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Abstract. In its many guises and variations, propositional dynamic
logic (PDL) plays an important role in various areas of computer sci-
ence such as databases, artificial intelligence, and computer linguistics.
One relevant and powerful variation is ICPDL, the extension of PDL
with intersection and converse. Although ICPDL has several interesting
applications, its computational properties have never been investigated.
In this paper, we prove that ICPDL is decidable by developing a trans-
lation to the monadic second order logic of infinite trees. Our result has
applications in information logic, description logic, and epistemic logic.
In particular, we solve a long-standing open problem in information logic.
Another virtue of our approach is that it provides a decidability proof
that is more transparent than existing ones for PDL with intersection
(but without converse).

1 Introduction

Propositional Dynamic Logic (PDL) has originally been proposed as a modal
logic for reasoning about the behaviour of programs [22,12,13]. Since then, the
adaptation of PDL to a growing number of applications has led to many mod-
ifications and extensions. Nowadays, these additional applications have become
the main driving force behind the continuing interest in the PDL family of logics,
see e.g. [14,8,2,5,1]. An important family of variations of PDL is obtained by
adding an intersection operator on programs, and possibly additional program
operators. Alas, the extension of PDL with intersection (IPDL) is notorious for
being “theoretically difficult”. This is mostly due to an intricate model theory: in
contrast to most other extensions of PDL, the addition of intersection destroys
the tree model property in a rather dramatic way. In particular, original PDL
and many of its extensions can be decided by using automata on infinite trees [24]
or embedding into the alternation-free fragment of Kozen’s p-calculus [16]. By
adding intersection to PDL and destroying the tree model property, we leave this
framework and thus lose the toolkit of results and techniques that have been es-
tablished over the last twenty years. Consequently, the results obtained for IPDL
are quickly summarized: the first result about the computational properties of
PDL with intersection is due to Harel, who proved that satisfiability in IPDL



with deterministic programs is undecidable [15]. In 1984, Danecki showed that
dropping determinism regains decidability [7]. He also establishes a 2-EXPTIME
upper bound. It was long unknown whether this upper bound is tight: only in
2004, the EXPTIME lower bound for IPDL stemming from original PDL was im-
proved to an EXPSPACE one and then even to a tight 2-EXPTIME one [17,18]. An
axiomatization for IPDL is long sought, but until now only the axiomatization
of relatively weak fragments has been successfully accomplished [4].

It appears that virtually nothing is known about extensions of IPDL. Most
strikingly, the natural extension of IPDL with converse programs (ICPDL) has
never been investigated. The aim of this paper is to perform a first investiga-
tion of the computational properties of ICPDL: we show that satisfiability in
ICPDL is decidable by developing a (satisfiability preserving) translation into
the monadic second order logic of infinite trees (from now on simply called MSO).
This result has several interesting consequences:

First, decidability of ICPDL implies decidability of the information logic DAL
(Data Analysis Logic), a problem that has been open since DAL was proposed
in 1985 [11]. The purpose of DAL is to aggregate data into sets that can be
characterized using given properties, and, dually, to determine properties that
best characterize a given set of data. Technically, DAL may be viewed as the
variant of IPDL obtained by requiring all relations to be equivalence relations
and admitting only the program operators N and U*, where the latter is a com-
bination of PDL’s operators U and -*. In ICPDL, equivalence relations can be
simulated using (aUa™)* for some atomic program a. Thus, DAL can be viewed
as a fragment of ICPDL.

Second, there is a close correspondence between variants of PDL and descrip-
tion logics (DLs). In particular, the description logic ALC,eg [3,14] is a syntactic
variant of PDL without the test operator [23], and the intersection operator of
IPDL corresponds to the intersection role constructor in description logics. The
latter is a traditional constructor that is present in many DL formalisms, see
e.g. [9,6,20,21]. Decidability and complexity results play a central role in the
area of description logic, but have never been obtained for the natural extension
ALC.Y, of ALC g with role intersection. Clearly, ALCy, is a syntactic variant
of test-free ICPDL, and thus our decidability result carries over.

Third, ICPDL can be applied to obtain results in epistemic logic [10]. The
basic observation is as in the case of DAL: ICPDL can simulate equivalence re-
lations by writing (a U a™)*. Since union and transitive closure of programs can
be combined to express the common knowledge operator of epistemic logic, and
intersection of programs corresponds to the distributed knowledge operator, de-
cidability of ICPDL can be used to obtain decidability for epistemic logic with
both common knowledge and distributed knowledge. We should admit, how-
ever, that this approach is rather brute force: since the common knowledge and
distributed knowledge operators of epistemic logic cannot be nested to build up
more complex operations on relations, epistemic logic lacks much of the complex-
ity of ICPDL. Therefore and as noted in [10], decidability can also be obtained
using more standard techniques.



Apart from the applications just mentioned, we believe that there is an addi-
tional virtue of the MSO translation exhibited in this paper: without intending
to derogate the admirable work of Danecki that provided the basic ideas for
the tree encoding of ICPDL models developed in this paper [7], it seems fair to
claim that Danecki’s decidability proof for IPDL is rather intricate and difficult
to understand. Moreover, the correctness is hard to verify since the only available
presentation (a conference paper) lacks many non-trivial details. Although the
MSO translation presented in the current paper also involves some non-trivial
encodings, in our opinion it is the easiest proof of the decidability of IPDL that
has been obtained so far. Together with the technical report accompanying this
paper [19], the proofs are fully rigorous and readily checked in detail.

This paper is organized as follows. In Section 2, we introduce ICPDL. Sec-
tion 3 prepares for the MSO translation by discussing, on an intuitive level, how
ICPDL models can be abstracted into trees. The translation itself is exhibited
in Section 4 which also contains a correctness proof. We discuss future work and
conclude in Section 5.

2 The Language

Let Var and Prog be countably infinite sets of propositional variables and atomic
programs, respectively. The sets of ICPDL programs and ICPDL formulas are
defined by simultaneous induction as follows:

— each atomic program is a program;

— each propositional variable is a formula;

— if @ and f are programs and ¢ is a formula, then the following are also
programs:

a77 amﬁ? aUﬁ? a;ﬁ? a*7 99?

— if ¢ and ¢ are formulas and « is a program, then the following are also
formulas:

o, (a)p

We use p1 A w2 as an abbreviation for (1 7)¢a, @1 V s for =(mgp; A =ps), and
[a] ¢ for ={a)—p. Moreover, we use T to abbreviate an arbitrary (but fixed)
propositional tautology, and L for —=T.

The semantics of ICPDL is defined in the usual way through Kripke struc-
tures. A Kripke structure is a triple K = (W, R, L), where

— W is a set of points,
— R assigns to each atomic program a € Prog a binary relation R(a) on W,

— L assigns to each atomic proposition p € Var the set of points L(p) in which
it holds.



The extension of R to complex programs and the definition of the consequence
relation |= for ICPDL are, again, by simultaneous induction:

R(a™) is the converse of R(«)

R(O{l N 042) = R(O{l) N R(CKQ),

R(O{l U 042) = R(O{l) U R(CKQ),

R(an;az) = R(aq) o R(aw).

R(a*) is the reflexive-transitive closure of R(«a)
R(¢?) = {(w,w) e W? | K,w = ¢}

K,wkEp iff w e L(p) for p € Var
KwlE-p iff K,wlke
K,w E (a)p iff thereis w': (w,w') € R(a) and K,w' = ¢

Let ¢ be a formula and K = (W, R, L) a Kripke structure. Then K is a model
of ¢ if there is a w € W with K, w E ¢. The formula ¢ is called satisfiable if it
has a model.

3 ICPDL Models

Our aim is to devise a satisfiability preserving translation from ICPDL to MSO
over infinite trees. The main difficulty is posed by the fact that ICPDL does not
have the tree model property. This is witnessed e.g. by the formulas

—pA{ana)pand =p A [B]L A ((a;p?;a) ND*)T

which both enforce a cycle of length 2.! To carry out the translation to MSO,
it is important to develop a tree-shaped abstraction of ICPDL models. Such an
abstraction is described in the current section. Although it provides the guiding
intuitions for developing the translation to MSO, there is no need to formally
establish the correctness of the abstraction beforehand. Therefore, our discussion
will remain on an intuitive level.

Intersection

ICPDL’s lack of the tree model property is clearly due to the intersection oper-
ator on relations. Even the simple formula (a N b) T does not have a tree model:
it enforces a Kripke structure K as shown on the left-hand side of Figure 1. For
the MSO translation, we represent K using the tree displayed on the right-hand
side of the same figure. In this tree, the left son represents the substructure of
K that is obtained by dropping the b edge, and the right son describes the sub-
structure obtained by dropping the a edge. The symbol “N” labelling the root
node indicates that a parallelization operation is required to construct K from

LTt is easy to modify these formulas such that they enforce a cycle whose length is
exponential in the length of the formula.



Fig. 1. Tree for intersection.

these two substructures: simply identify their roots and sinks. Intuitively, the
root, node represents the whole structure K.

The tree representation does not only encode the relational structure of I,
but also records satisfaction of relevant formulas by states of K. The following
definition fixes the set of formulas relevant for deciding satisfiability of an ICPDL
formula ¢: the (Fischer-Ladner) closure of .

Definition 1 (Closure). The set of subprograms subp(a) of ICPDL programs
a and the set of subformulas subf(yp) of ICPDL formulas ¢ is defined simulta-
neously as follows:

— subp(a) = {a} if a is atomic;

— subp(a) = {a} Usubp(B) Usubp(y) if a =N~y or a=pF;7v;
— subp(a) = {a} Usubp(B) if a = B* ora =",

— subp(¢?) = {7} U U5y pesubf(e) SUbP(B);

— subf(p) = {p} if p € Var;
— subf(=p) = {=p} Usubf(p);
— subf((a)p) = {{a)e} Usubf(v) U yresubp(a) SUPF(¥)-

Finally, we define the closure of an ICPDL formula ¢ as

cl(p) == {b, = [ € cl(p)}.

For z a state in a Kripke structure, the type of x is the set of formulas {¢ €
cl(po) | K,z = ¢}, where g is the formula whose satisfiability is to be decided.
In the tree representation of a model, each node stores the type of the root state
and of the sink state of the substructure that this node represents. In the case
of Figure 1, all three tree nodes store the type t, of x and ¢, of y since they all
describe a substructure of K with root x and sink y. We say that ¢, is stored in
the first place of each node, and t, is stored in the second place. Observe that
distinct places in tree nodes may represent identical states in the model. This
induces an equivalence relation on places, whose skeleton is given as dotted lines
in Figure 1. This relation will play a central role in the translation to MSO.



Composition

Now consider a formula (a;b)T. It enforces the model on the left-hand side of
Figure 2. Again, the right-hand side displays the corresponding tree abstraction

IS)

O=t— 0 =90
S )

IS}

Fig. 2. Tree for composition.

with the dotted edges providing a skeleton for the equivalence relation on places.
The symbol “;” of the root nodes indicates that the structure represented by the
root node is obtained from the structures represented by the leaves through a
composition operation: identify the sink of the left son with the root of the right
son.

Kleene Star

Formulas (a*)T enforce an a-path of arbitrary length. To represent a path of
length zero (i.e., a single state), we use a tree consisting of a single node labelled
“="_. The two places of this node are equivalent, i.e., represent the same state.
To represent longer paths, we may repeatedly apply the composition operation
to nodes labelled “a” and “=". A tree representation of a path of length two can
be found in Figure 3.

Fig. 3. Tree for Kleene star.



Observe the dotted edge connecting the two places of the “=" node. It should be
clear that, by combining the representation schemata given in Figures 1 and 2
and by using “=" nodes, we can construct a tree representation of models en-
forced by any formula (o) T, with a composed from the operators {U, N, ¢7,;,-*}
in an arbitrary way: the operator “U” requires no explicit represention in the
tree structure and the operator “¢?” can be treated via a node labelled “=".

Converse

To deal with the converse operator, we take an approach that may not be what
one would expect on first sight. As discussed later, the seemingly complicated
treatment of converse allows to simplify other parts of the MSO translation.
Consider a formula (¢~ )T and the enforced model given on the right-hand side
of Figure 4.

Fig. 4. Tree for converse programs

Until now, all considered models have been abstracted into binary trees. For
dealing with converse, we switch to ternary trees. The Kripke structure from
Figure 4 is represented by the tree given on the right-hand side of the same
figure. The third son represents the structure in which there is an a-edge from
root y to sink z, i.e., the horizontal mirror image of the Kripke structure on
the left. In contrast, the root represents the original structure, where there is an
a-edge from sink y to root x. Observe that the equivalence relation induced by
the pointed edges swaps the places of the root and the third son as expected.
Also observe that the root node does not have a particular type such as “N”
or “;”. We need not introduce a dedicated type for converse since, for technical
reasons discussed below, every node in the tree has a third son whose places are
obtained by swapping the places of the original node. Finally, note that the first
and second son of the root are simply dummies. Although they will be required
to exist for technical reasons, intuitively they carry no meaningful information.

Multiple Diamonds

So far, we have mostly concentrated on tree abstractions of models for simple
formulas of the form (a)p. Tree abstractions of models for arbitrarily shaped



formulas can be obtained by joining, in a suitable way, the tree abstractions
of models for such simple formulas. Consider the formula {(a;b)T A (¢)T, which
enforces the structure shown on the left-hand side of Figure 5. As usual, the

Fig. 5. Tree for multiple diamonds

tree abstraction is shown on the right-hand side. The root together with the
first two sons are the tree abstraction of the substructure witnessing {(a;b)T,
where the dotted edges are as in Figure 2 but omitted for simplicity. The third
son exists because every node is required to have a third son. The dotted edges
connecting the root and the third son are as in Figure 4, but again omitted.
Finally, the fourth son by itself (i.e., without the root) is the tree abstraction of
the substructure witnessing (¢)T.

The ratio of this representation is as follows: suppose that a state = in a
Kripke structure satifies multiple diamonds (a1 )1, ..., {(agypr. For 1 <i <k,
we take the representation of the model enforced by (a;)p; as a ternary tree as
described above. Let these trees be T1,...,T;. To join them into a single tree,
we attach the roots of Ts,...,T}) as sons number 4 to k + 3 to the root of T7.
Observe that, in the resulting tree, the first place of the root node is equivalent
to the first place of sons number 4 to &k + 3. This is indicated by the dotted edge
in Figure 5.

Using this method, we can deal with the problem that a state represented
by the left-hand place of a tree node may have to satisfy more than a single
diamond. What will we do if a state x represented by a right-hand place of a
tree node has to satisfy diamonds (a;)p1, ..., (ar)pr? We simply exploit the
fact that every node has a third son swapping the places: we attach the trees
Ty, ..., Ty representing the models enforced by the diamonds (a1 )1, . . ., (g )
as sons number 4 to k + 4 to the third son of the node whose right-hand place
represents z. By composing the dotted edges displayed in Figures 4 and 5, it is
easily verified that, then, the second place of the root of T; is equivalent to the
first place of the root of Ty as required.



4 Translation to MSO

We now put the ideas developed in the previous section to work. The goal is to
prove the main result of this paper:

Theorem 1. Satisfiability in PDL with intersection and converse is decidable.

Let o be an ICPDL formula whose satisfiability is to be decided. Moreover, let
E be the number of diamond formulas ()¢ in cl(¢g). We translate ¢o into an
eqi-satisfiable formula ¢ of monadic second-order logic of the infinite k + 3-ary
tree. More precisely, we assume MSO models to have domain {1,...,k + 3}*,
which from now on we abbreviate with [k + 3]*. There are k + 3 unary functions
s; mapping each node to it’s i-th son.

Intuitively, the formula ¢f is constructed such that the models of ¢f are
precisely the tree abstractions of models of . In particular, the intuition behind
the k£ + 3 successors is as explained in the previous section. The assembly of f
involves several steps. First, we fix the MSO signature used:

— unary predicates ) and F? for every ¢ € cl(o);
— unary predicates T—, T, T}, and T ;
— a unary predicate T, for each atomic program a.

The predicates FZ, are used to store types in the first and second place of tree
nodes (c.f. previous section): if 9 is an MSO model and = € [k + 3]*, then
{@ | M |= F(x)} is the type stored in the first place of x and {¢ | M = F(x)}
is the type stored in the second place of x.

The predicates T,, T—, T, T}, and T'| are markers for the different kinds
of nodes in trees. The only kind of node that was not discussed in the previous
section is T';. This kind of node is used when the i-th son is not needed, for
some i with 3 < i < k + 3. For example, assume that 9 [~ F}(z) for some
node = € [k + 3]* and all formulas ¢ € cl(pg) of the form (a)p. Then the
sons x4, ...,z(k + 3) of  are not needed. Since our MSO models should be full
k + 3-ary trees, we simply mark such sons with 7', .

To ensure that the sets {¢ | M = F)(z)} describe valid types, we have
to describe the semantics of negation and of diamonds—recall that all other
operators are merely abbreviations. Dealing with negation is easy:

vi= N Va.Fl ()& —Fi(x)A
—p€cl(po)
F2,(x) < ~F2(x)

To treat diamonds, we need some preliminaries. First, we define a formula with
two free variables that characterizes the identitiy of places as discussed in the
previous section. More precisely, it is convenient to define four such formulas
Xijs 4 J € {1,2}, as shown in Figure 6. Intuitively, we have 9 = x; ;[z,y] iff
the i’th place of z is equivalent to the j’th place of y. According to the idea of
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(P, P2) :==V2.(T=(2) = (Pi(2) < P2(2))) A (1)
Vz.(Tn(2) = (Pi(s) < Pi(s1(2)))) A (2)
Vz.(Tn(2) = (Pi(s) <> Pi(s2(2)))) A 3)
Vz.(Tn(2) = (Pa(s) <> Pa(s1(2)))) A (4)
Vz.(Tn(2) = (Pa(s) <> Pa(s2(2)))) A (5)
Vz.(Ty(2) = (Pi(2) < Pi(s1(2)))) A (6)
Vz.(Ti(2) = (Pa(2) < Pa(s2(2)))) A (7)
Vz.(Ti(2) = (Pa(s1(2)) < Pi(s2(2)))) A (8)
Vz.(Pi(z) <> Pa(s3(2))) A 9)
Vz.(P2(z) <> Pi(s3(2))) A (10)

N Val-Tusi() > (Pi() & Pus()) (1)

3<0<k+3

Xinj (%,y) = VP1, P2.(P;(x) ANO(P1, P2)) = Pj(y)

Fig. 6. The formulas x;,;(z,y).

place equivalence, all equivalent places should have the same type:

5= N\ Veyxi(zy) = (N File) & Fiy)

i,j€{1,2} pec(po)

We now define, for each program a € subp(yp), a formula o, that relates the
first place of a node x to the second place of a node y iff the states represented
by these two places are related via the program a: for each o € subp(yg), set:

oa(®,y) :=Fzx1,1(2, 2) ATa(2) A Xa2(y, 2);

o2 (2,y) == x1,2(7,y) A F)();

oaup(2,y) = 0alr,y) V o5(2,y);

oang(T,y) = 0a(,y) Aop(z,y);

oas(x,y) =32, 200 (2, 2) Ax21(2,2") Nog(2',y);
Oa=(,y) 1= 0a(s3(y), s3(2));

0o (2,y) = x12[x, 2] VVP.( (P(s3(2)) A9L(P)) = P(y) )
with

D(P) =Y,y 2. (P() A xo(29) A oa(y,2) = P(2) )

Some remarks are in order. To see why o, does not simply read z = y A T, (),
consider Figure 1: the left place of the root node is clearly related to the right
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place of the root node via the program a although the root is not labelled “a”. In
Oa;3, the middle conjunct is necessary since we only relate first places to second
places. The formula o,- is easily understood by considering the equivalence of
places indicated in Figure 4. Finally, consider o,+. The first disjunct reflects
the fact that, in Kripke structures, a* relates every state to itself. The formula
V., (P) states that the set of nodes P is closed under making a-steps from second
places of nodes in P: if x € P, the second place of z is equivalent to the first
place of some y, and y is related to some z via o, then the second place of z
can be reached from the second place of x by making an « transition and we
add z to P. Note that, in the definition of o,+, we put s3(z) into P as the initial
element rather than z. This is necessary since o,+ relates first places to second
places, but ¥/, (P) closes off under making a-steps from second places of nodes
in P. Moreover, the second place of s3(z) is clearly equivalent to the first place
of z.

Using the formulas ¢, we can now describe the semantics of diamonds:

(aypecl(po)

It pays off here that we require every node to have a third son with swapped
places: due to this son, there is no need to explicitly describe the semantics of
diamonds satisfied by second places, i.e., recorded via formulas Fia w(:zc) with
i = 2. We thus save the definition of counterparts of the formulas o, that
relate second places to first places. Also, there is no need to define counterparts
of the formulas o, that relate first places to first places, or second places to
second places: via the third son, such relationships can always be understood as
a relationship from a first place to a second place.

Finally, we assemble ¢g:

o = Vi AUy A5 AT Fy (2)
In [19], we prove correctness of the translation:
Lemma 1. g is satisfiable in ICPDL iff p{ is satisfiable in MSO.

For the “if” direction, assume that ¢ is satisfiable in MSQ, i.e. there is an MSO
structure 9t based on a tree of out-degree k + 3 such that ¢y is satisfied in 9.
Let P := [k + 3]* x {1,2} be the set of places. We define the relation ~ on P
by setting (x,i) ~ (y,7) iff MM = xi 5[z, y]. It is not hard to show that ~ is an
equivalence relation. Let [z, 4] denote the equivalence class of (z,i) € P w.r.t. ~.
We define a Kripke structure K = (W, R, L) as follows:

= W=Alz,i] | (z,1) € P};
— R(a) = {([z,1],[y,2]) | M = o4z, y]} for all atomic programs a;
— L(p) ={[z,1] |z € (F))™} U {[z,2] | x € (F2)™} for all p € Var.
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Note that K is well-defined: due to ¢}, (x,1) ~ (y,1) implies that = € (F, )™ iff
y € (F})™ for all p € Var, and likewise for F'?. Additionally, by definition of o,
(x,1) ~ (2',1) and (y,2) ~ (y',2) implies that M = o, [z, y] iff M = 0,2, y'],
for all atomic programs a.

In [19], we then prove the following, central claim.
Claim. For all z,y € [k + 3]*, ¢ € cl(po), and « € subp(pp), we have
L (5,1, [y,2) € R(a) iff M = o[, o]
2. M= Flla] iff K, [2,i] = ¢

Since g is satisfied in 90, there is an = € [k + 3]* such that M |= F) [z]. By
Point 2 of the claim, this implies that K is a model of ¢g.

For the “only if” direction, let K = (W, R, L) be a model of ¢g, and let
wo € W such that K,wy E ¢o. To construct an MSO model with domain
[k + 3]* satisfying ¢ at the root, we inductively define three mappings

no k3 o W
p:[k+ 3" = subp(po)U{e, L}
T [k+3] =W

such that the following condition is satisfied:
for all x € [k + 3]", p(x) # L implies (1 (z), 2(x)) € R(p(x)), (1)

where R(¢) is defined as the identitiy relation on W. Intuitively, 71 (z) identifies
the state described by the first place of z, 72 (z) identifies the state described by
the second place of z, and p(z) is the program that we want to hold between
these two places. The case p(x) = L means that the mapping p(:) carries no
relevant information for the node z. Before we can start the definition, we need
some preliminaries. First, we assume that the diamond formulas in cl(yg) are
linearly ordered, and that &; yields the i-th such formula (the numbering starts
with 0). Second, we call a program « determined if the top-level operator is not
“U”. We inductively fix a choice function ch that maps every triple (w, a,w') C
W x subp(pg) x W with (w,w') € R(a) to a determined program ch(w, o, w') €
subp(a) such that R(ch(w,a,w’)) C R(a) and (w,w') € R(ch(w,a,w")): let
(w,w") € R(a).

— if « is determined, set ch(w,a,w’) := a.

— if v is not determined, then « = § U ~. By the semantics, (w,w’) € R(«)
implies (w,w") € R(f3) or (w,w') € R(v). In the first case, set ch(w, a, w') :=
B if B is determined, and ch(w, o, w') := ch(w, 5, w") otherwise. In the second
case, set ch(w, a,w') := v if v is determined, and ch(w, o, w") := ch(w, v, w")
otherwise.

Now, the three mappings are defined simultaneously by making a case distinction
as follows. To understand this definition, it may help to recall the intuitions laid
out in Section 3.
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1. To start, set 7 (¢) := wo, p(¢) := ¢, and 12 () := wp. (The choice of p(e) and
T2(¢) is not crucial).

2. Let 71 (z) be defined, 71 (s1(x)) undefined, and p = a3 Naz. Then set, for i €
{1,2}: m(si(2) == m(2), p(si(x)) = ch(m(2), i, 72(2)), and 7a(si(2)) =
To(x).

3. Let 7 () be defined, 7 (s1(2)) undefined, and p = ;5. By (}) and the
semantics, there is a w € W with (7 (z),w) € R(«a) and (w, 2 (x)) € R(B).
Set

ni(s1(z)) :=m(x) plsi(z)) :=ch(m(z),,w) 7(s1(x)) :==w
T1(s2(x)) == w p(s2(x)) :=ch(w, B, =(x)) 7(s2(x)) := ()

4. Let 11(z) be defined, 7 (s1(z)) undefined, p = o*, and 7 (x) = m2(x). Set,
fori € {1,2}, i (si(x)) := wo, p(si(x)) := ¢, and 72(s;(x)) := wp. Intuitively,
the first and second successor of = are not needed. To nevertheless obtain a
full & 4 3-ary tree, we “restart” at wq.

5. Let 71 (z) be defined, 7 (s1(z)) undefined, p = o*, and 7 (z) # = (z). By (})

and the semantics, there is a sequence wy, . .., w, € W such that 7 (z) = wo,
T2(2) = Wy, (Wi,w;y1) € R(a) for i < n, and w; # wj for i < j < n. Let
wo, ..., w, € W be the shortest such sequence. Set

mi(s1(z)) :==7(2)  plsi(x)) :=ch(n(z),a,wi)  72(s1(2)) :=ws

T1(s2(x)) == wy p(s2(x)) := a* To(s2(2)) := 1 (x)

6. Let 71(x) be defined, 71 (s1(x)) undefined, and p € Prog or p of the form
a~. Set, for i € {1,2}, 11 (s;(z)) := wo, p(si(z)) := e, and 7(s;(z)) := wo.
Similar to Case 4, the first and second successor of x are not needed.

7. Let 7 (x) be defined and 7 (s3(z)) be undefined. Set 7 (s3(x)) = 7 (x),
To(s3(x)) := 7 (x), and

ch(r (), a, 71 (x)) if p(x) = a~

Plsa() = { 1 if p(z) is not of the form o~

8. Let 71 (z) be defined and 71 (s, (x)) undefined for some n with 3 < n < k+ 3,
and K,7i(x) = E,—3 = (a)p. Then by the semantics there is a w € W
with (71(z),w) € R(a) and K,w = ¢. Set 71 (sp(2)) := 11 (2), p(sn(z)) :=
ch(r (z), a,w), and 72(s,(z)) = w.

9. Let 7 (z) be defined and 71 (s, (x)) undefined for some n with 3 < n < k+ 3,
and K,7(z) £ En—sz = (a)p. Then set 71(sy(x)) := wo, p(sp(z)) = &,
and 72(s,(2)) := wp. As in Cases 4 and 6, we restart at wg since the n-th
successor of z is not needed.

Now we construct an MSO model 2t as follows:

— for all ¢ € cl(go) and i € {1,2}, set (F3)™ := {z € [k + 3]" | K, 7i(z) |= ¢}
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- T» . ={zek+3]"|pk) =
U{zek+3]"|px)

U {z € [k +3]" | p(z) = a* for some a € subp(pg) and 71 (z) = 7 (z)}
)=
)=

e}

x) = ¢? for some formula ¢}

TP :={z € [k+ 3]" | p(x) = an B for some a, 3 € subp(po)}
T™ :={z € [k+3]" | p(z) = o;  for some a, 5 € subp(go)}

U {x € [k + 3]* | p(x) = a* for some a € subp(yg) and 7 (x) # 12(z)}
TP = {s,(2) | K, 71 (%) £ En—s}

— for a € prog, set T := {z € [k + 3]* | p(z) = a}.

In [19], we show that 9 = ¢;[z].

5 Conclusion

In this paper, we have proved decidability of ICPDL, i.e. PDL extended with
intersection and converse. As laid out in the introduction, this result that has sev-
eral interesting applications. One additional virtue of the presented decidability
proof is that, compared to existing proofs for PDL with intersection (but without
converse), it is relatively simple and fully rigorous. There is, however, a price to
be paid for this simplicity: our translation to MSO only yields a non-elementary
upper bound. Indeed, when translating the following sequence (¢;);en of ICPDL
formulas, we obtain a sequence of MSO formulas with a strictly increasing quan-
tifier alternation depth:

pi = [(--- ((ag; a1)";a2)"; -+ 5.a:)p.

We believe that this upper bound is not tight. Indeed, it seems likely that sat-
isfiability in ICPDL is 2-EXPTIME-complete, just as satisfiability in IPDL. For
proving this, however, it seems inevoidable to use the complex techniques of
Danecki [7], in particular his “+” relation. Therefore, we believe that it is useful
and illustrative to first prove only decidability in a more transparent way. Pin-
pointing the exact computational complexity of ICPDL is left for future work.
Another interesting question is whether or not there are useful fragments of
ICPDL that involve both intersection and Kleene star and for which reason-
ing is in EXPTIME—thus not harder than in PDL. We suspect that the set of
program operators {U, N, -*, -7, ¢©?} induces such a fragment. Note that the men-
tioned fragment of ICPDL is still strong enough to capture the information logic
DAL.

Acknowledgements I am indebted to Ulrike Sattler, Lidia Tendera, and Mar-
tin Lange for many intense and fruitfull discussions about PDL with intersection.
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