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ABSTRACT.Propositional dynamic logic (PDL) is one of the most successful variants of modal
logic. To make it even more useful for applications, many extensions of PDL have been consid-
ered in the literature. A very natural and useful such extension is with negation of programs.
Unfortunately, as long-known, reasoning with the resulting logic is undecidable. In this pa-
per, we consider the extension of PDL with negation of atomicprograms, only. We argue that
this logic is still useful, e.g. in the context of description logics, and prove that satisfiability is
decidable andEXPTIME-complete using an approach based on Büchi tree automata.

KEYWORDS:propositional dynamic logic, program negation, complexity.

1. Introduction

Propositional dynamic logic (PDL) is a variant of propositional modal logic that
has been developed in the late seventies as a tool for reasoning about programs [PRA 76,
FIS 77, FIS 79, HAR 84, HAR 00]. Since then, PDL was used rathersuccessfully in
a large number of application areas such as reasoning about knowledge [FAG 95],
reasoning about actions [De 95, PRE 96], description logics[GIA 94], and others.
Starting almost with its invention around 1979 [FIS 79], many extensions of PDL
have been proposed with the goal to enhance the expressive power and make PDL
even more applicable; see e.g. [PAS 91, HAR 84, HAR 00]. Some of these extensions
are tailored toward specific application areas, such as thehalt predicate that allows to
state termination in the context of reasoning about programs [HAR 78]. The major-
ity of proposed extensions, however, is of a general nature and has been employed in
many different application areas—for instance, the extension of PDL with the widely
applied converse operator [VAR 85].
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Among the general purpose extensions of PDL, two of the most obvious ones
are the addition of program intersection “\” and of program negation “:” [DAN 84,
HAR 84, HAR 00]. Since PDL already provides for program union“[”, the latter is
more general than the former:� \ � can simply be expressed as:(:� [ :�). The
main obstacle for using these two extensions in practical applications is that they are
problematic w.r.t. their computational properties: first,adding intersection destroys
many of the nice model-theoretic properties of PDL. The onlyknown algorithm for
reasoning in the resulting logic PDL\ is the quite intricate one given in [DAN 84].
Up to now, it is unknown whether the provided2-EXPTIME upper bound is tight—
in contrast to EXPTIME-complete reasoning in PDL. Second, the situation with PDL
extended with negation (PDL:) is even worse: it was observed quite early in 1984
that reasoning in PDL: is undecidable [HAR 84].

This undecidability was often regretted [HAR 84, PAS 91, BRO03], in particular
since reasoning in PDL: would be quite interesting for a number of application areas.
To illustrate the usefulness of this logic, let us give threeexamples of its expressive
power: first, it was already noted that negation can be employed to express intersec-
tion. Intersection, in turn, is very useful for reasoning about programs since it allows
to capture the parallel execution of programs. Second, program negation allows to ex-
press the universal modality2

U

' by writing [a℄'^ [:a℄', with a an arbitrary atomic
program. The universal modality is a very useful extension of modal logics that comes
handy in many applications; see e.g. [GOR 92]. Third, program negation can be used
to express the window operator

a

[HUM 83, GAR 87, GOR 90], whose semantics
is as follows:

a

' holds at a worldw iff ' holding at a worldw0 implies thatw0 is
a-accessible fromw. In PDL:, we can thus just write[:a℄:' instead of

a

'. The
window operator can be viewed as expressing sufficiency in contrast to the standard
box operator of modal logic, which expresses necessity. Moreover, the window oper-
ator has important applications, e.g. in description logics [LUT 00].

Due to the usefulness of program negation, it is natural to attempt the identifica-
tion of fragments of PDL: that still capture some of the useful properties of program
negation, but are well-behaved in a computational sense. One candidate for such a
fragment is PDL\. As has already been noted, this fragment is indeed decidable,
but has a quite intricate model theory. The purpose of this paper is to explore an-
other natural option: PDL(:), the fragment of PDL: that allows the application of
program negation toatomicprograms, only. Note that, in PDL(:), negated atomic
programs may be freely used inside other program operators.We show that reasoning
in PDL(:) is decidable, and EXPTIME-complete—thus not harder than reasoning in
PDL itself. Moreover, PDL(:) has a simpler model theory than PDL\: we are able to
use a decision procedure that is an extension of the standardautomata-based decision
procedure for PDL [VAR 86], and of the standard automata-based decision procedure
for Boolean modal logic [LUT 01]. Finally, we claim that PDL(:) is still useful for
applications: while intersection cannot be expressed any more, the universal modality
and the window operator are still available.
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To give some more concrete examples of the usefulness of PDL(:), we take a
description logic perspective. Description logics are a family of logics that origi-
nated in artificial intelligence as a tool for the representation of conceptual knowledge
[BAA 03]. It is well-known that many description logics (DLs) are notational vari-
ants of modal logics [SCH 91, GIA 94]. In particular, the description logicALC

reg

,
which extends the basic DLALC with regular expressions on roles, corresponds to
PDL [GIA 94]. More precisely, DL concepts can be understood as PDL formulas, and
DL roles as PDL programs. Thus, the extensionALC

(:)

reg

of ALC
reg

with negation of

atomic roles is a notational variant of PDL(:). We give two examples of knowledge
representation withALC(:)

reg

. These examples, which use DL syntax rather than PDL
syntax, illustrate that the combination of regular expressions on roles and of atomic
negation of roles is a very useful one.

1. Assume that we want to useALC(:)
reg

to capture the relevant notions of universities
and their students. In particular, we want to describe the preferences that universities
have when selecting students. Since some private universities prefer to admit students
whose ancestors donated money to the university, we could write

UniversityX ! 8prefer:(Top-SAT t 9parent+:Donator)

to state that all students preferred by University X have either passed the (American)
SAT test with a top score or have an ancestor that donated money. But perhaps the
policy of University X is even stronger in that it prefersall students whose ancestors
have donated money. This can be expressed using the window operator (that can, in
turn, be expressed via atomic negation):

UniversityX ! 8:prefer::(9parent

+

:Donator)

states that all students with donating ancestors are preferred.

2. Suppose that we want to useALC(:)
reg

to talk about trust and mistrust among negoti-
ating parties. Also assume that we have a very strong notion of trust, namely that it is
transitive: if I trustx, andx trustsy, then I trusty as well. An analogous assumption
for mistrust should clearly not be made. Then, we can model mistrust by using an
atomic rolemistrust, and trust by using(:mistrust)

�. We can now say, e.g., that I
trust some politicians and never mistrust a family member :

9(:mistrust)

�

:Politi
ian u 8mistrust::Familymember:

Note that reversing the roles of trust and mistrust does not work: first, to achieve tran-
sitivity of trust, we’d have to introduce an atomicdire
t-trust relation. And second,
we could then only speak about the negation ofdire
t-trust, but not about the negation
of dire
t-trust�, which corresponds to mistrust.

This paper is organized as follows.1 In Section 2, we introduce PDL: and its
fragment PDL(:). For illustrative purposes, we give a proof of the undecidability of

1. Note that the current paper is an extended version of [LUT 04].
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full PDL:. In preparation for the automata-based decision procedure, we introduce a
variant APDL(:) of PDL(:) in Section 3. This variant uses finite automata rather than
regular expressions as modal parameters and is better suited for automata-based deci-
sion procedures. As one of the two core parts of our decision procedure, in Section 4
we then abstract models of PDL(:)-formulas' to Hintikka-trees for' . The other
core part is presented in Section 5, where we define Büchi-tree automata that can be
used to check for existence of Hintikka-trees (and thus models) of PDL(:) formulas.
We conclude in Section 6 giving some possible directions forfuture research.

2. PDL with Negation

In this section, we introduce propositional dynamic logic (PDL) with negation
of programs. We start with defining full PDL:, i.e. PDL extended with negation
of (possibly complex) programs. Then, the logics PDL and PDL(:), are defined as
fragments of PDL:.

DEFINITION 1 (PDL: SYNTAX ). — Let�
0

and�
0

be countably infinite and dis-
joint sets ofpropositional lettersandatomic programs, respectively. Then the set�:

of PDL:-programsand the set�: of PDL:-formulasare defined by simultaneous
induction, i.e., they are the smallest sets such that:

– �

0

� �

: and�
0

� �

:;

– if ';  2 �

:, thenf:'; ' ^  ; ' _  g � �

:;

– if �
1

; �

2

2 �

:, thenf:�
1

; �

1

[ �

2

; �

1

;�

2

; �

�

1

g � �

:;

– if � 2 �

:, and' 2 �

:, thenfh�i'; [�℄'g � �

:;

– if ' 2 �

:, then'? 2 �

:

We use> as abbreviation for an arbitrary propositional tautology,and? as abbrevia-
tion for:>. Moreover, for�; �0 2 �

: we use�\�0 as abbreviation for:(:�[:�0).

A formula' 2 �

: is called aPDL(:)-formula(PDL-formula) if, in ', negation
occurs only in front of atomic programs and formulas (only infront of formulas).

Throughout this paper, the operatorh�i is called the diamond operator,[�℄ is called
the box operator, and programs of the form ? are calledtests. Let us note how
formulas of PDL: can be converted into concepts of the description logicALC

(:)

reg

mentioned in the introduction: simply replace^, _, h�i , and[�℄ with u, t, 9�: ,
and8�: , respectively.

DEFINITION 2 (PDL: SEMANTICS). — LetM = (W;R; V ) be aKripke struc-
turewhereW is theset of worlds, R is a family of accessibility relationsfor atomic
programsfR

�

� W

2

j � 2 �

0

g, andV : �

0

! 2

W is a valuation function. In
the following, we define accessibility relations for compound programs and the satis-
faction relationj= by simultaneous induction, where�� denotes the reflexive-transitive
closure:

R

'?

:= f(u; u) 2W

2

j M; u j= 'g

R

:�

:= W

2

nR

�
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R

�

1

[�

2

:= R

�

1

[ R

�

2

R

�

1

;�

2

:= R

�

1

ÆR

�

2

R

�

�

:= (R

�

)

�

M; u j= p iff u 2 V (p) for anyp 2 �

M; u j= :' iff M; u 6j= '

M; u j= '

1

_ '

2

iff M; u j= '

1

or M; u j= '

2

M; u j= '

1

^ '

2

iff M; u j= '

1

andM; u j= '

2

M; u j= h�i' iff there is av 2W with (u; v) 2 R

�

andM; v j= '

M; u j= [�℄' iff for all v 2 W; (u; v) 2 R
�

impliesM; v j= '

If M; u j= ' for some formula' 2 �

: and worldu 2 W , then' is trueat u in M,
andM is calledmodelof '. A formula issatisfiableif it has a model. It is called
valid if it is true at all worlds in all Kripke structures.

It is well-known that satisfiability and validity of PDL:-formulas are undecid-
able [HAR 84]. Since this can be established in a very simple way, we give a proof
for illustrative purposes.

The most common proof technique is simply to state that undecidability of PDL:

is an immediate consequence of the undecidability of the relation algebra that has the
operators:, \, [, andÆ (composition). Though this is of course a valid method, we
believe that it is more instructive to directly reduce the undecidable word-problem for
finitely presented semi-groups [MAT 67], which is the standard approach for prov-
ing undecidability of the afore mentioned relation algebras; see e.g. [AND 01]. This
word problem can be formulated as follows: given a set of wordequationsE =

fu

1

� v

1

; : : : ; u

k

� v

k

g and another equationu � v, the task is to decide whether
every semigroup satisfyingE also satisfiesu � v. To reduce this problem to PDL:-
satisfiability, we need to introduce the universal modality2

U

', which has the follow-
ing semantics:

M; u j= 2

U

' iff M; v j= ' for all v 2W:

Clearly, in PDL: we can replace2
U

' with the equivalent[a℄' ^ [:a℄', wherea 2
�

0

is an arbitrary atomic program. Using the universal modality, the reduction is
now easy: we assume that, for every generator of the semi-group, there is an atomic
program of the same name, and then note thatfu

1

� v

1

; : : : ; u

k

� v

k

g impliesu � v

if and only if the following formula is unsatisfiable:
�

hu \ :vi> _ h:u \ vi>

�

^2

U

�

^

i=1::k

[u

i

\ :v

i

℄? ^ [v

i

\ :u

i

℄?

�

:

Here, we assume that the symbols of the wordsu

i

andv
i

(and ofu andv) are separated
by program composition “;”.

Proof sketch: For both directions, the contrapositive is proved. (“onlyif”). If the
set of equationsE = fu

1

� v

1

; : : : ; u

k

� v

k

g does not implyu � v, then there
is a semigroupA = (A; ; ; a

1

; : : : ; a

n

) such thatA satisfiesE but notu � v. From
this semigroup, we can construct a modelM for the reduction formula as follows:
M := (W; fR

a

1

; : : : ; R

a

n

g; V ) where
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–W = A [ f"g where" =2 A,

–R
a

i

= f("; a

i

)g [ f(w;w

0

) 2 A

2

j A satisfiesw0 � wa

i

g for any1 � i � n,

– V is arbitrary.

It can be checked that the reduction formulas is true at" 2W in M.
(“if”). Suppose that the reduction formula is satisfiable ina model M =

(W; fR

a

1

; : : : ; R

a

n

g; V ) at a worldu 2 W . Then we construct a semi-group as
follows: A = (A; ; ; a

1

; : : : ; a

n

), where

– A = 2

W

� 2

W ,

– a
i

= R

a

i

for 1 � i � n,

– w;w0 = R

ww

0 for any two wordsw;w0 (i.e. compositionsa
i

1

; a

i

2

; � � � ; a

i

k

with
i

1

; : : : ; i

k

2 f1; : : : ; ng).

Now the first conjunct of the reduction formula implies thatA does not satisfyu � v,
and the second conjunct implies thatA satisfiesE. End of proof sketch.

Since PDL: is a very useful logic for a large number of purposes, this undecidabil-
ity result is rather disappointing. As has been argued in theintroduction, it is thus a
natural idea to search for decidable fragments of PDL: that still extend PDL in a use-
ful way. In the remainder of this paper, we will prove that PDL(:) is such a fragment.
Note that, in PDL(:), we can still define the universal modality as described above.
Also note that we can use negated atomic programs nested inside other program oper-
ators. Anyway, it is no longer possible to encode the word problem in PDL(:) since
one can express equivalence of atomic programs, but not equivalence of compositions
of atomic programs.

3. An Automata-based Variant of PDL(:)

Similar to some related results in [VAR 86], our decidability proof is based on
Büchi-automata on infinite trees. It has turned out that, forsuch proofs, it is rather
convenient to use variants of PDL in which complex programs are described by means
of automata on finite words, rather than by regular expressions. Therefore, in this
section we define a corresponding variant APDL(:) of PDL(:).

DEFINITION 3 (FINITE AUTOMATA ). — A (nondeterministic) finite automaton
(NFA) A is a quintuple(Q;�; q

0

;�; F ) where

–Q is a finite set ofstates,

– � is a finitealphabet,

– q
0

is an initial state,

– � : Q� �! 2

Q is a (partial) transition function, and

– F � Q is the set ofaccepting states.

The function� can be inductively extended to a function fromQ � �

� to 2

Q in a
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natural way:

– �(q; ") := fqg, where" is theempty word;

– �(q; wa) := fq

00

2 Q j q

00

2 �(q

0

; a) for someq0 2 �(q; w)g.

A sequencep
0

; : : : ; p

n

2 Q, n � 0, is a run of A on the worda
1

� � �a

n

2 �

� if
p

0

= q

0

, p
i

2 �(p

i�1

; a

i

) for 0 < i � n, and p
n

2 F . A wordw 2 �

� is
acceptedbyA if there exists a run ofA onw. Thelanguageaccepted byA is the set
L(A) := fw 2 �

�

j w is accepted byAg.

To obtain APDL(:) from PDL(:), we replace complex programs (i.e. regular ex-
pressions) inside boxes and diamonds with automata. For thesake of exactness, we
give the complete definition.

DEFINITION 4 (APDL(:) SYNTAX ). — The set�(:)

0

of program literalsis de-
fined asfa;:a j a 2 �

0

g. The setsA�(:) of program automataandA�(:) of
APDL(:)-formulasare defined by simultaneous induction, i.e.,A�

(:) andA�(:) are
the smallest sets such that:

– �

0

� A�

(:);

– if ';  2 A�(:), thenf:'; ' _  ; ' ^  g � A�

(:);

– if � 2 A�(:) and' 2 A�(:), thenfh�i'; [�℄'g � A�

(:);

– if � is a finite automaton with alphabet� � �

(:)

0

[ f ? j  2 A�

(:)

g, then
� 2 A�

(:)

Note that the alphabet of program automata is composed of atomic programs, of
negated atomic programs, and of tests.

DEFINITION 5 (APDL(:) SEMANTICS). — LetM = (W;R; V ) be a Kripke struc-
ture as in Definition 2. We inductively define a relationR mapping each program
literal, each test, and each program automaton to a binary relation overW . This is
done simultaneously with the definition of the satisfactionrelation j=:

R(a) := R

a

for eacha 2 �

0

R(:a) := W

2

nR

a

for eacha 2 �

0

R( ?) := f(u; u) 2W

2

j M; u j=  g

R(�) := f(u; v) 2 W

2

j there is a wordw = w

1

� � �w

m

2 L(�);

m � 0; and worldsu
0

; : : : ; u

m

2 W such that
u = u

0

R(w

1

)u

1

R(w

2

) � � �u

m�1

R(w

m

)u

m

= vg

M; u j= p iff u 2 V (p) for anyp 2 �;

M; u j= :' iff M; u 6j= ';

M; u j= '

1

_ '

2

iff M; u j= '

1

or M; u j= '

2

;

M; u j= '

1

^ '

2

iff M; u j= '

1

andM; u j= '

2

;

M; u j= h�i' iff there is au0 2 W with (u; u

0

) 2 R(�) andM; u

0

j= ';

M; u j= [�℄' iff for all u0 2W; (u; u0) 2 R(�) impliesM; u

0

j= ':

Truth, satisfiability, andvalidity are defined as in the PDL: case.
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Since every language defined by a regular expression can alsobe accepted by a
finite automaton and vice versa [KLE 56], it is straightforward to verify that PDL(:)

and APDL(:) have the same expressive power. Moreover, upper complexitybounds
carry over from APDL(:) to PDL(:) since conversion of regular expressions to fi-
nite automata can be done with at most a polynomial blow-up insize. Note that the
converse does not hold true: since there exist automataA accepting languages that
can only be defined by regular expressions whose size is exponential in the size of
A [EHR 74], there are APDL(:)-formulas' such that the length of all equivalent
PDL(:)-formulas is exponential in the length of'.

It is interesting to note that, in many automata-based decision procedures for vari-
ants of PDL, adeterministicversion of APDL is used, i.e. a variant of APDL in which
there may be at most one successor for each world and each atomic program [VAR 86].
In a second step, satisfiability in the non-deterministic APDL-variant is then reduced
to satisfiability in the deterministic one. We cannot take this approach here since we
cannot w.l.o.g. assume that both atomic programsand their negationsare determinis-
tic. Indeed, this would correspond to limiting the size of Kripke structures to only two
worlds.

4. Hintikka-trees

This section provides a core step toward using Büchi-tree automata for deciding
the satisfiability of APDL(:)-formulas. The intuition behind this approach is as fol-
lows: to decide the satisfiability of an APDL(:)-formula', we translate it into a
Büchi-tree automatonB

'

such that the trees accepted by the automaton correspond in
some way to models of the formula'. To decide satisfiability of', it then remains to
perform a simple emptiness-test on the automatonB

'

: the accepted language will be
non-empty if and only if' has a model.

In the case of APDL(:), one obstacle to this approach is that APDL(:) does not
enjoy thetree model property (TMP), i.e., there are APDL(:)-formulas that are satis-
fiable only in non-tree models. For example, for eachn 2 N the following PDL(:)-
formula enforces a cycle of lengthn:

 

n

1

^ hai( 

n

2

^ hai(� � � ( 

n

n

^ [:a℄: 

n

1

) � � � ));

where, for1 � i � n,  n
i

= p

1

^ � � � ^ :p

i

^ � � � ^ p

n

with p
1

; : : : ; p

n

propositional
variables. Note that the formula[:a℄: n

1

inside the diamonds simulates the window
operator and in this way closes the cycle. Thus, we have to invest some work to obtain
tree-shaped representations of (possibly non-tree) models that can then be accepted by
Büchi-automata.

As a preliminary, we assume that all APDL(:)-formulas are innegation normal
form (NNF), i.e. that negation occurs only in front of propositional letters. This as-
sumption can be made w.l.o.g. since each formula can be converted into an equivalent
one in NNF by exhaustively eliminating double negation, applying DeMorgan’s rules,
and exploiting the duality between diamonds and boxes.
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For the sake of brevity, we introduce the following notational conventions:

– for eachAPDL(:)-formula', _:' denotes the NNF of:';

– for each program literal�, � denotes:� if � is an atomic program, anda if
� = :a for some atomic programa;

– for each program automaton�, we useQ
�

, �
�

, q
�

, �
�

, andF
�

to denote the
components of� = (Q;�; q

0

;�; F );

– for each program automaton� and stateq 2 Q

�

, we use�
q

to denote the au-
tomaton(Q

�

;�

�

; q;�

�

; F

�

), i.e. the automaton obtained from� by usingq as the
new initial state.

Before we can develop the tree-shaped abstraction of models, we need to fix aclosure,
i.e. a set of formulas
l(') relevant for deciding the satisfiability of an input formula
'. This is done analogous to [FIS 79, VAR 86]. In the following,when we talk of a
subformula of a formula', we mean that can be obtained from' by decomposing
only formula operators, but not program operators. For example,a is a subformula of
hb?ia, while b is not.

DEFINITION 6 (CLOSURE). — Let ' be a APDL(:)-formula. The set
l(') is the
smallest set which is closed under the following conditions:

(C1)' 2 
l(')

(C2) if  is a subformula of 0 2 
l('), then 2 
l(')

(C3) if  2 
l('), then _: 2 
l(')

(C4) if h�i 2 
l('), then 0 2 
l(') for all  0? 2 �

�

(C5) if h�i 2 
l('), thenh�
q

i 2 
l(') for all q 2 Q
�

(C6) if [�℄ 2 
l('), then 0 2 
l(') for all  0? 2 �

�

(C7) if [�℄ 2 
l('), then[�
q

℄ 2 
l(') for all q 2 Q
�

It is standard to verify that the cardinality of
l(') is polynomial in the length of
'; see e.g. [HAR 00]. We generally assume the diamond formulas(i.e. formulas of
the formh�i ) in 
l(') to be linearly ordered and use�

i

to denote thei-th diamond
formula in 
l('), with �

1

being the first one. Note that a changed initial state of an
automaton results in a different diamond formula.

To defineHintikka-trees, the tree-shaped abstraction of models underlying our de-
cision procedure, we proceed in three steps. First, we introduceHintikka-setsthat will
be used as (parts of) node labels. Intuitively, each node in the tree describes a world of
the corresponding model, and its label contains the formulas from the closure of the
input formula' that are true in this world. Second, we introduce amatching relation
that describes the possible “neighborhoods” that we may findin Hintikka-trees, where
a neighborhood consists of a labeled node and its labeled successors. And third, we
use these ingredients to define Hintikka-trees.
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DEFINITION 7 (HINTIKKA -SET). — Let  2 �

(:) be an APDL(:)-formula, and
� 2 A�

(:) a program automaton. The set	 � 
l(') is a Hintikka-set for' if

(H1) if  
1

^  

2

2 	, then 
1

2 	 and 
2

2 	

(H2) if  
1

_  

2

2 	, then 
1

2 	 or  
2

2 	

(H3) 2 	 iff _: =2 	

(H4) if [�℄ 2 	 andq
�

2 F

�

, then 2 	

(H5) if [�℄ 2 	 then, for any stateq 2 Q
�

and test�? 2 �

�

,

q 2 �

�

(q

�

; �?) implies that _:� 2 	 or [�
q

℄ 2 	

The set of all Hintikka-sets for' is designated byH
'

.

The conditions (H1) to (H3) are standard, with one exception: (H3) is stronger than
usual since it enforces maximality of Hintikka-sets by stating that, for each formula
 2 
l('), either or _: must be in the Hintikka-set. This will be used later on
to deal with negated programs. The last two conditions (H4) and (H5) deal with the
“local” impact of box formulas.

Next, we define the matching relation. The purpose of this relation can be under-
stood as follows: in the Hintikka-tree, each node has exactly one successor for every
diamond formula in
l('). The matching relation helps to ensure that all diamond
formulas in a node’s label can be satisfied “via” the corresponding successor in the
Hintikka-tree, and that none of the box formulas is violatedvia any successors. We
talk of “via” here since going to an immediate successor corresponds to travelling
along asingleprogram literal. Since programs in APDL(:) are automata that may
only accept words of length greater one, in general we cannotsatisfy diamonds by
going only to the immediate successor, but rather we must perform a sequence of such
moves.

Before we define the matching relation formally, let us fix thestructure of node
labels of Hintikka-trees. For reasons that will be discussed below, node labels not
only contain a Hintikka-set, but also two additional components. More precisely, if'
is an APDL(:)-formula and
l(') containsk diamond formulas, then we use

– �

(:)

'

to denote the set of all program literals occurring in'; and

– �

'

to abbreviateH
'

�(�

(:)

'

[f?g)�f0; : : : ; kg, i.e. the set of triples containing
a Hintikka-set for', a program literal of' or?, and a number at mostk.

The elements of�
'

will be used as node labels in Hintikka-trees. Intuitively,the
first component lists the formulas that are true at a node, thesecond component fixes
the program literal with which the node can be reached from its predecessor (or? if
this information is not important), and the third componentwill help to ensure that
diamond formulas are eventually satisfied when moving through the tree. For a triple
� 2 �

'

, we refer to the first, second and third triple component with�

1, �2, and
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�

3, respectively. For the following definition, recall that weuse�
i

to denote thei-th
diamond in
l(').

DEFINITION 8 (MATCHING). — Let' be a formula andk the number of diamond
formulas in
l('). A k + 1-tuple of�

'

-triples (�; �

1

; : : : ; �

k

) is matchingif, for
1 � i � k and all automata� 2 A�(:), the following holds:

(M1) if �
i

= h�i 2 �

1, then there is a wordw =  

1

? � � � 

n

? 2 �

�

�

, n � 0,

and a stateq
1

2 Q

�

such thatf 
1

; : : : ;  

n

g � �

1, q
1

2 �

�

(q

�

; w),

and one of the following holds:

(a) q
1

is a final state, 2 �1, �2
i

= ?, and�3
i

= 0

(b) there is a program literal� 2 �

�

and a stateq
2

2 Q

�

such that

q

2

2 �

�

(q

1

; �), �
j

= h�

q

2

i 2 �

1

i

, �2
i

= �, and�3
i

= j.

(M2) if [�℄ 2 �1, q 2 Q
�

, and� 2 �

�

a program literal such that

q 2 �

�

(q

�

; �), then� = �

2

i

implies[�
q

℄ 2 �

1

i

:

As already noted, the purpose of the matching relation is to describe the possible
neighborhoods in Hintikka-trees. To this end, think of� as the label of a node, and of
�

1

; : : : ; �

k

as the labels of its successors. The purpose of Conditions (M1) and (M2)
is to ensure that diamonds are satisfied and that boxes are notviolated, respectively.
Let us consider only (M1). If a diamond�

i

= h�i is in the first component of�,
it can either be satisfied in the node labeled with� itself (Condition (a)) or we can
“delay” its satisfaction to thei-th successor node that is reserved specifically for this
purpose (Condition (b)). In Case (a), it is not important over which program literal we
can reach thei-th successor, and thus the second component of�

i

can be set to?. In
the second case, we must choose a suitable program literal� and a suitable stateq of
�, make sure that thei-th successor is reachable over� via its second�

i

-component,
and guarantee that the first component of�

i

contains the diamond under consideration
with the automata� “advanced” to initial stateq.

The remaining building block for ensuring that diamonds aresatisfied is to enforce
that the satisfaction of diamonds is not delayed forever. This is one of the two core
parts of the definition of Hintikka-trees, the other being the proper treatment of nega-
tion. Before we can discuss the prevention of infinitely delayed diamonds in some
more detail, we have to introduce some basic notions.

Let M be a set andk 2 N. An (infinite) k-ary M -tree T is a mappingT :

[k℄

�

! M , where[k℄ is used (now and in the following) as an abbreviation for the
setf1; : : : ; kg. Intuitively, the node�i is thei-th child of�. We use" to denote the
empty word (corresponding to the root of the tree). An infinitepathin ak-aryM -tree
is an infinite word
 over the alphabet[k℄. We use
[n℄, n � 0, to denote the prefix of

 up to then-th element of the sequence (with
[0℄ yielding the empty sequence).
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Now back to the prevention of infinitely delayed diamonds. Given a formula'
with k diamond formulas in
l('), a Hintikka-tree will be defined as ak-ary�

'

-tree
in which every neighborhood is matching and some additionalconditions are satisfied.
To detect infinite delays of diamonds in such trees, it doesnot suffice to simply look
for infinite sequences of nodes that all contain the same diamond: firstly, diamonds
are evolving while being “pushed” through the tree since their initial state might be
changed. Secondly, such a sequence does not necessarily correspond to an infinite
delay of diamond satisfaction: it could as well be the case that the diamond is satisfied
an infinite number of times, but always immediately “regenerated” by some other
formula. Also note that we cannot use the standard techniquefrom [VAR 86] since it
only works for deterministic variants of PDL.

Precisely for this purpose, the easy detection of infinitelydelayed diamonds, we
have introduced the third component of node labels in Hintikka-trees: if a diamond
was pushed to the current nodex from its predecessor, then by (M1) the third com-
ponent ofx’s label contains the number of the pushed diamond. Moreover, if the
pushed diamond is not satisfied inx, we again use the third component ofx: it con-
tains the number of the successor ofx to which the diamond’s satisfaction is (further)
delayed. If no diamond was pushed tox, its third component is simply zero. Thus,
the following definition captures our intuitive notion of infinitely delayed diamonds.

DEFINITION 9 (DIAMOND STARVATION ). — Let ' be an APDL(:)-formula with
k diamond formulas in
l('), T a k-ary �

'

-tree, x 2 [k℄

� a node inT , and
�

i

= h�i 2 T (x)

1. Then the diamond formulah�i is calledstarving inx if there
exists a path
 = 


1




2

� � � 2 [k℄

! such that

1) 

1

= i,

2) T (x
[n℄)3 = 


n+1

for n � 1.

We have now gathered all ingredients to define Hintikka-trees formally.

DEFINITION 10 (HINTIKKA -TREE). — Let ' be an APDL(:)-formula withk dia-
mond formulas in
l('). A k-ary�

'

-treeT is a Hintikka-tree for' if T satisfies, for
all nodesx; y 2 [k℄

�, the following conditions:

(T1)' 2 T (")1

(T2) thek + 1-tuple(T (x); T (x1); : : : ; T (xk)) is matching

(T3) no diamond formula from
l(') is starving inx

(T4) if [�℄ ; [�℄� 2 T (x)1, � 2 �

(:)

0

, q0
�

2 Q

�

, andq0
�

2 Q

�

such that

q

0

�

2 �

�

(q

�

; �) andq0
�

2 �

�

(q

�

; �), then

[�

q

0

�

℄ =2 T (y)

1 implies[�
q

0

�

℄� 2 T (y)

1.

Conditions (T1) to (T3) are easily understood. The purpose of Condition (T4) is
to deal with negated atomic programs. In particular, for each atomic programa we
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have to ensure that any pair of nodesx; y of a Hintikka-treeT can be related by one
of a and:a without violating any boxes. This is done by (T4) together with (H3)—
indeed, this is the reason for formulating (H3) stronger than usual. Intuitively, the
treatment of negation can be understood as follows: supposethat [�℄ 2 T (x)

1, let
q 2 �

�

(q

�

; a) for some atomic programa, and lety be a node. By (H3), we have
either[�

q

℄ 2 T (y)

1 or _:[�
q

℄ 2 T (y)

1. In the first case,x andy can be related by
a. In the second case, (T4) ensures that they can be related by:a. This technique is
inspired by [LUT 01], but generalized to program automata. Note that the treatment
of negated atomic programs in (T4) allows the representation of non-tree models as
(Hintikka-)trees.

We now show that Hintikka-trees are indeed proper abstractions of models. In or-
der to do this, we need two new notions. First, we use�

'

to denote the smallest set

containing (i) all program literals occurring in' (i.e.�(:)

'

) and (ii) all tests ? occur-
ring in'. Second, letM be a Kripke structure andu a world ofM. Then a wordw =

w

1

� � �w

m

2 �

� is said toaccomplisha diamond formulah�i' atu if w 2 L(�), and
there are worldsu

0

; : : : ; u

m

ofM such thatu = u

0

R(w

1

)u

1

R(w

2

) � � �u

m�1

R(w

m

)u

m

andM; u

m

j= '.

PROPOSITION11. — An APDL(:)-formula' is satisfiable iff it has a Hintikka-tree.

PROOF12. — Let' be anAPDL(:)-formula andk the number of diamond formu-
las in
l(').

“)”. Suppose the Kripke structureM = (W;R; V ) is a model of', i.e., there is a
world u

'

2W such thatM; u

'

j= '. Fix a linear order� on��
'

such that

– w � w

0 if jwj < jw

0

j, and

– ww0 � ww

00 if w0 � w

00.

Then define a partial functioǹ: 
l(') �W ! N as follows: for eachh�i 2 
l('),
andu 2 W such thatM; u j= h�i , `(h�i ; u) denotes the length of the word
w 2 �

�

'

that accomplishesh�i atu and is minimal (w.r.t.�) with this property.

In the following, we construct a Hintikka-tree for'. More precisely, we simulta-
neously define

– ak-ary (2
l(')

� (�

(:)

'

[ f?g)� f0; : : : ; kg)-treeT
'

and

– a mapping� : [k℄� !W

such that, for allx 2 [k℄

�, we have

 2 T

'

(x)

1 iff M; �(x) j=  : (�)

The construction of� andT
'

is inductive. For the induction base, set

�(") := u

'

;

T

'

(")

1

:= f 2 
l(') j M; u

'

j=  g;

T

'

(")

2

:= ?, and

T

'

(")

3

:= 0:
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For the induction step, letx 2 [k℄

� be a node such that�(x) is already defined, but
�(x1); : : : ; �(xk) are not. For eachi 2 [k℄, we distinguish two cases:

1) �
i

= h�i 2 T

'

(x)

1. Then (�) yieldsM; �(x) j= h�i . By the semantics,
there thus exists a word that accomplishesh�i at �(x). Let w = w

1

� � �w

m

2 �

�

'

be the minimal such word w.r.t. the ordering�. Then there are worldsu
0

; : : : ; u

m

2

W such that�(x) = u

0

R(w

1

)u

1

R(w

2

)u

2

� � �u

m�1

R(w

m

)u

m

andM; u

m

j=  .
Distinguish two subcases:

(a) The wordw contains only tests or is empty. This implies that�(x) = u

m

,
and thusM; �(x) j=  . By (�), we get 2 T

'

(x)

1. Set

�(xi) := u

'

;

T

'

(xi)

1

:= f 2 
l(') j M; u

'

j=  g;

T

'

(xi)

2

:= ?; and

T

'

(xi)

3

:= 0:

(b) Otherwise, fix an runq
0

� � � q

m

2 Q

�

�

, of � onw. Take the leastp 2 [m℄ such
thatw

p

is not a test but a program literal. Letj 2 [k℄ be such that�
j

= h�

q

p

i . Set

�(xi) := u

p

;

T

'

(xi)

1

:= f 2 
l(') j M; u

p

j=  g;

T

'

(xi)

2

:= w

p

; and

T

'

(xi)

3

:= j:

2) �
i

= h�i =2 T

'

(x)

1. Then set

�(xi) := u

'

;

T

'

(xi)

1

:= f 2 
l(') j M; u

'

j=  g;

T

'

(xi)

2

:= ?; and

T

'

(xi)

3

:= 0:

To show thatT
'

is indeed a Hintikka-tree for', we first prove the following claim
which will be helpful in showing that our Hintikka-tree doesnot contain starving
diamonds.

Claim. Letx; y 2 [k℄

� be nodes such thatxi = y for somei 2 [k℄. If T
'

(y)

3

= j 6= 0,
then (i)�

i

2 T

'

(x)

1, (ii) �
j

2 T

'

(y)

1, and (iii) `(�
j

; �(y)) < `(�

i

; �(x)).

Proof. Letx andy be as in the claim. SupposeT
'

(y)

3

= j 6= 0. Then�(y) andT
'

(y)

have been set in Case 1b of the induction step. Hence�

i

2 T

'

(x)

1 and thus Point (i)
is proved. Letw = w

1

� � �w

m

, u
1

� � �u

m

, q
0

� � � q

m

, andp be as in Case 1b. Clearly,
w 2 L(�) impliesw

p+1

� � �w

m

2 L(�

q

p

). Since

�(y) = u

p

R(w

p+1

)u

p+1

R(w

p+2

) � � �u

m�1

R(w

m

)u

m

(y)
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andM; u

m

j=  , we haveM; �(y) j= h�

q

p

i = �

j

, which shows Point (ii). As
shown byw

p+1

� � �w

m

2 L(�

q

p

), (y), andM; u

m

j=  , w
p+1

� � �w

m

accomplishes
�

j

at �(y). Clearlyw
p+1

� � �w

m

is minimal with this property: under the assumption
of non-minimality, it is easy to derive a contradiction to the minimality of the word
w for accomplishing�

i

at x. Hence,`(�
j

; �(y)) = jw

p+1

� � �w

m

j < m = jwj =

`(�

i

; �(x)) finishing the proof of the claim.

We now prove thatT
'

is a Hintikka-tree for'. First, it is shown that, for each node
x 2 [k℄

�, T
'

(x)

1 is a Hintikka-set. Observe that Conditions (H1), (H2), and (H3)
easily follow from the semantics and the definition of the closure
l. Now consider the
Condition (H4). Suppose that[�℄ 2 T

'

(x)

1, andq
�

2 F

�

. We getM; x j= [�℄ 

(by (�)), (�(x); �(x)) 2 R(�), and thus alsoM; �(x) j=  . Hence, 2 T

'

(x)

1

by (�). Finally, look at the remaining Condition (H5). Suppose that [�℄ 2 T

'

(x)

1,
and letq 2 Q

�

be a state, and�? 2 �

�

a test such thatq 2 �

�

(q

�

; �?). By (H3),
_:� 2 T

'

(x)

1 or � 2 T
'

(x)

1. In the former case, (H4) follows immediately. Consider
the latter case. By (�), it holds thatM; �(x) j= [�℄ , andM; �(x) j= �. From the
semantics it follows thatM; �(x) j= [�

q

℄ . Thus,[�
q

℄ 2 T

'

(x)

1 by (�).

Since the first triple components of the node labels in treeT

'

are Hintikka-sets,
T

'

is ak-ary�
'

-tree. It remains to show thatT
'

additionally satisfies the conditions
for Hintikka-trees (T1) to (T4). Letx; y 2 [k℄

� be nodes.

(T1) Holds by definition ofT
'

; see induction start.

(T2) It is to show that thek + 1-tuple (T

'

(x); T

'

(x1); : : : ; T

'

(xk)) is matching.
We first consider the matching condition (M1). Suppose�

i

= h�i 2 T

'

(x)

1.
By (�), M; �(x) j= h�i . Thus there exists a word that accomplishes�

i

at �(x).
Letw = w

1

� � �w

m

be the minimal such word w.r.t.�. If w comprises only tests, then
M; �(x) j=  and�(xi) andT

'

(xi) are defined in Case 1a of the induction step. It
is thus readily checked that Case (a) of (M1) is satisfied: sincew 2 L(�), we find
a final stateq

1

as required. SinceM; �(x) j=  and we are in Case 1a, we obtain
 2 T

'

(x)

1, T
'

(xi)

2

= ?, andT
'

(xi)

3

= 0. Now assume thatw does contain a pro-
gram literal and letp 2 [m℄ be minimal such thatw

p

is a program literal. Then�(xi)
andT

'

(xi) are defined in Case 1b of the induction step. As in the proof of the claim,
it follows that�

j

= h�

q

i 2 T

'

(xi)

1, whereq 2 �

�

(q

�

; w

1

� � �w

p

). Moreover, we
haveT

'

(xi)

2

= w

p

andT
'

(xi)

3

= j. Thus, Case (b) of (M1) is fulfilled.
Consider the remaining Condition (M2). Suppose[�℄ 2 T

'

(x)

1. By (�), it holds
thatM; �(x) j= [�℄ . Let q 2 Q

�

be a state of�, and� 2 �

�

a program literal such
thatq 2 �

�

(q

�

; �). Assume� = T

'

(xi)

2 for somei 2 [k℄. Then�(xi) andT
'

(xi)

have been set in Case (1b) of the induction step. Thus(�(x); �(xi)) 2 R(�). Together
with the fact thatM; �(x) j= [�℄ , it follows thatM; �(xi) j= [�

q

℄ . Consequently,
[�

q

℄ 2 T

'

(xi)

1 by (�).

(T3) Suppose by contradiction that the diamond formula�

i

= h�i 2 T

'

(x)

1 is
starving in nodex, i.e., there is a path
 = 


1




2

� � � 2 [k℄

! such that

1

= i, and
T

'

(x
[n℄)

3

= 


n+1

for n � 1. Labelx with the natural number̀(�



1

; �(x)), and the
nodesx
[n℄, n � 1, with `(�

T

'

(x
[n℄)

3

; �(x
[n℄)). By the above claim, these numbers
are strictly decreasing along the path
: a contradiction to the fact that the range of
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the functioǹ isN.

(T4) Suppose that[�℄ ; [�℄� 2 T

'

(x)

1. Let � 2 �

(:)

'

be a program literal, and
q

0

�

2 Q

�

, q0
�

2 Q

�

be states such thatq0
�

2 �

�

(q

�

; �), andq0
�

2 �

�

(q

�

; �). Fur-
ther suppose that[�

q

0

�

℄ =2 T (y)

1. We show that(�(x); �(y)) 2 R(�). Assume by
contradiction that(�(x); �(y)) 2 R(�). SinceM; �(x) j= [�℄ by (�), the semantics
yields,M; �(y) j= [�

q

0

�

℄ . Then (�) yields [�
q

0

�

℄ 2 T (y)

1, a contradiction. Con-
sequently,(�(x); �(y)) 2 R(�). SinceM; �(x) j= [�℄� by (�), the semantics yields,
M; �(y) j= [�

q

0

�

℄�. Then, again by (�), we have[�
q

0

�

℄� 2 T (y)

1 as required by (T4).

“(”. SupposeT is a Hintikka-tree for'. Construct a Kripke StructureM =

(W;R; V ) in the following way:

–W := [k℄

�;

– For each atomic programa, set

R

3

(a) := f(x; y) 2 W

2

j y = xi for somei 2 [k℄, andT (y)2 = ag, and
R

2

(a) := f(x; y) 2 W

2

j there is a[�℄ 2 T (x)1 and aq 2 �

�

(q

�

;:a)

such that[�
q

℄ =2 T (y)

1

g

Now we can define the accessibility relation fora: R(a) := R

3

(a) [ R

2

(a);

– The valuation functionV (p) for propositional variablesp is defined as

V (p) := fx 2 W j p 2 T (x)

1

g:

To show thatM is a model of', we prove two claims. The first is concerned with the
relational structure:

Claim 1. For each program literal� 2 �

(:)

'

, nodex 2 [k℄

�, andi 2 [k℄, we have that
T (xi)

2

= � implies(x; xi) 2 R(�).

Proof: If � is an atomic program, then the claim is an immediate consequence of the
definition ofR(a). Thus suppose that� = :a is a negated atomic program. Assume
thatT (x)2 = :a and(x; xi) =2 R(:a). By the semantics, we obtain(x; xi) 2 R(a).
SinceT (x)2 = :a, in particular we have(x; xi) 2 R

2

(a). Thus there is a[�℄ 2

T (x)

1 and aq 2 �

�

(q

�

;:a) such that[�
q

℄ =2 T (y)

1. SinceT (x)2 = :a, however,
this is in contradiction to (M2).

The second claim is concerned with the truth of formulas.

Claim 2. For each 2 
l(') andx 2 [k℄

�,  2 T (x)1 impliesM; x j=  .

Proof: Let andx be as in the claim. Inductively define thenormk � k of APDL(:)-
formulas in NNF as follows:

kpk := k:pk := 0 for p 2 �

0

k 

1

^  

2

k := k 

1

_  

2

k := 1 + k 

1

k+ k 

2

k

kh�i k := k[�℄ k := 1 + k k+

X

�?2�

�

k�k
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The proof is by induction on the normk � k. The induction base has two cases:

–  is a propositional variable. Immediate by definition ofM.

–  = :p. We havep 2 �

0

due to NNF. With (H3), 2 T (x)1 thus implies that
p =2 T (x)

1. By definition ofM, x =2 V (p). Hence,M; x j= :p.

The induction step consists of several cases:

–  =  

1

_  

2

or  =  

1

^  

2

. SinceT (x)1 is a Hintikka-set, these cases are
straightforward by Conditions (H1) and (H2) and the induction hypothesis.

–  = �

i

= h�i�. Inductively define a (potentially infinite) path
 = 


1




2

� � � 2

([k℄

!

[ [k℄

�

) as follows:

- 

1

:= i

- if T (x
[n℄)3 6= 0, then

n+1

:= T (x
[n℄)

3;
otherwise,


n

is the last node in the path.

By (T3), the diamond formulah�i� is not starving inx. It is thus readily checked that
the path
 is finite, i.e.
 = 


1

� � � 


m

andT (x
)3 = 0. By (M1), there thus exist two
sequences of statesq

0

; : : : ; q

m

2 Q

�

andq0
0

; : : : ; q

0

m

2 Q

�

, a sequence of program
literals�

1

; : : : ; �

m

2 �

�

, and a sequence of sequences of testst

0

; : : : ; t

m

2 �

�

�

such
that, forn � m, we have

1) q
0

= q

�

;

2) if t
n

=  

1

? � � � 

`

?, then 
1

?; : : : ;  

`

? 2 T (x
[n℄)

1;

3) q0
n

2 �

�

(q

n

; t

n

);

4) T (x
[n� 1℄)

2

= �

n

if n > 0;

5) q
n+1

2 �

�

(q

0

n

; �

n+1

) if n < m;

6) q0
m

is a final state;

7) � 2 T (x
)1.

By induction hypothesis, we obtain the following from Point2 and 7: forn � m, we
have

8) if t
n

=  

1

? � � � 

`

?, thenM; x
[n℄ j=  

j

? for 1 � j � `;

9)M; x
 j= �.

Together with Claim 1, we obtain from Point 4:

10) forn 2 [m℄, we have(x
[n� 1℄; x
[n℄) 2 R(�).

Using Points 1,8,3,10,5, and 6, it is readily checked that(x; x
) 2 R(�). Together
with Point 9, we thus obtainM; x j= h�i� as required.

–  = [�℄�. By the semantics, it needs to be shown that, for any worldy 2 W ,
(x; y) 2 R(�) impliesM; y j= �. Thus suppose(x; y) 2 R(�) for somey 2 W , i.e.,
there is a wordw = w

1

� � �w

m

2 L(�), m � 0, and worldsx
0

; : : : ; x

m

2 W with
x = x

0

R(w

1

)x

1

R(w

2

) � � �x

m�1

R(w

m

)x

m

= y. Fix an accepting runq
0

� � � q

m

2

Q

�

�

of the program automaton� on w. In the following, it is shown that[�
q

i

℄� 2
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T (x

i

)

1 for i � m. We proceed by induction oni. The induction start is immediate.
For the step, assume that[�

q

i

℄� 2 T (x

i

)

1 has already been shown. We distinguish the
following cases:

(i) w
i

= Æ? is a test. From(x
i

; x

i+1

) 2 R(Æ?) it follows by the semantics
thatx

i

= x

i+1

, andM; x

i

j= Æ. Suppose by contradiction that_:Æ 2 T (x

i

)

1. The
induction hypothesis yieldsM; x

i

j= _:Æ, a contradiction toM; x

i

j= Æ. Thus _:Æ =2
T (x

i

)

1, and by (H5) we obtain[�
q

i+1

℄� 2 T (x

i

)

1

= T (x

i+1

)

1.

(ii) w
i

is an atomic programa in �

(:)

'

. By definition ofR(a), (x
i

; x

i+1

) 2

R

3

(a) [ R

2

(a). Firstly, suppose that(x
i

; x

i+1

) 2 R

3

(a). The definition ofR
3

(a)

yieldsx
i+1

= x

i

j for somej 2 [k℄, andT (x
i+1

)

2

= a. Consequently, by Condi-
tion (M2), [�

q

i+1

℄� 2 T (x

i+1

)

1.
Secondly, suppose that(x

i

; x

i+1

) 2 R

2

(a). By definition of R
2

(a), there is a
[�℄Æ 2 T (x

i

)

1, and[�
q

℄Æ =2 T (x

i+1

)

1 for someq 2 �

�

(q

�

; a). Since[�
q

i

℄� 2 T (x

i

)

1

by assumption, the Condition (T4) yields[�
q

i+1

℄� 2 T (x

i+1

)

1.

(iii) w
i

is a negated atomic program:a in �

(:)

'

. By the semantics, we have
R(:a) =W

2

nR(a). By definition ofR(a), this yields(x
i

; x

i+1

) 2W

2

n (R

3

(a)[

R

2

(a)). The fact that(x
i

; x

i+1

) =2 R

2

(a) implies that, for any box formula[�℄Æ
and stateq 2 Q

�

with q 2 �

�

(q

�

;:a), [�℄Æ 2 T (x

i

)

1 implies [�
q

℄Æ 2 T (x

i+1

)

1.
Consequently,[�

q

i+1

℄� 2 T (x

i+1

)

1.

It thus holds that[�
q

m

℄� 2 T (x)

1. Sinceq
m

2 F

�

, by Condition (H4) it follows that
� 2 T (x)

1 as required.

This finishes the proof of Claim 2. By Condition (T1), we have' 2 T (")

1. Thus, it
follows directly from Claim 2 thatM is a model of'. ■

5. Büchi Automata for Hintikka-trees

In this section, we show that it is possible to construct, forevery APDL(:)-formula
', a Büchi tree automatonB

'

that accepts exactly the Hintikka-trees for'. By Propo-
sition 11, since the size ofB

'

is at most exponential in the length of', and since
the emptiness of Büchi-tree automata can be verified in quadratic time [VAR 86], this
yields an EXPTIME decision procedure for the satisfiability of APDL(:)-formulas.
We start with introducing Büchi tree automata.

DEFINITION 13 (BÜCHI TREE AUTOMATON). — A Büchi tree automatonB for
k-aryM -treesis a quintuple(Q;M; I;�; F ), where

–Q is a finite set ofstates,

–M is a finitealphabet,

– I � Q is the set ofinitial states,

– � � Q�M �Q

k is thetransition relation, and

– F � Q is the set ofaccepting states.
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LetM be a set of labels, andT a k-ary M -tree. Then, arun of B on T is a k-ary
Q-treer such that

1) r(") 2 I , and

2) (r(x); T (x); r(x1); : : : ; r(xk)) 2 � for all nodesx 2 [k℄

�.

Let 
 2 [k℄

! be a path. The setinf
r

(
) contains the states inQ that occur infinitely
often in runr along path
. A run r of B on T is acceptingif, for each path
 2

[k℄

!, we haveinf
r

(
) \ F 6= ;. The languageaccepted byB is the setL(B) =

fT j there is an accepting run ofB onTg.

Given a Büchi automatonB, the problem whether its language is empty, i.e.,
whether it holds thatL(B) = ;, is called theemptiness problem. This problem is
solvable in time quadratic in the size of the automaton [VAR 86].

We now give the translation of APDL(:)-formulas' into Büchi-automataB
'

. To
simplify the notation, we write

P

2

(') for ff[�℄ ; [�℄�g j [�℄ ; [�℄� 2 
l(')g:

We first introduce our automata formally and then explain theintuition.

DEFINITION 14. — Let' be an APDL(:)-formula with
l(') containingk diamond
formulas. The Büchi tree automatonB

'

= (Q;�

'

; I;�; F ) on k-ary �

'

-trees is
defined as follows:

–Q contains those triples

((	; �; `); P; d) 2 �

'

� 2

P

2

(')

� f�; "g

that satisfy the following conditions:

(1) if f[�℄ ; [�℄�g � 	, thenf[�℄ ; [�℄�g 2 P

(2) if f[�℄ ; [�℄�g 2 P , � 2 �

(:), q0
�

2 �

�

(q

�

; �), q0
�

2 �

�

(q

�

; �), and
[�

q

0

�

℄ =2 	, then[�
q

0

�

℄� 2 	

– I := f((	; �; `); P; d) 2 Q j ' 2 	, andd = �g.

– ((�

0

; P

0

; d

0

); (	; �; `); (�

1

; P

1

; d

1

); : : : ; (�

k

; P

k

; d

k

)) 2 � if and only if, for
eachi 2 [k℄, the following holds:

1) �
0

= (	; �; `),

2) P
0

= P

i

,

3) the tuple(�
0

; : : : ; �

k

) is matching,

4) d
i

=

8

>

<

>

:

" if d
0

= �, �3
i

6= 0 and�
i

2 	

" if d
0

= ", �3
0

= i, and�3
i

6= 0

� otherwise:



20 JANCL – 14/2004. Title of the special issue

– The setF of accepting states isF := f(�; P; d) 2 Q j d = �g.

While it is not hard to see how the set of initial states enforces (T1) of Hintikka-
trees and how the transition relation enforces (T2), Conditions (T3) and (T4) are more
challenging. In the following, we discuss them in detail.

Condition (T3) is enforced with the help of the third component of states, which
may take the values “�” and “"”. Intuitively, the fourth point in the definition of�
ensures that, whenever the satisfaction of a diamond is delayed in a nodex andr is a
run, thenr assigns states with third component" to all nodes on the path that “tracks”
the diamond delay. Note that, for this purpose, the definition of � refers to the third
component of�

'

-tuples, which is “controlled” by (M1) in the appropriate way. All
nodes that do not appear on delayed diamond paths are labeledwith �. Then, the set
of accepting states ensures that there is no path that, from some point on, is constantly
labeled with". Thus, we enforce that no diamonds are delayed infinitely in trees
accepted by our automata, i.e. no starvation occurs.

There is one special case that should be mentioned. Assume that a nodex contains
a diamond�

i

= h�i that is not satisfied “within this node” (Case (a) of (M1) does
not apply). Then there is a potential starvation path for�

i

that starts atx and goes
through the nodexi: (M1) “advances” the automaton� to �

q

, and ensures that�
j

=

h�

q

i 2 T (xi)

1 and thatT (xi)3 = j. Now suppose thatT (xi)1 contains another
diamond�

k

= h�i� with �
j

6= �

k

. If �
k

is not satisfied withinxi, there is a potential
starvation path for�

k

starting atxi and going throughxik. Since the starvation path
for �

i

and the starvation path for�
k

are for different diamonds, we must be careful
to separate them—failure in doing this would result in some starvation-free Hintikka-
trees to be rejected. Thus, the definition of� ensures that runs labelxik with �, and
the constant"-labeling of the starvation path for�

k

is delayed by one node: it starts
only at thesuccessorof xik on the starvation path for�

k

.

Now for Condition (T4). In contrast to Conditions (T1) and (T2), this condition
has a global flavor in the sense that it does not only concern a node and its successors.
Thus, we need to employ a special technique to enforce that (T4) is satisfied: we
use the second component of states as a “bookkeeping component” that allows to
propagate global information. More precisely, Point (1) ofthe definition ofQ and
Point (1) of the definition of� ensure that, whenever two boxes appear in a Hintikka-
set labeling a nodex in a Hintikka-treeT , then this joint occurrence is recorded in
the second component of the state that any run assigns tox. Via the definition of the
transition relation (second point), we further ensure thatall states appearing in a run
share the same second component. Thus, we may use Point (2) ofthe definition of
Q and Point (1) of the definition of� to ensure that any nodey satisfies the property
stated by Condition (T4).

The following proposition shows that the Büchi tree automatonB
'

indeed accepts
precisely the Hintikka-trees for APDL(:)-formula'.

PROPOSITION15. — Let' be an APDL(:)-formula andT a k-ary�
'

-tree. ThenT
is a Hintikka-tree for' iff T 2 L(B

'

).
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PROOF 16. — Let' be a APDL(:)-formula andk the number of diamond formulas
in 
l(').

“)”. SupposeT is a Hintikka-tree for'. In the following, we show thatT 2 L(B

'

),
i.e. that there is an accepting run of the Büchi automatonB

'

onT . Set

P

2

(T ) := ff[�℄ ; [�℄�g j there is anx 2 [k℄

� such that[�℄ ; [�℄� 2 T (x)1g:

Inductively define a�
'

� fP

2

(T )g � f�; "g-treer as follows:

– setr(") := (T ("); P

2

(T );�);

– let x 2 [k℄

� such thatr(x) = (T (x); P

2

(T ); d

x

) is already defined, and let
i 2 [k℄. Setr(xi) := (T (xi); P

2

(T ); d

xi

) where

d

xi

:=

8

>

<

>

:

" if d
x

= �, T (xi)3 6= 0, and�
i

2 T (x)

1

" if d
x

= ", T (x)3 = i, andT (xi)3 6= 0

� otherwise

:

We claim that the treer is an accepting run ofB
'

onT . We start with showing thatr
is aQ-tree. To this end, letx 2 [k℄

� be a node. We have to show thatr(x) 2 Q. Since
T is a Hintikka-tree for', we haveT (x) 2 �

'

. MoreoverP
2

(T ) � P

2

('), and thus
r(x) = (T (x); P

2

(T ); d

x

) 2 �

'

� 2

P

2

(')

� f�; "g. We still have to show thatr(x)
satisfies Properties (1) and (2) of the definition ofQ.

(1) Holds by definition ofP
2

(T ) and sincer(x)1 = T (x);

(2) Suppose thatf[�℄ ; [�℄�g 2 P

2

(T ), and [�

q

0

�

℄ =2 T (x)

1 where q0
�

2

�

�

(q

�

; �) for some program literal� 2 �

(:). Let q0
�

2 �

�

(q

�

; �). By definition of
P

2

(T ), there is a nodey 2 [k℄

� with f[�℄ ; [�℄�g � T (y)

1. Then, the Condition (T4)
yields[�

q

0

�

℄� 2 T (x)

1.

Thus,r is aQ-tree. To show thatr is a run ofB
'

onT , it remains to verify the two
conditions from Definition 13.

– r(") 2 I . Since' 2 T (")1 by Condition (T1),r(") = (T ("); P

2

(T );�) 2 I .

– (r(x); T (x); r(x1); : : : ; r(xk)) 2 � for all nodesx 2 [k℄

�. According
to the definition of�, there are four conditions that need to be checked. Con-
ditions 1 and 2 are trivial by definition ofr. By (T2), we have that the tuple
(T (x); T (x1); : : : ; T (xk)) is matching. Thus, Condition 3 is satisfied. Finally, us-
ing the definition ofr it is easily checked that Condition 4 is also satisfied.

It remains to show that the runr is accepting. Suppose that it is not, i.e. that there
is a path
 = 


1




2

� � � 2 [k℄

! such thatinf
r

(
) \ F = ;. By definition ofF ,
the setinf

r

(
) contains only statesq with third component". Consequently, there
is a positionp in the sequence
 such that, for allm � p, the third component of
r(
[m℄) is ". Let p be the minimal such position. By definition ofr("), we know
that p > 0. Minimality of p thus yields that the third component ofr(
[p � 1℄) is
�. Together with the fact that the third component ofr(
[p℄) is " and by definition
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of r (the third component), this implies that the diamond formula �
`

with ` = 


p

is
in T (
[p � 1℄)

1. We show that the diamond�
`

is starving in
[p � 1℄, in this way
obtaining a contradiction to the fact thatT is a Hintikka-tree satisfying (T3).

To show that�
`

is starving in
[p� 1℄, we show that the path

p




p+1

� � � satisfies
Properties 1 and 2 from Definition 9:

– ` = 


p

. Satisfied by choice of̀.

– for m � p, T (
[m℄)

3

= 


m+1

. Fix anm � p. Since the third component of
r(
[m℄) and ofr(
[m+1℄) is ", we obtainT (
[m℄)

3

= 


m+1

by definition ofr (third
component).

“(”. SupposeT 2 L(B

'

), i.e., there is an accepting runr of B
'

on T . We show
thatT is a Hintikka-tree for'. SinceB

'

is a Büchi-automaton onk-ary�
'

-trees,T
is a k-ary �

'

-tree. Letx; y 2 [k℄

� be a nodes inT such thatr(x) = (T

x

; P

x

; d

0

x

)

andr(y) = (T

y

; P

y

; d

0

y

). In the following, we check thatT fulfills the conditions for
Hintikka-trees (T1) to (T4).

(T1) Let r(") = (T ("); P; d

0

"

). By definition of a run, it holds thatr(") 2 I . Thus,
' 2 T (")

1 by definition ofI .

(T2) By definition of a run,(r(x); T (x); r(x1); : : : ; r(xk)) 2 �. Thus, it follows by
definition of� that the tuple(T (x); T (x1); : : : ; T (xk)) is matching.

(T3) Assume, to the contrary of what is to be shown, that thereis a diamond formula
�

`

2 T (x)

1 that is starving inx. Then there exists a path
 = 


1




2

� � � 2 [k℄

!

satisfying Conditions 1 and 2 from Definition 9. We show that the third component
of r(x
[i℄) is " for all i � 2. Thus, there are no states ininf

r

(x
) whose third
component is�. By definition ofF , this is a contradiction to the fact thatr is an
accepting run.

Hence, let us show that the third component ofr(x
[i℄) is " for all i � 2. This is
done by induction oni.

- i = 2. We distinguish two cases: First, the third component ofr(x


1

) is�.
By Condition 1 of starvation,


1

= `. Thus, we have�



1

2 T (x)

1. Condition 2 of
starvation yieldsT (x


1

)

3

= 


2

. Since we have already proved (T2), we may use
(M1) to derive�




2

2 T (x


1

)

1. Together with the fact that the third component of
r(x


1

) is �, this yields that the third component ofr(x

1




2

) is " by Condition 4 of
the definition of�.

Second, the third component ofr(x

1

) is ". By Condition 2 of starvation,
T (x


1

) = 


2

6= 0. Thus, the third component ofr(x

1




2

) is " by Condition 4 of the
definition of�.

- i > 2. By induction hypothesis, the third component ofr(x
[i�1℄) is ". Due
to Condition 2 of starvation. we haveT (x
[i� 1℄)

3

= 


i

andT (x
[i℄)3 = 


i+1

6= 0.
Thus, the definition of� implies that the third component ofr(x
[i℄) is ".

(T4) Suppose[�℄ ; [�℄� 2 T (x)

1. Let � 2 �

(:)

0

be a program literal andq0
�

2 Q

�

,
q

0

�

2 Q

�

states such thatq0
�

2 �

�

(q

�

; �), andq0
�

2 �

�

(q

�

; �). Suppose[�
q

0

�

℄ =2
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T (y)

1 for some nodey 2 [k℄

�. By Condition (1) in the definition ofQ, we have
f[�℄ ; [�℄�g 2 P

x

. By the definition of�, this impliesf[�℄ ; [�℄�g 2 P

y

. Thus,
Condition (2) in the definition ofQ yields[�

q

0

�

℄� 2 T (y)

1.

■

Putting together Propositions 11 and 15, it is now easy to establish decidability
and EXPTIME-complexity of APDL(:) and thus also of PDL(:).

THEOREM 17. — Satisfiability and validity of PDL(:)-formulas areEXPTIME-com-
plete.

PROOF 18. — From Propositions 11 and 15, it follows that an APDL(:)-formula'
is satisfiable if and only ifL(B

'

) 6= ;. The emptiness problem for Büchi automata
is decidable in time quadratic in the size of the automaton [VAR 86]. To show that
APDL(:)-formula satisfiability is in EXPTIME, it thus remains to show that the size
of B

'

= (Q;�

'

; I;�; F ) is at most exponential in'.

Let n be the length of'. Since the cardinality of
l(') is polynomial inn, the
cardinality ofH

'

(the set of Hintikka-sets for') is at most exponential inn. Thus,
it is readily checked that the same holds for�

�

andQ. The exponential upper bound
on the cardinalities ofI andF is trivial. It remains to determine the size of�: since
the size ofQ is exponential inn and the out-degree of trees accepted by automata is
polynomial inn, we obtain an exponential bound.

Thus, APDL(:)-formula satisfiability and hence also PDL(:)-formula satisfiability
are in EXPTIME. For the lower bound, it suffices to recall that PDL-formula satisfia-
bility is already EXPTIME-hard [FIS 79]. ■

6. Conclusion

This paper introduces the propositional dynamic logic PDL(:), which extends
standard PDL with negation of atomic programs. We were able to show that this
logic extends PDL in an interesting and useful way, yet retaining its appealing compu-
tational properties. There are some natural directions forfuture work. For instance, it
should be simple to further extend PDL(:) with the converse operator without destroy-
ing the EXPTIME upper bound. It would be more interesting, however, to investigate
the interplay between (full) negation and PDL’s program operators in some more de-
tail. For example, to the best our our knowledge it is unknownwhether the fragment
of PDL: that has only the program operators “:” and “;” is decidable.
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