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2-EXPTIME LOWER BOUNDS FOR PROPOSITIONAL DYNAMIC

LOGICS WITH INTERSECTION

MARTIN LANGE AND CARSTEN LUTZ

Abstra
t. In 1984, Dane
ki proved that satis�ability in IPDL, i.e., Propositional Dy-

nami
 Logi
 (PDL) extended with an interse
tion operator on programs, is de
idable in

deterministi
 double exponential time. Sin
e then, the exa
t 
omplexity of IPDL has

remained an open problem: the best known lower bound was the ExpTime one stem-

ming from plain PDL until, in 2004, the �rst author established ExpSpa
e-hardness. In

this paper, we �nally 
lose the gap and prove that IPDL is hard for 2-ExpTime, thus

2-ExpTime-
omplete. We then sharpen our lower bound, showing that it even applies to

IPDL without the test operator interpreted on tree stru
tures.

x1. Introdu
tion. Building on a proposal by Pratt [25℄, Fis
her and Ladner

introdu
ed propositional dynami
 logi
 (PDL) as a logi
al system for reasoning

about programs [9℄. Sin
e its invention in 1979, PDL has undergone 
ountless

modi�
ations and extensions, mainly for two purposes: �rst, PDL was enri
hed

with additional expressive means to 
apture properties of programs that 
annot

be expressed in basi
 PDL [28, 15, 29℄; and se
ond, several variants of PDL have

been proposed with the goal of adapting the original formalism to 
ompletely

new appli
ations su
h as knowledge representation [10, 27, 21℄ and querying of

semi-stru
tured data [1, 2℄. In the last years, these new appli
ations have been

the main driving for
e behind the persisting interest in the PDL family of modal

logi
s. Many of PDL's variants are dis
ussed in the surveys and monograph by

Harel, Kozen, and Tiuryn [12, 18, 13℄.

In this paper, we study IPDL, the extension of PDL with an interse
tion op-

erator on programs. Apart from being a natural extension from a theoreti
al

viewpoint, there are two appli
ation-driven motivations for 
onsidering IPDL:

�rst, IPDL is 
apable of 
apturing 
ertain aspe
ts of 
on
urren
y, thus belong-

ing to a group of several PDL variants whose purpose is to allow reasoning about


on
urrent programs [17, 24, 14, 11, 23℄. Se
ond, IPDL may be viewed as a natu-

ral and powerful des
ription logi
 (DL) [4℄, and thus has interesting appli
ations

as a knowledge representation tool in arti�
ial intelligen
e. In parti
ular, IPDL

is 
losely related to the des
ription logi
 ALC

\

reg

, i.e., the extension of the well-

known DL ALC

reg

[26, 3, 10℄ with an interse
tion operator on roles as 
onsidered

e.g. in [8, 5, 20, 22℄. The main di�eren
e between IPDL and ALC

\

reg

is that the
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2 MARTIN LANGE AND CARSTEN LUTZ

latter is usually de�ned without the test operator, as this operator is not very

natural from a knowledge representation perspe
tive.

The most important reasoning problems in des
ription logi
 are satis�ability

and subsumption, where the latter 
orresponds to the validity of impli
ations

' !  and 
an easily be redu
ed to (the 
omplement of) the former. Still,

the 
omputational 
omplexity of de
iding satis�ability in IPDL has never been

exa
tly determined: a 2-ExpTime upper bound was established by Dane
ki in

1984 [7℄, but is not mat
hed by the ExpTime lower bound inherited from PDL

[9℄. In a re
ent attempt at improving the lower bound, the �rst author showed

that IPDL is at least ExpSpa
e-hard [19℄. The purpose of the 
urrent paper is

to 
lose this gap, i.e., to determine the exa
t 
omputational 
omplexity of de
iding

satis�ability in IPDL.

We start with the proof of a 2-ExpTime lower bound for satis�ability in IPDL

by redu
ing the word problem of exponentially spa
e bounded alternating Turing

ma
hines (ATMs). Thus, the 
omplexity of IPDL is determined as 2-ExpTime-


omplete. Interestingly, this is also the 
omplexity of satis�ability in several

other variants of PDL for reasoning about 
on
urrent programs. Examples in-


lude PDL with programs spe
i�ed by 
on
urrent automata [14℄ and PDL with

interleaving regular expressions [23℄.

Our �rst proof of 2-ExpTime hardness has two notable properties: �rst, it

even applies if we admit only a single program and restri
t models to tree stru
-

tures. This is surprising sin
e the main diÆ
ulty in obtaining upper bounds for

IPDL is its la
k of the tree model property [7℄. Se
ond, our redu
tion relies on

the presen
e of the test operator whi
h is, as noted above, usually omitted in

des
ription logi
s. Therefore, as a next step we redu
e satis�ability in IPDL

to satis�ability in test-free IPDL. Thus, the latter is also 2-ExpTime 
omplete.

This additional result, however, does not anymore 
apture the 
ase of tree mod-

els as it relies on the presen
e of models in whi
h states have re
exive loops. For

this reason, we �nally exhibit another, more intri
ate redu
tion of the word prob-

lem for exponentially spa
e bounded ATMs showing that even test-free IPDL on

tree-stru
tures is 2-ExpTime hard.

x2. Preliminaries. We �rst give the syntax and semanti
s of propositional

dynami
 logi
 with interse
tion, and then dis
uss some basi
s about alternating

Turing ma
hines that are needed for the subsequent redu
tions.

2.1. Propositional Dynami
 Logi
 with interse
tion. Let P = fp; q; : : : g

be a 
ountably in�nite set of atomi
 propositions whi
h in
ludes tt and ff. Let

A = fa; b; : : : g be a 
ountably in�nite set of atomi
 program names. Formulas

' and programs � of IPDL are de�ned by the following syntax rules:

' ::= q j ' _ ' j :' j h�i'

� ::= a j � [ � j � \ � j �;� j �

�

j '?

where q ranges over P , and a ranges over A. We will use the standard abbrevi-

ations ' ^  := :(:' _ : ), ' !  := :' _  , ' $  := (' !  ) ^ ( ! '),

[�℄' := :h�i:', and �

+

:= �;�

�

. For n 2 N, we write �

n

to denote the n-fold


omposition of the program �.



2-EXPTIME LOWER BOUNDS FOR PDL WITH INTERSECTION 3

Sin
e we will sometimes have to write quite 
omplex formulas and programs,

it is 
onvenient to expli
ate operator pre
eden
e. Con
erning formula operators,

we use the usual 
onventions that :, h�i, and [�℄ have higher pre
eden
e than

^ and _, whi
h in turn have higher pre
enden
e than ! and $. For programs,

�

�

has higher pre
eden
e than ;.

IPDL formulas are interpreted in Kripke stru
tures. A Kripke stru
ture is

a triple (S; f

a

�! j a 2 Ag; L) with S a set of states,

a

�! a binary relation on

states for every a 2 A, and L : S ! 2

P

a labelling of states with sets of

atomi
 propositions su
h that tt 2 L(s) and ff 62 L(s) for all s 2 S. Let

K = (S; f

a

�! j a 2 Ag; L) be su
h a stru
ture. The extension of the a

essibility

relations \

�

�!" to non-atomi
 programs and the 
onsequen
e relation \j=" of

IPDL are de�ned by simultaneous indu
tion:

s

�;�

���! t i� 9u 2 S s.t. s

�

�!u and u

�

�! t

s

�[�

���! t i� s

�

�! t or s

�

�! t

s

�\�

���! t i� s

�

�! t and s

�

�! t

s

�

�

��! t i� 9n 2 N; s

�

n

��! t where

8s; t 2 S : s

�

0

��! s, and s

�

n+1

����! t i� s

�;�

n

����! t

s

'?

��! t i� s = t and K; s j= '

K; s j= q i� q 2 L(s)

K; s j= ' _  i� K; s j= ' or K; s j=  

K; s j= :' i� K; s 6j= '

K; s j= h�i' i� 9t 2 S s.t. s

�

�! t and K; t j= '

A formula ' is satis�able if there exists a Kripke stru
ture K and a state s of K

su
h that K; s j= '. Su
h a stru
ture is 
alled a model of '.

As examples, 
onsider the following two IPDL formulas:

hx \ y

�

itt ^ [y℄ff [x

�

℄

�

hxitt ^ [(x;x

�

) \ tt?℄ff

�

It is not hard to verify that the left-hand formula enfor
es a re
exive x-loop and

that the right-hand formula enfor
es an in�nite x-path that does not loop ba
k

to some state.

2.2. Alternating Turing ma
hines. An Alternating Turing Ma
hine (ATM)

is of the formM = (Q;�;�; q

0

;�). The set of states Q = Q

9

℄Q

8

℄fq

a

g℄ fq

r

g


onsists of existential states from Q

9

, universal states from Q

8

, an a

epting

state q

a

, and a reje
ting state q

r

; � is the input alphabet and � the work alphabet


ontaining a blank symbol � and satisfying � � �; q

0

2 Q

9

[Q

8

is the starting

state; and the transition relation Æ is of the form

Æ � Q� ��Q� �� fL;R;Ng:

We will write Æ(q; a) for f(q

0

; b;M) j (q; a; q

0

; b;M) 2 Æg. As usual, we assume

that q 2 Q

9

[ Q

8

implies Æ(q; b) 6= ; for all b 2 � and q 2 fq

a

; q

r

g implies

Æ(q; b) = ; for all b 2 �.

A 
on�guration of an ATM is a word wqw

0

with w;w

0

2 �

�

and q 2 Q. The

intended meaning is that the tape 
ontains the word ww

0

(with only blanks

before and behind it), the ma
hine is in state q, and the head is on the leftmost
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symbol of w

0

. The su

essor 
on�gurations of a 
on�guration wqw

0

are de�ned

in the usual way in terms of the transition relation Æ. A halting 
on�guration is

of the form wqw

0

with q 2 fq

a

; q

r

g.

A 
omputation path of an ATM M on a word w is a (�nite or in�nite) se-

quen
e of 
on�gurations 


1

; 


2

; : : : su
h that 


1

= q

0

w and 


i+1

is a su

essor


on�guration of 


i

for i � 0. All ATMs 
onsidered in this paper have only �nite


omputation paths on any input. Sin
e this 
ase is simpler than the general one,

we de�ne a

eptan
e for ATMs with �nite 
omputation paths, only, and refer

to [6℄ for the full de�nition. Let M be su
h an ATM. A halting 
on�guration

is a

epting i� it is of the form wq

a

w

0

. For other 
on�gurations 
 = wqw

0

, the

a

eptan
e behaviour depends on q: if q 2 Q

9

, then 
 is a

epting i� at least

one su

essor 
on�guration is a

epting; if q 2 Q

8

, then 
 is a

epting i� all su
-


essor 
on�gurations are a

epting. Finally, the ATM M with starting state q

0

a

epts the input w i� the initial 
on�guration q

0

w is a

epting. We use L(M)

to denote the language a

epted by M, i.e., L(M) = fw 2 �

�

jM a

epts wg.

To obtain a witness for the a

eptan
e of an input by an ATM, it is 
ommon

to arrange 
on�gurations in a tree. Su
h an a

eptan
e tree of an ATM M

with starting state q

0

on a word w is a �nite tree whose nodes are labelled with


on�gurations su
h that

� the root node is labelled with the initial 
on�guration q

0

w;

� if a node s in the tree is labelled with wqw

0

, q 2 Q

9

, then s has exa
tly

one su

essor, and this su

essor is labelled with a su

essor 
on�guration

of wqw

0

;

� if a node s in the tree is labelled with wqw

0

, q 2 Q

8

, then there is exa
tly

one su

essor of s for ea
h su

essor 
on�guration of wqw

0

;

� leaves are labelled with a

epting halting 
on�gurations.

The following is immediate.

Lemma 1. Let M be an ATM with only �nite 
omputation paths. Then there

exists an a

eptan
e tree of M on w i� M a

epts w.

Note that, if 
omputations of alternating Turing ma
hines are regarded as a

game, then an a

eptan
e tree 
orresponds to a winning strategy for the exis-

tential player.

x3. The basi
 result. The aim of this se
tion is to prove our basi
 result:

2-ExpTime-hardness of satis�ability in IPDL. The proof is by redu
tion of the

word problem of exponentially-spa
e bounded ATMs, and resembles the te
h-

niques used in [30, 23, 16℄. Together with the 2-ExpTime upper bound proved

by Dane
ki [7℄, we thus obtain the following:

Theorem 1. Satis�ability in IPDL is 2-ExpTime-
omplete.

A

ording to Theorem 3.4 of [6℄, there is an exponentially spa
e bounded ATM

M whose word problem is 2-ExpTime-hard. A

ording to Theorem 2.6 of the

same paper, we may w.l.o.g. assume that there exists a polynomial p su
h that

the length of every 
omputation path ofM on w 2 �

n

is bounded by 2

2

p(n)

, and

all the 
on�gurations wqw

0

in su
h 
omputation paths satisfy jww

0

j � 2

p(n)

.
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Let w = a

0

� � � a

n�1

2 �

�

be an input toM. In the following, we 
onstru
t an

IPDL formula '

M;w

over a singleton set A = fxg of atomi
 programs su
h that

w 2 L(M) i� '

M;w

is satis�able. Intuitively, '

M;w

will be 
onstru
ted su
h that

its models 
orrespond to an a

eptan
e tree of M on w. In su
h models, ea
h

state represents a tape 
ell of a 
on�guration ofM, and the program x indi
ates

both \moving to the next tape 
ell in the same 
on�guration" and \moving

to the �rst tape 
ell of a su

essor 
on�guration". We use the set of atomi


propositions Q [ � [ f


0

; : : : ; 


p(n)�1

g, whose intuitive meaning is as follows:

� q 2 Q is true in a state of the model if the head ofM is on the 
orresponding

tape 
ell in the 
orresponding 
on�guration while the ma
hine is in state q;

� a 2 � is true if a is the symbol on the 
orresponding tape 
ell;

� 


p(n)�1

; : : : ; 


0

represent a 
ounter C in binary 
oding for 
ounting the 2

p(n)

tape 
ells of 
on�gurations with the leftmost 
ell having 
ounter value 0.

Take for example a 
on�guration su
h that the tape head is on the third 
ell from

the left, the ma
hine is in state q, and the tape is labelled with a

1

a

2

� � � a

2

p(n)

�1

.

This 
on�guration is modelled by a sequen
e of states of the form




p(n)�1

q 


0

.

.

.




0




1




1




2

a 


0

a

1

a

2

a

3

a

4

a

5

a

2

p(n)

�1

�

x

�! �

x

�! �

x

�! �

x

�! �

x

�! � � �

x

�! �

Su

essive 
on�gurations are modelled by 
onne
ting su
h sequen
es with the

program x.

We now start to assemble the redu
tion formula '

M;w

. Let N abbreviate 2

p(n)

in what follows. We will often need the following auxiliary formulas stating that

the value of the 
ounter C is zero and N � 1, respe
tively:

�

C=0

:=

p(n)�1

^

i=0

:


i

and �

C=N�1

:=

p(n)�1

^

i=0




i

Next, we need an auxiliary formula '

in


whi
h ensures that the value of C is

in
remented modulo N when moving from a state to one of its x-su

essors.

A regular in
rementation 
orresponds to moving to the su

essor 
ell within

the same 
on�guration, while the \modulo step" 
orresponds to moving to a

su

essor 
on�guration.

'

in


:= [x

�

℄

�

p(n)�1

^

k=0

�

k�1

^

j=0




j

! (


k

! [x℄:


k

) ^ (:


k

! [x℄


k

)

�

^

p(n)�1

^

k=0

�

k�1

_

j=0

:


j

! (


k

! [x℄


k

) ^ (:


k

! [x℄:


k

)

� �

This is essentially just the standard propositional formula for in
rementing a

binary 
ounter modulo N : a bit is toggled if all bits stri
tly lower have value

one, and kept otherwise.

We introdu
e two auxiliary programs: a program �

last

that relates any state

to the last 
ell of the same 
on�guration, and a program �

2h

that does an
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arbitrary amount of x-steps whilst seeing two tape heads. For simpli
ity, we use

the formula h :=

W

q2Q

q saying that the tape head is on the 
urrent 
ell.

�

last

:= (:�

C=N�1

?;x)

�

;�

C=N�1

?

�

2h

:= x

�

;h?;x

+

;h?;x

�

Now we 
an formalise the general requirements on an ATM: every tape 
ell is

marked with exa
tly one symbol from � and never with two di�erent states, and

no 
on�guration has more than one 
ell marked with the tape head. At this

point, it is not ne
essary to expli
itly state that ea
h 
on�guration has at least

one 
ell marked with the tape head: this will be a 
onsequen
e of other formulas

added below.

'

gen

:= [x

�

℄

� �

_

a2�

a

�

^

^

a;b2�;b 6=a

:(a ^ b) ^

^

q;q

0

2Q;q 6=q

0

:(q ^ q

0

) ^

( �

C=0

! [�

last

\ �

2h

℄ff )

�

At the beginning, the input word w = a

0

� � � a

n�1

is written on the tape, followed

by blank symbols 2 until a state with 
ounter value 0 is rea
hed, whi
h marks

the beginning of a su

essor 
on�guration.

'

start

:= �

C=0

^ q

0

^ a

0

^

[x℄( a

1

^

[x℄( a

2

^

� � � ^ � � �

[x℄( a

n�1

^

[(x;:�

C=0

?)

+

℄2 ) � � � ))

We now en
ode M's transition fun
tion Æ. To this end, we need some more

auxiliary programs. First, we devise a program �

=

that relates a tape 
ell

to the 
orresponding 
ell in su

essor 
on�gurations. This 
orresponding 
ell

is identi�ed by having the same C-value. To ensure that we rea
h the dire
t

su

essor 
on�guration, we additionally require the 
ounter C to be
ome 0 only

on
e on the way.

�

0!

:= (x;:�

C=0

?)

�

;x;�

C=0

?; (x;:�

C=0

?)

�

�

=

:= �

0!

\

p(n)�1

\

i=0

( (


i

?;x

+

; 


i

?) [ (:


i

?;x

+

;:


i

?) )

Se
ond, we de�ne a program �

q;a;M

for ea
h (q; a;M) 2 Q � � � fL;R;Ng.

Intuitively, the purpose of these programs is as follows: if a state s represents

the head position of a 
on�guration 
, then enfor
ing the existen
e of an �

q;a;M

-

su

essor of s ensures that 
 has a su

essor 
on�guration that is produ
ed by

writing a, moving a

ording to M , and swit
hing to state q.

�

q;a;N

:= �

=

; (q ^ a)?

�

q;a;R

:= :�

C=N�1

?;�

=

; a?;x; q?

�

q;a;L

:= :�

C=0

?; (�

=

\ (x

�

; (q ^ [x℄a)?);x)
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The left-most 
omponents of �

q;a;R

and �

q;a;L

ensure that we never make a right

move on the right end of the tape, and never a left move on the left end of the

tape.

Now we are able to formalise Æ. In an existential state, we �nd one su

essor


on�guration. In a universal state, all su

essor 
on�gurations are present in

the model. Finally, the label of any tape 
ell whi
h is not under the tape head

remains the same in the following 
on�guration.

'

Æ

:= [x

�

℄

�

^

q2Q

9

;a2�

�

q ^ a !

_

(p;b;M)2Æ(q;a)

h�

p;b;M

itt

�

^

^

q2Q

8

;a2�

�

q ^ a !

^

(p;b;M)2Æ(q;a)

h�

p;b;M

itt

�

^

^

a2�

( :h ^ a ! [�

=

℄a )

�

It remains to des
ribe a

eptan
e of the ma
hine. Sin
e all 
omputation paths

of M are �nite and 
on�gurations wqw

0

with q 2 Q

8

[ Q

9

have at least one

su

essor 
on�guration, it suÆ
es to require that the state q

r

never appears:

'

a



:= [x

�

℄:q

r

Altogether, the ma
hine's behaviour is des
ribed by the formula

'

M;w

:= '

in


^ '

gen

^ '

start

^ '

Æ

^ '

a



Sin
e j'

M;w

j is polynomial in jMj and jwj, the following lemma together with

Dane
ki's 2-ExpTime upper bound yields Theorem 1.

Lemma 2. w 2 L(M) i� '

M;w

is satis�able.

Proof. \if". Let K = (S; f

a

�! j a 2 Ag; L) be a model of '

M;w

, and let

s

ini

2 S su
h that K; s

ini

j= '

M;w

. We indu
tively de�ne an a

eptan
e tree T

of M on w. By Lemma 1, the existen
e of su
h a tree implies that w 2 L(M)

as required.

For a node � of T , we use w

�

q

�

w

0

�

to denote the (
omponents of) the 
on�g-

uration that labels � . The indu
tive de�nition of T pro
eeds in steps 1; 2; 3; : : :

as follows: in the i-th step, we de�ne the 
omponents w

�

and q

�

for all nodes

� on level i� 1 and the 
omponent w

0

�

for all nodes � on level i� 2 (where the

root is on level 0). Finally, in a \�nishing o�" step we de�ne the 
omponents w

0

�

for all nodes � that have no su

essors (i.e., where q

�

2 fq

a

; q

r

g). Along with T ,

we de�ne a fun
tion f assigning ea
h node � of T to a 
orresponding state in K

su
h that the following properties hold:

1. K; f(�) j= q

�

for all nodes � of T ;

2. if � is a su

essor of � in T , then there are states s

0

; : : : ; s

k

, with k =

jw

0

�

j+ jw

�

j, su
h that

(a) f(�) = s

0

, f(�) = s

k

;

(b) s

i

x

�! s

i+1

, and for i < k;

(
) K; s

i

j= a if a is the i+ 1-st symbol of w

0

�

for i < jw

0

�

j;

(d) K; s

jw

0

�

j+i

j= a if a is the i+ 1-st symbol of w

�

for i < jw

�

j.
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For the indu
tion start, take a tree T 
onstisting of a single node r and set

w

r

:= ", q

r

:= q

0

, and f(r) := s

ini

. Then Property 1 of f is satis�ed by '

start

and Property 2 is trivially satis�ed.

For the indu
tion step, take a node � su
h that w

�

and q

�

have already been

de�ned. Assume that q

�

is an existential state. By '

gen

(and by Property 2

of f), there is a unique a 2 � su
h that K; f(�) j= a. By Property 1 of f and

'

Æ

, there is a (p; b;M) 2 Æ(q

�

; a) su
h that K; f(�) j= h�

p;b;M

itt. Assume that

M = N , i.e.,M does not move the head. By de�nition of �

p;b;N

and due to '

in


,

there thus exists a sequen
e of states s

0

; : : : ; s

N

su
h that s

0

= f(�), s

i

x

�! s

i+1

for i < N , and K; s

N

j= p ^ b. For i < N , let b

i

2 � denote the unique (due to

'

gen

) symbol su
h that K; s

i

j= b

i

. Modify the tree as follows:

� Set w

0

�

:= b

0

� � � b

N�(jw

�

j+1)

.

� Introdu
e a su

essor � of � in T . Set w

�

:= b

N�jw

�

j

� � � b

N�1

, q

�

:= p, and

f(�) := s

N

.

The 
ases of left and right moves are handled analogously. The 
ase of univer-

sal states is also handled analogously with the di�eren
e that we introdu
e a

su

essor node in T for every (p; b;M) 2 Æ(q

�

; a).

Finally, the \�nishing o�" phase is done as follows. Let � be a node in T

su
h that q

�

2 fq

a

; q

r

g. Sin
e, by de�nition of ATMs, q

0

is either existential or

universal, there exists a prede
essor � of � in T . Assume that � was introdu
ed

for some (p; b;M) 2 Æ(q

�

; a) with M = L. Then set w

0

�

:= 
 � b � w

0

�

�

, where


 is the right-most symbol of w

�

and w

0

�

�

is obtained from w

0

�

by deleting the

left-most symbol. The 
ases of right and no moves are handled analogously.

We leave it as an exer
ise to show that the root of T is labelled with the initial


on�guration, and that if � is a su

essor of � in T , then w

�

q

�

w

0

�

is a su

essor


on�guration of w

�

q

�

w

0

�

.

\only if". Assume that T is an a

eptan
e tree for M on w with set of nodes

N . If � 2 N is a node and � is labelled with wqw

0

, we use q

�

to denote q, w

i

�

to denote the i-th symbol of ww

0

, for i < N , and h

�

to denote the length of w

(i.e., the head position). Constru
t a Kripke stru
ture K = (S; f

a

�! j a 2 Ag; L)

as follows:

� S = N � f0; : : : ; N � 1g.

� (�; i)

x

�!(�; j) if � = � and j = i+ 1

or if i = N � 1, j = 0, and � is a su

essor of � in T ;

� q 2 L((�; i)) if q = q

�

and i = h

�

, for all q 2 Q;

� a 2 L((�; i)) if w

i

�

= a, for a 2 �;

� 


j

2 L((�; i)) if the j-th bit of i is one, for j < N .

It is tedious but straightforward to verify that K; (r; 0) j= '

M;w

, where r 2 N

denotes the root of T . a

There are two interesting things to be noted about the redu
tion: �rst, it only

uses a single atomi
 program x. And se
ond, the proof of Lemma 2 shows that,

if the formula '

M;w

is satis�able, then it is satis�able in a tree-shaped model

(as 
onstru
ted in the \only if" dire
tion). Thus, even satis�ability of IPDL

formulas in tree models is 2-ExpTime-hard. This is surprising sin
e the main

problem in proving upper bounds for IPDL is its la
k of the tree model propery.
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Note that IPDL models need not even be dire
ted a
y
li
 graphs: the formula

hx \ y

�

itt ^ [y℄ff introdu
ed in Se
tion 2.1 enfor
es a re
exive x-loop. If we

modify this formula to hx

+

\ y

�

itt ^ [y℄ff ^ '

in


, with '

in


as de�ned in the

redu
tion, we even obtain a 
y
le of at least exponential length.

To de�ne tree-shaped models in a pre
ise way, asso
iate with ea
h Kripke

stru
ture K = (S; f

a

�! j a 2 Ag; L) an edge-labelled dire
ted graph G

K

:=

(V

K

; E

K

) with

V

K

:= S

E

K

:= f(s; a; t) j s

a

�! tg:

Now, K is 
alled a tree stru
ture if G

K

is 
onne
ted and a
y
li
 and ea
h state

s 2 S has at most a single in
oming edge. An IPDL formula is 
alled tree

satis�able if it is satis�able in a tree stru
ture. By the above observations, we

obtain the following 
orollary.

Corollary 1. Tree satis�ability in IPDL over a singleton set of atomi
 pro-

grams is 2-ExpTime-
omplete.

x4. Strengthening the result. As noted in the introdu
tion, the test op-

erator of IPDL is not very natural when IPDL is viewed as a des
ription logi
.

Therefore, our next aim is to eliminate tests from the above proof. To start, note

that we 
an easily modify the redu
tion to 
ontain tests of atomi
 propositions,

only: ea
h 
omplex test '? 
an be repla
ed with the atomi
 test p

'

?, p

'

a fresh

atomi
 proposition, if we add the 
onjun
t [x

�

℄(' $ p

'

) to '

M;w

. However,

the next theorem shows that tests 
an even be 
ompletely omitted. We 
all the

variant of IPDL that is obtained by disallowing the test operator test-free IPDL.

Theorem 2. Satis�ability of test-free IPDL is 2-ExpTime-
omplete.

Proof. As the upper bound follows from Dane
ki's results, we 
on
entrate on

the lower bound and present a satis�ability preserving and polynomial redu
tion

from IPDL to test-free IPDL. Together with Theorem 1, we obtain the desired

result.

Let ' be an IPDL formula with  

1

?; : : : ;  

n

? all test programs o

urring in

'. Assume that a

1

; : : : ; a

m

are all atomi
 programs o

urring in '. Take new

atomi
 programs b

1

; : : : ; b

n

and d, and let

'

0

:= b' ^ [(a

1

[ : : : [ a

m

)

�

℄

�

[d℄ff ^

n

^

i=1

( 

i

$ hb

i

\ d

�

itt)

�

where b' denotes the result of repla
ing ea
h program  

i

? in ' with (b

i

\ d

�

), for

i = 1; : : : ; n. Clearly, '

0

is test-free.

Now suppose that '

0

is satis�able, i.e., it has a model K. Let s

0

be a

state with K; s

0

j= '

0

. Take the restri
tion K

0

of K to the set of states fs j

s

0

(a

1

[:::[a

m

)

�

���������! sg. By the se
ond 
onjun
t of '

0

, for all states s of K

0

we have

s

 

i

?

���! s i� s

b

i

��! s. Thus, K being a model of the �rst line of '

0

implies that K

is also a model of '.

Conversely, let K be a model of '. Constru
t a Kripke stru
ture K

0

from K

by interpreting d as the empty program and the programs b

1

; : : : ; b

n

by setting
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s

b

i

��! s

0

i� s

 

i

?

���! s

0

. Thus, b

i


onsists of re
exive loops at pre
isely those points

where  

i

is true. Clearly, K

0

is a model of '

0

. a

The proof of Theorem 2 relies on the ability to add re
exive loops to points

in a Kripke stru
ture. Sin
e, in 
ontrast, Theorem 1 
aptures the 
ase of tree

stru
tures, it is a natural question whether tree satis�ability of test-free IPDL

is still 2-ExpTime-hard. By re�ning the proof of Theorem 1, we answer this

question to the aÆrmative. A 
orresponding upper bound is again obtained

from Dane
ki's result.

Theorem 3. Tree satis�ability of test-free IPDL is 2-ExpTime-
omplete.

Again, we redu
e the word problem for exponentially spa
e bounded ATMs.

Let M be su
h an ATM and let p be a polynomial su
h that the length of

every 
omputation path of M on w 2 �

n

is bounded by 2

2

p(n)

, and all the


on�gurations wqw

0

in su
h 
omputation paths satisfy jww

0

j � 2

p(n)

. Let w =

a

0

; : : : ; a

n�1

be an input to M.

The essential idea to 
ompensate for the la
k of test operators is to en
ode

the 
ounter C using atomi
 programs instead of atomi
 propositions. To do this,

we have to give up the idea that a single tape 
ell is represented by a single

state. Instead, a tape 
ell is represented by a sequen
e s

0

; : : : ; s

p(n)

of states. In

this sequen
e, ea
h state s

i

is 
onne
ted to s

i+1

by one of the atomi
 programs




i=0

and 


i=1

. Thus, we obtain a sequen
e 


0=t

0

; : : : ; 


p(n)�1=t

p(n)�1

of atomi


programs that en
odes the 
ounter C via the bit sequen
e t

0

; : : : ; t

p(n)�1

. As in

the original redu
tion, the alphabet symbol found in a tape 
ell and the ATM

state are en
oded using atomi
 propositions. We use the following signature:

� atomi
 propositions q 2 Q and a 2 � as in the original redu
tion;

� programs 


i=t

with i < p(n) and t 2 f0; 1g for representing the 
ounter C

as des
ribed above;

� a program x for going to the next tape 
ell of the same 
on�guration;

� a program s for going to the �rst tape 
ell of su

essor 
on�gurations;

� additional atomi
 propositions m

q;a

, q 2 Q and a 2 �, that will be used as

\markers" for dealing with left moves.

To illustrate the representation of tape 
ells via multiple states, assume that p(n)

is 3 and 
onsider the tape 
ell number four (i.e., 100 in binary). Assume that

the symbol in this 
ell is a, that the head is on the 
ell, and that the 
urrent

state is q. This tape 
ell is modelled by a sequen
e of states of the form

a a a a

q q q q

�




0=1

���!�




1=0

���!�




2=0

���!�

Con�gurations are then modelled by 
on
atenating su
h sequen
es using the

atomi
 program x.

Let P be the set of all programs listed above. We again use N to abbreviate

2

p(n)

and de�ne further abbreviations as follows:

� 


i

:= 


i=0

[ 


i=1

for i < p(n), i.e., 
ounter programs en
oding bit number i;

� 
 := 


0

[ � � � [ 


p(n)�1

, i.e., the union of all 
ounter programs;
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� 


true

:= 


0=1

[ � � � [ 


p(n)�1=1

, i.e., 
ounter programs en
oding a bit that is

set;

� 


false

:= 


0=0

[ � � � [ 


p(n)�1=0

, i.e., 
ounter programs en
oding a bit that is

not set;

� �(p

1

[ � � � [ p

k

) :=

[

p2Pnfp

1

;:::;p

k

g

p for p

1

; : : : ; p

k

2 P , i.e., the union of

all relevant programs ex
ept p

1

; : : : ; p

k

;

� u :=

[

p2P

p, i.e., the union of all relevant programs.

The following formula '

sane

ensures that all paths in models of the redu
tion

formula exhibit the expe
ted pattern of programs, whi
h 
an be des
ribed by

the regular expression (


0

; � � � ; 


p(n)

; (x[s))

�

(Lines 1 to 4). It also enfor
es that

the program s appears exa
tly after those tape 
ells with number N �1 (Lines 5

to 7).

'

sane

:= [�


0

℄ff ^

[u

�

℄

�

p(n)�2

^

i=0

[


i

;�


i+1

℄ff ^

[


p(n)

;�(x [ s)℄ff ^

[(x [ s);�


0

℄ff ^

[


0=1

; � � � ; 


p(n)�1=1

;x℄ff ^

[


0

; 


�

; 


false

; 


�

; s℄ff ^

[


0=0

; 


�

; s℄ff

�

We also want that any two states are 
onne
ted by at most a single atomi


program. Sin
e this already follows from the de�nition of tree stru
tures, there

is no need to expli
itly enfor
e it (this would be simple).

Apart from the additional '

sane

, the redu
tion formula '

M;w

will 
onsist of

the same 
onjun
ts as in the proof of Theorem 1, only in a di�erent formulation.

We start with en
oding in
rementation of the 
ounter C modulo N :

�

k;t

:= 


0=1

; � � � ; 


k�1=1

; 


k=t

; 


�

; (x [ s); 


0

; � � � ; 


k�1

; 


k=t

�

0

k;t

:= ((


0

; � � � ; 


k�1

) \ (


�

; 


false

; 


�

)); 


k=t

; 


�

; (x [ s); 


0

; � � � ; 


k�1

; 


k=1�t

'

in


:= [u

�

℄

�

p(n)�1

^

k=0

^

t2f0;1g

[�

k;t

℄ff ^

p(n)�1

^

k=0

^

t2f0;1g

[�

0

k;t

℄ff

�

The idea is the same as in the 
orresponding formula in the proof of the original

redu
tion: a bit is toggled if all bits stri
tly lower have value one, and kept

otherwise. Note that �

k;t

relates the �rst element of a sequen
e en
oding a tape


ell whose bits 0 to k � 1 have value one and whose k-th bit has value t to

the k + 1-st state of a su

essor tape 
ell whose k-th bit has also value t. By

using [�

k;t

℄ff, su
h unwanted situations are forbidden implying that su

essor
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ells have the 
orre
t value of the k-th bit. The program �

0

k;t


an be understood

similarly.

We now en
ode some basi
 fa
ts about ATMs: that all the states in a sequen
e

representing a single tape 
ell are asso
iated with a unique alphabet symbol and

with a unique state (or no state at all). We also ensure that there is not more

than one head per 
on�guration. As in the original redu
tion, it is not ne
essary

to state that there is at least one head. We again use the formula h :=

W

q2Q

q.

'

gen

:= [u

�

℄

�

_

a2�

a ^

^

a;b2�;a6=b

:(a ^ b) ^

^

q;p2Q;q 6=p

:(q ^ p) ^

^

q2Q

(q ! [
℄q) ^ (h
iq ! q) ^

^

a2�

(a! [
℄a) ^ (h
ia! a) ^

h! [


�

;x; (�s)

�

℄:h

�

Next, we des
ribe the initial 
on�guration.

'

start

:= q

0

^ a

0

^ h


0=0

; � � � ; 


p(n)=0

itt ^

[


�

;x℄( a

1

^

[


�

;x℄( a

2

^

� � �

[


�

;x℄( a

n�1

^ [


�

;x; (�s)

�

℄2 ) � � � ))

The next step is to en
ode M's transition fun
tion Æ. We �rst 
onstru
t a

program that relates the �rst state representing a tape 
ell to the last state

representing the same 
ell in su

essor 
on�gurations.

�

=

:= ((�s)

�

; s; (�s)

�

) \

p(n)�1

\

j=0

(


�

; 


j=0

;u

�

; 


j=0

; 


�

) [ (


�

; 


j=1

;u

�

; 


j=1

; 


�

)

Two notes are in order. First, using �

=

inside a diamond, as we shall do below,

will produ
e a sequen
e of tape 
ells and 
on�gurations as expe
ted due to

the formulas '

sane

and '

in


. Se
ond, �

=

works as expe
ted only sin
e we are


onsidering tree stru
tures. On arbitrary stru
tures, �

=

will relate the tape


ells with the same number in su

essive 
on�gurations as desired, but possibly

also additional ones: if there is more than a single path between two states, the

program may relate tape 
ells that do not have the same number. Clearly, this


ase is irrelevant on tree stru
tures.

Next, we de�ne a formula '

q;a;M

for ea
h (q; a;M) 2 Q� ��fL;R;Ng. The

purpose of these formulas is similar to that of the programs �

q;a;M

in the original

redu
tion: if the state s is the �rst state of a sequen
e representing a tape 
ell


arrying the head position in the 
urrent 
on�guration 
, then enfor
ing '

q;a;M

to be true at s ensures that 
 has a su

essor 
on�guration that is produ
ed by

writing a, moving a

ording toM , and swit
hing to state q. For dealing with left
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moves, we use the marker propositions m

q;a

: if m

q;a

is true in the last state of a

tape 
ell, then the head has been on this 
ell in the previous 
on�guration, and

the ma
hine moved left, wrote a, and swit
hed to state q in its last transition.

'

q;a;N

:= h�

=

i(a ^ q)

'

q;a;R

:= h�

=

i(a ^ hx; 


p(n)

iq) ^ [


0=1

; � � � ; 


p(n)=1

℄ff

'

q;a;L

:= h�

=

im

q;a

^ [


0=0

; � � � ; 


p(n)=0

℄ff

The last 
onjun
ts of '

q;a;R

and '

q;a;L

ensure that we never make a right move

on the right end of the tape, and never a left move on the left end of the tape.

There is no need to enfor
e that m

q;a

holds either in all or in no state of the

state sequen
e representing a 
ell. Only o

urren
es of m

q;a

in the last state of

su
h a sequen
e are relevant.

Now we are able to formalize Æ. The idea is the same as in the original

redu
tion with the di�eren
e that we use the marker m

q;a

for transitions moving

to the left. Also, we have to be 
areful to use the program �

=

only in states

that are the �rst state in the sequen
e representing a tape 
ell. To this end, we

employ the program '

�rst

= h


p(n)

itt.

'

Æ

:= [u

�

℄

�

^

q2Q

9

;a2�

�

(a ^ q ^ '

�rst

) !

_

(p;b;M)2Æ(q;a)

'

p;b;M

�

^

^

q2Q

8

;a2�

�

(a ^ q ^ '

�rst

) !

^

(p;b;M)2Æ(q;a)

'

p;b;M

�

^

^

q2Q;a2�

( m

q;a

! q ^ [x℄a ) ^

^

a2�

( (a ^ :h ^ '

�rst

)! [�

=

℄a)

�

As in the original redu
tion, to des
ribe a

eptan
e of the ATM it suÆ
es to

state that the reje
ting state q

r

never appears:

'

a



:= [u

�

℄:q

r

:

Altogether, the ma
hine's behaviour is des
ribed by the formula

'

M;w

:= '

sane

^ '

in


^ '

gen

^ '

start

^ '

Æ

^ '

a



:

The following lemma 
an be proved analogously to Lemma 2.

Lemma 3. w 2 L(M) i� '

M;w

is satis�able in a tree model.

Sin
e j'

M;w

j is polynomial in jMj and jwj, Lemma 2 yields Theorem 3.

Note that we do not obtain an analogue of Corollary 1 sin
e it is essential for

the modi�ed redu
tion to use more than a single program. Indeed, we leave the


omplexity of tree satis�ability in test-free IPDL with a single atomi
 program

as an open problem.
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x5. Con
lusion. We have proved that satis�ability in IPDL is 2-ExpTime-

hard, and that this lower 
omplexity bound applies even if we disallow the test

operator and 
onsider only tree stru
tures. As further work, it would be inter-

esting to look for fragments of IPDL that are still ExpTime-
omplete, and thus

not harder than PDL. Indeed, it seems possible that the removal of any program

operator from IPDL, ex
ept test, results in a logi
 that is not 2-ExpTime-hard.

This is obviously true for the interse
tion operator, as its removal yields plain

PDL [9℄ whi
h is ExpTime-
omplete. It is also true for the Kleene star sin
e

test-free IPDL without Kleene-star is known to be PSpa
e-
omplete [22℄. For

IPDL without either 
omposition or union, the 
omplexity of satis�ability is

open. We believe that IPDL without 
omposition is ExpTime-
omplete.
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