THE JOURNAL OF SYMBOLIC LOGIC
Volume 00, Number 0, XXX 0000

2-EXPTIME LOWER BOUNDS FOR PROPOSITIONAL DYNAMIC
LOGICS WITH INTERSECTION

MARTIN LANGE AND CARSTEN LUTZ

Abstract. In 1984, Danecki proved that satisfiability in IPDL, i.e., Propositional Dy-
namic Logic (PDL) extended with an intersection operator on programs, is decidable in
deterministic double exponential time. Since then, the exact complexity of IPDL has
remained an open problem: the best known lower bound was the EXPTIME one stem-
ming from plain PDL until, in 2004, the first author established ExpSrACE-hardness. In
this paper, we finally close the gap and prove that IPDL is hard for 2-ExpTiME, thus
2-ExpTIME-complete. We then sharpen our lower bound, showing that it even applies to
IPDL without the test operator interpreted on tree structures.

§1. Introduction. Building on a proposal by Pratt [25], Fischer and Ladner
introduced propositional dynamic logic (PDL) as a logical system for reasoning
about programs [9]. Since its invention in 1979, PDL has undergone countless
modifications and extensions, mainly for two purposes: first, PDL was enriched
with additional expressive means to capture properties of programs that cannot
be expressed in basic PDL [28, 15, 29]; and second, several variants of PDL have
been proposed with the goal of adapting the original formalism to completely
new applications such as knowledge representation [10, 27, 21] and querying of
semi-structured data [1, 2]. In the last years, these new applications have been
the main driving force behind the persisting interest in the PDL family of modal
logics. Many of PDL’s variants are discussed in the surveys and monograph by
Harel, Kozen, and Tiuryn [12, 18, 13].

In this paper, we study IPDL, the extension of PDL with an intersection op-
erator on programs. Apart from being a natural extension from a theoretical
viewpoint, there are two application-driven motivations for considering IPDL:
first, IPDL is capable of capturing certain aspects of concurrency, thus belong-
ing to a group of several PDL variants whose purpose is to allow reasoning about
concurrent programs [17, 24, 14, 11, 23]. Second, IPDL may be viewed as a natu-
ral and powerful description logic (DL) [4], and thus has interesting applications
as a knowledge representation tool in artificial intelligence. In particular, IPDL
is closely related to the description logic AL’CQeg, i.e., the extension of the well-
known DL ALC ¢, [26, 3, 10] with an intersection operator on roles as considered
e.g. in [8, 5, 20, 22]. The main difference between IPDL and ALC'). is that the

reg

© 2000, Association for Symbolic Logic
0022-4812/00,/0000-0000/$00.00

2 MARTIN LANGE AND CARSTEN LUTZ

latter is usually defined without the test operator, as this operator is not very
natural from a knowledge representation perspective.

The most important reasoning problems in description logic are satisfiability
and subsumption, where the latter corresponds to the validity of implications
¢ — 1 and can easily be reduced to (the complement of) the former. Still,
the computational complexity of deciding satisfiability in IPDL has never been
exactly determined: a 2-EXPTIME upper bound was established by Danecki in
1984 [7], but is not matched by the EXPTIME lower bound inherited from PDL
[9]. In a recent attempt at improving the lower bound, the first author showed
that IPDL is at least EXPSPACE-hard [19]. The purpose of the current paper is
to close this gap, i.e., to determine the exact computational complexity of deciding
satisfiability in IPDL.

We start with the proof of a 2-EXPTIME lower bound for satisfiability in IPDL
by reducing the word problem of exponentially space bounded alternating Turing
machines (ATMs). Thus, the complexity of IPDL is determined as 2-EXPTIME-
complete. Interestingly, this is also the complexity of satisfiability in several
other variants of PDL for reasoning about concurrent programs. Examples in-
clude PDL with programs specified by concurrent automata [14] and PDL with
interleaving regular expressions [23].

Our first proof of 2-EXPTIME hardness has two notable properties: first, it
even applies if we admit only a single program and restrict models to tree struc-
tures. This is surprising since the main difficulty in obtaining upper bounds for
IPDL is its lack of the tree model property [7]. Second, our reduction relies on
the presence of the test operator which is, as noted above, usually omitted in
description logics. Therefore, as a next step we reduce satisfiability in IPDL
to satisfiability in test-free IPDL. Thus, the latter is also 2-EXPTIME complete.
This additional result, however, does not anymore capture the case of tree mod-
els as it relies on the presence of models in which states have reflexive loops. For
this reason, we finally exhibit another, more intricate reduction of the word prob-
lem for exponentially space bounded ATMs showing that even test-free IPDL on
tree-structures is 2-EXPTIME hard.

§2. Preliminaries. We first give the syntax and semantics of propositional
dynamic logic with intersection, and then discuss some basics about alternating
Turing machines that are needed for the subsequent reductions.

2.1. Propositional Dynamic Logic with intersection. Let P = {p,q,...}
be a countably infinite set of atomic propositions which includes tt and £f. Let
A ={a,b,...} be a countably infinite set of atomic program names. Formulas
o and programs a of IPDL are defined by the following syntax rules:

¢ = g | Ve | mp | (a)y
a == a | alUa | ana | asa | «a

Sl

where ¢ ranges over P, and a ranges over A. We will use the standard abbrevi-
ations 9 Atp 1= =(2p V=), o = Y =2V, p & h = (o = P) A (P = @),
[a]p := =(a)=p, and a™ := a;a*. For n € N, we write a™ to denote the n-fold
composition of the program a.

2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 3

Since we will sometimes have to write quite complex formulas and programs,
it is convenient to explicate operator precedence. Concerning formula operators,
we use the usual conventions that —, (a), and [@] have higher precedence than
A and V, which in turn have higher precendence than — and . For programs,
-* has higher precedence than ;.

IPDL formulas are interpreted in Kripke structures. A Kripke structure is
a triple (S§,{-% | a € A},L) with S a set of states, = a binary relation on
states for every a € A, and L : S — 27 a labelling of states with sets of
atomic propositions such that tt € L(s) and £f ¢ L(s) for all s € S. Let
K =(8,{- | a € A}, L) be such a structure. The extension of the accessibility

relations “~*5” to non-atomic programs and the consequence relation “=" of
IPDL are defined by simultaneous induction:

PR if JueSst suandu-t

PN it s tors-Sst

PN if s tands-Sst

PR iff EInEN,sO‘—nMwhere

Vs, t €S sa—0>s, and s "™ tiff s -9 ¢
s 2t iff @ s=tand K,sE¢p
K,skEq ifft ¢ eL(s)

K,sEpvy iff KskEgporkKsEY
K,sE -y iff KshEoe
K,sE(a)p iff 3JteSst.s—tandK,tE¢p
A formula ¢ is satisfiable if there exists a Kripke structure K and a state s of IC
such that K, s = ¢. Such a structure is called a model of .
As examples, consider the following two IPDL formulas:

(x Ny*)tt A [y]£f [x*]((x)tt Al(z;z*) N tt?]ff)

It is not hard to verify that the left-hand formula enforces a reflexive z-loop and
that the right-hand formula enforces an infinite z-path that does not loop back
to some state.

2.2. Alternating Turing machines. An Alternating Turing Machine (ATM)
is of the form M = (Q, X, T, qo, A). The set of states Q@ = Q3 Qv {q.} W {g,}
consists of existential states from Qs, universal states from Qv, an accepting
state q,, and a rejecting state q,-; X is the input alphabet and T' the work alphabet
containing a blank symbol O and satisfying ¥ C T'; qo € Q3 U Qv is the starting
state; and the transition relation 9§ is of the form

0 CQxI'x@Q@xITx{L,R,N}.

We will write §(q,a) for {(¢',b, M) | (¢,a,q',b, M) € §}. As usual, we assume
that ¢ € Q3 U Qv implies §(q,b) # @ for all b € T and ¢ € {q,,q-} implies
5(q,b) =0 for all b e T.

A configuration of an ATM is a word wqw' with w,w’ € T'* and ¢ € Q. The
intended meaning is that the tape contains the word ww' (with only blanks
before and behind it), the machine is in state ¢, and the head is on the leftmost

4 MARTIN LANGE AND CARSTEN LUTZ

symbol of w'. The successor configurations of a configuration wqw' are defined
in the usual way in terms of the transition relation é. A halting configuration is
of the form wquw’ with ¢ € {¢a., ¢}

A computation path of an ATM M on a word w is a (finite or infinite) se-
quence of configurations cy,ca,... such that ¢; = gow and c¢;41 is a successor
configuration of ¢; for i > 0. All ATMs considered in this paper have only finite
computation paths on any input. Since this case is simpler than the general one,
we define acceptance for ATMs with finite computation paths, only, and refer
to [6] for the full definition. Let M be such an ATM. A halting configuration
is accepting iff it is of the form wg,w’. For other configurations ¢ = wquw'’, the
acceptance behaviour depends on ¢: if ¢ € @3, then ¢ is accepting iff at least
one successor configuration is accepting; if ¢ € Qv, then ¢ is accepting iff all suc-
cessor configurations are accepting. Finally, the ATM M with starting state ¢
accepts the input w iff the initial configuration gow is accepting. We use L(M)
to denote the language accepted by M, i.e., L(M) = {w € ¥* | M accepts w}.

To obtain a witness for the acceptance of an input by an ATM, it is common
to arrange configurations in a tree. Such an acceptance tree of an ATM M
with starting state ¢o on a word w is a finite tree whose nodes are labelled with
configurations such that

e the root node is labelled with the initial configuration gow;

e if a node s in the tree is labelled with wqw’, ¢ € Q3, then s has exactly
one successor, and this successor is labelled with a successor configuration
of wqw’;

e if a node s in the tree is labelled with wquw’, ¢ € Qv, then there is exactly
one successor of s for each successor configuration of wquw’;

e leaves are labelled with accepting halting configurations.

The following is immediate.

LEMMA 1. Let M be an ATM with only finite computation paths. Then there
exists an acceptance tree of M on w iff M accepts w.

Note that, if computations of alternating Turing machines are regarded as a
game, then an acceptance tree corresponds to a winning strategy for the exis-
tential player.

§3. The basic result. The aim of this section is to prove our basic result:
2-ExXPTIME-hardness of satisfiability in IPDL. The proof is by reduction of the
word problem of exponentially-space bounded ATMs, and resembles the tech-
niques used in [30, 23, 16]. Together with the 2-ExpPTIME upper bound proved
by Danecki [7], we thus obtain the following:

THEOREM 1. Satisfiability in IPDL is 2-EXPTIME-complete.

According to Theorem 3.4 of [6], there is an exponentially space bounded ATM
M whose word problem is 2-EXPTIME-hard. According to Theorem 2.6 of the
same paper, we may w.l.o.g. assume that there exists a polynomial p such that
the length of every computation path of M on w € X" is bounded by 22”"), and
all the configurations wqw’ in such computation paths satisfy |ww’| < 2P("),

2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 5

Let w =ag---a,—1 € ¥* be an input to M. In the following, we construct an
IPDL formula ¢, over a singleton set A = {z} of atomic programs such that
w € L(M) iff o a0 is satisfiable. Intuitively, ¢ o, will be constructed such that
its models correspond to an acceptance tree of M on w. In such models, each
state represents a tape cell of a configuration of M, and the program x indicates
both “moving to the next tape cell in the same configuration” and “moving
to the first tape cell of a successor configuration”. We use the set of atomic
propositions Q UT' U {co, ... ,Cp(n)—1}, Whose intuitive meaning is as follows:

e ¢ € () is true in a state of the model if the head of M is on the corresponding
tape cell in the corresponding configuration while the machine is in state g;
e ¢ € I'is true if a is the symbol on the corresponding tape cell;
® Cyp(n)—1;- -+ ,Co represent a counter C' in binary coding for counting the 2v(n)
tape cells of configurations with the leftmost cell having counter value 0.
Take for example a configuration such that the tape head is on the third cell from
the left, the machine is in state ¢, and the tape is labelled with ajas - - agpmy_1.
This configuration is modelled by a sequence of states of the form

Cp(n)—1
q €o
Co C1 C1 CoQ Cp
ap as as aq as Aop(n) _1
xr T xr T xr T
e S e e e —> e — .. 3 e

Successive configurations are modelled by connecting such sequences with the
program .

We now start to assemble the reduction formula ¢ o, Let N abbreviate 27(")
in what follows. We will often need the following auxiliary formulas stating that
the value of the counter C' is zero and N — 1, respectively:

p(n)—1 p(n)—1
Xc=0 = /\ —C; and XC=N-1 ‘= /\ c;
i=0 =0

Next, we need an auxiliary formula ¢;,. which ensures that the value of C is
incremented modulo N when moving from a state to one of its z-successors.
A regular incrementation corresponds to moving to the successor cell within
the same configuration, while the “modulo step” corresponds to moving to a
successor configuration.
p(n)—1 k-1
Qine 1= [x*](/\ (/\ c; = (cr = [x]mek) A (—ey — [x]ck)) A
k=0 j=0
p(n)—1 k-1
—¢j = (cx = [e) A (~ex — [x]ﬁc,ﬂ)))
k=0 j=0
This is essentially just the standard propositional formula for incrementing a
binary counter modulo N: a bit is toggled if all bits strictly lower have value
one, and kept otherwise.
We introduce two auxiliary programs: a program ay,s; that relates any state
to the last cell of the same configuration, and a program as, that does an

6 MARTIN LANGE AND CARSTEN LUTZ

arbitrary amount of x-steps whilst seeing two tape heads. For simplicity, we use
the formula h := \/qu q saying that the tape head is on the current cell.

Qust = ("xc=~n=17;2)*;xc=N=17

asp, = x*;h? T AT 2t
Now we can formalise the general requirements on an ATM: every tape cell is
marked with exactly one symbol from I' and never with two different states, and
no configuration has more than one cell marked with the tape head. At this
point, it is not necessary to explicitly state that each configuration has at least

one cell marked with the tape head: this will be a consequence of other formulas
added below.

Pgen = [x*]((\/a) AN N-@nb)y AN =(aAd) A

ael a,beT b#a 4,9 €Q,q#¢’

(Yo=o = [atas Naz]t))

At the beginning, the input word w = ag - - - a,—1 is written on the tape, followed
by blank symbols O until a state with counter value 0 is reached, which marks
the beginning of a successor configuration.

Pstart = Xc=0 N qo N ag A
[z](ar A
[z](az A
@) ant A
[(z; 7 xc=0?)¥]O) -+))
We now encode M'’s transition function 4. To this end, we need some more
auxiliary programs. First, we devise a program a— that relates a tape cell
to the corresponding cell in successor configurations. This corresponding cell
is identified by having the same C-value. To ensure that we reach the direct
successor configuration, we additionally require the counter C' to become 0 only
once on the way.

aogt = (z;7x0=07)"7;X0=07; (237 x0=07)"
p(n)—1

az = ag N [] ((@%h2ztia?) U (~e%ati—a?))
=0

Second, we define a program ag . s for each (¢,a,M) € Q@ x ' x {L,R,N}.
Intuitively, the purpose of these programs is as follows: if a state s represents
the head position of a configuration ¢, then enforcing the existence of an ay 4,1/-
successor of s ensures that ¢ has a successor configuration that is produced by
writing a, moving according to M, and switching to state q.

QgaN = a=;(gAa)?
Qga,R = “Xo=N-1T5a=;a7;7;q7
“xc=07; (a= N (z%; (¢ A [z]a)?); z)

Qq,a,L

2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 7

The left-most components of a4,z and ay 4,1, ensure that we never make a right
move on the right end of the tape, and never a left move on the left end of the
tape.

Now we are able to formalise §. In an existential state, we find one successor
configuration. In a universal state, all successor configurations are present in
the model. Finally, the label of any tape cell which is not under the tape head
remains the same in the following configuration.

s = [x*](/\ (q/\a - \/ (ocnb,M)tt) A

q€Q3,a€l (p,b,M)€5(q,a)

/\ (q/\a — /\ (ap,b7M)tt> A

qEQy,a€l (p,b,M)€E5(q,a)

N(=hna = [a_]a))

a€cl
It remains to describe acceptance of the machine. Since all computation paths
of M are finite and configurations wqw’ with ¢ € Qv U Q3 have at least one
successor configuration, it suffices to require that the state ¢, never appears:

Pace = [x*]_‘qr

Altogether, the machine’s behaviour is described by the formula

PMaw = Pinc A Pgen A Qstart N Ps N\ Pace

Since |@a1,w| is polynomial in | M| and |w]|, the following lemma together with
Danecki’s 2-EXPTIME upper bound yields Theorem 1.

LEMMA 2. w € L(M) iff o is satisfiable.

PROOF. “if”. Let K = (S,{-% | a € A}, L) be a model of Y xq,,, and let
Sini € S such that IC, sini = @, We inductively define an acceptance tree T'
of M on w. By Lemma 1, the existence of such a tree implies that w € L(M)
as required.

For a node 7 of T', we use w,¢-w’ to denote the (components of) the config-
uration that labels 7. The inductive definition of T' proceeds in steps 1,2,3,...
as follows: in the i-th step, we define the components w, and ¢, for all nodes
7 on level i — 1 and the component w!. for all nodes 7 on level i — 2 (where the
root is on level 0). Finally, in a “finishing oft” step we define the components w!’.
for all nodes 7 that have no successors (i.e., where ¢, € {q.,¢-}). Along with T,
we define a function f assigning each node 7 of T to a corresponding state in K
such that the following properties hold:

1. K, f(7) E ¢, for all nodes 7 of T}
2. if w is a successor of 7 in T, then there are states sg,...,sg, with & =
|wl] + |wx], such that
(@) f(7) = so0, f(m) = s
(b) Si = Sit1 and for i < k;
(c) K,s; = aif ais the i + 1-st symbol of w]. for ¢ < |w’|;
(d) K, 8w |+i F aif ais the i + 1-st symbol of wy for i < [wx|.

8 MARTIN LANGE AND CARSTEN LUTZ

For the induction start, take a tree T constisting of a single node r and set
Wy =€, ¢r := qo, and f(r) := s;n;. Then Property 1 of f is satisfied by @start
and Property 2 is trivially satisfied.

For the induction step, take a node 7 such that w, and ¢, have already been
defined. Assume that ¢, is an existential state. By @gen (and by Property 2
of f), there is a unique a € ¥ such that K, f(7) |E a. By Property 1 of f and
©s, there is a (p,b, M) € 6(¢-,a) such that K, f(7) |= (app,ar)tt. Assume that
M = N,i.e., M does not move the head. By definition of v, 5, y and due to @;n.,
there thus exists a sequence of states s, ..., sy such that so = f(7), 8; — si11
for i < N, and K,sy EpAb. Fori < N, let b; € ¥ denote the unique (due to
@gen) symbol such that IC, s; = b;. Modify the tree as follows:

e Set ’LU,/,. = bo s bN*(\w.,-\+1)~
e Introduce a successor 7 of 7 in T'. Set wy := by _|y, | bn-1, ¢r := p, and
f(m) :=sn.
The cases of left and right moves are handled analogously. The case of univer-
sal states is also handled analogously with the difference that we introduce a
successor node in T for every (p,b, M) € §(¢-,a).

Finally, the “finishing off” phase is done as follows. Let m be a node in T
such that ¢, € {qq,qr}. Since, by definition of ATMs, ¢y is either existential or
universal, there exists a predecessor 7 of 7 in T. Assume that 7 was introduced
for some (p,b, M) € 6(¢r,a) with M = L. Then set w, := c¢-b-w'_, where
¢ is the right-most symbol of w, and w’_ is obtained from w’. by deleting the
left-most symbol. The cases of right and no moves are handled analogously.

We leave it as an exercise to show that the root of T is labelled with the initial
configuration, and that if 7 is a successor of 7 in T, then w,q,w. is a successor
configuration of w,g,w..

“only if”. Assume that T is an acceptance tree for M on w with set of nodes
N. If 7 € N is a node and 7 is labelled with wquw’, we use ¢, to denote ¢, wt
to denote the i-th symbol of ww', for i < N, and h, to denote the length of w
(i.e., the head position). Construct a Kripke structure K = (S,{- | a € A}, L)
as follows:

S=Nx{0,...,N—1}.
(r,i) Z(m,j)if r=mand j =i+ 1
orifi=N—1,7=0, and 7 is a successor of 7 in T’
q € L((1,i)) if g = ¢, and i = h, for all ¢ € Q;
a € L((r,i)) if w’ = a, for a € T;
¢; € L((7,4)) if the j-th bit of ¢ is one, for j < N.

It is tedious but straightforward to verify that K, (r,0) = ¢aq,w, where r € N
denotes the root of T. 4

There are two interesting things to be noted about the reduction: first, it only
uses a single atomic program x. And second, the proof of Lemma 2 shows that,
if the formula g, is satisfiable, then it is satisfiable in a tree-shaped model
(as constructed in the “only if” direction). Thus, even satisfiability of IPDL
formulas in tree models is 2-EXPTIME-hard. This is surprising since the main
problem in proving upper bounds for IPDL is its lack of the tree model propery.

2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 9

Note that IPDL models need not even be directed acyclic graphs: the formula
(x Ny*)te A [y]ff introduced in Section 2.1 enforces a reflexive z-loop. If we
modify this formula to {(z+ N y*)tt A [y]ff A Qine, With @i, as defined in the
reduction, we even obtain a cycle of at least exponential length.

To define tree-shaped models in a precise way, associate with each Kripke
structure K = (S,{-= | @ € A},L) an edge-labelled directed graph G :=
(Vik, Ex) with

Ve = S

Ex := {(s,a,t)|s-t}.
Now, K is called a tree structure if G is connected and acyclic and each state
s € S has at most a single incoming edge. An IPDL formula is called tree
satisfiable if it is satisfiable in a tree structure. By the above observations, we
obtain the following corollary.

COROLLARY 1. Tree satisfiability in IPDL over a singleton set of atomic pro-
grams is 2-EXPTIME-complete.

§4. Strengthening the result. As noted in the introduction, the test op-
erator of IPDL is not very natural when IPDL is viewed as a description logic.
Therefore, our next aim is to eliminate tests from the above proof. To start, note
that we can easily modify the reduction to contain tests of atomic propositions,
only: each complex test ©? can be replaced with the atomic test p,?, p, a fresh
atomic proposition, if we add the conjunct [z*](¢ ¢ py) to Yar,w. However,
the next theorem shows that tests can even be completely omitted. We call the
variant of IPDL that is obtained by disallowing the test operator test-free IPDL.

THEOREM 2. Satisfiability of test-free IPDL is 2-EXPTIME-complete.

PROOF. As the upper bound follows from Danecki’s results, we concentrate on
the lower bound and present a satisfiability preserving and polynomial reduction
from IPDL to test-free IPDL. Together with Theorem 1, we obtain the desired
result.

Let ¢ be an IPDL formula with ¢, 7,... 9,7 all test programs occurring in
. Assume that aq,...,a, are all atomic programs occurring in ¢. Take new
atomic programs by,...,b, and d, and let

g = @/\[(alu...Uam)*]([d]ff/\/\(¢i<—><biﬁd*>tt))

where ¢ denotes the result of replacing each program ;7 in ¢ with (b; Nd*), for
i=1,...,n. Clearly, ¢’ is test-free.
Now suppose that ¢’ is satisfiable, i.e., it has a model K. Let sy be a

state with K,so |= ¢'. Take the restriction K’ of I to the set of states {s |

S0 MCLEL TN s}. By the second conjunct of ¢, for all states s of ' we have

s U7 5 iff 52y s, Thus, K being a model of the first line of ¢’ implies that K
is also a model of ¢.

Conversely, let K be a model of ¢. Construct a Kripke structure X' from K
by interpreting d as the empty program and the programs by, ...,b, by setting

10 MARTIN LANGE AND CARSTEN LUTZ

s 2 o iff s YT o Thus, b; consists of reflexive loops at precisely those points
where 1; is true. Clearly, K’ is a model of ¢'. -

The proof of Theorem 2 relies on the ability to add reflexive loops to points
in a Kripke structure. Since, in contrast, Theorem 1 captures the case of tree
structures, it is a natural question whether tree satisfiability of test-free IPDL
is still 2-ExXPTiME-hard. By refining the proof of Theorem 1, we answer this
question to the affirmative. A corresponding upper bound is again obtained
from Danecki’s result.

THEOREM 3. Tree satisfiability of test-free IPDL is 2-EXPTIME-complete.

Again, we reduce the word problem for exponentially space bounded ATMs.
Let M be such an ATM and let p be a polynomial such that the length of
every computation path of M on w € X" is bounded by 22p(n), and all the
configurations wqw’ in such computation paths satisfy |ww’| < 2P("). Let w =
ag,...,a,_1 be an input to M.

The essential idea to compensate for the lack of test operators is to encode
the counter C' using atomic programs instead of atomic propositions. To do this,
we have to give up the idea that a single tape cell is represented by a single
state. Instead, a tape cell is represented by a sequence so, . . ., S,(,) Of states. In
this sequence, each state s; is connected to s; 1 by one of the atomic programs
¢ijo and ¢;/;. Thus, we obtain a sequence ¢yt - -, Cp(n)—1/t,(,,_, Of atomic
programs that encodes the counter C' via the bit sequence to, ..., t,,)—1. Asin
the original reduction, the alphabet symbol found in a tape cell and the ATM
state are encoded using atomic propositions. We use the following signature:

e atomic propositions ¢ € @ and a € T" as in the original reduction;

e programs c¢;/; with i < p(n) and t € {0, 1} for representing the counter C
as described above;

e a program zx for going to the next tape cell of the same configuration;

e a program s for going to the first tape cell of successor configurations;

e additional atomic propositions m, ., ¢ € @ and a € 3, that will be used as
“markers” for dealing with left moves.

To illustrate the representation of tape cells via multiple states, assume that p(n)
is 3 and consider the tape cell number four (i.e., 100 in binary). Assume that
the symbol in this cell is a, that the head is on the cell, and that the current
state is ¢. This tape cell is modelled by a sequence of states of the form

a a a a
q q q q

Co/1 Cc1/0 C2/0
/ o / o / o

Configurations are then modelled by concatenating such sequences using the
atomic program x.

Let P be the set of all programs listed above. We again use N to abbreviate
27(") and define further abbreviations as follows:

e c;:=cyUcy fori <p(n),ie., counter programs encoding bit number i;

e c:=coU---Ucpp)_1, i€, the union of all counter programs;

2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 11

® Cirue := Co/1 U+ UCp(n)y—1/1, i€, counter programs encoding a bit that is
set;
® Cfalse = Cojo U+ UCp(ny—1/0, 1.€., counter programs encoding a bit that is
not set;
e —(mU---Upy) = U p for pi,...,pi € P, i.e., the union of
PEP\{P1,....p1 }

all relevant programs except pi, ..., Pg;
LIRTRES U p, i.e., the union of all relevant programs.
pEP
The following formula @s,,e ensures that all paths in models of the reduction
formula exhibit the expected pattern of programs, which can be described by
the regular expression (co; -+ ; ¢p(ny: (xUs))* (Lines 1 to 4). It also enforces that
the program s appears exactly after those tape cells with number N — 1 (Lines 5
to 7).
Psane = [—Co]ff A
p(n)—2

(A e et A

=0
[cp(n); —(z U s)|ff A

[(z U s); —co] £ A
[Cos1s - 5 Cp(ny—1/1; TIEE A

[Co; €*; Caise; €5 S]EE A

[cojo; " s|EE)

We also want that any two states are connected by at most a single atomic
program. Since this already follows from the definition of tree structures, there
is no need to explicitly enforce it (this would be simple).

Apart from the additional @gane, the reduction formula pay ,, will consist of
the same conjuncts as in the proof of Theorem 1, only in a different formulation.
We start with encoding incrementation of the counter C' modulo N:

Qit = Cos13 3Ch—1/15Ch/t5C 5 (T US); €03 5 Chat; Chyt

ap = ((co; jer-1) N (€7 Caise; €)); Cryes €5 (T U S);Co3 3 Cr1; Cry1—
p(n)—1 p(n)—1

e = [AN lawdE A AN lahde)
k=0 te{0,1} k=0 te{o0,1}

The idea is the same as in the corresponding formula in the proof of the original
reduction: a bit is toggled if all bits strictly lower have value one, and kept
otherwise. Note that oy, ; relates the first element of a sequence encoding a tape
cell whose bits 0 to k& — 1 have value one and whose k-th bit has value ¢ to
the k& + 1-st state of a successor tape cell whose k-th bit has also value ¢t. By
using [ag¢+]£f, such unwanted situations are forbidden implying that successor

12 MARTIN LANGE AND CARSTEN LUTZ

cells have the correct value of the k-th bit. The program O‘Z,t can be understood
similarly.

We now encode some basic facts about ATMs: that all the states in a sequence
representing a single tape cell are associated with a unique alphabet symbol and
with a unique state (or no state at all). We also ensure that there is not more
than one head per configuration. As in the original reduction, it is not necessary
to state that there is at least one head. We again use the formula h :=\/ seq 1-

Pgen = [Uk]< \/a A /_'(a/\b) A /\—|(qu) A

a€l a,beT,a#b 7,P€Q,q#p

A (@= o)A (g = q) A
7€Q

/\ (@ = [c]a) A ({(c)a — a) A

acl
B [0 (=) Th)
Next, we describe the initial configuration.

Gstart = qo A ao A (Cojoi* "3 Cp(ny/0)tE A
[c;2](a1 A
[¢*;z](az A

[¢";2](an—1 Al 25 (=5)"]0) -+))
The next step is to encode M’s transition function §. We first construct a

program that relates the first state representing a tape cell to the last state
representing the same cell in successor configurations.

s = ((=s)5s (=5)) N
p(n)—1

ﬂ (c*5e5/05u";5¢5/0;¢") U (€55 ¢5/15u75¢515¢7)

7=0
Two notes are in order. First, using a— inside a diamond, as we shall do below,
will produce a sequence of tape cells and configurations as expected due to
the formulas @sane and i,.. Second, a— works as expected only since we are
considering tree structures. On arbitrary structures, a— will relate the tape
cells with the same number in successive configurations as desired, but possibly
also additional ones: if there is more than a single path between two states, the
program may relate tape cells that do not have the same number. Clearly, this
case is irrelevant on tree structures.

Next, we define a formula ¢, 4 as for each (¢,a, M) € @ xI' x {L, R, N}. The
purpose of these formulas is similar to that of the programs aq,.,ar in the original
reduction: if the state s is the first state of a sequence representing a tape cell
carrying the head position in the current configuration c, then enforcing ¢y o,
to be true at s ensures that ¢ has a successor configuration that is produced by
writing a, moving according to M, and switching to state ¢q. For dealing with left

2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 13

moves, we use the marker propositions my,,: if mg,, is true in the last state of a
tape cell, then the head has been on this cell in the previous configuration, and
the machine moved left, wrote a, and switched to state ¢ in its last transition.

Pgan = (a=)(aAq)
Coar = (a=)(aA (z;cP™)q) Alcoss - Comy] EE
Pgar = (a=)mga A [Co/o§ s ;Cp(n)/o]ff

The last conjuncts of p, . r and ¢4 4,1 ensure that we never make a right move
on the right end of the tape, and never a left move on the left end of the tape.
There is no need to enforce that m,, holds either in all or in no state of the
state sequence representing a cell. Only occurrences of m,, in the last state of
such a sequence are relevant.

Now we are able to formalize §. The idea is the same as in the original
reduction with the difference that we use the marker mg , for transitions moving
to the left. Also, we have to be careful to use the program a— only in states
that are the first state in the sequence representing a tape cell. To this end, we
employ the program @ g = (c?™)tt.

Ps = [u*](A ((a/\qASDﬁrst) -\ Sop,b7M) A

g€EQ3,a€l (p,b,M)€S(q,a)
/\ ((a ANgA Soﬁrst) — /\ Pp,b,M) A
7€Qv,a€l (p,b,M)€5(q,a)

/\ (Mmge = qA[z]la) A
qE€Q,ael

/\ ((@aA=hAphirst) = [a=]a))

a€cl

As in the original reduction, to describe acceptance of the ATM it suffices to
state that the rejecting state ¢, never appears:

Pace = [u']7gy.
Altogether, the machine’s behaviour is described by the formula
PMuw = Psane N Pine N Pgen N\ Pstart NP5 N Pace-
The following lemma can be proved analogously to Lemma 2.
LEMMA 3. w € L(M) iff o s satisfiable in a tree model.
Since |pat,0] is polynomial in [M| and |w|, Lemma 2 yields Theorem 3.

Note that we do not obtain an analogue of Corollary 1 since it is essential for
the modified reduction to use more than a single program. Indeed, we leave the
complexity of tree satisfiability in test-free IPDL with a single atomic program
as an open problem.

14 MARTIN LANGE AND CARSTEN LUTZ

§5. Conclusion. We have proved that satisfiability in IPDL is 2-EXPTIME-
hard, and that this lower complexity bound applies even if we disallow the test
operator and consider only tree structures. As further work, it would be inter-
esting to look for fragments of IPDL that are still ExpT1iME-complete, and thus
not harder than PDL. Indeed, it seems possible that the removal of any program
operator from IPDL, except test, results in a logic that is not 2-ExpPTiME-hard.
This is obviously true for the intersection operator, as its removal yields plain
PDL [9] which is EXPTIME-complete. It is also true for the Kleene star since
test-free IPDL without Kleene-star is known to be PSPACE-complete [22]. For
IPDL without either composition or union, the complexity of satisfiability is
open. We believe that IPDL without composition is EXPTIME-complete.

REFERENCES

[1] L. AFANASIEV, P. BLACKBURN, I. DIMITRIOU, B. GAIFFE, E. GORIS, M. MAARX, and
M. DE RUKE, PDL for ordered trees, Journal of Applied Non-Classical Logic, (2005), To
appear.

[2] N. ALECHINA, S. DEMRI, and M. DE RUKE, A modal perspective on path constraints,
Journal of Logic and Computation, vol. 13 (2003), no. 6, pp. 939-956.

[3] F. BAADER, Augmenting concept languages by transitive closure of roles: An alterna-
tive to terminological cycles, Proceedings of the twelfth international joint conference on
artificial intelligence (IJCAI-91) (Sydney, Australia), 1991, pp. 446-451.

[4] F. BAADER, D. L. McGUINESS, D. NARDI, and P. PATEL-SCHNEIDER, The description
logic handbook: Theory, implementation and applications, Cambridge University Press,
2003.

[5] D. CALVANESE, G. DE Giacomo, and M. LENZERINI, On the decidability of query con-
tainment under constraints, Proceedings of the 17th acm sigact sigmod sigart symposium
on principles of database systems (pods’98), 1998, pp. 149-158.

[6] A. K. CHANDRA, D. C. KozEN, and L. J. STOCKMEYER, Alternation, Journal of the
ACM, vol. 28 (1981), no. 1, pp. 114-133.

[7] R. DANECKI, Nondeterministic propositional dynamic logic with intersection is de-
cidable, Proceedings of the fifth symposium on computation theory (Zaboréw, Poland)
(A. Skowron, editor), LNCS, vol. 208, Springer, December 1984, pp. 34-53.

[8] F. M. DoNINI, M. LENZERINI, D. NARDI, and W. NUTT, The complexity of concept
languages, Information and Computation, vol. 134 (1997), no. 1, pp. 1-58.

[9] M. J. FiscHER and R. E. LADNER, Propositional dynamic logic of regular programs,
Journal of Computer and System Sciences, vol. 18 (1979), no. 2, pp. 194-211.

[10] G. DE GiacoMmo and M. LENZERINI, Boosting the correspondence between description
logics and propositional dynamic logics, Proceedings of the twelfth national conference on
artificial intelligence (aaai’94). volume 1, AAAT Press, 1994, pp. 205-212.

[11] R. GOLDBLATT, Parallel action: Concurrent dynamic logic with independent modali-
ties, Studia Logica, vol. 51 (1992), no. 3—4, pp. 551-578.

[12] D. HAREL, Dynamic logic, Handbook of philosophical logic, volume ii (D. M. Gabbay
and F. Guenthner, editors), D. Reidel Publishers, 1984, pp. 496-604.

[13] D. HAREL, D. KozEN, and J. TIURYN, Dynamic logic, MIT Press, 2000.

[14] D. HAREL, R. ROSNER, and M. VARDI, On the power of bounded concurrency III:
Reasoning about programs, Proceedings of the 5th annual IEEE symposium on logic in
computer science (J. C. Mitchell, editor), IEEE Computer Society Press, 1990, pp. 478—-488.

[15] D. HAREL and R. SHERMAN, Looping versus repeating in dynamic logic, Information
and control, vol. 55 (1982), pp. 175-192.

[16] J. JOHANNSEN and M. LANGE, CTLY is complete for double exponential time, Icalp:
Annual international colloquium on automata, languages and programming, 2003.

2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 15

[17] K. ABRAHAMSON, Decidability and expressiveness of logics of processes, Ph.D. thesis,
University of Washington, Seattle, 1980.

[18] D. C. KozeN and J. TIURYN, Logics of programs, Handbook of theoretical computer
science (J. van Leewen, editor), vol. B: Formal Models and Semantics, The MIT Press, 1990,
pp. 789-840.

[19] M. LANGE, A lower complezity bound for propositional dynamic logic with intersection,
Advances in modal logic volume 5 (R. A. Schmidt, I. Pratt-Hartmann, M. Reynolds, and
H. Wansing, editors), King’s College Publications, 2005, To appear.

[20] C. LuTz and U. SATTLER, Mary likes all cats, Proceedings of the 2000 international
workshop in description logics (DL2000) (F. Baader and U. Sattler, editors), CEUR-WS
(http://ceur-ws.org/), no. 33, 2000, pp. 213-226.

[21] C. Lutz and D. WALTHER, PDL with negation of atomic programs, Journal of Applied
Non-Classical Logic, (2005), To appear.

[22] F. MAssAccl, Decision procedures for expressive description logics with role intersec-
tion, composition and converse, Proceedings of the seventeenth international conference
on artificial intelligence (LJCAI-01) (San Francisco, CA) (B. Nebel, editor), Morgan Kauf-
mann Publishers, Inc., August 4-10 2001, pp. 193-198.

[23] A. J. MAYER and L. J. STOCKMEYER, The complezity of PDL with interleaving, The-
oretical Computer Science, vol. 161 (1996), no. 1-2, pp. 109-122.

[24] D. PELEG, Concurrent dynamic logic, Proceedings of the seventeenth annual ACM
symposium on theory of computing, providence, rhode island, may 6-8, 1985, ACM
Press, 1985, pp. 232-239.

[25] V. PRATT, Considerations on floyd-hoare logic, Focs: Ieee symposium on founda-
tions of computer science (focs), 1976.

[26] K. D. ScHILD, A correspondence theory for terminological logics: Preliminary report,
Proceedings of the twelfth international joint conference on artificial intelligence (ijeai-
91) (John Mylopoulos and Ray Reiter, editors), Morgan Kaufmann, 1991, pp. 466-471.

[27] , Combining terminological logics with tense logic, Progress in artificial in-
telligence — 6th portuguese conference on artificial intelligence, EPIA’93 (M. Filgueiras
and L. Damas, editors), Lecture Notes in Artificial Intelligence, vol. 727, Springer-Verlag, 1993,
pp. 105-120.

[28] R. S. STREETT, Propositional dynamic logic of looping and converse is elementarily
decidable, Information and Control, vol. 54 (1982), no. 1-2, pp. 121-141.

[29] M. Y. VARDI, The taming of converse: Reasoning about two-way computations, Pro-
ceedings of the conference on logic of programs (Rohit Parikh, editor), LNCS, vol. 193,
Springer, 1985, pp. 413-424.

[30] M. Y. VARDI and L. STOCKMEYER, Improved upper and lower bounds for modal log-
ics of programs, Proceedings of the seventeenth annual ACM symposium on theory of
computing, providence, rhode island, may 6-8, 1985, ACM Press, 1985, pp. 240-251.

INSTITUT FUR INFORMATIK,
LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN,
GERMANY

INSTITUT FUR INFORMATIK,
TECHNISCHE UNIVERSITAT DRESDEN,
GERMANY

