3.c5(7TOP) and every L%CCS(IR”,IR:;g),
n > 0.

We now establish a non-axiomatizability result that applies to many logics Lrccs(S) whose
class of region spaces S is induced by a class of topological spaces:

Theorem 8. The following logics are 11} -hard: Lrccg(TOP) and Lrccs(R™,Uy) with U, €
{RE,, R, RE .} and n > 1.

regr ~‘conv’

To prove this result, the domino problem of Definition 4 is modified by requiring that, in
solutions, a distinguished tile ¢y € T" occurs infinitely often in the first column of the grid. It
has been shown in [17] that this variant of the domino problem is ¥1-hard. Since we reduce it
to satisfiability, this yields a ITi-hardness bound for validity.

As a first step toward reducing this stronger variant of the domino problem, we extend pp with
the following conjunct:

a, ((ntpp)(a A b Awall A pg,) A [ntpp] ((a AbAwall A p,) — (ntpp)(a A b A wall /\pto))) (18)

However, this is not yet sufficient: in models of ¢p, we can have not only one discrete ordering
of a A b regions, but rather many “stacked” such orderings. Due to this effect, the above formula
does not enforce that the main ordering (there is only one for which we can ensure a proper
“going to the right relation”) has infinitely many occurrences of ¢.

It is thus obvious that we have to prevent stacked orderings. This is done by enforcing
that there is only one “limit region”, i.e. only one region approached by an infinite sequence of
a-regions in the limit. We add the following formula to ¢p:

O ([tppil(po)a — (—a A [tpp]—a A [ntpp]-a)) (19)

Let ¢/, be the resulting extension of ¢p. The classes of region spaces to which the extended
reduction applies is more restricted than for the original one. We adopt the following property:

Definition 9 (Closed under infinite unions). Suppose that R = (W,dcm,ecm,..) is a
region space. Then R is called closed under infinite unions if B = R(T, Ug) is a region space
induced by a topological space ¥, and, additionally, R satisfies the following property: for any
sequence 71,79, ... € W such that ry ntpp 72 ntpp rz -+, we have CI(|J;c,, 7:)) € W. <&

We can now formulate the first part of correctness for the extended reduction. The proofs of
this and the following lemma can be found in [21].

Lemma 10. Let R(T,Uz) = (W,dc™,ec®,...) be a region space that is closed under infinite
unions such that all regions in Us are regular closed. Then the formula ¢l is satisfiable in a
region model based on R only if the domino system D has a solution with ty occurring infinitely
often on the wall.

10



For the second part of correctness, we again consider region spaces R(R",U) with R, C U.

Lemma 11. If the domino system D has a solution with ty occurring infinitely often on the
wall, then the formula ¢l is satisfiable in a region model based on R(R™,U), for each n > 1
and each U with R%., CU C R

rect reg*

Note that the region spaces R(R", Rl..), R(R", R.,,,) and R(R™, R..) are closed under infi-

rect conv
nite unions. Since R, C Ry, C Ry, Lemmas 10 and 11 immediately yield Theorem 8.

reg?

It is worth noting that there are agnumber of interesting region spaces to which this proof
method does not apply. Interesting examples are the region space based on simply connected
regions in R? [30] and the space of polygons in IR? [26]. Since these spaces are not closed under
infinite unions, the above proof does not show the non-axiomatizability of the induced logics.
We conjecture, however, that slight modifications of the proof introduced here can be used to
prove their IT}-hardness as well.

Finally, we consider the recursive enumerability of logics of finite region spaces: obviously,
undecidability of a logic of finite region spaces implies that it is not recursively enumerable if it is
based on a class of region structures S, (S) with S first-order definable (since we can enumerate
all finite models). Thus, Theorems 6 and Theorem 2 give us the following:

Corollary 12. The following logics are not r.e., for each n > 1: Li% o (RS), Lin o (TOP),

LQ%CS (an ]R:ég) .

7 The RCC5 set of Relations

For several applications, the RCC8 relations are weakened into a set of only 5 relations called
RCC5 (or medium resolution topological relations) [15; 8]. This is done by keeping the relation
eq and po but coarsening (1) the tpp and ntpp relations into a new “proper-part of” relation
pp; (2) the tppi and ntppi relations into a new “has proper-part” relation ppi; and (3) the dc
and ec relations into a new disjointness relation dr. The modal language Lrccs for reasoning
about RCC8-style region structures | = (W, ec™,...) thus extends propositional logic with the
operators [r], where r ranges over the five RCC5-relations. They are interpreted by the relations
eq™, po™t, and

o dr' = dc® Uec®;
e pp”* = tpp” U nttp™;
o ppi”t = tppi” U nttpi™.

Given a class S of region structures, we denote by Lrccs(S) the set of Lrecs-formulas which
are valid in all members of S. The sets L3.c5(S) and LI (S) are defined analogously to the
RCC8 case.

A number of results from our investigation of Lrccg have obvious analogues for Lrecs: First,
we can characterize the logics Lcc(TOP) and Lt (T OP) by means of a composition table:
denote by RS® the class of all structures R = (W,drm,eqm, pp™, ppi™t, po”), where W is non-
empty and the r™ are mutually exclusive and jointly exhaustive binary relations on W such that
(1) eq is interpreted as the identity relation on W, (2) po and dr are symmetric, (3) pp is the
inverse of ppi and (4) the rules of the RCC5-composition table (Figure 6) are valid. Second, it
is possible to prove an analogue of Theorem 2, i.e. that, for n > 1, we have

(i) Lites(RS?) = Ligges(TOP) = Lites(R™, Rytg)

(i) Lrees(RS®) = Lces(TOP) = Lices(R™, RiL,).

11



(ol d | po | pp [ ppi |
dr * dr,po,pp| dr,po,pp dr
po || dr,po,ppi, * po,pp dr,po,ppi
PP dr dr,po,pp PP *
ppi || dr,po,ppi,| po,pp |eq,po,pp,ppi|  ppi

Figure 6: The RCC5 composition table.

Third, on region models, Lrccs has the same expressive power as the two-variable fragment of
FLEccs, i.e. the first-order language with the five binary RCC5-relation symbols and infinitely

many unary predicates.

We now investigate the computational properties of logics based on Lrccs. Analogously
Still, our RCC5 undecidability
result is less powerful than the one for RCC8. More precisely, we have to restrict ourselves
to region structures with certain properties: denote by RS? the class of all region structures
R = (W,ec™,...) such that, for any set S C W of cardinality two or three, there exists a unique

to the RCC8 case, the most natural logics are undecidable.

region Sup(S) such that

e seq Sup(S) or s pp Sup(S) for each s € S;

e for every region t € W with s pp ¢ for each s € S, we have Sup(S) eq ¢ or Sup(S) pp t,

e for every region ¢t € W with ¢ dr s for each s € S, we have ¢ dr Sup(S).
It is easy to verify that 7OP C RS? and ®R(R™, R%,) € RS? for each n > 0.

reg

Theorem 13. Suppose R(R™,R".) € S C RS~, for some n > 1. Then Lrces(S) is undecid-

able. Thus, the following logics are undecidable, for eachn > 1: Lrces(T OP) and Lrees(R™, R

reg

reg

The proof is by reduction of the satisfiability problem for the undecidable modal logic S5° (see
[22] for the original proof in an algebraic setting. We use the modal notation of [13]). Due to
space limitations, we refer the reader to [13] or to [21] for a formal definition of S5°, and just
recall here that the domain of S5° is a product Wy x W5 x W3, and that there are three modal
operators for referring to triples that are identical to the current one, but for one component.
With every S5°-formula p, we associate a Lrccs-formula

Oux AdA @

(%)

such that ¢ is S5*-satisfiable iff O,y A d A ! is satisfiable in a model from S. In (x),  is the
conjunction of the following formulas:

1. Each sets W; of S5°-models is simulated by the set {r € W | 9, r |= a;}. Thus, we intro-
duce fresh variables a;, 1 = 1,2,3, and state

ai =+ /\ ([pp]=a; A [ppil-a; A [po]-a;)

J=1,2,3

a1 — Ta2,as — Az, 4y — a3,

/\ <>ua7;

i=1,2,3

12
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2. the set W x Wy x W3 is simulated by a fresh variable d, so we add

de (/\ (ppiyai) A=(ppid( /\ (ppi)as) (23)

i=1,2,3 i=1,2,3

3. the sets W; x W;, 1 < i < j <3 are simulated by fresh variables d;;, so we add

dij < ( \ (ppi)ar) A=(ppi)( /\ (pPi)a). (24)

k=1,j k=1i,j

Now, we define ¢f inductively by

ﬂ = Di
(o) = A
(P AY) = PP Ayt
(C10)* = (ppi)(daz A (pp)(d A ¢*))
(<>zs0)" = (ppi)(diz A (pp)(d A ©%))
(O%p)* = (ppi)(dia A (pp)(d A "))

The following Lemma immediately yields Theorem 13 and is proved in [21].

Lemma 14. Suppose R(R™, Ry,) € S C RS3, for some n > 1. Then an S5°-formula ¢ is

satisfiable in an S5°-model iff O,x A d A @* is satisfiable in S.

8 Conclusion

Several open questions for future research remain. The main challenge is to exhibit a decid-
able and still useful variant of the logics proposed in this paper. Perhaps the most interest-
ing candidate is Lrccs(RS), which coincides with the substructure logics L3ccs(7OP) and

Lices(R™, R7,), and to which the proof of Theorem 13 does not apply. Other candidates could
be obtained by modifying the set of relations, e.g. giving up some of them. It has for example
been argued that dropping po still results in a useful formalism for geographic applications.
Finally, it as an open problem whether Lgccs(7 OP) and Lrccs(R™ Rgg) are recursively enu-
merable.

Let us also relate (some special cases of) our results to Halpern and Shoham’s results on
interval temporal logic [16]: Theorems 3, 8, and 6 apply to logics induced by the region space
R(R, Reonv), which is clearly an interval structure. Interestingly, on this interval structure our
results are stronger than those of Halpern and Shoham in two respects: first, we only need
the RCC8 relations, which can be viewed as a “coarsening” of the Allen interval relations used
by Halpern and Shoham. Second and more interestingly, by Theorem 3 we have also proved
undecidability of the substructure logic L%CCS(R, Reonv), which is a natural but much weaker
variant of the full (interval temporal) logic Lrccs(RR, Reonv), and not captured by Halpern and
Shoham’s undecidability proof.
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