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Abstrat

We analyse the omplexity of �nite model reasoning in the desription logi ALCQI,

i.e. ALC augmented with qualifying number restritions, inverse roles, and general

TBoxes. It turns out that all relevant reasoning tasks suh as onept satis�ability

and ABox onsisteny are ExpTime-omplete, regardless of whether the numbers

in number restritions are oded unarily or binarily. Thus, �nite model reasoning

with ALCQI is not harder than standard reasoning with ALCQI.
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1 Motivation

Desription logis (DLs) are a family of logial formalisms that originated in

the �eld of knowledge representation, and that were designed to represent and

reason about oneptual knowledge. Central DL notions are onepts (unary

prediates or lasses) and roles (binary relations). A spei� DL is mainly

haraterized by the onstrutors it provides to build omplex onepts (and
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roles) from atomi ones. For example, in the basi DL ALC

[
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, all roles are

atomi, and onepts an be built using Boolean operators and value restri-

tions. The following ALC-onept desribes ompanies in whih only managers

or researhers work, and in whih a parent works.

Companyu (9employs:9hasChild:Human)u8employs:(ResearhertManager)

It is well-known that DLs are losely related to modal logis. For example,

ALC is a notational variant of the basi multi-modal logi K

[
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, and the

above ALC onept is the DL ounterpart of the multi modal formula

Company^ (hemploysihhasChildiHuman)^ [employs℄(Researher_Manager):

A standard DL knowledge base, alled TBox, onsists of a set of onept equa-

tions, i.e. expressions of the form C

:

= D where C and D are possibly omplex

onepts. Intuitively, a TBox onstrains the set of models that are admitted

for the interpretation of onepts. Using a TBox, we an thus desribe the ter-

minology of an appliation domain by using an (atomi) onept name on the

left-hand side and its (omplex) de�nition on the right-hand side. Moreover,

we an apture general onstraints that ome from the appliation domain.

The standard DL reasoning tasks are deiding onept satis�ability and on-

ept subsumption w.r.t. a TBox: heking whether a onept C an have any

instanes in models of the TBox T , and heking whether one onept D is

more general than another onept C w.r.t. models of T .

During the last deade, a lot of work has been devoted to investigating the

lassial trade-o� between expressivity and omplexity

[
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, i.e., to �nd DLs

whose expressive power is appropriate for a ertain kind of appliations, and

whose reasoning problems are still deidable, preferably of an aeptable om-

plexity.

Appliations for whih suh a good ompromise ould be found inlude rea-

soning about oneptual database models

[
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and the usage of DLs as log-

ial underpinning of ontology languages suh as DAML+OIL and OWL

[
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. In this paper, we are onerned with the former appliation. Suppose that

a oneptual database model is desribed by one of the standard formalisms: an

ER diagram in the ase of relational databases and a UML diagram in the ase

of objet-oriented databases. As shown in

[
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, suh models an be translated

into a DL TBox and a desription logi reasoner suh as FaCT or RACER

[
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an be used to reason about the database model. In partiular, this ap-

proah an be used to detet inonsistenies in the database model, and to

infer impliit IS-A relationships between entities/lasses that are not given

expliitly in the model. This useful and original appliation has already led

to the implementation of tools that provide a GUI for speifying oneptual

models, automatise the translation into desription logis, and display the
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information returned by the DL reasoner
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.

One of the most important desription logis used for reasoning about on-

eptual database models is alled ALCQI

[
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, and extends ALC with

� qualifying number restritions (orresponding to graded modalities in modal

logi): onepts of the form (>nR:C) and (6nR:C), desribing objets hav-

ing at least n (at most n) instanes of C related to them via the role R. For

example, the onept Companyu(63employs:Manager) desribes ompanies

employing at most 3 managers.

� the inverse role onstrutor (orresponding to inverse modalities): ALCQI

allows the use of the inverse R

�

of a role R in number restritions and value

restritions. For example, the onept Manager u (>2employs

�

:Company)

desribes managers that are employed by at least two ompanies.

A feature that distinguishes ALCQI from less expressive DLs is that ALCQI

is apable of enforing in�nity, i.e., there are onepts and TBoxes that are

satis�able, but admit only in�nite models. In other words, ALCQI laks the

�nite model property (FMP).

Sine reasoning about database models is one of ALCQI's premier applia-

tions, its lak of the FMP annot be ignored: database models are usually

enoded into ALCQI suh that there is a tight orrespondene between logi-

al models and databases; sine databases are usually onsidered to be �nite,

we should thus perform reasoning on �nite models rather than on unrestrited

ones when using ALCQI in this ontext. That the restrition to �nite models

indeed makes a di�erene is witnessed by that fat that there exist quite simple

ER and UML diagrams that are satis�able only in in�nite models

[
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. From

a database perspetive, suh diagrams should thus be onsidered inonsistent

rather than onsistent, and thus we get an inorret result when translating

them to ALCQI and using unrestrited model reasoning. Interestingly, the

problem of �nite models is ommomly ignored when using DL tools for rea-

soning about database models. This is due to the fat that, with FaCT and

RACER

[
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, there are two popular and highly eÆient reasoners for dealing

with unrestrited reasoning in ALCQI but, up to now, no ALCQI reasoner

for �nite models is available. We believe that one important reason for the lak

of �nite model reasoners is that, in ontrast to reasoning w.r.t. unrestrited

models, reasoning w.r.t. �nite models in ALCQI is not yet well understood

from a theoretial perspetive. In partiular, as we will disuss below in more

detail, tight omplexity bounds for �nite model reasoning in ALCQI have

never been determined. The purpose of this paper is thus to improve the un-

derstanding of �nite model reasoning in desription logis by establishing tight

ExpTime omplexity bounds for �nite model reasoning in the DL ALCQI.

As noted above, reasoning with ALCQI in unrestrited models is well-under-
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stood. For example, it is known that satis�ability and subsumption w.r.t.

TBoxes is ExpTime-omplete

[
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. Note that there is a subtle issue about

number restritions here: inside ALCQI's onstrutors (6 n R C) and (>

n R C), we an ode the number n either in unary or in binary, and the length

of onepts and TBoxes will learly be exponentially shorter in the latter ase.

Fortunately, the ALCQI ExpTime-ompleteness results is insensitive of this

oding, i.e., it holds for both ases

[
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.

For �nite model reasoning, no tight omplexity bounds were known. It follows

easily from modal orrespondane theory

[
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that ALCQI is a fragment of

the two variable fragment of �rst order logi with ounting quanti�ers (C2)

[
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. Hene �nite satis�ability of C2 being deidable
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implies that, in

ALCQI, �nite satis�ability and subsumption w.r.t. TBoxes are deidable as

well. Moreover, Calvanese proves in

[
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that ALCQI satis�ability and sub-

sumption w.r.t. TBoxes are deidable in 2-ExpTime. Very reently, �nite sat-

is�ability of C2 was proven to be omplete for non-deterministie exponential

time

[

18; 19

℄

, whih improves Calvanese's upper bound. A lower bound fol-

lows easily from the fat that reasoning in ALC is already ExpTime-hard

[

20;

3

℄

|both w.r.t. unrestrited and �nite models sine ALC enjoys the �nite

model property. This leaves us with a gap between ExpTime and NExptime

for �nite model reasoning in ALCQI and the question whether it is as in-

sensitive to the oding of numbers as unrestrited model reasoning: all upper

bounds mentioned were proved for unary oding of numbers. In this paper, we

will lose this gap by providing a tight ExpTime upper bound and show that,

similar to the unrestrited ase, the omplexity is insensitive to the oding of

numbers. More preisely, we present the following results:

In Setion 3, we develop an algorithm that deides the �nite satis�ability of

ALCQI-onepts w.r.t. TBoxes. Similar to Calvanese's approah, the ore

idea behind our algorithm is to translate a given satis�ability problem into

a set of linear inequalities that an then be solved by linear programming

methods. In this translation, we use variables to represent the number of

elements desribed by so-alled mosais: a mosai is an abstration of domain

elements whih desribes the (unary) type of a domain element together with

its \neighborhood", i.e., the numbers and types of (relevant) role suessors.

Using a rather strit notion of mosais and an appropriate data struture to

represent them allows us to keep the number of mosais exponential in the size

of the input. This yields an exponential bound on the number of variables and

also on the size of systems of inequalities. Thus, we improve the best-known

2-ExpTime upper bound to a tight ExpTime one.

However, this bound is exponential only if we assume unary oding of numbers

in number restritions, and it is not lear whether our translation an be

modi�ed to yield an ExpTime upper bound in the ase of binary oding.

Thus, we use a di�erent strategy to attak binary oding: in Setion 4, we give
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a polynomial redution of �nite ALCQI-onept satis�ability w.r.t. TBoxes

to �nite satis�ability of ALCFI-onept satis�ability w.r.t. TBoxes, where

ALCFI is obtained from ALCQI by allowing only numbers up to two to

be used in number restritions. Sine �nite model reasoning in ALCFI is in

ExpTime by the results from Setion 3 (the oding of numbers is not an issue

here), we obtain a tight ExpTime bound for �nite model reasoning inALCQI

with numbers oded in binary. Note that we annot use existing redutions

from ALCQI to ALCFI sine these fail for �nite model reasoning

[

11

℄

.

In Setion 5, we extend our result to a more general reasoning problem,

namely the �nite onsisteny of ABoxes w.r.t. TBoxes. Intuitively, ABoxes

desribe a partiular state of a�airs, a \snapshot" of the world. FiniteALCQI-

ABox onsisteny is another interesting reasoning task with important appli-

ations: whereas �nite ALCQI-onept satis�ability an be used to deide

the onsisteny of oneptual database models and infer impliit IS-A rela-

tionships, ALCQI-ABox onsisteny an be used as the ore omponent of

algorithms deiding ontainment of onjuntive queries w.r.t. oneptual data-

base models|a task that DLs have suessfully been used for and that alls for

�nite model reasoning

[

21; 22

℄

. Using a redution to (�nite) onept satis�a-

bility, we are able to show that this reasoning task is also ExpTime-omplete,

independently of the way in whih numbers are oded.

Finally, in Setion 6, we disuss related work.

2 Preliminaries

We introdue syntax and semantis of ALCQI, disuss the inferene problems

we are interested in, and introdue some useful notation.

De�nition 1 (ALCQI Syntax) Let R and C be disjoint and ountably in-

�nite sets of role and onept names. A role is either a role name R 2 R

or the inverse R

�

of a role name R 2 R. The set of ALCQI-onepts is the

smallest set satisfying the following properties:

� eah onept name A 2 C is an ALCQI-onept;

� if C and D are ALCQI-onepts, R is a role, and n a natural number, then

:C, C uD, C tD, (6 n R C), and (> n R C) are also ALCQI-onepts.

A onept equation is of the form C

:

= D for C;D two ALCQI-onepts. A

TBox is a �nite set of onept equations.

We will refer to onepts of the form (6 n R C) as atmost restritions and

to onepts of the form (> n R C) as atleast restritions. As usual, we use
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the standard abbreviations ! and $ as well as 9R:C for (> 1 R C), 8R:C

for (6 0 R :C), > to denote an arbitrary propositional tautology, and ?

as abbreviation for :>. The fragment ALCFI of ALCQI is obtained by

admitting only atmost restritions (6 n R C) with n 2 f0; 1g and only atleast

restritions (> n R C) with n 2 f1; 2g.

De�nition 2 (ALCQI Semantis) An interpretation I is a pair (�

I

; �

I

)

where �

I

is a non-empty set and �

I

is a mapping that assigns

� to eah onept name A, a set A

I

� �

I

and

� to eah role name R, a binary relation R

I

� �

I

��

I

.

The interpretation of inverse roles and omplex onepts is then de�ned as

follows, with #S denoting the ardinality of the set S:

(R

�

)

I

= fhe; di j hd; ei 2 R

I

g

(:C)

I

= �

I

n C

I

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

(6 n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng

(> n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng

A domain element d 2 �

I

is an instane of a onept C if d 2 C

I

; moreover,

a domain element d

0

2 �

I

is an R-neighbour of d, for R a role, if (d; d

0

) 2 R

I

.

An interpretation I satis�es a onept equation C

:

= D if C

I

= D

I

, and I is

alled a model of a TBox T if I satis�es all onept equations in T .

A onept C is satis�able w.r.t. a TBox T if there is a model I of T with

C

I

6= ;. A onept C is �nitely satis�able w.r.t. a TBox T if there is a model

I of T with C

I

6= ; and �

I

�nite.

To see that satis�ability and �nite satis�ability do not oinide, onsider the

onept C = :A u 9R:A and the TBox fA

:

= 9R:A u (6 1 R

�

>)g. It is not

hard to see that C is satis�able w.r.t. T , but only in in�nite models: eah

model ontains an in�nite, ayli R-hain. Thus, ALCQI does not enjoy the

�nite model property.

The seond important reasoning problem on onepts and TBoxes, subsump-

tion of onepts w.r.t. TBoxes, has already been mentioned in the introdution:

a onept C is (�nitely) subsumed by a onept D w.r.t. a TBox T if we have

C

I

� D

I

for eah (�nite) model I of T . It is well known that subsumption an

be redued to (un)satis�ability, as C is subsumed by D w.r.t. T if and only if

6



:(C uD) ; :C t :D :(C tD) ; :C u :D

::C ; C :(6 n R C) ; (> n + 1 R C)

:(> n R C)) ; (6 n� 1 R C) if n > 0

:(> n R C)) ; ? if n = 0

Fig. 1. The NNF rewrite rules.

C u:D is unsatis�able w.r.t. T . Sine this holds both for the in�nite and the

�nite ase, in this paper we will onentrate on satis�ability and just note here

that all omplexity bounds obtained in this paper also apply to subsumption

(despite the impliit omplementation in the redution, sine we will only be

dealing with deterministi omplexity lasses).

In the remainder of this paper, we will w.l.o.g. only onsider onepts and

TBoxes that are in a restrited syntati form: onepts are assumed to be

in negation normal form (NNF), i.e., negation is only allowed in front of on-

ept names. Every ALCQI-onept an be transformed in linear time into an

equivalent one in NNF by exhaustively applying the rewrite rules displayed in

Figure 1. We use _:C to denote the NNF of :C. TBoxes are assumed to be

of the rather simple form f>

:

= Cg with C in NNF. This an be done w.l.o.g.

sine an interpretation I is a model of a TBox T = fC

i

:

= D

i

j 1 � i � ng i�

it is a model of f>

:

= u

1�i�n

(C

i

$ D

i

)g.

We now introdue some onvenient notation used throughout this paper. For

eah role R, we use Inv(R) to denote R

�

if R is a role name, and S if R = S

�

.

For a given onept C and TBox T , we use nam(C; T ) to denote the set of

onept names appearing in C and T , rnam(C; T ) to denote the set of role

names appearing in C and T , and rol(C; T ) to denote the set

rnam(C; T ) [ fR

�

j R 2 rnam(C; T )g:

3 Unary Coding of Numbers

In this setion, we present a deision proedure for �nite satis�ability of

ALCQI-onepts w.r.t. TBoxes that runs in deterministi exponential time,

provided that numbers in number restritions are oded unarily. In Setion 4,

we will generalise this upper bound to binary oding of numbers.

It is easily seen that ombinatoris is an important issue when deiding �nite

7



satis�ability of ALCQI-onepts. To illustrate this, onsider the TBox

T := fA

:

= (> 2 R B); B

:

= (6 1 R

�

A)g: (�)

In any (�nite) model of T , there are at least twie as many objets satisfying

B as there are objets satisfying A. This kind of ombinatoris is not an issue

if in�nite domains are admitted: in this ase, we an always �nd a model where

all onepts have the same number of instanes, namely ountably in�nitely

many.

As observed by Calvanese in

[

17

℄

, the ombinatorial issues of �nite model rea-

soning in desription logis an be addressed by using systems of inequalities.

More preisely, for deiding the �nite satis�ability of ALCQI-onepts w.r.t.

TBoxes, we will onvert a given onept C

0

and TBox T into a system of linear

inequalities that desribes the indued ombinatorial onstraints. This is done

in a suh way that there is a orrespondene between non-negative integer

solutions of the equation system and �nite models of the input. In this way,

heking �nite satis�ability of the input onept and TBox orresponds to

heking whether the onstruted system of inequalities has a non-negative

integer solution. To obtain an ExpTime upper bound as desired, we have to

be areful to ensure that the system of inequalities an be onstruted in time

exponential in the size of the input, and that the existene of solutions an be

heked in polynomial time.

Equation systems that handle ombinatorial onstraints an be onveniently

formulated in terms of types, whih we introdue next. Along with types,

we de�ne the losure of an ALCQI-onept C

0

and a TBox T , whih is,

intuitively, the set of onepts that are \relevant" for deiding the (�nite)

satis�ability of C

0

w.r.t. T .

De�nition 3 (Closure, Type) Let C

0

be a onept and T = f>

:

= C

T

g

a TBox. The losure l(C

0

; T ) of C

0

and T is the smallest set of ALCQI-

onepts suh that

� C

0

, C

T

, and all sub-onepts of C

0

and C

T

are in l(C

0

; T );

� if C 2 l(C

0

; T ), then _:C, the NNF of :C, is also in l(C

0

; T ).

A type T for C

0

and T is a subset T � l(C

0

; T ) suh that, for all D;E 2

l(C

0

; T ), we have

(1) D 2 T i� _:D 62 T ,

(2) if D u E 2 l(C

0

; T ), then D u E 2 T i� D 2 T and E 2 T ,

(3) if D t E 2 l(C

0

; T ), then D t E 2 T i� D 2 T or E 2 T , and

(4) C

T

2 T .

We use type(C

0

; T ) to denote the set of all types for C

0

and T .

8



T

1

T

2

T

3

T

4

T

5

Fig. 2. Problems with types.

For interpretations I, we all a domain element d 2 �

I

an instane of a type

T if d 2 C

I

for all C 2 T . Moreover, we use t(d) to denote the type that d is

an instane of.

2

A �rst idea to onvert a �nite satis�ability problem into an equational problem

ould be to introdue one variable x

T

for eah type T for the input onept

C

0

and TBox T , and then to formulate a suitable system of inequalities for C

0

and T suh that eah non-negative integer solution Æ of the equation system

orresponds to a model where eah type T has exatly Æ(x

T

) instanes.

However, it turns out that this approah is too naive: assume that T

1

to T

5

are types for C

0

and T , and that the following holds:

� (> 1 R C) 2 T

1

and (> 1 R D) 2 T

2

,

� (6 1 R

�

>) 2 T

3

\ T

4

\ T

5

,

� C 2 T

3

\ T

4

and D 2 T

4

\ T

5

.

Observe that (instanes of) T

1

an \use" (instanes of) T

3

and T

4

to satisfy

the onept (> 1 R C) 2 T

1

, and T

2

an \use" T

4

and T

5

to satisfy the onept

(> 1 R D) 2 T

2

, a situation depited in Figure 2. Similarly as for our initial

example (�), we get that (i) there have to be at least as many instanes of T

3

and T

4

as there are instanes of T

1

, and (ii) there have to be at least as many

instanes of T

4

and T

5

as there are instanes of T

2

. Thus, it is likely that a

system of inequalities for C

0

and T will inlude

x

T

1

� x

T

3

+ x

T

4

and x

T

2

� x

T

4

+ x

T

5

: (��)

Ignoring the existene of possible additional inequalities for a seond, we ob-

tain x

T

1

= x

T

2

= x

T

4

= 1 and x

T

3

= x

T

5

= 0 as an integer solution. Trying to

onstrut a model with a

1

, a

2

, and a

4

instanes of T

1

, T

2

, and T

4

, respetively,

we have to use a

4

as a witness of a

1

being an instane of (> 1 R C) and a

2

being an instane of (> 1 R D). Sine this learly violates the (6 1 R

�

>)

2

This type is obviously unique, and thus t(d) well de�ned.
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� n

R

R

T

1

3 C T

2

3 (6n Inv(R):C)

Fig. 3. Illustration of the lim funtion.

onept in T

4

, we do not have an easy orrespondene between models and

integer solutions as skethed above. Intuitively, the problem is that, above,

we have onsidered Points (i) and (ii) separately although they both speak

about T

4

. Unfortunately, it seems impossible to resolve this problem by adding

additional inequalities of size at most exponential in the size of the input.

One possible view on the skethed problem, whih is also taken by Calvanese

in

[

17

℄

, is that types do not provide enough information about domain ele-

ments. Intuitively, it seems neessary to also reord, for eah role R, the type

and number of R-neighbours. If this is done, in the above example (��), we

an distinguish instanes of T

1

and T

2

that have R-neighbors of type T

4

from

those that do not. It is then possible to re�ne the given equations suh that

\infeasible solutions" suh as the one disussed are ruled out. Thus, we now

develop a re�nement of types that allows to desribe suh additional informa-

tion. We start with introduing a onvenient notation that will play a rather

prominent role throughout this paper.

De�nition 4 (lim funtion) Let C

0

be a onept, T a TBox, R a role, and

T

1

; T

2

types for C

0

and T . Then we write

lim

R

(T

1

; T

2

)

if C 2 T

1

and (6 n Inv(R) C) 2 T

2

for some C 2 l(C

0

; T ) and n 2 N.

Intuitively, lim

R

(T

1

; T

2

) holds if, for eah instane of T

2

, there an be only a

limited number of \inoming R-edges" from instanes of T

1

. This situation is

illustrated in Figure 3, where the left ellipse ontains all instanes of type T

1

and the right ellipsis ontains all instanes of type T

2

. Note that, in the initial

example (�), we have lim

R

(T

1

; T

2

) for all types T

1

; T

2

suh that T

1

ontains A

and T

2

ontains B.

Our generalization of a type to also inlude the type and number of R-

neighbours is alled a mosai, and is de�ned as follows.

De�nition 5 (Mosai) Let T be a type and ./ 2 f6;>g. Then we use the
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following abbreviations:

max

./

(T ) := maxfn j (./ n R C) 2 Tg

sum

./

(T ) :=

X

(./ n R C)2T

n:

A mosai for a onept C

0

and a TBox T is a triple M = (T

M

; L

M

; E

M

) where

� T

M

2 type(C

0

; T ),

� L

M

and E

M

are funtions from rol(C

0

; T )� type(C

0

; T ) to N.

suh that the following onditions are satis�ed:

(M1) if L

M

(R; T ) > 0, then lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

),

(M2) if E

M

(R; T ) > 0, then lim

Inv(R)

(T; T

M

),

(M3) if (6 n R C) 2 T

M

, then n �

X

fT jC2Tg

E

M

(R; T );

(M4) #f(R; T ) j L

M

(R; T ) > 0g � sum

>

(T

M

) and max(ran(L

M

)) � max

>

(T

M

),

where ran(f) denotes the range of the funtion f .

If I is an interpretation, d 2 �

I

, and M = (T

M

; L

M

; E

M

) a mosai for C

0

and T , then d is an instane of M if the following holds, for all R 2 rol(C

0

; T )

and T 2 type(C

0

; T ):

� t(d) = T

M

, i.e. d is an instane of T

M

;

� if lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

), then L

M

(R; T ) is the minimum of

max

>

(T

M

) and #fe 2 �

I

j (d; e) 2 R

I

and t(e) = Tg;

� if lim

Inv(R)

(T; T

M

), then E

M

(R; T ) = #fe 2 �

I

j (d; e) 2 R

I

and t(e) = Tg.

It follows immediately from this de�nition that eah domain element d is an

instane of exatly one mosai. The de�nition of \instane" shows how mosais

are used to desribe domain elements: while T

M

is simply the type of d in I,

L

M

and E

M

are used to desribe the number of neighbours of d of ertain

types that are reahable from d via some role R, up to the limit max

>

(T

M

)

in the L

M

ase (to keep the number of mosais \small"). More preisely, we

distinguish three possibilities for the R relationship between T

M

and a type T :

(1) lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then eah instane of T

M

may have

an unrestrited number of R-neighbours of type T sine, by de�nition of

lim, (6 n R C) 2 T

M

implies C =2 T . However, eah instane of T has

a limit on the number of Inv(R)-neighbours of type T

M

: there is some

(6 n Inv(R) C) 2 T with C 2 T

M

. Thus, we must be areful not to vio-

late this limit when using instanes of T as \witnesses" to satisfy atleast

restritions (> n R D) 2 T

M

with D 2 T (suh a violation is exatly

what is happening in the example (��) above). To this end, we reord in
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L

M

the minimal number of R-neighbours of type T that an instane of

M has (\L" for \lower bound"). In the equation systems to be de�ned

later, this lower bound will be used to take are of atleast restritions in

T

M

.

(2) lim

Inv(R)

(T; T

M

). Then an instane d of T

M

may only have a limited num-

ber of R-neighbours of type T . To prevent the violation of this limit, we

need to reord an upper bound on the number of d's R-neighbours of type

T in M . On the other hand, there may be atleast restritions in T

M

that

need witnesses of type T . Thus, we also want to reord a lower bound

on the number of d's R-neighbours of type T in M . Summing up, we use

E

M

to reord the exat number of d's R-neighbours of type T (\E" for

\exat bound").

(3) Not lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then eah instane of T

M

may

have an unrestrited number of R-neighbours of type T and eah instane

of T may have an unrestrited number of Inv(R)-neighbours of type T

M

.

Intuitively, R-neighbours of type T are \unritial" for M and thus their

number need not be reorded in the mosai (we shall see later that even

without stating a lower bound, it is easy to satisfy atleast restritions in

T

M

using witnesses in T ).

The onditions (M1) to (M4) of mosais an thus be understood as follows:

(M1) and (M2) ensure that L

M

and E

M

reord information for the \or-

ret" types as desribed above; (M3) ensures that atmost restritions are not

violated|it suÆes to onsider only E

M

here sine (6 n R C) 2 T

M

and

C 2 T implies L

M

(R; T ) = 0 by (M1) and de�nition of lim; �nally, (M4) puts

upper bounds on L

M

to ensure that there exists only a limited number of

mosais.

To use mosais in systems of inequalities, we introdue one variable x

M

for

eah mosai M for the input C

0

and T , instead of for eah type as skethed

before. The intuition behind variables, however, is slightly di�erent from the

type-based ase: the goal is to ensure that eah non-negative integer solution

Æ of the equation system orresponds to a pre-model in whih eah mosai

M has exatly Æ(x

M

) instanes. Intuitively, pre-models di�er from models in

that, for any role R and domain elements d; e, they admit multiple R-edges

between d and e.

De�nition 6 (Pre-model) A pre-interpretation I is a pair (�

I

; �

I

) where

�

I

is a non-empty set and �

I

is a mapping that assigns

� to eah onept name A, a set A

I

� �

I

and

� to eah role name R, a funtion R

I

: (�

I

��

I

)! N.

Complex onepts and roles are interpreted as for standard interpretations,

12



Copy 2

Pre-model

Copy 1

Fig. 4. The opying onstrution.

with the following exeptions:

(R

�

)

I

(d; e) = R

I

(e; d);

(6 n R C)

I

= fd j

P

e2C

I

R

I

(d; e) � ng; and

(> n R C)

I

= fd j

P

e2C

I

R

I

(d; e) � ng:

A pre-interpretation I is a pre-model of a onept C

0

and a TBox T i� C

I

0

6= ;

and C

:

= D 2 T implies C

I

= D

I

.

It is straightforward to adapt the notion \instane of mosai" to pre-models

by taking into aount the multiple edges when de�ning L

M

and E

M

: we only

have to replae #fe 2 �

I

j (d; e) 2 R

I

and t(e) = Tg with

P

e2T

I

R

I

(d; e).

The following theorem shows that we may safely onsider pre-models instead

of models when heking satis�ability.

Theorem 7 A onept C

0

and a TBox T have a �nite pre-model i� C

0

and

T have a �nite (standard) model.

The \if" diretion is trivial sine every standard model an be oneived as

a pre-model. A formal proof of the \only if" diretion an be found in Ap-

pendix A. Intuitively, to obtain a �nite standard model from a �nite pre-model

I for C

0

and T , we take a �nite number of \disjoint opies" of I, and then

bend some role relationships bak and forth to eliminate multiple edges. This

onstrution is illustrated in Figure 4: if the maximum multipliity of edges

in the pre-model is n, we take n disjoint opies of it and \bend" the ith edge

between two elements d and e in the jth opy to go to (the opy of) e in

the ((j + i) mod n)th opy. This ensures that, for any role R, type T , and
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domain element d of the resulting model I

0

, d has exatly the same num-

ber of R-neighbours of type T as its orresponding domain element in the

pre-model I. As a onsequene, I

0

is still a model of C

0

and T .

Let us now ome bak to the system of inequalities. As already stated, the

variables represent the number of instanes that mosais have in a pre-model.

We use inequalities to ensure that we an \onnet" the instanes of the

mosais via roles suh that

(a) the lower bounds on numbers of suessors stored in L

M

are satis�ed,

(b) the exat numbers of suessors stored as E

M

(R; T ) are satis�ed, where

we have to distinguish the following two ases

(i) lim

Inv(R)

(T; T

M

) and lim

R

(T

M

; T ), and

(ii) lim

Inv(R)

(T; T

M

) and not lim

R

(T

M

; T ).

() all atleast onepts are satis�ed.

Note that we do not need to worry about the atmost-onepts as they are

ensured by (M3) together with Point (b) above. We �rst give the inequalities

and then relate them to Points (a) to () above.

De�nition 8 (Equation System) For C

0

an ALCQI-onept and T a TBox,

we introdue a variable x

M

for eah mosai M for C

0

; T and de�ne the system

of inequalities E

C

0

;T

by taking (i) the inequality

X

fM jC

0

2T

M

g

x

M

� 1; (E1)

(ii) for eah pair of types T; T

0

2 type(C

0

; T ) and role R suh that lim

R

(T; T

0

)

and not lim

Inv(R)

(T

0

; T ) the inequality

X

fM jT

M

=Tg

L

M

(R; T

0

) � x

M

�

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

; (E2)

and (iii) for eah pair of types T; T

0

2 type(C

0

; T ) and role R suh that

lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ) the inequality

X

fM jT

M

=Tg

E

M

(R; T

0

) � x

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

: (E3)

We give a brief overview of the purpose of the inequalities, and refer to the

proof of Lemma 10 below for the full piture. Inequality (E1) simply guarantees

the existene of an instane of C

0

, and inequality (E2) deals with Point (a)

from above. Point (b) is omprised of two subases, and Point (b.i) is dealt

with by inequality (E3). In ontrast, Point (b.ii) and () annot be dealt with

by a simple inequality sine they rather require a \onditional" inequality. To

address these two points, we introdue the notion of admissible solutions.
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De�nition 9 (Admissible) A solution of E

C

0

;T

is admissible if it is a non-

negative integer solution and satis�es the following side-onditions:

(i) for eah pair of types T; T

0

2 type(C

0

; T ) and role R suh that lim

R

(T; T

0

)

and not lim

Inv(R)

(T

0

; T ),

if

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

> 0; then

X

fM jT

M

=Tg

x

M

> 0: (A1)

(ii) for eah mosai M and eah role R, if x

M

> 0, (> n R C) 2 T

M

, and

m =

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n;

then (A2)

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x

M

0

> 0;

Now Point (b.ii) is addressed by the side-ondition (A1). The fat that we

require only the existene of a single instane in the post-ondition is due to

the fat that we work in pre-models and an simply introdue an appropriate

multiple edge to satisfy requirements for larger numbers of instanes. Finally,

Point () from above is ensured using side-ondition (A2).

The following lemma shows that our inqualities and side-onditions are indeed

appropriate.

Lemma 10 The system of inequalities E

C

0

;T

has an admissible solution i� C

0

is �nitely satis�able w.r.t. T .

Intuitively, the proof of Lemma 10 proeeds as follows: for the \if" diretion

we simply take a �nite model I for C

0

and T (as every model is also a pre-

model), and then de�ne an admissible solution for the equation system by

taking, for eah variable x

M

, the number of instanes ofM in I. For the \only

if" diretion, we onstrut a pre-model for I and T by reserving domain

elements for eah mosai as indiated by an admissible solution of E

C

0

;T

, and

then refer to the inequalities and side-onditions to show that we an indeed

turn the reserved domain elements into instanes of the orresponding mosai

by onneting them via roles in an appropriate way. It then remains to refer

to Lemma 7 for the existane of a �nite (standard) model. As the \only if"

diretion niely illustrates the purpose of the individual inequalities and side-

onditions, we give the proof here. The proof of the \if" diretion an be found

in Appendix A.
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Proof. We only prove the \only if" diretion here. Let fx̂

M

j M a mosaig

be an admissible solution of E

C

0

;T

. We onstrut a �nite pre-interpretation

I from this solution and then show that it is a pre-model of C

0

and T . For

eah mosai M , �x a set

^

M (of instanes) suh that #

^

M = x̂

M

and M 6= M

0

implies

^

M \

^

M

0

= ;. We de�ne

�

I

=

[

^

M:

In the following, for all e 2 �

I

, we use m(e) to denote the mosai M with

e 2

^

M , and t(e) to denote the type T

m(e)

. For eah onept name A 2 C, we

put

A

I

:= fe 2 �

I

j A 2 t(e)g:

Role names R 2 R are harder to deal with. More preisely, in the onstrution

of their interpretation, we distinguish between the three ases identi�ed on

Page 11. We start with Case (1): for eah role R 2 rol(C

0

; T ) and eah pair

of types T; T

0

2 type(C

0

; T ) suh that lim

R

(T; T

0

) but not lim

Inv(R)

(T

0

; T ), we

onstrut a mapping



R

T;T

0

:

[

fM jT

M

=Tg

^

M �

[

fM jT

M

=T

0

g

^

M ! N

(suh mappings will heneforth be alled multipliity mappings) suh that

(1) for eah e with t(e) = T , we have

X

fe

0

2�

I

jt(e

0

)=T

0

g



R

T;T

0

(e; e

0

) � L

m(e)

(R; T

0

);

(2) for eah e

0

with t(e

0

) = T

0

, we have

X

fe2�

I

jt(e)=Tg



R

T;T

0

(e; e

0

) = E

m(e

0

)

(Inv(R); T ):

Intuitively, the 

R

T;T

0

funtion is the \part" of R

I

that deals with edges from

elements of type T to elements of type T

0

. The onstrution proeeds as follows.

First de�ne two sets

�

T

:= f(e; i) 2 �

I

�N j t(e) = T and i < L

m(e)

(R; T

0

)g

�

T

0

:= f(e; i) 2 �

I

�N j t(e) = T

0

and i < E

m(e)

(Inv(R); T )g

By Equation (E2), we �nd a (total) injetion f from �

T

to �

0

T

. We de�ne a

multipliity mapping r by setting r(d; e) := ℄f(i; j) 2 N

2

j f(e; i) = (d; j)g.

It is easily heked that, by setting 

R

T;T

0

:= r, we satisfy Condition (1) from

above, but only the following weakening of Condition (2):
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(2

0

) for eah e

0

with t(e

0

) = T

0

, we have

X

fe2�

I

jt(e)=Tg



R

T;T

0

(e; e

0

) � E

m(e

0

)

(Inv(R); T ):

If Condition (2) is satis�ed aidentally, we are done. If it is not, then we

an \augment" r appropriately to satisfy Condition (2) without destroying

Condition (1). This is realised in two steps. First, if r does not aidentally

satisfy (2), then there is an e

0

with t(e

0

) = T

0

and

X

fe2�

I

jt(e)=Tg



R

T;T

0

(e; e

0

) < E

m(e

0

)

(Inv(R); T ):

Then x̂

m(e

0

)

6= 0 and E

m(e

0

)

(Inv(R); T ) > 0. Hene, by side-ondition (A1),

there exists a mosai M suh that

^

M 6= ; and T

M

= T . Fix an e

M

2

^

M .

Seond, for eah e

0

with t(e

0

) = T

0

, we de�ne

miss(e

0

) := E

m(e

0

)

(Inv(R); T )�

X

fe2�

I

jt(e)=Tg



R

T;T

0

(e; e

0

):

We an now de�ne 

R

T;T

0

:



R

T;T

0

(d; e

0

) :=

8

>

<

>

:

r(d; e

0

) +miss(e

0

) if d = e

M

r(d; e

0

) otherwise:

It is readily heked that Conditions (1) and (2) are now both satis�ed. We

have thus �nished the onstrution of 

R

T;T

0

.

Now we deal with Case (2) from Page 11: for eah role name R and eah

pair of types T; T

0

2 type(C

0

; T ) suh that lim

R

(T; T

0

) and lim

R

�

(T

0

; T ), we

onstrut a multipliity mapping �

R

T;T

0

suh that

(1) for eah e with t(e) = T , we have

X

fe

0

2�

I

jt(e

0

)=T

0

g

�

R

T;T

0

(e; e

0

) = E

m(e)

(R; T

0

);

(2) for eah e

0

with t(e

0

) = T

0

, we have

X

fe2�

I

jt(e)=Tg

�

R

T;T

0

(e; e

0

) = E

m(e

0

)

(Inv(R); T ):

The onstrution is is similar to that of 

R

T;T

0

, but simpler: First de�ne two

sets

�

T

:= f(e; i) 2 �

I

�N j t(e) = T and i < E

m(e)

(R; T

0

)g

�

T

0

:= f(e; i) 2 �

I

�N j t(e) = T

0

and i < E

m(e)

(Inv(R); T )g
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By Equation (E3), we �nd a bijetion f from �

T

to �

0

T

. We then de�ne

�

R

T;T

0

:= ℄f(i; j) 2 N

2

j f(e; i) = (d; j)g. It is easily heked that Conditions (1)

and (2) are satis�ed, and thus we are done.

Finally, we address the simplest ase from Page 11: Case (3). Let n 2 N be a

supremum of the numbers used inside number restritions in C

0

and T . For

eah role name R and eah pair of types T; T

0

2 type(C

0

; T ) suh that neither

lim

R

(T; T

0

) nor lim

R

�

(T

0

; T ), we de�ne a multipliity mapping !

R

T;T

0

by setting

!

R

T;T

0

(d; e) := n for all d; e with t(e) = T and t(e

0

) = T

0

.

We are now ready to assemble the interpretation R

I

of role names: for any

two d; e 2 �

I

with t(e) = T and t(e

0

) = T

0

, set

R

I

(d; e) :=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:



R

T;T

0

(d; e) if lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T )



R

�

T

0

;T

(e; d) if not lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T )

�

R

T;T

0

(d; e) if lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T )

!

R

T;T

0

(d; e) if neither lim

R

(T; T

0

) nor lim

Inv(R)

(T

0

; T )

It remains to show that I is a pre-model of C

0

and T . To this end, we �rst

establish a laim showing that all lower bounds L

M

of mosais are met in I.

Claim 1: For all e 2 �

I

with m(e) = M and t(e) = T , roles R, and types T

0

with lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ), we have

X

fe

0

2�

I

jt(e

0

)=T

0

g

R

I

(e; e

0

) � L

M

(R; T

0

): (�)

Proof: Let e, R, and T be as in the laim. We distinguish two ases:

� R is a role name. By onstrution of R

I

, we have R

I

(e; e

0

) = 

R

T;T

0

(e; e

0

) for

all e

0

with t(e

0

) = T

0

. Thus Property (1) of 

R

T;T

0

immediately yields (�).

� R = S

�

for some role name S. By onstrution of S

I

and the semantis of

inverse roles, we have R

I

(e; e

0

) = S

I

(e

0

; e) = 

S

�

T;T

0

(e; e

0

). Thus Property (1)

of 

S

�

T;T

0

yields (�).

The next laim addresses all exat bounds E

M

.

Claim 2: For all e 2 �

I

with m(e) = M and t(e) = T , roles R, and types T

0

with lim

Inv(R)

(T

0

; T ), we have

X

fe

0

2�

I

jt(e

0

)=T

0

g

R

I

(e; e

0

) = E

M

(R; T

0

): (�)

Proof: Let e, R, and T be as in the laim. We establish the laim using a ase

distintion:
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� Not lim

R

(T; T

0

) and R is a role name. By onstrution of R

I

, we have

R

I

(e; e

0

) = 

R

�

T

0

;T

(e

0

; e) for all e

0

with t(e

0

) = T

0

. Thus Property (2) of the

multipliity mapping 

R

�

T

0

;T

yields (�).

� Not lim

R

(t(e); T

0

) and R = S

�

for some role name S. By onstrution

of S

I

and the semantis of inverse roles, we have R

I

(e; e

0

) = S

I

(e

0

; e) =



S

T

0

;T

(e

0

; e). Thus, we again obtain (�) by Property (2) of 

S

T

0

;T

.

� lim

R

(t(e); T

0

) andR is a role name. By onstrution ofR

I

, we have R

I

(e; e

0

) =

�

R

T;T

0

(e; e

0

) for all e

0

with t(e

0

) = T

0

. Thus Property (1) of �

R

T;T

0

yields (�).

� lim

R

(t(e); T

0

) and R = S

�

for some role name S. By onstrution of S

I

and

the semantis of inverse roles, we have R

I

(e; e

0

) = S

I

(e

0

; e) = �

S

T

0

;T

(e

0

; e).

Thus Property (2) of �

R

T;T

0

yields (�).

We an now prove the laim that is entral for showing that I is a pre-model

of the input onept C

0

and the input TBox T :

Claim 3: For all C 2 l(C

0

; T ) and all e 2 �

I

, C 2 t(e) implies e 2 C

I

.

The proof is by indution on the norm of onepts C as introdued in the

proof of Theorem 7. Let e 2 �

I

suh that C 2 t(e).

� C is a onept name. Then e 2 C

I

follows from the de�nition of I.

� C = :D. Sine every onept in l(C

0

; T ) is in NNF, D is a onept name.

If :D 2 t(e), then D =2 t(e) by de�nition of types. Thus e 2 (:D)

I

by

de�nition of I.

� For C = D u E or C = D t E, the laim follows immediately from the

de�nition of types and the indution hypothesis.

� C = (6 n R D). We show that

X

fe

0

2�

I

jD2t(e

0

)g

R

I

(e; e

0

) � n: (�)

It then follows that e 2 C

I

as required, as we an show that D =2 t(e

0

)

implies e

0

=2 D

I

: by de�nition of types, D =2 t(e

0

) implies _:D 2 t(e

0

). Sine

we are performing indution on the norm of onepts, indution hypothesis

thus yields e

0

2 ( _:D)

I

, and e

0

=2 D

I

follows by the semantis.

It thus remains to establish (�), whih is simple: C 2 t(e) and D 2 t(e

0

)

implies lim

Inv(R)

(t(e

0

); t(e)). Thus by Claim 2 we an rewrite (�) as

X

fT jD2Tg

E

m(e)

(R; T ) � n:

This, however, is ensured by Property (M3) of mosais.

� C = (> n R D). We show that

X

fe

0

2�

I

jD2t(e

0

)g

R

I

(e; e

0

) � n: (��)

It then learly follows from the indution hypothesis that e 2 C

I

as required.
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Claims 1 and 2 together with Properties (M1) and (M2) of mosais imply

that

X

fe

0

2�

I

jD2t(e

0

)g

R

I

(e; e

0

) �

X

fT jD2Tg

L

m(e)

(R; T ) +

X

fT jD2Tg

E

m(e)

(R; T )

If the right-hand side of this inequality is greater or equal to n, then we

are done. Otherwise, (A2) ensures that there exists a mosai M suh that

D 2 T

M

, not lim

R

(t(e); T

M

), not lim

Inv(R)

(T

M

; t(e)), and x̂

M

6= 0, i.e. there

is an e

0

2

^

M . First assume that R is a role name. By onstrution of R

I

, we

have R

I

(e; e

0

) = !

R

T;T

0

� n. Thus, (��) is satis�ed and we are done. Now let

R = S

�

for a role name S. Then we have R

I

(e; e

0

) = S

I

(e

0

; e) = !

S

T

0

;T

� n

and are also done.

As a onsequene, I is a pre-model of C

0

and T = f>

:

= C

T

g: by Equa-

tion (E1) and due to the fat that x̂

M

> 0 implies #

^

M > 0, there is a mosai

M suh that C

0

2 T

M

and #

^

M > 0. Fix an e 2

^

M . Claim 3 implies that

e 2 C

I

0

and thus I is a pre-model of C

0

. Moreover, by de�nition of types, we

have C

T

2 T

M

for eah mosai M . This fat together with Claim 3 implies

that I is a pre-model of T . 2

To establish the intended ExpTime upper bound, it now remains to show that

(i) the size of the onstruted equation system E

C

0

;T

is (at most) exponential

in the size of C

0

and T , and (ii) the existene of admissible solutions an be

heked in polynomial time.

We start with de�ning the size of onepts and TBoxes. First, the size w.r.t.

unary oding of onepts is de�ned indutively as follows:

jAj

u

= 1 for A a onept name;

j:Cj

u

= 1 + jCj

u

; jC

1

u C

2

j

u

= jC

1

t C

2

j

u

= jC

1

j

u

+ jC

2

j

u

j(6 n R C)j

u

= j(> n R C)j

u

= n+ 1 + jCj

u

The size of a TBox T is de�ned as jC

T

j

u

. It an easily be shown that the

ardinality of l(C

0

; T ) is linear in the size of C

0

and T .

Now we determine the number of mosais for C

0

and T . Let n be the size of

C

0

plus the size of C

T

w.r.t. unary oding. The ardinality of type(C

0

; T ) is

exponential in n. For mosais, (M2) and (M3) imply

#f(R; T ) j E

M

(R; T ) > 0g � sum

6

(T

M

)

and max(ran(E

M

)) � max

6

(T

M

), whereas (M4) implies analogous bounds for

L

M

. Sine max

./

(T ) and sum

./

(T ) are linear in n for ./ 2 f6;>g, eah mosai

M an be represented by T

M

and a vetor of length 2n of pairs of the form
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(k; T ) for k � n and T a type. This implies the existene of a onstant  suh

that the number of mosais is bounded by 2

(n

2

)

.

Sine the number of mosais is exponential in the size of C

0

and T , we an

easily infer similar bounds for the number of inequalities and side-onditions

of E

C

0

;T

. Before we ontinue, however, let us analyze what bounds are needed.

To do this, we show that the existene of an admissible solution for systems

of inequalities E

C

0

;T

an be deided in time polynomial in ertain parameters

of E

C

0

;T

.

First we need some prerequisites. We assume linear inequalities to be of the

form �

i



i

x

i

� b. Suh an inequality is alled positive if b � 0. A system of

linear inequalities is desribed by a tuple (V; E), where V is a set of variables

and E a set of inequalities. Suh a system is alled simple if all inequalities

are positive and all oeÆients are (possibly negative) integers.

A side ondition for an inequality system (V; E) is a onstraint of the form

x > 0 =) x

1

+ � � �+ x

`

> 0; where x; x

1

; : : : x

`

2 V:

Let (V; E) be an inequality system and I a set of side onditions for (V; E). We

say that (V; E) admits an I-admissible solution if it admits a solution satisfying

all onstraints from I.

It is not hard to hek that the inequality systems from De�nition 8 are simple

and that the onditions (A1) and (A2) an be polynomially transformed into

side onditions:

� (E1) is already simple,

� (E2) an obviously be transformed into

P

: : :�

P

: : : � 0,

� the equality (E3) is transformed into two inequalities of the form

P

: : : �

P

: : : � 0,

� eah impliation due to (A1) an be transformed into polynomially many

side onditions as follows: sine we are interested in non-negative solutions

only, we an use a separate impliation for eah summand appearing in

the premise. Next, the oeÆients on the left-hand sides of the premise

are omitted by dropping those side-onditions whose oeÆient is zero and

replaing all other oeÆients with 1.

� (A2) is already in the form of a side ondition.

The following proposition states that the existene of I-admissible integer

solutions an be heked in time polynomial in several parameters. It is a

generalization of Lemma 6.1.5 in

[

23

℄

.

Proposition 11 Let (V; E) be a simple system of inequalities in whih all

oeÆients and onstants are from the interval [�a; a℄ of integers, and let I
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be a set of side onditions for (V; E). Then the existene of an integer, non-

negative, and I-admissible solution for (V; E) an be deided in (deterministi)

time polynomial in #V +#E +#I + a.

It is now easy to obtain the desired ExpTime upper bound. First, note that

the number of variables and the number of inequalities in E

C

0

;T

is at most ex-

ponential in the size of C

0

and T due to our bound on the number of mosais.

Seond, the oeÆients and onstants appearing in E

C

0

;T

are linear in the

size of C

0

and T due to (M2) to (M4). When transforming E

C

0

;T

into simple

inequalities and side onditions, these properties are preserved. Thus, Lem-

mas 10 and 11 yield anExpTime upper bound for the satis�ability ofALCQI-

onepts w.r.t. TBoxes. The orresponding lower bound is a onsequene of

the ExpTime-hardness of unrestrited satis�ability of ALC w.r.t. TBoxes

[

20;

3

℄

and the fat that this DL has the �nite model property.

Theorem 12 Finite satis�ability of ALCQI-onepts w.r.t. TBoxes is Exp-

Time-omplete if numbers are oded in unary.

If numbers in number restritions are oded binarily, the algorithm developed

in this setion does no longer yield an ExpTime upper bound: in this ase,

the number of mosais is double exponential in the size of the input onept

and TBox. Sine it is not lear whether and how the presented algorithm an

be modi�ed in order to yield an ExpTime upper bound for the ase of binary

oding, we resort to a di�erent approah to attaking this problem: in the

next setion, we redue �nite ALCQI-satis�ability to the �nite satis�ability

of ALCFI-onepts. Sine the employed redution is polynomial, in this way

we obtain an ExpTime upper bound for the �nite satis�ability of ALCQI-

onepts w.r.t. TBoxes, even if numbers are oded in binary.

4 Binary Coding of Numbers

In this setion, we prove that �niteALCQI-onept satis�ability w.r.t. TBoxes

is deidable in ExpTime even if numbers are oded in binary, where the size

w.r.t. binary oding jCj

b

of a onept C is de�ned as the size w.r.t. unary

oding, the only di�erene being that

j(6 n R C)j

b

= j(> n R C)j

b

= log(n) + 1 + jCj

b

:

The proof is by a polynomial redution to �nite ALCFI-onept satis�ability

w.r.t. TBoxes. Sine, in the ase of ALCFI, the size of numbers appearing

in number restritions is onstant (regardless of the oding), the results pre-

sented in the previous setion imply that �nite ALCFI-onept satis�ability
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Fig. 5. Representing role neighbour relationships.

w.r.t. TBoxes is ExpTime-omplete. Thus, this logi is a suitable target for

redution. In ontrast to existing redutions of ALCQI to ALCFI, whih

only work in the ase of potentially in�nite models (suh as the one presented

in

[

11

℄

), we have to take speial are to deal with �nite (and thus non-tree)

models.

Before we go into tehnial details, let us desribe the intuition behind the

redution. The general idea is to replae ounting via quali�ed number re-

stritions with ounting via onept names: to ount up to a number n, we

reserve onept names B

0

; : : : ; B

dlog(n)e

representing the bits of numbers be-

tween 0 and n. For the atual ounting, we an then use well-known (propo-

sitional logi) formulae that enode inrementation. But how an we use this

approah to ount the number of role neighbour? Intuitively, we rearrange the

neighbours of eah domain element in a way that allows to replae qualifying

number restritions with the ombination of (i) funtionality of roles as pro-

vided by ALCFI and (ii) ounting via onept names. Consider, for example,

the domain element x and its R-neighbours displayed on the left-hand side of

Figure 5. Ignoring the \diret" R-neighbours of x on the right-hand side for a

moment, we have rearranged three R-neighbours along an auxiliary path that

is built using a new role L

R

. Employing the (6 1 S >) onstrutor of ALCFI,

we an ensure that eah node on this path has preisely one L

R

-predeessor,

at most one L

R

-neighbour, and preisely one R-neighbour. The ounting via

onept names is then performed along the domain elements on L

R

-paths.

However, we annot gather all original R-neighbours of x on the L

R

-path.

The reason for this is as follows: assume we are at some domain element

on the L

R

-path desending from x and move along this domain element's

outgoing R-edge. The redution ensures that we either reah a \real" domain

element (suh as x) or arrive on an L

Inv(R)

-path. If the latter is the ase,

we have to ensure that, moving up the L

Inv(R)

-path, we will �nally reah a

\real" domain element. To do this, we ount the lengths of auxiliary paths via
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onept names:

3

one we have moved up to node 0 of the path, its predeessor

must be \real". Sine, however, we do not know how many R-neighbours an

objet had in the original model, we do not know how many bits to reserve

for this ounting. The solution is to gather only those R-neighbours of x on

the L

R

-path whih are onstrained by a (6 n R C) onept applying to x or

whih are witnesses for a (> n R C) onept applying to x|this helps sine

the number of suh domain elements is known in advane. All other domain

elements an remain \diret" neighbours of x sine there is no need to ount

them.

Fix an ALCQI-onept C and an ALCQI-TBox T whose �nite satis�ability

is to be deided. W.l.o.g., we assume C and T to be in NNF. In order to

translate C and T to ALCFI, we introdue some additional onept and role

names:

(1) a fresh (i.e., not appearing in C or T ) onept name Real;

(2) for eah R 2 rol(C; T ), a fresh onept nameH

R

and a fresh role name L

R

;

(3) for eah onept D 2 l(C; T ) of the form (./ n R E), where ./ is used

as a plaeholder for > or 6, we reserve a fresh onept name X

D

;

(4) for eah onept D 2 l(C; T ) that appears inside a qualifying num-

ber restrition (./ n R D) 2 l(C; T ), we reserve fresh onept names

B

D;0

; : : : ; B

D;k

, where k = dlog(num

D

)e and

num

D

= maxfn j (./ n R D) 2 l(C; T )g+ 1;

(5) for eah roleR 2 rol(C; T ), we reserve fresh onept names B

R;0

; : : : ; B

R;k

,

where k = dlog(depth

R

)e and

depth

R

=

X

(./ n R C)2l(C;T )

n:

The onept name Real is used to distinguish \real" domain elements from do-

main elements on auxiliary paths. The onept names H

R

are used to \mark"

objets on auxiliary paths for the role R: when following an L

R

-path, all en-

ountered objets (apart from the root representing a \real" domain element)

will be instanes of H

R

. The onept names B

R;i

are used to ount the length

of auxiliary L

R

-paths as desribed above. The onept names B

D;i

are also em-

ployed for ounting: they are used to ount the \ourrene" of R-neighbours

in D along L

R

-paths and will thus help to replae ALCQI-onepts of the

form (./ n R D). Note that the number of newly introdued onept and

role names is polynomial in the size of C and T . We will use B

D

to refer to

the number enoded by the onept names B

D;0

; : : : ; B

D;dlog(num

D

)e

and B

R

to

refer to the number enoded by the onept names B

R;0

; : : : ; B

R;dlog(depth

R

)e

:

Moreover, we will use the following abbreviations:

3

This ounter is a di�erent one than the ones mentioned above
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� (B

R

= i) to denote the ALCFI-onept expressing that B

R

equals i (and

similar for B

D

= i and the omparisons \<" and \>");

� inr(B

R

; S) to denote the ALCFI-onept expressing that, for all S-sues-

sors, the number B

R

is inremented by 1 modulo depth

R

(and similar for

inr(B

D

; S)). More preisely, the onept inr(B

R

; S) is de�ned as follows

(with n abbreviating dlog(depth

R

)e):

(B

R;0

! 8S::B

R;0

) u (:B

R;0

! 8S:B

R;0

) u

u

k=1::n

�

u

j=0::k�1

B

R;j

�

!

�

(B

R;k

! 8S::B

R;k

) u (:B

R;k

! 8S:B

R;k

)

�

u

u

k=1::n

�

t

j=0::k�1

:B

R;j

�

!

�

(B

R;k

! 8S:B

R;k

) u (:B

R;k

! 8S::B

R;k

)

�

:

� eq(B

D

; S) to denote the ALCFI-onept expressing that, for all S-sues-

sors, the number B

R

is not hanged. Formally, eq(B

R

; S) is de�ned as follows

(with n abbreviating dlog(depth

R

)e):

u

i=1::n

((B

D;i

! 8L

R

:B

D;i

) u (:B

D;i

! 8L

R

::B

D;i

))

�

We indutively de�ne a translation (C) of the onept C into a Boolean

formula (whih is also an ALCFI-onept):

(A) := A; for A 2 nam(C; T ) (:D) := :(D)

(D u E) := (D) u (E) (D t E) := (D) t (E)

(> n R D) := X

(>n R D)

(6 n R D) := X

(6n R D)

Now set �(C) := (C) u Real and, for T = f>

:

= C

T

g,

�(T ) := f>

:

= Real! (C

T

)g [ Aux(C; T );

where the TBox Aux(C; T ) is de�ned in Figure 6 in whih we use D v E as

abbreviation for >

:

= D ! E, and in whih all t and u that have only a

onept as index range over all onepts in l(C; T ) of the spei�ed form.

The �rst three onept equations ensure the behaviour skethed above of Real,

H

R

, and the ounting onepts B

R

and B

D

. The last but one onept equation

ensures that the ounting onepts B

D

are updated orretly along an L

R

path.

To guarantee that a \real" element d satis�es \number restritions" X

(./ n R D)

,

the fourth onept equation ensures that we see enough R-neighbours in D

for atleast restritions (> n R D) along an L

R

path starting at d, whereas the

last onept equation guarantees that we do not see too many suh neighbours

along an L

R

path for atmost restritions (6 n R D). The following Lemma

states that � is a redution from �nite ALCQI-onept satis�ability to �nite

ALCFI-onept satis�ability.
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>

:

= u

R2rol(C;T )

�

8R:(Real tH

Inv(R)

) u

8L

R

:H

R

u

(6 1 L

R

>) u

u

(./ n S D)

�

X

(./ n S D)

$ 8L

R

:X

(./ n S D)

�

u

u

A2nam(C;T )

(A$ 8L

R

:A)

�

u

u

D

:(D)! ( _:(D))

Realv u

R2rol(C;T )

�

8L

R

:(B

R

= 0) u

(6 0 L

�
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Fig. 7. Two models for �(C) and �(T ).

Lemma 13 A onept C is �nitely satis�able w.r.t. a TBox T i� �(C) is

�nitely satis�able w.r.t. �(T ).

Intuitively, the proof of the above lemma proeeds as follows: for the \only

if" diretion, we simply take a �nite model of C and T , de�ne all elements

in the model as instanes of the onept Real, then form the auxiliary paths

adding new elements to the model, de�ne the interpretations of the auxiliary

onepts and roles, and manipulate the interpretation of the original roles as

desribed above to obtain a �nite model of �(C) and �(T ).

The \if" diretion needs more work. We �rst note that a straightforward

onstrution of a model of C and T from a model of �(C) and �(T ) by

moving all the origins of role relationships from the auxiliary paths to the

instane e of Real where the auxiliary path starts does not work. Let us all

this naive approah \spooling". To see that spooling fails, onsider the two

models of �(C) and �(T ) given in Figure 7, where

T = f> = (6 2 R C) u (6 2 R

�

C)g:

The thik points represent real elements, the dotted edges denote auxiliary

paths, and the solid edges denote real role relationships. Now, if we apply

spooling to the model depited at the left of Fig. 7, we do not obtain a model

of C and T sine eah node has exatly one inoming and one outgoing R

edge. So, to prove this part of Lemma 13, we �rst show that, if �(C) is �nitely

satis�able w.r.t. �(T ), then there is a singular �nite model of �(C) and �(T ):

intuitively, in a singular model, an auxiliary path for a role R and an auxiliary

path for Inv(R) are onneted via at most one R-edge. In Figure 7, the left

model is not singular, whereas the right one is. Then we show that, if we apply

spooling to a singular model of �(C) and �(T ), we indeed obtain a model of

C and T .

The omplete proof of Lemma 13 an be found in Appendix B. Interestingly, to

show the existene of a singular model, we use the same opying onstrution

that we used in the proof of Theorem 7, and thus this enoding trik annot

be easily extended to work for logis that are not losed under taking disjoint

opies of models suh as ALCQI with nominals or C2.
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Lemma 13 together with the fat that �(C) and �(T ) are omputable in

polynomial time proves that �nite satis�ability of ALCQI onepts w.r.t.

TBoxes is polynomially reduible to �nite satis�ability of ALCFI onepts

w.r.t. TBoxes. By Theorem 12 we obtain the following theorem:

Theorem 14 Finite satis�ability of ALCQI-onepts w.r.t. TBoxes is Exp-

Time-omplete if numbers are oded in binary.

5 ABox Consisteny

In this setion, we extend the omplexity bounds obtained in Setions 3 and 4

to a more general reasoning task: �nite ALCQI-ABox onsisteny. As noted

in the introdution, ABoxes an be understood as desribing a\snapshot" of

the world.

De�nition 15 (ABox) Let O be a ountably in�nite set of objet names.

An ABox assertion is an expression of the form a : C or (a; b) : R, where a

and b are objet names, C is an ALCQI-onept, and R a role. An ABox is

a �nite set of ABox assertions.

Interpretations I are extended to ABoxes as follows: additionally, the inter-

pretation funtion �

I

maps eah objet name to an element of �

I

suh that

a 6= b implies a

I

6= b

I

for all a; b 2 O (the so-alled unique name assumption).

An interpretation I satis�es an assertion a : C if a

I

2 C

I

and an assertion

(a; b) : R if (a

I

; b

I

) 2 R

I

. It is a model for an ABox A if it satis�es all as-

sertions in A. An ABox is alled �nitely onsistent w.r.t a TBox T if it has

a �nite model that is also a model of T .

In the following, we will polynomially redue �nite ALCQI-ABox onsisteny

to �nite ALCQI-onept satis�ability. Thus, we prove that ALCQI-ABox

onsisteny is ExpTime-omplete independently of the way in whih numbers

are oded. We start with �xing some notation.

Let A be an ABox and T a TBox. Analogously to what was done in previous

setions, we use rnam(A; T ) to denote the set of role names appearing in A

and T , rol(A; T ) to denote the set of roles and their inverses appearing in A

and T , and obj(A) to denote the set of objet names appearing in A. For eah

objet name a 2 obj(A) and role R 2 rol(A; T ), N

A

(a; R) denotes the set of

R-neighbours of a in A, i.e.

N

A

(a; R) = fb 2 obj(A)j (a; b) : R 2 A or (b; a) : Inv(R) 2 Ag
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We use l(A; T ) to denote the smallest set ontaining all sub-onepts of on-

epts appearing in A and T that is losed under _:. It an easily be shown

that the ardinality of l(A; T ) is linear in the sizes of A and T . The notion

of types an straightforwardly be extended to ABoxes.

De�nition 16 (Type) A type T for an ABox A and a TBox T is de�ned

as in De�nition 3, where l(C

0

; T ) is replaed with l(A; T ).

The size of an ABox assertion a : C is the length of the onept C; the size

of an ABox assertion (a; b) : R is 1; �nally, the size of an ABox A is the sum

of the size of all assertions in A. The number of types for an ABox A and a

TBox T is thus learly exponential in the size of A and T .

The entral notion in the redution of �nite ALCQI-ABox onsisteny to

�nite ALCQI-onept satis�ability is that of a redution andidate:

De�nition 17 (Redution Candidate) Let A be an ABox and T a TBox.

A redution andidate for A and T is a funtion t that maps eah objet

name a appearing in A to a type t(a) for A and T suh that a : C 2 A implies

C 2 t(a).

Let t be a redution andidate for A and T . For eah objet name a 2 obj(A),

role R 2 rol(A; T ), and type T 2 ran(t) we use #

A

t

(a; R; T ) to denote the

number of objet names b suh that b 2 N

A

(a; R) and t(b) = T .

Now, for eah objet name a 2 obj(A), we de�ne a redution onept C

A

t

(a)

as follows:

C

A

t

(a) := u

C2t(a)

C u u

T2ran(t)

#

A

t

(a;R;T )>0

(> #

A

t

(a; R; T ) R ( u

C2T

C)):

The redution andidate t is alled realisable i�, for every objet name a 2

obj(A), the redution onept C

A

t

(a) is �nitely satis�able w.r.t. T .

The intuition behind this de�nition is as follows: for realisable redution andi-

dates, we an \join" models of the individual redution onepts to a model of

the ABox. Vie versa, eah model of the ABox is also a model of all redution

onepts of a realisable redution andidate.

Note that the de�nition of redution onepts exploits the unique name as-

sumption: If we �nd n di�erent R-neighbours of an objet name a in an ABox

A that are all assigned the same type T by the redution andidate, then

the redution onept C

A

t

(a) for a requires (via the atleast restrition) that,

for eah domain element satisfying it, there are at least n di�erent domain

elements of type T that are reahable via the role R. If we drop the unique
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name assumption, this requirement is too strong sine di�erent R-neighbours

of a in A an be interpreted as the same domain element.

The following lemma �xes the relationship between ABoxes and redution

andidates. A proof an be found in Appendix C.

Lemma 18 Let A be an ABox and T a TBox. A is �nitely onsistent w.r.t.

T i� there exists a realisable redution andidate for A and T .

It is now easy to establish a tight omplexity bound for �nite ALCQI-ABox

onsisteny.

Theorem 19 Finite ALCQI-ABox onsisteny w.r.t. TBoxes is ExpTime-

omplete if numbers are oded in binary.

Proof. Let A be an ABox and T a TBox. Sine the number of types for A

and T is exponential in the size of A and T and the number of objet names

used in A is linear in the size of A, the number of redution andidates for A

and T is exponential in the size of A and T . Thus, to deide �nite onsisteny

of A w.r.t. T , we may simply enumerate all redution andidates for A and T

and hek them for realisability: by Lemma 18, A is �nitely onsistent w.r.t.

T if we �nd a realisable redution andidate. Sine the size of eah redution

onept is polynomial in the size of A and T , by Theorem 14, the resulting

algorithm an be exeuted in deterministi time exponential in A and T .

2

Note that we make the unique name assumption only to allow for simpler

proofs. Indeed, it is not ruial for obtaining an ExpTime upper bound: if we

want to deide �nite onsisteny of an ABox A w.r.t. a TBox T without the

unique name assumption, we may use the following approah: enumerate all

possible partitionings of the objet names used in A. For eah partitioning,

hoose a representative for eah partition and then replae eah objet name

with the representative of its partition. Obviously, the ABox A is �nitely on-

sistent w.r.t. T without the unique name assumption if and only if one of the

resulting ABoxes is �nitely onsistent w.r.t. T with the unique name assump-

tion. Sine the number of partitionings is exponential in the number of ABox

objets, this yields an ExpTime upper bound for �nite ABox onsisteny

without the unique name assumption.
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6 Related Work

The results presented here are losely related to investigations that have been

performed in two di�erent areas: on the one hand, the omplexity of �nite

model reasoning has been investigated for a variety of oneptual database

models that an express in�nity. For example, in

[

24

℄

, it is shown that �nite

satis�ability in SERM shemata an be deided in polynomial time, where

a SERM shema roughly orresponds to an entity-relationship (ER) shema

with ardinality onstraints, but without IS-A links between entities or rela-

tionships. In

[

25

℄

, an ExpTime upper bound is proved for �nite satis�ability

of CR models, where CR is the extension of SERM with IS-A links between

entities and relationships. In

[

26

℄

, this ExpTime upper bound is extended

to the �nite satis�ability of CAR models, where CAR provides, in addition,

full Boolean operators on lasses and relations of arity larger than 2. A last

piee of work to be mentioned is

[

27

℄

, where the omplexity of a variety of

reasoning problems on (several ombinations of) integrity onstraints on re-

lational databases are investigated, both in unrestrited and in �nite models.

For the integrity onstraints onsidered (unary inlusion dependenies and

funtional dependenies), it turns out that validity of impliations between

(various ombinations of) these onstraints often depends on whether we on-

sider unrestrited or �nite models, but their omplexity is mostly the same.

On the other hand, the omplexity of �nite model reasoning has been in-

vestigated for other �rst order and modal logis. Most prominently, the two

variable fragment of �rst order logi with ounting quanti�ers (C2) laks the

�nite model property, but both reasoning in the unrestrited ase and in �-

nite models are deidable

[

15; 28

℄

and even of the same omplexity, namely

NExptime-omplete; see

[

28

℄

for the unrestrited ase,

[

19

℄

for reasoning in

�nite models,

[

18

℄

for both ases, and

[

29

℄

for numbers inside ounting quan-

ti�ers being oded in binary. As mentioned in the introdution, ALCQI an

be polynomially translated into C2, whih yields a NExptime upper bound

for ALCQI. As we have shown in this paper, neither this bound nor the one

that was established in the �rst deidability result for ALCQI

[

17

℄

are tight.

Another example to be mentioned here is the full �-alulus, i.e., the extension

of ALC with �xpoints and inverse roles. Even without any nested �xpoints,

this logi laks the �nite model property beause, roughly spoken, it allows to

express that (i) there exists an in�nite R-path, and (ii) R

�

is well-founded.

These two onstraints together are satis�able only in an in�nite, ayli R-

path, and thus only in in�nite models. For the ��-fragment of this logi, �nite

satis�ability has reently been shown to be ExpTime -omplete

[

30

℄

, meeting

the omplexity bounds for the unrestrited ase

[

31

℄

.

The ommon pattern that seems to reur in various ases is that unrestrited

and �nite model reasoning are often both deidable, and quite often of the

31



same omplexity, even though they might ask for di�erent reasoning teh-

niques. An exeption to the latter point is the Stellar fragment, a lausal

formalism losely related to the two-variable fragment of �rst order logi with

ounting quanti�ers: in

[

18

℄

, systems of linear equations are used both for

reasoning in unrestrited and �nite models.

Finally, we would like to point out that, similar to the ase of unrestrited

model reasoning, the omplexity of �nite model reasoning is, in many natural

ases, insensitive to the oding of numbers in number restritions. For exam-

ple, C2 is NExptime-omplete logi that is insensitive in this sense,both for

unrestrited and �nite model reasoning

[

29

℄

. In this paper, we have given an

example for an ExpTime-omplete logi for whih �nite model reasoning is

insensitive to the oding of numbers. The orresponding proof for the unre-

strited ase an be found in

[

11

℄

. Finally, examples of Pspae-omplete logis

for whih the (only interesting) unrestrited ase is insensitive to the oding

of numbers an be found in

[

13

℄

.

7 Outlook

In this paper, we have determined �nite model reasoning in the desription

logi ALCQI to be ExpTime-omplete. This shows that reasoning w.r.t. �-

nite models is not harder than reasoning w.r.t. unrestrited models, whih

is also known to be ExpTime-omplete

[

11

℄

. We hope that, ultimately, this

researh will lead to the development of �nite model reasoning systems that

behave equally well as existing DL reasoners performing reasoning w.r.t. un-

restrited models suh as FaCT and RACER

[

8; 9

℄

. Note, however, that the

urrent algorithm is best-ase ExpTime sine it onstruts an exponentially

large system of inequalities. It an thus not be expeted to have an aeptable

runtime behaviour if implemented in a naive way. Nevertheless, we believe

that the use of equation systems and linear programming is indispensable for

�nite model reasoning in ALCQI. Thus, e�orts to obtain eÆient reasoners

should perhaps onentrate on methods to avoid best-ase exponentiality suh

as on-the-y onstrution of equation systems. Moreover, the redutions pre-

sented in Setion 4 and 5 an also not be expeted to exhibit an aeptable

run-time behaviour and it would thus be interesting to try to replae them by

more \diret" methods.

Another option for future work is the following: while �nite ALCQI-onept

satis�ability w.r.t. TBoxes is suÆient for reasoning about oneptual data-

base models as desribed in the introdution, �nite ALCQI-ABox onsisteny

is not yet suÆient for deiding the ontainment of onjuntive queries w.r.t.

a given oneptual model|an intermediate redution step is required. For un-

restrited models, this problem was proven to be in 2-ExpTime

[

21

℄

, and it
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would be interesting to �nd out whether this blow-up is avoidable, both for

the unrestrited and the �nite model ase.

Referenes

[

1

℄

C. Lutz, U. Sattler, L. Tendera, The omplexity of �nite model reasoning

in desription logis, in: Proeedings of the 19th Conferene on Automated

Dedution (CADE-19), Vol. 2741 of Leture Notes in Arti�ial Intelligene,

Springer-Verlag, 2003.

[

2

℄

M. Shmidt-Shau�, G. Smolka, Attributive onept desriptions with

omplements, Arti�ial Intelligene 48 (1) (1991) 1{26.

[

3

℄

K. Shild, A orrespondene theory for terminologial logis: Preliminary

report, in: Proeedings of the Twelfth International Joint Conferene on

Arti�ial Intelligene (IJCAI-91), Sydney, 1991, pp. 466{471.

[

4

℄

F. Baader, D. Calvanese, D. MGuinness, D. Nardi, P. F. Patel-Shneider

(Eds.), The Desription Logi Handbook: Theory, Implementation, and

Appliations, Cambridge University Press, 2003.

[

5

℄

D. Calvanese, M. Lenzerini, D. Nardi, Desription logis for oneptual

data modeling, in: J. Chomiki, G. Saake (Eds.), Logis for Databases and

Information Systems, Kluwer Aademi Publisher, 1998, pp. 229{263.

[

6

℄

I. Horroks, P. F. Patel-Shneider, F. van Harmelen, Reviewing the design of

DAML+OIL: An ontology language for the semanti web, in: Proeedings of

the 20th National Conferene on Arti�ial Intelligene (AAAI-02), 2002.

URL download/2002/AAAI02IHorroks.pdf

[

7

℄

I. Horroks, P. F. Patel-Shneider, F. van Harmelen, From SHIQ and RDF to

OWL: The making of a web ontology language, Journal of Web Semantis 1 (1).

[

8

℄

I. Horroks, Using an Expressive Desription Logi: FaCT or Fition?,

in: Proeedings of the Sixth International Conferene on the Priniples of

Knowledge Representation and Reasoning (KR-98), Morgan Kaufmann, Los

Altos, 1998.

[

9

℄

V. Haarslev, R. M�oller, RACER system desription, in: Proeedings of the

International Joint Conferene on Automated Reasoning (IJCAR-01), Vol. 2083

of Leture Notes in Arti�ial Intelligene, Springer-Verlag, 2001.

[

10

℄

E. Franoni, G. Ng, The i.om tool for intelligent oneptual modelling, in:

Working Notes of the ECAI2000 Workshop on Knowledge Representation Meets

Databases (KRDB2000), CEUR (http://eur-ws.org/), 2000.

[

11

℄

G. De Giaomo, M. Lenzerini, Tbox and Abox reasoning in expressive

desription logis, in: Proeedings of the Fifth International Conferene on

the Priniples of Knowledge Representation and Reasoning (KR-96), Morgan

Kaufmann, Los Altos, 1996, pp. 316{327.

33



[

12

℄

B. Thalheim, Fundamentals of ardinality onstraints, in: Proeedings of the

Eleventh International Conferene on the Entity-Relationship Approah (ER-

92), no. 645 in Leture Notes in Computer Siene, Springer-Verlag, 1992, pp.

7{23.

[

13

℄

S. Tobies, Complexity results and pratial algorithms for logis in knowledge

representation, Ph.D. thesis, RWTH Aahen, eletronially available at

http://www.bth.rwth-aahen.de/ediss/ediss.html (2001).

[

14

℄

J. F. A. K. van Benthem, Modal Logi and Classial Logi, Bibliopolis, Naples,

Italy, 1983.

[

15

℄

E. Gr�adel, M. Otto, E. Rosen, Two-variable logi with ounting is deidable,

in: Proeedings of the Twelfth Annual IEEE Symposium on Logi in

Computer Siene (LICS-97), 1997, available via http://speedy.informatik.

rwth-aahen.de/WWW/papers.html.

[

16

℄

L. Paholski, W. Szwast, L. Tendera, Complexity of two-variable logi with

ounting, in: Proeedings of the Twelfth Annual IEEE Symposium on Logi in

Computer Siene (LICS-97), 1997.

[

17

℄

D. Calvanese, Finite model reasoning in desription logis, in: Proeedings of the

Fifth International Conferene on the Priniples of Knowledge Representation

and Reasoning (KR-96), Morgan Kaufmann, Los Altos, 1996.

[

18

℄

I. Pratt-Hartmann, Counting quanti�ers and the stellar fragment, available at

The Mathematis Preprint Server, www.mathpreprints.om (2003).

[

19

℄

J.  Lopusza�nski, L. Paholski, Finite satis�bility of two-variables logi with

ounting, submitted (2003).

[

20

℄

M. J. Fisher, R. E. Ladner, Propositional dynami logi of regular programs,

Journal of Computer and System Siene 18 (1979) 194{211.

[

21

℄

D. Calvanese, G. De Giaomo, M. Lenzerini, On the deidability of query

ontainment under onstraints, in: Proeedings of the Seventeenth ACM

SIGACT SIGMOD Symposium on Priniples of Database Systems (PODS-98),

1998, pp. 149{158.

[

22

℄

I. Horroks, U. Sattler, S. Tessaris, S. Tobies, How to deide query ontainment

under onstraints using a desription logi, in: A. Voronkov (Ed.), Proeedings

of the Seventh International Conferene on Logi for Programming and

Automated Reasoning (LPAR 2000), no. 1955 in Leture Notes in Arti�ial

Intelligene, Springer-Verlag, 2000.

[

23

℄

D. Calvanese, Unrestrited and �nite model reasoning in lass-based

representation formalisms, Ph.D. thesis, Dipartimento di Informatia e

Sistemistia, Universit�a di Roma \La Sapienza" (1996).

[

24

℄

M. Lenzerini, P. Nobili, On the satis�ability of dependeny onstraints in entity-

relationship shemata, Information Systems 15 (4) (1990) 453{461.

34



[

25

℄

D. Calvanese, M. Lenzerini, On the interation between isa and ardinality

onstraints, IEEE Computer Soiety Press, 1994, pp. 204{213.

[

26

℄

D. Calvanese, M. Lenzerini, Making objet-oriented shemas more expressive,

in: Proeedings of the Thirteenth ACM SIGACT SIGMOD Symposium on

Priniples of Database Systems (PODS-94), ACM Press and Addison Wesley,

1994, pp. 243{254.

[

27

℄

S. Cosmadakis, P. Kanellakis, M. Vardi, Polynomial-time impliation problems

for unary inlusion dependenies, Journal of the ACM 37 (1) (1990) 15{46.

[

28

℄

L. Paholski, W. Szwast, L. Tendera, Complexity results for �rst-order two-

variable logi with ounting, SIAM Journal of Computing 29 (4) (2000) 1083{

1117.

[

29

℄

I. Pratt-Hartmann, Complexity of the two-variable fragment with (binary

oded) ounting quanti�ers, submitted.

[

30

℄

M. Bojanzyk, Two-way alternating automata and �nite models, in:

Proeedings of the 29th International Colloquium on Automata, Languages,

and Programming, Vol. 2380 of Leture Notes in Computer Siene, Springer-

Verlag, 2002.

[

31

℄

M. Y. Vardi, Reasoning about the past with two-way automata, in:

Proeedings of the 25th International Colloquium on Automata, Languages,

and Programming, Vol. 1443 of Leture Notes in Computer Siene, Springer-

Verlag, 1998, pp. 628{641.

[

32

℄

S. Tobies, The omplexity of reasoning with ardinality restritions and

nominals in expressive desription logis, Journal of Arti�ial Intelligene

Researh 12 (2000) 199{217.

[

33

℄

C. H. Papadimitriou, On the omplexity of integer programming, Journal of

the ACM 28 (2) (1981) 765{769.

[

34

℄

A. Shrijver, Theory of linear and integer programming, Wiley, 1986.

35



A Proofs for Setion 3

We �rst prove Theorem 7 and then Lemma 10.

Theorem 7 A onept C

0

and a TBox T have a �nite pre-model i� C

0

and

T have a �nite (standard) model.

Proof. Sine the \if" diretion is trivial, we onentrate on \only if". Thus,

let I be a �nite pre-model for C

0

and T . We use n to denote the maximum

multipliity of edges in I, i.e.

n := maxfR

I

(d; e) j d; e 2 �

I

and R used in C

0

or T g:

Sine I is �nite, n is learly well-de�ned. Next, de�ne a (standard) interpre-

tation J as follows:

� �

J

:= �

I

� f0; : : : ; n� 1g;

� A

J

:= A

I

� f0; : : : ; n� 1g for onept names A;

� R

J

:= f((d; i); (e; j)) j 9k < R

I

(d; e) : j = i + k mod ng for role names R.

The following laim learly implies that J is a model of C

0

and T as desired:

Claim: for all C 2 l(C

0

; T ) and d 2 �

I

, d 2 C

I

implies (d; i) 2 C

J

for all

i � n.

The proof is by indution on the norm jj � jj of onepts C, whih is de�ned

indutively as follows:

jjAjj := jj:Ajj := 0 for A onept name

jjC

1

u C

2

jj := jjC

1

t C

2

jj := 1 + jjC

1

jj+ jjC

2

jj

jj(> n R D)jj := jj(6 n R D)jj := 1 + jjDjj

The indution start and the Boolean ases are trivial by de�nition of J and

using the indution hypothesis. Hene we only treat the number restritions

expliitly:

� C = (6 n R D). Let d 2 C

I

and �x an i 2 f0; : : : ; n� 1g. We have to show

that (d; i) 2 C

J

. From the semantis, we obtain

X

e2D

I

R

I

(d; e) � n (�)

By onstrution, for eah e 2 �

I

we have that

℄fj 2 f0; : : : ; n� 1g j ((d; i); (e; j) 2 R

J

g = R

I

(d; e): (��)

Sine we are doing indution on the norm, the indution hypothesis yields
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that e 2 ( _:D)

I

implies (e; j) 2 ( _:D)

J

for all e 2 �

I

and j � n. Together

with (�) and (��), this learly yields that (d; i) 2 C

J

as desired.

� C = (> n R D). Similar to the previous ase.

2

Next, we prove the \if" diretion of Lemma 10.

Lemma 20 If C

0

is �nitely satis�able w.r.t. T , then the system of inequalities

E

C

0

;T

has an admissible solution.

Proof. Let I be a �nite model of C

0

w.r.t. T . From I, we an onstrut an

admissible solution of E

C

0

;T

. For e 2 �

I

, we use t(e) to refer to the unique

type of whih e is an instane, and m(e) to refer to the unique mosai of

whih e is an instane, as has been de�ned in De�nitions 3 and 5, respetively.

Moreover, we use M

I

to refer to fe 2 �

I

j m(e) = Mg and T

I

to refer to

fe 2 �

I

j t(e) = Tg. Next, we set x̂

M

:= #M

I

and prove the following laim:

Claim: fx̂

M

jM a mosaig is an admissible solution of E

C

0

;T

.

Equation (E1) is satis�ed sine I is a model of C

0

: there is some e

0

2 C

I

0

implying, by de�nition of m(�), that we have x̂

m(e

0

)

� 1 and C

0

2 T

m(e

0

)

.

For (E2), let T; T

0

be types, R a role with lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ),

and �x some e

M

2M

I

for eah M

I

6= ; as follows:

� if T

M

= T , hoose an e

M

2M

I

with a minimal number of R-neighbours in

T

0

I

, and

� if T

M

6= T , hoose an arbitrary e

M

2M

I

.

We laim that the following (in)equalities hold, whih learly implies (E2).

X

fM jT

M

=Tg

L

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

L

M

(R; T

0

) � x̂

M

�

X

fM jT

M

=T^M

I

6=;g

#fe

0

2 T

0

I

j he

M

; e

0

i 2 R

I

g � x̂

M

�

X

fM jT

M

=T

0

^M

I

6=;g

#fe 2 T

I

j he

M

; ei 2 Inv(R)

I

g � x̂

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

The �rst equality is obvious. The �rst inequality is due to the de�nition of m,

whih implies that, for eah instane e of M , L

M

(R; T

0

) is a lower bound for

the number of e's R-neighbours in T

0

I

. The seond inequality holds mainly by
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a simple graph-theoreti reason: the number � of R edges from T

I

into T

0

I

oinides the number of Inv(R) edges from T

0

I

into T

I

. Next, we have hosen

e

M

with T

M

= T to have a minimal number of R-neighbours in T

0

I

, and thus

the left-hand term is a lower bound for �. Finally, sine eah e 2 M

I

with

T

M

= T

0

has the same number E

M

(Inv(R); T ) of inoming R-edges from T by

de�nition of M

I

, the right-hand term oinides with �, and thus the seond

inequality holds. Finally, the last equality follows by de�nition of the sets M

I

.

Equation (E3) is satis�ed with a similar yet simpler argument: let T; T

0

be

types, R a role with lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ), and �x some e

M

2 M

I

for eah M

I

6= ;. Then we have

X

fM jT

M

=Tg

E

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

#fe

0

2 T

0

I

j he

M

; e

0

i 2 R

I

g � x̂

M

=

X

fM jT

M

=T

0

^M

I

6=;g

#fe 2 T

I

j he

M

; ei 2 Inv(R)

I

g � x̂

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

using similar arguments as for the (E2) ase.

Now for the admissibility of our solution. Obviously, it is a non-negative integer

solution. For (A1), onsider types T; T

0

and a role R with lim

R

(T; T

0

), not

lim

Inv(R)

(T

0

; T ), and

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

> 0:

Hene there is, by de�nition of M

I

, some he

0

; ei 2 Inv(R)

I

with e

0

2 T

0

I

and

e 2 T

I

. Hene we have

X

fM jT

M

=Tg

x̂

M

> 0;

and thus (A1) is satis�ed.

Finally, for (A2), let M be a mosai with x̂

M

> 0, (>nR:C) 2 T

M

, and

m =

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n:

Hene there is some e

M

2 T

I

M

and e

1

; : : : ; e

n

with e

i

6= e

j

for all i 6= j and, for

all 1 � i � n, he

M

; e

i

i 2 R

I

and e

i

2 C

I

. By de�nition of m(e), m < n implies

that there is some ` with 1 � ` � n suh that not lim

Inv(R)

(t(e

M

); t(e

`

)) and
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not lim

R

(t(e

`

); t(e

M

)). Sine C 2 t(e

`

), the laim yields

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x̂

M

0

� 1;

and (A2) is satis�ed. 2

We now prove Proposition 11. In the proof, we use the following lemma that

was established by Calvanese in

[

23

℄

and builds on results of Papadimitriou

[

33

℄

.

Lemma 21

[

23

℄

Let (V; E) be a system of m = #E linear inequalities in

n = #V variables, in whih all oeÆients and onstants are from the interval

[�a; a℄ of integers. Then, if (V; E) has a solution in N

n

, it also has one in

f0; 1; : : : ; H(V; E)g

n

, where H(V; E) = (n +m)(ma)

2m+1

:

The proof of Proposition 11 is losely related to the proof of Lemma 6.1.5

in

[

23

℄

.

Proposition 11 Let (V; E) be a simple system of inequalities in whih all

oeÆients and onstants are from the interval [�a; a℄ of integers, and let I

be a set of side onditions for (V; E). Then the existene of an integer, non-

negative, and I-admissible solution for (V; E) an be deided in (deterministi)

time polynomial in #V +#E +#I + a.

Proof. For a positive integer k, we use E

I

(k) to denote the set of inequalities

fx � k � (x

1

+ � � �+ x

j

) j x > 0 =) x

1

+ � � �+ x

j

> 0 2 Ig:

It is readily heked that every non-negative solution of (V; E[E

I

(k)) is a (non-

negative and) I-admissible solution of (V; E). We prove the following laim:

Claim: There is an integer k

E

exponential in #V +#E +#I suh that (V; E)

admits a non-negative, integer, and I-admissible solution i� (V; E [ E

I

(k

E

))

admits a non-negative (rational) solution.

Proof: Let n = #V , m = #E , and r = #I. Then we hoose

k

E

= a � (2n+m + r)(n+m+ r)

2(n+m+r)+1

:

It remains to show that k

E

is as required:

For the \if" diretion, let S be a non-negative solution of (V; E [ E

I

(k

E

)). As

noted above, S is also a (non-negative and) I-admissible solution of (V; E).

Sine all inequalities in (V; E) are positive, we an onvert S into an integer

solution by multiplying S with the smallest ommon multiplier of the denom-

inators in S.
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Now for the \only if" diretion: assume that there exists an integer, non-

negative, and I-admissible solution S of (V; E), and let S(x) denote the value

S assigns to x. Set

E

S

= fx

1

+ � � �+ x

j

> 0 j x > 0 =) x

1

+ � � �+ x

j

> 0 2 I and S(x) > 0g[

fx = 0 j S(x) = 0g:

Obviously, S is also an (integer and non-negative) solution of the system

(V; E [ E

S

). By Lemma 21, there exists a non-negative integer solution S

0

of

(V; E[E

S

) whih is bounded by h = H(V; E[E

S

). It is readily heked that the

solution S

0

is also an (integer and non-negative) solution of (V; E [ E

I

(n)) for

any n � h. It remains to note that, sine E

S

ontains at most one inequality

for eah variable in V and eah impliation in I, we have h � k

E

.

In view of the laim just established, it is now easy to show that the exis-

tene of a non-negative integer and I-admissible solution for a simple system

of inequalities (V; E) and a set of side onditions I an be deided in time

polynomial in #V + #E + #I + a: we may learly view (V; E [ E

I

(k

E

)) as a

linear programming problem. Sine k

E

is exponential in #V +#E +#I + a,

the binary representation of k

E

is polynomial in #V + #E + #I + a. Thus,

the existene of a rational (non-negative) solution for (V; E [ E

I

(k

E

)) an be

heked in (deterministi) time polynomial in #V +#E +#I + a

[

34

℄

. 2

B Proofs for Setion 4

In this setion, we prove Lemma 13. For the sake of readability, we split the

two diretions of this lemma into two separate lemmas. To address individual

onept equations of the TBox Aux(C; T ) displayed in Figure 6, throughout

this setion we will use Ei to refer to the i'th onept equation and Ei.j to

refer to its j'th line.

Lemma 22 If �(C) is �nitely satis�able w.r.t. �(T ), then C is �nitely satis-

�able w.r.t. T .

Proof. The proof strategy is to take a �nite model of �(C) and �(T ) and

transform it into a �nite model of C and T . For this purpose, instead of

taking an arbitrary model, we �rst selet a speial, so-alled singular one. We

�rst de�ne the notion of singularity. Let I be a �nite model of �(C) and �(T ).

For eah domain element d 2 Real

I

and eah R 2 rol(C; T ), we indutively

de�ne a sequene of domain elements h

d;R

0

; : : : ; h

d;R

`

d;R

as follows:

� set h

d;R

0

= d;
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� set h

d;R

i+1

to the L

R

-neighbour of h

d;R

i

(whih is unique due to E1.3) if it

exists. Otherwise, `

d;R

= i.

The onstruted sequene is �nite due to the use of the B

R

ounter in E2.1,

E3.3, and E3.6. Moreover, by E1.2 we have h

d;R

i

2 H

I

R

for 0 < i � `

d;R

, whih

we will often use (impliitly) throughout the remaining proof. The model I is

alled singular if, for all roles R 2 rol(C; T ) and nodes d; e 2 Real

I

, we have

#f(i; j) j i � `

d;R

; j � `

e;Inv(R)

; and (h

d;R

i

; h

e;Inv(R)

j

) 2 R

I

g � 1:

Intuitively, in a singular model, an L

R

-path and an L

Inv(R)

-path are onneted

via at most one R edge, and thus the operation of ontrating L

R

edges always

results in a simple graph, i.e. no two verties are onneted by more than one

edge.

Claim 1. If �(C) is �nitely satis�able w.r.t. �(T ), then there is a �nite,

singular model of �(C) and �(T ).

Proof: Let I be a �nite model of �(C) and �(T ). Fix an injetive mapping Æ

from �

I

to f0; : : : ; (#�

I

�1)g. Then we onstrut a new (�nite) interpretation

J by opying I suÆiently often and \bending R edges" from one opy of I

into others. More preisely, J is de�ned as follows:

�

J

:= fhd; ii j d 2 �

I

and i < #�

I

g;

A

J

:= fhd; ii 2 �

J

j d 2 A

I

g for all onept names A 2 nam(�(C); �(T ));

L

J

R

:= f(hd; ii; he; ii) 2 �

J

��

J

j (d; e) 2 L

I

R

g

for all role names L

R

with R 2 rol(C; T );

R

J

:= f(hd; ii; he; (Æ(d) + i mod #�

I

)i) j (d; e) 2 R

I

g

for all role names R appearing in C or T .

It is straightforward to hek that J is a singular model of �(C) and �(T ),

whih �nishes the proof of Claim 1.

Now let I be a singular, �nite model of �(C) and �(T ) and �x, for eah

d 2 Real

I

and R 2 rol(C; T ), a sequene of domain elements h

d;R

0

; : : : ; h

d;R

`

d;R

as

above. We use I to de�ne an interpretation J as follows:

�

J

:= Real

I

A

J

:= A

I

\ Real

I

R

J

:= f(d; e) 2 �

J

��

J

j 9i � `

d;R

; j � `

e;Inv(R)

: (h

d;R

i

; h

e;Inv(R)

j

) 2 R

I

g

It remains to establish the following laim:
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Claim 2. For all d 2 �

J

and D 2 l(C; T ), d 2 (D)

I

implies d 2 D

J

.

For assume that Claim 2 is true. Sine I is a model of �(C), by de�nition

of � there exists a d 2 ((C) u Real)

I

. Clearly we have d 2 �

J

and thus

Claim 2 yields d 2 C

J

. Hene, J is a model of C. By de�nition of �(T ) and

the semantis, we have Real

I

= ((C

T

) \ Real)

I

. Together with Claim 2 and

de�nition of J , we obtain �

J

= C

J

T

and thus J is a model of T .

We prove Claim 2 by indution on the norm jj � jj of onepts D whih is

de�ned as in the proof of Theorem 7.

Let d 2 �

J

\ (D)

I

for some D 2 l(C; T ). Then d 2 Real

I

. Sine C and T

are in NNF, D is also in NNF. We only treat the interesting ases:

� Let D = (> n R E) and d 2 (D)

I

= (X

(>n R E)

)

I

. By E1.4 and the hoie

of the elements h

d;R

0

; : : : ; h

d;R

`

d;R

, we have h

d;R

i

2 (X

(>n R E)

)

I

for i � `

d;R

.

Hene, by exploiting the ounter B

E

and its use in E2.3, E2.5, E4, and E5,

it is straightforward to show that there exists a subset I � f1; : : : ; `

d;R

g

of ardinality at least n suh that, for eah i 2 I, there exists an e

i

2 �

I

suh that (h

d;R

i

; e

i

) 2 R

I

and e

i

2 (E)

I

. By E1.1, we have e

i

2 Real

I

or

e

i

2 H

Inv(R)

for all i 2 I. Using the ounter B

Inv(R)

and E3.2 to E3.6, it is thus

readily heked that, for eah i 2 I, there exists an f

i

2 �

I

suh that f

i

2

Real

I

and e

i

an be reahed from f

i

by repeatedly travelling along Inv(R)-

edges. Thus, e

i

an be found among the elements h

f

i

;Inv(R)

0

; : : : ; h

f

i

;Inv(R)

`

f

i

;Inv(R)

.

Sine I is singular, it follows that we have f

i

6= f

j

for all i; j 2 I with i 6= j.

Moreover, by de�nition of J we have (d; f

i

) 2 R

J

for eah i 2 I:

� if R is a role name, then this is an immediate onsequene of the de�nition

of J ;

� if R = S

�

for some role name S, then (f

i

; d) 2 S

J

by de�nition of J . The

semantis yields (d; f

i

) 2 R

J

.

It thus remains to verify that f

i

2 E

J

for eah i 2 I. Clearly, (E) is a

Boolean formula over the set of onept names

nam(C; T ) [ fX

F

j F = (./ n R F

0

) 2 l(C; T )g:

Sine e

i

2 (E)

I

, E1.4 and E1.5 thus yield f

i

2 (E)

I

for eah i 2 I. Sine

f

i

2 Real

I

, it remains to apply the indution hypothesis.

� LetD = (6 n R E) and d 2 (D)

I

= (X

(6n R E)

)

I

. Assume that there exists

a subset W � �

J

of ardinality greater than n suh that, for eah e 2 W ,

we have (d; e) 2 R

J

and e 2 E

J

. By de�nition of J , this implies that, for

eah e 2 W , there are s

e

� `

d;R

and t

e

� `

e;R

suh that (h

d;R

s

e

; h

e;Inv(R)

t

e

) 2 R

I

:

� if R is a role name, then this is an immediate onsequene of the de�nition

of J ;

� if R = S

�

for some role name S, then (d; e) 2 R

I

implies (e; d) 2 S

I

.

By de�nition of J , this means that there are s

e

� `

d;R

and t

e

� `

e;R

suh that (h

e;S

t

e

; h

d;R

s

e

) 2 S

I

. By semantis and sine S = Inv(R), we obtain
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(h

d;R

s

e

; h

e;Inv(R)

t

e

) 2 R

I

.

We learly have W � Real

I

. We prove the following three Properties:

(1) e 6= e

0

implies h

d;R

s

e

6= h

d;R

s

e

0

for all e; e

0

2 W . By de�nition of the h

�;�

i

-

sequenes of domain elements and E2.2 and E3.2, e 6= e

0

implies h

e;Inv(R)

t

e

6=

h

e

0

;Inv(R)

t

e

0

for all e; e

0

2 W . Thus, E3.1 yields h

d;R

s

e

6= h

d;R

s

0

e

if e 6= e

0

.

(2) h

e;Inv(R)

t

e

2 (E)

I

for eah e 2 W . Suppose that e =2 (E)

I

. Then e 2

(:(E))

I

and, by E1.6, e 2 ( _:E)

I

. Sine e 2 Real

I

and we are perform-

ing indution on the norm of onepts rather than standard strutural

indution, the indution hypothesis yields e 2 ( _:E)

J

, a ontradition to

e 2 E

J

. Thus, e 2 (E)

I

. Sine (E) is a Boolean formula, it follows from

E1.4 and E1.5 that h

e;Inv(R)

t

e

2 (E)

I

.

(3) s

e

6= 0 for all e 2 W . For assume that s

e

= 0. Then h

d;R

s

e

= d. By E2.4

and sine d 2 (X

(6n R E)

)

I

and (d; h

e;Inv(R)

t

e

) 2 R

I

, this yields h

e;Inv(R)

t

e

2

(:((E)))

I

in ontradition to Property 2.

Properties 1 to 3 imply the existene of a subset I � f1; : : : ; `

d;R

g of ar-

dinality greater than n suh that, for eah i 2 I, there exists an e 2 �

I

with (h

d;R

i

; e) 2 R

I

and e 2 (E)

I

. Exploiting the onept X

(6n R E)

and

the ounter B

E

and their use in E1.4, E2.3, E5, and E6, it is readily heked

that this is a ontradition to I being a model of Aux(C; T ).

2

Lemma 23 If C is �nitely satis�able w.r.t. T , then �(C) is �nitely satis�able

w.r.t. �(T ).

Proof. Now for the \only if" diretion: let I be a �nite model of C and T .

For eah d 2 �

I

and eah R 2 rol(C; T ), �x a subset W

d;R

� �

I

of ardinality

at most depth

R

suh that the following onditions are satis�ed:

(1) (d; e) 2 R

I

for all e 2 W

d;R

;

(2) for all (> n R D) 2 l(C; T ) with d 2 (> n R D)

I

, we have

#fe 2 W

d;R

j e 2 D

I

g � n;

(3) for all (6 n R D) 2 l(C; T ) with d 2 (6 n R D)

I

, we have

fe 2 �

I

j (d; e) 2 R

I

and e 2 D

I

g � W

d;R

;

Using the semantis and the de�nition of depth

R

, it is easy to show that suh

subsets indeed exist. Next, �x a linear ordering on W

d;R

, i.e., an injetive

mapping �

d;R

: W

d;R

�! f0; : : : ;#W

d;R

�1g. We use these mappings to de�ne
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a �nite model J of �(C) w.r.t. �(T ) as follows:

�

J

= �

I

[ fx

d;R;e

j d 2 �

I

; R 2 rol(C; T ); and e 2 W

d;R

g;

A

J

= A

I

[ fx

d;R;e

j d 2 A

I

; R 2 rol(C; T ); and e 2 W

d;R

g

for all A 2 nam(C; T );

X

J

(./ n R D)

= (./ n R D)

I

[ fx

d;R;e

j d 2 (./ n R D)

I

and e 2 W

d;R

g

for all (./ n R D) 2 l(C; T );

Real

J

= �

I

;

H

J

R

= fx

d;R;e

j d 2 �

I

and e 2 W

d;R

g for all R 2 rol(C; T );

L

R

= f(d; x

d;R;e

) j d 2 �

I

; e 2 W

d;R

; and �

d;R

(e) = 0g [

f(x

d;R;e

; x

d;R;e

0

) j d 2 �

I

; e; e

0

2 W

d;R

; and �

d;R

(e

0

) = �

d;R

(e) + 1g

for all R 2 rol(C; T );

R

I

= f(x

d;R;e

; x

e;R

�

;d

) j d; e 2 �

I

with e 2 W

d;R

and d 2 W

e;R

�

g [

f(x

d;R;e

; e) j d; e 2 �

I

with e 2 W

d;R

and d =2 W

e;R

�

g [

f(d; x

e;R

�

;d

) j d; e 2 �

I

with d 2 W

e;R

�

and e =2 W

d;R

g

for all R 2 rnam(C; T ):

for eah R 2 rol(C; T ), the ounter B

R

is de�ned as follows: B

R

= 0 for all

instanes of Real

J

; for the instanes of H

J

R

, we de�ne B

R

as follows:

B

R

= i for those x

d;R;e

2 H

J

R

with �

d;R

(e) = i;

for eah onept D 2 l(C; T ) that appears inside a qualifying number

restrition (./ n R D) 2 l(C; T ), the ounter B

D

is de�ned as follows:

B

D

= 0 for all instanes of Real

J

; for instanes x

d;R;e

of H

J

R

, we set

B

D

= #fe

0

2 W

d;R

j �

d;R

(e

0

) < �

d;R

(e) and e

0

2 D

I

g;

Sine the translation �(C) of an ALCQI-onept C is a Boolean formula,

it is trivial to prove the following laim by strutural indution (using the

de�nition of J ):

Claim 3. For all d 2 �

I

and D 2 l(C; T ), d 2 D

I

implies d 2 (D)

J

.

Sine I is a model of C, Claim 3 learly implies that there is a d 2 �

I

suh

that d 2 (C)

J

. By de�nition of Real

J

, we thus have d 2 �(C)

J

and thus

J is a model of �(C). Moreover, also by Claim 3 J is a model of the TBox

f>

:

= Real! (C

T

)g. It is tedious but straightforward to verify that J is also

a model of the TBox Aux(C; T ). Hene J is a model of �(T ). 2
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C Proofs for Setion 5

The goal of this setion is to prove Lemma 18. Before we do this, we �rst

establish a tehnial lemma showing that �nitely satis�able redution onepts

have �nite models with ertain, desirable properties.

Throughout this setion, we will identify types T with the onjuntion u

C2T

C

and write, e.g., d 2 T

I

for d 2 ( u

C2T

C)

I

.

Lemma 24 Let A be an ABox, T a TBox, t a redution andidate for A

and T , and a an objet name used in A. If the redution onept C

A

t

(a) is

�nitely satis�able w.r.t. T , then there exists a �nite model J of C

A

t

(a) and T ,

and some d 2 (C

A

t

(a))

J

suh that, for all roles R, a 2 N

A

(a; R) implies

(d; d) 2 R

J

.

Proof. Let I be a �nite model of C

A

t

(a) and T and let d 2 (C

A

t

(a))

I

. By

de�nition of C

A

t

(a), we have d 2 t(a)

I

. We onstrut a new interpretation J

that satis�es the ondition given in the lemma. For eah role name R with

a 2 N

A

(a; R), �x

(1) a domain element e

R

2 �

I

with (d; e

R

) 2 R

I

and e

R

2 t(a)

I

;

(2) a domain element e

R

�

2 �

I

with (d; e

R

�

) 2 (R

�

)

I

and e

R

�

2 t(a)

I

.

Suh domain elements exist by onstrution of the redution onept C

A

t

(a),

and sine a 2 N

A

(a; R) implies a 2 N

A

(a; R

�

). We onstrut the new inter-

pretation J in two steps:

(1) De�ne a new interpretation I

0

as follows:

�

I

0

=�

I

� f0; 1g;

A

I

0

= f(e; i) j e 2 A

I

and i 2 f0; 1gg for all onept names A;

R

I

0

= f((e; i); (e

0

; j)) j (e; e

0

) 2 R

I

; i; j 2 f0; 1g; and i 6= jg

for all role names R:

Using strutural indution, it is readily heked that, for eah e 2 �

I

and C 2 l(A; T ),

e 2 C

I

implies (e; i) 2 C

I

0

for eah i 2 f0; 1g: (�)

Thus we have (d; 0) 2 (C

A

t

(a))

I

0

, where d is the initially hosen instane

of C

A

t

(a) (the same holds for (d; 1)). From now on, we fous on (d; 0) as

the \relevant" instane of C

A

t

(a). Clearly, (�) implies that I

0

is a model

of T .
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(2) The interpretation J is now de�ned as follows:

�

J

= �

I

0

;

A

J

= A

I

0

for all onept names A;

R

J

= R

I

0

for all role names R with a =2 N

A

(a; R);

R

J

= (R

I

0

n f((d; 0); (e

R

; 1)); ((e

R

�

; 1); (d; 0))g)

[ f((d; 0); (d; 0)); ((e

R

�

; 1); (e

R

; 1))g

for all role names R with a 2 N

A

(a; R).

Using strutural indution, we may hek that, for eah x 2 �

J

and eah

C 2 l(A; T ),

x 2 C

I

0

implies x 2 C

J

: (��)

Note that we an show (��) despite the di�erent interpretation of the role

names R with a 2 N

A

(a; R), whih, intuitively, is due to the following reasons:

(i) due to the hoie of d, e

R

, and e

R

�

and to Property (�), all of (d; 0), (e

R

; 1)

and (e

R

�

; 1) have type t(a) in I

0

. Thus, in onstruting J we only remove

and add R-neighbours and R

�

-neighbours that have type t(a); (ii) we do not

hange the number of R-neighbours or R

�

-neighbours of type t(a) for any

domain element: in partiular, by onstrution of I

0

the removed edges really

exist in I

0

, and the newly added edges are really new.

By (��), (d; 0) 2 (C

A

t

(a))

J

and J is a model of T . To prove the lemma,

it thus remains to show that, for eah role R with a 2 N

A

(a; R), we have

((d; 0); (d; 0)) 2 R

J

. This is true by de�nition of R

J

if R is a role name.

If R = S

�

for some role name S, then a 2 N

A

(a; R) implies that a 2

N

A

(a; S). Thus ((d; 0); (d; 0)) 2 S

J

by de�nition of J . By semantis, we ob-

tain ((d; 0); (d; 0)) 2 R

J

as required. 2

We are now ready to prove Lemma 18.

Lemma 18 Let A be an ABox and T a TBox. A is �nitely onsistent w.r.t.

T i� there exists a realisable redution andidate for A and T .

Proof. The \only if" diretion is simple: let I be a �nite model of A and T .

We onstrut a redution andidate t as follows:

for eah objet a in A, set t(a) = fD 2 l(A; T ) j a

I

2 D

I

g.

Exploiting the unique name assumption, it is then easily heked that, for

every objet a in A, we have a

I

2 (C

A

t

(a))

I

, i.e. I is a �nite model of C

A

t

(a)

and T . Thus, t is realisable.
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d

a

I

a

I

b

d

b

R R

R

�

R

a

(b)

�

R

�

b

(a)

Fig. C.1. Connetion of the models I

a

and I

b

.

For the \if" diretion, assume that there exists a realisable redution andidate

t for A and T . This implies that, for eah objet name a used in A, there is a

�nite model I

a

of C

A

t

(a) and T . For eah suh model I

a

, �x a domain element

d

a

2 �

I

a

suh that d

a

2 (C

A

t

(a))

I

a

. By Lemma 24, we may w.l.o.g. assume

that, for all objet names a used in A and all roles R, a 2 N

A

(a; R) implies

(d

a

; d

a

) 2 R

I

a

. Moreover, we assume w.l.o.g. that a 6= b implies �

I

a

\�

I

b

= ;.

In the following, we use the models I

a

to onstrut a (�nite) model I of A

and T . First �x, for eah objet name a used in A and eah role R 2 rol(A; T ),

an injetive funtion �

R

a

from N

A

(a; R) to �

I

a

suh that, for all b 2 N

A

(a; R),

we have the following:

(1) �

R

a

(b) 2 t(b)

I

;

(2) (d

a

; �

R

a

(b)) 2 R

I

a

;

(3) if b = a, then �

R

a

(b) = d

a

.

To show that suh funtions indeed exist, �x an objet name a and a role R. It

suÆes to onstrut, for eah type T 2 ran(t), an injetive funtion �

R;T

a

from

N

A

(a; R) \ fb j t(b) = Tg to �

I

a

satisfying Properties (1) to (3), and then

take the union of these individual funtions sine Property (1) ensures that

the resulting funtion is still injetive. Observe that, for eah T 2 ran(t), we

an indeed �nd an injetive funtion �

R;T

a

satisfying Properties (1) to (3) sine

(i) C

A

t

(a) ontains the onjunt (> #

A

t

(a; R; T ) R ( u

C2T

C)); where #

A

t

(a; R; T )

obviously is the ardinality of the set N

A

(a; R) \ fb j t(b) = Tg = dom(�

R;T

a

);

and (ii) if a 2 N

A

(a; R), then (d

a

; d

a

) 2 R

I

a

by hoie of I

a

.
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Then de�ne the interpretation I as follows:

�

I

:=

S

a2obj(A)

�

I

a

;

A

I

:=

S

a2obj(A)

A

I

a

for all onept names A;

R

I

:=

S

a2obj(A)

h�

R

I

a

n (

S

b2N

A

(a;R)

f(d

a

; �

R

a

(b))g [

S

b2N

A

(a;R

�

)

f(�

R

�

a

(b); d

a

)g)

�

[

S

b2N

A

(a;R)

f(d

a

; d

b

); (�

R

�

b

(a); �

R

a

(b))g

i

for all role names R;

a

I

:= d

a

for eah objet name a used in A.

Note that the interpretation of role names is well-de�ned: if b 2 N

A

(a; R),

then a 2 N

A

(b; R

�

), and thus �

R

�

b

(a) is de�ned.

We explain the idea behind the de�nition of R

I

with the help of Figure C.1.

Here we onsider the onnetion of two interpretations I

a

and I

b

, where a and

b are ABox objets suh that b 2 N

A

(a; R) (and thus also a 2 N

A

(b; R

�

)).

The non-dashed edges are removed from I

a

and I

b

in Line 1 of the de�nition

of R

I

, and are thus not part of the onneted model. To ompensate for this,

we add the dashed edges to the onneted model in Line 2 of the de�nition of

R

I

. In the �gure, all domain elements displayed as �lled irles have the same

type, and so do all domain elements displayed as non-�lled irles (this is due

to Property 1 of the �

R

a

(b) elements). It is thus readily heked that, after the

modi�ation, eah domain element has the same number of R-neighbours and

R

�

-neighbours of any given type as before.

Speial are was taken in the ase a 2 N

A

(a; R): if we had allowed �

R

a

(a) 6= d

a

and (d

a

; d

a

) 2 R

I

a

, then we would remove the edge between d

a

and �

R

a

(a) in

Line 1, but not ompensate for this removal in Line 2: there, we only \add" an

edge from d

a

to itself that does already exist in I

a

. Clearly, suh a modi�ation

might derease the number of R-neighbours of a given type, whih we want to

avoid. This is the reason why we need Property 3 of the �

R

a

(b) elements (and

Lemma 24, whih ensures that setting �

R

a

(a) = d

a

is always possible).

Using these arguments, it is not hard to prove the following laim using stru-

tural indution:

Claim: for eah objet name a used in A, d 2 �

I

a

, and C 2 l(A; T ), d 2 C

I

a

implies d 2 C

I

.

Using the laim, it is readily heked that I is indeed a (�nite) model of A

and T :

(1) Let a : C 2 A. Then the laim together with d

a

2 (C

A

t

(a))

I

a

yields
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a

I

= d

a

2 C

I

sine t(a) is a onjunt of C

A

t

(a) and a : C 2 A implies

C 2 t(a).

(2) Let (a; b) : R 2 A. Then b 2 N

A

(a; R). If R is a role name, we thus have

(a

I

; b

I

) 2 R

I

by de�nition of R

I

(seond line). If R = S

�

for some role

name S, then we have a 2 N

A

(b; S). Thus, (b

I

; a

I

) 2 S

I

by de�nition of

I, implying (a

I

; b

I

) 2 R

I

by the semantis.

(3) Finally, the laim together with the fat that, for eah objet name a

used in A, I

a

is a model of T learly implies that I is also a model of T .

2
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