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Abstract

Often, the addition of metric operators to qualitative
temporal logics leads to an increase of the complexity of
satisfiability by at least one exponential. In this paper, we
exhibit a number of metric extensions of qualitative tempo-
ral logics of the real line that do not lead to an increase
in computational complexity. \We show that the language
obtained by extending since/until logic of the real line with
the operators ‘ sometime within n time units', » coded in bi-
nary, is P SPACE-complete even without the finite variabil-
ity assumption. Without qualitative temporal operators the
complexity of this language turns out to depend on whether
binary or unary coding of parametersis assumed: it is still
P Spacke-hard under binary coding but in NP under unary
coding.

1 Introduction

The extension of qualitative temporal logics (TLs) with
metric operators has been studied for almost fifteen year
[5, 4, 8]. Of particular interest are metric extensions of tem-

this improvement has only been proven undeffithiée vari-
ability assumption (FVVA) which states that no propositional
variable changes its truth-value infinitely many times in any
finite interval. While the FVA is a natural condition for var-
ious computer science applications, we believe that there
are at least two reasons to consider also the non-FVA case:
first, qualitative temporal logic originated in philosophy and
mathematics to study time itself, rather than the behaviour
of systems with discrete state changes as considered in com-
puter science. If quantitative TL is used for the former pur-
pose, the FVA is less convincing than in computer science
applications. Second, even in computer science reasoning
without the FVA can be fruitfully employed: assume that a
formulap of a quantitative TL describes the specification of

a real-time system. Further assume thdtas been found

to be unsatisfiable under FVA, indicating that the described
specification is not realizable. If an additional satisfiability
checkwithout FVA is made revealing that dropping FVA
regains satisfiability ofp, then the user obtains additional
information on the source of the unrealizability of her spec-
ification: namely that it enforces an infinite number of state

Lhanges in a finite interval.

The purpose of this paper is itavestigate metric tempo-

poral logics of the real line, since the resulting quantitative ral logicsof thereal linethat are at most P SPACE-compl ete.
TLs are an important tool for the specification and verifica- More precisely, we prove three results. Our first result is
tion of real-time systems [2]. Unfortunately, moving from that extending since/until logic of the real line with metric
qualitative to quantitative logics is often accompanied by operators ‘sometime in at mosttime units’, n coded in

an increase in computational complexity of the satisfiabil- binary, is P®ACE-complete even without FVA. (Note that
ity problem. The most important example witnessing this the logic without FVA is more general than with FVA in

effect is the P8AacEcomplete since/until logic of the real

the sense that the latter logic can be polynomially reduced

line [7], whose extension with a metric operator ‘sometime to the former [5].) To show this result, we propose a new

in at least: but not more tham: time units’ (» andm coded

in binary) becomes ErPSPACE-complete if the case = m
is not admitted, and even undecidable if itis [1, 3, 5].

method for polynomially reducing satisfiability in metric
TLs whose numerical parameters are coded in binary to sat-
isfiability in the same logic with numbers coded in unary.

It is well known that the complexity of the metric tem- The essence of the reduction is to introduce new proposi-
poral logic obtained by this extension can be reduced totional variables that serve as the bits of a binary counter

P SPACE again by further restricting the valuesmo@andm,

e.g., by enforcing that = 0 [1]. However, in contrast to the

measuring distances. For the metric TL mentioned above,

we obtain a PSpace upper bound since Hirshfeld and Rabi-

ExpPSpACE-completeness and undecidability results above, novich have shown that QTL, i.e., the same logic with num-



bers coded in unary, is P&CE-complete without FVA [5].

In the technical report accompanying this paper, we show
that our proof method can be used for other logics as well.
For instance, metric extensions of (discrete-time) LTL and
the branching time logic CTL are shown to be inFASE

and EXPTIME, respectively [6].

Our second result concerns a sharpening obPAZE
lower bounds for metric temporal logics of the real line. In
the current literature, such logics usually contain qualitita-
tive since/until logic as a proper fragment, and thus trivially
inherit PSACE-hardness [2, 5, 7]. We consider metric TLs
with weaker qualitative operators and show thatR&=

hardness can already be observed in the following three 9 w = ¢ A v

cases: (i) a future diamond and a future operator ‘some-
time in at most: time units’,n coded in unary; (iipnly the
future operator ‘'sometime in at mastime units’,n coded

in binary (i.e., no qualitative operators at all); (iii) only a
metric version of the until operator for the interyaJ 1].

As a third result, we explore the transition from NP
to PSPACE. In particular, we show that the quantitative
TL with only the metric operator ‘sometime withintime
units’, n coded in unary, is NP-complete. This result ex-
tends the result of [10] that satisfiability of the qualitative
TL with operators ‘eventually in the future’ and ‘eventually
in the past’ over the real line is decidable in NP. When com-
pared with result (ii) above, it also shows that the complex-
ity of metric TLs without qualitative operators depends on
the coding of numbers. To establish the NP upper bound,
we show that satisfiability of a formulacan be decided by

first ‘guessing’ a system of rational linear inequalities, and

checking whether this system has a solution over the realormula ¢

(or, equivalently, rational) numbers.

2 Preliminaries

We introduce the metric temporal language QTL of [5],
which is closely related to the language MITL of [1]. Fix
a countably infinite supplyg, p1, ... of propositional vari-
ables. A QTL-formula is built according to the syntax rule

ei=p | ~p|leAY|oSY|eU | SV | U

with p ranging over the propositional variables ahthng-
ing over intervals of the formg0,n), (0,n], [0,n), and
[0,7n], wheren > 0 is a natural number. The Boolean op-
eratorsT, V, —, and«< are defined as abbreviations in the
usual way. Moreover, we introduce additional future modal-
ities as abbreviationsdLp = Tyl ¢, 0Ly = ~0L—p,
Orp = TU p, andpp = =0 p—p. Their past counter-
parts are defined analogously and have a subseript

Note that formulas with rational numbers as parameters
of metric operatorsS’ andz/! can be translated (in poly-
nomial time) to satisfiability equivalent formulas contain-

ing only the natural numbers by multiplying with the least
common denominator of all (rational) parameters.
Formulas of QTL are interpreted on the real line. A
model M = (IR, V) is a pair consisting of the real numbers
and a valuatiortJ mapping every propositional variabte
to a setU(p) C RR. The satisfaction relatior=’ is defined
inductively as follows, where we write + I to denote the
set{w +x | « € I} for each time pointv € IR and interval
1 of one of the above formsy — I is defined analogously.

Mw=p iff  w e V(p)
M, w = —p iff M wlpEe
iff M, wEeandM,w =Y
M, w k=Yt iff  there existsu > w such that
M, u =1 andMM, v | ¢
for all v such thatw < v < u
Mwl= @Sy iff  there existsu < w such that
M, u =1 andIM, v | ¢
for all v such thatu < v < w
M, w =yl iff  there existsu € w + I such that
M, u =1 andM, v | ¢
for all v such thatv < v < u
M,w =Sty iff  there existsu € w — I such that

M, u =1 andM,v | ¢
for all v such thatu < v < w

We will also writew =y ¢ for (R, U),w = ¢. A QTL-

is satisfiable if there exists a mod®t and a

w € R such thatt, w = . Itis satisfiable under thinite
variability assumption (FVA) if it is satisfiable in a model

in which no propositional variable changes its truth-value
infinitely many times in any finite interval.

Our presentation of QTL deviates from that of [5], where
only the metric operators"") and¢ """ are admitted. If
the numerical parameters of the metric operators are coded
in unary, there exists an easy polynomial translation from
Hirshfeld and Rabinovich’s version of QTL to ours and vice
versa. However, in this paper we also consider binary cod-
ing of numbers. If we want to emphasize this fact, we shall
write QTL? instead of QTL, and likewise, QTLwill denote
unary coding of numbers.

We close this section with a discussion of the relation
between temporal logics with and without FVA. The satis-
fiability of a formulay of a temporal logic with operators
since and until and with FVA can be polynomially reduced
to satisfiability in the same logic without FVA; see [5]: Let
§=/\ (@pd, A6, AOré,) where

p used inp

5, = ((pUp) V (=pU—p))

((pSpP)V (-pS-p)).

A



Then it is not hard to verify thap is satisfiable with FVA

iff @ A 0 is without FVA. Note that the length gf A § is
polynomial in the length ofp. To the best of our knowl-
edge there is no polynomial reduction of this type for the
language without since or until.

3 QTL®isPSrACE-complete without FVA

The purpose of this section is to prove that QTL
satisfiability without FVA is decidable in FBCE. Note
that, due to polynomial reducibility of QTLwith FVA to
this logic, the upper complexity bound carries over. This re-
sultis already known for QTtwithout FVA [5] and QTL*
with FVA [1]. We first show that our result indeed improves
upon the existing ones by proving that QTis exponen-
tially more succinct tha@ 7' L*.

Theorem 1. Let ) be a QTL-formula with numbers coded
inunary that is equivalent to D[FO’”]p. Then « has length at

least n.

Proof. Suppose by contradiction that there exists a QTL-
formula ¢ with numbers coded in unary such thatis
equivalent toDEff’"]p, for somen > 1, and the length of
1) is strictly smaller tham. We may assume thdtcontains
no other propositional letters than otherwise, just replace
them with T. Then, forn > 1, set®,(p) = [-n,n]
andd, = (R,2,). ThenM,,,0 = 00"y, Therefore,
M., 0 = . Now, itis straightforward to prove the follow-
ing by induction: for every subformubaof v of length< &
and allz > k suchthath — z > —n + k:

9377(71—@':)( iff mrn(n_x)':X'

Since the length of) is smaller tham, it follows that, in
M., the pointsd and1 satisfy the same subformulas ©f
In particular)t,,, 1 = v¢. We have derived a contradiction

sinceM,,, 1 = Dgg’"]p. O

We now establish the first result of this paper.

Theorem 2. Satisfiability in QTL with numbers coded in
binary is P SPACE-complete without FVA.

Since (qualitative) since/until logic on the real line is
PSeace-hard [7], it suffices to prove the upper bound. For
simplicity, we prove the upper bound for the future fragment

of QTL, i.e., we omit past operators. The proofs are easily

decide satisfiability of a QTi-formula, introduce a new
propositional variable,,, for every«, which occurs in a
subformula of the formp, 24 4, of . Inductively define

a translation on QTt-formulas such that, for any subfor-
mulay of ¢, xP to denotes the result of replacing all outer-
most subformulag; 14! 1 of x by ¥ 14 py, A OLpy,. Set
O = 1 A Optp. Theny is satisfiable iff

@P A DF[ N (o, < ¢§)]
1 UT P2 Esub(p)

is satisfiable. Note that the length of the latter formula is
polynomial in the length of. Second, for any interval

of the form (0,n), (0,n], or [0,n) with n > 1, 0Ly is
equivalent toO%O[FO’”’Hw, whereJ is obtained from/ by
replacing the upper interval boumdby 1.

In the following, we reduce satisfiability of QTL
formulas to the satisfiability of QTl-formula, i.e., QTL-
formulas in which all upper interval bounds have value 1.
As the coding of numbers is not an issue in the latter logic,
we obtain a PSAcE upper bound from the result of [5] that
QTL“-satisfiability in models without FVA is decidable in
PSpACE

Let p be a QTL-formula meeting the restrictions laid out
above. Letk be the greatest number occurring as a param-
eter to a metric operator ip, n. = [log,(k + 2)], and
X1, - - -, Xe the subformulas op that occur as an argument
to a metric operator of the formggm] with n > 1. We re-
serve, forl < ¢ < ¢, fresh propositional variables;, y;,
andc!, _,,...,c} that do not occur inp. The sequences
¢t _1,...,ch of propositional variables will be used to im-
plement binary counters, one for eagh Intuitively, these
counters measure the distance to the “nearest” future occur-
rence of the formula;, rounded up to the next largest nat-
ural number. A counter value greater than or equal fo1
is a special case indicating that the nearest occurrence is too
far away to be of any relevance. The variableandy; will
serve as markers with the following meaning:holds in a
point iff there is a natural numbersuch thaty,; holds at dis-
tancen, but not in between; similarly; holds iff there is a
natural number such thaty; does not hold at any distance
up to (and including), but y; holds at future points that
converge from the right to the future point with distance
In the following, we call the structure imposed on the real
line by the markers;; andy; the (one-dimensional) ‘grid’.

To implement the counters, we introduce auxiliary for-

extended to the general case. Within the future fragment,mulas. Forl <: </, let

we consider only the metric operatays", ¢'%, o0,

and 0[12’”]. This can be done w.l.0.g. due to the following
observations:

First, satisfiability in QT can be reduced to satisfia-
bility in QTL® without the metric operatorg; 147 ¥»: to

e (C; = m) be a formula saying that, at the current
point, the value of theé-th counter isn, for0 < m <
2", There are exponentially many such formulas, but
we will use only polynomially many of them in the re-
duction.



e (C; < m)isaformulasaying that, at the current point,
the value of thei-th counter does not exceed, for
0<m < 2%,

e Oy = =(z; Vy)U((z; V yi) A @) says that, at the
next grid point,p is satisfied.

To deal with effects of convergence, it is convenient to in-
troduce an additional abbreviation. The formuldy) :=
—(— U T) A - describes convergence ¢fpoints from
the right against a point wherg does not hold. We now
inductively define a translation of QTHormulas to QTL -
formulas:

= p
(= 1/1)* =
(Y1 Apa)* = Yf A3
(wluwz)* = YiuUv;
(OFY)* = Oy
(0 ES"XZ)* = (C;<n-1)V ((C’l :n)/\ﬁyi)

Here, I ranges over interval§0, 1], (0,1), and[0,1). It

4 From NPto PSPACE

Qualitative since/until logic on the real line is P&E
complete, and thus not computationally simpler than QTL
However, several natural fragments are only NP-complete,
an important example being the qualitative TL with tempo-
ral operators ‘eventually in the future’ and ‘eventually in the
past’ [10]. In this section, we explore the transition from
NP to P$AcCE for fragments ofquantitative logics of the
real line, i.e., for QTL and its fragments. We start with de-
termining several weak, but still P&ce-hard fragments of
QTL. Observe that two of the fragments are purely quanti-
tative, i.e., they do not admit qualitative temporal operators
at all.

Theorem 4. Satisfiability (with and without FVA) is
PSpace-hard for the fragments of QTL whose only tempo-
ral operators are:

(i) O and O™ withn > 0 coded in unary;

remains to enforce the existence of the grid and the behavior (jj) Q[FO»”] with n > 0 coded in binary;
of the counters as described above. This is done with the

following auxiliary formulas, forl < i < ¢:

9 = (Ci=0) o (x; Vre(x)))
Vb = x e [ 1Y, (D(O’l)(—'X;‘ A=z A —Y;)
A Oz, A <>Fx:-‘)]
9 = o {m( DV (O (axr A =y A )
A 0Py A Opre(x))]
0y = =(Ci=0) A0 (@ vy) -
\/ (i AO=c; A /\ —\c[ A Och)
t=0..n.—1 =0..t—
A <czeocz>> VN (@AOe) )
l=t+1.n.—1 £=0..n.—1
95 = =00 (@ V) — (G =27 — 1)

Intuitively, ¢ initializes the countern)y, and¥; ensure that
the grid pointsr; andy; behave as described abov,in-
crements the counter when travelling to the left, @gdn-

sures that, when travelling left, the counter stays in maximal

value after the last occurrencegf. Letd* be the conjunc-
tion of ¥ to ¥i. The following is proved in [6] and finishes
the reduction.

Lemma 3. ¢ is satisfiable iff O (91 A
satisfiable.

NI A o is

(i) ¢V,

Point (i) is proved by reducing satisfiability in LTL (i.e.,
qualitative temporal logic of the natural numbers) with the
only temporal operators) and¢ r (which is P$Acehard

[9]) to satisfiability in the logic defined in (i). To do so, the
main task is to represent the discrete natural numbers on the
real line by alternating intervals makingtrue and inter-
vals making—a true, with the former representing the time
points of discrete time. This structure is enforced such that
the length of thes-intervals is between 2 and 3 (including
2), the length of the-a-intervals is between 7 and 8 (in-
cluding 7), and the length of anrinterval together with the
subsequenta interval is between 9 and 10. This is done
by the formulay = 91 A 95 A V3!

191 D[FO 2](1
9, = Op(a— 0007
05 Dp(a—>(>010 D[OQ] ).
For the reduction, inductively define a translatipi* as
follows:
= P
o =
Y1 Ahe)" = YT AYS
( )* - <>[0 ,3] (D[O )7 —a A 0512’8] (1/}* A a))
(Op)* = Or(-aAOp(¥* Aa))

Additionally, a formulad’ is needed to take care of unifor-
mity, i.e., to make sure that the same propositional variables



hold in all points of an interval that makedrue: (i) o € tiff ¥ & t foreach—y € cl(p), and (i) As €
tiff 11,19 € t for eachy; A s € cl(p). For a model

V=0r /\ [(pra— 0 (@ — p)) (R, V) andw € R, set
used in
: w/\ (~pAa— O a — —p))]. tw) = {Yedlp) | wpkEy v},

t<(w) = Lap € cl w Lyl
Now, ¢ is satisfiable over the natural numbersgff A 9 A w) {0r0 (©) [w e O}
9" A a is satisfiable over the real numbers with FVA iff itis Notice thatt(w) is a type fory. First, we devise an algo-
satisfiable over the real numbers without FVA. rithm for satisfiability without FVA. To begin with, we show

A similar reduction can be used to prove (ii). Notice that that satisfiability ofp implies satisfiability ofy in a ‘homo-

satisfiability in LTL is already P&acE-hard if the natural ~ geneous’ model. In particular, in such models the number
numbers are replaced by a finite strict linear order (an initial of realized types is polynomial in the lengthof
segment of the natural numbers). Moreover, any formula
which is satisfiable in a finite strict linear order is also sat-
isfiable in a finite strict linear order of length not exceeding

Lemma6. Let ¢ be satisfiable without FVA. Then thereisa
sequence o, . . ., Ty, iINR suchthat 0 = zp < 7y < -+ <

2l¢l. Based on this observation, using the operatfr”, ";:é = My, and a valuation U such that (R, 7). 0 = ¢
n > 0 coded in binary, instead &, we can reduce sat-

isfiability of an LTL-formulay in such a finite strict linear o [{t(w)|0<w<my}| <rg;

order to satisfiability over the real line (with and without _

FVA). o for every n with0 < n < n, and eachtypet for ¢, the

set{w eR |z, <w < xp41 @ndw =y t} iseither

Finally, (iii) can be proved by reducing satisfiability over 4 )
empty or denseintheinterval (z,,, n4+1).

the real line in the qualitative fragment of QTL with the
only temporal operatgy (which is P$ACE-hard) to satisfi-  proof. Consider a modebt — (R, ') with 91,0 |= ¢. By
ability of formulas with the operatay!*!} over the interval e semantics, we clearly have the following:

(0,1); details can be found in [6].

We now exhibit a purely quantitative temporal logic of
the real line for which satisfiability is NP-complete: the
fragment of QTL with only the quantitative diamond and
numbers coded in unary, with and without FVA. This logic

may appear rather weak since it does not allow to makeThe two possibly shorter intervals are the one starting at 0
statements abowt| time points. Still, it is useful for rea-  and the one ending at,,. Using (), we can show that there
soning about the behaviour of systems up to a previouslyjs a sequencey, .. . , . in R for somek < 2|o| + | ;7| such
fixed time point. Note that our NP-completeness result tnat

shows that Points (i) and (ii) of Theorem 4 are optimal in
the following sense: in Point (i) we cannot drop, and in e 0=yo < <yr=m,and
Point (ii) we cannot switch to unary coding.

() for any 0Ly € sub(yp), theset{fw e R | 0 < w <
my, andw o O%1p} is a union of intervals of length
at leastl and at most two intervals of length smaller
than 1.

e t<(w) = t<(w’) whenevery; < w < w’ < y;41 for
Theorem 5. In the fragment of QTL with temporal opera- anyi < k.

tors QL and 0L, I of theform (0, n), [0, ), [0, n], or (0,7],
and n > 0 coded in unary, satisfiability is decidablein NP,
both, with and without FVA.

To see this, take a formulaLy € sub(yp). Thetoggle
points for ¢L in the interval[0, m,,] are those points:
such that either (i) there isia> x such that the truth value

The lower bound is immediate from propositional logic and Of 0¥ at is different from the truth value o v at all

thus we only have to prove the upper bound. Since numberg?0intsz with 2 < z < y or (ii) there is ay < x such that

are coded in unary, we may restrict our attention to temporalthe truth value oty atz is different from the truth value

operators whose upper interval bound ign the proof, we ~ 0f O%-¢ atall pointsz with y < = < 2. By (x), there are at

only consider the temporal operatt»ﬁ?’”. An extension to mIOStQ ‘M +1<2-Jp|+ % toggle points fqr each formula

past operators and open intervals is straightforward. 0¥, and thus at most||* + |¢f toggle points altogether.
Let » be a formula whose satisfiability is to be decided. 1"€S€ Points form the required sequepge . .., y.

We introduce some convenient abbreviations; denotes We convert this sequence into the desired sequence

the nesting depth of operatapé. in ¢ (henceforttiamond 0 - - - - ¥n,, DY @rranging the elements of the set

depth), n, = 2[p|® + |¢|?, andr, = |¢| x n,. Denote ) )

by cl(y) the closure of the set of subformulas @funder {yo, - uk} U U i +7 1 yi+ 7 <mp}
i<k

single negation. Aypet for ¢ is a subset ofl(y) such that 1<j<m,



in ascending order according tec”, possibly introduc-

ing (arbitrary) intermediate points to obtain a sequence of

lengthn,, + 1.

To obtain a valuatiofJ as required by the lemma, fix a
setT; of types for each < n,, as follows: for eack)L.y) €
sub(p), choose av € (x;,z;4+1) With ¢ € t(w) if such a
w exists. Then[; is the set of typeg(w) of all pointsw
chosen in this way. ClearlyT;| < |p|. For eachi < n,,
take a collection X} );cr., of subsets ofz;, z;11) which
form a partitioning of(x;, z; 1) such that eaclX; is dense
in (z;,x;+1). Now define a valuatio® by setting, for every
propositional variable,

B(p) = (T'(p) N {z0,....xa, NU |J{X] [p et}

i<ng teT;

Lett;, i < n,, be the type{y) € sub(yp) | z; =y 1} for

@ realized in pointz; of the original modeb)t. To show
that®J is as required, it is sufficient to show that, for each
kE < m, eachy € sub(yp) with diamond depth bounded
by k, and eachw € [0, m, — k|, we have

w =y ¢ iff thereis ani < n,, such that
(@)w = z; andy € t;, or

(b) w € X} andy € t for somet € T;.

Proof. Let k, ¢, andw be as above. The proof is by in-
duction on the structure af. The cases for propositional

the sequencey, ..., z, , it holds that, for alkw” €
(21, 2i11), w" =g O, Therefore, 00y € ¢
for anyt’ € T;. Hence)!0y e t.

e w € X for somei < n, andt € T;, andw’ € X
for somej with i < j < n, andt’ € T;. This case is
similar to the previous cases and left to the reader, see

[6].

“«<" Let i < n, such that

@ w = z; ando My € t;. Thena; o 012y, There
isaw’ € x; + [0,1] such thaty’ =g 4. Distinguish
two cases:

— w' = x; for somej with i < j < n,. Then
¢ € t;. The induction hypothesis in (a) yields
w' g Y. Fromw' — z; < 1 follows z; Eg
O .

—w' € (xj,x;41) for somej with i < j < n,.
By definition of T}, there is a < T such that
Y € t. The induction hypothesis in (b) yields
w” g ¢ foranyw” € X7. SinceX] is dense
in (z;,z,11), there is such a” such thatw” <
w’. Thenw” — x; < 1. Hencex; =y <>52’”¢.

(b) we X} and<>52’”¢ € t for somet € T;. This case is
similar to the previous one and left to the reader.
g

variables,—, andA are left to the reader. Consider the case Lemma 6 suggests the following idea for deciding in non-

for <>52’”.

“=" Supposew g O&?’l}w. Then there is av’ ¢
w + [0, 1] such thatw’ =y v by the semantics. Distin-
guish four cases:

e w = x; for somei < n, andw’ = x; for somej > i.
By (a), the induction hypothesis yields € ¢;. Then
;g 1. Froma; —z; < 1follows z; e 0L e,
Hence) !y e ¢;.

o w =z, for somei < n, andw’ € X for somej with
i < j < n,andt € T;. The induction hypothesis
in (b) yieldsy € t. Then, by definition off;, there
isaw” € (z;,z,1+1) such thatw” =g 1. Note that
there is ar? with i+ < ¢ < n,, such thatry = z; + 1.
But thenz,; < z; otherwisew’ € th contradicts
w' € w+ [0,1]. Now, fromw” —w < 1 follows

w =g 05?’”;[;. Henceogg’l]w € t;.

e w € X; for somei < n, andt € T;, andw’ = z;
for somej > i. By (a), the induction hypothesis yields
Y € t;. Thenz; =qo ¥. Now, fromz; —w < 1
follows w a0y, But then, by definition of

deterministic polynomial time whether a formufais sat-
isfiable: guess a (polynomially bounded) set of types for
¢ to be realized in a homogeneous model, a sequence
vo, - - -, Un,, Of variables, and construct a system of linear
inequalities whose solution iR determines a sequence of
points zo, . .., x,, from which we can build a homoge-
neous model realizing the guessed types. More precisely,
to decide the satisfiability op, we non-deterministically
choose

e asetl of types fory such thatT'| < r;
e atypet; € T such thatp € t,, for everyi < n;
e anon-empty set of types, C 7', for everyi < n,.

Intuitively, the typet; is to be realized at point;, and the
types inT; are those types realized in the interial, z;11).
Then, we take variables, . .., v, and check whether the
system of inequalities given in Figure 1 has a solutiofRin
The Inequalities 2 to 9 are only added ik n,. To under-
stand the inequalities (in particular 4 and 5), note that the
point z; described by variable; is not intended to realize
thewhole type;, but only those elements of whose dia-
mond depth is at mostn, — x;|. Similarly, points from



DO0=wv <wv1 <--+ <V, =My

@Quv; —v; >1 it 200y et;, >4 andy € t;

such that) € t; orv € t' for somet’ € Tj

(j > iandy € t;)

@) v, —v; >1  if 0Ly et;, 5 >4, andy e ¢ for somet € T;
@d)my, —v; <1 if O[Fo’llw € t;, butthereis ng > i such thatp € t; orvy € tforat € T}

B)yme —v; <1 if O?’llw € t for somet € T;, there is ngj > i such that) € ¢;,
and there is ng > i such that) € ¢’ for somet’ € Tj

6)v; —vi <1 if 019"y e t; andj > i is minimal such that) € ¢; and,
for every;’ with i < j' < j,¢ & tforanyt € T

MNvj—vs <1 f <>52'”¢ € t; andj > 7 is minimal such that) € ¢t for somet € T} and
there is ngj’ with i < j* < j such thatp € ¢,/

®)yv; —v; <1 if Q[Fo’lldz € t for somet € T;, v ¢ t' for anyt’ € T;, and;j > i is minimal

Q) v; —vig1 > 11f ﬁog””z/; € t for somet € T;, and j > ¢ andy € ¢’ for somet’ € Tj) or

Figure 1. The system of inequalities.

(z;,x;11) described by a type € T; realize only elements
of t whose diamond depth is at mosi, — x;]; cf. the
structural induction in the proof of Lemma 6.

The algorithm runs in non-deterministic polynomial time
and returnsy is satisfiable’ if there is a solution to this sys-
tem of inequalities, and/ is not satisfiable’ otherwise. By

considering the contrapositive, it is easily seen thét un-
satisfiable if the algorithm answers ‘no’: ¢f has a model,

w € [0, m, — k], we have

w =y ¢ iff  thereis ani < n, such that
(@)w = z; andy € ¢;, or
(b)w € X} andy € t for somet € T;.

then by Lemma 6 it also has a homogeneous model, and thidt is an immediate consequence thaty ¢. 0

model suggests a choice of types such that the correspon
ing system of inequalities is satisfiable. Conversely, if the
algorithm returns ‘yes’, we can construct a homogeneous

model:

Lemma 7. If the algorithm returns ‘¢ is satisfiable’, then
@ issatisfiable.

Proof. Suppose there are typgsi < n.,, and sets of types

T;, i < ny, such that there is a solutior, ..., x,,, for
the corresponding system of inequalities. Fet n,, take
a partitioning(X;)¢er, of (z;,7;11) such that eactX; is
dense in(x;, z;+1). Now define a valuatiofJ by putting,
for every propositional variablg,

D)= |J (s lpettu JiXilpet}).
i<n, i<ng,,teT;

In [6], the following is proved: for allk < m,, all
¥ € sub(p) with diamond depth bounded by, and all

d\_Ne now come to the proof of Theorem 5 with FVA. Again,

the first step is to show that if is satisfiable under FVA,
then it is satisfiable in a homogeneous model (this time with
FVA) in which only polynomially many types are realized:

Lemma 8. Suppose ¢ is satisfiable with FVA. Then there
existsa sequence zo, . . ., zr,, INR suchthat 0 = zp < 2; <
-+ < zp, = my, and avaluation U such that (R, ), 0 |=
p and

o [{t(w) |0 <w<my}| <ry;

e for al n with0 < n < r,, al ¥ € sub(yp), and all
Zn <w < W < zZpir,w Eg Yiffw Eg 1.

Proof. Consider a modébt = (R, U’) with FVA satisfying

© in 0. First, construct a sequenfe= yp < y1 < -+ <

yr = my, k < 2|¢|* + |¢|, as in Lemma 6. Then the
sequencey, . . ., T, IS obtained by arranging the elements



of the set
{yo,-- -yt U U {yi+7lyi+7<me}
i<k
1<j<m,
U Jtwi—ily-i>0}
i<k
1<j<my,

in ascending order according to(where we possibly have
to add newr; to obtain a sequence of length, + 1). Let

o=min{z;41 —z; | 0 <i<ng},

and set, fofi < n,, o; = r X 0. The sequence

IW+

OZZ()<21<'--<ZT¢:m<p

is obtained by adding to the sequengg,...,z,_  the

points

Ny

=x; + o
||
foralli < n, andj < |¢|. Fori < n,, denote byt~ the
typet which is realized in some interval of the forfm;, y).
Note that such an interval exists since we are in a model
with FVA. Also, denote by the type which is realized in
some interval of the forngy, z;+1). Now, fori < n,,, take
forany(Ly € sub(y) such thatthere exists € (z;, z;41)
with ¢ € t(w) such a type(w) and denote the collection of
selected types plus the types andt+? by T;. Notice that
T3] < |¢l|. Lettg, ..., ¢, _, be an ordering of the types in
T; such that} = t~—* (if T; has cardinality< ||, then take
somet from T; more than once in this ordering.) Define a
valuationyJ by setting, for every propositional variakje

J
yi X Ui)

B(p) = A{zi|i<ng,2 o p}
j+1 %
U J Ay Ipeti}
i<ng,j<l|o|
U U { ‘ﬁpl $2+1 p c t+t}
<My

We show thaty is as required. To this end, it is sufficient
to show by induction that, for each < m,,, everyy €

sub(p) in which the number of nestings &g’” does not
exceedk, and allw € [0, m, — k:

w =y ¥ & thereis an < n,, such that
(@) w = z; andz; =y ¢, Or
(b)w € (yf,y ] andy € ¢ for
somel < |yp|, or

©w e (y?! 2;11) andy € t+.

Proof. Let &, ¢, andw be as above. The proof is by in-
duction on the structure af. The cases for propositional
variables,~, andA are left to the reader. Consider the case
for <>[O’1]

F
‘=" Supposew g <>[;37”¢. Then there is av’ €
w + [0,1] such thatw’ g . Similarly to the previous
proof distinguish four cases. Here only the most intricate
case is considered; the other cases are left to the reader and
can also be found in [6]:

o w e (x;,xi41) for somei < n,, andw’ € (z;,2;41)
for some;j > i. If w’ € (yf,y;""] for somel < |g],
then the induction hypothesis in (b) yields € t@.
Otherwise, i.e., i’ € (yi¥,z;41), ¥ € t17 by the
induction hypothesis in (c). Sinag, t+7 ¢ Tj, it fol-
lows by definition off; that there is a” € (z;,2;41)
such thatw” |=g 1. Note that there is aff > i + 1
such that%'i/ = ZTi}1 + 1. But then{L'j+1 < xyr, oth-
erwisex; > x; and thusw’ — w > 1 contradicting
w’ € w+[0,1]. Thusthereisa € (z;, z;11) such that
w” —v < 1. By the semanticg; o 52’1]1/;. Theniit
follows by definition of the sequencs, . .., z,,, that
v g OOy forall o € (2;,2,41). Therefore,
O[Fo’l]@b e ¢ foranyt’ € T,. Henceo!Y'y i if

(ymyfﬂ} for somel < |<p|, and<>[£x1]w c t+tiif
(yz‘vl I’,+1).

<": Here only Case (b) is considered; the cases (a) and
(c) are left to the reader and can also be found in [6]. Let
i < n, such that (b € (y¢,y: ™ and<>£2’”w € t} for
somel < |¢|. By definition of T}, there is av’ € (a;, 241)
such thatw’ =y 0I2"y. Then it follows by definition of
To,. .., Ty, thatw” =y <>[F0’”1/J foranyw” € (z;,z;11).
In particular,w o O[Fo’l]w. Thenv =g ¢ for some
v € w + [0, 1] by the semantics. Distinguish three cases:

e v = z; for somej > i. The induction hypothesis in
(a) yieldsv =y 1. Sincev — w < 1, it follows by the

semantics thab =y 004).

e v € (x;,x;41). By definition of T;, there is at €
T; such that) € t. Distinguish two subcases: First,
suppose that) € ti, for some?’ > ¢, orvy € t*.
The induction hypothesis in (b) or (c) yield$ =y

g forallv e (4 yf ", orallv e (4 zip1),
respectively. Then there is such’asuch that’ —w <
1. Hencew =q 0.

Second, suppose there is o> ¢ such that) € ¢!,
andy ¢ tT'. Note that this implie¥ > 0. Since
¥ ¢ t7°, there is an interval of the forify, x;.1) such
thaty’' [y o for all v € (y,z;41). Take such a

y'. Sincew g 0&9’1]1/), it follows by definition of



To,..., oy, thaty o 0{3’1%. Then there is &’ ¢ satisfiability with FVA. The crucial step is to determine a set
y' 4+ [0,1] such that’ =y ¢ andv’ > z;41. By of rational linear inequalities which represent the truth con-
definition ofzo, . .., z,, there is an’ such that;; = ditions in models of the form described in Lemma 8. We
x; + 1. Consider only the case wherec (z;, ;1) leave this exercise to the reader.

wherej = i’; the other cases are straightforward. Note

that there is no such > i’. For suppose otherwise, it Acknowledgements.  Work on this paper was sup-
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Using Lemma 8, one can now modify the decision pro-
cedure for satisfiability without FVA to obtain a decision
procedure running in nondeterministic polynomial time for



