
PDL with Intersetion and Converse is

Deidable

Carsten Lutz

Institute for Theoretial Computer Siene

TU Dresden

Germany

lutz�ts.inf.tu-dresden.de

Abstrat. In its many guises and variations, propositional dynami

logi (PDL) plays an important role in various areas of omputer si-

ene suh as databases, arti�ial intelligene, and omputer linguistis.

One relevant and powerful variation is ICPDL, the extension of PDL

with intersetion and onverse. Although ICPDL has several interesting

appliations, its omputational properties have never been investigated.

In this paper, we prove that ICPDL is deidable by developing a trans-

lation to the monadi seond order logi of in�nite trees. Our result has

appliations in information logi, desription logi, and epistemi logi.

In partiular, we solve a long-standing open problem in information logi.

Another virtue of our approah is that it provides a deidability proof

that is more transparent than existing ones for PDL with intersetion

(but without onverse).

1 Introdution

Propositional Dynami Logi (PDL) has originally been proposed as a modal

logi for reasoning about the behaviour of programs [22, 12, 13℄. Sine then, the

adaptation of PDL to a growing number of appliations has led to many mod-

i�ations and extensions. Nowadays, these additional appliations have beome

the main driving fore behind the ontinuing interest in the PDL family of logis,

see e.g. [14, 8, 2, 5, 1℄. An important family of variations of PDL is obtained by

adding an intersetion operator on programs, and possibly additional program

operators. Alas, the extension of PDL with intersetion (IPDL) is notorious for

being \theoretially diÆult". This is mostly due to an intriate model theory: in

ontrast to most other extensions of PDL, the addition of intersetion destroys

the tree model property in a rather dramati way. In partiular, original PDL

and many of its extensions an be deided by using automata on in�nite trees [24℄

or embedding into the alternation-free fragment of Kozen's �-alulus [16℄. By

adding intersetion to PDL and destroying the tree model property, we leave this

framework and thus lose the toolkit of results and tehniques that have been es-

tablished over the last twenty years. Consequently, the results obtained for IPDL

are quikly summarized: the �rst result about the omputational properties of

PDL with intersetion is due to Harel, who proved that satis�ability in IPDL

2

with deterministi programs is undeidable [15℄. In 1984, Daneki showed that

dropping determinism regains deidability [7℄. He also establishes a 2-ExpTime

upper bound. It was long unknown whether this upper bound is tight: only in

2004, the ExpTime lower bound for IPDL stemming from original PDL was im-

proved to an ExpSpae one and then even to a tight 2-ExpTime one [17, 18℄. An

axiomatization for IPDL is long sought, but until now only the axiomatization

of relatively weak fragments has been suessfully aomplished [4℄.

It appears that virtually nothing is known about extensions of IPDL. Most

strikingly, the natural extension of IPDL with onverse programs (ICPDL) has

never been investigated. The aim of this paper is to perform a �rst investiga-

tion of the omputational properties of ICPDL: we show that satis�ability in

ICPDL is deidable by developing a (satis�ability preserving) translation into

the monadi seond order logi of in�nite trees (from now on simply alled MSO).

This result has several interesting onsequenes:

First, deidability of ICPDL implies deidability of the information logi DAL

(Data Analysis Logi), a problem that has been open sine DAL was proposed

in 1985 [11℄. The purpose of DAL is to aggregate data into sets that an be

haraterized using given properties, and, dually, to determine properties that

best haraterize a given set of data. Tehnially, DAL may be viewed as the

variant of IPDL obtained by requiring all relations to be equivalene relations

and admitting only the program operators \ and [

�

, where the latter is a om-

bination of PDL's operators [and �

�

. In ICPDL, equivalene relations an be

simulated using (a[a

�

)

�

for some atomi program a. Thus, DAL an be viewed

as a fragment of ICPDL.

Seond, there is a lose orrespondene between variants of PDL and desrip-

tion logis (DLs). In partiular, the desription logi ALC

reg

[3, 14℄ is a syntati

variant of PDL without the test operator [23℄, and the intersetion operator of

IPDL orresponds to the intersetion role onstrutor in desription logis. The

latter is a traditional onstrutor that is present in many DL formalisms, see

e.g. [9, 6, 20, 21℄. Deidability and omplexity results play a entral role in the

area of desription logi, but have never been obtained for the natural extension

ALC

\

reg

of ALC

reg

with role intersetion. Clearly, ALC

\

reg

is a syntati variant

of test-free ICPDL, and thus our deidability result arries over.

Third, ICPDL an be applied to obtain results in epistemi logi [10℄. The

basi observation is as in the ase of DAL: ICPDL an simulate equivalene re-

lations by writing (a[a

�

)

�

. Sine union and transitive losure of programs an

be ombined to express the ommon knowledge operator of epistemi logi, and

intersetion of programs orresponds to the distributed knowledge operator, de-

idability of ICPDL an be used to obtain deidability for epistemi logi with

both ommon knowledge and distributed knowledge. We should admit, how-

ever, that this approah is rather brute fore: sine the ommon knowledge and

distributed knowledge operators of epistemi logi annot be nested to build up

more omplex operations on relations, epistemi logi laks muh of the omplex-

ity of ICPDL. Therefore and as noted in [10℄, deidability an also be obtained

using more standard tehniques.

3

Apart from the appliations just mentioned, we believe that there is an addi-

tional virtue of the MSO translation exhibited in this paper: without intending

to derogate the admirable work of Daneki that provided the basi ideas for

the tree enoding of ICPDL models developed in this paper [7℄, it seems fair to

laim that Daneki's deidability proof for IPDL is rather intriate and diÆult

to understand. Moreover, the orretness is hard to verify sine the only available

presentation (a onferene paper) laks many non-trivial details. Although the

MSO translation presented in the urrent paper also involves some non-trivial

enodings, in our opinion it is the easiest proof of the deidability of IPDL that

has been obtained so far. Together with the tehnial report aompanying this

paper [19℄, the proofs are fully rigorous and readily heked in detail.

This paper is organized as follows. In Setion 2, we introdue ICPDL. Se-

tion 3 prepares for the MSO translation by disussing, on an intuitive level, how

ICPDL models an be abstrated into trees. The translation itself is exhibited

in Setion 4 whih also ontains a orretness proof. We disuss future work and

onlude in Setion 5.

2 The Language

Let Var and Prog be ountably in�nite sets of propositional variables and atomi

programs, respetively. The sets of ICPDL programs and ICPDL formulas are

de�ned by simultaneous indution as follows:

{ eah atomi program is a program;

{ eah propositional variable is a formula;

{ if � and � are programs and ' is a formula, then the following are also

programs:

�

�

; � \ �; � [�; �;�; �

�

; '?

{ if ' and are formulas and � is a program, then the following are also

formulas:

:'; h�i'

We use '

1

^ '

2

as an abbreviation for h'

1

?i'

2

, '

1

_ '

2

for :(:'

1

^ :'

2

), and

[�℄' for :h�i:'. Moreover, we use > to abbreviate an arbitrary (but �xed)

propositional tautology, and ? for :>.

The semantis of ICPDL is de�ned in the usual way through Kripke stru-

tures. A Kripke struture is a triple K = (W;R;L), where

{ W is a set of points,

{ R assigns to eah atomi program a 2 Prog a binary relation R(a) on W ,

{ L assigns to eah atomi proposition p 2 Var the set of points L(p) in whih

it holds.

4

The extension of R to omplex programs and the de�nition of the onsequene

relation j= for ICPDL are, again, by simultaneous indution:

R(�

�

) is the onverse of R(�)

R(�

1

\ �

2

) = R(�

1

) \ R(�

2

);

R(�

1

[�

2

) = R(�

1

) [R(�

2

);

R(�

1

;�

2

) = R(�

1

) ÆR(�

2

):

R(�

�

) is the reexive-transitive losure of R(�)

R('?) = f(w;w) 2 W

2

j K;w j= 'g

K;w j= p i� w 2 L(p) for p 2 Var

K;w j= :' i� K;w 6j= '

K;w j= h�i' i� there is w

0

: (w;w

0

) 2 R(�) and K;w

0

j= '

Let ' be a formula and K = (W;R;L) a Kripke struture. Then K is a model

of ' if there is a w 2 W with K;w j= '. The formula ' is alled satis�able if it

has a model.

3 ICPDL Models

Our aim is to devise a satis�ability preserving translation from ICPDL to MSO

over in�nite trees. The main diÆulty is posed by the fat that ICPDL does not

have the tree model property. This is witnessed e.g. by the formulas

:p ^ ha \ a

�

ip and :p ^ [b℄?^ h(a; p?; a) \ b

�

i>

whih both enfore a yle of length 2.

1

To arry out the translation to MSO,

it is important to develop a tree-shaped abstration of ICPDL models. Suh an

abstration is desribed in the urrent setion. Although it provides the guiding

intuitions for developing the translation to MSO, there is no need to formally

establish the orretness of the abstration beforehand. Therefore, our disussion

will remain on an intuitive level.

Intersetion

ICPDL's lak of the tree model property is learly due to the intersetion oper-

ator on relations. Even the simple formula ha \ bi> does not have a tree model:

it enfores a Kripke struture K as shown on the left-hand side of Figure 1. For

the MSO translation, we represent K using the tree displayed on the right-hand

side of the same �gure. In this tree, the left son represents the substruture of

K that is obtained by dropping the b edge, and the right son desribes the sub-

struture obtained by dropping the a edge. The symbol \\" labelling the root

node indiates that a parallelization operation is required to onstrut K from

1

It is easy to modify these formulas suh that they enfore a yle whose length is

exponential in the length of the formula.

5

y

a b

ba

\

x

t

x

t

y

t

x

t

x

t

y

t

y

Fig. 1. Tree for intersetion.

these two substrutures: simply identify their roots and sinks. Intuitively, the

root node represents the whole struture K.

The tree representation does not only enode the relational struture of K,

but also reords satisfation of relevant formulas by states of K. The following

de�nition �xes the set of formulas relevant for deiding satis�ability of an ICPDL

formula ': the (Fisher-Ladner) losure of '.

De�nition 1 (Closure). The set of subprograms subp(�) of ICPDL programs

� and the set of subformulas subf(') of ICPDL formulas ' is de�ned simulta-

neously as follows:

{ subp(a) = fag if a is atomi;

{ subp(�) = f�g [subp(�) [subp() if � = � \ or � = �; ;

{ subp(�) = f�g [subp(�) if � = �

�

or � = �

�

;

{ subp('?) = f'?g [

S

h�i 2subf(')

subp(�);

{ subf(p) = fpg if p 2 Var;

{ subf(:') = f:'g [subf(');

{ subf(h�i') = fh�i'g [subf(') [

S

 ?2subp(�)

subf().

Finally, we de�ne the losure of an ICPDL formula ' as

l(') := f ;: j 2 l(')g:

For x a state in a Kripke struture, the type of x is the set of formulas f' 2

l('

0

) j K;x j= 'g, where '

0

is the formula whose satis�ability is to be deided.

In the tree representation of a model, eah node stores the type of the root state

and of the sink state of the substruture that this node represents. In the ase

of Figure 1, all three tree nodes store the type t

x

of x and t

y

of y sine they all

desribe a substruture of K with root x and sink y. We say that t

x

is stored in

the �rst plae of eah node, and t

y

is stored in the seond plae. Observe that

distint plaes in tree nodes may represent idential states in the model. This

indues an equivalene relation on plaes, whose skeleton is given as dotted lines

in Figure 1. This relation will play a entral role in the translation to MSO.

6

Composition

Now onsider a formula ha; bi>. It enfores the model on the left-hand side of

Figure 2. Again, the right-hand side displays the orresponding tree abstration

ba

x

t

z

t

x

t

y

t

y

t

z

a

y

z

b

t

x

;

Fig. 2. Tree for omposition.

with the dotted edges providing a skeleton for the equivalene relation on plaes.

The symbol \;" of the root nodes indiates that the struture represented by the

root node is obtained from the strutures represented by the leaves through a

omposition operation: identify the sink of the left son with the root of the right

son.

Kleene Star

Formulas ha

�

i> enfore an a-path of arbitrary length. To represent a path of

length zero (i.e., a single state), we use a tree onsisting of a single node labelled

\=". The two plaes of this node are equivalent, i.e., represent the same state.

To represent longer paths, we may repeatedly apply the omposition operation

to nodes labelled \a" and \=". A tree representation of a path of length two an

be found in Figure 3.

x

a

y

a

z

a

t

y

t

z

a

t

z

t

x

t

y

t

z

t

x

;

t

y

;

t

z

t

z

=

Fig. 3. Tree for Kleene star.

7

Observe the dotted edge onneting the two plaes of the \=" node. It should be

lear that, by ombining the representation shemata given in Figures 1 and 2

and by using \=" nodes, we an onstrut a tree representation of models en-

fored by any formula h�i>, with � omposed from the operators f[;\; '?; ; ; �

�

g

in an arbitrary way: the operator \[" requires no expliit represention in the

tree struture and the operator \'?" an be treated via a node labelled \=".

Converse

To deal with the onverse operator, we take an approah that may not be what

one would expet on �rst sight. As disussed later, the seemingly ompliated

treatment of onverse allows to simplify other parts of the MSO translation.

Consider a formula ha

�

i> and the enfored model given on the right-hand side

of Figure 4.

x

y

t

x

t

y

t

y

t

x

a

a

Fig. 4. Tree for onverse programs

Until now, all onsidered models have been abstrated into binary trees. For

dealing with onverse, we swith to ternary trees. The Kripke struture from

Figure 4 is represented by the tree given on the right-hand side of the same

�gure. The third son represents the struture in whih there is an a-edge from

root y to sink x, i.e., the horizontal mirror image of the Kripke struture on

the left. In ontrast, the root represents the original struture, where there is an

a-edge from sink y to root x. Observe that the equivalene relation indued by

the pointed edges swaps the plaes of the root and the third son as expeted.

Also observe that the root node does not have a partiular type suh as \\"

or \;". We need not introdue a dediated type for onverse sine, for tehnial

reasons disussed below, every node in the tree has a third son whose plaes are

obtained by swapping the plaes of the original node. Finally, note that the �rst

and seond son of the root are simply dummies. Although they will be required

to exist for tehnial reasons, intuitively they arry no meaningful information.

Multiple Diamonds

So far, we have mostly onentrated on tree abstrations of models for simple

formulas of the form h�i'. Tree abstrations of models for arbitrarily shaped

8

formulas an be obtained by joining, in a suitable way, the tree abstrations

of models for suh simple formulas. Consider the formula ha; bi> ^ hi>, whih

enfores the struture shown on the left-hand side of Figure 5. As usual, the

t

x

t

y

t

w

t

x

a b

t

x

t

y

t

z

t

y

t

x

y

b

z

a

x

w

;

t

z

Fig. 5. Tree for multiple diamonds

tree abstration is shown on the right-hand side. The root together with the

�rst two sons are the tree abstration of the substruture witnessing ha; bi>,

where the dotted edges are as in Figure 2 but omitted for simpliity. The third

son exists beause every node is required to have a third son. The dotted edges

onneting the root and the third son are as in Figure 4, but again omitted.

Finally, the fourth son by itself (i.e., without the root) is the tree abstration of

the substruture witnessing hi>.

The ratio of this representation is as follows: suppose that a state x in a

Kripke struture sati�es multiple diamonds h�

1

i'

1

; : : : ; h�

k

i'

k

. For 1 � i � k,

we take the representation of the model enfored by h�

i

i'

i

as a ternary tree as

desribed above. Let these trees be T

1

; : : : ; T

k

. To join them into a single tree,

we attah the roots of T

2

; : : : ; T

k

as sons number 4 to k + 3 to the root of T

1

.

Observe that, in the resulting tree, the �rst plae of the root node is equivalent

to the �rst plae of sons number 4 to k+3. This is indiated by the dotted edge

in Figure 5.

Using this method, we an deal with the problem that a state represented

by the left-hand plae of a tree node may have to satisfy more than a single

diamond. What will we do if a state x represented by a right-hand plae of a

tree node has to satisfy diamonds h�

1

i'

1

; : : : ; h�

k

i'

k

? We simply exploit the

fat that every node has a third son swapping the plaes: we attah the trees

T

1

; : : : ; T

k

representing the models enfored by the diamonds h�

1

i'

1

; : : : ; h�

k

i'

k

as sons number 4 to k + 4 to the third son of the node whose right-hand plae

represents x. By omposing the dotted edges displayed in Figures 4 and 5, it is

easily veri�ed that, then, the seond plae of the root of T

1

is equivalent to the

�rst plae of the root of T

2

as required.

9

4 Translation to MSO

We now put the ideas developed in the previous setion to work. The goal is to

prove the main result of this paper:

Theorem 1. Satis�ability in PDL with intersetion and onverse is deidable.

Let '

0

be an ICPDL formula whose satis�ability is to be deided. Moreover, let

k be the number of diamond formulas h�i' in l('

0

). We translate '

0

into an

eqi-satis�able formula '

�

0

of monadi seond-order logi of the in�nite k+3-ary

tree. More preisely, we assume MSO models to have domain f1; : : : ; k + 3g

�

,

whih from now on we abbreviate with [k+3℄

�

. There are k+3 unary funtions

s

i

mapping eah node to it's i-th son.

Intuitively, the formula '

�

0

is onstruted suh that the models of '

�

0

are

preisely the tree abstrations of models of '

0

. In partiular, the intuition behind

the k + 3 suessors is as explained in the previous setion. The assembly of '

�

0

involves several steps. First, we �x the MSO signature used:

{ unary prediates F

1

'

and F

2

'

for every ' 2 l('

0

);

{ unary prediates T

=

, T

\

, T

;

, and T

?

;

{ a unary prediate T

a

for eah atomi program a.

The prediates F

i

'

are used to store types in the �rst and seond plae of tree

nodes (.f. previous setion): if M is an MSO model and x 2 [k + 3℄

�

, then

f' jM j= F

1

'

(x)g is the type stored in the �rst plae of x and f' jM j= F

2

'

(x)g

is the type stored in the seond plae of x.

The prediates T

a

, T

=

, T

\

, T

;

, and T

?

are markers for the di�erent kinds

of nodes in trees. The only kind of node that was not disussed in the previous

setion is T

?

. This kind of node is used when the i-th son is not needed, for

some i with 3 < i � k + 3. For example, assume that M 6j= F

1

'

(x) for some

node x 2 [k + 3℄

�

and all formulas ' 2 l('

0

) of the form h�i'. Then the

sons x4; : : : ; x(k + 3) of x are not needed. Sine our MSO models should be full

k + 3-ary trees, we simply mark suh sons with T

?

.

To ensure that the sets f' j M j= F

1

'

(x)g desribe valid types, we have

to desribe the semantis of negation and of diamonds|reall that all other

operators are merely abbreviations. Dealing with negation is easy:

�

1

:=

^

:'2l('

0

)

8x : F

1

:'

(x)$:F

1

'

(x) ^

F

2

:'

(x)$:F

2

'

(x)

To treat diamonds, we need some preliminaries. First, we de�ne a formula with

two free variables that haraterizes the identitiy of plaes as disussed in the

previous setion. More preisely, it is onvenient to de�ne four suh formulas

�

i;j

, i; j 2 f1; 2g, as shown in Figure 6. Intuitively, we have M j= �

i;j

[x; y℄ i�

the i'th plae of x is equivalent to the j'th plae of y. Aording to the idea of

10

#(P

1

; P

2

) := 8z:(T

=

(z)! (P

1

(z)$ P

2

(z))) ^ (1)

8z:(T

\

(z)! (P

1

(s)$ P

1

(s

1

(z)))) ^ (2)

8z:(T

\

(z)! (P

1

(s)$ P

1

(s

2

(z)))) ^ (3)

8z:(T

\

(z)! (P

2

(s)$ P

2

(s

1

(z)))) ^ (4)

8z:(T

\

(z)! (P

2

(s)$ P

2

(s

2

(z)))) ^ (5)

8z:(T

;

(z)! (P

1

(z)$ P

1

(s

1

(z)))) ^ (6)

8z:(T

;

(z)! (P

2

(z)$ P

2

(s

2

(z)))) ^ (7)

8z:(T

;

(z)! (P

2

(s

1

(z))$ P

1

(s

2

(z)))) ^ (8)

8z:(P

1

(z)$ P

2

(s

3

(z))) ^ (9)

8z:(P

2

(z)$ P

1

(s

3

(z))) ^ (10)

^

3<`�k+3

8z:(:T

?

(s

`

(z))! (P

1

(z)$ P

1

(s

`

(z)))) (11)

�

i;j

(x; y) := 8P

1

; P

2

:(P

i

(x) ^ #(P

1

; P

2

))! P

j

(y)

Fig. 6. The formulas �

i;j

(x; y).

plae equivalene, all equivalent plaes should have the same type:

�

2

:=

^

i;j2f1;2g

8x; y : �

i;j

(x; y)! (

^

'2l('

0

)

F

i

'

(x)$ F

j

'

(y))

We now de�ne, for eah program � 2 subp('

0

), a formula �

�

that relates the

�rst plae of a node x to the seond plae of a node y i� the states represented

by these two plaes are related via the program �: for eah � 2 subp('

0

), set:

{ �

a

(x; y) := 9z:�

1;1

(x; z) ^ T

a

(z) ^ �

2;2

(y; z);

{ �

'?

(x; y) := �

1;2

(x; y) ^ F

1

'

(x);

{ �

�[�

(x; y) := �

�

(x; y) _ �

�

(x; y);

{ �

�\�

(x; y) := �

�

(x; y) ^ �

�

(x; y);

{ �

�;�

(x; y) := 9z; z

0

:�

�

(x; z) ^ �

2;1

(z; z

0

) ^ �

�

(z

0

; y);

{ �

�

�
(x; y) := �

�

(s

3

(y); s

3

(x));

{ �

�

�

(x; y) := �

1;2

[x; x℄ _ 8P:

�

(P (s

3

(x)) ^ #

0

�

(P))! P (y)

�

with

#

0

�

(P) := 8x; y; z:

�

(P (x) ^ �

2;1

(x; y) ^ �

�

(y; z))! P (z)

�

Some remarks are in order. To see why �

a

does not simply read x = y ^ T

a

(x),

onsider Figure 1: the left plae of the root node is learly related to the right

11

plae of the root node via the program a although the root is not labelled \a". In

�

�;�

, the middle onjunt is neessary sine we only relate �rst plaes to seond

plaes. The formula �

�

�
is easily understood by onsidering the equivalene of

plaes indiated in Figure 4. Finally, onsider �

�

�

. The �rst disjunt reets

the fat that, in Kripke strutures, �

�

relates every state to itself. The formula

#

0

�

(P) states that the set of nodes P is losed under making �-steps from seond

plaes of nodes in P : if x 2 P , the seond plae of x is equivalent to the �rst

plae of some y, and y is related to some z via �

�

, then the seond plae of z

an be reahed from the seond plae of x by making an � transition and we

add z to P . Note that, in the de�nition of �

�

�

, we put s

3

(x) into P as the initial

element rather than x. This is neessary sine �

�

�

relates �rst plaes to seond

plaes, but #

0

�

(P) loses o� under making �-steps from seond plaes of nodes

in P . Moreover, the seond plae of s

3

(x) is learly equivalent to the �rst plae

of x.

Using the formulas �

�

, we an now desribe the semantis of diamonds:

�

3

:=

^

h�i'2l('

0

)

8x : F

1

h�i'

(x)$ 9y:�

�

(x; y) ^ F

2

'

(y))

It pays o� here that we require every node to have a third son with swapped

plaes: due to this son, there is no need to expliitly desribe the semantis of

diamonds satis�ed by seond plaes, i.e., reorded via formulas F

i

h�i'

(x) with

i = 2. We thus save the de�nition of ounterparts of the formulas �

�

that

relate seond plaes to �rst plaes. Also, there is no need to de�ne ounterparts

of the formulas �

�

that relate �rst plaes to �rst plaes, or seond plaes to

seond plaes: via the third son, suh relationships an always be understood as

a relationship from a �rst plae to a seond plae.

Finally, we assemble '

�

0

:

'

�

0

:=

�

1

^

�

2

^

�

3

^ 9x:F

1

'

0

(x)

In [19℄, we prove orretness of the translation:

Lemma 1. '

0

is satis�able in ICPDL i� '

�

0

is satis�able in MSO.

For the \if" diretion, assume that '

�

0

is satis�able in MSO, i.e. there is an MSO

struture M based on a tree of out-degree k + 3 suh that '

�

0

is satis�ed in M.

Let P := [k + 3℄

�

� f1; 2g be the set of plaes. We de�ne the relation � on P

by setting (x; i) � (y; j) i� M j= �

i;j

[x; y℄. It is not hard to show that � is an

equivalene relation. Let [x; i℄ denote the equivalene lass of (x; i) 2 P w.r.t. �.

We de�ne a Kripke struture K = (W;R;L) as follows:

{ W = f[x; i℄ j (x; i) 2 Pg;

{ R(a) = f([x; 1℄; [y; 2℄) jM j= �

a

[x; y℄g for all atomi programs a;

{ L(p) = f[x; 1℄ j x 2 (F

1

p

)

M

g [f[x; 2℄ j x 2 (F

2

p

)

M

g for all p 2 Var.

12

Note that K is well-de�ned: due to '

�

2

, (x; 1) � (y; 1) implies that x 2 (F

1

p

)

M

i�

y 2 (F

1

p

)

M

for all p 2 Var, and likewise for F

2

p

. Additionally, by de�nition of �

a

,

(x; 1) � (x

0

; 1) and (y; 2) � (y

0

; 2) implies that M j= �

a

[x; y℄ i� M j= �

a

[x

0

; y

0

℄,

for all atomi programs a.

In [19℄, we then prove the following, entral laim.

Claim. For all x; y 2 [k + 3℄

�

, ' 2 l('

0

), and � 2 subp('

0

), we have

1. ([x; 1℄; [y; 2℄) 2 R(�) i� M j= �

�

[x; y℄;

2. M j= F

i

'

[x℄ i� K; [x; i℄ j= '

Sine '

�

0

is satis�ed in M, there is an x 2 [k + 3℄

�

suh that M j= F

1

'

0

[x℄. By

Point 2 of the laim, this implies that K is a model of '

0

.

For the \only if" diretion, let K = (W;R;L) be a model of '

0

, and let

w

0

2 W suh that K;w

0

j= '

0

. To onstrut an MSO model with domain

[k + 3℄

�

satisfying '

�

0

at the root, we indutively de�ne three mappings

�

1

: [k + 3℄

�

! W

p : [k + 3℄

�

! subp('

0

) [f";?g

�

2

: [k + 3℄

�

! W

suh that the following ondition is satis�ed:

for all x 2 [k + 3℄

�

; p(x) 6= ? implies (�

1

(x); �

2

(x)) 2 R(p(x)); (y)

where R(") is de�ned as the identitiy relation on W . Intuitively, �

1

(x) identi�es

the state desribed by the �rst plae of x, �

2

(x) identi�es the state desribed by

the seond plae of x, and p(x) is the program that we want to hold between

these two plaes. The ase p(x) = ? means that the mapping p(�) arries no

relevant information for the node x. Before we an start the de�nition, we need

some preliminaries. First, we assume that the diamond formulas in l('

0

) are

linearly ordered, and that E

i

yields the i-th suh formula (the numbering starts

with 0). Seond, we all a program � determined if the top-level operator is not

\[". We indutively �x a hoie funtion h that maps every triple (w;�;w

0

) �

W � subp('

0

)�W with (w;w

0

) 2 R(�) to a determined program h(w;�;w

0

) 2

subp(�) suh that R(h(w;�;w

0

)) � R(�) and (w;w

0

) 2 R(h(w;�;w

0

)): let

(w;w

0

) 2 R(�).

{ if � is determined, set h(w;�;w

0

) := �.

{ if � is not determined, then � = � [. By the semantis, (w;w

0

) 2 R(�)

implies (w;w

0

) 2 R(�) or (w;w

0

) 2 R(). In the �rst ase, set h(w;�;w

0

) :=

� if � is determined, and h(w;�;w

0

) := h(w; �; w

0

) otherwise. In the seond

ase, set h(w;�;w

0

) := if is determined, and h(w;�;w

0

) := h(w; ; w

0

)

otherwise.

Now, the three mappings are de�ned simultaneously by making a ase distintion

as follows. To understand this de�nition, it may help to reall the intuitions laid

out in Setion 3.

13

1. To start, set �

1

(") := w

0

, p(") := ", and �

2

(") := w

0

. (The hoie of p(") and

�

2

(") is not ruial).

2. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, and p = �

1

\�

2

. Then set, for i 2

f1; 2g: �

1

(s

i

(x)) := �

1

(x), p(s

i

(x)) := h(�

1

(x); �

i

; �

2

(x)), and �

2

(s

i

(x)) :=

�

2

(x).

3. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, and p = �;�. By (y) and the

semantis, there is a w 2 W with (�

1

(x); w) 2 R(�) and (w; �

2

(x)) 2 R(�).

Set

�

1

(s

1

(x)) := �

1

(x) p(s

1

(x)) := h(�

1

(x); �; w) �

2

(s

1

(x)) := w

�

1

(s

2

(x)) := w p(s

2

(x)) := h(w; �; �

2

(x)) �

2

(s

2

(x)) := �

2

(x)

4. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, p = �

�

, and �

1

(x) = �

2

(x). Set,

for i 2 f1; 2g, �

1

(s

i

(x)) := w

0

, p(s

i

(x)) := ", and �

2

(s

i

(x)) := w

0

. Intuitively,

the �rst and seond suessor of x are not needed. To nevertheless obtain a

full k + 3-ary tree, we \restart" at w

0

.

5. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, p = �

�

, and �

1

(x) 6= �

2

(x). By (y)

and the semantis, there is a sequene w

0

; : : : ; w

n

2W suh that �

1

(x) = w

0

,

�

2

(x) = w

n

, (w

i

; w

i+1

) 2 R(�) for i < n, and w

i

6= w

j

for i < j � n. Let

w

0

; : : : ; w

n

2W be the shortest suh sequene. Set

�

1

(s

1

(x)) := �

1

(x) p(s

1

(x)) := h(�

1

(x); �; w

1

) �

2

(s

1

(x)) := w

1

�

1

(s

2

(x)) := w

1

p(s

2

(x)) := �

�

�

2

(s

2

(x)) := �

2

(x)

6. Let �

1

(x) be de�ned, �

1

(s

1

(x)) unde�ned, and p 2 Prog or p of the form

�

�

. Set, for i 2 f1; 2g, �

1

(s

i

(x)) := w

0

, p(s

i

(x)) := ", and �

2

(s

i

(x)) := w

0

.

Similar to Case 4, the �rst and seond suessor of x are not needed.

7. Let �

1

(x) be de�ned and �

1

(s

3

(x)) be unde�ned. Set �

1

(s

3

(x)) := �

2

(x),

�

2

(s

3

(x)) := �

1

(x), and

p(s

3

(x)) :=

(

h(�

2

(x); �; �

1

(x)) if p(x) = �

�

? if p(x) is not of the form �

�

8. Let �

1

(x) be de�ned and �

1

(s

n

(x)) unde�ned for some n with 3 < n � k+3,

and K; �

1

(x) j= E

n�3

= h�i'. Then by the semantis there is a w 2 W

with (�

1

(x); w) 2 R(�) and K;w j= '. Set �

1

(s

n

(x)) := �

1

(x), p(s

n

(x)) :=

h(�

1

(x); �; w), and �

2

(s

n

(x)) := w.

9. Let �

1

(x) be de�ned and �

1

(s

n

(x)) unde�ned for some n with 3 < n � k+3,

and K; �

1

(x) 6j= E

n�3

= h�i'. Then set �

1

(s

n

(x)) := w

0

, p(s

n

(x)) := ",

and �

2

(s

n

(x)) := w

0

. As in Cases 4 and 6, we restart at w

0

sine the n-th

suessor of x is not needed.

Now we onstrut an MSO model M as follows:

{ for all ' 2 l('

0

) and i 2 f1; 2g, set (F

i

'

)

M

:= fx 2 [k + 3℄

�

j K; �

i

(x) j= 'g

14

{

T

M

=

:= fx 2 [k + 3℄

�

j p(x) = "g

[fx 2 [k + 3℄

�

j p(x) = '? for some formula 'g

[fx 2 [k + 3℄

�

j p(x) = �

�

for some � 2 subp('

0

) and �

1

(x) = �

2

(x)g

T

M

\

:= fx 2 [k + 3℄

�

j p(x) = � \ � for some �; � 2 subp('

0

)g

T

M

;

:= fx 2 [k + 3℄

�

j p(x) = �;� for some �; � 2 subp('

0

)g

[fx 2 [k + 3℄

�

j p(x) = �

�

for some � 2 subp('

0

) and �

1

(x) 6= �

2

(x)g

T

M

?

:= fs

n

(x) j K; �

1

(x) 6j= E

n�3

g

{ for a 2 prog, set T

M

a

:= fx 2 [k + 3℄

�

j p(x) = ag:

In [19℄, we show that M j= '

�

0

["℄.

5 Conlusion

In this paper, we have proved deidability of ICPDL, i.e. PDL extended with

intersetion and onverse. As laid out in the introdution, this result that has sev-

eral interesting appliations. One additional virtue of the presented deidability

proof is that, ompared to existing proofs for PDL with intersetion (but without

onverse), it is relatively simple and fully rigorous. There is, however, a prie to

be paid for this simpliity: our translation to MSO only yields a non-elementary

upper bound. Indeed, when translating the following sequene ('

i

)

i2N

of ICPDL

formulas, we obtain a sequene of MSO formulas with a stritly inreasing quan-

ti�er alternation depth:

'

i

:= [(� � � ((a

�

0

; a

1

)

�

; a

2

)

�

; � � � ; a

i

)

�

℄p:

We believe that this upper bound is not tight. Indeed, it seems likely that sat-

is�ability in ICPDL is 2-ExpTime-omplete, just as satis�ability in IPDL. For

proving this, however, it seems inevoidable to use the omplex tehniques of

Daneki [7℄, in partiular his \`" relation. Therefore, we believe that it is useful

and illustrative to �rst prove only deidability in a more transparent way. Pin-

pointing the exat omputational omplexity of ICPDL is left for future work.

Another interesting question is whether or not there are useful fragments of

ICPDL that involve both intersetion and Kleene star and for whih reason-

ing is in ExpTime|thus not harder than in PDL. We suspet that the set of

program operators f[;\; �

�

; �

�

; '?g indues suh a fragment. Note that the men-

tioned fragment of ICPDL is still strong enough to apture the information logi

DAL.

Aknowledgements I am indebted to Ulrike Sattler, Lidia Tendera, and Mar-

tin Lange for many intense and fruitfull disussions about PDL with intersetion.

15

Referenes

1. L. Afanasiev, P. Blakburn, I. Dimitriou, B. Gai�e, E. Goris, M. Marx, and

M. de Rijke. PDL for ordered trees. Journal of Applied Non-Classial Logi,

2005. To appear.

2. N. Alehina, S. Demri, and M. de Rijke. A modal perspetive on path onstraints.

Journal of Logi and Computation, 13(6):939{956, 2003.

3. F. Baader. Augmenting onept languages by transitive losure of roles: An al-

ternative to terminologial yles. In Pro. of IJCAI-91, pages 446{451, Sydney,

Australia, 1991.

4. P. Balbiani and D. Vakarelov. Iteration-free PDL with intersetion: a omplete

axiomatization. In Fundamenta Informatiae, volume 45, pages 1{22. 2001.

5. D. Berardi, D. Calvanese, G. De Giaomo, M. Lenzerini, and M. Meella. Auto-

mati omposition of e-servies that export their behavior. In Pro. of the 1st Int.

Conf. on Servie Oriented Computing (ICSOC 2003), volume 2910 of LNCS, pages

43{58. Springer, 2003.

6. D. Calvanese, G. De Giaomo, and M. Lenzerini. On the deidability of query

ontainment under onstraints. In Pro. of PODS'98, pages 149{158, 1998.

7. R. Daneki. Nondeterministi propositional dynami logi with intersetion is

deidable. In Pro. of the Fifth Symposium on Computation Theory, volume 208

of LNCS, pages 34{53, Zabor�ow, Poland, De. 1984. Springer.

8. G. De Giaomo and M. Lenzerini. PDL-based framework for reasoning about

ations. In Pro. of AI*IA'95, volume 992, pages 103{114. Springer, 1995.

9. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The omplexity of onept

languages. Information and Computation, 134(1):1{58, 1997.

10. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.

MIT Press, 1995.

11. L. Farinas Del Cerro and E. Orlowska. DAL-a logi for data analysis. Theoretial

Computer Siene, 36(2-3):251{264, 1985.

12. M. J. Fisher and R. E. Ladner. Propositional modal logi of programs. In Confer-

ene reord of the ninth annual ACM Symposium on Theory of Computing, pages

286{294. ACM Press, 1977.

13. M. J. Fisher and R. E. Ladner. Propositional dynami logi of regular programs.

J. Comput. Syst. Si., 18:194{211, 1979.

14. G. D. Giaomo and M. Lenzerini. Boosting the orrespondene between desription

logis and propositional dynami logis. In Pro. of AAAI'94. Volume 1, pages

205{212. AAAI Press, 1994.

15. D. Harel. Dynami logi. In Handbook of Philosophial Logi, Volume II, pages

496{604. D. Reidel Publishers, 1984.

16. D. Kozen. Results on the propositional �-alulus. In Automata, Languages and

Programming, 9th Colloquium, volume 140 of Leture Notes in Computer Siene,

pages 348{359. Springer-Verlag, 1982.

17. M. Lange. A lower omplexity bound for propositional dynami logi with in-

tersetion. In Advanes in Modal Logi Volume 5. King's College Publiations,

2005.

18. M. Lange and C. Lutz. 2-ExpTime lower bounds for propositional dynami logis

with intersetion. 2005. Submitted.

19. C. Lutz. PDL with intersetion and onverse is deidable. LTCS-Report

05-05, Tehnial University Dresden, 2005. Available from http://lat.inf.tu-

dresden.de/researh/reports.html.

16

20. C. Lutz and U. Sattler. Mary likes all ats. In Pro. of DL2000, number 33 in

CEUR-WS (http://eur-ws.org/), pages 213{226, 2000.

21. F. Massai. Deision proedures for expressive desription logis with role in-

tersetion, omposition and onverse. In Pro. of IJCAI-01, pages 193{198, San

Franiso, CA, Aug. 4{10 2001. Morgan Kaufmann Publishers, In.

22. V. Pratt. Considerations on oyd-hoare logi. In FOCS: IEEE Symposium on

Foundations of Computer Siene (FOCS), 1976.

23. K. D. Shild. A orrespondene theory for terminologial logis: Preliminary report.

In Pro. of IJCAI-91, pages 466{471. Morgan Kaufmann, 1991.

24. M.Y. Vardi and P. Wolper. Automata-theoreti tehniques for modal logi of

programs. Journal of Computer and System Sienes 32 (1986) 183{221

