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Abstract

We analyse the complexity of finite model reasoning in the description logic ALC QZ,
i.e. ALC augmented with qualifying number restrictions, inverse roles, and general
TBoxes. It turns out that all relevant reasoning tasks such as concept satisfiability
and ABox consistency are EXPTIME-complete, regardless of whether the numbers
in number restrictions are coded unarily or binarily. Thus, finite model reasoning
with ALCQT is not harder than standard reasoning with ALCQT.
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1 Motivation

Description logics (DLs) are a family of logical formalisms that originated in
the field of knowledge representation, and that were designed to represent and
reason about conceptual knowledge. Central DL notions are concepts (unary
predicates or classes) and roles (binary relations). A specific DL is mainly
characterized by the constructors it provides to build complex concepts (and
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roles) from atomic ones. For example, in the basic DL ALC [2], all roles are
atomic, and concepts can be built using Boolean operators and value restric-
tions. The following ALC-concept describes companies in which only managers
or researchers work, and in which a parent works.

Company I (Jemploys.FhasChild.Human)MVemploys.(Researcher | IManager)

It is well-known that DLs are closely related to modal logics. For example,
ALC is a notational variant of the basic multi-modal logic K [3], and the
above ALC concept is the DL counterpart of the multi modal formula

Company A ((employs)(hasChild)Human) A [employs]|(Researcher \/ Manager).

A standard DL knowledge base, called TBox, consists of a set of concept equa-
tions, i.e. expressions of the form C' = D where C' and D are possibly complex
concepts. Intuitively, a TBox constrains the set of models that are admitted
for the interpretation of concepts. Using a TBox, we can thus describe the ter-
minology of an application domain by using an (atomic) concept name on the
left-hand side and its (complex) definition on the right-hand side. Moreover,
we can capture general constraints that come from the application domain.
The standard DL reasoning tasks are deciding concept satisfiability and con-
cept subsumption w.r.t. a TBox: checking whether a concept C' can have any
instances in models of the TBox 7, and checking whether one concept D is
more general than another concept C' w.r.t. models of T.

During the last decade, a lot of work has been devoted to investigating the
classical trade-off between expressivity and complexity [4], i.e., to find DLs
whose expressive power is appropriate for a certain kind of applications, and
whose reasoning problems are still decidable, preferably of an acceptable com-
plexity.

Applications for which such a good compromise could be found include rea-
soning about conceptual database models [5] and the usage of DLs as log-
ical underpinning of ontology languages such as DAML+OIL and OWL [6;
7]. In this paper, we are concerned with the former application. Suppose that
a conceptual database model is described by one of the standard formalisms: an
ER diagram in the case of relational databases and a UML diagram in the case
of object-oriented databases. As shown in [5], such models can be translated
into a DL TBox and a description logic reasoner such as FaCT or RACER |8;
9] can be used to reason about the database model. In particular, this ap-
proach can be used to detect inconsistencies in the database model, and to
infer implicit IS-A relationships between entities/classes that are not given
explicitly in the model. This useful and original application has already led
to the implementation of tools that provide a GUI for specifying conceptual
models, automatise the translation into description logics, and display the



information returned by the DL reasoner [10].

One of the most important description logics used for reasoning about con-
ceptual database models is called ALCQT [11], and extends ALC with

e qualifying number restrictions (corresponding to graded modalities in modal
logic): concepts of the form (>nR.C') and (<nR.C), describing objects hav-
ing at least n (at most n) instances of C' related to them via the role R. For
example, the concept Company I1(<3employs.Manager) describes companies
employing at most 3 managers.

e the inverse role constructor (corresponding to inverse modalities): ALC QT
allows the use of the inverse R~ of a role R in number restrictions and value
restrictions. For example, the concept Manager M (>2employs~.Company)
describes managers that are employed by at least two companies.

A feature that distinguishes ALC QT from less expressive DLs is that ALC QT
is capable of enforcing infinity, i.e., there are concepts and TBoxes that are
satisfiable, but admit only infinite models. In other words, ALC QT lacks the
finite model property (FMP).

Since reasoning about database models is one of ALCQTZ’s premier applica-
tions, its lack of the FMP cannot be ignored: database models are usually
encoded into ALC QT such that there is a tight correspondence between logi-
cal models and databases; since databases are usually considered to be finite,
we should thus perform reasoning on finite models rather than on unrestricted
ones when using ALCQZ in this context. That the restriction to finite models
indeed makes a difference is witnessed by that fact that there exist quite simple
ER and UML diagrams that are satisfiable only in infinite models [12]. From
a database perspective, such diagrams should thus be considered inconsistent
rather than consistent, and thus we get an incorrect result when translating
them to ALCQZ and using unrestricted model reasoning. Interestingly, the
problem of finite models is commomly ignored when using DL tools for rea-
soning about database models. This is due to the fact that, with FaCT and
RACER [8; 9], there are two popular and highly efficient reasoners for dealing
with unrestricted reasoning in ALCQZ but, up to now, no ALCQT reasoner
for finite models is available. We believe that one important reason for the lack
of finite model reasoners is that, in contrast to reasoning w.r.t. unrestricted
models, reasoning w.r.t. finite models in ALCQZ is not yet well understood
from a theoretical perspective. In particular, as we will discuss below in more
detail, tight complexity bounds for finite model reasoning in ALCQT have
never been determined. The purpose of this paper is thus to improve the un-
derstanding of finite model reasoning in description logics by establishing tight
EXPTIME complezity bounds for finite model reasoning in the DL ALCQT.

As noted above, reasoning with ALC QT in unrestricted models is well-under-



stood. For example, it is known that satisfiability and subsumption w.r.t.
TBoxes is EXPTIME-complete [11]. Note that there is a subtle issue about
number restrictions here: inside ALCQT’s constructors (< n R C') and (>
n R C'), we can code the number n either in unary or in binary, and the length
of concepts and TBoxes will clearly be exponentially shorter in the latter case.
Fortunately, the ALC QZ EXPTIME-completeness results is insensitive of this
coding, i.e., it holds for both cases [13].

For finite model reasoning, no tight complexity bounds were known. It follows
easily from modal correspondance theory [14] that ALCQOT is a fragment of
the two variable fragment of first order logic with counting quantifiers (C2)
[15; 16]. Hence finite satisfiability of C2 being decidable [15] implies that, in
ALCQOT, finite satisfiability and subsumption w.r.t. TBoxes are decidable as
well. Moreover, Calvanese proves in [17] that ALCQOT satisfiability and sub-
sumption w.r.t. TBoxes are decidable in 2-EXPTIME. Very recently, finite sat-
isfiability of C2 was proven to be complete for non-deterministice exponential
time [18; 19], which improves Calvanese’s upper bound. A lower bound fol-
lows easily from the fact that reasoning in ALC is already ExpTiME-hard [20;
3]—both w.r.t. unrestricted and finite models since ALC enjoys the finite
model property. This leaves us with a gap between ExPTiME and NEXPTIME
for finite model reasoning in ALCQZ and the question whether it is as in-
sensitive to the coding of numbers as unrestricted model reasoning: all upper
bounds mentioned were proved for unary coding of numbers. In this paper, we
will close this gap by providing a tight EXPTIME upper bound and show that,
similar to the unrestricted case, the complexity is insensitive to the coding of
numbers. More precisely, we present the following results:

In Section 3, we develop an algorithm that decides the finite satisfiability of
ALCQT-concepts w.r.t. TBoxes. Similar to Calvanese’s approach, the core
idea behind our algorithm is to translate a given satisfiability problem into
a set of linear inequalities that can then be solved by linear programming
methods. In this translation, we use variables to represent the number of
elements described by so-called mosaics: a mosaic is an abstraction of domain
elements which describes the (unary) type of a domain element together with
its “neighborhood”, i.e., the numbers and types of (relevant) role successors.
Using a rather strict notion of mosaics and an appropriate data structure to
represent them allows us to keep the number of mosaics exponential in the size
of the input. This yields an exponential bound on the number of variables and
also on the size of systems of inequalities. Thus, we improve the best-known
2-ExpTIME upper bound to a tight EXPTIME one.

However, this bound is exponential only if we assume unary coding of numbers
in number restrictions, and it is not clear whether our translation can be
modified to yield an EXPTIME upper bound in the case of binary coding.
Thus, we use a different strategy to attack binary coding: in Section 4, we give



a polynomial reduction of finite ALCQZ-concept satisfiability w.r.t. TBoxes
to finite satisfiability of ALCFZ-concept satisfiability w.r.t. TBoxes, where
ALCFT is obtained from ALCQT by allowing only numbers up to two to
be used in number restrictions. Since finite model reasoning in ALCFZ is in
EXPTIME by the results from Section 3 (the coding of numbers is not an issue
here), we obtain a tight EXPTIME bound for finite model reasoning in ALC QT
with numbers coded in binary. Note that we cannot use existing reductions
from ALCQOT to ALCFT since these fail for finite model reasoning [11].

In Section 5, we extend our result to a more general reasoning problem,
namely the finite consistency of ABoxes w.r.t. TBoxes. Intuitively, ABoxes
describe a particular state of affairs, a “snapshot” of the world. Finite ALC Q-
ABox consistency is another interesting reasoning task with important appli-
cations: whereas finite ALCQZ-concept satisfiability can be used to decide
the consistency of conceptual database models and infer implicit IS-A rela-
tionships, ALCQZ-ABox consistency can be used as the core component of
algorithms deciding containment of conjunctive queries w.r.t. conceptual data-
base models—a task that DLs have successfully been used for and that calls for
finite model reasoning [21; 22]. Using a reduction to (finite) concept satisfia-
bility, we are able to show that this reasoning task is also EXPTIME-complete,
independently of the way in which numbers are coded.

Finally, in Section 6, we discuss related work.

2 Preliminaries

We introduce syntax and semantics of ALCQZ, discuss the inference problems
we are interested in, and introduce some useful notation.

Definition 1 (ALCQZ Syntax) Let R and C be disjoint and countably in-
finite sets of role and concept names. A role is either a role name R € R
or the inverse R~ of a role name R € R. The set of ALCQT-concepts is the
smallest set satisfying the following properties:

e cach concept name A € C is an ALCQT-concept;
e ifC and D are ALCQZL-concepts, R is a role, and n a natural number, then
-C,CND,CUD, (£nRC), and (=n RC) are also ALCQT-concepts.

A concept equation is of the form C = D for C, D two ALCQZL-concepts. A
TBox is a finite set of concept equations.

We will refer to concepts of the form (< n R C) as atmost restrictions and
to concepts of the form (= n R C') as atleast restrictions. As usual, we use



the standard abbreviations — and <« as well as IR.C' for (> 1 R C), VR.C'
for (< 0 R =C), T to denote an arbitrary propositional tautology, and L
as abbreviation for = T. The fragment ALCFT of ALCQT is obtained by
admitting only atmost restrictions (< n R C') with n € {0, 1} and only atleast
restrictions (= n R C) with n € {1, 2}.

Definition 2 (ALCQZ Semantics) An interpretation I is a pair (AT, .T)
where AT is a non-empty set and T is a mapping that assigns

e to each concept name A, a set AL C AT and
e to each role name R, a binary relation RT C AT x AT,

The interpretation of inverse roles and complex concepts is then defined as
follows, with #S denoting the cardinality of the set S':

(R
(=C)T = AT\ T
(Cn D) =Cc*nD*

) ={{e.d) | (d,e) € BT}
)
)
(CuD)*=Cc*uD*
)
)

(KnRC)Y ={d]|#{eceCT|(de)e RT} <n}
(>nRC) ={d|#{eeCT|(de)e RT} >n}

A domain element d € AT is an instance of a concept C if d € C*; moreover,
a domain element d' € AT is an R-neighbour of d, for R a role, if (d,d') € R®.

An interpretation T satisfies a concept equation C = D if C* = D*, and T is
called a model of a TBox T if T satisfies all concept equations in T .

A concept C' is satisfiable w.r.t. a TBox T if there is a model T of T with
CT # 0. A concept C is finitely satisfiable w.r.t. a TBox T if there is a model
T of T with CT # 0 and AT finite.

To see that satisfiability and finite satisfiability do not coincide, consider the
concept C' = -AM3R.A and the TBox {A =3R.AN(L1 R T)}. It is not
hard to see that C' is satisfiable w.r.t. 7, but only in infinite models: each
model contains an infinite, acyclic R-chain. Thus, ALC QT does not enjoy the
finite model property.

The second important reasoning problem on concepts and TBoxes, subsump-
tion of concepts w.r.t. TBoxes, has already been mentioned in the introduction:
a concept C'is (finitely) subsumed by a concept D w.r.t. a TBox T if we have
CT C D? for each (finite) model Z of T . It is well known that subsumption can
be reduced to (un)satisfiability, as C' is subsumed by D w.r.t. T if and only if



ﬂ(Cl_lD)M—!CI_IﬂD —|(C|_|D)’\/>—|C|_|—|D

—=C ~ C ~(<nRC)~ (=Zn+1RC)
“(ZnRC))~ (<n—1RC)ifn>0

Fig. 1. The NNF rewrite rules.

C M =D is unsatisfiable w.r.t. 7. Since this holds both for the infinite and the
finite case, in this paper we will concentrate on satisfiability and just note here
that all complexity bounds obtained in this paper also apply to subsumption
(despite the implicit complementation in the reduction, since we will only be
dealing with deterministic complexity classes).

In the remainder of this paper, we will w.l.o.g. only consider concepts and
TBoxes that are in a restricted syntactic form: concepts are assumed to be
in negation normal form (NNF), i.e., negation is only allowed in front of con-
cept names. Every ALC Q7Z-concept can be transformed in linear time into an
equivalent one in NNF by exhaustively applying the rewrite rules displayed in
Figure 1. We use =C' to denote the NNF of =C'. TBoxes are assumed to be
of the rather simple form {T = C'} with C' in NNF. This can be done w.l.o.g.
since an interpretation Z is a model of a TBox T ={C; = D; | 1 < i < n} iff
it is a model of {T =Tl <;<,(C; <> D;)}.

We now introduce some convenient notation used throughout this paper. For
each role R, we use Inv(R) to denote R~ if R is a role name, and S if R = S~.
For a given concept C' and TBox 7, we use cnam(C, 7)) to denote the set of
concept names appearing in C' and 7, rnam(C,T) to denote the set of role
names appearing in C' and 7, and rol(C,T) to denote the set

rmam(C,T)U{R™ | R € mam(C,T)}.

3 Unary Coding of Numbers

In this section, we present a decision procedure for finite satisfiability of
ALCQT-concepts w.r.t. TBoxes that runs in deterministic exponential time,
provided that numbers in number restrictions are coded unarily. In Section 4,
we will generalise this upper bound to binary coding of numbers.

It is easily seen that combinatorics is an important issue when deciding finite



satisfiability of ALC QZ-concepts. To illustrate this, consider the TBox
T={A=(>2RB), B=(<1R A)}. (%)

In any (finite) model of T, there are at least twice as many objects satisfying
B as there are objects satisfying A. This kind of combinatorics is not an issue
if infinite domains are admitted: in this case, we can always find a model where
all concepts have the same number of instances, namely countably infinitely
many.

As observed by Calvanese in [17], the combinatorial issues of finite model rea-
soning in description logics can be addressed by using systems of inequalities.
More precisely, for deciding the finite satisfiability of ALC QZ-concepts w.r.t.
TBoxes, we will convert a given conept Cy and TBox 7T into a system of linear
inequalities that describes the induced combinatorial constraints. This is done
in a such way that there is a correspondence between non-negative integer
solutions of the equation system and finite models of the input. In this way,
checking finite satisfiability of the input concept and TBox corresponds to
checking whether the constructed system of inequalities has a non-negative
integer solution. To obtain an EXPTIME upper bound as desired, we have to
be careful to ensure that the system of inequalities can be constructed in time
exponential in the size of the input, and that the existence of solutions can be
checked in polynomial time.

Equation systems that handle combinatorial constraints can be conveniently
formulated in terms of types, which we introduce next. Along with types,
we define the closure of an ALCQ7Z-concept Cy and a TBox 7, which is,
intuitively, the set of concepts that are “relevant” for deciding the (finite)
satisfiability of Cy w.r.t. T.

Definition 3 (Closure, Type) Let Cy be a concept and T = {T = C7}
a TBoz. The closure cl(Cy,T) of Cy and T is the smallest set of ALCQZL-
concepts such that

o Cy, Cr, and all sub-concepts of Cy and Cy are in cl(Cy, T);
o ifC ecl(Cy,T), then =C', the NNF of =C, is also in cl(Cy, T).

A type T for Cy and T is a subset T C cl(Cy, T) such that, for all D, E €
cl(Cy, T), we have

(1) DET iff D ¢T,

(2) if DNNE € cl(Cy,T), then DNE €T iff DeT and E€ T,
(3) if DUE € cl(Co,T), then DUE €T iff DeT or E€T, and
(4) CreT.

We use type(Cy, T) to denote the set of all types for Cy and T .



Fig. 2. Problems with types.

For interpretations I, we call a domain element d € AT an instance of a type
T if d € CT for all C € T. Moreover, we use t(d) to denote the type that d is
an instance of.>

A first idea to convert a finite satisfiability problem into an equational problem
could be to introduce one variable xz7 for each type T for the input concept
Cy and TBox 7T, and then to formulate a suitable system of inequalities for Cj
and 7 such that each non-negative integer solution ¢ of the equation system
corresponds to a model where each type T has exactly §(zr) instances.

However, it turns out that this approach is too naive: assume that T} to Tj
are types for Cy and 7T, and that the following holds:

¢« (>1RC)eT and (>1RD) T,
0(<1R_T)€T30T4HT5,
OC€T30T4andD€T4ﬂT5.

Observe that (instances of) T} can “use” (instances of) T3 and T} to satisfy
the concept (=1 R C') € Ty, and T, can “use” Ty and T5 to satisfy the concept
(> 1 R D) € Ty, a situation depicted in Figure 2. Similarly as for our initial
example (x), we get that (i) there have to be at least as many instances of Tj
and T} as there are instances of T, and (ii) there have to be at least as many
instances of T and T5 as there are instances of 7. Thus, it is likely that a
system of inequalities for Cy and 7 will include

xrn, < xp, + 2, and rp, < o7, + T3 (%)

Ignoring the existence of possible additional inequalities for a second, we ob-
tain xp, = op, = 27, = 1 and rp, = o, = 0 as an integer solution. Trying to
construct a model with aq, as, and a4 instances of 17, T, and T}, respectively,
we have to use a4 as a witness of a; being an instance of (=1 R C') and a;
being an instance of (> 1 R D). Since this clearly violates the (<1 R~ T)

2 This type is obviously unique, and thus #(d) well defined.



Ty>C Ty 5 (<nlnv(R).C)

Fig. 3. Illustration of the lim function.

concept in Ty, we do not have an easy correspondence between models and
integer solutions as sketched above. Intuitively, the problem is that, above,
we have considered Points (i) and (ii) separately although they both speak
about T}. Unfortunately, it seems impossible to resolve this problem by adding
additional inequalities of size at most exponential in the size of the input.

One possible view on the sketched problem, which is also taken by Calvanese
in [17], is that types do not provide enough information about domain ele-
ments. Intuitively, it seems necessary to also record, for each role R, the type
and number of R-neighbours. If this is done, in the above example (xx), we
can distinguish instances of 77 and 75 that have R-neighbors of type T} from
those that do not. It is then possible to refine the given equations such that
“infeasible solutions” such as the one discussed are ruled out. Thus, we now
develop a refinement of types that allows to describe such additional informa-
tion. We start with introducing a convenient notation that will play a rather
prominent role throughout this paper.

Definition 4 (lim function) Let Cy be a concept, T a TBoz, R a role, and
Ty, T; types for Cy and T . Then we write

limR(T1 s T2>

if C €Ty and (< n Inv(R) C) € Ty for some C € cl(Co,T) and n € N.

Intuitively, limg (77, T5) holds if, for each instance of Ty, there can be only a
limited number of “incoming R-edges” from instances of 7). This situation is
illustrated in Figure 3, where the left ellipse contains all instances of type T}
and the right ellipsis contains all instances of type T5. Note that, in the initial
example (%), we have limg (77, Ty) for all types T1, Ty such that 77 contains A
and 75 contains B.

Our generalization of a type to also include the type and number of R-
neighbours is called a mosaic, and is defined as follows.

Definition 5 (Mosaic) Let T be a type and <t € {<,>}. Then we use the

10



following abbreviations:
max™(T) := max{n | (xn RC) € T}

sum™(T) := >  n.

(xn RC)ET
A mosaic for a concept Cy and a TBox T is a triple M = (T, Lys, Epy) where

® TM € type(COaT)7
e Ly and Ey; are functions from rol(Cy, T) x type(Co, T) to N.

such that the following conditions are satisfied:

(M1) if Ly (R, T) > 0, then limg(Th, T) and not limyayr) (T, Tar),
(MQ) Zf EM(R, T) > 0, then lim|m,(R) (T, TM>,
(M3) if (K nRC) €Ty, thenn> > Ey(RT),
{T|ceT}
(M4) #{(R,T) | Lys(R,T) > 0} < sum?(Tys) and max(ran(Lys)) < max®(Th),
where ran(f) denotes the range of the function f.

If T is an interpretation, d € AT, and M = (Tw, Ly, Ex) a mosaic for C
and T, then d is an instance of M if the following holds, for all R € rol(Cqy, T)
and T € type(Co, T):

o t(d) =Ty, i.e. dis an instance of Ty;

o iflimp(Th,T) and not limyny gy (T, Trr), then Ly (R, T) is the minimum of
max” (Tys) and #{e € AT | (d,e) € R* and t(e) = T};

o iflimyny gy (T, Tar). then Ex (R, T) = #{e € A” | (d,e) € R* and t(e) = T}.

It follows immediately from this definition that each domain element d is an
instance of exactly one mosaic. The definition of “instance” shows how mosaics
are used to describe domain elements: while T}, is simply the type of d in Z,
Ly and E); are used to describe the number of neighbours of d of certain
types that are reachable from d via some role R, up to the limit max®(Th)
in the Ly, case (to keep the number of mosaics “small”). More precisely, we
distinguish three possibilities for the R relationship between T); and a type T*:

(1) limg (T, T') and not limyay gy (T, Thr). Then each instance of T); may have
an unrestricted number of R-neighbours of type T since, by definition of
lim, (< n R C) € Ty implies C' ¢ T. However, each instance of T has
a limit on the number of Inv(R)-neighbours of type Ty;: there is some
(<n Inv(R) C) € T with C' € T),. Thus, we must be careful not to vio-
late this limit when using instances of T" as “witnesses” to satisfy atleast
restrictions (= n R D) € Ty with D € T (such a violation is exactly
what is happening in the example (xx) above). To this end, we record in

11



Ly the minimal number of R-neighbours of type 7' that an instance of
M has (“L” for “lower bound”). In the equation systems to be defined
later, this lower bound will be used to take care of atleast restrictions in
TM.

(2) limyny(r) (T, Tar). Then an instance d of Ty, may only have a limited num-
ber of R-neighbours of type T'. To prevent the violation of this limit, we
need to record an upper bound on the number of d’s R-neighbours of type
T in M. On the other hand, there may be atleast restrictions in 7, that
need witnesses of type T'. Thus, we also want to record a lower bound
on the number of d’s R-neighbours of type 7" in M. Summing up, we use
Ey to record the ezact number of d’s R-neighbours of type T (“E” for
“exact bound”).

(3) Not limg(Tys, T') and not limyny(r)(7, Thr). Then each instance of Ths may
have an unrestricted number of R-neighbours of type 7" and each instance
of T may have an unrestricted number of Inv(R)-neighbours of type T);.
Intuitively, R-neighbours of type T" are “uncritical” for M and thus their
number need not be recorded in the mosaic (we shall see later that even
without stating a lower bound, it is easy to satisfy atleast restrictions in
Ty using witnesses in T').

The conditions (M1) to (M4) of mosaics can thus be understood as follows:
(M1) and (M2) ensure that Lj; and E); record information for the “cor-
rect” types as described above; (M3) ensures that atmost restrictions are not
violated—it suffices to consider only FE); here since (< n R C) € Ty and
C € T implies Ly (R,T) =0 by (M1) and definition of lim; finally, (M4) puts
upper bounds on Lj; to ensure that there exists only a limited number of
mosaics.

To use mosaics in systems of inequalities, we introduce one variable x,; for
each mosaic M for the input Cy and T, instead of for each type as sketched
before. The intuition behind variables, however, is slightly different from the
type-based case: the goal is to ensure that each non-negative integer solution
0 of the equation system corresponds to a pre-model in which each mosaic
M has exactly 0(x)s) instances. Intuitively, pre-models differ from models in
that, for any role R and domain elements d, e, they admit multiple R-edges
between d and e.

Definition 6 (Pre-model) A pre-interpretation Z is a pair (AZ,-T) where
AT is a non-empty set and T is a mapping that assigns

e to each concept name A, a set AT C AT and
e to each role name R, a function R* : (AT x AT) — N.

Complex concepts and roles are interpreted as for standard interpretations,

12



Pre-model

Copy 1

Copy 2

Fig. 4. The copying construction.

with the following exceptions:

(R7)*(d,e) = R*(e.d),
(KnRC) ={d| T.ecr R¥(d,e) < n}, and
(>nRC)" ={d| Teecz B¥(d,e) > n}.

A pre-interpretation T is a pre-model of a concept Cy and a TBox T iff CT # ()
and C = D € T implies CT = D7,

It is straightforward to adapt the notion “instance of mosaic” to pre-models
by taking into account the multiple edges when defining L,; and E,;: we only
have to replace #{e € AT | (d,e) € RT and t(e) = T} with X .cqrz RT(d, €).

The following theorem shows that we may safely consider pre-models instead
of models when checking satisfiability.

Theorem 7 A concept Cy and a TBox T have a finite pre-model iff Cy and
T have a finite (standard) model.

The “if” direction is trivial since every standard model can be conceived as
a pre-model. A formal proof of the “only if” direction can be found in Ap-
pendix A. Intuitively, to obtain a finite standard model from a finite pre-model
T for Cy and T, we take a finite number of “disjoint copies” of Z, and then
bend some role relationships back and forth to eliminate multiple edges. This
construction is illustrated in Figure 4: if the maximum multiplicity of edges
in the pre-model is n, we take n disjoint copies of it and “bend” the ith edge
between two elements d and e in the jth copy to go to (the copy of) e in
the ((j +4) mod n)th copy. This ensures that, for any role R, type T, and
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domain element d of the resulting model 7', d has exactly the same num-
ber of R-neighbours of type T as its corresponding domain element in the
pre-model Z. As a consequence, Z' is still a model of Cy and T.

Let us now come back to the system of inequalities. As already stated, the
variables represent the number of instances that mosaics have in a pre-model.
We use inequalities to ensure that we can “connect” the instances of the
mosaics via roles such that

(a) the lower bounds on numbers of successors stored in L), are satisfied,
(b) the exact numbers of successors stored as Ey (R, T) are satisfied, where
we have to distinguish the following two cases
(1) limmv(R) (T, TM> and IIHIR(T']M7 T), and
(ii) limyny(r) (7, Tar) and not limg(Thr, T).
(c) all atleast concepts are satisfied.

Note that we do not need to worry about the atmost-concepts as they are
ensured by (M3) together with Point (b) above. We first give the inequalities
and then relate them to Points (a) to (c¢) above.

Definition 8 (Equation System) ForCy an ALCQZ-concept and T a TBox,
we introduce a variable xy; for each mosaic M for Cy, T and define the system
of inequalities Ec, 7 by taking (i) the inequality

{M|Co€Trr}

(i) for each pair of types T, T" € type(Cy, T) and role R such that img(T,T")
and not limyng) (7", T) the inequality

{M|Ty=T} {M|Tr=T"}

and (iii) for each pair of types T, T' € type(Cy,T) and role R such that
limp(T,T") and limynygr) (T",T) the inequality

{M|Ty=T} {M|Tr=T"}

We give a brief overview of the purpose of the inequalities, and refer to the
proof of Lemma 10 below for the full picture. Inequality (E1) simply guarantees
the existence of an instance of Cj, and inequality (E2) deals with Point (a)
from above. Point (b) is comprised of two subcases, and Point (b.i) is dealt
with by inequality (E3). In contrast, Point (b.ii) and (c) cannot be dealt with
by a simple inequality since they rather require a “conditional” inequality. To
address these two points, we introduce the notion of admissible solutions.
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Definition 9 (Admissible) A solution of ¢, r is admissible if it is a non-
negative integer solution and satisfies the following side-conditions:

(1) for each pair of types T, T" € type(Cy, T) and role R such that img(T,T")
and not limynyr) (77, T'),

if > Em(Inv(R),T)-xp >0, then > am>0. (A1)
{M|Tr=T"} {M|Ty =T}

(11) for each mosaic M and each role R, if xpr > 0, (= n R C) € Ty, and

m= > LuRT)+ > Eu(RT)<n,
{T|CeT) {T|ceT}

then (A2)

Z Ty > 0,

{M'] CeTyr, not limR(TM,TMI),
and not limyn, gy (Tyr,Tar)}

Now Point (b.ii) is addressed by the side-condition (A1l). The fact that we
require only the existence of a single instance in the post-condition is due to
the fact that we work in pre-models and can simply introduce an appropriate
multiple edge to satisfy requirements for larger numbers of instances. Finally,
Point (c¢) from above is ensured using side-condition (A2).

The following lemma shows that our inqualities and side-conditions are indeed
appropriate.

Lemma 10 The system of inequalities Ec, 7 has an admissible solution iff Cj
18 finitely satisfiable w.r.t. T.

Intuitively, the proof of Lemma 10 proceeds as follows: for the “if” direction
we simply take a finite model Z for Cjy and T (as every model is also a pre-
model), and then define an admissible solution for the equation system by
taking, for each variable x,;, the number of instances of M in Z. For the “only
if” direction, we construct a pre-model for Z and 7 by reserving domain
elements for each mosaic as indicated by an admissible solution of £¢, 7, and
then refer to the inequalities and side-conditions to show that we can indeed
turn the reserved domain elements into instances of the corresponding mosaic
by connecting them via roles in an appropriate way. It then remains to refer
to Lemma 7 for the existance of a finite (standard) model. As the “only if”
direction nicely illustrates the purpose of the individual inequalities and side-
conditions, we give the proof here. The proof of the “if” direction can be found
in Appendix A.
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Proof. We only prove the “only if” direction here. Let {&), | M a mosaic}
be an admissible solution of &£, 7. We construct a finite pre-interpretation
7 from this solution and then show that it is a pre-model of Cy and 7. For
each mosaic M, fix a set M (of instances) such that #M = &5, and M # M’
implies M N M’ = (. We define

AT =M.

In the following, for all e € A?, we use m(e) to denote the mosaic M with
e € M, and t(e) to denote the type T, . For each concept name A € C, we
put

AT i={ec AT| Act(e)}).

Role names R € R are harder to deal with. More precisely, in the construction
of their interpretation, we distinguish between the three cases identified on
Page 11. We start with Case (1): for each role R € rol(Cy, T) and each pair
of types T, T" € type(Cy, T) such that limpg (7, T") but not limyay g (1", 1), we
construct a mapping

V%T’ . U M X U M — N
{M|Tp =T} {M|Trp=T"}

(such mappings will henceforth be called multiplicity mappings) such that

(1) for each e with t(e) = T, we have

So o ARn(e€) > L (R, T');
{e'eAT|t(e")=T"}

(2) for each €' with t(e') =T", we have

Z yﬁT,(e, e') = Epen(Inv(R), T).
{eeAT|t(e)=T}

Intuitively, the y7';, function is the “part” of R” that deals with edges from
elements of type T" to elements of type T”. The construction proceeds as follows.
First define two sets

Ar = {(e,i) € AT x N |t(e) =T and i < Ly (R, T")}

A= {(e,i) € AT x N |t(e) =T" and i < Epey(Inv(R), T)}
By Equation (E2), we find a (total) injection f from Az to AZ.. We define a
multiplicity mapping r by setting r(d,e) := 8{(i,7) € N? | f(e,i) = (d,j)}.

It is easily checked that, by setting vf, := r, we satisfy Condition (1) from
above, but only the following weakening of Condition (2):
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(2") for each ¢’ with t(e') = T", we have

> vigi(e,€) < Epgen(Inv(R), T).
{eeAT|t(e)=T}

If Condition (2) is satisfied accidentally, we are done. If it is not, then we
can “augment” r appropriately to satisfy Condition (2) without destroying
Condition (1). This is realised in two steps. First, if r does not accidentally
satisfy (2), then there is an e’ with #(e’) = T" and

> vigi(e,€) < Epgen(Inv(R), T).
{eeAT|t(e)=T"}

Then &,y # 0 and Ep,(Inv(R),T) > 0. Hence, by side-condition (A1),

~

there exists a mosaic M such that M # () and T)y = T. Fix an eyy € M.
Second, for each e’ with t(e') = T', we define

miss(e') := Epen(Inv(R), T) — > (e €).
{ecAZ|t(e)=T}

We can now define v

r(d,e') + miss(e') if d = ey
/YTE,T’ (d, €I> = )
r(d,e') otherwise.

It is readily checked that Conditions (1) and (2) are now both satisfied. We
have thus finished the construction of 77@,1“-

Now we deal with Case (2) from Page 11: for each role name R and each
pair of types T, T" € type(Cy, T) such that limg(7T,T") and limg- (T",T), we
construct a multiplicity mapping )\%T, such that

(1) for each e with t(e) =T, we have

Z /\TB;,T’ (67 €I> = Em(e) (R7 TI);

{e'eAL|t(e)=T"}

(2) for each €’ with t(e’) = T, we have

> )\%T,(e, €') = Emgen(Inv(R), T).

{ecAt|t(e)=T}

The construction is is similar to that of 'y{%T,, but simpler: First define two
sets

Ap = {(e,i) € AT x N [t(e) =T and i < Ep,¢)(R, T")}
A= {(e,i) € AT x N | t(e) =T" and i < Epey(Inv(R), T)}
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By Equation (E3), we find a bijection f from Ar to A’.. We then define
A= 1{(i,7) € N*| f(e,i) = (d, j)}. It is easily checked that Conditions (1)
and (2) are satisfied, and thus we are done.

Finally, we address the simplest case from Page 11: Case (3). Let n € N be a
supremum of the numbers used inside number restrictions in Cy and 7. For
each role name R and each pair of types T, T" € type(Cy, T) such that neither
limp (T, T") nor limp- (7", T), we define a multiplicity mapping w%T, by setting
witgi(d,e) :==n for all d, e with t(e) = T and t(e') = T".

We are now ready to assemble the interpretation RZ of role names: for any
two d,e € AT with t(e) =T and t(¢/) = T", set

'yTT,(d,e if limp(7,T") and not limy,y gy (7", 7T)

(e,d) if not limg(7T,T") and limynyg) (1", 7T)

(d,e) if limp(T,T") and limyay gy (17, T)

(d,e) if neither limp (T, T") nor limay(r) (7", T)

R%(d,e) := e
M

)
)
)
WTT' )
It remains to show that 7 is a pre-model of Cy and 7. To this end, we first

establish a claim showing that all lower bounds L,; of mosaics are met in 7.

Claim 1: For all e € AT with m(e) = M and t(e) = T, roles R, and types T"
with limg(7,T") and not limyny(zy(7",T), we have

> R%(e,e’) > Ly(R,T). (%)
{e'e AT |t(e!)=T"}

Proof: Let ¢, R, and T be as in the claim. We distinguish two cases:

e Ris a role name. By construction of R”, we have R (e, e') = 7 (e, €) for
all ¢ with t(e') = T". Thus Property (1) of fi;, immediately yields (x).

e R = S~ for some role name S. By construction of S? and the semantics of
inverse roles, we have R”(e,e') = S*(¢/,e) = v{. (e, €'). Thus Property (1)

of 77 7 yields ().

The next claim addresses all exact bounds E,;.

Claim 2: For all e € AT with m(e) = M and t(e) =T, roles R, and types T"
with limyy(ry (7", T), we have

> R¥(e,é') = Ey (R, T). (%)

{e'eAL|t(e!)=T"}

Proof: Let e, R, and T be as in the claim. We establish the claim using a case
distinction:

18



e Not limp(T,T") and R is a role name. By construction of R%, we have
RE(e.e') = ~fi (€, e) for all e with t(e') = T". Thus Property (2) of the
multiplicity mapping v p yields (x).

e Not limg(t(e),T") and R = S~ for some role name S. By construction
of ST and the semantics of inverse roles, we have RZ(e,e') = ST(¢/,e) =
Vs (€', e). Thus, we again obtain (x) by Property (2) of 77/ .

e limpg(t(e), T") and R is a role name. By construction of R*, we have R% (e, ¢') =
A pi(e,e') for all ¢ with t(e') = T". Thus Property (1) of A yields (x).

e limg(t(e),T’) and R = S~ for some role name S. By construction of S¥ and
the semantics of inverse roles, we have R*(e,e’) = ST(e',e) = Aj (¢ e).
Thus Property (2) of Af, yields ().

We can now prove the claim that is central for showing that Z is a pre-model
of the input concept Cy and the input TBox T

Claim 3: For all C' € cl(Cy, T) and all e € AT, C' € t(e) implies e € C~.

The proof is by induction on the norm of concepts C' as introduced in the
proof of Theorem 7. Let e € A” such that C € t(e).

e (' is a concept name. Then e € C7? follows from the definition of 7.

e (' =—D. Since every concept in cl(Cy, T) is in NNF, D is a concept name.
If =D € t(e), then D ¢ t(e) by definition of types. Thus e € (=D)* by
definition of Z.

e For C = DM FE or C = DU FE, the claim follows immediately from the
definition of types and the induction hypothesis.

e C'=(<n R D). We show that

> R%(e,e') < n. (%)

{e'eAT|Det(e’)}

It then follows that e € C? as required, as we can show that D ¢ t(e)
implies ¢’ ¢ D*: by definition of types, D ¢ t(e') implies =D € t(e'). Since
we are performing induction on the norm of concepts, induction hypothesis
thus yields ¢/ € (-D)%, and ¢’ ¢ D? follows by the semantics.

It thus remains to establish (x), which is simple: C' € t(e) and D € t(¢)
implies limyy(g)(t(€’),t(e)). Thus by Claim 2 we can rewrite () as

Z Em(e)(R, T) S n.

{T|DeT}

This, however, is ensured by Property (M3) of mosaics.
e C'=(=n R D). We show that

> R*(e,e') > n. (%)

{e'eAT|Det(e’)}

It then clearly follows from the induction hypothesis that e € C% as required.
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Claims 1 and 2 together with Properties (M1) and (M2) of mosaics imply
that

> Rie,e)> > Lpyw(RT)+ > Eue(R,T)

{e’eat|Det(e’)} {T|DeT} {T|DeT}

If the right-hand side of this inequality is greater or equal to n, then we
are done. Otherwise, (A2) ensures that there exists a mosaic M such that
D € Ty, not limg(t(e), Tar), not limy(ry(Tar, t(e)), and &y # 0, i.e. there
is an ¢ € M. First assume that R is a role name. By construction of R, we
have R*(e,e') = wilp > n. Thus, (sx) is satisfied and we are done. Now let
R =5 for arole name S. Then we have R*(e,¢') = ST(¢/,e) = wi p > n
and are also done.

As a consequence, Z is a pre-model of Cy and T = {T = Cr}: by Equa-
tion (E1) and due to the fact that &, > 0 implies #M > 0, there is a mosaic
M such that Cy € Ty and #M > 0. Fix an e € M. Claim 3 implies that
e € CF and thus 7 is a pre-model of Cy. Moreover, by definition of types, we
have C'y € Ty for each mosaic M. This fact together with Claim 3 implies
that 7 is a pre-model of T. O

To establish the intended EXPTIME upper bound, it now remains to show that
(i) the size of the constructed equation system £, 7 is (at most) exponential
in the size of Cy and T, and (ii) the existence of admissible solutions can be
checked in polynomial time.

We start with defining the size of concepts and TBoxes. First, the size w.r.t.
unary coding of concepts is defined inductively as follows:

|Al, = 1 for A a concept name,
|_'C|u =1+ |C|ua |Cl M C’2|u - |Cl L 02|u — |Cl|u + |02|u
(SnRCO)y=1|(ZnRC)l,=n+1+|C|,

The size of a TBox T is defined as |Cr|,. It can easily be shown that the
cardinality of cl(Cy, 7)) is linear in the size of Cy and 7.

Now we determine the number of mosaics for Cy and 7. Let n be the size of
Cy plus the size of C'y w.r.t. unary coding. The cardinality of type(Cy, T) is
exponential in n. For mosaics, (M2) and (M3) imply

#{(R,T) | Exy(R,T) > 0} < sum<(Tyy)

and max(ran(Ey)) < maxS(T)y), whereas (M4) implies analogous bounds for
Ly;. Since max™(7T) and sum™(7T') are linear in n for <1 € {<, >}, each mosaic
M can be represented by Ty, and a vector of length 2n of pairs of the form
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(k,T) for k < n and T a type. This implies the existence of a constant ¢ such
that the number of mosaics is bounded by 2(e"*).

Since the number of mosaics is exponential in the size of C'y and T, we can
easily infer similar bounds for the number of inequalities and side-conditions
of ¢, 7. Before we continue, however, let us analyze what bounds are needed.
To do this, we show that the existence of an admissible solution for systems
of inequalities £¢, 7 can be decided in time polynomial in certain parameters
of 500,7'.

First we need some prerequisites. We assume linear inequalities to be of the
form ¥;c;z; > b. Such an inequality is called positive if b > 0. A system of
linear inequalities is described by a tuple (V. &), where V' is a set of variables
and & a set of inequalities. Such a system is called simple if all inequalities
are positive and all coefficients are (possibly negative) integers.

A side condition for an inequality system (V&) is a constraint of the form
r>0= 21+ - +2x,>0, where z,2(,...2p € V.

Let (V, &) be an inequality system and I a set of side conditions for (V, ). We
say that (V, &) admits an I-admissible solution if it admits a solution satisfying
all constraints from 1.

It is not hard to check that the inequality systems from Definition 8 are simple
and that the conditions (A1) and (A2) can be polynomially transformed into
side conditions:

(E1) is already simple,

(E2) can obviously be transformed into > ... —3> ... >0,

e the equality (E3) is transformed into two inequalities of the form ... —
>...>0,

e cach implication due to (A1) can be transformed into polynomially many

side conditions as follows: since we are interested in non-negative solutions

only, we can use a separate implication for each summand appearing in

the premise. Next, the coefficients on the left-hand sides of the premise

are omitted by dropping those side-conditions whose coefficient is zero and

replacing all other coefficients with 1.

(A2) is already in the form of a side condition.

The following proposition states that the existence of I-admissible integer
solutions can be checked in time polynomial in several parameters. It is a
generalization of Lemma 6.1.5 in [23].

Proposition 11 Let (V. &) be a simple system of inequalities in which all
coefficients and constants are from the interval [—a;a] of integers, and let I
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be a set of side conditions for (V,E). Then the existence of an integer, non-
negative, and I-admissible solution for (V,E) can be decided in (deterministic)
time polynomial in #V + #E + #I1 + a.

It is now easy to obtain the desired EXPTIME upper bound. First, note that
the number of variables and the number of inequalities in £, 7 is at most ex-
ponential in the size of C'y and 7 due to our bound on the number of mosaics.
Second, the coefficients and constants appearing in £q, 7 are linear in the
size of Cy and T due to (M2) to (M4). When transforming E¢, 7 into simple
inequalities and side conditions, these properties are preserved. Thus, Lem-
mas 10 and 11 yield an EXPTIME upper bound for the satisfiability of ALC Q-
concepts w.r.t. TBoxes. The corresponding lower bound is a consequence of
the ExXPTIME-hardness of unrestricted satisfiability of ALC w.r.t. TBoxes [20;
3] and the fact that this DL has the finite model property.

Theorem 12 Finite satisfiability of ALC QT-concepts w.r.t. TBoxes is EXP-
TIME-complete if numbers are coded in unary.

If numbers in number restrictions are coded binarily, the algorithm developed
in this section does no longer yield an EXPTIME upper bound: in this case,
the number of mosaics is double exponential in the size of the input concept
and TBox. Since it is not clear whether and how the presented algorithm can
be modified in order to yield an EXPTIME upper bound for the case of binary
coding, we resort to a different approach to attacking this problem: in the
next section, we reduce finite ALC QZ-satisfiability to the finite satisfiability
of ALCFI-concepts. Since the employed reduction is polynomial, in this way
we obtain an EXPTIME upper bound for the finite satisfiability of ALC QZ-
concepts w.r.t. TBoxes, even if numbers are coded in binary.

4 Binary Coding of Numbers

In this section, we prove that finite ALC QZ-concept satisfiability w.r.t. TBoxes
is decidable in EXPTIME even if numbers are coded in binary, where the size
w.r.t. binary coding |C|, of a concept C' is defined as the size w.r.t. unary
coding, the only difference being that

(SnRO)y=|(=nRC)y=log(n) +1+|Cls

The proof is by a polynomial reduction to finite ALCFZ-concept satisfiability
w.r.t. TBoxes. Since, in the case of ALCFZ, the size of numbers appearing
in number restrictions is constant (regardless of the coding), the results pre-
sented in the previous section imply that finite ALCFZ-concept satisfiability
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Fig. 5. Representing role neighbour relationships.

w.r.t. TBoxes is EXPTIME-complete. Thus, this logic is a suitable target for
reduction. In contrast to existing reductions of ALCQT to ALCFZI, which
only work in the case of potentially infinite models (such as the one presented
in [11]), we have to take special care to deal with finite (and thus non-tree)
models.

Before we go into technical details, let us describe the intuition behind the
reduction. The general idea is to replace counting via qualified number re-
strictions with counting via concept names: to count up to a number n, we
reserve concept names By, ..., Bg(n) representing the bits of numbers be-
tween 0 and n. For the actual counting, we can then use well-known (propo-
sitional logic) formulae that encode incrementation. But how can we use this
approach to count the number of role neighbour? Intuitively, we rearrange the
neighbours of each domain element in a way that allows to replace qualifying
number restrictions with the combination of (i) functionality of roles as pro-
vided by ALCFT and (ii) counting via concept names. Consider, for example,
the domain element x and its R-neighbours displayed on the left-hand side of
Figure 5. Ignoring the “direct” R-neighbours of x on the right-hand side for a
moment, we have rearranged three R-neighbours along an auxiliary path that
is built using a new role Lg. Employing the (< 1 S T) constructor of ALCFZ,
we can ensure that each node on this path has precisely one Lg-predecessor,
at most one Lp-neighbour, and precisely one R-neighbour. The counting via
concept names is then performed along the domain elements on L g-paths.

However, we cannot gather all original R-neighbours of x on the Lg-path.
The reason for this is as follows: assume we are at some domain element
on the Lg-path descending from x and move along this domain element’s
outgoing R-edge. The reduction ensures that we either reach a “real” domain
element (such as x) or arrive on an Ly g)-path. If the latter is the case,
we have to ensure that, moving up the L, (g)-path, we will finally reach a
“real” domain element. To do this, we count the lengths of auxiliary paths via
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concept names: * once we have moved up to node 0 of the path, its predecessor
must be “real”. Since, however, we do not know how many R-neighbours an
object had in the original model, we do not know how many bits to reserve
for this counting. The solution is to gather only those R-neighbours of x on
the Lr-path which are constrained by a (< n R C') concept applying to = or
which are witnesses for a (= n R C') concept applying to x—this helps since
the number of such domain elements is known in advance. All other domain
elements can remain “direct” neighbours of x since there is no need to count
them.

Fix an ALCQZ-concept C' and an ALCQZ-TBox T whose finite satisfiability
is to be decided. W.l.o.g., we assume C' and 7 to be in NNF. In order to
translate C' and T to ALCFZ, we introduce some additional concept and role
names:

(1) a fresh (i.e., not appearing in C' or T) concept name Real;

(2) foreach R € rol(C,T), a fresh concept name Hp and a fresh role name Lg;

(3) for each concept D € cl(C,T) of the form (=<1 n R E), where x is used
as a placeholder for > or <, we reserve a fresh concept name Xp;

(4) for each concept D € cl(C,T) that appears inside a qualifying num-
ber restriction (> n R D) € cl(C,T), we reserve fresh concept names
Bpy,...,Bp, where k = [log(nump)] and

nump = max{n | (xn R D) € cl(C,T)} +1;

(5) foreachrole R € rol(C, T'), we reserve fresh concept names Bgy, ..., Bry,
where k& = [log(depthy)] and
depth, = > n.

(=i m R C)ecl(C,T)

The concept name Real is used to distinguish “real” domain elements from do-
main elements on auxiliary paths. The concept names Hy are used to “mark”
objects on auxiliary paths for the role R: when following an Lg-path, all en-
countered objects (apart from the root representing a “real” domain element)
will be instances of Hp. The concept names Bp; are used to count the length
of auxiliary Lp-paths as described above. The concept names B, ; are also em-
ployed for counting: they are used to count the “occurrence” of R-neighbours
in D along Lg-paths and will thus help to replace ALCQZ-concepts of the
form (=< n R D). Note that the number of newly introduced concept and
role names is polynomial in the size of C' and 7. We will use Bp to refer to
the number encoded by the concept names Bp, ..., Bp [og(nump)] and Bpg to
refer to the number encoded by the concept names Bpgy, ..., B log(depths)]-
Moreover, we will use the following abbreviations:

3 This counter is a different one than the ones mentioned above
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e (Bp = i) to denote the ALCFZI-concept expressing that Br equals 7 (and
similar for Bp = i and the comparisons “<” and “>");

e incr(Bg, S) to denote the ALCFI-concept expressing that, for all S-succes-
sors, the number Bp is incremented by 1 modulo depthy (and similar for
incr(Bp, S)). More precisely, the concept incr(Bg, S) is defined as follows
(with n abbreviating [log(depthz)]):

(BR,O — VS.ﬁBR,O) M (_'BR,O — VS.BR,O) M
[ [ BR’]’) — ((BR,k — VS._lBR’k) M (_‘BR,k — VSBR,]C>) M

k=1.n (jzo..kq
k:l_ll..n (jzolflk—l _‘BR,j) — ((BR,k — VS.Bry) N (mBri — VS.ﬂBR,k)).

e eq(Bp, S) to denote the ALCFZI-concept expressing that, for all S-succes-
sors, the number By, is not changed. Formally, eq(Bpg, S) is defined as follows
(with n abbreviating [log(depthz)]):

i:lzl.n((BD’i — VLR.BDJ') l (_'BD,i — VLR~_'BD,’i)))

We inductively define a translation v(C') of the concept C' into a Boolean
formula (which is also an ALCFZ-concept):

v(A) := A, for A € cnam(C,T) v(=D) := —v(D)
YDNE):=~(D)Nvy(E) YDUE):=~(D)U~y(E)
’y(}nRD) = X()nRD) 'y(gnRD) = X(gnRD)

Now set o(C') := v(C) M Real and, for T ={T = Cr},
o(T) :={T =Real — v(Cr)} UAux(C, T),

where the TBox Aux(C,T) is defined in Figure 6 in which we use D C E as
abbreviation for T = D — E, and in which all LI and 'l that have only a
concept as index range over all concepts in cl(C, T) of the specified form.

The first three concept equations ensure the behaviour sketched above of Real,
Hp, and the counting concepts Br and Bp. The last but one concept equation
ensures that the counting concepts Bp are updated correctly along an L path.
To guarantee that a “real” element d satisfies “number restrictions” X, r p),
the fourth concept equation ensures that we see enough R-neighbours in D
for atleast restrictions (= n R D) along an Lg path starting at d, whereas the
last concept equation guarantees that we do not see too many such neighbours
along an Lp path for atmost restrictions (< n R D). The following Lemma
states that o is a reduction from finite ALC QZ-concept satisfiability to finite
ALCFT-concept satisfiability.
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Fig. 6. The TBox Aux(C,T).
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Fig. 7. Two models for o(C) and o(T).

Lemma 13 A concept C is finitely satisfiable w.r.t. a TBox T iff o(C) is
finitely satisfiable w.r.t. o(T).

Intuitively, the proof of the above lemma proceeds as follows: for the “only
if” direction, we simply take a finite model of C' and 7T, define all elements
in the model as instances of the concept Real, then form the auxiliary paths
adding new elements to the model, define the interpretations of the auxiliary
concepts and roles, and manipulate the interpretation of the original roles as
described above to obtain a finite model of o(C) and o(T).

The “if” direction needs more work. We first note that a straightforward
construction of a model of C' and T from a model of o(C) and o(7T) by
moving all the origins of role relationships from the auxiliary paths to the
instance e of Real where the auxiliary path starts does not work. Let us call
this naive approach “spooling”. To see that spooling fails, consider the two
models of o(C') and o(7T) given in Figure 7, where

T={T=(<2RC)N(K2R O)}.

The thick points represent real elements, the dotted edges denote auxiliary
paths, and the solid edges denote real role relationships. Now, if we apply
spooling to the model depicted at the left of Fig. 7, we do not obtain a model
of C' and T since each node has exactly one incoming and one outgoing R
edge. So, to prove this part of Lemma 13, we first show that, if o(C') is finitely
satisfiable w.r.t. o(7), then there is a singular finite model of o(C') and o(T):
intuitively, in a singular model, an auxiliary path for a role R and an auxiliary
path for Inv(R) are connected via at most one R-edge. In Figure 7, the left
model is not singular, whereas the right one is. Then we show that, if we apply
spooling to a singular model of ¢(C') and ¢(7), we indeed obtain a model of
Cand T.

The complete proof of Lemma 13 can be found in Appendix B. Interestingly, to
show the existence of a singular model, we use the same copying construction
that we used in the proof of Theorem 7, and thus this encoding trick cannot
be easily extended to work for logics that are not closed under taking disjoint
copies of models such as ALCQZ with nominals or C2.
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Lemma 13 together with the fact that o(C') and o(7) are computable in
polynomial time proves that finite satisfiability of ALCQZ concepts w.r.t.
TBoxes is polynomially reducible to finite satisfiability of ALCFZ concepts
w.r.t. TBoxes. By Theorem 12 we obtain the following theorem:

Theorem 14 Finite satisfiability of ALCQZL-concepts w.r.t. TBoxes is EXP-
TIME-complete if numbers are coded in binary.

5 ABox Consistency

In this section, we extend the complexity bounds obtained in Sections 3 and 4
to a more general reasoning task: finite ALCQZ-ABox consistency. As noted
in the introduction, ABoxes can be understood as describing a“snapshot” of
the world.

Definition 15 (ABox) Let O be a countably infinite set of object names.
An ABox assertion is an expression of the form a : C or (a,b) : R, where a
and b are object names, C' is an ALCQT-concept, and R a role. An ABox is
a finite set of ABox assertions.

Interpretations T are extended to ABozes as follows: additionally, the inter-
pretation function - maps each object name to an element of AT such that
a # b implies aX # bF for all a,b € O (the so-called unique name assumption ).
An interpretation T satisfies an assertion a : C if a* € CT and an assertion
(a,b) : R if (a*,b%) € RE. It is a model for an ABox A if it satisfies all as-
sertions in A. An ABox is called finitely consistent w.r.t a TBox T if it has
a finite model that is also a model of T .

In the following, we will polynomially reduce finite ALC QZ-ABox consistency
to finite ALCQZ-concept satisfiability. Thus, we prove that ALCQZ-ABox
consistency is EXPTIME-complete independently of the way in which numbers
are coded. We start with fixing some notation.

Let A be an ABox and 7 a TBox. Analogously to what was done in previous
sections, we use rnam(A,7T) to denote the set of role names appearing in A
and T, rol(A, T) to denote the set of roles and their inverses appearing in A
and T, and obj(.A) to denote the set of object names appearing in A. For each
object name a € obj(A) and role R € rol(A, T), N4(a, R) denotes the set of
R-neighbours of a in A, i.e.

Ny(a, R) = {b € obj(A)| (a,b) : R€ Aor (b,a):Inv(R) € A}
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We use cl(A, T) to denote the smallest set containing all sub-concepts of con-
cepts appearing in A and 7T that is closed under =. It can easily be shown
that the cardinality of cl(A, 7)) is linear in the sizes of A and 7. The notion
of types can straightforwardly be extended to ABoxes.

Definition 16 (Type) A type T for an ABox A and a TBox T is defined
as in Definition 3, where cl(Cy, T) is replaced with cl(A,T).

The size of an ABox assertion a : C' is the length of the concept C'; the size
of an ABox assertion (a,b) : R is 1; finally, the size of an ABox A is the sum
of the size of all assertions in A. The number of types for an ABox A and a
TBox 7T is thus clearly exponential in the size of A and 7.

The central notion in the reduction of finite ALCQOZ-ABox consistency to
finite ALC QT-concept satisfiability is that of a reduction candidate:

Definition 17 (Reduction Candidate) Let A be an ABox and T a TBox.
A reduction candidate for A and T is a function t that maps each object

name a appearing in A to a type t(a) for A and T such that a : C € A implies
C € t(a).

Let t be a reduction candidate for A and T. For each object name a € obj(A),
role R € rol(A,T), and type T € ran(t) we use #*(a, R, T) to denote the
number of object names b such that b € Ny(a, R) and t(b) =T.

Now, for each object name a € obj(A), we define a reduction concept C{(a)
as follows:

Alg) = > 4A )
Ct (a’) C’Qa) ¢ n Tetzln(t) (/ #t (a7 Ra T) R (CDT C))
#£(a,R,T)>0

The reduction candidate t is called realisable iff, for every object name a €
obj(A), the reduction concept Ci*(a) is finitely satisfiable w.r.t. T .

The intuition behind this definition is as follows: for realisable reduction candi-
dates, we can “join” models of the individual reduction concepts to a model of
the ABox. Vice versa, each model of the ABox is also a model of all reduction
concepts of a realisable reduction candidate.

Note that the definition of reduction concepts exploits the unique name as-
sumption: If we find n different R-neighbours of an object name a in an ABox
A that are all assigned the same type T by the reduction candidate, then
the reduction concept Ci(a) for a requires (via the atleast restriction) that,
for each domain element satisfying it, there are at least n different domain
elements of type T that are reachable via the role R. If we drop the unique
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name assumption, this requirement is too strong since different R-neighbours
of a in A can be interpreted as the same domain element.

The following lemma fixes the relationship between ABoxes and reduction
candidates. A proof can be found in Appendix C.

Lemma 18 Let A be an ABox and T a TBox. A is finitely consistent w.r.t.
T iff there ewists a realisable reduction candidate for A and T .

It is now easy to establish a tight complexity bound for finite ALC QZ-ABox
consistency.

Theorem 19 Finite ALCQT-ABox consistency w.r.t. TBoxes is EXPTIME-
complete if numbers are coded in binary.

Proof. Let A be an ABox and 7 a TBox. Since the number of types for A
and 7 is exponential in the size of A and 7 and the number of object names
used in A is linear in the size of A, the number of reduction candidates for A
and 7 is exponential in the size of A and 7. Thus, to decide finite consistency
of A w.r.t. T, we may simply enumerate all reduction candidates for A and T
and check them for realisability: by Lemma 18, A is finitely consistent w.r.t.
T if we find a realisable reduction candidate. Since the size of each reduction
concept is polynomial in the size of A and 7, by Theorem 14, the resulting
algorithm can be executed in deterministic time exponential in A and 7T .

O

Note that we make the unique name assumption only to allow for simpler
proofs. Indeed, it is not crucial for obtaining an EXPTIME upper bound: if we
want to decide finite consistency of an ABox A w.r.t. a TBox 7 without the
unique name assumption, we may use the following approach: enumerate all
possible partitionings of the object names used in A. For each partitioning,
choose a representative for each partition and then replace each object name
with the representative of its partition. Obviously, the ABox A is finitely con-
sistent w.r.t. 7 without the unique name assumption if and only if one of the
resulting ABoxes is finitely consistent w.r.t. 7 with the unique name assump-
tion. Since the number of partitionings is exponential in the number of ABox
objects, this yields an EXPTIME upper bound for finite ABox consistency
without the unique name assumption.
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6 Related Work

The results presented here are closely related to investigations that have been
performed in two different areas: on the one hand, the complexity of finite
model reasoning has been investigated for a variety of conceptual database
models that can express infinity. For example, in [24], it is shown that finite
satisfiability in SERM schemata can be decided in polynomial time, where
a SERM schema roughly corresponds to an entity-relationship (ER) schema
with cardinality constraints, but without IS-A links between entities or rela-
tionships. In [25], an EXPTIME upper bound is proved for finite satisfiability
of CR models, where CR is the extension of SERM with IS-A links between
entities and relationships. In [26], this EXPTIME upper bound is extended
to the finite satisfiability of CAR models, where CAR provides, in addition,
full Boolean operators on classes and relations of arity larger than 2. A last
piece of work to be mentioned is [27], where the complexity of a variety of
reasoning problems on (several combinations of) integrity constraints on re-
lational databases are investigated, both in unrestricted and in finite models.
For the integrity constraints considered (unary inclusion dependencies and
functional dependencies), it turns out that validity of implications between
(various combinations of) these constraints often depends on whether we con-
sider unrestricted or finite models, but their complexity is mostly the same.

On the other hand, the complexity of finite model reasoning has been in-
vestigated for other first order and modal logics. Most prominently, the two
variable fragment of first order logic with counting quantifiers (C2) lacks the
finite model property, but both reasoning in the unrestricted case and in fi-
nite models are decidable [15; 28] and even of the same complexity, namely
NEXPTIME-complete; see [28] for the unrestricted case, [19] for reasoning in
finite models, [18] for both cases, and [29] for numbers inside counting quan-
tifiers being coded in binary. As mentioned in the introduction, ALCQZ can
be polynomially translated into C2, which yields a NEXPTIME upper bound
for ALCQT. As we have shown in this paper, neither this bound nor the one
that was established in the first decidability result for ALCQT [17] are tight.
Another example to be mentioned here is the full p-calculus, i.e., the extension
of ALC with fixpoints and inverse roles. Even without any nested fixpoints,
this logic lacks the finite model property because, roughly spoken, it allows to
express that (i) there exists an infinite R-path, and (ii) R~ is well-founded.
These two constraints together are satisfiable only in an infinite, acyclic R-
path, and thus only in infinite models. For the vu-fragment of this logic, finite
satisfiability has recently been shown to be EXPTIME -complete [30], meeting
the complexity bounds for the unrestricted case [31].

The common pattern that seems to recur in various cases is that unrestricted
and finite model reasoning are often both decidable, and quite often of the
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same complexity, even though they might ask for different reasoning tech-
niques. An exception to the latter point is the Stellar fragment, a clausal
formalism closely related to the two-variable fragment of first order logic with
counting quantifiers: in [18], systems of linear equations are used both for
reasoning in unrestricted and finite models.

Finally, we would like to point out that, similar to the case of unrestricted
model reasoning, the complexity of finite model reasoning is, in many natural
cases, insensitive to the coding of numbers in number restrictions. For exam-
ple, C2 is NEXPTIME-complete logic that is insensitive in this sense,both for
unrestricted and finite model reasoning [29]. In this paper, we have given an
example for an EXPTIME-complete logic for which finite model reasoning is
insensitive to the coding of numbers. The corresponding proof for the unre-
stricted case can be found in [11]. Finally, examples of PSPACE-complete logics
for which the (only interesting) unrestricted case is insensitive to the coding
of numbers can be found in [13].

7 Outlook

In this paper, we have determined finite model reasoning in the description
logic ALCQT to be ExpTiME-complete. This shows that reasoning w.r.t. fi-
nite models is not harder than reasoning w.r.t. unrestricted models, which
is also known to be EXPTIME-complete [11]. We hope that, ultimately, this
research will lead to the development of finite model reasoning systems that
behave equally well as existing DL reasoners performing reasoning w.r.t. un-
restricted models such as FaCT and RACER [8; 9]. Note, however, that the
current, algorithm is best-case EXPTIME since it constructs an exponentially
large system of inequalities. It can thus not be expected to have an acceptable
runtime behaviour if implemented in a naive way. Nevertheless, we believe
that the use of equation systems and linear programming is indispensable for
finite model reasoning in ALCQZ. Thus, efforts to obtain efficient reasoners
should perhaps concentrate on methods to avoid best-case exponentiality such
as on-the-fly construction of equation systems. Moreover, the reductions pre-
sented in Section 4 and 5 can also not be expected to exhibit an acceptable
run-time behaviour and it would thus be interesting to try to replace them by
more “direct” methods.

Another option for future work is the following: while finite ALC QZ-concept
satisfiability w.r.t. TBoxes is sufficient for reasoning about conceptual data-
base models as described in the introduction, finite ALC QZ-ABox consistency
is not yet sufficient for deciding the containment of conjunctive queries w.r.t.
a given conceptual model—an intermediate reduction step is required. For un-
restricted models, this problem was proven to be in 2-ExpTIME [21], and it
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would be interesting to find out whether this blow-up is avoidable, both for
the unrestricted and the finite model case.
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A Proofs for Section 3

We first prove Theorem 7 and then Lemma 10.

Theorem 7 A concept Cy and a TBox T have a finite pre-model iff Cy and
T have a finite (standard) model.

Proof. Since the “if” direction is trivial, we concentrate on “only if”. Thus,
let 7 be a finite pre-model for Cy and 7. We use n to denote the maximum
multiplicity of edges in Z, i.e.

n = max{R*(d,e) | d,e € AT and R used in Cy or T}.

Since 7 is finite, n is clearly well-defined. Next, define a (standard) interpre-
tation J as follows:

o AT :=ATx{0,...,n—1};
o A7 := AT x {0,...,n — 1} for concept names A;
o R7 :={((d,i),(e,§)) | Ik < R*(d,e) : j =i+ k mod n} for role names R.

The following claim clearly implies that 7 is a model of Cjy and T as desired:

Claim: for all C' € cl(Cy, T) and d € AT, d € CT implies (d,i) € C7 for all
1 < n.

The proof is by induction on the norm || - || of concepts C, which is defined
inductively as follows:

|| A]| == ||-A]] := 0 for A concept name
ICNGl = (ICiu Gl =1+ |G| + |G|
|z n R D)||:=[[(<n R D)||:=1+][|D]|

The induction start and the Boolean cases are trivial by definition of J and
using the induction hypothesis. Hence we only treat the number restrictions
explicitly:

e C=(<nRD). Letde C? and fix ani € {0,...,n—1}. We have to show
that (d,i) € C7. From the semantics, we obtain

> R*(d,e)<n (%)

ecDT

By construction, for each e € AT we have that
i €{0,....n =1} [ ((d.i), (e.j) € R7} = R*(d.e). (%)

Since we are doing induction on the norm, the induction hypothesis yields
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that e € (=D)T implies (e, j) € (=D)7 for all e € AT and j < n. Together
with (x) and (sx), this clearly yields that (d,i) € C'7 as desired.
e C'=(>n R D). Similar to the previous case.

Next, we prove the “if” direction of Lemma 10.

Lemma 20 If Cy is finitely satisfiable w.r.t. T, then the system of inequalities
Ecy1 has an admissible solution.

Proof. Let Z be a finite model of Cy w.r.t. 7. From Z, we can construct an
admissible solution of £, 7. For e € A%, we use t(e) to refer to the unique
type of which e is an instance, and m(e) to refer to the unique mosaic of
which e is an instance, as has been defined in Definitions 3 and 5, respectively.
Moreover, we use M7 to refer to {e € AT | m(e) = M} and T to refer to
{e € AT | t(e) =T}. Next, we set & := #M7T and prove the following claim:

Claim: {7, | M a mosaic} is an admissible solution of £¢, 7.
Equation (E1) is satisfied since Z is a model of Cy: there is some ¢y € CF

implying, by definition of m(-), that we have @p,p) > 1 and Cy € Tin(ey)-

For (E2), let T,T" be types, R a role with limg (7", T") and not limyaygz) (17", 1),
and fix some ey, € MZ for each MT # ) as follows:

o if T); =T, choose an e); € MT with a minimal number of R-neighbours in
T'F, and
e if Ty # T, choose an arbitrary e, € M7.

We claim that the following (in)equalities hold, which clearly implies (E2).

{M|TM:T} {M|TM:T/\MI75®}

S #{c € T | {en, ') € R} -2y <
{M|Th =T AMT 0}

S #{e e T" | (enr,e) € Inv(R)} - dar =
{M|Tar=T' AMT£0}

{M|Tr=T"}

The first equality is obvious. The first inequality is due to the definition of m,
which implies that, for each instance e of M, Ly/(R,T") is a lower bound for
the number of e’s R-neighbours in T'F. The second inequality holds mainly by
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a simple graph-theoretic reason: the number p of R edges from T7 into T'*
coincides the number of Inv(R) edges from T"* into T7. Next, we have chosen
ey with Ty = T to have a minimal number of R-neighbours in T’I, and thus
the left-hand term is a lower bound for p. Finally, since each e € M? with
Tys = T" has the same number Ey/(Inv(R), T) of incoming R-edges from T by
definition of MZ, the right-hand term coincides with p, and thus the second
inequality holds. Finally, the last equality follows by definition of the sets MZ.

Equation (E3) is satisfied with a similar yet simpler argument: let T, T" be
types, R a role with limg(7T,T") and limyg) (", T), and fix some ey € M*
for each MZ # (). Then we have

S Eu(RT)-iy= S #{d €T |(en,¢) € BT} iy =
{M|Ty=T} {M|Ty=TAMT#p}

S #{e e T | (e e) € Inv(R)T} -2y =
{M|Ty=T'A\MT#0}

{M|Ta=T"}
using similar arguments as for the (E2) case.
Now for the admissibility of our solution. Obviously, it is a non-negative integer

solution. For (A1), consider types T,T" and a role R with limg(T,T"), not
limmv(R) (TI,T), and

> Eu(Inv(R),T) - @y > 0.
{M[Tu=T"}

Hence there is, by definition of MZ, some (¢’,¢) € Inv(R)T with ¢ € T'" and
e € TT. Hence we have
Z Ty > 0,

{M|Tp =T}

and thus (A1) is satisfied.

Finally, for (A2), let M be a mosaic with &), > 0, (=nR.C) € T, and

m= > LuRT)+ > Eu(RT)<n.
{T|ceT} {T|ceT}

Hence there is some ey € T and ey, . .., e, with e; # e; for all i # j and, for

all 1 <i < n, {ey,e;) € R and e; € CT. By definition of m(e), m < n implies
that there is some ¢ with 1 < ¢ < n such that not limy(g)(t(err),t(er)) and
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not limg(t(ep), t(enr)). Since C' € t(e,), the claim yields

Z jM’ > 1a

{M'| CeTy;r, not Limpg (Thr Ty, ),
and not limlnv(R) (Tasr,Thr)}

and (A2) is satisfied. O

We now prove Proposition 11. In the proof, we use the following lemma that
was established by Calvanese in [23] and builds on results of Papadimitriou

[33].

Lemma 21 [23] Let (V,€) be a system of m = #E linear inequalities in
n = #V wariables, in which all coefficients and constants are from the interval
[—a;a] of integers. Then, if (V,E) has a solution in N, it also has one in

{0,1,...,H(V,&E)}", where H(V,E) = (n + m)(ma)*™ .

The proof of Proposition 11 is closely related to the proof of Lemma 6.1.5
in [23].

Proposition 11 Let (V. &) be a simple system of inequalities in which all
coefficients and constants are from the interval [—a;a] of integers, and let T
be a set of side conditions for (V,&). Then the existence of an integer, non-
negative, and /-admissible solution for (V, &) can be decided in (deterministic)
time polynomial in #V + #& + #I + a.

Proof. For a positive integer k, we use £7(k) to denote the set of inequalities
{.TS/{I(.T1++SC]) | SC>0:>501+"'+SC]'>0€[}.

It is readily checked that every non-negative solution of (V, EUE,(k)) is a (non-
negative and) I-admissible solution of (V). We prove the following claim:

Claim: There is an integer ke exponential in #V + #E + #1 such that (V, &)
admits a non-negative, integer, and I-admissible solution iff (V,& U &(ke))
admits a non-negative (rational) solution.

Proof: Let n = #V, m = #&, and r = #1. Then we choose
ke =a- (2n+m+r)(n+m 4 r)2otmn+l

It remains to show that kg is as required:

For the “if” direction, let S be a non-negative solution of (V,& U &;(ke)). As
noted above, S is also a (non-negative and) I-admissible solution of (V,&).
Since all inequalities in (V, &) are positive, we can convert S into an integer
solution by multiplying S with the smallest common multiplier of the denom-
inators in S.
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Now for the “only if” direction: assume that there exists an integer, non-
negative, and I-admissible solution S of (V, &), and let S(x) denote the value
S assigns to x. Set

Es={v1+ - +2;>0|x>0= a1+ - +x; >0€ [ and S(z) > 0}U
{r=0]S(x) =0}

Obviously, S is also an (integer and non-negative) solution of the system
(V,EUEs). By Lemma 21, there exists a non-negative integer solution S’ of
(V,EUEg) which is bounded by h = H(V,EUE). It is readily checked that the
solution S’ is also an (integer and non-negative) solution of (V,& U E&;(n)) for
any n > h. It remains to note that, since £g contains at most one inequality
for each variable in V' and each implication in I, we have h < ke.

In view of the claim just established, it is now easy to show that the exis-
tence of a non-negative integer and /-admissible solution for a simple system
of inequalities (V,E€) and a set of side conditions I can be decided in time
polynomial in #V + #& + #I + a: we may clearly view (V,EUEr(ke)) as a
linear programming problem. Since ke is exponential in #V + #E& + #1 + a,
the binary representation of ke is polynomial in #V + #& + #1 + a. Thus,
the existence of a rational (non-negative) solution for (V,& U &[(ke)) can be
checked in (deterministic) time polynomial in #V + #& + #T + a [34]. a

B Proofs for Section 4

In this section, we prove Lemma 13. For the sake of readability, we split the
two directions of this lemma into two separate lemmas. To address individual
concept equations of the TBox Aux(C,T) displayed in Figure 6, throughout
this section we will use Ei to refer to the 2’th concept equation and Ei.j to
refer to its j'th line.

Lemma 22 If o(C) is finitely satisfiable w.r.t. o(T), then C is finitely satis-
fiable w.r.t. T.

Proof. The proof strategy is to take a finite model of o(C') and o(7) and
transform it into a finite model of C' and 7. For this purpose, instead of
taking an arbitrary model, we first select a special, so-called singular one. We
first define the notion of singularity. Let Z be a finite model of o(C') and o(T).
For each domain element d € Real” and each R € rol(C,T), we inductively
define a sequence of domain elements hg’R e hZ’l}; as follows:

e set hg’R =d;
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e set h{} to the Lg-neighbour of A" (which is unique due to E1.3) if it
exists. Otherwise, (4 r = 1.

The constructed sequence is finite due to the use of the By counter in E2.1,
E3.3, and E3.6. Moreover, by E1.2 we have h{"" € HE for 0 < i < {4, which
we will often use (implicitly) throughout the remaining proof. The model Z is
called singular if, for all roles R € rol(C,T) and nodes d, e € Real”, we have

#{(1,7) | < lar,j < lomrys and (BP7 RS™F) € RTY < 1.

Intuitively, in a singular model, an Lg-path and an Lj,,(r)-path are connected
via at most one R edge, and thus the operation of contracting L edges always
results in a simple graph, i.e. no two vertices are connected by more than one
edge.

Claim 1. If o(C) is finitely satisfiable w.r.t. o(7), then there is a finite,
singular model of ¢(C') and (7).

Proof: Let Z be a finite model of o(C') and ¢(T). Fix an injective mapping ¢
from A% to {0,..., (#AT—1)}. Then we construct a new (finite) interpretation
J by copying Z sufficiently often and “bending R edges” from one copy of 7
into others. More precisely, [ is defined as follows:

7= {(d,i) | d € AT and i < #AT};
AT = {{d,i) € AT | d € AT} for all concept names A € cnam(a(C), o (T));
Ly, = {((d, i), (e,i)) € AT x AT | (d,e) € LT}

for all role names Lg with R € rol(C,T);
R7 1= {({d, ) e, ((d) + i mod #A7)) | (d,¢) € 7}

for all role names R appearing in C or 7.

It is straightforward to check that J is a singular model of o(C') and o(7),
which finishes the proof of Claim 1.

Now let Z be a singular, finite model of ¢(C) and o(7) and fix, for each
d € Real” and R € rol(C, T), a sequence of domain elements hitt hgdi
above. We use 7 to define an interpretation [J as follows:

A7 := Real”
AT = AT N Real®

Rji:{(d,e)EAj AJ|HZ<€(1R,]<€IW (hdR helnv )ERI}

It remains to establish the following claim:
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Claim 2. For all d € A7 and D € cl(C,T), d € v(D)* implies d € D7.

For assume that Claim 2 is true. Since Z is a model of o(C'), by definition
of o there exists a d € (y(C) r Real)Z. Clearly we have d € A7 and thus
Claim 2 yields d € CV. Hence, J is a model of C. By definition of ¢(7) and
the semantics, we have Real” = (7(C'r) N Real)?. Together with Claim 2 and
definition of 7, we obtain A7 = C’;Z and thus 7 is a model of 7.

We prove Claim 2 by induction on the norm || - || of concepts D which is
defined as in the proof of Theorem 7.

Let d € A7 N ~(D)* for some D € cl(C,T). Then d € Real”. Since C' and T
are in NNF, D is also in NNF. We only treat the interesting cases:

e Let D=(>nRE)andd e ~v(D)r = (Xnrr)t By EL4 and the choice
of the elements hg’R, ) ..,hi’li, we have h?’R € (Xnrp)t for i < lyp.
Hence, by exploiting the counter By and its use in E2.3, E2.5, E4, and E5,
it is straightforward to show that there exists a subset I C {1,...,0;r}
of cardinality at least n such that, for each i € I, there exists an e; € A?
such that (h%" e;) € RT and e; € v(E)T. By E1.1, we have ¢; € Real” or
e; € Hiny(r) for all i € I. Using the counter By, (r) and E3.2 to E3.6, it is thus
readily checked that, for each i € I, there exists an f; € AT such that f; €
Real” and e; can be reached from f; by repeatedly travelling along Inv(R)-
edges. Thus, e; can be found among the elements hgi"m'(R),...,hf;'::g)).
Since 7 is singular, it follows that we have f; # f; for all 7,7 € I with i #*7.
Moreover, by definition of 7 we have (d, f;) € R for each i € I:

- if R is a role name, then this is an immediate consequence of the definition
of J;

- if R = S~ for some role name S, then (f;,d) € S by definition of 7. The
semantics yields (d, f;) € R7.

It thus remains to verify that f; € EY for each i € I. Clearly, y(E) is a

Boolean formula over the set of concept names

cnam(C, TYU{Xp | F=(xnRF')ecdC,T)}.

Since e; € v(E)?, E1.4 and E1.5 thus yield f; € v(E)* for each i € I. Since
f; € Real”, it remains to apply the induction hypothesis.
e Let D= (<nRE)andd € v(D)F = (X(<n r )" Assume that there exists
a subset W C A7 of cardinality greater than n such that, for each e € W,
we have (d,e) € R7 and e € EY. By definition of 7, this implies that, for
each e € W, there are s, < (4 and t, < (. g such that (h®:F, hfe’lnv(R)) € R
- if R is a role name, then this is an immediate consequence of the definition
of J;

- if R = S~ for some role name S, then (d,e) € RT implies (e,d) € SZ.
By definition of 7, this means that there are s, < (3 and t, < (. g
such that (hy°, h:®) € ST. By semantics and since S = Inv(R), we obtain

42



(hd’R h?'"V(R)) e RZ.
We clearly have W C Real”. We prove the following three Properties:
(1) e # ¢ implies A2 # h$F for all e,¢’ € W. By definition of the h;-

sequences of domain elements and E2.2 and E3.2, e # ¢’ implies h{"™) 2

hy ™™ for all e, ¢’ € W. Thus, E3.1 yields h&® # h%" if e # €.

(2) he'™ ¢ y(E)T for each e € W. Suppose that e ¢ y(E)Z. Then ¢ €
(—=v(E))* and, by E1.6, e € v(-E)*. Since e € Real” and we are perform-
ing induction on the norm of concepts rather than standard structural
induction, the induction hypothesis yields e € (<F)7, a contradiction to
e € EY. Thus, e € y(E)*. Since y(E) is a Boolean formula, it follows from
E1.4 and E1.5 that h{'™" € v(E)T.

(3) s # 0 for all e € W. For assume that s, = 0. Then h%:" = d. By E2.4
and since d € (X< g g))% and (d, h{"™ ) € RZ, this yields he'"™" e
(=(y(E)))? in contradiction to Property 2.

Properties 1 to 3 imply the existence of a subset I C {1,...,l; g} of car-
dinality greater than n such that, for each i € I, there exists an e € A
with (h¢",e) € RT and e € ~(E). Exploiting the concept X(<n r ) and
the counter By and their use in E1.4, E2.3, E5, and E6, it is readily checked
that this is a contradiction to Z being a model of Aux(C,T).

Lemma 23 If C'is finitely satisfiable w.r.t. T, then o(C) is finitely satisfiable
w.r.t. o(T).

Proof. Now for the “only if” direction: let Z be a finite model of C' and T.
For each d € AT and each R € rol(C, T), fix a subset Wy z C A of cardinality
at most depth such that the following conditions are satisfied:

(1) (d,e) € R* for all e € Wyg;
(2) for all (>n R D) €cl(C,T) with d € (>n R D), we have

#{le € Wyr|ee€ D'} > n;
(3) for all (K n R D) ec(C,T)withde (<n R D)*, we have
{e€ AT | (d,e) € RT and e € D'} C Wyp;

Using the semantics and the definition of depthp, it is easy to show that such
subsets indeed exist. Next, fix a linear ordering on Wy g, i.e., an injective
mapping Vg g : Wyr — {0,..., #Wsr—1}. We use these mappings to define

43



a finite model J of o(C') w.r.t. o(7) as follows:

AT = AT U {aap. | d€ AT, Rerol(C,T), and ¢ € Wyg):

AT = AT U{xgr. |d € AT, R€rol(C,T), and e € Wy}
for all A € cnam(C,T);

Xlwrp =0 R D U{zer.|de (<n R D)" and e € Wyp}
for all (xn R D) € cl(C,T);
Real/ = AT

Hy = {zqp.|de AT and e € Wy} for all R € rol(C, T);

Lr ={(d,z4p.) | d€ A, e € Wyp, and vgr(e) =0} U
{(apre, Tare) | d€ AL, e,¢' € Wyg, and vyr(e') = var(e) + 1}
for all R € rol(C, T);

RT = {(xgpesTer-a) | dye € AT with e € Wy g and d € W, z- } U
{(zgre,€) | dye € AT with e € Wyr and d ¢ W, z-} U
{(d,2ep-a) | dye € AT with d € W, p- and e ¢ Wy g}
for all R € rnam(C,T).

for each R € rol(C,T), the counter By is defined as follows: By = 0 for all
instances of Real”; for the instances of Hy, we define By as follows:

Bp =i for those x4 p. € Hy, with vy r(e) = i;

for each concept D € cl(C,T) that appears inside a qualifying number
restriction (< n R D) € cl(C,T), the counter Bp is defined as follows:
Bp = 0 for all instances of Real”; for instances Tqpe Of H;g, we set

Bp = #{¢' € Wy | var(€') < var(e) and ¢’ € D"}

Since the translation o(C') of an ALCQZ-concept C is a Boolean formula,
it is trivial to prove the following claim by structural induction (using the
definition of J):

Claim 3. For all d € AT and D € cl(C, T), d € D* implies d € v(D)7.

Since Z is a model of C, Claim 3 clearly implies that there is a d € A such
that d € v(C)7. By definition of Real”, we thus have d € ¢(C)7 and thus
J is a model of o(C'). Moreover, also by Claim 3 J is a model of the TBox
{T = Real — v(C7r)}. It is tedious but straightforward to verify that J is also
a model of the TBox Aux(C, 7). Hence 7 is a model of o(7). O
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C Proofs for Section 5

The goal of this section is to prove Lemma 18. Before we do this, we first
establish a technical lemma showing that finitely satisfiable reduction concepts
have finite models with certain, desirable properties.

Throughout this section, we will identify types T" with the conjunction ClleC'
and write, e.g., d € T% for d € (ClgT )2

Lemma 24 Let A be an ABox, T a TBox, t a reduction candidate for A
and T, and a an object name used in A. If the reduction concept Ci*(a) is
finitely satisfiable w.r.t. T, then there exists a finite model J of Ci'(a) and T,
and some d € (CA(a))? such that, for all roles R, a € Nu(a, R) implies
(d,d) € RY.

Proof. Let 7 be a finite model of Ci*(a) and T and let d € (C7(a))t. By
definition of C{A(a), we have d € t(a)*. We construct a new interpretation J
that satisfies the condition given in the lemma. For each role name R with
a € Ny(a, R), fix

(1) a domain element ez € AT with (d,eg) € RT and ep € t(a)?;
(2) a domain element ep- € AT with (d,ep-) € (R™)T and ep- € t(a)?.

Such domain elements exist by construction of the reduction concept C7(a),
and since a € Ny(a, R) implies a € Ng(a, R™). We construct the new inter-
pretation J in two steps:

(1) Define a new interpretation Z' as follows:

AT = AT x {0,1};
AT ={(e,i) | e € AT and i € {0,1}} for all concept names A;

R ={((e,i),(€',§)) | (e,¢') € R, i,j € {0,1}, and i # j}
for all role names R.

Using structural induction, it is readily checked that, for each e € A?

and C' € cl(A,T),

e € CT implies (e,i) € C7' for each i € {0,1}. (%)
Thus we have (d,0) € (C*(a))*', where d is the initially chosen instance
of C(a) (the same holds for (d,1)). From now on, we focus on (d,0) as

the “relevant” instance of C7*(a). Clearly, (*) implies that Z' is a model

of T.
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(2) The interpretation J is now defined as follows:

AT = AT

A7 = AT for all concept names A:

R = R” for all role names R with a ¢ N4(a, R);

R7 = (R" \ {((d,0), (er, 1)), ((er-,1), (d,0))})
UA{((d,0),(d,0)), ((er-.1), (er, 1))}

for all role names R with a € N4(a, R).

Using structural induction, we may check that, for each x € A7 and each
CeclAT),

x e CT implies = € €Y. (xx)
Note that we can show (xx) despite the different interpretation of the role
names R with a € N 4(a, R), which, intuitively, is due to the following reasons:
(i) due to the choice of d, e, and ep- and to Property (x), all of (d,0), (eg, 1)
and (ep-,1) have type t(a) in Z'. Thus, in constructing J we only remove
and add R-neighbours and R~ -neighbours that have type t(a); (ii) we do not
change the number of R-neighbours or R -neighbours of type t(a) for any
domain element: in particular, by construction of Z' the removed edges really
exist in Z', and the newly added edges are really new.

By (x%), (d,0) € (C#(a))? and J is a model of 7. To prove the lemma,
it thus remains to show that, for each role R with a € Ny(a, R), we have
((d,0),(d,0)) € R’. This is true by definition of R if R is a role name.
If R = S for some role name S, then a € Nj4(a,R) implies that a €
Ny(a,S). Thus ((d,0),(d,0)) € SY by definition of 7. By semantics, we ob-
tain ((d,0), (d,0)) € R7 as required. O

We are now ready to prove Lemma 18.

Lemma 18 Let A be an ABox and 7 a TBox. A is finitely consistent w.r.t.
T iff there exists a realisable reduction candidate for A and 7.

Proof. The “only if” direction is simple: let Z be a finite model of A and 7.
We construct a reduction candidate t as follows:

for each object a in A, set t(a) = {D € cl(A,T) | at € D*}.

Exploiting the unique name assumption, it is then easily checked that, for
every object a in A, we have a € (C{*(a)), i.e. Z is a finite model of C7(a)
and 7. Thus, t is realisable.
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Fig. C.1. Connection of the models Z, and Z,.

For the “if” direction, assume that there exists a realisable reduction candidate
t for A and 7. This implies that, for each object name a used in A, there is a
finite model Z, of C{*(a) and T . For each such model Z,, fix a domain element
d, € ATa such that d, € (C*(a))%*. By Lemma 24, we may w.l.o.g. assume
that, for all object names a used in A and all roles R, a € N4(a, R) implies
(dy,d,) € RT*. Moreover, we assume w.l.o.g. that a # b implies ATe N AT = ().

In the following, we use the models Z, to construct a (finite) model Z of A
and 7. First fix, for each object name a used in A and each role R € rol(A, T ),
an injective function nft from N4(a, R) to A%e such that, for all b € N4(a, R),
we have the following:

(1) na(b) € t(b)*;
(2)  (da,nz'(b)) € R™™;
(3) if b= a, then nf(b) = d,.

To show that such functions indeed exist, fix an object name @ and a role R. It
suffices to construct, for each type T € ran(t), an injective function 5" from
Ny(a, R) N {b | t(b) = T} to A« satisfying Properties (1) to (3), and then
take the union of these individual functions since Property (1) ensures that
the resulting function is still injective. Observe that, for each T' € ran(t), we
can indeed find an injective function n*T satisfying Properties (1) to (3) since
(i) C{*(a) contains the conjunct (> #7(a, R, T) R (clg:r ), where #*(a, R, T)

obviously is the cardinality of the set N4(a, R) N {b | t(b) = T} = dom(n™T);
and (ii) if a € N(a, R), then (d,,d,) € R* by choice of Z,.
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Then define the interpretation Z as follows:

AT = U Ale

a€obj(A)
AT .= |J A% for all concept names A:
acobj(A)
U [(B=\ (U {(donf®)}u U {0 (b).d)}))
RI ': acobj(A) beEN 4(a,R) bEN 4(a,R™)
U U {(dady),(nf (a),nl(D)}
bEN 4(a,R)

for all role names R;

a* := d, for each object name a used in A.

Note that the interpretation of role names is well-defined: if b € N(a, R),
then a € Ny (b, R™), and thus nf* (a) is defined.

We explain the idea behind the definition of RZ with the help of Figure C.1.
Here we consider the connection of two interpretations Z, and Z;, where a and
b are ABox objects such that b € N(a, R) (and thus also a € N4(b, R™)).
The non-dashed edges are removed from Z, and Z, in Line 1 of the definition
of R, and are thus not part of the connected model. To compensate for this,
we add the dashed edges to the connected model in Line 2 of the definition of
RT. In the figure, all domain elements displayed as filled circles have the same
type, and so do all domain elements displayed as non-filled circles (this is due
to Property 1 of the nf(b) elements). It is thus readily checked that, after the
modification, each domain element has the same number of R-neighbours and
R~ -neighbours of any given type as before.

Special care was taken in the case a € N4(a, R): if we had allowed n%(a) # d,
and (d,,d,) € R*, then we would remove the edge between d, and nf(a) in
Line 1, but not compensate for this removal in Line 2: there, we only “add” an
edge from d, to itself that does already exist in Z,. Clearly, such a modification
might decrease the number of R-neighbours of a given type, which we want to
avoid. This is the reason why we need Property 3 of the nff(b) elements (and
Lemma 24, which ensures that setting 7%(a) = d, is always possible).

Using these arguments, it is not hard to prove the following claim using struc-
tural induction:

Claim: for each object name a used in A, d € AZe and C € cl(A, T), d € C*=
implies d € C7.

Using the claim, it is readily checked that Z is indeed a (finite) model of A
and T

(1) Let a : C € A. Then the claim together with d, € (Cf*(a))%= yields

48



ar = d, € C7 since t(a) is a conjunct of C{*(a) and a : C' € A implies
C € t(a).

(2) Let (a,b) : R € A. Then b € Ng(a, R). If R is a role name, we thus have
(a®,b") € RT by definition of R” (second line). If R = S~ for some role
name S, then we have a € N4(b, S). Thus, (b, a”) € ST by definition of
7, implying (a,b%) € RT by the semantics.

(3) Finally, the claim together with the fact that, for each object name a
used in A, 7, is a model of T clearly implies that 7 is also a model of 7.

O
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