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2-EXPTIME LOWER BOUNDS FOR PROPOSITIONAL DYNAMIC

LOGICS WITH INTERSECTION

MARTIN LANGE AND CARSTEN LUTZ

Abstrat. In 1984, Daneki proved that satis�ability in IPDL, i.e., Propositional Dy-

nami Logi (PDL) extended with an intersetion operator on programs, is deidable in

deterministi double exponential time. Sine then, the exat omplexity of IPDL has

remained an open problem: the best known lower bound was the ExpTime one stem-

ming from plain PDL until, in 2004, the �rst author established ExpSpae-hardness. In

this paper, we �nally lose the gap and prove that IPDL is hard for 2-ExpTime, thus

2-ExpTime-omplete. We then sharpen our lower bound, showing that it even applies to

IPDL without the test operator interpreted on tree strutures.

x1. Introdution. Building on a proposal by Pratt [25℄, Fisher and Ladner

introdued propositional dynami logi (PDL) as a logial system for reasoning

about programs [9℄. Sine its invention in 1979, PDL has undergone ountless

modi�ations and extensions, mainly for two purposes: �rst, PDL was enrihed

with additional expressive means to apture properties of programs that annot

be expressed in basi PDL [28, 15, 29℄; and seond, several variants of PDL have

been proposed with the goal of adapting the original formalism to ompletely

new appliations suh as knowledge representation [10, 27, 21℄ and querying of

semi-strutured data [1, 2℄. In the last years, these new appliations have been

the main driving fore behind the persisting interest in the PDL family of modal

logis. Many of PDL's variants are disussed in the surveys and monograph by

Harel, Kozen, and Tiuryn [12, 18, 13℄.

In this paper, we study IPDL, the extension of PDL with an intersetion op-

erator on programs. Apart from being a natural extension from a theoretial

viewpoint, there are two appliation-driven motivations for onsidering IPDL:

�rst, IPDL is apable of apturing ertain aspets of onurreny, thus belong-

ing to a group of several PDL variants whose purpose is to allow reasoning about

onurrent programs [17, 24, 14, 11, 23℄. Seond, IPDL may be viewed as a natu-

ral and powerful desription logi (DL) [4℄, and thus has interesting appliations

as a knowledge representation tool in arti�ial intelligene. In partiular, IPDL

is losely related to the desription logi ALC

\

reg

, i.e., the extension of the well-

known DL ALC

reg

[26, 3, 10℄ with an intersetion operator on roles as onsidered

e.g. in [8, 5, 20, 22℄. The main di�erene between IPDL and ALC

\

reg

is that the
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latter is usually de�ned without the test operator, as this operator is not very

natural from a knowledge representation perspetive.

The most important reasoning problems in desription logi are satis�ability

and subsumption, where the latter orresponds to the validity of impliations

' !  and an easily be redued to (the omplement of) the former. Still,

the omputational omplexity of deiding satis�ability in IPDL has never been

exatly determined: a 2-ExpTime upper bound was established by Daneki in

1984 [7℄, but is not mathed by the ExpTime lower bound inherited from PDL

[9℄. In a reent attempt at improving the lower bound, the �rst author showed

that IPDL is at least ExpSpae-hard [19℄. The purpose of the urrent paper is

to lose this gap, i.e., to determine the exat omputational omplexity of deiding

satis�ability in IPDL.

We start with the proof of a 2-ExpTime lower bound for satis�ability in IPDL

by reduing the word problem of exponentially spae bounded alternating Turing

mahines (ATMs). Thus, the omplexity of IPDL is determined as 2-ExpTime-

omplete. Interestingly, this is also the omplexity of satis�ability in several

other variants of PDL for reasoning about onurrent programs. Examples in-

lude PDL with programs spei�ed by onurrent automata [14℄ and PDL with

interleaving regular expressions [23℄.

Our �rst proof of 2-ExpTime hardness has two notable properties: �rst, it

even applies if we admit only a single program and restrit models to tree stru-

tures. This is surprising sine the main diÆulty in obtaining upper bounds for

IPDL is its lak of the tree model property [7℄. Seond, our redution relies on

the presene of the test operator whih is, as noted above, usually omitted in

desription logis. Therefore, as a next step we redue satis�ability in IPDL

to satis�ability in test-free IPDL. Thus, the latter is also 2-ExpTime omplete.

This additional result, however, does not anymore apture the ase of tree mod-

els as it relies on the presene of models in whih states have reexive loops. For

this reason, we �nally exhibit another, more intriate redution of the word prob-

lem for exponentially spae bounded ATMs showing that even test-free IPDL on

tree-strutures is 2-ExpTime hard.

x2. Preliminaries. We �rst give the syntax and semantis of propositional

dynami logi with intersetion, and then disuss some basis about alternating

Turing mahines that are needed for the subsequent redutions.

2.1. Propositional Dynami Logi with intersetion. Let P = fp; q; : : : g

be a ountably in�nite set of atomi propositions whih inludes tt and ff. Let

A = fa; b; : : : g be a ountably in�nite set of atomi program names. Formulas

' and programs � of IPDL are de�ned by the following syntax rules:

' ::= q j ' _ ' j :' j h�i'

� ::= a j � [ � j � \ � j �;� j �

�

j '?

where q ranges over P , and a ranges over A. We will use the standard abbrevi-

ations ' ^  := :(:' _ : ), ' !  := :' _  , ' $  := (' !  ) ^ ( ! '),

[�℄' := :h�i:', and �

+

:= �;�

�

. For n 2 N, we write �

n

to denote the n-fold

omposition of the program �.
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Sine we will sometimes have to write quite omplex formulas and programs,

it is onvenient to expliate operator preedene. Conerning formula operators,

we use the usual onventions that :, h�i, and [�℄ have higher preedene than

^ and _, whih in turn have higher preendene than ! and $. For programs,

�

�

has higher preedene than ;.

IPDL formulas are interpreted in Kripke strutures. A Kripke struture is

a triple (S; f

a

�! j a 2 Ag; L) with S a set of states,

a

�! a binary relation on

states for every a 2 A, and L : S ! 2

P

a labelling of states with sets of

atomi propositions suh that tt 2 L(s) and ff 62 L(s) for all s 2 S. Let

K = (S; f

a

�! j a 2 Ag; L) be suh a struture. The extension of the aessibility

relations \

�

�!" to non-atomi programs and the onsequene relation \j=" of

IPDL are de�ned by simultaneous indution:

s

�;�

���! t i� 9u 2 S s.t. s

�

�!u and u

�

�! t

s

�[�

���! t i� s

�

�! t or s

�

�! t

s

�\�

���! t i� s

�

�! t and s

�

�! t

s

�

�

��! t i� 9n 2 N; s

�

n

��! t where

8s; t 2 S : s

�

0

��! s, and s

�

n+1

����! t i� s

�;�

n

����! t

s

'?

��! t i� s = t and K; s j= '

K; s j= q i� q 2 L(s)

K; s j= ' _  i� K; s j= ' or K; s j=  

K; s j= :' i� K; s 6j= '

K; s j= h�i' i� 9t 2 S s.t. s

�

�! t and K; t j= '

A formula ' is satis�able if there exists a Kripke struture K and a state s of K

suh that K; s j= '. Suh a struture is alled a model of '.

As examples, onsider the following two IPDL formulas:

hx \ y

�

itt ^ [y℄ff [x

�

℄

�

hxitt ^ [(x;x

�

) \ tt?℄ff

�

It is not hard to verify that the left-hand formula enfores a reexive x-loop and

that the right-hand formula enfores an in�nite x-path that does not loop bak

to some state.

2.2. Alternating Turing mahines. An Alternating Turing Mahine (ATM)

is of the formM = (Q;�;�; q

0

;�). The set of states Q = Q

9

℄Q

8

℄fq

a

g℄ fq

r

g

onsists of existential states from Q

9

, universal states from Q

8

, an aepting

state q

a

, and a rejeting state q

r

; � is the input alphabet and � the work alphabet

ontaining a blank symbol � and satisfying � � �; q

0

2 Q

9

[Q

8

is the starting

state; and the transition relation Æ is of the form

Æ � Q� ��Q� �� fL;R;Ng:

We will write Æ(q; a) for f(q

0

; b;M) j (q; a; q

0

; b;M) 2 Æg. As usual, we assume

that q 2 Q

9

[ Q

8

implies Æ(q; b) 6= ; for all b 2 � and q 2 fq

a

; q

r

g implies

Æ(q; b) = ; for all b 2 �.

A on�guration of an ATM is a word wqw

0

with w;w

0

2 �

�

and q 2 Q. The

intended meaning is that the tape ontains the word ww

0

(with only blanks

before and behind it), the mahine is in state q, and the head is on the leftmost
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symbol of w

0

. The suessor on�gurations of a on�guration wqw

0

are de�ned

in the usual way in terms of the transition relation Æ. A halting on�guration is

of the form wqw

0

with q 2 fq

a

; q

r

g.

A omputation path of an ATM M on a word w is a (�nite or in�nite) se-

quene of on�gurations 

1

; 

2

; : : : suh that 

1

= q

0

w and 

i+1

is a suessor

on�guration of 

i

for i � 0. All ATMs onsidered in this paper have only �nite

omputation paths on any input. Sine this ase is simpler than the general one,

we de�ne aeptane for ATMs with �nite omputation paths, only, and refer

to [6℄ for the full de�nition. Let M be suh an ATM. A halting on�guration

is aepting i� it is of the form wq

a

w

0

. For other on�gurations  = wqw

0

, the

aeptane behaviour depends on q: if q 2 Q

9

, then  is aepting i� at least

one suessor on�guration is aepting; if q 2 Q

8

, then  is aepting i� all su-

essor on�gurations are aepting. Finally, the ATM M with starting state q

0

aepts the input w i� the initial on�guration q

0

w is aepting. We use L(M)

to denote the language aepted by M, i.e., L(M) = fw 2 �

�

jM aepts wg.

To obtain a witness for the aeptane of an input by an ATM, it is ommon

to arrange on�gurations in a tree. Suh an aeptane tree of an ATM M

with starting state q

0

on a word w is a �nite tree whose nodes are labelled with

on�gurations suh that

� the root node is labelled with the initial on�guration q

0

w;

� if a node s in the tree is labelled with wqw

0

, q 2 Q

9

, then s has exatly

one suessor, and this suessor is labelled with a suessor on�guration

of wqw

0

;

� if a node s in the tree is labelled with wqw

0

, q 2 Q

8

, then there is exatly

one suessor of s for eah suessor on�guration of wqw

0

;

� leaves are labelled with aepting halting on�gurations.

The following is immediate.

Lemma 1. Let M be an ATM with only �nite omputation paths. Then there

exists an aeptane tree of M on w i� M aepts w.

Note that, if omputations of alternating Turing mahines are regarded as a

game, then an aeptane tree orresponds to a winning strategy for the exis-

tential player.

x3. The basi result. The aim of this setion is to prove our basi result:

2-ExpTime-hardness of satis�ability in IPDL. The proof is by redution of the

word problem of exponentially-spae bounded ATMs, and resembles the teh-

niques used in [30, 23, 16℄. Together with the 2-ExpTime upper bound proved

by Daneki [7℄, we thus obtain the following:

Theorem 1. Satis�ability in IPDL is 2-ExpTime-omplete.

Aording to Theorem 3.4 of [6℄, there is an exponentially spae bounded ATM

M whose word problem is 2-ExpTime-hard. Aording to Theorem 2.6 of the

same paper, we may w.l.o.g. assume that there exists a polynomial p suh that

the length of every omputation path ofM on w 2 �

n

is bounded by 2

2

p(n)

, and

all the on�gurations wqw

0

in suh omputation paths satisfy jww

0

j � 2

p(n)

.
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Let w = a

0

� � � a

n�1

2 �

�

be an input toM. In the following, we onstrut an

IPDL formula '

M;w

over a singleton set A = fxg of atomi programs suh that

w 2 L(M) i� '

M;w

is satis�able. Intuitively, '

M;w

will be onstruted suh that

its models orrespond to an aeptane tree of M on w. In suh models, eah

state represents a tape ell of a on�guration ofM, and the program x indiates

both \moving to the next tape ell in the same on�guration" and \moving

to the �rst tape ell of a suessor on�guration". We use the set of atomi

propositions Q [ � [ f

0

; : : : ; 

p(n)�1

g, whose intuitive meaning is as follows:

� q 2 Q is true in a state of the model if the head ofM is on the orresponding

tape ell in the orresponding on�guration while the mahine is in state q;

� a 2 � is true if a is the symbol on the orresponding tape ell;

� 

p(n)�1

; : : : ; 

0

represent a ounter C in binary oding for ounting the 2

p(n)

tape ells of on�gurations with the leftmost ell having ounter value 0.

Take for example a on�guration suh that the tape head is on the third ell from

the left, the mahine is in state q, and the tape is labelled with a

1

a

2

� � � a

2

p(n)

�1

.

This on�guration is modelled by a sequene of states of the form



p(n)�1

q 

0

.

.

.



0



1



1



2

a 

0

a

1

a

2

a

3

a

4

a

5

a

2

p(n)

�1

�

x

�! �

x

�! �

x

�! �

x

�! �

x

�! � � �

x

�! �

Suessive on�gurations are modelled by onneting suh sequenes with the

program x.

We now start to assemble the redution formula '

M;w

. Let N abbreviate 2

p(n)

in what follows. We will often need the following auxiliary formulas stating that

the value of the ounter C is zero and N � 1, respetively:

�

C=0

:=

p(n)�1

^

i=0

:

i

and �

C=N�1

:=

p(n)�1

^

i=0



i

Next, we need an auxiliary formula '

in

whih ensures that the value of C is

inremented modulo N when moving from a state to one of its x-suessors.

A regular inrementation orresponds to moving to the suessor ell within

the same on�guration, while the \modulo step" orresponds to moving to a

suessor on�guration.

'

in

:= [x

�

℄

�

p(n)�1

^

k=0

�

k�1

^

j=0



j

! (

k

! [x℄:

k

) ^ (:

k

! [x℄

k

)

�

^

p(n)�1

^

k=0

�

k�1

_

j=0

:

j

! (

k

! [x℄

k

) ^ (:

k

! [x℄:

k

)

� �

This is essentially just the standard propositional formula for inrementing a

binary ounter modulo N : a bit is toggled if all bits stritly lower have value

one, and kept otherwise.

We introdue two auxiliary programs: a program �

last

that relates any state

to the last ell of the same on�guration, and a program �

2h

that does an
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arbitrary amount of x-steps whilst seeing two tape heads. For simpliity, we use

the formula h :=

W

q2Q

q saying that the tape head is on the urrent ell.

�

last

:= (:�

C=N�1

?;x)

�

;�

C=N�1

?

�

2h

:= x

�

;h?;x

+

;h?;x

�

Now we an formalise the general requirements on an ATM: every tape ell is

marked with exatly one symbol from � and never with two di�erent states, and

no on�guration has more than one ell marked with the tape head. At this

point, it is not neessary to expliitly state that eah on�guration has at least

one ell marked with the tape head: this will be a onsequene of other formulas

added below.

'

gen

:= [x

�

℄

� �

_

a2�

a

�

^

^

a;b2�;b 6=a

:(a ^ b) ^

^

q;q

0

2Q;q 6=q

0

:(q ^ q

0

) ^

( �

C=0

! [�

last

\ �

2h

℄ff )

�

At the beginning, the input word w = a

0

� � � a

n�1

is written on the tape, followed

by blank symbols 2 until a state with ounter value 0 is reahed, whih marks

the beginning of a suessor on�guration.

'

start

:= �

C=0

^ q

0

^ a

0

^

[x℄( a

1

^

[x℄( a

2

^

� � � ^ � � �

[x℄( a

n�1

^

[(x;:�

C=0

?)

+

℄2 ) � � � ))

We now enode M's transition funtion Æ. To this end, we need some more

auxiliary programs. First, we devise a program �

=

that relates a tape ell

to the orresponding ell in suessor on�gurations. This orresponding ell

is identi�ed by having the same C-value. To ensure that we reah the diret

suessor on�guration, we additionally require the ounter C to beome 0 only

one on the way.

�

0!

:= (x;:�

C=0

?)

�

;x;�

C=0

?; (x;:�

C=0

?)

�

�

=

:= �

0!

\

p(n)�1

\

i=0

( (

i

?;x

+

; 

i

?) [ (:

i

?;x

+

;:

i

?) )

Seond, we de�ne a program �

q;a;M

for eah (q; a;M) 2 Q � � � fL;R;Ng.

Intuitively, the purpose of these programs is as follows: if a state s represents

the head position of a on�guration , then enforing the existene of an �

q;a;M

-

suessor of s ensures that  has a suessor on�guration that is produed by

writing a, moving aording to M , and swithing to state q.

�

q;a;N

:= �

=

; (q ^ a)?

�

q;a;R

:= :�

C=N�1

?;�

=

; a?;x; q?

�

q;a;L

:= :�

C=0

?; (�

=

\ (x

�

; (q ^ [x℄a)?);x)
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The left-most omponents of �

q;a;R

and �

q;a;L

ensure that we never make a right

move on the right end of the tape, and never a left move on the left end of the

tape.

Now we are able to formalise Æ. In an existential state, we �nd one suessor

on�guration. In a universal state, all suessor on�gurations are present in

the model. Finally, the label of any tape ell whih is not under the tape head

remains the same in the following on�guration.

'

Æ

:= [x

�

℄

�

^

q2Q

9

;a2�

�

q ^ a !

_

(p;b;M)2Æ(q;a)

h�

p;b;M

itt

�

^

^

q2Q

8

;a2�

�

q ^ a !

^

(p;b;M)2Æ(q;a)

h�

p;b;M

itt

�

^

^

a2�

( :h ^ a ! [�

=

℄a )

�

It remains to desribe aeptane of the mahine. Sine all omputation paths

of M are �nite and on�gurations wqw

0

with q 2 Q

8

[ Q

9

have at least one

suessor on�guration, it suÆes to require that the state q

r

never appears:

'

a

:= [x

�

℄:q

r

Altogether, the mahine's behaviour is desribed by the formula

'

M;w

:= '

in

^ '

gen

^ '

start

^ '

Æ

^ '

a

Sine j'

M;w

j is polynomial in jMj and jwj, the following lemma together with

Daneki's 2-ExpTime upper bound yields Theorem 1.

Lemma 2. w 2 L(M) i� '

M;w

is satis�able.

Proof. \if". Let K = (S; f

a

�! j a 2 Ag; L) be a model of '

M;w

, and let

s

ini

2 S suh that K; s

ini

j= '

M;w

. We indutively de�ne an aeptane tree T

of M on w. By Lemma 1, the existene of suh a tree implies that w 2 L(M)

as required.

For a node � of T , we use w

�

q

�

w

0

�

to denote the (omponents of) the on�g-

uration that labels � . The indutive de�nition of T proeeds in steps 1; 2; 3; : : :

as follows: in the i-th step, we de�ne the omponents w

�

and q

�

for all nodes

� on level i� 1 and the omponent w

0

�

for all nodes � on level i� 2 (where the

root is on level 0). Finally, in a \�nishing o�" step we de�ne the omponents w

0

�

for all nodes � that have no suessors (i.e., where q

�

2 fq

a

; q

r

g). Along with T ,

we de�ne a funtion f assigning eah node � of T to a orresponding state in K

suh that the following properties hold:

1. K; f(�) j= q

�

for all nodes � of T ;

2. if � is a suessor of � in T , then there are states s

0

; : : : ; s

k

, with k =

jw

0

�

j+ jw

�

j, suh that

(a) f(�) = s

0

, f(�) = s

k

;

(b) s

i

x

�! s

i+1

, and for i < k;

() K; s

i

j= a if a is the i+ 1-st symbol of w

0

�

for i < jw

0

�

j;

(d) K; s

jw

0

�

j+i

j= a if a is the i+ 1-st symbol of w

�

for i < jw

�

j.
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For the indution start, take a tree T onstisting of a single node r and set

w

r

:= ", q

r

:= q

0

, and f(r) := s

ini

. Then Property 1 of f is satis�ed by '

start

and Property 2 is trivially satis�ed.

For the indution step, take a node � suh that w

�

and q

�

have already been

de�ned. Assume that q

�

is an existential state. By '

gen

(and by Property 2

of f), there is a unique a 2 � suh that K; f(�) j= a. By Property 1 of f and

'

Æ

, there is a (p; b;M) 2 Æ(q

�

; a) suh that K; f(�) j= h�

p;b;M

itt. Assume that

M = N , i.e.,M does not move the head. By de�nition of �

p;b;N

and due to '

in

,

there thus exists a sequene of states s

0

; : : : ; s

N

suh that s

0

= f(�), s

i

x

�! s

i+1

for i < N , and K; s

N

j= p ^ b. For i < N , let b

i

2 � denote the unique (due to

'

gen

) symbol suh that K; s

i

j= b

i

. Modify the tree as follows:

� Set w

0

�

:= b

0

� � � b

N�(jw

�

j+1)

.

� Introdue a suessor � of � in T . Set w

�

:= b

N�jw

�

j

� � � b

N�1

, q

�

:= p, and

f(�) := s

N

.

The ases of left and right moves are handled analogously. The ase of univer-

sal states is also handled analogously with the di�erene that we introdue a

suessor node in T for every (p; b;M) 2 Æ(q

�

; a).

Finally, the \�nishing o�" phase is done as follows. Let � be a node in T

suh that q

�

2 fq

a

; q

r

g. Sine, by de�nition of ATMs, q

0

is either existential or

universal, there exists a predeessor � of � in T . Assume that � was introdued

for some (p; b;M) 2 Æ(q

�

; a) with M = L. Then set w

0

�

:=  � b � w

0

�

�

, where

 is the right-most symbol of w

�

and w

0

�

�

is obtained from w

0

�

by deleting the

left-most symbol. The ases of right and no moves are handled analogously.

We leave it as an exerise to show that the root of T is labelled with the initial

on�guration, and that if � is a suessor of � in T , then w

�

q

�

w

0

�

is a suessor

on�guration of w

�

q

�

w

0

�

.

\only if". Assume that T is an aeptane tree for M on w with set of nodes

N . If � 2 N is a node and � is labelled with wqw

0

, we use q

�

to denote q, w

i

�

to denote the i-th symbol of ww

0

, for i < N , and h

�

to denote the length of w

(i.e., the head position). Construt a Kripke struture K = (S; f

a

�! j a 2 Ag; L)

as follows:

� S = N � f0; : : : ; N � 1g.

� (�; i)

x

�!(�; j) if � = � and j = i+ 1

or if i = N � 1, j = 0, and � is a suessor of � in T ;

� q 2 L((�; i)) if q = q

�

and i = h

�

, for all q 2 Q;

� a 2 L((�; i)) if w

i

�

= a, for a 2 �;

� 

j

2 L((�; i)) if the j-th bit of i is one, for j < N .

It is tedious but straightforward to verify that K; (r; 0) j= '

M;w

, where r 2 N

denotes the root of T . a

There are two interesting things to be noted about the redution: �rst, it only

uses a single atomi program x. And seond, the proof of Lemma 2 shows that,

if the formula '

M;w

is satis�able, then it is satis�able in a tree-shaped model

(as onstruted in the \only if" diretion). Thus, even satis�ability of IPDL

formulas in tree models is 2-ExpTime-hard. This is surprising sine the main

problem in proving upper bounds for IPDL is its lak of the tree model propery.
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Note that IPDL models need not even be direted ayli graphs: the formula

hx \ y

�

itt ^ [y℄ff introdued in Setion 2.1 enfores a reexive x-loop. If we

modify this formula to hx

+

\ y

�

itt ^ [y℄ff ^ '

in

, with '

in

as de�ned in the

redution, we even obtain a yle of at least exponential length.

To de�ne tree-shaped models in a preise way, assoiate with eah Kripke

struture K = (S; f

a

�! j a 2 Ag; L) an edge-labelled direted graph G

K

:=

(V

K

; E

K

) with

V

K

:= S

E

K

:= f(s; a; t) j s

a

�! tg:

Now, K is alled a tree struture if G

K

is onneted and ayli and eah state

s 2 S has at most a single inoming edge. An IPDL formula is alled tree

satis�able if it is satis�able in a tree struture. By the above observations, we

obtain the following orollary.

Corollary 1. Tree satis�ability in IPDL over a singleton set of atomi pro-

grams is 2-ExpTime-omplete.

x4. Strengthening the result. As noted in the introdution, the test op-

erator of IPDL is not very natural when IPDL is viewed as a desription logi.

Therefore, our next aim is to eliminate tests from the above proof. To start, note

that we an easily modify the redution to ontain tests of atomi propositions,

only: eah omplex test '? an be replaed with the atomi test p

'

?, p

'

a fresh

atomi proposition, if we add the onjunt [x

�

℄(' $ p

'

) to '

M;w

. However,

the next theorem shows that tests an even be ompletely omitted. We all the

variant of IPDL that is obtained by disallowing the test operator test-free IPDL.

Theorem 2. Satis�ability of test-free IPDL is 2-ExpTime-omplete.

Proof. As the upper bound follows from Daneki's results, we onentrate on

the lower bound and present a satis�ability preserving and polynomial redution

from IPDL to test-free IPDL. Together with Theorem 1, we obtain the desired

result.

Let ' be an IPDL formula with  

1

?; : : : ;  

n

? all test programs ourring in

'. Assume that a

1

; : : : ; a

m

are all atomi programs ourring in '. Take new

atomi programs b

1

; : : : ; b

n

and d, and let

'

0

:= b' ^ [(a

1

[ : : : [ a

m

)

�

℄

�

[d℄ff ^

n

^

i=1

( 

i

$ hb

i

\ d

�

itt)

�

where b' denotes the result of replaing eah program  

i

? in ' with (b

i

\ d

�

), for

i = 1; : : : ; n. Clearly, '

0

is test-free.

Now suppose that '

0

is satis�able, i.e., it has a model K. Let s

0

be a

state with K; s

0

j= '

0

. Take the restrition K

0

of K to the set of states fs j

s

0

(a

1

[:::[a

m

)

�

���������! sg. By the seond onjunt of '

0

, for all states s of K

0

we have

s

 

i

?

���! s i� s

b

i

��! s. Thus, K being a model of the �rst line of '

0

implies that K

is also a model of '.

Conversely, let K be a model of '. Construt a Kripke struture K

0

from K

by interpreting d as the empty program and the programs b

1

; : : : ; b

n

by setting
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s

b

i

��! s

0

i� s

 

i

?

���! s

0

. Thus, b

i

onsists of reexive loops at preisely those points

where  

i

is true. Clearly, K

0

is a model of '

0

. a

The proof of Theorem 2 relies on the ability to add reexive loops to points

in a Kripke struture. Sine, in ontrast, Theorem 1 aptures the ase of tree

strutures, it is a natural question whether tree satis�ability of test-free IPDL

is still 2-ExpTime-hard. By re�ning the proof of Theorem 1, we answer this

question to the aÆrmative. A orresponding upper bound is again obtained

from Daneki's result.

Theorem 3. Tree satis�ability of test-free IPDL is 2-ExpTime-omplete.

Again, we redue the word problem for exponentially spae bounded ATMs.

Let M be suh an ATM and let p be a polynomial suh that the length of

every omputation path of M on w 2 �

n

is bounded by 2

2

p(n)

, and all the

on�gurations wqw

0

in suh omputation paths satisfy jww

0

j � 2

p(n)

. Let w =

a

0

; : : : ; a

n�1

be an input to M.

The essential idea to ompensate for the lak of test operators is to enode

the ounter C using atomi programs instead of atomi propositions. To do this,

we have to give up the idea that a single tape ell is represented by a single

state. Instead, a tape ell is represented by a sequene s

0

; : : : ; s

p(n)

of states. In

this sequene, eah state s

i

is onneted to s

i+1

by one of the atomi programs



i=0

and 

i=1

. Thus, we obtain a sequene 

0=t

0

; : : : ; 

p(n)�1=t

p(n)�1

of atomi

programs that enodes the ounter C via the bit sequene t

0

; : : : ; t

p(n)�1

. As in

the original redution, the alphabet symbol found in a tape ell and the ATM

state are enoded using atomi propositions. We use the following signature:

� atomi propositions q 2 Q and a 2 � as in the original redution;

� programs 

i=t

with i < p(n) and t 2 f0; 1g for representing the ounter C

as desribed above;

� a program x for going to the next tape ell of the same on�guration;

� a program s for going to the �rst tape ell of suessor on�gurations;

� additional atomi propositions m

q;a

, q 2 Q and a 2 �, that will be used as

\markers" for dealing with left moves.

To illustrate the representation of tape ells via multiple states, assume that p(n)

is 3 and onsider the tape ell number four (i.e., 100 in binary). Assume that

the symbol in this ell is a, that the head is on the ell, and that the urrent

state is q. This tape ell is modelled by a sequene of states of the form

a a a a

q q q q

�



0=1

���!�



1=0

���!�



2=0

���!�

Con�gurations are then modelled by onatenating suh sequenes using the

atomi program x.

Let P be the set of all programs listed above. We again use N to abbreviate

2

p(n)

and de�ne further abbreviations as follows:

� 

i

:= 

i=0

[ 

i=1

for i < p(n), i.e., ounter programs enoding bit number i;

�  := 

0

[ � � � [ 

p(n)�1

, i.e., the union of all ounter programs;
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� 

true

:= 

0=1

[ � � � [ 

p(n)�1=1

, i.e., ounter programs enoding a bit that is

set;

� 

false

:= 

0=0

[ � � � [ 

p(n)�1=0

, i.e., ounter programs enoding a bit that is

not set;

� �(p

1

[ � � � [ p

k

) :=

[

p2Pnfp

1

;:::;p

k

g

p for p

1

; : : : ; p

k

2 P , i.e., the union of

all relevant programs exept p

1

; : : : ; p

k

;

� u :=

[

p2P

p, i.e., the union of all relevant programs.

The following formula '

sane

ensures that all paths in models of the redution

formula exhibit the expeted pattern of programs, whih an be desribed by

the regular expression (

0

; � � � ; 

p(n)

; (x[s))

�

(Lines 1 to 4). It also enfores that

the program s appears exatly after those tape ells with number N �1 (Lines 5

to 7).

'

sane

:= [�

0

℄ff ^

[u

�

℄

�

p(n)�2

^

i=0

[

i

;�

i+1

℄ff ^

[

p(n)

;�(x [ s)℄ff ^

[(x [ s);�

0

℄ff ^

[

0=1

; � � � ; 

p(n)�1=1

;x℄ff ^

[

0

; 

�

; 

false

; 

�

; s℄ff ^

[

0=0

; 

�

; s℄ff

�

We also want that any two states are onneted by at most a single atomi

program. Sine this already follows from the de�nition of tree strutures, there

is no need to expliitly enfore it (this would be simple).

Apart from the additional '

sane

, the redution formula '

M;w

will onsist of

the same onjunts as in the proof of Theorem 1, only in a di�erent formulation.

We start with enoding inrementation of the ounter C modulo N :

�

k;t

:= 

0=1

; � � � ; 

k�1=1

; 

k=t

; 

�

; (x [ s); 

0

; � � � ; 

k�1

; 

k=t

�

0

k;t

:= ((

0

; � � � ; 

k�1

) \ (

�

; 

false

; 

�

)); 

k=t

; 

�

; (x [ s); 

0

; � � � ; 

k�1

; 

k=1�t

'

in

:= [u

�

℄

�

p(n)�1

^

k=0

^

t2f0;1g

[�

k;t

℄ff ^

p(n)�1

^

k=0

^

t2f0;1g

[�

0

k;t

℄ff

�

The idea is the same as in the orresponding formula in the proof of the original

redution: a bit is toggled if all bits stritly lower have value one, and kept

otherwise. Note that �

k;t

relates the �rst element of a sequene enoding a tape

ell whose bits 0 to k � 1 have value one and whose k-th bit has value t to

the k + 1-st state of a suessor tape ell whose k-th bit has also value t. By

using [�

k;t

℄ff, suh unwanted situations are forbidden implying that suessor
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ells have the orret value of the k-th bit. The program �

0

k;t

an be understood

similarly.

We now enode some basi fats about ATMs: that all the states in a sequene

representing a single tape ell are assoiated with a unique alphabet symbol and

with a unique state (or no state at all). We also ensure that there is not more

than one head per on�guration. As in the original redution, it is not neessary

to state that there is at least one head. We again use the formula h :=

W

q2Q

q.

'

gen

:= [u

�

℄

�

_

a2�

a ^

^

a;b2�;a6=b

:(a ^ b) ^

^

q;p2Q;q 6=p

:(q ^ p) ^

^

q2Q

(q ! [℄q) ^ (hiq ! q) ^

^

a2�

(a! [℄a) ^ (hia! a) ^

h! [

�

;x; (�s)

�

℄:h

�

Next, we desribe the initial on�guration.

'

start

:= q

0

^ a

0

^ h

0=0

; � � � ; 

p(n)=0

itt ^

[

�

;x℄( a

1

^

[

�

;x℄( a

2

^

� � �

[

�

;x℄( a

n�1

^ [

�

;x; (�s)

�

℄2 ) � � � ))

The next step is to enode M's transition funtion Æ. We �rst onstrut a

program that relates the �rst state representing a tape ell to the last state

representing the same ell in suessor on�gurations.

�

=

:= ((�s)

�

; s; (�s)

�

) \

p(n)�1

\

j=0

(

�

; 

j=0

;u

�

; 

j=0

; 

�

) [ (

�

; 

j=1

;u

�

; 

j=1

; 

�

)

Two notes are in order. First, using �

=

inside a diamond, as we shall do below,

will produe a sequene of tape ells and on�gurations as expeted due to

the formulas '

sane

and '

in

. Seond, �

=

works as expeted only sine we are

onsidering tree strutures. On arbitrary strutures, �

=

will relate the tape

ells with the same number in suessive on�gurations as desired, but possibly

also additional ones: if there is more than a single path between two states, the

program may relate tape ells that do not have the same number. Clearly, this

ase is irrelevant on tree strutures.

Next, we de�ne a formula '

q;a;M

for eah (q; a;M) 2 Q� ��fL;R;Ng. The

purpose of these formulas is similar to that of the programs �

q;a;M

in the original

redution: if the state s is the �rst state of a sequene representing a tape ell

arrying the head position in the urrent on�guration , then enforing '

q;a;M

to be true at s ensures that  has a suessor on�guration that is produed by

writing a, moving aording toM , and swithing to state q. For dealing with left



2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 13

moves, we use the marker propositions m

q;a

: if m

q;a

is true in the last state of a

tape ell, then the head has been on this ell in the previous on�guration, and

the mahine moved left, wrote a, and swithed to state q in its last transition.

'

q;a;N

:= h�

=

i(a ^ q)

'

q;a;R

:= h�

=

i(a ^ hx; 

p(n)

iq) ^ [

0=1

; � � � ; 

p(n)=1

℄ff

'

q;a;L

:= h�

=

im

q;a

^ [

0=0

; � � � ; 

p(n)=0

℄ff

The last onjunts of '

q;a;R

and '

q;a;L

ensure that we never make a right move

on the right end of the tape, and never a left move on the left end of the tape.

There is no need to enfore that m

q;a

holds either in all or in no state of the

state sequene representing a ell. Only ourrenes of m

q;a

in the last state of

suh a sequene are relevant.

Now we are able to formalize Æ. The idea is the same as in the original

redution with the di�erene that we use the marker m

q;a

for transitions moving

to the left. Also, we have to be areful to use the program �

=

only in states

that are the �rst state in the sequene representing a tape ell. To this end, we

employ the program '

�rst

= h

p(n)

itt.

'

Æ

:= [u

�

℄

�

^

q2Q

9

;a2�

�

(a ^ q ^ '

�rst

) !

_

(p;b;M)2Æ(q;a)

'

p;b;M

�

^

^

q2Q

8

;a2�

�

(a ^ q ^ '

�rst

) !

^

(p;b;M)2Æ(q;a)

'

p;b;M

�

^

^

q2Q;a2�

( m

q;a

! q ^ [x℄a ) ^

^

a2�

( (a ^ :h ^ '

�rst

)! [�

=

℄a)

�

As in the original redution, to desribe aeptane of the ATM it suÆes to

state that the rejeting state q

r

never appears:

'

a

:= [u

�

℄:q

r

:

Altogether, the mahine's behaviour is desribed by the formula

'

M;w

:= '

sane

^ '

in

^ '

gen

^ '

start

^ '

Æ

^ '

a

:

The following lemma an be proved analogously to Lemma 2.

Lemma 3. w 2 L(M) i� '

M;w

is satis�able in a tree model.

Sine j'

M;w

j is polynomial in jMj and jwj, Lemma 2 yields Theorem 3.

Note that we do not obtain an analogue of Corollary 1 sine it is essential for

the modi�ed redution to use more than a single program. Indeed, we leave the

omplexity of tree satis�ability in test-free IPDL with a single atomi program

as an open problem.
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x5. Conlusion. We have proved that satis�ability in IPDL is 2-ExpTime-

hard, and that this lower omplexity bound applies even if we disallow the test

operator and onsider only tree strutures. As further work, it would be inter-

esting to look for fragments of IPDL that are still ExpTime-omplete, and thus

not harder than PDL. Indeed, it seems possible that the removal of any program

operator from IPDL, exept test, results in a logi that is not 2-ExpTime-hard.

This is obviously true for the intersetion operator, as its removal yields plain

PDL [9℄ whih is ExpTime-omplete. It is also true for the Kleene star sine

test-free IPDL without Kleene-star is known to be PSpae-omplete [22℄. For

IPDL without either omposition or union, the omplexity of satis�ability is

open. We believe that IPDL without omposition is ExpTime-omplete.
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