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Abstra
t

We analyse the 
omplexity of �nite model reasoning in the des
ription logi
 ALCQI,

i.e. ALC augmented with qualifying number restri
tions, inverse roles, and general

TBoxes. It turns out that all relevant reasoning tasks su
h as 
on
ept satis�ability

and ABox 
onsisten
y are ExpTime-
omplete, regardless of whether the numbers

in number restri
tions are 
oded unarily or binarily. Thus, �nite model reasoning

with ALCQI is not harder than standard reasoning with ALCQI.

Key words:

des
ription logi
, �nite satis�ability, number restri
tions
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1 Motivation

Des
ription logi
s (DLs) are a family of logi
al formalisms that originated in

the �eld of knowledge representation, and that were designed to represent and

reason about 
on
eptual knowledge. Central DL notions are 
on
epts (unary

predi
ates or 
lasses) and roles (binary relations). A spe
i�
 DL is mainly


hara
terized by the 
onstru
tors it provides to build 
omplex 
on
epts (and
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roles) from atomi
 ones. For example, in the basi
 DL ALC

[
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, all roles are

atomi
, and 
on
epts 
an be built using Boolean operators and value restri
-

tions. The following ALC-
on
ept des
ribes 
ompanies in whi
h only managers

or resear
hers work, and in whi
h a parent works.

Companyu (9employs:9hasChild:Human)u8employs:(Resear
hertManager)

It is well-known that DLs are 
losely related to modal logi
s. For example,

ALC is a notational variant of the basi
 multi-modal logi
 K

[

3

℄

, and the

above ALC 
on
ept is the DL 
ounterpart of the multi modal formula

Company^ (hemploysihhasChildiHuman)^ [employs℄(Resear
her_Manager):

A standard DL knowledge base, 
alled TBox, 
onsists of a set of 
on
ept equa-

tions, i.e. expressions of the form C

:

= D where C and D are possibly 
omplex


on
epts. Intuitively, a TBox 
onstrains the set of models that are admitted

for the interpretation of 
on
epts. Using a TBox, we 
an thus des
ribe the ter-

minology of an appli
ation domain by using an (atomi
) 
on
ept name on the

left-hand side and its (
omplex) de�nition on the right-hand side. Moreover,

we 
an 
apture general 
onstraints that 
ome from the appli
ation domain.

The standard DL reasoning tasks are de
iding 
on
ept satis�ability and 
on-


ept subsumption w.r.t. a TBox: 
he
king whether a 
on
ept C 
an have any

instan
es in models of the TBox T , and 
he
king whether one 
on
ept D is

more general than another 
on
ept C w.r.t. models of T .

During the last de
ade, a lot of work has been devoted to investigating the


lassi
al trade-o� between expressivity and 
omplexity

[

4
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, i.e., to �nd DLs

whose expressive power is appropriate for a 
ertain kind of appli
ations, and

whose reasoning problems are still de
idable, preferably of an a

eptable 
om-

plexity.

Appli
ations for whi
h su
h a good 
ompromise 
ould be found in
lude rea-

soning about 
on
eptual database models

[

5
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and the usage of DLs as log-

i
al underpinning of ontology languages su
h as DAML+OIL and OWL

[

6;

7

℄

. In this paper, we are 
on
erned with the former appli
ation. Suppose that

a 
on
eptual database model is des
ribed by one of the standard formalisms: an

ER diagram in the 
ase of relational databases and a UML diagram in the 
ase

of obje
t-oriented databases. As shown in

[

5

℄

, su
h models 
an be translated

into a DL TBox and a des
ription logi
 reasoner su
h as FaCT or RACER

[

8;

9

℄


an be used to reason about the database model. In parti
ular, this ap-

proa
h 
an be used to dete
t in
onsisten
ies in the database model, and to

infer impli
it IS-A relationships between entities/
lasses that are not given

expli
itly in the model. This useful and original appli
ation has already led

to the implementation of tools that provide a GUI for spe
ifying 
on
eptual

models, automatise the translation into des
ription logi
s, and display the

2



information returned by the DL reasoner

[

10

℄

.

One of the most important des
ription logi
s used for reasoning about 
on-


eptual database models is 
alled ALCQI

[

11

℄

, and extends ALC with

� qualifying number restri
tions (
orresponding to graded modalities in modal

logi
): 
on
epts of the form (>nR:C) and (6nR:C), des
ribing obje
ts hav-

ing at least n (at most n) instan
es of C related to them via the role R. For

example, the 
on
ept Companyu(63employs:Manager) des
ribes 
ompanies

employing at most 3 managers.

� the inverse role 
onstru
tor (
orresponding to inverse modalities): ALCQI

allows the use of the inverse R

�

of a role R in number restri
tions and value

restri
tions. For example, the 
on
ept Manager u (>2employs

�

:Company)

des
ribes managers that are employed by at least two 
ompanies.

A feature that distinguishes ALCQI from less expressive DLs is that ALCQI

is 
apable of enfor
ing in�nity, i.e., there are 
on
epts and TBoxes that are

satis�able, but admit only in�nite models. In other words, ALCQI la
ks the

�nite model property (FMP).

Sin
e reasoning about database models is one of ALCQI's premier appli
a-

tions, its la
k of the FMP 
annot be ignored: database models are usually

en
oded into ALCQI su
h that there is a tight 
orresponden
e between logi-


al models and databases; sin
e databases are usually 
onsidered to be �nite,

we should thus perform reasoning on �nite models rather than on unrestri
ted

ones when using ALCQI in this 
ontext. That the restri
tion to �nite models

indeed makes a di�eren
e is witnessed by that fa
t that there exist quite simple

ER and UML diagrams that are satis�able only in in�nite models

[

12

℄

. From

a database perspe
tive, su
h diagrams should thus be 
onsidered in
onsistent

rather than 
onsistent, and thus we get an in
orre
t result when translating

them to ALCQI and using unrestri
ted model reasoning. Interestingly, the

problem of �nite models is 
ommomly ignored when using DL tools for rea-

soning about database models. This is due to the fa
t that, with FaCT and

RACER

[

8; 9

℄

, there are two popular and highly eÆ
ient reasoners for dealing

with unrestri
ted reasoning in ALCQI but, up to now, no ALCQI reasoner

for �nite models is available. We believe that one important reason for the la
k

of �nite model reasoners is that, in 
ontrast to reasoning w.r.t. unrestri
ted

models, reasoning w.r.t. �nite models in ALCQI is not yet well understood

from a theoreti
al perspe
tive. In parti
ular, as we will dis
uss below in more

detail, tight 
omplexity bounds for �nite model reasoning in ALCQI have

never been determined. The purpose of this paper is thus to improve the un-

derstanding of �nite model reasoning in des
ription logi
s by establishing tight

ExpTime 
omplexity bounds for �nite model reasoning in the DL ALCQI.

As noted above, reasoning with ALCQI in unrestri
ted models is well-under-

3



stood. For example, it is known that satis�ability and subsumption w.r.t.

TBoxes is ExpTime-
omplete

[

11

℄

. Note that there is a subtle issue about

number restri
tions here: inside ALCQI's 
onstru
tors (6 n R C) and (>

n R C), we 
an 
ode the number n either in unary or in binary, and the length

of 
on
epts and TBoxes will 
learly be exponentially shorter in the latter 
ase.

Fortunately, the ALCQI ExpTime-
ompleteness results is insensitive of this


oding, i.e., it holds for both 
ases

[

13

℄

.

For �nite model reasoning, no tight 
omplexity bounds were known. It follows

easily from modal 
orrespondan
e theory

[

14

℄

that ALCQI is a fragment of

the two variable fragment of �rst order logi
 with 
ounting quanti�ers (C2)

[

15; 16

℄

. Hen
e �nite satis�ability of C2 being de
idable

[

15

℄

implies that, in

ALCQI, �nite satis�ability and subsumption w.r.t. TBoxes are de
idable as

well. Moreover, Calvanese proves in

[

17

℄

that ALCQI satis�ability and sub-

sumption w.r.t. TBoxes are de
idable in 2-ExpTime. Very re
ently, �nite sat-

is�ability of C2 was proven to be 
omplete for non-deterministi
e exponential

time

[

18; 19

℄

, whi
h improves Calvanese's upper bound. A lower bound fol-

lows easily from the fa
t that reasoning in ALC is already ExpTime-hard

[

20;

3

℄

|both w.r.t. unrestri
ted and �nite models sin
e ALC enjoys the �nite

model property. This leaves us with a gap between ExpTime and NExptime

for �nite model reasoning in ALCQI and the question whether it is as in-

sensitive to the 
oding of numbers as unrestri
ted model reasoning: all upper

bounds mentioned were proved for unary 
oding of numbers. In this paper, we

will 
lose this gap by providing a tight ExpTime upper bound and show that,

similar to the unrestri
ted 
ase, the 
omplexity is insensitive to the 
oding of

numbers. More pre
isely, we present the following results:

In Se
tion 3, we develop an algorithm that de
ides the �nite satis�ability of

ALCQI-
on
epts w.r.t. TBoxes. Similar to Calvanese's approa
h, the 
ore

idea behind our algorithm is to translate a given satis�ability problem into

a set of linear inequalities that 
an then be solved by linear programming

methods. In this translation, we use variables to represent the number of

elements des
ribed by so-
alled mosai
s: a mosai
 is an abstra
tion of domain

elements whi
h des
ribes the (unary) type of a domain element together with

its \neighborhood", i.e., the numbers and types of (relevant) role su

essors.

Using a rather stri
t notion of mosai
s and an appropriate data stru
ture to

represent them allows us to keep the number of mosai
s exponential in the size

of the input. This yields an exponential bound on the number of variables and

also on the size of systems of inequalities. Thus, we improve the best-known

2-ExpTime upper bound to a tight ExpTime one.

However, this bound is exponential only if we assume unary 
oding of numbers

in number restri
tions, and it is not 
lear whether our translation 
an be

modi�ed to yield an ExpTime upper bound in the 
ase of binary 
oding.

Thus, we use a di�erent strategy to atta
k binary 
oding: in Se
tion 4, we give

4



a polynomial redu
tion of �nite ALCQI-
on
ept satis�ability w.r.t. TBoxes

to �nite satis�ability of ALCFI-
on
ept satis�ability w.r.t. TBoxes, where

ALCFI is obtained from ALCQI by allowing only numbers up to two to

be used in number restri
tions. Sin
e �nite model reasoning in ALCFI is in

ExpTime by the results from Se
tion 3 (the 
oding of numbers is not an issue

here), we obtain a tight ExpTime bound for �nite model reasoning inALCQI

with numbers 
oded in binary. Note that we 
annot use existing redu
tions

from ALCQI to ALCFI sin
e these fail for �nite model reasoning

[

11

℄

.

In Se
tion 5, we extend our result to a more general reasoning problem,

namely the �nite 
onsisten
y of ABoxes w.r.t. TBoxes. Intuitively, ABoxes

des
ribe a parti
ular state of a�airs, a \snapshot" of the world. FiniteALCQI-

ABox 
onsisten
y is another interesting reasoning task with important appli-


ations: whereas �nite ALCQI-
on
ept satis�ability 
an be used to de
ide

the 
onsisten
y of 
on
eptual database models and infer impli
it IS-A rela-

tionships, ALCQI-ABox 
onsisten
y 
an be used as the 
ore 
omponent of

algorithms de
iding 
ontainment of 
onjun
tive queries w.r.t. 
on
eptual data-

base models|a task that DLs have su

essfully been used for and that 
alls for

�nite model reasoning

[

21; 22

℄

. Using a redu
tion to (�nite) 
on
ept satis�a-

bility, we are able to show that this reasoning task is also ExpTime-
omplete,

independently of the way in whi
h numbers are 
oded.

Finally, in Se
tion 6, we dis
uss related work.

2 Preliminaries

We introdu
e syntax and semanti
s of ALCQI, dis
uss the inferen
e problems

we are interested in, and introdu
e some useful notation.

De�nition 1 (ALCQI Syntax) Let R and C be disjoint and 
ountably in-

�nite sets of role and 
on
ept names. A role is either a role name R 2 R

or the inverse R

�

of a role name R 2 R. The set of ALCQI-
on
epts is the

smallest set satisfying the following properties:

� ea
h 
on
ept name A 2 C is an ALCQI-
on
ept;

� if C and D are ALCQI-
on
epts, R is a role, and n a natural number, then

:C, C uD, C tD, (6 n R C), and (> n R C) are also ALCQI-
on
epts.

A 
on
ept equation is of the form C

:

= D for C;D two ALCQI-
on
epts. A

TBox is a �nite set of 
on
ept equations.

We will refer to 
on
epts of the form (6 n R C) as atmost restri
tions and

to 
on
epts of the form (> n R C) as atleast restri
tions. As usual, we use

5



the standard abbreviations ! and $ as well as 9R:C for (> 1 R C), 8R:C

for (6 0 R :C), > to denote an arbitrary propositional tautology, and ?

as abbreviation for :>. The fragment ALCFI of ALCQI is obtained by

admitting only atmost restri
tions (6 n R C) with n 2 f0; 1g and only atleast

restri
tions (> n R C) with n 2 f1; 2g.

De�nition 2 (ALCQI Semanti
s) An interpretation I is a pair (�

I

; �

I

)

where �

I

is a non-empty set and �

I

is a mapping that assigns

� to ea
h 
on
ept name A, a set A

I

� �

I

and

� to ea
h role name R, a binary relation R

I

� �

I

��

I

.

The interpretation of inverse roles and 
omplex 
on
epts is then de�ned as

follows, with #S denoting the 
ardinality of the set S:

(R

�

)

I

= fhe; di j hd; ei 2 R

I

g

(:C)

I

= �

I

n C

I

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

(6 n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng

(> n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng

A domain element d 2 �

I

is an instan
e of a 
on
ept C if d 2 C

I

; moreover,

a domain element d

0

2 �

I

is an R-neighbour of d, for R a role, if (d; d

0

) 2 R

I

.

An interpretation I satis�es a 
on
ept equation C

:

= D if C

I

= D

I

, and I is


alled a model of a TBox T if I satis�es all 
on
ept equations in T .

A 
on
ept C is satis�able w.r.t. a TBox T if there is a model I of T with

C

I

6= ;. A 
on
ept C is �nitely satis�able w.r.t. a TBox T if there is a model

I of T with C

I

6= ; and �

I

�nite.

To see that satis�ability and �nite satis�ability do not 
oin
ide, 
onsider the


on
ept C = :A u 9R:A and the TBox fA

:

= 9R:A u (6 1 R

�

>)g. It is not

hard to see that C is satis�able w.r.t. T , but only in in�nite models: ea
h

model 
ontains an in�nite, a
y
li
 R-
hain. Thus, ALCQI does not enjoy the

�nite model property.

The se
ond important reasoning problem on 
on
epts and TBoxes, subsump-

tion of 
on
epts w.r.t. TBoxes, has already been mentioned in the introdu
tion:

a 
on
ept C is (�nitely) subsumed by a 
on
ept D w.r.t. a TBox T if we have

C

I

� D

I

for ea
h (�nite) model I of T . It is well known that subsumption 
an

be redu
ed to (un)satis�ability, as C is subsumed by D w.r.t. T if and only if

6



:(C uD) ; :C t :D :(C tD) ; :C u :D

::C ; C :(6 n R C) ; (> n + 1 R C)

:(> n R C)) ; (6 n� 1 R C) if n > 0

:(> n R C)) ; ? if n = 0

Fig. 1. The NNF rewrite rules.

C u:D is unsatis�able w.r.t. T . Sin
e this holds both for the in�nite and the

�nite 
ase, in this paper we will 
on
entrate on satis�ability and just note here

that all 
omplexity bounds obtained in this paper also apply to subsumption

(despite the impli
it 
omplementation in the redu
tion, sin
e we will only be

dealing with deterministi
 
omplexity 
lasses).

In the remainder of this paper, we will w.l.o.g. only 
onsider 
on
epts and

TBoxes that are in a restri
ted synta
ti
 form: 
on
epts are assumed to be

in negation normal form (NNF), i.e., negation is only allowed in front of 
on-


ept names. Every ALCQI-
on
ept 
an be transformed in linear time into an

equivalent one in NNF by exhaustively applying the rewrite rules displayed in

Figure 1. We use _:C to denote the NNF of :C. TBoxes are assumed to be

of the rather simple form f>

:

= Cg with C in NNF. This 
an be done w.l.o.g.

sin
e an interpretation I is a model of a TBox T = fC

i

:

= D

i

j 1 � i � ng i�

it is a model of f>

:

= u

1�i�n

(C

i

$ D

i

)g.

We now introdu
e some 
onvenient notation used throughout this paper. For

ea
h role R, we use Inv(R) to denote R

�

if R is a role name, and S if R = S

�

.

For a given 
on
ept C and TBox T , we use 
nam(C; T ) to denote the set of


on
ept names appearing in C and T , rnam(C; T ) to denote the set of role

names appearing in C and T , and rol(C; T ) to denote the set

rnam(C; T ) [ fR

�

j R 2 rnam(C; T )g:

3 Unary Coding of Numbers

In this se
tion, we present a de
ision pro
edure for �nite satis�ability of

ALCQI-
on
epts w.r.t. TBoxes that runs in deterministi
 exponential time,

provided that numbers in number restri
tions are 
oded unarily. In Se
tion 4,

we will generalise this upper bound to binary 
oding of numbers.

It is easily seen that 
ombinatori
s is an important issue when de
iding �nite

7



satis�ability of ALCQI-
on
epts. To illustrate this, 
onsider the TBox

T := fA

:

= (> 2 R B); B

:

= (6 1 R

�

A)g: (�)

In any (�nite) model of T , there are at least twi
e as many obje
ts satisfying

B as there are obje
ts satisfying A. This kind of 
ombinatori
s is not an issue

if in�nite domains are admitted: in this 
ase, we 
an always �nd a model where

all 
on
epts have the same number of instan
es, namely 
ountably in�nitely

many.

As observed by Calvanese in

[

17

℄

, the 
ombinatorial issues of �nite model rea-

soning in des
ription logi
s 
an be addressed by using systems of inequalities.

More pre
isely, for de
iding the �nite satis�ability of ALCQI-
on
epts w.r.t.

TBoxes, we will 
onvert a given 
onept C

0

and TBox T into a system of linear

inequalities that des
ribes the indu
ed 
ombinatorial 
onstraints. This is done

in a su
h way that there is a 
orresponden
e between non-negative integer

solutions of the equation system and �nite models of the input. In this way,


he
king �nite satis�ability of the input 
on
ept and TBox 
orresponds to


he
king whether the 
onstru
ted system of inequalities has a non-negative

integer solution. To obtain an ExpTime upper bound as desired, we have to

be 
areful to ensure that the system of inequalities 
an be 
onstru
ted in time

exponential in the size of the input, and that the existen
e of solutions 
an be


he
ked in polynomial time.

Equation systems that handle 
ombinatorial 
onstraints 
an be 
onveniently

formulated in terms of types, whi
h we introdu
e next. Along with types,

we de�ne the 
losure of an ALCQI-
on
ept C

0

and a TBox T , whi
h is,

intuitively, the set of 
on
epts that are \relevant" for de
iding the (�nite)

satis�ability of C

0

w.r.t. T .

De�nition 3 (Closure, Type) Let C

0

be a 
on
ept and T = f>

:

= C

T

g

a TBox. The 
losure 
l(C

0

; T ) of C

0

and T is the smallest set of ALCQI-


on
epts su
h that

� C

0

, C

T

, and all sub-
on
epts of C

0

and C

T

are in 
l(C

0

; T );

� if C 2 
l(C

0

; T ), then _:C, the NNF of :C, is also in 
l(C

0

; T ).

A type T for C

0

and T is a subset T � 
l(C

0

; T ) su
h that, for all D;E 2


l(C

0

; T ), we have

(1) D 2 T i� _:D 62 T ,

(2) if D u E 2 
l(C

0

; T ), then D u E 2 T i� D 2 T and E 2 T ,

(3) if D t E 2 
l(C

0

; T ), then D t E 2 T i� D 2 T or E 2 T , and

(4) C

T

2 T .

We use type(C

0

; T ) to denote the set of all types for C

0

and T .

8



T

1

T

2

T

3

T

4

T

5

Fig. 2. Problems with types.

For interpretations I, we 
all a domain element d 2 �

I

an instan
e of a type

T if d 2 C

I

for all C 2 T . Moreover, we use t(d) to denote the type that d is

an instan
e of.

2

A �rst idea to 
onvert a �nite satis�ability problem into an equational problem


ould be to introdu
e one variable x

T

for ea
h type T for the input 
on
ept

C

0

and TBox T , and then to formulate a suitable system of inequalities for C

0

and T su
h that ea
h non-negative integer solution Æ of the equation system


orresponds to a model where ea
h type T has exa
tly Æ(x

T

) instan
es.

However, it turns out that this approa
h is too naive: assume that T

1

to T

5

are types for C

0

and T , and that the following holds:

� (> 1 R C) 2 T

1

and (> 1 R D) 2 T

2

,

� (6 1 R

�

>) 2 T

3

\ T

4

\ T

5

,

� C 2 T

3

\ T

4

and D 2 T

4

\ T

5

.

Observe that (instan
es of) T

1


an \use" (instan
es of) T

3

and T

4

to satisfy

the 
on
ept (> 1 R C) 2 T

1

, and T

2


an \use" T

4

and T

5

to satisfy the 
on
ept

(> 1 R D) 2 T

2

, a situation depi
ted in Figure 2. Similarly as for our initial

example (�), we get that (i) there have to be at least as many instan
es of T

3

and T

4

as there are instan
es of T

1

, and (ii) there have to be at least as many

instan
es of T

4

and T

5

as there are instan
es of T

2

. Thus, it is likely that a

system of inequalities for C

0

and T will in
lude

x

T

1

� x

T

3

+ x

T

4

and x

T

2

� x

T

4

+ x

T

5

: (��)

Ignoring the existen
e of possible additional inequalities for a se
ond, we ob-

tain x

T

1

= x

T

2

= x

T

4

= 1 and x

T

3

= x

T

5

= 0 as an integer solution. Trying to


onstru
t a model with a

1

, a

2

, and a

4

instan
es of T

1

, T

2

, and T

4

, respe
tively,

we have to use a

4

as a witness of a

1

being an instan
e of (> 1 R C) and a

2

being an instan
e of (> 1 R D). Sin
e this 
learly violates the (6 1 R

�

>)

2

This type is obviously unique, and thus t(d) well de�ned.
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� n

R

R

T

1

3 C T

2

3 (6n Inv(R):C)

Fig. 3. Illustration of the lim fun
tion.


on
ept in T

4

, we do not have an easy 
orresponden
e between models and

integer solutions as sket
hed above. Intuitively, the problem is that, above,

we have 
onsidered Points (i) and (ii) separately although they both speak

about T

4

. Unfortunately, it seems impossible to resolve this problem by adding

additional inequalities of size at most exponential in the size of the input.

One possible view on the sket
hed problem, whi
h is also taken by Calvanese

in

[

17

℄

, is that types do not provide enough information about domain ele-

ments. Intuitively, it seems ne
essary to also re
ord, for ea
h role R, the type

and number of R-neighbours. If this is done, in the above example (��), we


an distinguish instan
es of T

1

and T

2

that have R-neighbors of type T

4

from

those that do not. It is then possible to re�ne the given equations su
h that

\infeasible solutions" su
h as the one dis
ussed are ruled out. Thus, we now

develop a re�nement of types that allows to des
ribe su
h additional informa-

tion. We start with introdu
ing a 
onvenient notation that will play a rather

prominent role throughout this paper.

De�nition 4 (lim fun
tion) Let C

0

be a 
on
ept, T a TBox, R a role, and

T

1

; T

2

types for C

0

and T . Then we write

lim

R

(T

1

; T

2

)

if C 2 T

1

and (6 n Inv(R) C) 2 T

2

for some C 2 
l(C

0

; T ) and n 2 N.

Intuitively, lim

R

(T

1

; T

2

) holds if, for ea
h instan
e of T

2

, there 
an be only a

limited number of \in
oming R-edges" from instan
es of T

1

. This situation is

illustrated in Figure 3, where the left ellipse 
ontains all instan
es of type T

1

and the right ellipsis 
ontains all instan
es of type T

2

. Note that, in the initial

example (�), we have lim

R

(T

1

; T

2

) for all types T

1

; T

2

su
h that T

1


ontains A

and T

2


ontains B.

Our generalization of a type to also in
lude the type and number of R-

neighbours is 
alled a mosai
, and is de�ned as follows.

De�nition 5 (Mosai
) Let T be a type and ./ 2 f6;>g. Then we use the

10



following abbreviations:

max

./

(T ) := maxfn j (./ n R C) 2 Tg

sum

./

(T ) :=

X

(./ n R C)2T

n:

A mosai
 for a 
on
ept C

0

and a TBox T is a triple M = (T

M

; L

M

; E

M

) where

� T

M

2 type(C

0

; T ),

� L

M

and E

M

are fun
tions from rol(C

0

; T )� type(C

0

; T ) to N.

su
h that the following 
onditions are satis�ed:

(M1) if L

M

(R; T ) > 0, then lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

),

(M2) if E

M

(R; T ) > 0, then lim

Inv(R)

(T; T

M

),

(M3) if (6 n R C) 2 T

M

, then n �

X

fT jC2Tg

E

M

(R; T );

(M4) #f(R; T ) j L

M

(R; T ) > 0g � sum

>

(T

M

) and max(ran(L

M

)) � max

>

(T

M

),

where ran(f) denotes the range of the fun
tion f .

If I is an interpretation, d 2 �

I

, and M = (T

M

; L

M

; E

M

) a mosai
 for C

0

and T , then d is an instan
e of M if the following holds, for all R 2 rol(C

0

; T )

and T 2 type(C

0

; T ):

� t(d) = T

M

, i.e. d is an instan
e of T

M

;

� if lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

), then L

M

(R; T ) is the minimum of

max

>

(T

M

) and #fe 2 �

I

j (d; e) 2 R

I

and t(e) = Tg;

� if lim

Inv(R)

(T; T

M

), then E

M

(R; T ) = #fe 2 �

I

j (d; e) 2 R

I

and t(e) = Tg.

It follows immediately from this de�nition that ea
h domain element d is an

instan
e of exa
tly one mosai
. The de�nition of \instan
e" shows how mosai
s

are used to des
ribe domain elements: while T

M

is simply the type of d in I,

L

M

and E

M

are used to des
ribe the number of neighbours of d of 
ertain

types that are rea
hable from d via some role R, up to the limit max

>

(T

M

)

in the L

M


ase (to keep the number of mosai
s \small"). More pre
isely, we

distinguish three possibilities for the R relationship between T

M

and a type T :

(1) lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then ea
h instan
e of T

M

may have

an unrestri
ted number of R-neighbours of type T sin
e, by de�nition of

lim, (6 n R C) 2 T

M

implies C =2 T . However, ea
h instan
e of T has

a limit on the number of Inv(R)-neighbours of type T

M

: there is some

(6 n Inv(R) C) 2 T with C 2 T

M

. Thus, we must be 
areful not to vio-

late this limit when using instan
es of T as \witnesses" to satisfy atleast

restri
tions (> n R D) 2 T

M

with D 2 T (su
h a violation is exa
tly

what is happening in the example (��) above). To this end, we re
ord in
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L

M

the minimal number of R-neighbours of type T that an instan
e of

M has (\L" for \lower bound"). In the equation systems to be de�ned

later, this lower bound will be used to take 
are of atleast restri
tions in

T

M

.

(2) lim

Inv(R)

(T; T

M

). Then an instan
e d of T

M

may only have a limited num-

ber of R-neighbours of type T . To prevent the violation of this limit, we

need to re
ord an upper bound on the number of d's R-neighbours of type

T in M . On the other hand, there may be atleast restri
tions in T

M

that

need witnesses of type T . Thus, we also want to re
ord a lower bound

on the number of d's R-neighbours of type T in M . Summing up, we use

E

M

to re
ord the exa
t number of d's R-neighbours of type T (\E" for

\exa
t bound").

(3) Not lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then ea
h instan
e of T

M

may

have an unrestri
ted number of R-neighbours of type T and ea
h instan
e

of T may have an unrestri
ted number of Inv(R)-neighbours of type T

M

.

Intuitively, R-neighbours of type T are \un
riti
al" for M and thus their

number need not be re
orded in the mosai
 (we shall see later that even

without stating a lower bound, it is easy to satisfy atleast restri
tions in

T

M

using witnesses in T ).

The 
onditions (M1) to (M4) of mosai
s 
an thus be understood as follows:

(M1) and (M2) ensure that L

M

and E

M

re
ord information for the \
or-

re
t" types as des
ribed above; (M3) ensures that atmost restri
tions are not

violated|it suÆ
es to 
onsider only E

M

here sin
e (6 n R C) 2 T

M

and

C 2 T implies L

M

(R; T ) = 0 by (M1) and de�nition of lim; �nally, (M4) puts

upper bounds on L

M

to ensure that there exists only a limited number of

mosai
s.

To use mosai
s in systems of inequalities, we introdu
e one variable x

M

for

ea
h mosai
 M for the input C

0

and T , instead of for ea
h type as sket
hed

before. The intuition behind variables, however, is slightly di�erent from the

type-based 
ase: the goal is to ensure that ea
h non-negative integer solution

Æ of the equation system 
orresponds to a pre-model in whi
h ea
h mosai


M has exa
tly Æ(x

M

) instan
es. Intuitively, pre-models di�er from models in

that, for any role R and domain elements d; e, they admit multiple R-edges

between d and e.

De�nition 6 (Pre-model) A pre-interpretation I is a pair (�

I

; �

I

) where

�

I

is a non-empty set and �

I

is a mapping that assigns

� to ea
h 
on
ept name A, a set A

I

� �

I

and

� to ea
h role name R, a fun
tion R

I

: (�

I

��

I

)! N.

Complex 
on
epts and roles are interpreted as for standard interpretations,
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Copy 2

Pre-model

Copy 1

Fig. 4. The 
opying 
onstru
tion.

with the following ex
eptions:

(R

�

)

I

(d; e) = R

I

(e; d);

(6 n R C)

I

= fd j

P

e2C

I

R

I

(d; e) � ng; and

(> n R C)

I

= fd j

P

e2C

I

R

I

(d; e) � ng:

A pre-interpretation I is a pre-model of a 
on
ept C

0

and a TBox T i� C

I

0

6= ;

and C

:

= D 2 T implies C

I

= D

I

.

It is straightforward to adapt the notion \instan
e of mosai
" to pre-models

by taking into a

ount the multiple edges when de�ning L

M

and E

M

: we only

have to repla
e #fe 2 �

I

j (d; e) 2 R

I

and t(e) = Tg with

P

e2T

I

R

I

(d; e).

The following theorem shows that we may safely 
onsider pre-models instead

of models when 
he
king satis�ability.

Theorem 7 A 
on
ept C

0

and a TBox T have a �nite pre-model i� C

0

and

T have a �nite (standard) model.

The \if" dire
tion is trivial sin
e every standard model 
an be 
on
eived as

a pre-model. A formal proof of the \only if" dire
tion 
an be found in Ap-

pendix A. Intuitively, to obtain a �nite standard model from a �nite pre-model

I for C

0

and T , we take a �nite number of \disjoint 
opies" of I, and then

bend some role relationships ba
k and forth to eliminate multiple edges. This


onstru
tion is illustrated in Figure 4: if the maximum multipli
ity of edges

in the pre-model is n, we take n disjoint 
opies of it and \bend" the ith edge

between two elements d and e in the jth 
opy to go to (the 
opy of) e in

the ((j + i) mod n)th 
opy. This ensures that, for any role R, type T , and
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domain element d of the resulting model I

0

, d has exa
tly the same num-

ber of R-neighbours of type T as its 
orresponding domain element in the

pre-model I. As a 
onsequen
e, I

0

is still a model of C

0

and T .

Let us now 
ome ba
k to the system of inequalities. As already stated, the

variables represent the number of instan
es that mosai
s have in a pre-model.

We use inequalities to ensure that we 
an \
onne
t" the instan
es of the

mosai
s via roles su
h that

(a) the lower bounds on numbers of su

essors stored in L

M

are satis�ed,

(b) the exa
t numbers of su

essors stored as E

M

(R; T ) are satis�ed, where

we have to distinguish the following two 
ases

(i) lim

Inv(R)

(T; T

M

) and lim

R

(T

M

; T ), and

(ii) lim

Inv(R)

(T; T

M

) and not lim

R

(T

M

; T ).

(
) all atleast 
on
epts are satis�ed.

Note that we do not need to worry about the atmost-
on
epts as they are

ensured by (M3) together with Point (b) above. We �rst give the inequalities

and then relate them to Points (a) to (
) above.

De�nition 8 (Equation System) For C

0

an ALCQI-
on
ept and T a TBox,

we introdu
e a variable x

M

for ea
h mosai
 M for C

0

; T and de�ne the system

of inequalities E

C

0

;T

by taking (i) the inequality

X

fM jC

0

2T

M

g

x

M

� 1; (E1)

(ii) for ea
h pair of types T; T

0

2 type(C

0

; T ) and role R su
h that lim

R

(T; T

0

)

and not lim

Inv(R)

(T

0

; T ) the inequality

X

fM jT

M

=Tg

L

M

(R; T

0

) � x

M

�

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

; (E2)

and (iii) for ea
h pair of types T; T

0

2 type(C

0

; T ) and role R su
h that

lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ) the inequality

X

fM jT

M

=Tg

E

M

(R; T

0

) � x

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

: (E3)

We give a brief overview of the purpose of the inequalities, and refer to the

proof of Lemma 10 below for the full pi
ture. Inequality (E1) simply guarantees

the existen
e of an instan
e of C

0

, and inequality (E2) deals with Point (a)

from above. Point (b) is 
omprised of two sub
ases, and Point (b.i) is dealt

with by inequality (E3). In 
ontrast, Point (b.ii) and (
) 
annot be dealt with

by a simple inequality sin
e they rather require a \
onditional" inequality. To

address these two points, we introdu
e the notion of admissible solutions.
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De�nition 9 (Admissible) A solution of E

C

0

;T

is admissible if it is a non-

negative integer solution and satis�es the following side-
onditions:

(i) for ea
h pair of types T; T

0

2 type(C

0

; T ) and role R su
h that lim

R

(T; T

0

)

and not lim

Inv(R)

(T

0

; T ),

if

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

> 0; then

X

fM jT

M

=Tg

x

M

> 0: (A1)

(ii) for ea
h mosai
 M and ea
h role R, if x

M

> 0, (> n R C) 2 T

M

, and

m =

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n;

then (A2)

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x

M

0

> 0;

Now Point (b.ii) is addressed by the side-
ondition (A1). The fa
t that we

require only the existen
e of a single instan
e in the post-
ondition is due to

the fa
t that we work in pre-models and 
an simply introdu
e an appropriate

multiple edge to satisfy requirements for larger numbers of instan
es. Finally,

Point (
) from above is ensured using side-
ondition (A2).

The following lemma shows that our inqualities and side-
onditions are indeed

appropriate.

Lemma 10 The system of inequalities E

C

0

;T

has an admissible solution i� C

0

is �nitely satis�able w.r.t. T .

Intuitively, the proof of Lemma 10 pro
eeds as follows: for the \if" dire
tion

we simply take a �nite model I for C

0

and T (as every model is also a pre-

model), and then de�ne an admissible solution for the equation system by

taking, for ea
h variable x

M

, the number of instan
es ofM in I. For the \only

if" dire
tion, we 
onstru
t a pre-model for I and T by reserving domain

elements for ea
h mosai
 as indi
ated by an admissible solution of E

C

0

;T

, and

then refer to the inequalities and side-
onditions to show that we 
an indeed

turn the reserved domain elements into instan
es of the 
orresponding mosai


by 
onne
ting them via roles in an appropriate way. It then remains to refer

to Lemma 7 for the existan
e of a �nite (standard) model. As the \only if"

dire
tion ni
ely illustrates the purpose of the individual inequalities and side-


onditions, we give the proof here. The proof of the \if" dire
tion 
an be found

in Appendix A.
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Proof. We only prove the \only if" dire
tion here. Let fx̂

M

j M a mosai
g

be an admissible solution of E

C

0

;T

. We 
onstru
t a �nite pre-interpretation

I from this solution and then show that it is a pre-model of C

0

and T . For

ea
h mosai
 M , �x a set

^

M (of instan
es) su
h that #

^

M = x̂

M

and M 6= M

0

implies

^

M \

^

M

0

= ;. We de�ne

�

I

=

[

^

M:

In the following, for all e 2 �

I

, we use m(e) to denote the mosai
 M with

e 2

^

M , and t(e) to denote the type T

m(e)

. For ea
h 
on
ept name A 2 C, we

put

A

I

:= fe 2 �

I

j A 2 t(e)g:

Role names R 2 R are harder to deal with. More pre
isely, in the 
onstru
tion

of their interpretation, we distinguish between the three 
ases identi�ed on

Page 11. We start with Case (1): for ea
h role R 2 rol(C

0

; T ) and ea
h pair

of types T; T

0

2 type(C

0

; T ) su
h that lim

R

(T; T

0

) but not lim

Inv(R)

(T

0

; T ), we


onstru
t a mapping




R

T;T

0

:

[

fM jT

M

=Tg

^

M �

[

fM jT

M

=T

0

g

^

M ! N

(su
h mappings will hen
eforth be 
alled multipli
ity mappings) su
h that

(1) for ea
h e with t(e) = T , we have

X

fe

0

2�

I

jt(e

0

)=T

0

g




R

T;T

0

(e; e

0

) � L

m(e)

(R; T

0

);

(2) for ea
h e

0

with t(e

0

) = T

0

, we have

X

fe2�

I

jt(e)=Tg




R

T;T

0

(e; e

0

) = E

m(e

0

)

(Inv(R); T ):

Intuitively, the 


R

T;T

0

fun
tion is the \part" of R

I

that deals with edges from

elements of type T to elements of type T

0

. The 
onstru
tion pro
eeds as follows.

First de�ne two sets

�

T

:= f(e; i) 2 �

I

�N j t(e) = T and i < L

m(e)

(R; T

0

)g

�

T

0

:= f(e; i) 2 �

I

�N j t(e) = T

0

and i < E

m(e)

(Inv(R); T )g

By Equation (E2), we �nd a (total) inje
tion f from �

T

to �

0

T

. We de�ne a

multipli
ity mapping r by setting r(d; e) := ℄f(i; j) 2 N

2

j f(e; i) = (d; j)g.

It is easily 
he
ked that, by setting 


R

T;T

0

:= r, we satisfy Condition (1) from

above, but only the following weakening of Condition (2):
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(2

0

) for ea
h e

0

with t(e

0

) = T

0

, we have

X

fe2�

I

jt(e)=Tg




R

T;T

0

(e; e

0

) � E

m(e

0

)

(Inv(R); T ):

If Condition (2) is satis�ed a

identally, we are done. If it is not, then we


an \augment" r appropriately to satisfy Condition (2) without destroying

Condition (1). This is realised in two steps. First, if r does not a

identally

satisfy (2), then there is an e

0

with t(e

0

) = T

0

and

X

fe2�

I

jt(e)=Tg




R

T;T

0

(e; e

0

) < E

m(e

0

)

(Inv(R); T ):

Then x̂

m(e

0

)

6= 0 and E

m(e

0

)

(Inv(R); T ) > 0. Hen
e, by side-
ondition (A1),

there exists a mosai
 M su
h that

^

M 6= ; and T

M

= T . Fix an e

M

2

^

M .

Se
ond, for ea
h e

0

with t(e

0

) = T

0

, we de�ne

miss(e

0

) := E

m(e

0

)

(Inv(R); T )�

X

fe2�

I

jt(e)=Tg




R

T;T

0

(e; e

0

):

We 
an now de�ne 


R

T;T

0

:




R

T;T

0

(d; e

0

) :=

8

>

<

>

:

r(d; e

0

) +miss(e

0

) if d = e

M

r(d; e

0

) otherwise:

It is readily 
he
ked that Conditions (1) and (2) are now both satis�ed. We

have thus �nished the 
onstru
tion of 


R

T;T

0

.

Now we deal with Case (2) from Page 11: for ea
h role name R and ea
h

pair of types T; T

0

2 type(C

0

; T ) su
h that lim

R

(T; T

0

) and lim

R

�

(T

0

; T ), we


onstru
t a multipli
ity mapping �

R

T;T

0

su
h that

(1) for ea
h e with t(e) = T , we have

X

fe

0

2�

I

jt(e

0

)=T

0

g

�

R

T;T

0

(e; e

0

) = E

m(e)

(R; T

0

);

(2) for ea
h e

0

with t(e

0

) = T

0

, we have

X

fe2�

I

jt(e)=Tg

�

R

T;T

0

(e; e

0

) = E

m(e

0

)

(Inv(R); T ):

The 
onstru
tion is is similar to that of 


R

T;T

0

, but simpler: First de�ne two

sets

�

T

:= f(e; i) 2 �

I

�N j t(e) = T and i < E

m(e)

(R; T

0

)g

�

T

0

:= f(e; i) 2 �

I

�N j t(e) = T

0

and i < E

m(e)

(Inv(R); T )g

17



By Equation (E3), we �nd a bije
tion f from �

T

to �

0

T

. We then de�ne

�

R

T;T

0

:= ℄f(i; j) 2 N

2

j f(e; i) = (d; j)g. It is easily 
he
ked that Conditions (1)

and (2) are satis�ed, and thus we are done.

Finally, we address the simplest 
ase from Page 11: Case (3). Let n 2 N be a

supremum of the numbers used inside number restri
tions in C

0

and T . For

ea
h role name R and ea
h pair of types T; T

0

2 type(C

0

; T ) su
h that neither

lim

R

(T; T

0

) nor lim

R

�

(T

0

; T ), we de�ne a multipli
ity mapping !

R

T;T

0

by setting

!

R

T;T

0

(d; e) := n for all d; e with t(e) = T and t(e

0

) = T

0

.

We are now ready to assemble the interpretation R

I

of role names: for any

two d; e 2 �

I

with t(e) = T and t(e

0

) = T

0

, set

R

I

(d; e) :=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:




R

T;T

0

(d; e) if lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T )




R

�

T

0

;T

(e; d) if not lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T )

�

R

T;T

0

(d; e) if lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T )

!

R

T;T

0

(d; e) if neither lim

R

(T; T

0

) nor lim

Inv(R)

(T

0

; T )

It remains to show that I is a pre-model of C

0

and T . To this end, we �rst

establish a 
laim showing that all lower bounds L

M

of mosai
s are met in I.

Claim 1: For all e 2 �

I

with m(e) = M and t(e) = T , roles R, and types T

0

with lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ), we have

X

fe

0

2�

I

jt(e

0

)=T

0

g

R

I

(e; e

0

) � L

M

(R; T

0

): (�)

Proof: Let e, R, and T be as in the 
laim. We distinguish two 
ases:

� R is a role name. By 
onstru
tion of R

I

, we have R

I

(e; e

0

) = 


R

T;T

0

(e; e

0

) for

all e

0

with t(e

0

) = T

0

. Thus Property (1) of 


R

T;T

0

immediately yields (�).

� R = S

�

for some role name S. By 
onstru
tion of S

I

and the semanti
s of

inverse roles, we have R

I

(e; e

0

) = S

I

(e

0

; e) = 


S

�

T;T

0

(e; e

0

). Thus Property (1)

of 


S

�

T;T

0

yields (�).

The next 
laim addresses all exa
t bounds E

M

.

Claim 2: For all e 2 �

I

with m(e) = M and t(e) = T , roles R, and types T

0

with lim

Inv(R)

(T

0

; T ), we have

X

fe

0

2�

I

jt(e

0

)=T

0

g

R

I

(e; e

0

) = E

M

(R; T

0

): (�)

Proof: Let e, R, and T be as in the 
laim. We establish the 
laim using a 
ase

distin
tion:

18



� Not lim

R

(T; T

0

) and R is a role name. By 
onstru
tion of R

I

, we have

R

I

(e; e

0

) = 


R

�

T

0

;T

(e

0

; e) for all e

0

with t(e

0

) = T

0

. Thus Property (2) of the

multipli
ity mapping 


R

�

T

0

;T

yields (�).

� Not lim

R

(t(e); T

0

) and R = S

�

for some role name S. By 
onstru
tion

of S

I

and the semanti
s of inverse roles, we have R

I

(e; e

0

) = S

I

(e

0

; e) =




S

T

0

;T

(e

0

; e). Thus, we again obtain (�) by Property (2) of 


S

T

0

;T

.

� lim

R

(t(e); T

0

) andR is a role name. By 
onstru
tion ofR

I

, we have R

I

(e; e

0

) =

�

R

T;T

0

(e; e

0

) for all e

0

with t(e

0

) = T

0

. Thus Property (1) of �

R

T;T

0

yields (�).

� lim

R

(t(e); T

0

) and R = S

�

for some role name S. By 
onstru
tion of S

I

and

the semanti
s of inverse roles, we have R

I

(e; e

0

) = S

I

(e

0

; e) = �

S

T

0

;T

(e

0

; e).

Thus Property (2) of �

R

T;T

0

yields (�).

We 
an now prove the 
laim that is 
entral for showing that I is a pre-model

of the input 
on
ept C

0

and the input TBox T :

Claim 3: For all C 2 
l(C

0

; T ) and all e 2 �

I

, C 2 t(e) implies e 2 C

I

.

The proof is by indu
tion on the norm of 
on
epts C as introdu
ed in the

proof of Theorem 7. Let e 2 �

I

su
h that C 2 t(e).

� C is a 
on
ept name. Then e 2 C

I

follows from the de�nition of I.

� C = :D. Sin
e every 
on
ept in 
l(C

0

; T ) is in NNF, D is a 
on
ept name.

If :D 2 t(e), then D =2 t(e) by de�nition of types. Thus e 2 (:D)

I

by

de�nition of I.

� For C = D u E or C = D t E, the 
laim follows immediately from the

de�nition of types and the indu
tion hypothesis.

� C = (6 n R D). We show that

X

fe

0

2�

I

jD2t(e

0

)g

R

I

(e; e

0

) � n: (�)

It then follows that e 2 C

I

as required, as we 
an show that D =2 t(e

0

)

implies e

0

=2 D

I

: by de�nition of types, D =2 t(e

0

) implies _:D 2 t(e

0

). Sin
e

we are performing indu
tion on the norm of 
on
epts, indu
tion hypothesis

thus yields e

0

2 ( _:D)

I

, and e

0

=2 D

I

follows by the semanti
s.

It thus remains to establish (�), whi
h is simple: C 2 t(e) and D 2 t(e

0

)

implies lim

Inv(R)

(t(e

0

); t(e)). Thus by Claim 2 we 
an rewrite (�) as

X

fT jD2Tg

E

m(e)

(R; T ) � n:

This, however, is ensured by Property (M3) of mosai
s.

� C = (> n R D). We show that

X

fe

0

2�

I

jD2t(e

0

)g

R

I

(e; e

0

) � n: (��)

It then 
learly follows from the indu
tion hypothesis that e 2 C

I

as required.
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Claims 1 and 2 together with Properties (M1) and (M2) of mosai
s imply

that

X

fe

0

2�

I

jD2t(e

0

)g

R

I

(e; e

0

) �

X

fT jD2Tg

L

m(e)

(R; T ) +

X

fT jD2Tg

E

m(e)

(R; T )

If the right-hand side of this inequality is greater or equal to n, then we

are done. Otherwise, (A2) ensures that there exists a mosai
 M su
h that

D 2 T

M

, not lim

R

(t(e); T

M

), not lim

Inv(R)

(T

M

; t(e)), and x̂

M

6= 0, i.e. there

is an e

0

2

^

M . First assume that R is a role name. By 
onstru
tion of R

I

, we

have R

I

(e; e

0

) = !

R

T;T

0

� n. Thus, (��) is satis�ed and we are done. Now let

R = S

�

for a role name S. Then we have R

I

(e; e

0

) = S

I

(e

0

; e) = !

S

T

0

;T

� n

and are also done.

As a 
onsequen
e, I is a pre-model of C

0

and T = f>

:

= C

T

g: by Equa-

tion (E1) and due to the fa
t that x̂

M

> 0 implies #

^

M > 0, there is a mosai


M su
h that C

0

2 T

M

and #

^

M > 0. Fix an e 2

^

M . Claim 3 implies that

e 2 C

I

0

and thus I is a pre-model of C

0

. Moreover, by de�nition of types, we

have C

T

2 T

M

for ea
h mosai
 M . This fa
t together with Claim 3 implies

that I is a pre-model of T . 2

To establish the intended ExpTime upper bound, it now remains to show that

(i) the size of the 
onstru
ted equation system E

C

0

;T

is (at most) exponential

in the size of C

0

and T , and (ii) the existen
e of admissible solutions 
an be


he
ked in polynomial time.

We start with de�ning the size of 
on
epts and TBoxes. First, the size w.r.t.

unary 
oding of 
on
epts is de�ned indu
tively as follows:

jAj

u

= 1 for A a 
on
ept name;

j:Cj

u

= 1 + jCj

u

; jC

1

u C

2

j

u

= jC

1

t C

2

j

u

= jC

1

j

u

+ jC

2

j

u

j(6 n R C)j

u

= j(> n R C)j

u

= n+ 1 + jCj

u

The size of a TBox T is de�ned as jC

T

j

u

. It 
an easily be shown that the


ardinality of 
l(C

0

; T ) is linear in the size of C

0

and T .

Now we determine the number of mosai
s for C

0

and T . Let n be the size of

C

0

plus the size of C

T

w.r.t. unary 
oding. The 
ardinality of type(C

0

; T ) is

exponential in n. For mosai
s, (M2) and (M3) imply

#f(R; T ) j E

M

(R; T ) > 0g � sum

6

(T

M

)

and max(ran(E

M

)) � max

6

(T

M

), whereas (M4) implies analogous bounds for

L

M

. Sin
e max

./

(T ) and sum

./

(T ) are linear in n for ./ 2 f6;>g, ea
h mosai


M 
an be represented by T

M

and a ve
tor of length 2n of pairs of the form

20



(k; T ) for k � n and T a type. This implies the existen
e of a 
onstant 
 su
h

that the number of mosai
s is bounded by 2

(
n

2

)

.

Sin
e the number of mosai
s is exponential in the size of C

0

and T , we 
an

easily infer similar bounds for the number of inequalities and side-
onditions

of E

C

0

;T

. Before we 
ontinue, however, let us analyze what bounds are needed.

To do this, we show that the existen
e of an admissible solution for systems

of inequalities E

C

0

;T


an be de
ided in time polynomial in 
ertain parameters

of E

C

0

;T

.

First we need some prerequisites. We assume linear inequalities to be of the

form �

i




i

x

i

� b. Su
h an inequality is 
alled positive if b � 0. A system of

linear inequalities is des
ribed by a tuple (V; E), where V is a set of variables

and E a set of inequalities. Su
h a system is 
alled simple if all inequalities

are positive and all 
oeÆ
ients are (possibly negative) integers.

A side 
ondition for an inequality system (V; E) is a 
onstraint of the form

x > 0 =) x

1

+ � � �+ x

`

> 0; where x; x

1

; : : : x

`

2 V:

Let (V; E) be an inequality system and I a set of side 
onditions for (V; E). We

say that (V; E) admits an I-admissible solution if it admits a solution satisfying

all 
onstraints from I.

It is not hard to 
he
k that the inequality systems from De�nition 8 are simple

and that the 
onditions (A1) and (A2) 
an be polynomially transformed into

side 
onditions:

� (E1) is already simple,

� (E2) 
an obviously be transformed into

P

: : :�

P

: : : � 0,

� the equality (E3) is transformed into two inequalities of the form

P

: : : �

P

: : : � 0,

� ea
h impli
ation due to (A1) 
an be transformed into polynomially many

side 
onditions as follows: sin
e we are interested in non-negative solutions

only, we 
an use a separate impli
ation for ea
h summand appearing in

the premise. Next, the 
oeÆ
ients on the left-hand sides of the premise

are omitted by dropping those side-
onditions whose 
oeÆ
ient is zero and

repla
ing all other 
oeÆ
ients with 1.

� (A2) is already in the form of a side 
ondition.

The following proposition states that the existen
e of I-admissible integer

solutions 
an be 
he
ked in time polynomial in several parameters. It is a

generalization of Lemma 6.1.5 in

[

23

℄

.

Proposition 11 Let (V; E) be a simple system of inequalities in whi
h all


oeÆ
ients and 
onstants are from the interval [�a; a℄ of integers, and let I
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be a set of side 
onditions for (V; E). Then the existen
e of an integer, non-

negative, and I-admissible solution for (V; E) 
an be de
ided in (deterministi
)

time polynomial in #V +#E +#I + a.

It is now easy to obtain the desired ExpTime upper bound. First, note that

the number of variables and the number of inequalities in E

C

0

;T

is at most ex-

ponential in the size of C

0

and T due to our bound on the number of mosai
s.

Se
ond, the 
oeÆ
ients and 
onstants appearing in E

C

0

;T

are linear in the

size of C

0

and T due to (M2) to (M4). When transforming E

C

0

;T

into simple

inequalities and side 
onditions, these properties are preserved. Thus, Lem-

mas 10 and 11 yield anExpTime upper bound for the satis�ability ofALCQI-


on
epts w.r.t. TBoxes. The 
orresponding lower bound is a 
onsequen
e of

the ExpTime-hardness of unrestri
ted satis�ability of ALC w.r.t. TBoxes

[

20;

3

℄

and the fa
t that this DL has the �nite model property.

Theorem 12 Finite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is Exp-

Time-
omplete if numbers are 
oded in unary.

If numbers in number restri
tions are 
oded binarily, the algorithm developed

in this se
tion does no longer yield an ExpTime upper bound: in this 
ase,

the number of mosai
s is double exponential in the size of the input 
on
ept

and TBox. Sin
e it is not 
lear whether and how the presented algorithm 
an

be modi�ed in order to yield an ExpTime upper bound for the 
ase of binary


oding, we resort to a di�erent approa
h to atta
king this problem: in the

next se
tion, we redu
e �nite ALCQI-satis�ability to the �nite satis�ability

of ALCFI-
on
epts. Sin
e the employed redu
tion is polynomial, in this way

we obtain an ExpTime upper bound for the �nite satis�ability of ALCQI-


on
epts w.r.t. TBoxes, even if numbers are 
oded in binary.

4 Binary Coding of Numbers

In this se
tion, we prove that �niteALCQI-
on
ept satis�ability w.r.t. TBoxes

is de
idable in ExpTime even if numbers are 
oded in binary, where the size

w.r.t. binary 
oding jCj

b

of a 
on
ept C is de�ned as the size w.r.t. unary


oding, the only di�eren
e being that

j(6 n R C)j

b

= j(> n R C)j

b

= log(n) + 1 + jCj

b

:

The proof is by a polynomial redu
tion to �nite ALCFI-
on
ept satis�ability

w.r.t. TBoxes. Sin
e, in the 
ase of ALCFI, the size of numbers appearing

in number restri
tions is 
onstant (regardless of the 
oding), the results pre-

sented in the previous se
tion imply that �nite ALCFI-
on
ept satis�ability
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Fig. 5. Representing role neighbour relationships.

w.r.t. TBoxes is ExpTime-
omplete. Thus, this logi
 is a suitable target for

redu
tion. In 
ontrast to existing redu
tions of ALCQI to ALCFI, whi
h

only work in the 
ase of potentially in�nite models (su
h as the one presented

in

[

11

℄

), we have to take spe
ial 
are to deal with �nite (and thus non-tree)

models.

Before we go into te
hni
al details, let us des
ribe the intuition behind the

redu
tion. The general idea is to repla
e 
ounting via quali�ed number re-

stri
tions with 
ounting via 
on
ept names: to 
ount up to a number n, we

reserve 
on
ept names B

0

; : : : ; B

dlog(n)e

representing the bits of numbers be-

tween 0 and n. For the a
tual 
ounting, we 
an then use well-known (propo-

sitional logi
) formulae that en
ode in
rementation. But how 
an we use this

approa
h to 
ount the number of role neighbour? Intuitively, we rearrange the

neighbours of ea
h domain element in a way that allows to repla
e qualifying

number restri
tions with the 
ombination of (i) fun
tionality of roles as pro-

vided by ALCFI and (ii) 
ounting via 
on
ept names. Consider, for example,

the domain element x and its R-neighbours displayed on the left-hand side of

Figure 5. Ignoring the \dire
t" R-neighbours of x on the right-hand side for a

moment, we have rearranged three R-neighbours along an auxiliary path that

is built using a new role L

R

. Employing the (6 1 S >) 
onstru
tor of ALCFI,

we 
an ensure that ea
h node on this path has pre
isely one L

R

-prede
essor,

at most one L

R

-neighbour, and pre
isely one R-neighbour. The 
ounting via


on
ept names is then performed along the domain elements on L

R

-paths.

However, we 
annot gather all original R-neighbours of x on the L

R

-path.

The reason for this is as follows: assume we are at some domain element

on the L

R

-path des
ending from x and move along this domain element's

outgoing R-edge. The redu
tion ensures that we either rea
h a \real" domain

element (su
h as x) or arrive on an L

Inv(R)

-path. If the latter is the 
ase,

we have to ensure that, moving up the L

Inv(R)

-path, we will �nally rea
h a

\real" domain element. To do this, we 
ount the lengths of auxiliary paths via
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on
ept names:

3

on
e we have moved up to node 0 of the path, its prede
essor

must be \real". Sin
e, however, we do not know how many R-neighbours an

obje
t had in the original model, we do not know how many bits to reserve

for this 
ounting. The solution is to gather only those R-neighbours of x on

the L

R

-path whi
h are 
onstrained by a (6 n R C) 
on
ept applying to x or

whi
h are witnesses for a (> n R C) 
on
ept applying to x|this helps sin
e

the number of su
h domain elements is known in advan
e. All other domain

elements 
an remain \dire
t" neighbours of x sin
e there is no need to 
ount

them.

Fix an ALCQI-
on
ept C and an ALCQI-TBox T whose �nite satis�ability

is to be de
ided. W.l.o.g., we assume C and T to be in NNF. In order to

translate C and T to ALCFI, we introdu
e some additional 
on
ept and role

names:

(1) a fresh (i.e., not appearing in C or T ) 
on
ept name Real;

(2) for ea
h R 2 rol(C; T ), a fresh 
on
ept nameH

R

and a fresh role name L

R

;

(3) for ea
h 
on
ept D 2 
l(C; T ) of the form (./ n R E), where ./ is used

as a pla
eholder for > or 6, we reserve a fresh 
on
ept name X

D

;

(4) for ea
h 
on
ept D 2 
l(C; T ) that appears inside a qualifying num-

ber restri
tion (./ n R D) 2 
l(C; T ), we reserve fresh 
on
ept names

B

D;0

; : : : ; B

D;k

, where k = dlog(num

D

)e and

num

D

= maxfn j (./ n R D) 2 
l(C; T )g+ 1;

(5) for ea
h roleR 2 rol(C; T ), we reserve fresh 
on
ept names B

R;0

; : : : ; B

R;k

,

where k = dlog(depth

R

)e and

depth

R

=

X

(./ n R C)2
l(C;T )

n:

The 
on
ept name Real is used to distinguish \real" domain elements from do-

main elements on auxiliary paths. The 
on
ept names H

R

are used to \mark"

obje
ts on auxiliary paths for the role R: when following an L

R

-path, all en-


ountered obje
ts (apart from the root representing a \real" domain element)

will be instan
es of H

R

. The 
on
ept names B

R;i

are used to 
ount the length

of auxiliary L

R

-paths as des
ribed above. The 
on
ept names B

D;i

are also em-

ployed for 
ounting: they are used to 
ount the \o

urren
e" of R-neighbours

in D along L

R

-paths and will thus help to repla
e ALCQI-
on
epts of the

form (./ n R D). Note that the number of newly introdu
ed 
on
ept and

role names is polynomial in the size of C and T . We will use B

D

to refer to

the number en
oded by the 
on
ept names B

D;0

; : : : ; B

D;dlog(num

D

)e

and B

R

to

refer to the number en
oded by the 
on
ept names B

R;0

; : : : ; B

R;dlog(depth

R

)e

:

Moreover, we will use the following abbreviations:

3

This 
ounter is a di�erent one than the ones mentioned above
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� (B

R

= i) to denote the ALCFI-
on
ept expressing that B

R

equals i (and

similar for B

D

= i and the 
omparisons \<" and \>");

� in
r(B

R

; S) to denote the ALCFI-
on
ept expressing that, for all S-su

es-

sors, the number B

R

is in
remented by 1 modulo depth

R

(and similar for

in
r(B

D

; S)). More pre
isely, the 
on
ept in
r(B

R

; S) is de�ned as follows

(with n abbreviating dlog(depth

R

)e):

(B

R;0

! 8S::B

R;0

) u (:B

R;0

! 8S:B

R;0

) u

u

k=1::n

�

u

j=0::k�1

B

R;j

�

!

�

(B

R;k

! 8S::B

R;k

) u (:B

R;k

! 8S:B

R;k

)

�

u

u

k=1::n

�

t

j=0::k�1

:B

R;j

�

!

�

(B

R;k

! 8S:B

R;k

) u (:B

R;k

! 8S::B

R;k

)

�

:

� eq(B

D

; S) to denote the ALCFI-
on
ept expressing that, for all S-su

es-

sors, the number B

R

is not 
hanged. Formally, eq(B

R

; S) is de�ned as follows

(with n abbreviating dlog(depth

R

)e):

u

i=1::n

((B

D;i

! 8L

R

:B

D;i

) u (:B

D;i

! 8L

R

::B

D;i

))

�

We indu
tively de�ne a translation 
(C) of the 
on
ept C into a Boolean

formula (whi
h is also an ALCFI-
on
ept):


(A) := A; for A 2 
nam(C; T ) 
(:D) := :
(D)


(D u E) := 
(D) u 
(E) 
(D t E) := 
(D) t 
(E)


(> n R D) := X

(>n R D)


(6 n R D) := X

(6n R D)

Now set �(C) := 
(C) u Real and, for T = f>

:

= C

T

g,

�(T ) := f>

:

= Real! 
(C

T

)g [ Aux(C; T );

where the TBox Aux(C; T ) is de�ned in Figure 6 in whi
h we use D v E as

abbreviation for >

:

= D ! E, and in whi
h all t and u that have only a


on
ept as index range over all 
on
epts in 
l(C; T ) of the spe
i�ed form.

The �rst three 
on
ept equations ensure the behaviour sket
hed above of Real,

H

R

, and the 
ounting 
on
epts B

R

and B

D

. The last but one 
on
ept equation

ensures that the 
ounting 
on
epts B

D

are updated 
orre
tly along an L

R

path.

To guarantee that a \real" element d satis�es \number restri
tions" X

(./ n R D)

,

the fourth 
on
ept equation ensures that we see enough R-neighbours in D

for atleast restri
tions (> n R D) along an L

R

path starting at d, whereas the

last 
on
ept equation guarantees that we do not see too many su
h neighbours

along an L

R

path for atmost restri
tions (6 n R D). The following Lemma

states that � is a redu
tion from �nite ALCQI-
on
ept satis�ability to �nite

ALCFI-
on
ept satis�ability.
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>

:

= u

R2rol(C;T )

�

8R:(Real tH

Inv(R)

) u

8L

R

:H

R

u

(6 1 L

R

>) u

u

(./ n S D)

�

X

(./ n S D)

$ 8L

R

:X

(./ n S D)

�

u

u

A2
nam(C;T )

(A$ 8L

R

:A)

�

u

u

D

:
(D)! 
( _:(D))

Realv u

R2rol(C;T )

�

8L

R

:(B

R

= 0) u

(6 0 L

�

R

>)

�

u

u

(./ n R D)

�

X

(./ n R D)

! 8L

R

:(B

D

= 0)

�

u

u

(6 n R D)

�

X

(6n R D)

! 8R::
(D)

�

u

u

(> n R D)

with n>0

�

X

(>n R D)

! 9L

R

:>

�

H

R

v (= 1 R >) u

(= 1 L

�

R

>) u

in
r(B

R

; L

R

) u

(B

R

= 0)! 9L

�

R

:Real u

(B

R

> 0)! 9L

�

R

:H

R

u

(B

R

= (depth

R

� 1))! (6 0 L

R

>)

H

R

v u

(>n R D)

�

(X

(> n R D)

u B

D

< n u 8R::
(D))! 9L

R

:>

�

H

R

v u

(./ n R D)

�

9R:
(D)! in
r(B

D

; L

R

) u

8R:
( _:D)! eq(B

D

; L

R

)

�

H

R

v u

(6 n R D)

�

(X

(6 n R D)

u B

D

= n)! 8R::
(D)

�

Fig. 6. The TBox Aux(C;T ).
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Fig. 7. Two models for �(C) and �(T ).

Lemma 13 A 
on
ept C is �nitely satis�able w.r.t. a TBox T i� �(C) is

�nitely satis�able w.r.t. �(T ).

Intuitively, the proof of the above lemma pro
eeds as follows: for the \only

if" dire
tion, we simply take a �nite model of C and T , de�ne all elements

in the model as instan
es of the 
on
ept Real, then form the auxiliary paths

adding new elements to the model, de�ne the interpretations of the auxiliary


on
epts and roles, and manipulate the interpretation of the original roles as

des
ribed above to obtain a �nite model of �(C) and �(T ).

The \if" dire
tion needs more work. We �rst note that a straightforward


onstru
tion of a model of C and T from a model of �(C) and �(T ) by

moving all the origins of role relationships from the auxiliary paths to the

instan
e e of Real where the auxiliary path starts does not work. Let us 
all

this naive approa
h \spooling". To see that spooling fails, 
onsider the two

models of �(C) and �(T ) given in Figure 7, where

T = f> = (6 2 R C) u (6 2 R

�

C)g:

The thi
k points represent real elements, the dotted edges denote auxiliary

paths, and the solid edges denote real role relationships. Now, if we apply

spooling to the model depi
ted at the left of Fig. 7, we do not obtain a model

of C and T sin
e ea
h node has exa
tly one in
oming and one outgoing R

edge. So, to prove this part of Lemma 13, we �rst show that, if �(C) is �nitely

satis�able w.r.t. �(T ), then there is a singular �nite model of �(C) and �(T ):

intuitively, in a singular model, an auxiliary path for a role R and an auxiliary

path for Inv(R) are 
onne
ted via at most one R-edge. In Figure 7, the left

model is not singular, whereas the right one is. Then we show that, if we apply

spooling to a singular model of �(C) and �(T ), we indeed obtain a model of

C and T .

The 
omplete proof of Lemma 13 
an be found in Appendix B. Interestingly, to

show the existen
e of a singular model, we use the same 
opying 
onstru
tion

that we used in the proof of Theorem 7, and thus this en
oding tri
k 
annot

be easily extended to work for logi
s that are not 
losed under taking disjoint


opies of models su
h as ALCQI with nominals or C2.
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Lemma 13 together with the fa
t that �(C) and �(T ) are 
omputable in

polynomial time proves that �nite satis�ability of ALCQI 
on
epts w.r.t.

TBoxes is polynomially redu
ible to �nite satis�ability of ALCFI 
on
epts

w.r.t. TBoxes. By Theorem 12 we obtain the following theorem:

Theorem 14 Finite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is Exp-

Time-
omplete if numbers are 
oded in binary.

5 ABox Consisten
y

In this se
tion, we extend the 
omplexity bounds obtained in Se
tions 3 and 4

to a more general reasoning task: �nite ALCQI-ABox 
onsisten
y. As noted

in the introdu
tion, ABoxes 
an be understood as des
ribing a\snapshot" of

the world.

De�nition 15 (ABox) Let O be a 
ountably in�nite set of obje
t names.

An ABox assertion is an expression of the form a : C or (a; b) : R, where a

and b are obje
t names, C is an ALCQI-
on
ept, and R a role. An ABox is

a �nite set of ABox assertions.

Interpretations I are extended to ABoxes as follows: additionally, the inter-

pretation fun
tion �

I

maps ea
h obje
t name to an element of �

I

su
h that

a 6= b implies a

I

6= b

I

for all a; b 2 O (the so-
alled unique name assumption).

An interpretation I satis�es an assertion a : C if a

I

2 C

I

and an assertion

(a; b) : R if (a

I

; b

I

) 2 R

I

. It is a model for an ABox A if it satis�es all as-

sertions in A. An ABox is 
alled �nitely 
onsistent w.r.t a TBox T if it has

a �nite model that is also a model of T .

In the following, we will polynomially redu
e �nite ALCQI-ABox 
onsisten
y

to �nite ALCQI-
on
ept satis�ability. Thus, we prove that ALCQI-ABox


onsisten
y is ExpTime-
omplete independently of the way in whi
h numbers

are 
oded. We start with �xing some notation.

Let A be an ABox and T a TBox. Analogously to what was done in previous

se
tions, we use rnam(A; T ) to denote the set of role names appearing in A

and T , rol(A; T ) to denote the set of roles and their inverses appearing in A

and T , and obj(A) to denote the set of obje
t names appearing in A. For ea
h

obje
t name a 2 obj(A) and role R 2 rol(A; T ), N

A

(a; R) denotes the set of

R-neighbours of a in A, i.e.

N

A

(a; R) = fb 2 obj(A)j (a; b) : R 2 A or (b; a) : Inv(R) 2 Ag
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We use 
l(A; T ) to denote the smallest set 
ontaining all sub-
on
epts of 
on-


epts appearing in A and T that is 
losed under _:. It 
an easily be shown

that the 
ardinality of 
l(A; T ) is linear in the sizes of A and T . The notion

of types 
an straightforwardly be extended to ABoxes.

De�nition 16 (Type) A type T for an ABox A and a TBox T is de�ned

as in De�nition 3, where 
l(C

0

; T ) is repla
ed with 
l(A; T ).

The size of an ABox assertion a : C is the length of the 
on
ept C; the size

of an ABox assertion (a; b) : R is 1; �nally, the size of an ABox A is the sum

of the size of all assertions in A. The number of types for an ABox A and a

TBox T is thus 
learly exponential in the size of A and T .

The 
entral notion in the redu
tion of �nite ALCQI-ABox 
onsisten
y to

�nite ALCQI-
on
ept satis�ability is that of a redu
tion 
andidate:

De�nition 17 (Redu
tion Candidate) Let A be an ABox and T a TBox.

A redu
tion 
andidate for A and T is a fun
tion t that maps ea
h obje
t

name a appearing in A to a type t(a) for A and T su
h that a : C 2 A implies

C 2 t(a).

Let t be a redu
tion 
andidate for A and T . For ea
h obje
t name a 2 obj(A),

role R 2 rol(A; T ), and type T 2 ran(t) we use #

A

t

(a; R; T ) to denote the

number of obje
t names b su
h that b 2 N

A

(a; R) and t(b) = T .

Now, for ea
h obje
t name a 2 obj(A), we de�ne a redu
tion 
on
ept C

A

t

(a)

as follows:

C

A

t

(a) := u

C2t(a)

C u u

T2ran(t)

#

A

t

(a;R;T )>0

(> #

A

t

(a; R; T ) R ( u

C2T

C)):

The redu
tion 
andidate t is 
alled realisable i�, for every obje
t name a 2

obj(A), the redu
tion 
on
ept C

A

t

(a) is �nitely satis�able w.r.t. T .

The intuition behind this de�nition is as follows: for realisable redu
tion 
andi-

dates, we 
an \join" models of the individual redu
tion 
on
epts to a model of

the ABox. Vi
e versa, ea
h model of the ABox is also a model of all redu
tion


on
epts of a realisable redu
tion 
andidate.

Note that the de�nition of redu
tion 
on
epts exploits the unique name as-

sumption: If we �nd n di�erent R-neighbours of an obje
t name a in an ABox

A that are all assigned the same type T by the redu
tion 
andidate, then

the redu
tion 
on
ept C

A

t

(a) for a requires (via the atleast restri
tion) that,

for ea
h domain element satisfying it, there are at least n di�erent domain

elements of type T that are rea
hable via the role R. If we drop the unique
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name assumption, this requirement is too strong sin
e di�erent R-neighbours

of a in A 
an be interpreted as the same domain element.

The following lemma �xes the relationship between ABoxes and redu
tion


andidates. A proof 
an be found in Appendix C.

Lemma 18 Let A be an ABox and T a TBox. A is �nitely 
onsistent w.r.t.

T i� there exists a realisable redu
tion 
andidate for A and T .

It is now easy to establish a tight 
omplexity bound for �nite ALCQI-ABox


onsisten
y.

Theorem 19 Finite ALCQI-ABox 
onsisten
y w.r.t. TBoxes is ExpTime-


omplete if numbers are 
oded in binary.

Proof. Let A be an ABox and T a TBox. Sin
e the number of types for A

and T is exponential in the size of A and T and the number of obje
t names

used in A is linear in the size of A, the number of redu
tion 
andidates for A

and T is exponential in the size of A and T . Thus, to de
ide �nite 
onsisten
y

of A w.r.t. T , we may simply enumerate all redu
tion 
andidates for A and T

and 
he
k them for realisability: by Lemma 18, A is �nitely 
onsistent w.r.t.

T if we �nd a realisable redu
tion 
andidate. Sin
e the size of ea
h redu
tion


on
ept is polynomial in the size of A and T , by Theorem 14, the resulting

algorithm 
an be exe
uted in deterministi
 time exponential in A and T .

2

Note that we make the unique name assumption only to allow for simpler

proofs. Indeed, it is not 
ru
ial for obtaining an ExpTime upper bound: if we

want to de
ide �nite 
onsisten
y of an ABox A w.r.t. a TBox T without the

unique name assumption, we may use the following approa
h: enumerate all

possible partitionings of the obje
t names used in A. For ea
h partitioning,


hoose a representative for ea
h partition and then repla
e ea
h obje
t name

with the representative of its partition. Obviously, the ABox A is �nitely 
on-

sistent w.r.t. T without the unique name assumption if and only if one of the

resulting ABoxes is �nitely 
onsistent w.r.t. T with the unique name assump-

tion. Sin
e the number of partitionings is exponential in the number of ABox

obje
ts, this yields an ExpTime upper bound for �nite ABox 
onsisten
y

without the unique name assumption.

30



6 Related Work

The results presented here are 
losely related to investigations that have been

performed in two di�erent areas: on the one hand, the 
omplexity of �nite

model reasoning has been investigated for a variety of 
on
eptual database

models that 
an express in�nity. For example, in

[

24

℄

, it is shown that �nite

satis�ability in SERM s
hemata 
an be de
ided in polynomial time, where

a SERM s
hema roughly 
orresponds to an entity-relationship (ER) s
hema

with 
ardinality 
onstraints, but without IS-A links between entities or rela-

tionships. In

[

25

℄

, an ExpTime upper bound is proved for �nite satis�ability

of CR models, where CR is the extension of SERM with IS-A links between

entities and relationships. In

[

26

℄

, this ExpTime upper bound is extended

to the �nite satis�ability of CAR models, where CAR provides, in addition,

full Boolean operators on 
lasses and relations of arity larger than 2. A last

pie
e of work to be mentioned is

[

27

℄

, where the 
omplexity of a variety of

reasoning problems on (several 
ombinations of) integrity 
onstraints on re-

lational databases are investigated, both in unrestri
ted and in �nite models.

For the integrity 
onstraints 
onsidered (unary in
lusion dependen
ies and

fun
tional dependen
ies), it turns out that validity of impli
ations between

(various 
ombinations of) these 
onstraints often depends on whether we 
on-

sider unrestri
ted or �nite models, but their 
omplexity is mostly the same.

On the other hand, the 
omplexity of �nite model reasoning has been in-

vestigated for other �rst order and modal logi
s. Most prominently, the two

variable fragment of �rst order logi
 with 
ounting quanti�ers (C2) la
ks the

�nite model property, but both reasoning in the unrestri
ted 
ase and in �-

nite models are de
idable

[

15; 28

℄

and even of the same 
omplexity, namely

NExptime-
omplete; see

[

28

℄

for the unrestri
ted 
ase,

[

19

℄

for reasoning in

�nite models,

[

18

℄

for both 
ases, and

[

29

℄

for numbers inside 
ounting quan-

ti�ers being 
oded in binary. As mentioned in the introdu
tion, ALCQI 
an

be polynomially translated into C2, whi
h yields a NExptime upper bound

for ALCQI. As we have shown in this paper, neither this bound nor the one

that was established in the �rst de
idability result for ALCQI

[

17

℄

are tight.

Another example to be mentioned here is the full �-
al
ulus, i.e., the extension

of ALC with �xpoints and inverse roles. Even without any nested �xpoints,

this logi
 la
ks the �nite model property be
ause, roughly spoken, it allows to

express that (i) there exists an in�nite R-path, and (ii) R

�

is well-founded.

These two 
onstraints together are satis�able only in an in�nite, a
y
li
 R-

path, and thus only in in�nite models. For the ��-fragment of this logi
, �nite

satis�ability has re
ently been shown to be ExpTime -
omplete

[

30

℄

, meeting

the 
omplexity bounds for the unrestri
ted 
ase

[

31

℄

.

The 
ommon pattern that seems to re
ur in various 
ases is that unrestri
ted

and �nite model reasoning are often both de
idable, and quite often of the
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same 
omplexity, even though they might ask for di�erent reasoning te
h-

niques. An ex
eption to the latter point is the Stellar fragment, a 
lausal

formalism 
losely related to the two-variable fragment of �rst order logi
 with


ounting quanti�ers: in

[

18

℄

, systems of linear equations are used both for

reasoning in unrestri
ted and �nite models.

Finally, we would like to point out that, similar to the 
ase of unrestri
ted

model reasoning, the 
omplexity of �nite model reasoning is, in many natural


ases, insensitive to the 
oding of numbers in number restri
tions. For exam-

ple, C2 is NExptime-
omplete logi
 that is insensitive in this sense,both for

unrestri
ted and �nite model reasoning

[

29

℄

. In this paper, we have given an

example for an ExpTime-
omplete logi
 for whi
h �nite model reasoning is

insensitive to the 
oding of numbers. The 
orresponding proof for the unre-

stri
ted 
ase 
an be found in

[

11

℄

. Finally, examples of Pspa
e-
omplete logi
s

for whi
h the (only interesting) unrestri
ted 
ase is insensitive to the 
oding

of numbers 
an be found in

[

13

℄

.

7 Outlook

In this paper, we have determined �nite model reasoning in the des
ription

logi
 ALCQI to be ExpTime-
omplete. This shows that reasoning w.r.t. �-

nite models is not harder than reasoning w.r.t. unrestri
ted models, whi
h

is also known to be ExpTime-
omplete

[

11

℄

. We hope that, ultimately, this

resear
h will lead to the development of �nite model reasoning systems that

behave equally well as existing DL reasoners performing reasoning w.r.t. un-

restri
ted models su
h as FaCT and RACER

[

8; 9

℄

. Note, however, that the


urrent algorithm is best-
ase ExpTime sin
e it 
onstru
ts an exponentially

large system of inequalities. It 
an thus not be expe
ted to have an a

eptable

runtime behaviour if implemented in a naive way. Nevertheless, we believe

that the use of equation systems and linear programming is indispensable for

�nite model reasoning in ALCQI. Thus, e�orts to obtain eÆ
ient reasoners

should perhaps 
on
entrate on methods to avoid best-
ase exponentiality su
h

as on-the-
y 
onstru
tion of equation systems. Moreover, the redu
tions pre-

sented in Se
tion 4 and 5 
an also not be expe
ted to exhibit an a

eptable

run-time behaviour and it would thus be interesting to try to repla
e them by

more \dire
t" methods.

Another option for future work is the following: while �nite ALCQI-
on
ept

satis�ability w.r.t. TBoxes is suÆ
ient for reasoning about 
on
eptual data-

base models as des
ribed in the introdu
tion, �nite ALCQI-ABox 
onsisten
y

is not yet suÆ
ient for de
iding the 
ontainment of 
onjun
tive queries w.r.t.

a given 
on
eptual model|an intermediate redu
tion step is required. For un-

restri
ted models, this problem was proven to be in 2-ExpTime

[

21

℄

, and it
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would be interesting to �nd out whether this blow-up is avoidable, both for

the unrestri
ted and the �nite model 
ase.
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A Proofs for Se
tion 3

We �rst prove Theorem 7 and then Lemma 10.

Theorem 7 A 
on
ept C

0

and a TBox T have a �nite pre-model i� C

0

and

T have a �nite (standard) model.

Proof. Sin
e the \if" dire
tion is trivial, we 
on
entrate on \only if". Thus,

let I be a �nite pre-model for C

0

and T . We use n to denote the maximum

multipli
ity of edges in I, i.e.

n := maxfR

I

(d; e) j d; e 2 �

I

and R used in C

0

or T g:

Sin
e I is �nite, n is 
learly well-de�ned. Next, de�ne a (standard) interpre-

tation J as follows:

� �

J

:= �

I

� f0; : : : ; n� 1g;

� A

J

:= A

I

� f0; : : : ; n� 1g for 
on
ept names A;

� R

J

:= f((d; i); (e; j)) j 9k < R

I

(d; e) : j = i + k mod ng for role names R.

The following 
laim 
learly implies that J is a model of C

0

and T as desired:

Claim: for all C 2 
l(C

0

; T ) and d 2 �

I

, d 2 C

I

implies (d; i) 2 C

J

for all

i � n.

The proof is by indu
tion on the norm jj � jj of 
on
epts C, whi
h is de�ned

indu
tively as follows:

jjAjj := jj:Ajj := 0 for A 
on
ept name

jjC

1

u C

2

jj := jjC

1

t C

2

jj := 1 + jjC

1

jj+ jjC

2

jj

jj(> n R D)jj := jj(6 n R D)jj := 1 + jjDjj

The indu
tion start and the Boolean 
ases are trivial by de�nition of J and

using the indu
tion hypothesis. Hen
e we only treat the number restri
tions

expli
itly:

� C = (6 n R D). Let d 2 C

I

and �x an i 2 f0; : : : ; n� 1g. We have to show

that (d; i) 2 C

J

. From the semanti
s, we obtain

X

e2D

I

R

I

(d; e) � n (�)

By 
onstru
tion, for ea
h e 2 �

I

we have that

℄fj 2 f0; : : : ; n� 1g j ((d; i); (e; j) 2 R

J

g = R

I

(d; e): (��)

Sin
e we are doing indu
tion on the norm, the indu
tion hypothesis yields
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that e 2 ( _:D)

I

implies (e; j) 2 ( _:D)

J

for all e 2 �

I

and j � n. Together

with (�) and (��), this 
learly yields that (d; i) 2 C

J

as desired.

� C = (> n R D). Similar to the previous 
ase.

2

Next, we prove the \if" dire
tion of Lemma 10.

Lemma 20 If C

0

is �nitely satis�able w.r.t. T , then the system of inequalities

E

C

0

;T

has an admissible solution.

Proof. Let I be a �nite model of C

0

w.r.t. T . From I, we 
an 
onstru
t an

admissible solution of E

C

0

;T

. For e 2 �

I

, we use t(e) to refer to the unique

type of whi
h e is an instan
e, and m(e) to refer to the unique mosai
 of

whi
h e is an instan
e, as has been de�ned in De�nitions 3 and 5, respe
tively.

Moreover, we use M

I

to refer to fe 2 �

I

j m(e) = Mg and T

I

to refer to

fe 2 �

I

j t(e) = Tg. Next, we set x̂

M

:= #M

I

and prove the following 
laim:

Claim: fx̂

M

jM a mosai
g is an admissible solution of E

C

0

;T

.

Equation (E1) is satis�ed sin
e I is a model of C

0

: there is some e

0

2 C

I

0

implying, by de�nition of m(�), that we have x̂

m(e

0

)

� 1 and C

0

2 T

m(e

0

)

.

For (E2), let T; T

0

be types, R a role with lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ),

and �x some e

M

2M

I

for ea
h M

I

6= ; as follows:

� if T

M

= T , 
hoose an e

M

2M

I

with a minimal number of R-neighbours in

T

0

I

, and

� if T

M

6= T , 
hoose an arbitrary e

M

2M

I

.

We 
laim that the following (in)equalities hold, whi
h 
learly implies (E2).

X

fM jT

M

=Tg

L

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

L

M

(R; T

0

) � x̂

M

�

X

fM jT

M

=T^M

I

6=;g

#fe

0

2 T

0

I

j he

M

; e

0

i 2 R

I

g � x̂

M

�

X

fM jT

M

=T

0

^M

I

6=;g

#fe 2 T

I

j he

M

; ei 2 Inv(R)

I

g � x̂

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

The �rst equality is obvious. The �rst inequality is due to the de�nition of m,

whi
h implies that, for ea
h instan
e e of M , L

M

(R; T

0

) is a lower bound for

the number of e's R-neighbours in T

0

I

. The se
ond inequality holds mainly by
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a simple graph-theoreti
 reason: the number � of R edges from T

I

into T

0

I


oin
ides the number of Inv(R) edges from T

0

I

into T

I

. Next, we have 
hosen

e

M

with T

M

= T to have a minimal number of R-neighbours in T

0

I

, and thus

the left-hand term is a lower bound for �. Finally, sin
e ea
h e 2 M

I

with

T

M

= T

0

has the same number E

M

(Inv(R); T ) of in
oming R-edges from T by

de�nition of M

I

, the right-hand term 
oin
ides with �, and thus the se
ond

inequality holds. Finally, the last equality follows by de�nition of the sets M

I

.

Equation (E3) is satis�ed with a similar yet simpler argument: let T; T

0

be

types, R a role with lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ), and �x some e

M

2 M

I

for ea
h M

I

6= ;. Then we have

X

fM jT

M

=Tg

E

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

#fe

0

2 T

0

I

j he

M

; e

0

i 2 R

I

g � x̂

M

=

X

fM jT

M

=T

0

^M

I

6=;g

#fe 2 T

I

j he

M

; ei 2 Inv(R)

I

g � x̂

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

using similar arguments as for the (E2) 
ase.

Now for the admissibility of our solution. Obviously, it is a non-negative integer

solution. For (A1), 
onsider types T; T

0

and a role R with lim

R

(T; T

0

), not

lim

Inv(R)

(T

0

; T ), and

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

> 0:

Hen
e there is, by de�nition of M

I

, some he

0

; ei 2 Inv(R)

I

with e

0

2 T

0

I

and

e 2 T

I

. Hen
e we have

X

fM jT

M

=Tg

x̂

M

> 0;

and thus (A1) is satis�ed.

Finally, for (A2), let M be a mosai
 with x̂

M

> 0, (>nR:C) 2 T

M

, and

m =

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n:

Hen
e there is some e

M

2 T

I

M

and e

1

; : : : ; e

n

with e

i

6= e

j

for all i 6= j and, for

all 1 � i � n, he

M

; e

i

i 2 R

I

and e

i

2 C

I

. By de�nition of m(e), m < n implies

that there is some ` with 1 � ` � n su
h that not lim

Inv(R)

(t(e

M

); t(e

`

)) and
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not lim

R

(t(e

`

); t(e

M

)). Sin
e C 2 t(e

`

), the 
laim yields

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x̂

M

0

� 1;

and (A2) is satis�ed. 2

We now prove Proposition 11. In the proof, we use the following lemma that

was established by Calvanese in

[

23

℄

and builds on results of Papadimitriou

[

33

℄

.

Lemma 21

[

23

℄

Let (V; E) be a system of m = #E linear inequalities in

n = #V variables, in whi
h all 
oeÆ
ients and 
onstants are from the interval

[�a; a℄ of integers. Then, if (V; E) has a solution in N

n

, it also has one in

f0; 1; : : : ; H(V; E)g

n

, where H(V; E) = (n +m)(ma)

2m+1

:

The proof of Proposition 11 is 
losely related to the proof of Lemma 6.1.5

in

[

23

℄

.

Proposition 11 Let (V; E) be a simple system of inequalities in whi
h all


oeÆ
ients and 
onstants are from the interval [�a; a℄ of integers, and let I

be a set of side 
onditions for (V; E). Then the existen
e of an integer, non-

negative, and I-admissible solution for (V; E) 
an be de
ided in (deterministi
)

time polynomial in #V +#E +#I + a.

Proof. For a positive integer k, we use E

I

(k) to denote the set of inequalities

fx � k � (x

1

+ � � �+ x

j

) j x > 0 =) x

1

+ � � �+ x

j

> 0 2 Ig:

It is readily 
he
ked that every non-negative solution of (V; E[E

I

(k)) is a (non-

negative and) I-admissible solution of (V; E). We prove the following 
laim:

Claim: There is an integer k

E

exponential in #V +#E +#I su
h that (V; E)

admits a non-negative, integer, and I-admissible solution i� (V; E [ E

I

(k

E

))

admits a non-negative (rational) solution.

Proof: Let n = #V , m = #E , and r = #I. Then we 
hoose

k

E

= a � (2n+m + r)(n+m+ r)

2(n+m+r)+1

:

It remains to show that k

E

is as required:

For the \if" dire
tion, let S be a non-negative solution of (V; E [ E

I

(k

E

)). As

noted above, S is also a (non-negative and) I-admissible solution of (V; E).

Sin
e all inequalities in (V; E) are positive, we 
an 
onvert S into an integer

solution by multiplying S with the smallest 
ommon multiplier of the denom-

inators in S.
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Now for the \only if" dire
tion: assume that there exists an integer, non-

negative, and I-admissible solution S of (V; E), and let S(x) denote the value

S assigns to x. Set

E

S

= fx

1

+ � � �+ x

j

> 0 j x > 0 =) x

1

+ � � �+ x

j

> 0 2 I and S(x) > 0g[

fx = 0 j S(x) = 0g:

Obviously, S is also an (integer and non-negative) solution of the system

(V; E [ E

S

). By Lemma 21, there exists a non-negative integer solution S

0

of

(V; E[E

S

) whi
h is bounded by h = H(V; E[E

S

). It is readily 
he
ked that the

solution S

0

is also an (integer and non-negative) solution of (V; E [ E

I

(n)) for

any n � h. It remains to note that, sin
e E

S


ontains at most one inequality

for ea
h variable in V and ea
h impli
ation in I, we have h � k

E

.

In view of the 
laim just established, it is now easy to show that the exis-

ten
e of a non-negative integer and I-admissible solution for a simple system

of inequalities (V; E) and a set of side 
onditions I 
an be de
ided in time

polynomial in #V + #E + #I + a: we may 
learly view (V; E [ E

I

(k

E

)) as a

linear programming problem. Sin
e k

E

is exponential in #V +#E +#I + a,

the binary representation of k

E

is polynomial in #V + #E + #I + a. Thus,

the existen
e of a rational (non-negative) solution for (V; E [ E

I

(k

E

)) 
an be


he
ked in (deterministi
) time polynomial in #V +#E +#I + a

[

34

℄

. 2

B Proofs for Se
tion 4

In this se
tion, we prove Lemma 13. For the sake of readability, we split the

two dire
tions of this lemma into two separate lemmas. To address individual


on
ept equations of the TBox Aux(C; T ) displayed in Figure 6, throughout

this se
tion we will use Ei to refer to the i'th 
on
ept equation and Ei.j to

refer to its j'th line.

Lemma 22 If �(C) is �nitely satis�able w.r.t. �(T ), then C is �nitely satis-

�able w.r.t. T .

Proof. The proof strategy is to take a �nite model of �(C) and �(T ) and

transform it into a �nite model of C and T . For this purpose, instead of

taking an arbitrary model, we �rst sele
t a spe
ial, so-
alled singular one. We

�rst de�ne the notion of singularity. Let I be a �nite model of �(C) and �(T ).

For ea
h domain element d 2 Real

I

and ea
h R 2 rol(C; T ), we indu
tively

de�ne a sequen
e of domain elements h

d;R

0

; : : : ; h

d;R

`

d;R

as follows:

� set h

d;R

0

= d;
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� set h

d;R

i+1

to the L

R

-neighbour of h

d;R

i

(whi
h is unique due to E1.3) if it

exists. Otherwise, `

d;R

= i.

The 
onstru
ted sequen
e is �nite due to the use of the B

R


ounter in E2.1,

E3.3, and E3.6. Moreover, by E1.2 we have h

d;R

i

2 H

I

R

for 0 < i � `

d;R

, whi
h

we will often use (impli
itly) throughout the remaining proof. The model I is


alled singular if, for all roles R 2 rol(C; T ) and nodes d; e 2 Real

I

, we have

#f(i; j) j i � `

d;R

; j � `

e;Inv(R)

; and (h

d;R

i

; h

e;Inv(R)

j

) 2 R

I

g � 1:

Intuitively, in a singular model, an L

R

-path and an L

Inv(R)

-path are 
onne
ted

via at most one R edge, and thus the operation of 
ontra
ting L

R

edges always

results in a simple graph, i.e. no two verti
es are 
onne
ted by more than one

edge.

Claim 1. If �(C) is �nitely satis�able w.r.t. �(T ), then there is a �nite,

singular model of �(C) and �(T ).

Proof: Let I be a �nite model of �(C) and �(T ). Fix an inje
tive mapping Æ

from �

I

to f0; : : : ; (#�

I

�1)g. Then we 
onstru
t a new (�nite) interpretation

J by 
opying I suÆ
iently often and \bending R edges" from one 
opy of I

into others. More pre
isely, J is de�ned as follows:

�

J

:= fhd; ii j d 2 �

I

and i < #�

I

g;

A

J

:= fhd; ii 2 �

J

j d 2 A

I

g for all 
on
ept names A 2 
nam(�(C); �(T ));

L

J

R

:= f(hd; ii; he; ii) 2 �

J

��

J

j (d; e) 2 L

I

R

g

for all role names L

R

with R 2 rol(C; T );

R

J

:= f(hd; ii; he; (Æ(d) + i mod #�

I

)i) j (d; e) 2 R

I

g

for all role names R appearing in C or T .

It is straightforward to 
he
k that J is a singular model of �(C) and �(T ),

whi
h �nishes the proof of Claim 1.

Now let I be a singular, �nite model of �(C) and �(T ) and �x, for ea
h

d 2 Real

I

and R 2 rol(C; T ), a sequen
e of domain elements h

d;R

0

; : : : ; h

d;R

`

d;R

as

above. We use I to de�ne an interpretation J as follows:

�

J

:= Real

I

A

J

:= A

I

\ Real

I

R

J

:= f(d; e) 2 �

J

��

J

j 9i � `

d;R

; j � `

e;Inv(R)

: (h

d;R

i

; h

e;Inv(R)

j

) 2 R

I

g

It remains to establish the following 
laim:
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Claim 2. For all d 2 �

J

and D 2 
l(C; T ), d 2 
(D)

I

implies d 2 D

J

.

For assume that Claim 2 is true. Sin
e I is a model of �(C), by de�nition

of � there exists a d 2 (
(C) u Real)

I

. Clearly we have d 2 �

J

and thus

Claim 2 yields d 2 C

J

. Hen
e, J is a model of C. By de�nition of �(T ) and

the semanti
s, we have Real

I

= (
(C

T

) \ Real)

I

. Together with Claim 2 and

de�nition of J , we obtain �

J

= C

J

T

and thus J is a model of T .

We prove Claim 2 by indu
tion on the norm jj � jj of 
on
epts D whi
h is

de�ned as in the proof of Theorem 7.

Let d 2 �

J

\ 
(D)

I

for some D 2 
l(C; T ). Then d 2 Real

I

. Sin
e C and T

are in NNF, D is also in NNF. We only treat the interesting 
ases:

� Let D = (> n R E) and d 2 
(D)

I

= (X

(>n R E)

)

I

. By E1.4 and the 
hoi
e

of the elements h

d;R

0

; : : : ; h

d;R

`

d;R

, we have h

d;R

i

2 (X

(>n R E)

)

I

for i � `

d;R

.

Hen
e, by exploiting the 
ounter B

E

and its use in E2.3, E2.5, E4, and E5,

it is straightforward to show that there exists a subset I � f1; : : : ; `

d;R

g

of 
ardinality at least n su
h that, for ea
h i 2 I, there exists an e

i

2 �

I

su
h that (h

d;R

i

; e

i

) 2 R

I

and e

i

2 
(E)

I

. By E1.1, we have e

i

2 Real

I

or

e

i

2 H

Inv(R)

for all i 2 I. Using the 
ounter B

Inv(R)

and E3.2 to E3.6, it is thus

readily 
he
ked that, for ea
h i 2 I, there exists an f

i

2 �

I

su
h that f

i

2

Real

I

and e

i


an be rea
hed from f

i

by repeatedly travelling along Inv(R)-

edges. Thus, e

i


an be found among the elements h

f

i

;Inv(R)

0

; : : : ; h

f

i

;Inv(R)

`

f

i

;Inv(R)

.

Sin
e I is singular, it follows that we have f

i

6= f

j

for all i; j 2 I with i 6= j.

Moreover, by de�nition of J we have (d; f

i

) 2 R

J

for ea
h i 2 I:

� if R is a role name, then this is an immediate 
onsequen
e of the de�nition

of J ;

� if R = S

�

for some role name S, then (f

i

; d) 2 S

J

by de�nition of J . The

semanti
s yields (d; f

i

) 2 R

J

.

It thus remains to verify that f

i

2 E

J

for ea
h i 2 I. Clearly, 
(E) is a

Boolean formula over the set of 
on
ept names


nam(C; T ) [ fX

F

j F = (./ n R F

0

) 2 
l(C; T )g:

Sin
e e

i

2 
(E)

I

, E1.4 and E1.5 thus yield f

i

2 
(E)

I

for ea
h i 2 I. Sin
e

f

i

2 Real

I

, it remains to apply the indu
tion hypothesis.

� LetD = (6 n R E) and d 2 
(D)

I

= (X

(6n R E)

)

I

. Assume that there exists

a subset W � �

J

of 
ardinality greater than n su
h that, for ea
h e 2 W ,

we have (d; e) 2 R

J

and e 2 E

J

. By de�nition of J , this implies that, for

ea
h e 2 W , there are s

e

� `

d;R

and t

e

� `

e;R

su
h that (h

d;R

s

e

; h

e;Inv(R)

t

e

) 2 R

I

:

� if R is a role name, then this is an immediate 
onsequen
e of the de�nition

of J ;

� if R = S

�

for some role name S, then (d; e) 2 R

I

implies (e; d) 2 S

I

.

By de�nition of J , this means that there are s

e

� `

d;R

and t

e

� `

e;R

su
h that (h

e;S

t

e

; h

d;R

s

e

) 2 S

I

. By semanti
s and sin
e S = Inv(R), we obtain
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(h

d;R

s

e

; h

e;Inv(R)

t

e

) 2 R

I

.

We 
learly have W � Real

I

. We prove the following three Properties:

(1) e 6= e

0

implies h

d;R

s

e

6= h

d;R

s

e

0

for all e; e

0

2 W . By de�nition of the h

�;�

i

-

sequen
es of domain elements and E2.2 and E3.2, e 6= e

0

implies h

e;Inv(R)

t

e

6=

h

e

0

;Inv(R)

t

e

0

for all e; e

0

2 W . Thus, E3.1 yields h

d;R

s

e

6= h

d;R

s

0

e

if e 6= e

0

.

(2) h

e;Inv(R)

t

e

2 
(E)

I

for ea
h e 2 W . Suppose that e =2 
(E)

I

. Then e 2

(:
(E))

I

and, by E1.6, e 2 
( _:E)

I

. Sin
e e 2 Real

I

and we are perform-

ing indu
tion on the norm of 
on
epts rather than standard stru
tural

indu
tion, the indu
tion hypothesis yields e 2 ( _:E)

J

, a 
ontradi
tion to

e 2 E

J

. Thus, e 2 
(E)

I

. Sin
e 
(E) is a Boolean formula, it follows from

E1.4 and E1.5 that h

e;Inv(R)

t

e

2 
(E)

I

.

(3) s

e

6= 0 for all e 2 W . For assume that s

e

= 0. Then h

d;R

s

e

= d. By E2.4

and sin
e d 2 (X

(6n R E)

)

I

and (d; h

e;Inv(R)

t

e

) 2 R

I

, this yields h

e;Inv(R)

t

e

2

(:(
(E)))

I

in 
ontradi
tion to Property 2.

Properties 1 to 3 imply the existen
e of a subset I � f1; : : : ; `

d;R

g of 
ar-

dinality greater than n su
h that, for ea
h i 2 I, there exists an e 2 �

I

with (h

d;R

i

; e) 2 R

I

and e 2 
(E)

I

. Exploiting the 
on
ept X

(6n R E)

and

the 
ounter B

E

and their use in E1.4, E2.3, E5, and E6, it is readily 
he
ked

that this is a 
ontradi
tion to I being a model of Aux(C; T ).

2

Lemma 23 If C is �nitely satis�able w.r.t. T , then �(C) is �nitely satis�able

w.r.t. �(T ).

Proof. Now for the \only if" dire
tion: let I be a �nite model of C and T .

For ea
h d 2 �

I

and ea
h R 2 rol(C; T ), �x a subset W

d;R

� �

I

of 
ardinality

at most depth

R

su
h that the following 
onditions are satis�ed:

(1) (d; e) 2 R

I

for all e 2 W

d;R

;

(2) for all (> n R D) 2 
l(C; T ) with d 2 (> n R D)

I

, we have

#fe 2 W

d;R

j e 2 D

I

g � n;

(3) for all (6 n R D) 2 
l(C; T ) with d 2 (6 n R D)

I

, we have

fe 2 �

I

j (d; e) 2 R

I

and e 2 D

I

g � W

d;R

;

Using the semanti
s and the de�nition of depth

R

, it is easy to show that su
h

subsets indeed exist. Next, �x a linear ordering on W

d;R

, i.e., an inje
tive

mapping �

d;R

: W

d;R

�! f0; : : : ;#W

d;R

�1g. We use these mappings to de�ne
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a �nite model J of �(C) w.r.t. �(T ) as follows:

�

J

= �

I

[ fx

d;R;e

j d 2 �

I

; R 2 rol(C; T ); and e 2 W

d;R

g;

A

J

= A

I

[ fx

d;R;e

j d 2 A

I

; R 2 rol(C; T ); and e 2 W

d;R

g

for all A 2 
nam(C; T );

X

J

(./ n R D)

= (./ n R D)

I

[ fx

d;R;e

j d 2 (./ n R D)

I

and e 2 W

d;R

g

for all (./ n R D) 2 
l(C; T );

Real

J

= �

I

;

H

J

R

= fx

d;R;e

j d 2 �

I

and e 2 W

d;R

g for all R 2 rol(C; T );

L

R

= f(d; x

d;R;e

) j d 2 �

I

; e 2 W

d;R

; and �

d;R

(e) = 0g [

f(x

d;R;e

; x

d;R;e

0

) j d 2 �

I

; e; e

0

2 W

d;R

; and �

d;R

(e

0

) = �

d;R

(e) + 1g

for all R 2 rol(C; T );

R

I

= f(x

d;R;e

; x

e;R

�

;d

) j d; e 2 �

I

with e 2 W

d;R

and d 2 W

e;R

�

g [

f(x

d;R;e

; e) j d; e 2 �

I

with e 2 W

d;R

and d =2 W

e;R

�

g [

f(d; x

e;R

�

;d

) j d; e 2 �

I

with d 2 W

e;R

�

and e =2 W

d;R

g

for all R 2 rnam(C; T ):

for ea
h R 2 rol(C; T ), the 
ounter B

R

is de�ned as follows: B

R

= 0 for all

instan
es of Real

J

; for the instan
es of H

J

R

, we de�ne B

R

as follows:

B

R

= i for those x

d;R;e

2 H

J

R

with �

d;R

(e) = i;

for ea
h 
on
ept D 2 
l(C; T ) that appears inside a qualifying number

restri
tion (./ n R D) 2 
l(C; T ), the 
ounter B

D

is de�ned as follows:

B

D

= 0 for all instan
es of Real

J

; for instan
es x

d;R;e

of H

J

R

, we set

B

D

= #fe

0

2 W

d;R

j �

d;R

(e

0

) < �

d;R

(e) and e

0

2 D

I

g;

Sin
e the translation �(C) of an ALCQI-
on
ept C is a Boolean formula,

it is trivial to prove the following 
laim by stru
tural indu
tion (using the

de�nition of J ):

Claim 3. For all d 2 �

I

and D 2 
l(C; T ), d 2 D

I

implies d 2 
(D)

J

.

Sin
e I is a model of C, Claim 3 
learly implies that there is a d 2 �

I

su
h

that d 2 
(C)

J

. By de�nition of Real

J

, we thus have d 2 �(C)

J

and thus

J is a model of �(C). Moreover, also by Claim 3 J is a model of the TBox

f>

:

= Real! 
(C

T

)g. It is tedious but straightforward to verify that J is also

a model of the TBox Aux(C; T ). Hen
e J is a model of �(T ). 2
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C Proofs for Se
tion 5

The goal of this se
tion is to prove Lemma 18. Before we do this, we �rst

establish a te
hni
al lemma showing that �nitely satis�able redu
tion 
on
epts

have �nite models with 
ertain, desirable properties.

Throughout this se
tion, we will identify types T with the 
onjun
tion u

C2T

C

and write, e.g., d 2 T

I

for d 2 ( u

C2T

C)

I

.

Lemma 24 Let A be an ABox, T a TBox, t a redu
tion 
andidate for A

and T , and a an obje
t name used in A. If the redu
tion 
on
ept C

A

t

(a) is

�nitely satis�able w.r.t. T , then there exists a �nite model J of C

A

t

(a) and T ,

and some d 2 (C

A

t

(a))

J

su
h that, for all roles R, a 2 N

A

(a; R) implies

(d; d) 2 R

J

.

Proof. Let I be a �nite model of C

A

t

(a) and T and let d 2 (C

A

t

(a))

I

. By

de�nition of C

A

t

(a), we have d 2 t(a)

I

. We 
onstru
t a new interpretation J

that satis�es the 
ondition given in the lemma. For ea
h role name R with

a 2 N

A

(a; R), �x

(1) a domain element e

R

2 �

I

with (d; e

R

) 2 R

I

and e

R

2 t(a)

I

;

(2) a domain element e

R

�

2 �

I

with (d; e

R

�

) 2 (R

�

)

I

and e

R

�

2 t(a)

I

.

Su
h domain elements exist by 
onstru
tion of the redu
tion 
on
ept C

A

t

(a),

and sin
e a 2 N

A

(a; R) implies a 2 N

A

(a; R

�

). We 
onstru
t the new inter-

pretation J in two steps:

(1) De�ne a new interpretation I

0

as follows:

�

I

0

=�

I

� f0; 1g;

A

I

0

= f(e; i) j e 2 A

I

and i 2 f0; 1gg for all 
on
ept names A;

R

I

0

= f((e; i); (e

0

; j)) j (e; e

0

) 2 R

I

; i; j 2 f0; 1g; and i 6= jg

for all role names R:

Using stru
tural indu
tion, it is readily 
he
ked that, for ea
h e 2 �

I

and C 2 
l(A; T ),

e 2 C

I

implies (e; i) 2 C

I

0

for ea
h i 2 f0; 1g: (�)

Thus we have (d; 0) 2 (C

A

t

(a))

I

0

, where d is the initially 
hosen instan
e

of C

A

t

(a) (the same holds for (d; 1)). From now on, we fo
us on (d; 0) as

the \relevant" instan
e of C

A

t

(a). Clearly, (�) implies that I

0

is a model

of T .
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(2) The interpretation J is now de�ned as follows:

�

J

= �

I

0

;

A

J

= A

I

0

for all 
on
ept names A;

R

J

= R

I

0

for all role names R with a =2 N

A

(a; R);

R

J

= (R

I

0

n f((d; 0); (e

R

; 1)); ((e

R

�

; 1); (d; 0))g)

[ f((d; 0); (d; 0)); ((e

R

�

; 1); (e

R

; 1))g

for all role names R with a 2 N

A

(a; R).

Using stru
tural indu
tion, we may 
he
k that, for ea
h x 2 �

J

and ea
h

C 2 
l(A; T ),

x 2 C

I

0

implies x 2 C

J

: (��)

Note that we 
an show (��) despite the di�erent interpretation of the role

names R with a 2 N

A

(a; R), whi
h, intuitively, is due to the following reasons:

(i) due to the 
hoi
e of d, e

R

, and e

R

�

and to Property (�), all of (d; 0), (e

R

; 1)

and (e

R

�

; 1) have type t(a) in I

0

. Thus, in 
onstru
ting J we only remove

and add R-neighbours and R

�

-neighbours that have type t(a); (ii) we do not


hange the number of R-neighbours or R

�

-neighbours of type t(a) for any

domain element: in parti
ular, by 
onstru
tion of I

0

the removed edges really

exist in I

0

, and the newly added edges are really new.

By (��), (d; 0) 2 (C

A

t

(a))

J

and J is a model of T . To prove the lemma,

it thus remains to show that, for ea
h role R with a 2 N

A

(a; R), we have

((d; 0); (d; 0)) 2 R

J

. This is true by de�nition of R

J

if R is a role name.

If R = S

�

for some role name S, then a 2 N

A

(a; R) implies that a 2

N

A

(a; S). Thus ((d; 0); (d; 0)) 2 S

J

by de�nition of J . By semanti
s, we ob-

tain ((d; 0); (d; 0)) 2 R

J

as required. 2

We are now ready to prove Lemma 18.

Lemma 18 Let A be an ABox and T a TBox. A is �nitely 
onsistent w.r.t.

T i� there exists a realisable redu
tion 
andidate for A and T .

Proof. The \only if" dire
tion is simple: let I be a �nite model of A and T .

We 
onstru
t a redu
tion 
andidate t as follows:

for ea
h obje
t a in A, set t(a) = fD 2 
l(A; T ) j a

I

2 D

I

g.

Exploiting the unique name assumption, it is then easily 
he
ked that, for

every obje
t a in A, we have a

I

2 (C

A

t

(a))

I

, i.e. I is a �nite model of C

A

t

(a)

and T . Thus, t is realisable.
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d

a

I

a

I

b

d

b

R R

R

�

R

a

(b)

�

R

�

b

(a)

Fig. C.1. Conne
tion of the models I

a

and I

b

.

For the \if" dire
tion, assume that there exists a realisable redu
tion 
andidate

t for A and T . This implies that, for ea
h obje
t name a used in A, there is a

�nite model I

a

of C

A

t

(a) and T . For ea
h su
h model I

a

, �x a domain element

d

a

2 �

I

a

su
h that d

a

2 (C

A

t

(a))

I

a

. By Lemma 24, we may w.l.o.g. assume

that, for all obje
t names a used in A and all roles R, a 2 N

A

(a; R) implies

(d

a

; d

a

) 2 R

I

a

. Moreover, we assume w.l.o.g. that a 6= b implies �

I

a

\�

I

b

= ;.

In the following, we use the models I

a

to 
onstru
t a (�nite) model I of A

and T . First �x, for ea
h obje
t name a used in A and ea
h role R 2 rol(A; T ),

an inje
tive fun
tion �

R

a

from N

A

(a; R) to �

I

a

su
h that, for all b 2 N

A

(a; R),

we have the following:

(1) �

R

a

(b) 2 t(b)

I

;

(2) (d

a

; �

R

a

(b)) 2 R

I

a

;

(3) if b = a, then �

R

a

(b) = d

a

.

To show that su
h fun
tions indeed exist, �x an obje
t name a and a role R. It

suÆ
es to 
onstru
t, for ea
h type T 2 ran(t), an inje
tive fun
tion �

R;T

a

from

N

A

(a; R) \ fb j t(b) = Tg to �

I

a

satisfying Properties (1) to (3), and then

take the union of these individual fun
tions sin
e Property (1) ensures that

the resulting fun
tion is still inje
tive. Observe that, for ea
h T 2 ran(t), we


an indeed �nd an inje
tive fun
tion �

R;T

a

satisfying Properties (1) to (3) sin
e

(i) C

A

t

(a) 
ontains the 
onjun
t (> #

A

t

(a; R; T ) R ( u

C2T

C)); where #

A

t

(a; R; T )

obviously is the 
ardinality of the set N

A

(a; R) \ fb j t(b) = Tg = dom(�

R;T

a

);

and (ii) if a 2 N

A

(a; R), then (d

a

; d

a

) 2 R

I

a

by 
hoi
e of I

a

.
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Then de�ne the interpretation I as follows:

�

I

:=

S

a2obj(A)

�

I

a

;

A

I

:=

S

a2obj(A)

A

I

a

for all 
on
ept names A;

R

I

:=

S

a2obj(A)

h�

R

I

a

n (

S

b2N

A

(a;R)

f(d

a

; �

R

a

(b))g [

S

b2N

A

(a;R

�

)

f(�

R

�

a

(b); d

a

)g)

�

[

S

b2N

A

(a;R)

f(d

a

; d

b

); (�

R

�

b

(a); �

R

a

(b))g

i

for all role names R;

a

I

:= d

a

for ea
h obje
t name a used in A.

Note that the interpretation of role names is well-de�ned: if b 2 N

A

(a; R),

then a 2 N

A

(b; R

�

), and thus �

R

�

b

(a) is de�ned.

We explain the idea behind the de�nition of R

I

with the help of Figure C.1.

Here we 
onsider the 
onne
tion of two interpretations I

a

and I

b

, where a and

b are ABox obje
ts su
h that b 2 N

A

(a; R) (and thus also a 2 N

A

(b; R

�

)).

The non-dashed edges are removed from I

a

and I

b

in Line 1 of the de�nition

of R

I

, and are thus not part of the 
onne
ted model. To 
ompensate for this,

we add the dashed edges to the 
onne
ted model in Line 2 of the de�nition of

R

I

. In the �gure, all domain elements displayed as �lled 
ir
les have the same

type, and so do all domain elements displayed as non-�lled 
ir
les (this is due

to Property 1 of the �

R

a

(b) elements). It is thus readily 
he
ked that, after the

modi�
ation, ea
h domain element has the same number of R-neighbours and

R

�

-neighbours of any given type as before.

Spe
ial 
are was taken in the 
ase a 2 N

A

(a; R): if we had allowed �

R

a

(a) 6= d

a

and (d

a

; d

a

) 2 R

I

a

, then we would remove the edge between d

a

and �

R

a

(a) in

Line 1, but not 
ompensate for this removal in Line 2: there, we only \add" an

edge from d

a

to itself that does already exist in I

a

. Clearly, su
h a modi�
ation

might de
rease the number of R-neighbours of a given type, whi
h we want to

avoid. This is the reason why we need Property 3 of the �

R

a

(b) elements (and

Lemma 24, whi
h ensures that setting �

R

a

(a) = d

a

is always possible).

Using these arguments, it is not hard to prove the following 
laim using stru
-

tural indu
tion:

Claim: for ea
h obje
t name a used in A, d 2 �

I

a

, and C 2 
l(A; T ), d 2 C

I

a

implies d 2 C

I

.

Using the 
laim, it is readily 
he
ked that I is indeed a (�nite) model of A

and T :

(1) Let a : C 2 A. Then the 
laim together with d

a

2 (C

A

t

(a))

I

a

yields
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a

I

= d

a

2 C

I

sin
e t(a) is a 
onjun
t of C

A

t

(a) and a : C 2 A implies

C 2 t(a).

(2) Let (a; b) : R 2 A. Then b 2 N

A

(a; R). If R is a role name, we thus have

(a

I

; b

I

) 2 R

I

by de�nition of R

I

(se
ond line). If R = S

�

for some role

name S, then we have a 2 N

A

(b; S). Thus, (b

I

; a

I

) 2 S

I

by de�nition of

I, implying (a

I

; b

I

) 2 R

I

by the semanti
s.

(3) Finally, the 
laim together with the fa
t that, for ea
h obje
t name a

used in A, I

a

is a model of T 
learly implies that I is also a model of T .

2
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