PDL with negation of atomic programs

Carsten Lutzt — Dirk Walther 1

T Institute for Theoretical Computer Science,
TU Dresden, Germany

lutz@tcs.inf.tu-dresden.de
 Department of Computer Science,
University of Liverpool, UK
dirk@csc.liv.ac.uk

ABSTRACT.Propositional dynamic logic (PDL) is one of the most sucfidsgriants of modal
logic. To make it even more useful for applications, mangresibns of PDL have been consid-
ered in the literature. A very natural and useful such extamss with negation of programs.
Unfortunately, as long-known, reasoning with the resgltiogic is undecidable. In this pa-
per, we consider the extension of PDL with negation of atqrograms, only. We argue that
this logic is still useful, e.g. in the context of descriptiogics, and prove that satisfiability is
decidable ancExPTIME-complete using an approach based on Biichi tree automata.

KEYWORDSpropositional dynamic logic, program negation, complgxit

1. Introduction

Propositional dynamic logic (PDL) is a variant of propasital modal logic that
has been developed in the late seventies as a tool for regsaimput programs [PRA 76,
FIS 77, FIS 79, HAR 84, HAR 00]. Since then, PDL was used raghecessfully in
a large number of application areas such as reasoning aboutlédge [FAG 95],
reasoning about actions [De 95, PRE 96], description loffidé 94], and others.
Starting almost with its invention around 1979 [FIS 79], maxtensions of PDL
have been proposed with the goal to enhance the expressier pmd make PDL
even more applicable; see e.g. [PAS 91, HAR 84, HAR 00]. Sditteese extensions
are tailored toward specific application areas, such akdhlgredicate that allows to
state termination in the context of reasoning about progrgadR 78]. The major-
ity of proposed extensions, however, is of a general natudehas been employed in
many different application areas—for instance, the extensf PDL with the widely
applied converse operator [VAR 85].

Journal of Applied Non-Classical Logics.Volume 14212004

2 JANCL — 14/2004. Title of the special issue

Among the general purpose extensions of PDL, two of the mbgioas ones
are the addition of program intersection™and of program negation-" [DAN 84,
HAR 84, HAR 00]. Since PDL already provides for program urtiati, the latter is
more general than the formew: N 3 can simply be expressed a$—«a U —3). The
main obstacle for using these two extensions in practigalieations is that they are
problematic w.r.t. their computational properties: figtiding intersection destroys
many of the nice model-theoretic properties of PDL. The dalgwn algorithm for
reasoning in the resulting logic PDLis the quite intricate one given in [DAN 84].
Up to now, it is unknown whether the provid@eEXPTIME upper bound is tight—
in contrast to KPTIME-complete reasoning in PDL. Second, the situation with PDL
extended with negation (PD1) is even worse: it was observed quite early in 1984
that reasoning in PDLis undecidable [HAR 84].

This undecidability was often regretted [HAR 84, PAS 91, B&R), in particular
since reasoning in PDLwould be quite interesting for a number of application areas
To illustrate the usefulness of this logic, let us give the@amples of its expressive
power: first, it was already noted that negation can be enepldy express intersec-
tion. Intersection, in turn, is very useful for reasoningabprograms since it allows
to capture the parallel execution of programs. Secondpmgegation allows to ex-
press the universal modaligy; ¢ by writing [a]e A [-a]p, with a an arbitrary atomic
program. The universal modality is a very useful extensfanadal logics that comes
handy in many applications; see e.g. [GOR 92]. Third, prognagation can be used
to express the window operatoy [HUM 83, GAR 87, GOR 90], whose semantics
is as follows:m, ¢ holds at a worldw iff ¢ holding at a worldw' implies thatw'’ is
a-accessible fromw. In PDL™, we can thus just writg-a]—y instead off, ¢. The
window operator can be viewed as expressing sufficiency imrast to the standard
box operator of modal logic, which expresses necessity.eller, the window oper-
ator has important applications, e.g. in description Isgjic)JT 00].

Due to the usefulness of program negation, it is naturaltengit the identifica-
tion of fragments of PDL that still capture some of the useful properties of program
negation, but are well-behaved in a computational senses dandidate for such a
fragment is PDL. As has already been noted, this fragment is indeed deeidabl
but has a quite intricate model theory. The purpose of thpgepé#s to explore an-
other natural option: PDL, the fragment of PDL that allows the application of
program negation tatomicprograms, only. Note that, in PDOT), negated atomic
programs may be freely used inside other program operat@show that reasoning
in PDL(™ is decidable, and & TIME-complete—thus not harder than reasoning in
PDL itself. Moreover, PDL™ has a simpler model theory than PDLwe are able to
use a decision procedure that is an extension of the staad#wthata-based decision
procedure for PDL [VAR 86], and of the standard automatatakecision procedure
for Boolean modal logic [LUT 01]. Finally, we claim that PO is still useful for
applications: while intersection cannot be expressed ammgnthe universal modality
and the window operator are still available.

PDL with negation of atomic programs 3

To give some more concrete examples of the usefulness of PDwe take a
description logic perspective. Description logics are mila of logics that origi-
nated in artificial intelligence as a tool for the represtateof conceptual knowledge
[BAA 03]. It is well-known that many description logics (D).are notational vari-
ants of modal logics [SCH 91, GIA 94]. In particular, the d@stion logic ALC g,
which extends the basic DIULC with regular expressions on roles, corresponds to
PDL [GIA 94]. More precisely, DL concepts can be understo®®BL formulas, and
DL roles as PDL programs. Thus, the extensjbﬁcﬂgg of ALC..g with negation of
atomic roles is a notational variant of PDL.. We give two examples of knowledge
representation Witbﬁl[lCE;g). These examples, which use DL syntax rather than PDL
syntax, illustrate that the combination of regular expimss on roles and of atomic
negation of roles is a very useful one.

1. Assume that we want to usAaCCf.;g? to capture the relevant notions of universities
and their students. In particular, we want to describe tieéepences that universities
have when selecting students. Since some private uniearpitefer to admit students

whose ancestors donated money to the university, we cotute wr
UniversityX — Vprefer.(Top-SAT LI Iparent™.Donator)

to state that all students preferred by University X haveezipassed the (American)
SAT test with a top score or have an ancestor that donatedyn@hwe perhaps the
policy of University X is even stronger in that it prefeal students whose ancestors
have donated money. This can be expressed using the windenatop (that can, in
turn, be expressed via atomic negation):

UniversityX — V-prefer.~(Iparent™.Donator)

states that all students with donating ancestors are peefer

2. Suppose that we want to uﬂe!lclﬁgg) to talk about trust and mistrust among negoti-
ating parties. Also assume that we have a very strong nofitmst, namely that it is
transitive: if | trustz, andzx trustsy, then | trusty as well. An analogous assumption
for mistrust should clearly not be made. Then, we can modstrost by using an
atomic rolemistrust, and trust by using—mistrust)*. We can now say, e.g., that |

trust some politicians and never mistrust a family member :
3(—mistrust)*.Politician M Vmistrust.=Familymember.

Note that reversing the roles of trust and mistrust does wookwirst, to achieve tran-

sitivity of trust, we’'d have to introduce an atomid@ect-trust relation. And second,

we could then only speak about the negatiodiedct-trust, but not about the negation
of direct-trust™, which corresponds to mistrust.

This paper is organized as followsIn Section 2, we introduce PDLand its
fragment PDI™. For illustrative purposes, we give a proof of the undeciitgtof

1. Note that the current paper is an extended version of [LUT 04

4 JANCL — 14/2004. Title of the special issue

full PDL™. In preparation for the automata-based decision proceduwétroduce a
variant APDL™ of PDL(™) in Section 3. This variant uses finite automata rather than
regular expressions as modal parameters and is betted $niteutomata-based deci-
sion procedures. As one of the two core parts of our decisiocgalure, in Section 4
we then abstract models of POL-formulasy to Hintikka-trees fory . The other
core part is presented in Section 5, where we define Bluchiguéomata that can be
used to check for existence of Hintikka-trees (and thus nsdaé PDL(™) formulas.

We conclude in Section 6 giving some possible directiondufture research.

2. PDL with Negation

In this section, we introduce propositional dynamic logRD() with negation
of programs. We start with defining full PDL. i.e. PDL extended with negation
of (possibly complex) programs. Then, the logics PDL and PDLare defined as
fragments of PDL.

DEFINITION 1 (PDL™ SYNTAX). — Let®, and Il be countably infinite and dis-
joint sets ofpropositional letterand atomic programgespectively. Then the sBT

of PDL"-programsand the set®™ of PDL"-formulasare defined by simultaneous
induction, i.e., they are the smallest sets such that:

—®, C &~ andll, C 117,

—if g, € @7, then{—p,p A, pV} CP7;
—ifmy,me € II7, then{—my, 7 Umg, my;mo, w7} CI7;
—ifr e II™, andp € &7, then{(n)p, [r]p} C 7
—ifp € &7, thenyp? € TI™

We useT as abbreviation for an arbitrary propositional tautolognd | as abbrevia-
tion for = T. Moreover, forr, 7' € TI™ we userN=’ as abbreviation for (-7 U-7").

A formulay € &~ is called aPDL(™-formula(PDL-formulg) if, in ¢, negation
occurs only in front of atomic programs and formulas (onlyront of formulas).

Throughoutthis paper, the operafa} is called the diamond operatdr] is called
the box operator, and programs of the fotii are calledtests Let us note how
formulas of PDL can be converted into concepts of the description Ioglt[?f.;g?
mentioned in the introduction: simply replaseV, (r), and[r]y with 1, U, 3.4,
andVvr .y, respectively.

DEFINITION 2 (PDL™ SEMANTICS). — LetM = (W, R,V) be aKripke struc-
turewherelV is theset of worlds R is a family of accessibility relationfor atomic
programs{R, C W? | = € TIp}, andV : &, — 2" is avaluation function In
the following, we define accessibility relations for compoprograms and the satis-
faction relation= by simultaneous induction, wheredenotes the reflexive-transitive
closure:

Ry? {(u,u) € W? | Myu = ¢}
R, = W:R,

PDL with negation of atomic programs 5

Rium, = Ry UR.,
Rryirs = Rg oRg,
R« = (Rﬂ,)*

Myulep iff weV(p)foranyp e ®
MuE-p iff MulEe
MiulE Vs iff MiulEpror MulE ¢
M7u|:991/\992 iff M,U':@l andMau':@2
M, u = (m)p iff thereisav € W with (u,v) € R and M, v |= ¢
M,u = [rlp iff forallve W, (u,v) € R, impliesM,v = ¢

If M,u | ¢ for some formulap € &~ and worldu € W, theny is trueat u in M,
and M is calledmodelof . A formula issatisfiableif it has a model. It is called
valid if it is true at all worlds in all Kripke structures.

It is well-known that satisfiability and validity of PDl-formulas are undecid-
able [HAR 84]. Since this can be established in a very sim@g, we give a proof
for illustrative purposes.

The most common proof technique is simply to state that uddedity of PDL™
is an immediate consequence of the undecidability of thegicel algebra that has the
operators-, N, U, ando (composition). Though this is of course a valid method, we
believe that it is more instructive to directly reduce thel@cidable word-problem for
finitely presented semi-groups [MAT 67], which is the standapproach for prov-
ing undecidability of the afore mentioned relation algshisee e.g. [AND 01]. This
word problem can be formulated as follows: given a set of wegdationsE =
{ur = vy,...,u; = v} and another equatiom ~ v, the task is to decide whether
every semigroup satisfying also satisfiess =~ v. To reduce this problem to PDL
satisfiability, we need to introduce the universal modalityp, which has the follow-
ing semantics:

MyulE Qe iff M,vEpforallveW.

Clearly, in PDL" we can replac& ¢ with the equivalenfa]p A [-a]p, wherea €
I1y is an arbitrary atomic program. Using the universal mogathe reduction is
now easy: we assume that, for every generator of the serapgtbere is an atomic
program of the same name, and then note that~ vy, ..., u; & v} impliesu ~ v

if and only if the following formula is unsatisfiable:

((u N-v)TV (—uN v>T> A EIU(/\ [w; N —v;]L A v; N ﬂui]J_>.
i=1.k

Here, we assume that the symbols of the wardsndv; (and ofu andv) are separated

wan

by program composition “;".

Proof sketch For both directions, the contrapositive is proved. (“oifly. If the
set of equation®l = {u; =~ vy,...,ur & vx} does notimplyu =~ v, then there
is a semigroul = (4,;,ay,...,a,) such thatl satisfiesE but notu ~ v. From
this semigroup, we can construct a modél for the reduction formula as follows:
M = (W, {Rq,,.-.,Rs,},V)where

6 JANCL — 14/2004. Title of the special issue

—-W =AU{e} wheres ¢ A,
—Ra, = {(g,a;)} U{(w,w") € A% | A satisfiesw’ ~ wa;} foranyl <i <n,
—V is arbitrary.

It can be checked that the reduction formulas is true@ti?” in M.
(“if"). Suppose that the reduction formula is satisfiable ahmodel M =

(W,{Rgs,,..., R4, },V) at aworldu € W. Then we construct a semi-group as
follows: & = (4,;,a1,...,a,), where

—A=2W x oW

—a; = Ry, forl <i <n,

—w;w" = Ry, for any two wordsw, w’ (i.e. compositions;, ; a;,; - - - ; a;,, with

Uy, bk 6{1,...71’1,}).

Now the first conjunct of the reduction formula implies tRatioes not satisfy. ~ v,
and the second conjunct implies tRasatisfiesE. End of proof sketch.

Since PDL is a very useful logic for a large number of purposes, thisaaiahbil-
ity result is rather disappointing. As has been argued inrtreduction, it is thus a
natural idea to search for decidable fragments of PHat still extend PDL in a use-
ful way. In the remainder of this paper, we will prove that PDLis such a fragment.
Note that, in PDL™), we can still define the universal modality as described abov
Also note that we can use negated atomic programs nestel iottier program oper-
ators. Anyway, it is no longer possible to encode the wordlem in PDL™ since
one can express equivalence of atomic programs, but notagace of compositions
of atomic programs.

3. An Automata-based Variant of PDL(™)

Similar to some related results in [VAR 86], our decidabiliroof is based on
Bichi-automata on infinite trees. It has turned out thatstarh proofs, it is rather
convenient to use variants of PDL in which complex prograrasiascribed by means
of automata on finite words, rather than by regular expressidrherefore, in this
section we define a corresponding variant APDLof PDL(™).

DEFINITION 3 (FINITE AUTOMATA). — A (nondeterministic) finite automaton
(NFA) Ais a quintuple(@, X, g0, A, F') where

— @ is afinite set ofstates

— Y is afinitealphabet

— (o is aninitial state

—A:Q x ¥ — 29 is a (partial) transition functionand

— F C @ is the set ofaccepting states

The functionA can be inductively extended to a function frémx ©* to 29 in a

PDL with negation of atomic programs 7

natural way:

—A(q,e) := {q}, wheres is theempty word
-A(g,wa) :={¢" € Q| ¢" € A(¢', a) for somey’ € A(q, w)}.

A sequencey,...,p, € @, n > 0, is arunof A on the worda; - --a,, € * if

Po = qo, pi € Alpi_1,a;) for0 < i < n,andp, € F. Awordw € * is

acceptedy A if there exists a run off onw. Thelanguageccepted by is the set
L(A) :={w € &* | wis accepted byl}.

To obtain APDL™ from PDL(™), we replace complex programs (i.e. regular ex-
pressions) inside boxes and diamonds with automata. Faatke of exactness, we
give the complete definition.

DEFINITION 4 (APDL(™) SynNTAx). — The setlI{™ of program literalsis de-
fined as{a,—a | a € Ty}. The setsAIl(™) of program automatand A®(™) of
APDL(™-formulasare defined by simultaneous induction, i.4I](™) and A®(~) are
the smallest sets such that:

—dy C AD);

—if g, € A then{—p, oV, p A1p} C AD);

—ifa € ATI®) andy € A9, then{(a)p, [a]p} C AD);

—if a is a finite automaton with alphabé&t C Hff) U{y? | v € A®(D}, then
a e ATIC)

Note that the alphabet of program automata is composed ofi@aforograms, of
negated atomic programs, and of tests.

DEFINITION 5 (APDL(™) SEMANTICS). — LetM = (W, R, V) be a Kripke struc-
ture as in Definition 2. We inductively define a relatiBhmapping each program
literal, each test, and each program automaton to a binatgtien overiV. This is

done simultaneously with the definition of the satisfactedation =:

R(a) := R, foreacha € Il
R(=a) := W?\ R, foreacha € TI,
R(W?) = {(uu) € W? | M,u =}
R(a) = {(u,v) € W?|thereis awordy = w; - - w,, € L(a),
m > 0, and worldsug, ..., u, € W such that

u = uoR(wy)us R(wz) + - 1 R(wp,)y, = v}
Mul=p iff weV(p)foranyp € @,
Mu=—p iff MulE g,
Ma“':@l\/‘f% iff M,U|:9910rM,U':<P2,
M,U':@l /\992 iff M,U|: $1 andM,U|:<P2,
M u = (a)p |iff thereisau’ € W with (u,u') € R(a) and M, u’ |= ¢,
M,u=lalp iff forall u' € W, (u,u') € R(a) impliesM, v’ = ¢.

Truth, satisfiability, andvalidity are defined as in the PDLcase.

8 JANCL — 14/2004. Title of the special issue

Since every language defined by a regular expression carbalsscepted by a
finite automaton and vice versa [KLE 56], it is straightfordi¢o verify that PDI(™)
and APDL™ have the same expressive power. Moreover, upper compleaitpds
carry over from APDI™ to PDL(™ since conversion of regular expressions to fi-
nite automata can be done with at most a polynomial blow-ugze. Note that the
converse does not hold true: since there exist autordaaacepting languages that
can only be defined by regular expressions whose size is exgiahin the size of
A [EHR 74], there are APDL-formulasy such that the length of all equivalent
PDL(™)-formulas is exponential in the length of

It is interesting to note that, in many automata-based @tecigocedures for vari-
ants of PDL, aleterministiozersion of APDL is used, i.e. a variant of APDL in which
there may be at most one successor for each world and eacit gtagram [VAR 86].
In a second step, satisfiability in the non-deterministi®©ARvariant is then reduced
to satisfiability in the deterministic one. We cannot takie tipproach here since we
cannot w.l.o.g. assume that both atomic prograndtheir negationare determinis-
tic. Indeed, this would correspond to limiting the size offie structures to only two
worlds.

4. Hintikka-trees

This section provides a core step toward using Buchi-tréenaata for deciding
the satisfiability of APDL™)-formulas. The intuition behind this approach is as fol-
lows: to decide the satisfiability of an APDL -formula ©, we translate it into a
Buichi-tree automatoBi, such that the trees accepted by the automaton correspond in
some way to models of the formufa To decide satisfiability op, it then remains to
perform a simple emptiness-test on the autom#ignthe accepted language will be
non-empty if and only ifp has a model.

In the case of APDL™, one obstacle to this approach is that APDLdoes not
enjoy thetree model property (TMPR).e., there are APDL)-formulas that are satis-
fiable only in non-tree models. For example, for each N the following PDL(™)-
formula enforces a cycle of length

1 Aa) (g A{a)(--- (¥ A [-al=gr) - --)),

where, forl <i < n,¢¥? =pi A---A=p; A+ A pp With py, ..., p, propositional
variables. Note that the formujaa]—7 inside the diamonds simulates the window
operator and in this way closes the cycle. Thus, we have &strasome work to obtain
tree-shaped representations of (possibly non-tree) radla& can then be accepted by
Buchi-automata.

As a preliminary, we assume that all APDV-formulas are imegation normal
form (NNF) i.e. that negation occurs only in front of propositiondtdes. This as-
sumption can be made w.l.0.g. since each formula can be dedvato an equivalent
one in NNF by exhaustively eliminating double negation,lgimg DeMorgan’s rules,
and exploiting the duality between diamonds and boxes.

PDL with negation of atomic programs 9

For the sake of brevity, we introduce the following notatibconventions:

— for eachA PD L(™)-formulay, ¢ denotes the NNF ofiy;

— for each program literat, 7 denotes—r if 7 is an atomic program, and if
m = —a for some atomic program

— for each program automaten we useQ., X, ¢., A, andF, to denote the
components oft = (Q, X, qo, A, F);

— for each program automatenand state; € @),, we usex, to denote the au-
tomaton(Q., X, ¢, Ay, Fy), i.e. the automaton obtained fromby usingq as the
new initial state.

Before we can develop the tree-shaped abstraction of magelseed to fix @losure
i.e. a set of formulasl(y) relevant for deciding the satisfiability of an input formula
. This is done analogous to [FIS 79, VAR 86]. In the followinghen we talk of a
subformula) of a formulay, we mean thag> can be obtained from by decomposing
only formula operators, but not program operators. For @am is a subformula of
(b?)a, while b is not.

DEFINITION 6 (CLOSURE). — Let be a APDL™-formula. The setl(y) is the
smallest set which is closed under the following conditions

(Ch ¢ eclly)

(C2) if 4 is a subformula of)" € cl(p), theny € cl(y)
(C3) if Y € cl(y), then=p € cl(y)

(C4) if ()1 € cl(y), theny' € cl(p) for all ¥'? € T,
(C5) if (a)y € cl(ip), then(ay)y € cl(p) forall ¢ € @,
(C6) if [a]y € cl(p), theny' € cl(p) forall ¢'? € =,
(C7)if [a]i) € cl(p), then[a] € cl(y) forall ¢ € Qq

It is standard to verify that the cardinality of{p) is polynomial in the length of
p; see e.g. [HAR 00]. We generally assume the diamond form(ukasformulas of
the form{a)) in cl(y) to be linearly ordered and useto denote the-th diamond
formula incl(y), with ¢; being the first one. Note that a changed initial state of an
automaton results in a different diamond formula.

To defineHintikka-treesthe tree-shaped abstraction of models underlying our de-
cision procedure, we proceed in three steps. First, wedatreHintikka-setghat will
be used as (parts of) node labels. Intuitively, each nodweaitree describes a world of
the corresponding model, and its label contains the forsnfutam the closure of the
input formulay that are true in this world. Second, we introduaaatching relation
that describes the possible “neighborhoods” that we mayiffiftintikka-trees, where
a neighborhood consists of a labeled node and its labelassars. And third, we
use these ingredients to define Hintikka-trees.

10 JANCL — 14/2004. Title of the special issue

DEFINITION 7 (HINTIKKA -SET). — Lety € &) be an APDI™-formula, and
o € ATI™) a program automaton. The s&tC cl(y) is a Hintikka-set fory if

(H1) if ¢4 A by € T, theny; € T andy, € T

(H2) if 1 V 1py € U, thenyy € T oryy € T

H)y eTiff p ¢ T

(H4) if [a]y € ¥ andq,, € F,, theny € T

(H5) if [a]y € T then, for any state € @, and test)? € &,
q € Ay (qa,07) implies that-6 € T or [a,|y) € T

The set of all Hintikka-sets fas is designated b$,,.

The conditions (H1) to (H3) are standard, with one excepi{Bi3) is stronger than
usual since it enforces maximality of Hintikka-sets by isigthat, for each formula
Y € cl(yp), eithery or ¢ must be in the Hintikka-set. This will be used later on
to deal with negated programs. The last two conditions (H) @5) deal with the
“local” impact of box formulas.

Next, we define the matching relation. The purpose of thiti@t can be under-
stood as follows: in the Hintikka-tree, each node has exaxcte successor for every
diamond formula incl(p). The matching relation helps to ensure that all diamond
formulas in a node’s label can be satisfied “via” the corresiimg successor in the
Hintikka-tree, and that none of the box formulas is violatéany successors. We
talk of “via” here since going to an immediate successoresponds to travelling
along asingle program literal. Since programs in APDL are automata that may
only accept words of length greater one, in general we casatigfy diamonds by
going only to the immediate successor, but rather we muferl sequence of such
moves.

Before we define the matching relation formally, let us fix gteicture of node
labels of Hintikka-trees. For reasons that will be discddselow, node labels not
only contain a Hintikka-set, but also two additional comeoits. More precisely, ip
is an APDL™)-formula andcl(y) containsk diamond formulas, then we use

- HEZ) to denote the set of all program literals occurringirand

— A, to abbreviaté{,, x (Hf;) U{L})x{0,...,k},i.e.the setof triples containing
a Hintikka-set forp, a program literal ofp or L, and a number at most

The elements of\, will be used as node labels in Hintikka-trees. Intuitivelye
first component lists the formulas that are true at a nodes¢bend component fixes
the program literal with which the node can be reached fremiiedecessor (ar if
this information is not important), and the third componeiit help to ensure that
diamond formulas are eventually satisfied when moving thindhe tree. For a triple
A € Ay, we refer to the first, second and third triple component with A\?, and

PDL with negation of atomic programs 11

A3, respectively. For the following definition, recall that wsee; to denote the-th
diamond incl(ip).

DEFINITION 8 (MATCHING). — Letp be a formula and: the number of diamond
formulas incl(¢). Ak + 1-tuple of A,-triples (A, A1, ..., A;) is matchingif, for
1 <i < k and all automatay € AT, the following holds:

(M1)ife; = (a)yp € X', then there is a wordy = ¢, ? - - -,? € B, n > 0,
and a statey; € Q, suchthat{tr, ..., ¢, } C A, g1 € Ap(ga,w),
and one of the following holds:

(@) ¢; is afinal stategh € \', A7 = L, and\? =0

(b) there is a program literakr € X, and a statey, € @0, such that

¢ € Ag(qu1,m), €5 = {Qg,) €)\}, /\? =, and/\? = 7.

(M2)if [a]y € A, ¢ € Qq, andm € %, a program literal such that

7 € Au(qa,), thent = X7 implies[a,]y € AL

As already noted, the purpose of the matching relation iszidbe the possible
neighborhoods in Hintikka-trees. To this end, think\cds the label of a node, and of
A1, ..., A as the labels of its successors. The purpose of Conditiot$ ékid (M2)
is to ensure that diamonds are satisfied and that boxes axéofeited, respectively.
Let us consider only (M1). If a diamond = («)v is in the first component ok,
it can either be satisfied in the node labeled witfiself (Condition (a)) or we can
“delay” its satisfaction to the-th successor node that is reserved specifically for this
purpose (Condition (b)). In Case (a), it is not importantravkich program literal we
can reach thé-th successor, and thus the second componekt oén be set ta.. In
the second case, we must choose a suitable program litenradl a suitable statgof
«, make sure that theth successor is reachable ovevia its second\;-component,
and guarantee that the first component péontains the diamond under consideration
with the automata “advanced” to initial statq.

The remaining building block for ensuring that diamondssatisfied is to enforce
that the satisfaction of diamonds is not delayed foreveis ©hone of the two core
parts of the definition of Hintikka-trees, the other being groper treatment of nega-
tion. Before we can discuss the prevention of infinitely glethdiamonds in some
more detail, we have to introduce some basic notions.

Let M be a set and: € N. An (infinite) k-ary M-tree T' is a mappingl :
[k]* — M, where[k] is used (now and in the following) as an abbreviation for the
set{l1,...,k}. Intuitively, the nodevi is thei-th child of a. We uses to denote the
empty word (corresponding to the root of the tree). An infipiathin a k-ary M -tree
is an infinite wordy over the alphabdt]. We usey[n], n > 0, to denote the prefix of
v up to then-th element of the sequence (witf0] yielding the empty sequence).

12 JANCL — 14/2004. Title of the special issue

Now back to the prevention of infinitely delayed diamondsveaia formulap
with & diamond formulas irtl(¢), a Hintikka-tree will be defined aslaary A, -tree
in which every neighborhood is matching and some additicoatlitions are satisfied.
To detect infinite delays of diamonds in such trees, it de®suffice to simply look
for infinite sequences of nodes that all contain the same ali@amfirstly, diamonds
are evolving while being “pushed” through the tree sincertimtial state might be
changed. Secondly, such a sequence does not necessardgpmrd to an infinite
delay of diamond satisfaction: it could as well be the caaettie diamond is satisfied
an infinite number of times, but always immediately “regaed” by some other
formula. Also note that we cannot use the standard techrique[VAR 86] since it
only works for deterministic variants of PDL.

Precisely for this purpose, the easy detection of infinitdlayed diamonds, we
have introduced the third component of node labels in Hiatikkees: if a diamond
was pushed to the current noddrom its predecessor, then by (M1) the third com-
ponent ofz’s label contains the number of the pushed diamond. Moredivére
pushed diamond is not satisfiedanwe again use the third componentiaofit con-
tains the number of the successor:db which the diamond’s satisfaction is (further)
delayed. If no diamond was pushedatpits third component is simply zero. Thus,
the following definition captures our intuitive notion ofiimitely delayed diamonds.

DEFINITION 9 (DIAMOND STARVATION). — Let o be an APDL™-formula with
k diamond formulas incl(¢), T a k-ary A,-tree, z € [k]* a node inT, and
e; = () € T(x)'. Then the diamond formul@)« is calledstarving inz if there
exists a pathy = ;742 - - - € [k]“ such that

1) ’}/1 = i,
2) T(zy[n])? = ype1 forn > 1.

We have now gathered all ingredients to define Hintikkastfeemally.

DEFINITION 10 (HINTIKKA -TREE). — Let ¢ be an APDI™-formula with % dia-
mond formulas irtl(y). Ak-ary A,-treeT is aHintikka-tree fory if T' satisfies, for
all nodesz, y € [k]*, the following conditions:

(T eT(e)

(T2) thek + 1-tuple(T'(z), T (x1),...,T(xk)) is matching

(T3) no diamond formula frord () is starving inz

(T4) if[a]¢, [810 € T(2)"', w € N7, ¢l, € Qa, andg); € Qs such that
o, € Au(qa, ™) andqj € Ag(qp,7), then
g, 10 ¢ T(y)" implies[3,, 16 € T(y)".

Conditions (T1) to (T3) are easily understood. The purpdseamdition (T4) is
to deal with negated atomic programs. In particular, forheatmmic progranu we

PDL with negation of atomic programs 13

have to ensure that any pair of nodeg of a Hintikka-treeT" can be related by one
of a and—a without violating any boxes. This is done by (T4) togethettwH3)—
indeed, this is the reason for formulating (H3) strongenthaual. Intuitively, the
treatment of negation can be understood as follows: suppast])y € T'(x)', let

q € Ay(ga,a) for some atomic program, and lety be a node. By (H3), we have
either[o, v € T(y)' or S[a,]v € T(y)'. In the first casey andy can be related by
a. In the second case, (T4) ensures that they can be related.bVhis technique is
inspired by [LUT 01], but generalized to program automatata\that the treatment
of negated atomic programs in (T4) allows the represemtatfcmon-tree models as
(Hintikka-)trees.

We now show that Hintikka-trees are indeed proper abstrasiof models. In or-
der to do this, we need two new notions. First, we Hgeto denote the smallest set
containing (i) all program literals occurring in(i.e. Hf;)) and (ii) all tests)? occur-
ring in . Second, let\ be a Kripke structure anda world of M. Then a wordo =
wy - - wy, € $*is said toaccomplisha diamond formulda)y atwu if w € £(a), and

there are worldsy, . . ., u,, of M suchthat. = ugR(w1)us R(w2) - - * m—1 R(Wi)t
and M, u, = ¢.

PROPOSITION11. — An APDL™-formulay is satisfiable iff it has a Hintikka-tree.

PROOF12. — Lety be anAP DL -formula andk the number of diamond formu-
las incl(p).

“=". Suppose the Kripke structut®! = (W, R, V') is a model ofp, i.e., there is a
world u, € W such thatM, u,, |= ¢. Fix alinear order on 37 such that

—w < w'if |w] < |w'|, and
—ww' < ww" if w <w".

Then define a partial functioh: cl(¢) x W — N as follows: for eacHa)vy € cl(yp),
andu € W such thatM,u | (a)y, (({(a)y,u) denotes the length of the word
w € ¥, that accomplishe&y)y atu and is minimal (w.r.t<) with this property.

In the following, we construct a Hintikka-tree fgr. More precisely, we simulta-
neously define

—ak-ary (29 x (5" U{L}) x {0, ..., k})-treeT, and
—amapping : [k]* = W
such that, for alk € [k]*, we have
V€ Ty(a)' it M,7(z) = o ()

The construction of andT, is inductive. For the induction base, set

T(e) = uy,
T, = {pedl)| Muy ko),
T,(¢)* := L1,and
Ty(e)® = 0.

14 JANCL — 14/2004. Title of the special issue

For the induction step, let € [k]* be a node such that(x) is already defined, but
7(x1),...,7(xk) are not. For eache [k], we distinguish two cases:

1) e; = () € Ty(z)'. Then &) yields M, 7(x) | (a)y. By the semantics,
there thus exists a word that accompliskep) at7(z). Letw = wy -+ wy, € ¥
be the minimal such word w.r.t. the orderirg Then there are worlds,, . . ., u,, €
W such thatr(z) = wuoR(wy)uy R(wa)us - - - tm—1 R(wm)y, and M, u,, = .
Distinguish two subcases:

(a) The wordw contains only tests or is empty. This implies thét) = u,,,
and thusM, 7(z) = . By (x), we gety € T,,(z)'. Set

T(xi) = uy,
Ty(xi)t = {¢ed(p) | M,u, =9},
Ty(xi)®> := 1, and
T,(xi)® = 0.

(b) Otherwise, fixanrumo - - - gm € Q%, of @ onw. Take the leasgt € [m] such
thatw), is not a test but a program literal. Lgt [k] be such that; = (a,,). Set

T(xi) = up,
Ty(zi)' = {p €clp) | M,u, ¥},
T,(vi)? = w,, and
Ty(xi)® = j.

T(xi) = uy,
To(@i) = {0 ed(o)| Myus v},
T,(x1)* := 1, and
Ty(xi)® = 0.

To show thatT, is indeed a Hintikka-tree fap, we first prove the following claim
which will be helpful in showing that our Hintikka-tree doast contain starving
diamonds.

Claim. Letz,y € [k]* be nodes such thai = y for somei € [k]. If T,,(y)® = j # 0,
then (i)e; € Ty, (z)', (ii) €; € T, (y)', and (iii) £(e;, 7(y)) < (i, T(2)).

Proof. Letz andy be as in the claim. Suppo3g (y)* = j # 0. Thenr(y) andT,(y)
have been set in Case 1b of the induction step. HeneeT,(z)! and thus Point (i)
is proved. Letw = wy - - Wi, U1+ - Um, Go -+ - ¢m, @Ndp be as in Case 1b. Clearly,
w € L(a) implieswyi1 - - wy, € L(ay,). Since

7(y) = upR(wpi1)upr1 R(wpra) - Um—1 R(W)um (1)

PDL with negation of atomic programs 15

and M, u,, = ¢, we haveM,7(y) |= (ag,)Y = €;, which shows Point (ii). As
shown bywp1 -+ - wm € L(ag,), (1), andM, uy, = 9, wpyi - - - wy, accomplishes
¢; at7(y). Clearlyw,i1 - - - wy, is minimal with this property: under the assumption
of non-minimality, it is easy to derive a contradiction te tminimality of the word

w for accomplishing; atz. Hence,l(e;, T(y)) = |wpt1 - wm| < m = |w| =
¢(e;, 7(z)) finishing the proof of the claim.

We now prove thaf’, is a Hintikka-tree forp. First, it is shown that, for each node
z € [k]*, T,(x)" is a Hintikka-set. Observe that Conditions (H1), (H2), ahi@)
easily follow from the semantics and the definition of thesalecl. Now consider the
Condition (H4). Suppose that]y € T, (z)!', andg, € F,. We getM,z = [a]y
(by (), (r(z),7(x)) € R(«a), and thus alsoU, 7(z) = . Hence,y € T,(z)!

by (x). Finally, look at the remaining Condition (H5). Supposatfa]y € T, (z)",
and letg € Q, be a state, and? € X, a test such thag € A,(qq,07). By (H3),

0 € T,(x)! orf € T,(z)'. In the former case, (H4) follows immediately. Consider
the latter case. Byx{, it holds thatM, 7(z) = [a]y, and M, 7(z) |= 0. From the
semantics it follows that1, 7(z) | [ag]v. Thus,[a,]y € T, (z)! by (x).

Since the first triple components of the node labels in Fgare Hintikka-sets,
T, is ak-ary A, -tree. It remains to show thdt, additionally satisfies the conditions
for Hintikka-trees (T1) to (T4). Let, y € [k]* be nodes.

(T1) Holds by definition ofl,; see induction start.

(T2) It is to show that thet + 1-tuple (T, (x), T, (x1),...,T,(xk)) is matching.
We first consider the matching condition (M1). Suppese= (a)y € T,(z)'.
By (¥), M, 7(z) E (a)y. Thus there exists a word that accomplishgat 7(z).
Letw = wy - - - w,, be the minimal such word w.r. If w comprises only tests, then
M, 1(z) | ¢ and7(zi) andT,(zi) are defined in Case 1a of the induction step. It
is thus readily checked that Case (a) of (M1) is satisfiedcesin € L£(«), we find

a final statey; as required. SincéA, 7(x) = ¢ and we are in Case la, we obtain
Y € Ty(x)', Tp(xi)? = L, andT,(x1)* = 0. Now assume that does contain a pro-
gram literal and lep € [m] be minimal such thaw,, is a program literal. Then(x)
andT, (z7) are defined in Case 1b of the induction step. As in the prodiettaim,

it follows thate; = (a,)¢ € T, (xi)', whereq € Ay (ga,wr -+ - wy). Moreover, we
haveT,(zi)? = w, andT,(zi)* = j. Thus, Case (b) of (M1) is fulfilled.

Consider the remaining Condition (M2). Suppde®) € T,(z)'. By (), it holds
that M, 7(z) = [a]y. Letq € Q. be a state ofy, andr € ¥, a program literal such
thatg € Ay (ga,). Assumer = T,(xi)? for somei € [k]. Thent(zi) andT,,(x1)
have been set in Case (1b) of the induction step. Thus), 7(z7)) € R(r). Together
with the fact thatM, 7(z) |= [a]¢, it follows that M, 7(z7) = [ag]t. Consequently,
[ag)th € Ty (i) by ().

(T3) Suppose by contradiction that the diamond formyla= (a)y € T,(z)' is
starving in nodez, i.e., there is a path = ~1v--- € [k]“ such thaty; = 4, and
T,(xy[n])® = vpy1 forn > 1. Labelz with the natural numbef(e,,, 7(z)), and the
nodesey[n], n > 1, with {(e7,, (z4[n))2, T(27[1])). By the above claim, these numbers
are strictly decreasing along the patha contradiction to the fact that the range of

16 JANCL — 14/2004. Title of the special issue

the function/ is IN.

(T4) Suppose thafn]y, [310 € T,(z)'. Letw € Hf;) be a program literal, and
7o € Qa, q5 € Qp be states such thaf, € A, (ga,), andg; € As(gp, 7). Fur-
ther suppose thaty, J¢» ¢ T'(y)'. We show tha{r(z),7(y)) € R(7). Assume by
contradiction thatr(z), 7(y)) € R(r). SinceM, 7(z) | [a]y by (x), the semantics
yields, M, 7(y) [= [ag J¥. Then &) yields [« J¢» € T'(y)*, a contradiction. Con-
sequently(7(z),7(y)) € R(7). SinceM, (z) = [B]6 by (x), the semantics yields,
M, 7(y) & [Bg,10. Then, again by«), we havel3, |0 € T(y)! as required by (T4).

“«<". SupposeT is a Hintikka-tree forp. Construct a Kripke Structurét =
(W, R, V) in the following way:
-W = [kl
— For each atomic program set
Ro(a) = {(x,y) € W? |y = zifor somei € [k], andT (y)? = a}, and
Ra(a) := {(x,y) € W?|thereisda]y € T(x)' andag € Ay (qa,na)
such thafa,]y ¢ T(y)'}
Now we can define the accessibility relation forR(a) := Re(a) U Ra(a);
— The valuation functioi (p) for propositional variableg is defined as

Vp):={x e W |peT(x)').

To show thatM is a model ofp, we prove two claims. The first is concerned with the
relational structure:

Claim 1 For each program literal € Hff), nodez € [k]*, andi € [k], we have that
T(zi)? = m implies(z, zi) € R(r).

Proof: If r is an atomic program, then the claim is an immediate consexuef the
definition of R(a). Thus suppose that = —a is a negated atomic program. Assume
thatT' (z)? = —a and(x,zi) ¢ R(—a). By the semantics, we obtaim, zi) € R(a).
SinceT'(x)? = —a, in particular we havéz, zi) € Rg(a). Thus there is da]y €
T(z)! and ag € A, (qa,—a) such thafa,]y ¢ T(y)t. SinceT(x)? = —a, however,
this is in contradiction to (M2).

The second claim is concerned with the truth of formulas.
Claim 2 For each) € cl(¢) andz € [k]*, ¢ € T(z)" implies M,z |= 1.

Proof: Lety) andz be as in the claim. Inductively define therm|| - || of APDL(™)-
formulas in NNF as follows:

2]l = |[[-pll = Oforpe @
lr Aaball := [|or Vbo| == T4 ||Un]| + [|2]|
K)ol = [[aly]] = 1+ll+ > 119l

07€X,

PDL with negation of atomic programs 17

The proofis by induction on the norih ||. The induction base has two cases:

—1) is a propositional variable. Immediate by definition/of.
—1) = —p. We havep € &, due to NNF. With (H3)y» € T'(z)* thus implies that
p ¢ T'(x)'. By definition of M, z ¢ V(p). Hence M, z |= —p.
The induction step consists of several cases:
—1p = by V by Ore) = 9y A1), SinceT(x)! is a Hintikka-set, these cases are
straightforward by Conditions (H1) and (H2) and the indoictihypothesis.
—1 = ¢ = (a)f. Inductively define a (potentially infinite) path= v;v2 --- €
([k]¥ U [k]*) as follows:
-7 = 7
- if T'(zv[n])® # 0, theny,41 := T'(zv[n])?;
otherwisey, is the last node in the path.

By (T3), the diamond formuléx)é is not starving inc. It is thus readily checked that
the pathy is finite, i.e.y = v - - - v, andT'(z)? = 0. By (M1), there thus exist two
sequences of states, ..., qm € Q, andqy, ..., ¢, € Q, a sequence of program
literalsmy,...,m, € ¥£,, and a sequence of sequences of tgsts . , t,, € £} such
that, forn < m, we have

1) g0 = qa;

2)if ty, =17 ahe?, theny 7, ... b7 € T(zy[n]);

3) a4, € Aal(qn,tn);

A T(zyn —1])? = 7, if n. > 0;

5) gn+1 € Aul(q),, i) if n < m;

6) q,, is a final state;

7)0 € T(ay)'.
By induction hypothesis, we obtain the following from Paiand 7: forn < m, we
have

8)if t, = yn 74?7, thenM,azvy[n] = ;7 forl < j < ¢,

9) M, zy 6.
Together with Claim 1, we obtain from Point 4:

10) forn € [m], we have(ay[n — 1], zv[n]) € R(r).
Using Points 1,8,3,10,5, and 6, it is readily checked that~y) € R(«). Together

with Point 9, we thus obtaifMm, » = (a)f as required.

—1 = [a]f. By the semantics, it needs to be shown that, for any warkd W,
(z,y) € R(a) implies M,y = 6. Thus supposér,y) € R(a) for somey € W, i.e.,
there is awordv = wy - - wy, € L(a), m > 0, and worldsey, . . ., 2, € W with
x = xoR(w1)x1 R(wa) -+ 1 R(wm)z, = y. Fix an accepting rugo - - - ¢, €
Q7, of the program automatom on w. In the following, it is shown thafa,, |60 €

18 JANCL — 14/2004. Title of the special issue

T (z;)* fori < m. We proceed by induction oi The induction start is immediate.
For the step, assume tHat,,]6 € T'(x;)" has already been shown. We distinguish the
following cases:

() w; = 07 is a test. Fromz;,z;11) € R(7) it follows by the semantics
thatz; = x;.1, and M, z; = 6. Suppose by contradiction that € T'(z;)!. The
induction hypothesis yield31, z:; = —§, a contradiction toV, z; = §. Thus=d ¢
T(z;)", and by (H5) we obtaifry,, 10 € T'(z;)' = T(zi41)".

(i) w; is an atomic programa in Hff). By definition of R(a), (x;,211) €
Ro(a) U Ra(a). Firstly, suppose that;, z;11) € Ro(a). The definition ofR¢ (a)
yieldsz;,; = =;j for some;j € [k], andT'(x;;1)? = a. Consequently, by Condi-
tion (M2), [ag,,,10 € T(zi11)*.

Secondly, suppose thét;,z;11) € Rao(a). By definition of Rq(a), there is a
(316 € T(x;)",and[B,]6 ¢ T(x;41)" forsomeg € As(qs,a). Sincelay, 10 € T(x;)"
by assumption, the Condition (T4) yiel@ts,,, 16 € T'(zi41)".

(i) w; is a negated atomic prografm in Hf;). By the semantics, we have
R(-a) = W2\ R(a). By definition of R(a), this yields(z;, z;11) € W2\ (R (a) U
Rg(a)). The fact that(z;,z;+1) ¢ Ro(a) implies that, for any box formuld3]é
and statey € Qg with ¢ € Ag(gs, —a), [B]6 € T(x;)" implies[3,]6 € T(wiy1)'.
Consequentlyeyg, 10 € T(ziy1)".

It thus holds thafw,,, 10 € T'(z)'. Sinceg,, € F,, by Condition (H4) it follows that
6 € T(x)! as required.

This finishes the proof of Claim 2. By Condition (T1), we haves T'(¢)!. Thus, it
follows directly from Claim 2 that\1 is a model ofp.]

5. Buchi Automata for Hintikka-trees

In this section, we show that it is possible to constructefary APDL™-formula
», a Blchi tree automatafi, that accepts exactly the Hintikka-trees farBy Propo-
sition 11, since the size df, is at most exponential in the length of and since
the emptiness of Buchi-tree automata can be verified in gtiadime [VAR 86], this
yields an EPTIME decision procedure for the satisfiability of APDL-formulas.
We start with introducing Blichi tree automata.

DEFINITION 13 (BUCHI TREE AUTOMATON). — A Buichi tree automatoi$ for
k-ary M-treesis a quintuple(Q, M, I, A, F'), where

— @ is afinite set ofstates

— M is afinitealphabet

— I C (@ is the set ofinitial states

—A C Q x M x QF is thetransition relationand

— F C (@ is the set ofaccepting states

PDL with negation of atomic programs 19

Let M be a set of labels, an@ a k-ary M-tree. Then, aunof 5 onT is a k-ary
Q-treer such that

r(e) e 1,and

2) (r(z),T(z),r(z1),...,r(xzk)) € A for all nodesr € [k]*.
Lety € [k]“ be a path. The set.f,.(y) contains the states i@ that occur infinitely
often in runr along pathy. A runr of B on T is acceptingif, for each pathy €

[k]“, we haveinf.(y) N F # (). Thelanguageaccepted by5 is the setl(B) =
{T | there is an accepting run & onT'}.

Given a Bichi automato, the problem whether its language is empty, i.e.,
whether it holds thatZ(B) = 0, is called theemptiness problemThis problem is
solvable in time quadratic in the size of the automaton [VAR 8

We now give the translation of APDD) -formulasy into Buchi-automat#,. To
simplify the notation, we write

Po(e) for {{[a]e, [B16} | [, [B16 € cl(p)}.

We first introduce our automata formally and then explainitigtion.

DEFINITION 14. — Lety be an APDI.™-formula withcl () containingk diamond
formulas. The Biichi tree automatdt), = (Q,A,,I,A, F) on k-ary A,-trees is
defined as follows:

— (@ contains those triples
(0,7, 0),P,d) € Ay x 27709 x {0, 1}

that satisfy the following conditions:

(1) if {[a]¥, [B10} C ¥, then{[a]y, [5]0} € P
@) if {[o]v, [86} € P, m € T, ¢, € Aa(ga,7), ¢ € Ap(gp,7), and
[ag,Ji ¢ ¥, then[3, 0 € ¥

—-I:={((¥,m{),Pd) eQ|pe ¥, andd =0}

—((Mo, Po,do), (¥, 7, 0),(A1, Pr,dy),-..,(Ag, Pe,dr)) € A if and only if, for
eachi € [k], the following holds:
1) Ao = (¥, 7,0),
2) Py = P,
3) the tuple(), - . ., \) is matching,
t ifdy =0, #0ande; € ¥
4yd; =< 1 ifdo=1 A =i,andA3 £0
@ otherwise

20 JANCL — 14/2004. Title of the special issue

— The seff” of accepting states i8' := {(\, P,d) € Q | d = ©}.

While it is not hard to see how the set of initial states erder€T1) of Hintikka-
trees and how the transition relation enforces (T2), Comt(T3) and (T4) are more
challenging. In the following, we discuss them in detail.

Condition (T3) is enforced with the help of the third compnonef states, which
may take the values?” and “1”. Intuitively, the fourth point in the definition of\
ensures that, whenever the satisfaction of a diamond iyeig¢ia a noder andr is a
run, thenr assigns states with third componérib all nodes on the path that “tracks”
the diamond delay. Note that, for this purpose, the defimitibA refers to the third
component of\-tuples, which is “controlled” by (M1) in the appropriate yvaAll
nodes that do not appear on delayed diamond paths are lakighed. Then, the set
of accepting states ensures that there is no path that, fome point on, is constantly
labeled witht. Thus, we enforce that no diamonds are delayed infinitelyeest
accepted by our automata, i.e. no starvation occurs.

There is one special case that should be mentioned. Assate tieder contains
a diamond; = (a)e that is not satisfied “within this node” (Case (a) of (M1) does
not apply). Then there is a potential starvation pathefothat starts at: and goes
through the nodei: (M1) “advances” the automatanto «,, and ensures thaf =
(ag) € T(xi)* and thatT'(zi)® = j. Now suppose thaf' (zi)' contains another
diamonde, = (3)0 with €; # €. If ¢ is not satisfied withinzi, there is a potential
starvation path foe;, starting atzi and going throughik. Since the starvation path
for ¢; and the starvation path faf, are for different diamonds, we must be careful
to separate them—failure in doing this would result in sotaevation-free Hintikka-
trees to be rejected. Thus, the definitiondokensures that runs labelk with ©, and
the constant-labeling of the starvation path fey, is delayed by one node: it starts
only at thesuccessoof xik on the starvation path fay;.

Now for Condition (T4). In contrast to Conditions (T1) and?{(T this condition
has a global flavor in the sense that it does not only conceatla and its successors.
Thus, we need to employ a special technique to enforce thgtiéTsatisfied: we
use the second component of states as a “bookkeeping comtpdinat allows to
propagate global information. More precisely, Point (1}t definition of@ and
Point (1) of the definition ofA ensure that, whenever two boxes appear in a Hintikka-
set labeling a node in a Hintikka-treeT", then this joint occurrence is recorded in
the second component of the state that any run assigns\@ the definition of the
transition relation (second point), we further ensure #ilastates appearing in a run
share the same second component. Thus, we may use Pointt{) définition of
Q@ and Point (1) of the definition oA to ensure that any nodesatisfies the property
stated by Condition (T4).

The following proposition shows that the Biichi tree autamd?, indeed accepts
precisely the Hintikka-trees for APdE)-formulaap.

PROPOSITION15. — Lety be an APDL™)-formula andT” a k-ary A,-tree. Therl"
is a Hintikka-tree forp iff T € L(B,).

PDL with negation of atomic programs 21

PROOF16. — Letyp bea APDL ™) -formula andk the number of diamond formulas
in cl(e).

“=". Suppos€l is a Hintikka-tree forp. In the following, we show thal’ € £(5,,),
i.e. that there is an accepting run of the Blichi autom#&igoon T'. Set

Pa(T) := {{[a]¥, 8]0} | thereis ame € [k]* such thafa]y,[3]0 € T(x)'}.

Inductively define a\, x {P(T)} x {©,1}-treer as follows:

—setr(e) := (T(¢), Pa(T),@);
—letz € [k]* such thatr(z) = (T'(z), Pa(T),d,) is already defined, and let
i € [k]. Setr(zi) := (T (xi), Pa(T), dy;) where

1 ifd, = 0, T(xi)® #0,ande; € T(x)!
dei =X 1 ifd, =1, T(z)® =4, andT (zi)® #0
@ otherwise

We claim that the tree is an accepting run df, onT". We start with showing that
is a@-tree. To this end, let € [k]* be a node. We have to show thét) €). Since
T is a Hintikka-tree forp, we havel'(z) € A,. MoreoverPy(T') C Pa(y), and thus
r(z) = (T(x), Pa(T),d) € Ay x 2P2(%) x {&,1}. We still have to show that(z)

satisfies Properties (1) and (2) of the definitior(of

(1) Holds by definition ofP~(T') and since-(z)! = T'(z);
(2) Suppose thaf[a]i, [3]0} € Po(T), and oy] ¢ T(z)' whereq, €
A, (qa,) for some program literat € I1(). Letqj; € Ag(gs, 7). By definition of

P5(T), there is a nodg € [k]* with {[a]y, [8]0} C T'(y)!. Then, the Condition (T4)
yields[3, 10 € T(z)".

Thus,r is aQ-tree. To show that is a run of B, onT', it remains to verify the two
conditions from Definition 13.

—r(e) € I. Sincep € T(g)* by Condition (T1)y(c) = (T(¢), Pa(T),) € I.
—(r(z),T(z),r(x1),...,r(zk)) € A for all nodesxz € [k]*. According
to the definition of A, there are four conditions that need to be checked. Con-
ditions 1 and 2 are trivial by definition of. By (T2), we have that the tuple
(T'(z),T(x1),...,T(xzk)) is matching. Thus, Condition 3 is satisfied. Finally, us-
ing the definition of- it is easily checked that Condition 4 is also satisfied.

It remains to show that the runis accepting. Suppose that it is not, i.e. that there
is a pathy = y172--+ € [k]* such thatinf.(y) N F = (). By definition of F,

the setinf,.(y) contains only stateg with third component. Consequently, there
is a positionp in the sequence such that, for alln. > p, the third component of
r(y[m]) is 1. Letp be the minimal such position. By definition ofc), we know
thatp > 0. Minimality of p thus yields that the third componentafy[p — 1]) is

©. Together with the fact that the third component-6f[p]) is 1+ and by definition

22 JANCL — 14/2004. Title of the special issue

of r (the third component), this implies that the diamond forarulwith ¢ = , is
in T(y[p — 1])*. We show that the diamong is starving iny[p — 1], in this way
obtaining a contradiction to the fact thAtis a Hintikka-tree satisfying (T3).

To show thak, is starving imy[p — 1], we show that the path,y,+1 - - - satisfies
Properties 1 and 2 from Definition 9:

—(= ~,. Satisfied by choice df.

—form > p, T(y[m])® = ym+1. Fix anm > p. Since the third component of
r(y[m]) and ofr(y[m+1]) is 1, we obtairl'(y[m])® = vm+1 by definition ofr (third
component).

“«<". Supposel’ € L(B,), i.e., there is an accepting runof B, onT. We show
thatT is a Hintikka-tree forp. SinceB,, is a Biichi-automaton oh-ary A ,-trees, T’
is ak-ary A,-tree. Letx,y € [k]* be a nodes iff" such that(z) = (T, P,, d})
andr(y) = (T, P,,d,,). In the following, we check thar fulfills the conditions for
Hintikka-trees (T1) to (T4).

(T1) Letr(e) = (T(¢), P,d.). By definition of a run, it holds that(¢) € I. Thus,
¢ € T(¢)! by definition ofI.

(T2) By definition of a run{r(x), T'(x),r(z1),...,r(xk)) € A. Thus, it follows by
definition of A that the tuplg7'(z), T'(x1), ..., T (zk)) is matching.

(T3) Assume, to the contrary of what is to be shown, that tieeaediamond formula
€, € T(x)" that is starving inz. Then there exists a path = y172--- € [k]”
satisfying Conditions 1 and 2 from Definition 9. We show the third component
of r(xv[i]) is 1 for all ¢ > 2. Thus, there are no statesinf,.(zy) whose third
component is». By definition of F, this is a contradiction to the fact thatis an
accepting run.

Hence, let us show that the third component @fy[i]) is 1 for all « > 2. This is
done by induction on.

- 1 = 2. We distinguish two cases: First, the third component(efy;) is ©.

By Condition 1 of starvationy; = ¢. Thus, we have.,, € T(x)!. Condition 2 of
starvation yieldsT'(zv,)® = 7,. Since we have already proved (T2), we may use
(M1) to derivee.,, € T(xv:)'. Together with the fact that the third component of
r(zvy1) is @, this yields that the third component ofzv:v2) is 1 by Condition 4 of
the definition ofA.

Second, the third component efzv;) is 1. By Condition 2 of starvation,
T(zv1) = 72 # 0. Thus, the third component ofxv,72) is 1 by Condition 4 of the
definition of A.

- ¢ > 2. By induction hypothesis, the third component-f+[i — 1]) is1. Due
to Condition 2 of starvation. we had@&(zv[i — 1])% = v; andT (z7[i])® = vi11 # 0.
Thus, the definition of\ implies that the third component ofz~[i]) is 1.

(T4) Supposéa]y, [8]0 € T'(z)!. Letr € H((f) be a program literal and, € Q,,
q5 € Qp states such thag, € A,(qa,7), andg; € As(gp,). Supposéay v ¢

PDL with negation of atomic programs 23

T(y)! for some nodey € [k]*. By Condition (1) in the definition of), we have
{[a]¥,[p)0} € P,. By the definition ofA, this implies{[a]y, [3]#} € P,. Thus,
Condition (2) in the definition of) yields[ﬁqk]é) € T(y).

Putting together Propositions 11 and 15, it is now easy tabéish decidability
and EXPTIME-complexity of APDL™ and thus also of PDL.

THEOREM 17. — Satisfiability and validity of PD{--formulas areExPTIME-com-
plete.

PROOF 18. — From Propositions 11 and 15, it follows that an APDEformulag

is satisfiable if and only iZ(B,) # 0. The emptiness problem for Biichi automata
is decidable in time quadratic in the size of the automatokR\86]. To show that
APDL™-formula satisfiability is in KPTIME, it thus remains to show that the size
of B, = (Q,A,, I, A, F) is at most exponential ip.

Let n be the length ofp. Since the cardinality ofl(y) is polynomial inn, the
cardinality of 7., (the set of Hintikka-sets fap) is at most exponential in. Thus,
it is readily checked that the same holds fioy and@. The exponential upper bound
on the cardinalities of and F' is trivial. It remains to determine the size Af since
the size of() is exponential im and the out-degree of trees accepted by automata is
polynomial inn, we obtain an exponential bound.

Thus, APDL ™) -formula satisfiability and hence also PDU-formula satisfiability
are in EXPTIME. For the lower bound, it suffices to recall that PDL-formudsisfia-
bility is already ExPTIME-hard [FIS 79].]

6. Conclusion

This paper introduces the propositional dynamic logic PDLwhich extends
standard PDL with negation of atomic programs. We were ablghow that this
logic extends PDL in an interesting and useful way, yet nétaiits appealing compu-
tational properties. There are some natural directionfutoire work. For instance, it
should be simple to further extend POL with the converse operator without destroy-
ing the EXPTIME upper bound. It would be more interesting, however, to itigate
the interplay between (full) negation and PDL's programrap@'s in some more de-
tail. For example, to the best our our knowledge it is unknevinether the fragment
of PDL™ that has only the program operators™and “;” is decidable.

7. References

[AND 01] ANDREKA H., NEMETI I., SAIN |., “Handbook of Philosophical Lodigcvol. 2,
chapter Algebraic Logic, p. 133-247, Kluwer Academic Pshirs, second edition, 2001.

24 JANCL — 14/2004. Title of the special issue

[BAA 03] BAADER F., MCGUINESSD. L., NARDI D., PATEL-SCHNEIDERP., The Descrip-
tion Logic Handbook: Theory, implementation and applicai Cambridge University
Press, 2003.

[BRO 03] BROERSENJ., “Relativized Action Complement for Dynamic Logics”,ABBIANI
P., Syzukl N.-Y., WOLTER F., ZAKHARYASCHEV M., Eds.,Advances in Modal Logics
Volume 4King's College Publications, 2003, p. 51-69.

[DAN 84] DANECKI S., “Nondeterministic Propositional Dynamic Logic withénsection is
decidable”, &owRrON A., Ed., Proceedings of the Fifth Symposium on Computation
Theory vol. 208 ofLNCS Springer, 1984, p. 34-53.

[De 95] DE Giacomo G., LENZERINIM., “PDL-based Framework for Reasoning about Ac-
tions”, Proceedings of the 4th Congress of the Italian Associatiorftificial Intelligence
(AI*IA'95), vol. 992, Springer, 1995, p. 103-114.

[EHR 74] EHRENFEUCHTA., ZEIGER P., “Complexity measures for regular expressions”,
Sixth annual ACM Symposium on Theory of Computdew York, USA, 1974, ACM
Press, p. 75-79.

[FAG 95] FAGIN R., HALPERNJ. Y., MOSESY., VARDI M. Y., Reasoning About Knowledge
MIT Press, 1995.

[FIS77] AsSCHERM. J., LADNER R. E., “Propositional modal logic of programs”Con-
ference record of the ninth annual ACM Symposium on TheoBoofputing ACM Press,
1977, p. 286-294.

[FIS 79] FiscHER M. J., LADNER R. E., “Propositional Dynamic Logic of Regular Pro-
grams”,JCSSvol. 18, 1979, p. 194-211.

[GAR 87] GARGOV G., lassy S., TINCHEV T., “Modal Environment for Boolean Specula-
tions”, SKORDEV D., Ed.,Mathematical Logic and Applicationdlew York, USA, 1987,
Plenum Press, p. 253—-263.

[GIA94] Giacomo G. D., LENZERINI M., “Boosting the Correspondence between Descrip-
tion Logics and Propositional Dynamic Logics”, Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI'94). VolumeAIAAI Press, 1994, p. 205-212.

[GOR 90] GorANkKoO V., “Modal Definability in Enriched LanguagesNotre Dame Journal
of Formal Logig vol. 31, num. 1, 1990, p. 81-105.

[GOR 92] GoRANKO V., PAssy S., “Using the Universal Modality: Gains and Questions”,
Journal of Logic and Computatigrol. 2, num. 1, 1992, p. 5-30.

[HAR 78] HAREL D., PRATT V., “Nondeterminism in logics of programs” Proceedings of
the Fifth Symposium on Principles of Programming Languag&M, 1978, p. 203-213.

[HAR 84] HAREL D., “Dynamic Logic”, GABBAY D. M., GUENTHNERF., Eds. Handbook
of Philosophical Logic, Volume,lp. 496-604, D. Reidel Publishers, 1984.

[HAR 00] HAREL D., KozeEND., TIURYN J.,Dynamic Logi¢ MIT Press, 2000.

[HUM 83] HUMBERSTONEI. L., “Inaccessible Worlds”, Notre Dame Journal of Formal
Logic, vol. 24, num. 3, 1983, p. 346-352.

[KLE 56] KLEENE S., “Representation of events in nerve nets and finite ausima
C.E.SHANNON, J.MCcCARTHY, Eds.,Automata Studiesgp. 3-41, Princeton University
Press, 1956.

[LUT 00] LuTtz C., SATTLER U., “Mary likes all Cats”, BAADER F., SATTLER U., Eds.,
Proceedings of the 2000 International Workshop in Desmiptogics (DL2000)num. 33

PDL with negation of atomic programs 25

CEUR-WS (http://ceur-ws.org/), 2000, p. 213-226.

[LUT01] LuTz C., SATTLER U., “The Complexity of Reasoning with Boolean Modal Log-
ics”, WOLTERF., WANSING H., DE RIJKE M., ZAKHARYASCHEV M., Eds.,Advances in
Modal Logics Volume 3CSLI Publications, Stanford, CA, USA, 2001.

[LUT 04] Lutz C., WALTHER D., “PDL with Negation of Atomic Programs” Proceedings
of the Second International Joint Conference on Automagzséning (IJCAR’04)Lecture
Notes in Artifical Intelligence, Springer-Verlag, 2004.

[MAT 67] M ATIJASEVICH Y., “Simple examples of undecidable associative calcuBgviet
mathematics (Dokladyyol. 2, num. 2, 1967, p. 555-557.

[PAS 91] Rssy S., TINCHEV T., “An Essay in Combinatory Dynamic Logicinformation
and Computationvol. 93, num. 2, 1991.

[PRA 76] PRrATT, “Considerations on Floyd-Hoare Logic”, FOCS: IEEE Symposium on
Foundations of Computer Science (FOCE)76.

[PRE 96] RRENDINGERH., SCHURZ G., “Reasoning about Action and Change: A Dynamic
Logic Approach”, Journal of Logic, Language, and Informatiowol. 5, num. 2, 1996,
p. 209-245.

[SCH91] SHILD K. D., “A correspondence theory for terminological logiddreliminary
report”’, MyLopouLoSJ., REITER R., Eds.,Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence (IJCAI-9Nlorgan Kaufmann, 1991, p. 466-
471.

[VAR 85] VARDI M. Y., “The Taming of Converse: Reasoning about Two-way Cotap
tions”, PaRIKH R., Ed.,Proceedings of the Conference on Logic of Prograves 193 of
LNCS Springer, 1985, p. 413-424.

[VAR 86] VARDI M. Y., WoOLPERP., “Automata-theoretic technigues for modal logic of pro-
grams”, Journal of Computer and System Scienees. 32, 1986, p. 183-221.

