SoNIC — Non-standard Inferences go OILED

Anni-Yasmin Turhan and Christian Kissig*

TU Dresden, Germany
email: lastname@tcs.inf.tu-dresden.de

Abstract. Sonic! is the first prototype implementation of non-standard
inferences for Description Logics usable via a graphical user interface.
The contribution of our implementation is twofold: it extends an earlier
implementation of the least common subsumer and of the approximation
inference to number restrictions, and it offers these reasoning services via
an extension of the graphical ontology editor OILED [3].

1 Introduction and Motivation

Description Logics (DLs) are a family of formalisms used to represent termino-
logical knowledge of a given application domain in a structured and well-defined
way. The basic notions of DLs are concept descriptions and roles, representing
unary predicates and binary relations, respectively. The inference problems for
DLs can be divided into so-called standard and non-standard ones. Well known
standard inference problems are satisfiability and subsumption of concept de-
scriptions. For a great range of DLs, sound and complete decision procedures for
these problems could be devised and some of them are put into practice in state
of the art DL systems as FACT [11] and RACER [9].

Prominent non-standard inferences are the least common subsumer (Ics), and
approximation. Non-standard inferences resulted from the experience with real-
world DL ontologies, where standard inference algorithms sometimes did not
suffice for building and maintaining purposes. For example, the problem of how
to structure the application domain by means of concept definitions may not
be clear at the beginning of the modeling task. This kind of difficulties can be
alleviated by non-standard inferences [1, 7].

Given two concept descriptions A and B in a description logic £, the lcs
of A and B is defined as the least (w.r.t. subsumption) concept description
in £ subsuming A and B. The idea behind the lcs inference is to extract the
commonalities of the input concepts. It has been argued in [1,7] that the lcs
facilitates a “bottom-up”-approach to the modeling task: a domain expert can
select a number of intuitively related concept descriptions already existing in
an ontology and use the lcs operation to automatically construct a new concept
description representing the closest generalization of them.

Approximation was first mentioned as a new inference problem in [1]. The
approxzimation of a concept description C' from a DL £ is defined as the least

* This work has been supported by the Deutsche Forschungsgemeinschaft, DFG
Project BA 1122/4-3.
1 Sonic stands for “Simple OILED Non-standard Inference Component”.

concept description (w.r.t. subsumption) in a DL L5 that subsumes C. The
idea underlying approximation is to translate a concept description from one
DL into a typically less expressive DL. Approximation can be used to make
non-standard inferences accessible to more expressive DLs so that at least an
approximate solution can be computed. In case the DL L provides disjunction,
the les of C7 and Cs is just the disjunction (C7 U Cs). Thus, a user inspecting
this concept does not learn anything about the commonalities of C; and Cs.
Using approximation, however, one can make the commonalities explicit to some
extent by first approximating C; and C5 in a sublanguage of £ which does
not provide disjunction, and then compute the lcs of the approximations in L.
Another application of approximation lies in user-friendly DL systems, such as
OILED [3], that offer a simplified frame-based view on ontologies defined in an
expressive background DL. Here approximation can be used to compute simple
frame-based representations of otherwise very complicated concept descriptions.
O1LED is a widely accepted ontology editor and it can be linked to both state
of the art DL systems, RACER [9] and FACT [11]. Hence this editor is a good
starting point to provide users from practical applications with non-standard
inference reasoning services. The system SONIC is the first system that provides
some of these reasoning services via a graphical user interface. SONIC can be
downloaded from http://lat.inf.tu-dresden.de/systems/sonic.html.

2 The SoNic Implementation

Let us briefly recall the DLs covered by Sonic. The DL ALE offers the top-
and bottom-concept (T, L), conjunction (C M D), existential (3r.C'), value re-
strictions (Vr.C'), and primitive negation (—~C). The DL AL extends ALE by
disjunction (C' U D) and full negation. Extending each of these DLs by number
restrictions ((< n r), (> n 7)) one obtains ACEN and ALCN, respectively. For the
definition of the syntax and semantics of these DLs, refer to [5,6]. A TBozx is a
finite set of concept definitions of the form A = C, where A is a concept name
and C is a concept description. Concept names occurring on the left-hand side
of a definition are called defined concepts. All other concept names are called
primitive concepts. SONIC can only process TBoxes that are acyclic and do not
contain multiple definitions.

2.1 Implementing the Inferences

SoNIcC implements the lcs for ACEN-concept descriptions and the approximation
of ALCN- by ALEN -concept descriptions in Lisp. The algorithm for computing
the lcs in ACEN was devised and proven correct in [12]. This algorithm consists
of three main steps: first recursively replace defined concepts by their definitions
from the TBox, then normalize the descriptions to make implicit information
explicit, and finally make a recursive structural comparison of each role-level of
the descriptions. In ACEN the last two steps are much more involved than in ALE
since the number restrictions for a role, more precisely the at-most restrictions,

necessitates merging of role-successors. The lcs algorithm for ACEN takes double
exponential time in the worst case. Nevertheless, the lcs for ALEN realized in
SONIC is a plain implementation of this algorithm. Surprisingly, a first evaluation
shows that for concepts of an application ontology with only integers from 0 to 7
used in number restrictions the run-times remained under a second (on a Pentium
IV System, 2 GHz). The implementation of the lcs for ALE as described in [2]
uses unfolding only on demand—a technique known as lazy unfolding. Due to
this technique shorter and thus more easily comprehensible concept descriptions
can be obtained more quickly, see [2]. To implement lazy unfolding also for ACEN
is yet future work.

The algorithm for computing the AN to ALEN approximation was devised
and proven correct in [5]. The idea underlying it is similar to the lcs algorithm in
ACLEN . For approximation the normalization process additionally has to “push”
the disjunctions outward on each role-level before the commonalities of the dis-
juncts are computed by applying the lcs on each role-level. The AN to ACEN
approximation was implemented in Lisp using our ALEN lcs implementation.
An implementation of the AL to ALE approximation is described in [6]. Tt was
the basis for the implementation presented here. The worst case complexity of
approximation in both pairs of DLs is double exponential time, nevertheless this
is not a tight bound. A first evaluation of approximating randomly generated
concept descriptions show that, unfortunately, both implementations run out of
memory already for concepts that contain several disjunctions with about 6 dis-
juncts. The implementation of the algorithms for both inferences are done in a
straightforward way without code optimizations or sophisticated data structures.
This facilitated testing and debugging of SONIC.

Let us illustrate the procedure of lcs and approximation by an example. Con-
sider a ACCN-TBox with role r, primitive concepts A, B, and concept definitions:
Ci = ANvVr.BMN(=3r), Co=Vr(ANB)N(>2r), C=CUCy and
D = 3r.(ANB) N 3Ir.(-AN B). If we want to find the commonalities between C
and D, we first compute the ACEN -approximation of C and then the ALEN -lcs of
D and approz(C). We compute approz(C') by first unfolding C' and then extract-
ing the commonalities of C'; and C5. Both have a value restriction and the lcs of
these restrictions is Vr.B. Both C; induce the number restriction (> 2 r), since
(> 2 r) subsumes (> 3 r). C; has a value and an existential restriction induc-
ing the existential restriction 3r.(A M B), whereas in Cs the number restriction
requires at least two distinct r-successors which in addition to the value re-
striction also induces the restriction 3r.(A M B). Thus we obtain approz(C) =
Ir.(ANB) NVYr.B M (>2r). In the concept definition of D the occurrence of
A and —A induce that at least two r-successors exist. Thus the commonalities
of C and D are lcs(approx(C),D) = 3Ir.(ANB) N (>2r).

2.2 Linking the Components

In order to provide the lcs and approximation to OILED users, SONIC
does not only have to connect to the editor OILED, but also to a DL system

:i Ofled 353 B since both, lcs and approxima-
22 A% Do fow B tion, use subsumption tests dur-
= eea e vaE : . A
- — = ing their computation. con-
5 nection from SONIC to the ed-
approximated_c g I itor OILED, is realized by a
la % | Computelcs |
- _— |l plug-in. Like OILED itself, this
| e | cut ‘ plug-in is implemented in Java.
v Cut & Store . O
44 iinle Il Sonic’s plug-in is implemented
e for O1LED Version 3.5.3 and re-
®:2r alizes mainly the graphical user
1. interface of SONIC—its Ics tab is
UntitledProjectl : : 9
e I oret shown in Figure 1. SONIC’s Java

= plug-in connects via the JLinker

Fig. 1: Interface of SONIC interface by Franz Inc. to the
Lisp implementation to pass concepts between the components.
To classify an ontology from within OILED, the user can either connect OILED
to the reasoner FACT (via CORBA) or to any DL reasoner supporting the DIG
(“Description Logic Implementation Group”) protocol. The DIG protocol is an
XML-based standard for DL systems with a tell/ask syntax, see [4]. DL devel-
opers of most systems have committed to implement it in their system making
it a promising standard for future DL related software.
SONIC must have access to the same instance of the reasoner that OILED is
connected to in order to have access to the information from the ontology, more
precisely, to make use of stored concept definitions and of cached subsumption
relations obtained during classification by the DL reasoner. Obtaining the con-
cept definitions from OILED directly, would result in storing the ontology in all
of the three components and, moreover, the results for lcs and approximation
might be incorrect, if OILED and the DL reasoner do not have consistent data.

Since SONIC needs to retrieve the concept definition of a defined concept in
order to perform unfolding—a functionality that RACER provides—we decided
to use RACER in our implementation. SONIC connects to RACER Version 1.7.7
via the TCP socket interface described in [10]. Note, that in this setting the
RACER system need not run locally, but may even be accessed via the web by
OI1LED and SoNIC.

2.3 SonNIic at Work

Starting the OILED editor with SONIC, the lcs and approximation inferences
are available on extra tabs—as shown in Figure 1. Once the OILED user has
defined some concepts in the OILED ontology, has connected to the DIG reasoner
RACER and classified the ontology, she can use, for example, the lcs reasoning
service to add a new super-concept of a number of concepts to the ontology.
On the lcs tab she can select some concept names from all concept names in
ontology. When the lcs button is clicked, the selected names are transmitted to
SoNIC’s Lisp component and the lcs is computed based on the current concept
definitions stored in RACER. The obtained lcs concept description is send to

the plug-in and displayed on the Ics tab in OILED. Since the returned concept
descriptions can become very large, SONIC displays them in a tree representation,
where uninteresting subconcepts can be folded away by the user and inspected
later. In Figure 1 we see how the concept description obtained from the example
in Section 2.1 is displayed in SONIC. Based on this representation SONIC also
provides limited editing functionality. The OILED user can cut subdescriptions
from the displayed lcs concept description or cut and store (a part of) it under
a new concept name in the ontology.

3 Outlook

Developing SONIC is ongoing work. Our next step is to optimize the current
implementation of reasoning services and to implement minimal rewriting to
obtain more concise result concept descriptions. Future versions of SONIC will
comprise the already completed implementations of the difference operator [6]
and of matching for ALE [8].

We would like to thank Ralf Moller and Sean Bechhofer for their help on how
to implement SONIC’s linking to RACER and to OILED.

References

1. F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumers in de-
scription logics with existential restrictions. In, Proceedings of 1JCAI-99, Stockholm,
Sweden. Morgan Kaufmann, 1999.

2. F. Baader and A.-Y. Turhan. On the problem of computing small representations
of least common subsumers. In Proceedings of KI1'02, LNAI. Springer—Verlag, 2002.

3. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a Reason-able Ontology
Editor for the Semantic Web. In Proceedings of KI'01, LNAI, Springer-Verlag, 2001.

4. S. Bechhofer, R. Moller, and P. Crowther. The DIG description logic interface. In
Proceedings of DL 2003, Rome, Italy, CEUR-WS, 2003.

5. S. Brandt, R. Kiisters, and A.-Y. Turhan. Approximating ALCN-concept descrip-
tions. In Proceedings of DL 2002, nr. 53 in CEUR-WS. RWTH Aachen, 2002.

6. S. Brandt, R. Kiisters, and A.-Y. Turhan. Approximation and difference in descrip-
tion logics. In Proceedings of KR-02, Morgan Kaufmann, 2002.

7. S. Brandt and A.-Y. Turhan. Using non-standard inferences in description logics —
what does it buy me? In Proc. of KIDLWS’01, CEUR-WS. RWTH Aachen, 2001.
8. S. Brandt. Implementing matching in ALE—first results. In Proceedings of DL2003,

Rome, Italy, CEUR-WS, 2003.

9. V. Haarslev and R. Moller. RACER system description. In Proceedings of the Int.
Joint Conference on Automated Reasoning IJCAR’01, LNAI. Springer Verlag, 2001.

10. V. Haarslev and R. Méller. RACER User’s Guide and Manual, Version 1.7.7,
Sept, 2003. available from:
http://wuw.sts.tu-harburg.de/"r.f.moeller/racer/racer-manual-1-7-7.pdf.

11. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proceedings
of KR-98, Trento, Italy, 1998.

12. R. Kiisters and R. Molitor. Computing Least Common Subsumers in ACEN. In
Proceedings of IJCAI-01, Morgan Kaufman, 2001.

