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Abstract. In the area of Description Logic (DL) based knowledge rep-
resentation, two desirable features of DL systems have as yet been incom-
patible: firstly, the support of general TBoxes containing general concept
inclusion (GCI) axioms, and secondly, non-standard inference services fa-
cilitating knowledge engineering tasks, such as build-up and maintenance
of terminologies (TBoxes).
In order to make non-standard inferences available without sacrificing
the convenience of GCIs, the present paper proposes hybrid TBoxes con-
sisting of a pair of a general TBox F interpreted by descriptive seman-
tics, and a (possibly) cyclic TBox T interpreted by fixpoint semantics.
F serves as a foundation of T in the sense that the GCIs in F define
relationships between concepts used as atomic concept names in the defi-
nitions in T . Our main technical result is a polynomial time subsumption
algorithm for hybrid EL-TBoxes based on a polynomial reduction to sub-
sumption w.r.t. cyclic EL-TBoxes with fixpoint semantics. By virtue of
this reduction, all non-standard inferences already available for cyclic
EL-TBoxes become available for hybrid ones.

1 Motivation

In the area of Description Logic (DL) based knowledge representation (KR),
intensional knowledge of a given domain is represented by a terminology (TBox)
that defines general properties of concepts relevant to the domain [1]. In its
simplest form, a TBox comprises definitions of the form A ≡ C by which a
concept name A is assigned to a concept description C. Concept descriptions are
terms built from atomic concepts by means of a set of constructors provided by
the DL under consideration. In the present case, we are mostly concerned with
the DL EL which provides conjunction (u) and existential restriction (∃r.C).

General TBoxes additionally allow for general concept inclusion (GCI) ax-
ioms of the form C v D, where both C and D may be complex concept descrip-
tions. GCIs define implications (“D holds whenever C holds”) relevant to the
terminology as a whole. The utility of GCIs for practical KR applications has
been examined in depth; see, e.g., [2–4]. Apart from constraining terminologies
further without explicitly changing all its definitions, using GCIs can lead to
smaller, more readable TBoxes, and can facilitate the re-use of data in applica-
tions of different levels of detail. As a consequence, GCIs are supported by most
modern DL systems, such as FaCT [5] and Racer [6].



TBoxes are interpreted w.r.t. a model-theoretic semantics which allows to
reason over the terminology in a formally well-defined way. A model I satisfies
a definition A ≡ C iff the extensions of A and C in I are equal. A GCI C v D

is satisfied by I iff the extension of C is a subset of the one of D. I is a model
of a TBox T iff all definitions and GCIs in T are satisfied. This semantics for
TBoxes is usually called descriptive semantics [7]. In contrast, greatest fixpoint
semantics only considers models that interpret concepts as large as possible.

One of the most important reasoning services provided by DL systems is
computing the subsumption hierarchy. A concept A is subsumed by a concept
B w.r.t. a TBox T iff the extension of A is a subset of that of B in every
model of T . Before DL systems can be used to reason over terminologies, how-
ever, the relevant TBoxes must be built-up and maintained. In order to support
these knowledge engineering tasks, additional so-called ‘non-standard’ inference
services have been proposed, most notably least-common subsumer (lcs) [8–10],
most specific concept (msc) [10], and matching [11–13]. It has been argued in [14]
that the lcs and msc facilitate the build-up of DL terminologies in a ‘bottom-up’
fashion suitable for domain experts with limited KR background. ‘Bottom-up’
fashion means to begin by selecting a set of example instances and use them
to construct a new concept description intended to represent them. Matching,
on the other hand, can be used as a means of querying TBoxes for concepts
of a certain structure [15]. This can be utilized to construct new concepts by
retrieving and modifying structurally similar ones in the TBox.

The practical utility of GCIs and non-standard inferences motivates the ques-
tion for a DL in which both can be provided. The problem encountered here
relates to the appropriate choice of semantics. General TBoxes need to be inter-
preted w.r.t. descriptive semantics. For this kind of semantics, however, it has
been shown in [16] that lcs and msc need not always exist, even w.r.t. cyclic EL-
TBoxes. This result carries over to general EL-TBoxes and any extension of EL.
The same holds for matching which relies on the lcs. On the other hand, lcs and
msc are available for cyclic EL-TBoxes interpreted by fixpoint semantics [16].

In order to provide lcs and msc without sacrificing the convenience of GCIs,
the present paper proposes hybrid TBoxes. A hybrid EL-TBox is a pair (F , T ) of
a general TBox F (‘foundation’) and a possibly cyclic TBox T (‘terminology’)
defined over the same set of atomic concepts and roles. F serves as a foundation
of T in that the GCIs in F define relationships between concepts used as atomic
concept names in the definitions in T . Hence, F lays a foundation of general
implications constraining T . Models of (F , T ) are greatest fixpoint models of T
that respect all GCIs in F . Hence, the foundation is interpreted by descriptive
semantics while the terminology is interpreted by greatest fixpoint semantics.
Note that hybrid EL-TBoxes cannot be reduced to ordinary general EL-TBoxes.

Having introduced hybrid TBoxes, the main purpose of the present paper is to
show that subsumption w.r.t. hybrid EL-TBoxes can be decided by a polynomial
reduction to cyclic EL-TBoxes for which a polynomial time decision algorithm
exists [17]. This yields a polynomial time subsumption algorithm for hybrid
EL-TBoxes. An implication of this reduction is that non-standard inferences



available for cyclic EL-TBoxes can directly be utilized for hybrid EL-TBoxes. In
this sense, our initial goal of providing non-standard inferences in the presence
of GCIs is met.

Another application for hybrid TBoxes might be DL systems supporting users
with limited KR background. By restricting the view to the definitions in the
terminology while hiding the GCIs in the foundation, the system could provide
a simplified version of its knowledge base while preserving correct inferences.

The present paper is organized as follows. Basic definitions related to cyclic
EL-TBoxes are introduced in Section 2 while Section 3 formally introduces hybrid
EL-TBoxes. In Section 3.2 we show how subsumption w.r.t. hybrid TBoxes can be
reduced to subsumption w.r.t. cyclic EL-TBoxes interpreted by greatest fixpoint
semantics.

2 Cyclic EL-TBoxes

We begin by formally introducing syntax and semantics of cyclic EL TBoxes. In
fact, we will consider two different semantics first introduced by Nebel [7], namely
descriptive semantics and greatest1 fixpoint semantics. Most of our preliminary
Sections 2.2 and 2.3 recall basic definitions and results from [17].

2.1 Syntax and (descriptive) semantics

Concept descriptions are inductively defined with the help of a set of concept
constructors, starting with disjoint sets Nprim and Ndef of primitive concept
names and defined concept names, respectively, and a set Nrole of role names. In
this paper, we consider the small DL EL which provides the concept constructors
top-concept (>), conjunction (C u D), and existential restrictions (∃r.C).

As usual, the semantics of concept descriptions is defined in terms of an
interpretation I = (∆I , ·I). The domain ∆I of I is a non-empty set and the
interpretation function ·I maps each concept name P ∈ Nprim∪Ndef to a subset
P I ⊆ ∆I and each role name r ∈ Nrole to a binary relation rI ⊆ ∆I×∆I . The
extension of ·I to arbitrary concept descriptions is defined inductively as follows.

>I := ∆I

(C u D)I := CI ∩ DI

(∃r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

Definition 1. An EL-terminology (called EL-TBox) is a finite set T of defi-
nitions of the form A ≡ C, where A ∈ Ndef is a concept name and C is an
EL-concept description over Nprim, Ndef , and Nrole. For every such definition, A

is called defined in T and may occur on the left-hand side of no other definition
in T . Note that cyclic definitions are allowed, i.e., every defined concept may
occur on the right-hand side of every definition.

1 It has been argued in [17] that least fixpoint semantics is not interesting for cyclic
EL-TBoxes because cycles are always interpreted by the empty set.



The size of T is defined as the sum of the sizes of all definitions in T . Denote
by NT

prim, NT
def , and NT

role the set of all primitive concepts, defined concept names,
and role names, respectively, occurring in T .

The semantics of a cyclic EL-TBox can now be defined as follows.

Definition 2. An interpretation I = (∆I , ·I) is a model of T (I |= T ) iff
AI = CI for all definitions A ≡ C ∈ T .

This semantics has been introduced as descriptive semantics by Nebel [7].
One of the most basic inference services provided by DL systems is computing
the subsumption hierarchy. Formally, (descriptive) subsumption is defined as
follows.

Definition 3. Let T be an EL-TBox and let A,B ∈ NT
def . Then, A is subsumed

by B w.r.t. descriptive semantics (A vT B) iff AI ⊆ BI holds for all models I
of T .

The other type of semantics relevant for us is introduced in the following
section.

2.2 Greatest fixpoint semantics

In contrast to descriptive semantics, some more formal preliminaries are neces-
sary to define greatest fixpoint (gfp) semantics. Recalling the relevant definitions
from [17], we begin by introducing a normal form for cyclic EL-TBoxes.

Definition 4. An EL-TBox T is normalized iff A ≡ D ∈ T implies that D is
of the form

P1 u · · · u Pm u ∃r1.B1 u . . . ∃r`.B`,

where for m, ` ≥ 0, P1, . . . , Pm ∈ Nprim and B1, . . . , B` ∈ Ndef . If m = ` = 0
then D = >.

In order to refer to the definition of a defined concept more conveniently, the
following notation is introduced for normalized EL-TBoxes.

Definition 5. For a normalized EL-TBox T and every A ∈ NT
def , let

defT (A) := {P1, . . . , Pm} ∪ {∃r1.B1, . . . ,∃r`.B`}

iff A is defined in T by A ≡ P1 u · · · u Pm u ∃r1.B1 u . . . ∃r`.B`.

A gfp-model for a given EL-TBox T is obtained in two steps. In the first step,
only the primitive concepts and roles occurring in T are interpreted. The second
step comprises an iteration by which the interpretation of the defined names in
T is changed until a fixpoint is reached. The following definition formalizes the
first step.



Definition 6. Let T be an EL-TBox over Nprim, Nrole, and Ndef . A primitive
interpretation (∆J , ·J ) of T interprets all primitive concepts P ∈ Nprim by sub-
sets of ∆J and all roles r ∈ Nrole by binary relations on ∆J . An Interpretation
(∆I , ·I) is based on J iff ∆J = ∆I and ·J and ·I coincide on Nrole and Nprim.
The set of all initerpretations based on J is denoted by

Int(J ) := {I | I is an interpretation based on J }.

On Int(J ), a binary relation �J is defined for all I1, I2 ∈ Int(J ) by

I1 �J I2 iff AI1 ⊆ AI2 for all A ∈ NT
def .

Primitive interpretations do not interpret defined concepts from Ndef . It is
easy to see that �J is a complete lattice on Int(J ), so that every subset of
Int(J ) has a least upper bound (lub) and a greatest lower bound (glb). Hence,
by Tarski’s fixpoint theorem [18], every monotonic function on Int(J ) has a
fixpoint. In particular, this applies to the function OT ,J to be introduced next.

Definition 7. Let T be an EL-TBox over Nprim, Nrole, and Ndef , and J a
primitive interpretation of Nprim and Nrole. Then OT ,J is defined as follows.

OT ,J : Int(J ) → Int(J )

I1 7→ I2 iff AI2 = CI1 for all A ≡ C ∈ T .

As shown in [17], OT ,J is in fact monotonous and can be used as a fixpoint
operator on Int(J ). As a result, we obtain the following proposition.

Proposition 1. Let I be an interpretation based on the primitive interpretation
J . Then I is a fixpoint of OT ,J iff I is a model of T .

With this, the general notion of fixpoint models for EL-TBoxes can be defined
as follows.

Definition 8. Let T be an EL-TBox. The model I of T is called gfp-model iff
there is a primitive interpretation J such that I ∈ Int(J ) is the greatest fixpoint
of OT ,J . Greatest fixpoint semantics considers only gfp-models as admissible
models.

As (Int(J ),�J ) is a complete lattice, the gfp-model is uniquely determined
for a given TBox T and a primitive interpretation J . This allows us to refer to
the gfp-model gfp(T ,J ) for any given T and J .

In order to show how the gfp-model gfp(T ,J ) can be obtained, we need to
introduce the iteration of OT ,J over ordinals.

Definition 9. Let T be an EL-TBox over Nprim, Nrole, and Ndef and J a prim-
itive interpretation of Nprim and Nrole. Define Itop ∈ Int(J) by Itop

J (A) := ∆J

for every A ∈ Ndef . For every ordinal α, define

– I↓α
T ,J := Itop

J if α = 0;



– I↓α+1
T ,J := OT ,J (I↓α);

– I↓α
T ,J := glb({I↓β | β < α}) if α is a limit ordinal.

The following corollary now shows that computing gfp(T ,J ) is equivalent to

computing I↓α
T ,J , given an appropriate ordinal α.

Corollary 1. Let T be an EL-TBox over Nprim, Nrole, and Ndef . Let J be a
primitive interpretation of Nprim and Nrole. Then there exists an ordinal α such

that gfp(T ,J ) = I↓α
T ,J .

Note that if α is a limit ordinal then I↓α
T ,J equals

⋂
β<α I↓β

T ,J . With this
preparation, we are ready to introduce gfp-subsumption.

Definition 10. Let T be an EL-TBox and let A,B ∈ NT
def . Then, A is subsumed

by B w.r.t. gfp-semantics (A vgfp,T B) iff AI ⊆ BI holds for all gfp-models I
of T .

Note that descriptive semantics considers a superset of the set of gfp-models,
implying that descriptive subsumption entails gfp-subsumption. Hence, all sub-
sumption relations w.r.t. vT also hold w.r.t. vgfp,T . The question of how to
decide subsumption w.r.t. gfp-semantics is addressed in the following section.

2.3 Deciding subsumption w.r.t. cyclic EL-TBoxes with descriptive
semantics

As in the previous section, we begin by recalling some definitions from [17]
elementary for the decision procedure for gfp-subsumption.

Definition 11. An EL-description graph is a graph G = (V,E,L) where

– V is a set of nodes;
– E ⊆ V × Nrole × V is a set of edges labeled by role names;
– L : V → 2Nprim is a function that labels nodes with sets of primitive concepts.

Description graphs can be used to represent TBoxes and primitive interpre-
tations. The description graph of a TBox is defined as follows.

Definition 12. Let T be a normalized EL-TBox. Then the EL-description graph
GT = (NT

def , ET , LT ) of T is defined as follows:

– the nodes of GT are the defined concepts of T ;
– if A is defined in T and

A ≡ P1 u · · · u Pm u ∃r1.B1 u · · · u ∃r`.B`

is its definition then LT (A) := {P1, . . . , Pm}, and A is the source of the
edges (A, r1, B1), . . . , (A, r`, B`) ∈ ET .



Note that for every A ∈ NT
def , LT (A) can be written as defT (A)∩NT

prim. For
primitive definitions, we define description graphs in the following way.

Definition 13. Let J = (∆J , ·J ) be a primitive interpretation. Then the EL-
description graph GJ = (∆J , EJ , LJ ) of J is defined as follows:

– the nodes of GJ are the elements of ∆J ;
– EJ := {(x, r, y) | (x, y) ∈ rJ };
– LJ (x) = {P ∈ Nprim | x ∈ PJ } for all x ∈ ∆J .

In preparation for the characterization of subsumption we need to introduce
simulation relations on description graphs.

Definition 14. Let Gi = (Vi, Ei, Li), i = 1, 2, be two EL-description graphs. The
binary relation Z ⊆ V1×V2 is a simulation relation from G1 to G2 (Z : G1 ⇀∼ G2)
iff

(S1) (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2); and
(S2) if (v1, v2) ∈ Z and (v1, r, v

′
1) ∈ E1 then there exists a node v′

2 ∈ V2 such that
(v′

1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

It has been shown in [17] that simulation relations can be concatenated in
the sense of the following lemma.

Lemma 1. Let Gi := (Vi, Ei, Li), i = 1, 2, 3, be EL-description graphs, and let
Z1 : G1 ⇀∼ G2 and Z2 : G2 ⇀∼ G3. Then Z1 ◦ Z2 : G1 ⇀∼ G3, where

Z1 ◦ Z2 := {(v, v′′) | ∃v′ ∈ V2 : (v, v′) ∈ Z1 ∧ (v′, v′′) ∈ Z2}.

One of the main results in [17] is a characterization of gfp-subsumption by
simulation relations over description graphs. The following results provide the
relevant characterizations.

Proposition 2. Let T be an EL-TBox over Nprim, Nrole, and Ndef and A ∈
NT

def . Let J be a primitive interpretation of Nprim and Nrole. Then x ∈ Agfp(T ,J )

iff there is a simulation relation Z : GT ⇀∼ GJ such that (A, x) ∈ Z.

Theorem 1. Let T be an EL-TBox and A,B be defined concepts in T . Then
A vgfp,T B iff there is a simulation relation Z : GT ⇀∼ GT such that (B,A) ∈ Z.

Since the description graph of a TBox is of polynomial size in the size of the
TBox and since the existence of simulation relations with the required properties
can be tested in polynomial time, the following complexity result is obtained [17].

Corollary 2. Subsumption w.r.t. gfp-semantics in EL can be decided in polyno-
mial time.

With this result, the prerequisites for the introduction of hybrid EL-TBoxes
are complete.



3 Hybrid EL-TBoxes

In the present section, we start by defining syntax and semantics of hybrid EL-
TBoxes formally before showing in Section 3.2 how subsumption w.r.t. hybrid
EL-TBoxes can be decided in polynomial time.

3.1 Syntax and semantics

The following definition introduces hybrid EL-TBoxes, the central notion of the
present paper.

Definition 15. A general concept inclusion axiom (GCI) over Nprim and Nrole

is of the form C v D, where C and D are EL-concept descriptions over Nprim

and Nrole. A finite set of GCIs over Nprim and Nrole is called a general EL-TBox
over Nprim and Nrole. A primitive concept P ∈ Nprim (an existential restriction
∃r.P with r ∈ Nrole) occurs in T iff there is a GCI C v D ∈ T such that P

(∃r.P ) is a conjunct of C or D.
A hybrid EL-TBox is a pair (F , T ), where F is a general EL-TBox over Nprim

and Nrole and T is an EL-TBox over Nprim, Nrole, and Ndef .

Note that our general TBoxes are restricted ‘over Nprim and Nrole’ to rule out
the use of defined concepts from T . Similar to the case of cyclic EL-TBoxes, we
introduce a normal form for hybrid EL-TBoxes in order to simplify our solution
for the respective subsumption problem.

Definition 16. Let (F , T ) be a hybrid TBox over Nprim, Nrole, and Ndef . Then,
(F , T ) is normalized iff

1. Every GCI in F is of one of the following forms: A v B, A1 u A2 v B,
A v ∃r.B, or ∃r.A v B, where r ∈ Nrole and A,A1, A2, B ∈ Nprim ∪ {>};

2. T is normalized in the sense of Definition 4; and
3. for every primitive concept P and for every existential restriction ∃r.P occur-

ring in F , T contains a definition of the form AP ≡ P and A∃r.P ≡ ∃r.AP ,
respectively.

Note that the first two normalization conditions can be satisfied easily for
any hybrid TBox (F , T ), see [17]. For the third condition, a conservative exten-
sion T ′ of T of size at most the size of (F , T ) can be found such that (F , T ′)
is normalized. All subsumption relations between concept names defined in T
remain unchanged.

Example 1. In order to get an impression of how an actual hybrid TBox might
look like, consider Figure 1. Shown is an extremely simplified part of a medical
terminology2 represented by a hybrid TBox (F , T ). T is supposed to define the
concepts ‘disease of the connective tissue’, ‘bacterial infection’ and ‘bacterial

2 Our example is only supposed to show the features of hybrid EL-TBoxes and in no
way claims to be adequate from a Medical KR perspective.



T :

F :

ConnTissDisease ≡ Disease u ∃acts on.ConnTissue

BactInfection ≡ Infection u ∃causes.BactPericarditis

BactPericarditis ≡ Inflammation u ∃has loc.Pericardium

u ∃caused by.BactInfection

Disease u ∃has loc.ConnTissue v ∃acts on.ConnTissue

Inflammation v Disease

Pericardium v ConnTissue

Fig. 1. Example hybrid EL-TBox

pericarditis’. For instance, bacterial Pericarditis is defined as an inflammation
located in the Pericardium caused by a bacterial infection. Note that T is cyclic.
For the primitive concepts in T , the foundation F states, e.g., that a disease
located in connective tissue acts on connective tissue.

The hybrid TBox (F , T ) from Example 1 can be normalized in three steps.
Firstly, the first GCI in F has to be normalized to, e.g.,

∃has loc.ConnTissue v HasLocConnTissue

ActsOnConnTissue v ∃acts on.ConnTissue

Disease u HasLocConnTissue v ActsOnConnTissue.

Secondly, T has to be extended by a definition of the form AP ≡ P for the
primitive concepts Disease, ConnTissue, Infection, Inflammation, Pericardium and
also for HasLocConnTissue and ActsOnConnTissue. Thirdly, the primitive names
ConnTissue and Pericardium occurring in T have to be replaced by AConnTissue

and APericardium, respectively.

Normalization serves as an internal preprocessing step to classification and
does not replace the original hybrid TBox from the perspective of the user of a
DL system. Having introduced hybrid TBoxes formally, it remains to define an
appropriate semantics for them.

Definition 17. Let (F , T ) be a hybrid TBox over Nprim, Nrole, and Ndef . A
primitive interpretation J is a model of F (J |= F) iff CJ ⊆ DJ for every GCI
C v D in F . A model I ∈ Int(J ) is a gfp-model of (F , T ) iff J |= F and I is
a gfp-model of T .

Note that F (“foundation”) is interpreted w.r.t. descriptive semantics while
T (“terminology”) is interpreted w.r.t. gfp-semantics. Note also that every gfp-
model of (F , T ) can be expressed as gfp(T ,J ) for some primitive interpretation
J with J |= F .

In order to complete the semantics of hybrid EL-TBoxes, it remains to intro-
duce an appropriate notion of subsumption.



Definition 18. Let (F , T ) be a hybrid EL-TBox over Nprim, Nrole, and Ndef .
Let A,B be defined concepts in T . Then A is subsumed by B w.r.t. (F , T )
(A vgfp,F,T B) iff AI ⊆ BI for all gfp-models I of (F , T ).

For Example 1, we shall see that the subsumption BactPericarditis vgfp,F,T

ConnTissDisease holds, i.e., Pericarditis is classified as a disease of the connec-
tive tissue. How subsumption w.r.t. hybrid TBoxes can be decided in general is
the subject of the following section.

Observe that hybrid TBoxes generalize cyclic TBoxes with gfp-semantics in
the sense that every cyclic EL-TBox T can be viewed as a hybrid TBox with an
empty foundation. Thus, gfp-subsumption w.r.t. T coincides with subsumption
w.r.t. the hybrid TBox (∅, T ). Also note that, every general TBox T ′ can be
seen as a hybrid TBox (T ′, ∅). In this case, a descriptive subsumption P vT ′ Q

holds iff AP is subsumed by AQ w.r.t. the normalized instance of (T ′, ∅).

3.2 Deciding Subsumption w.r.t. hybrid EL-TBoxes

In this section we show that subsumption w.r.t hybrid EL-TBoxes (F , T ) can be
reduced to subsumption w.r.t. cyclic EL-TBoxes interpreted by gfp-semantics.
The underlying idea is to use the descriptive subsumption relations induced by
the GCIs in F to extend the definitions in T accordingly. To this end, we view
the union of F and T as a general TBox and ask for all descriptive implications
in T directly involving names from F . These implications are then added to the
definitions in T . This notion is formalized as follows.

Definition 19. Let (F , T ) be a normalized hybrid EL-TBox over Nprim, Nrole,
and Ndef . For every A ∈ NT

def , let

f(A) := u
P∈{P ′∈NF

prim|AvF∪T P ′}
P u u

r∈NF
role

u
Q∈{Q′∈NF

prim|AvF∪T ∃r.Q′}
∃r.AQ .

The F-completion f(T ) extends the definitions in T as follows.

f(T ) := {A ≡ C u f(A) | A ≡ C ∈ T }

Note that f(T ) is still a normalized EL-TBox. To preserve normalization,
f(A) adds ∃r.AQ instead of ∃r.Q whenever A implies ∃r.Q.

Example 2. Consider the hybrid TBox (F , T ) from Example 1 after normal-
ization. Our goal is to compute the F-completion of T . To this end, for ev-
ery defined concept in T , we need to find all descriptive consequences of the
form P and ∃r.P implied by F ∪ T , where P ∈ NF

prim. Obviously, AInflammation

implies Disease and APericardium implies ConnTissue. Moreover, AActsOnConnTissue

yields ∃acts on.ConnTissue. Finally, it is easy to check that BactPericarditis im-
plies both Disease and HasLocConnTissue, and therefore also ActsOnConnTissue,
yielding ∃acts on.ConnTissue.

Using these descriptive consequences, the completion f(A) can be computed
for every defined name A. Figure 2 shows the “interesting” part of the result-
ing description graph Gf(T ) of the F-completion f(T ), omitting some isolated



BPCTD

BI AInfl

{Infl, Dis}

causes

{Dis}

{CT} {Infe}

{Peri, CT}

acts on

{Infl, Dis, HLCT, AOCT}

ACT

acts on

has loc

{AOCT}

Gf(T ):

acts on

caused by

AAOCT

APeri

Fig. 2. Example EL-description graph

vertices. Long concept names are abbreviated, i.e., the vertex AAOCT stands for
the concept AActsOnConnTissue, AHLCT for AHasLocConnTissue and so on. For every
vertex A, the label set Lf(T )(A) is denoted above or underneath the relevant
vertex. Underlined entries are descriptive consequences absent in the original
TBox T . As Lf(T )(CTD) ⊆ Lf(T )(BP) and as BP has the same successor w.r.t.
the edge acts on, it is easy to check that there exists a simulation relation Z

on Gf(T ) with (CTD ,BP) ∈ Z. Therefore, BactPericarditis is subsumed by
ConnTissueDisease w.r.t. f(T ) interpreted with gfp-semantics.

Our goal now is to show for a given hybrid EL-TBox (F , T ) and arbitrary
names A,B defined in T that B subsumes A w.r.t. (F , T ) if and only if B

subsumes A w.r.t. the F-completion of T interpreted by gfp-semantics. To this
end, we first show that (F , T ) and the F-completed hybrid TBox (F , f(T ))
induce the same subsumption relations.

Lemma 2. Let (F , T ) be a normalized hybrid EL-TBox over Nprim, Nrole, and
Ndef . Let A,B ∈ NT

def . Then, A vgfp,F,T B iff A vgfp,F,f(T ) B.

Proof. We show that gfp(T ,J ) = gfp(f(T ),J ), implying for every primitive
interpretation J with J |= F that Agfp(T ,J ) ⊆ Bgfp(T ,J ) iff Agfp(f(T ),J ) ⊆
Bgfp(f(T ),J ), implying the proposition.

In order to show gfp(T ,J ) = gfp(f(T ),J ), it suffices to show that, firstly,
every model I ∈ Int(J ) of T is also a model of f(T ), implying gfp(Tf ,J ) �J

gfp(T ,J ); and secondly, gfp(Tf ,J ) �J gfp(T ,J ).
Consider some model I ∈ Int(J ) with I |= T and an arbitrary A ∈ NT

def .
As I |= T , AI = deftT (A)I . Since also J |= F , I respects all descriptive
implications of F . Hence, we have AI ⊆ f(A)I , implying AI = deftT (A)I ∩
f(A)I = (deftT (A) u f(A))I . By definition of f(T ), this yields I |= f(T ).

We show gfp(f(T ),J ) �J gfp(T ,J ) by transfinite induction on the fixpoint
iteration. By Corollary 1, there exists an ordinal α such that gfp(f(T ),J ) =

I↓α

f(T ),J and gfp(T ,J ) = I↓α
T ,J . We distinguish the case of α being a successor

or a limit ordinal.



(α successor ordinal). Induction base: if α = 0 then I↓α

f(T ),J = Itop = I↓α
T ,J ,

implying I↓0
f(T ),J �J I↓0

T ,J . Induction step: for every β < α, assume (IH) that

I↓β

f(T ),J �J I↓β
T ,J . Consider an arbitrary A ∈ NT

def defined in T by

A ≡ P1 u · · · u Pm u ∃r1.B1 u . . . ∃r`.B`.

We have to show A
I↓β+1

f(T ),J ⊆ AI↓β+1
T ,J . The concept name A is interpreted by

I↓β+1
f(T ),J as

A
I↓β+1

f(T ),J =
⋂

1≤i≤m

PJ
i ∩

⋂

1≤j≤`

(∃rj .Bj)
I↓β

f(T ),J ∩ f(A)
I↓β

f(T ),J .

For the original TBox T we analogously have

AI↓β+1
T ,J =

⋂

1≤i≤m

PJ
i ∩

⋂

1≤j≤`

(∃rj .Bj)
I↓β

T ,J .

Hence, it suffices to show for every r ∈ NT
role and every B ∈ NT

def that the

subset relation (∃r.B)
I↓β

f(T ),J ⊆ (∃r.B)I
↓β

T ,J holds. By (IH), B
I↓β

f(T ),J ⊆ BI↓β

T ,J .

As r
I↓β

f(T ),J = rJ = rI
β

T ,J , the subset relation immediately carries over to the
interpretations of ∃r.B.

(α limit ordinal). Assume (IH) that I↓β

f(T ),J �J I↓β
T ,J for every β < α. By

definition, in the limit ordinal case it holds for every B ∈ NT
def that B

I↓α

f(T ),J

equals
⋂

β<α B
I↓β

f(T ),J which due to (IH) is a subset of
⋂

β<α BI↓β

T ,J which in turn

equals BI↓α

T ,J .

Hence, the F-completion (F , f(T )) of preserves the same subsumption re-
lations as the original. The next lemma shows that, after F-completing T , we
may ‘forget’ F and still obtain the same subsumptions.

Lemma 3. Let (F , T ) be a normalized hybrid EL-TBox over Nprim, Nrole, and
Ndef . Let A,B ∈ NT

def . Then, A vgfp,F,f(T ) B iff A vgfp,f(T ) B

Proof. (⇐) trivial. (⇒) Assume A 6vgfp,f(T ) B. We construct a countermodel
showing A 6vgfp,F,f(T ) B, i.e., a primitive interpretation J with J |= F and

Agfp(f(T ),J ) 6⊆ Bgfp(f(T ),J ).
Define J =: (∆J , ·J ) as follows.

– ∆J := {xA | A ∈ N
f(T )
def };

– PJ := {xA ∈ ∆J | P ∈ deff(T )(A)} for all P ∈ N
f(T )
prim ;

– rJ := {(xA, xB) ∈ (∆J )2 | ∃r.B ∈ deff(T )(A)} for all r ∈ N
f(T )
role .

We first show xA ∈ Agfp(f(T ),J )\Bgfp(f(T ),J ). By Proposition 2 it suffices to find
a simulation relation Z : Gf(T ) ⇀∼ GJ with (A, xa) ∈ Z. Define Z := {(A, xA) |



A ∈ N
f(T )
def }. As obviously (A, xA) ∈ Z, it remains to show that Z respects

Definition 14. (S1) For every (A, xA) ∈ Z, LGf(T )
(A) equals deff(T )(A) ∩N

f(T )
prim

which equals {P ∈ N
f(T )
prim | P ∈ deff(T )(A)} = LGJ

(A). (S2) If (A, xA) ∈ Z and

(A, r,B) ∈ EGf(T )
then ∃r.B ∈ deff(T )(A), implying (xA, xB) ∈ rJ , implying

(xA, r, xB) ∈ EGJ
. Moreover, (B, xB) ∈ Z. Hence, by (S1) and (S2), Z : Gf(T ) ⇀∼

GJ .
Observe that under (S1) we proved equality of LGf(T )

(A) and LGJ
(A). More-

over, (S2) also holds in the direction from GJ to Gf(T ): whenever (A, xA) ∈ Z

and (xA, r, xB) ∈ EGJ
then (A, r,B) ∈ EGf(T )

. Hence, Z−1 : GJ ⇀∼ Gf(T ).

Assume xA ∈ Bgfp(f(T ),J ). Then, by Proposition 2, there is a simulation
relation Y : Gf(T ) ⇀∼ GJ with (B, xA) ∈ Y . But then, by Lemma 1, Y ◦ Z−1 is
a simulation relation on Gf(T ) with (B,A) ∈ Y ◦ Z−1, implying A vgfp,f(T ) B,
in contradiction to the assumption. It remains to show that J |= F . As F is
normalized, we have four types of GCIs in F .

1. P v Q ∈ F . If xA ∈ PJ then P ∈ deff(T )(A), implying A vF∪T Q which
implies f(A) v Q. Hence, Q ∈ deff(T )(A), implying xA ∈ QJ .

2. P1 u P2 v Q ∈ F . If xA ∈ PJ
1 ∩ PJ

2 then P1, P2 ∈ deff(T )(A). This implies
A vF∪T Q which analogously yields xA ∈ QJ .

3. P v ∃r.Q ∈ F . If xA ∈ PJ then P ∈ deff(T )(A), implying A vF∪T ∃r.Q.
Hence, ∃r.AQ ∈ deff(T )(A), implying (xA, r, xA∃r.Q

) ∈ rJ . By definition,
Q ∈ deff(T )(A∃r.Q), implying xA∃r.Q

∈ QJ .
4. ∃r.Q v P ∈ F . If xA ∈ (∃r.Q)J then there exists some xB ∈ ∆J such

that (xA, r, xB) ∈ rJ and xB ∈ QJ . Hence, ∃r.B ∈ deff(T )(A) and Q ∈
deff(T )(B). This implies A vF∪T P , implying P ∈ deff(T )(A) which yields

xA ∈ PJ .

As an immediate consequence of Lemmas 2 and 3, we obtain the following
theorem summarizing our reduction from hybrid EL-TBoxes to cyclic EL-TBoxes.

Theorem 2. Let (F , T ) be a hybrid EL-TBox over Nprim, Nrole, and Ndef . Let
A,B ∈ NT

def . Then, A vgfp,F,T B iff A vgfp,f(T ) B.

It remains to show that subsumption w.r.t. hybrid TBoxes can be decided in
polynomial time.

Corollary 3. Subsumption w.r.t. hybrid EL-TBoxes can be decided in polyno-
mial time.

Proof. By Corollary 2, gfp-subsumption w.r.t. cyclic EL-TBoxes can be decided
in polynomial time. Hence, given (F , T ), it suffices to show for every A ∈ N T

def

that f(A) is of polynomial size in the size of (F , T ) and can be computed in
polynomial time.

By definition, every concept description f(A) contains only conjuncts of the
form P and ∃r.AP with P ∈ NT

prim occurring in F . The size of f(A) is therefore
linear in the size of (F , T ). It has been shown in [19], that subsumption w.r.t.
general EL-TBoxes can be decided in polynomial time, implying that subsump-
tion w.r.t. F ∪ T is polynomial.



4 Conclusion

Motivated by the goal to make non-standard inference services available to DL
systems supporting general TBoxes, the present paper has introduced hybrid
EL-TBoxes in which a general EL-TBox F provides the foundation for a cyclic
EL-TBox T that uses names from F as primitive concepts. The reduction from
Section 3.2 shows that hybrid EL-TBoxes do not extend the expressive power of
cyclic EL-TBoxes with gfp-semantics. However, the explicit separation between
definitions and implications valid for all definitions often leads to smaller and
more readable knowledge bases.

The reduction from Section 3.2 also makes non-standard inferences accessi-
ble to hybrid TBoxes. It has been shown in [16] that, w.r.t. cyclic EL-TBoxes
interpreted by gfp-semantics, the lcs and msc can be computed in polynomial
time. A DL system based on hybrid EL-TBoxes could therefore compute the lcs
or msc by first (internally) applying the above reduction to the relevant subset
of the TBox and then computing the lcs or msc in the way defined in [16].

The technical motivation for choosing EL as the underlying DL for hybrid
TBoxes is that we obtain a polynomial time subsumption problem and can uti-
lize the non-standard inferences known for cyclic EL-TBoxes with gfp-semantics.
Our choice, however, is also motivated by applications of EL-TBoxes in the life
sciences. For instance, the widely used medical terminology Snomed [20] corre-
sponds to an EL-Tbox [21]. Similarly, the Gene Ontology [22] can be represented
by an EL-TBox with transitive roles, and large parts of the medical knowledge
base Galen [23] can be expressed by a general EL-TBox with transitive roles.

The above applications give rise to the question whether the polynomiality
result for subsumption also holds for hybrid TBoxes defined over extensions of
EL. An interesting construct to add might be restricted role value maps (RVMs)
of the form r◦s v t by which, e.g., transitive roles can be defined. Due to positive
results for cyclic EL-TBoxes with gfp-semantics [16] and general EL-TBoxes [24],
we strongly conjecture that hybrid EL-TBoxes with restricted RVMs can also be
classified in polynomial time. For this extension, however, lcs and msc are not
yet available. Extending EL by the bottom concept (⊥) would allow to express
disjointness constraints of the form P u Q v ⊥ defining P and Q as mutually
exclusive concepts.
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13. Baader, F., Küsters, R., Borgida, A., McGuinness, D.: Matching in description
logics. Journal of Logic and Computation 9 (1999) 411–447
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