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Abstract

Often, the addition of metric operators to qualitative
temporal logics leads to an increase of the complexity of
satisfiability by at least one exponential. In this paper, we
exhibit a number of metric extensions of qualitative tempo-
ral logics of the real line that do not lead to an increase
in computational complexity. We show that the language
obtained by extending since/until logic of the real line with
the operators ‘sometime within n time units’, n coded in bi-
nary, is PSPACE-complete even without the finite variabil-
ity assumption. Without qualitative temporal operators the
complexity of this language turns out to depend on whether
binary or unary coding of parameters is assumed: it is still
PSPACE-hard under binary coding but in NP under unary
coding.

1 Introduction

The extension of qualitative temporal logics (TLs) with
metric operators has been studied for almost fifteen years
[5, 4, 8]. Of particular interest are metric extensions of tem-
poral logics of the real line, since the resulting quantitative
TLs are an important tool for the specification and verifica-
tion of real-time systems [2]. Unfortunately, moving from
qualitative to quantitative logics is often accompanied by
an increase in computational complexity of the satisfiabil-
ity problem. The most important example witnessing this
effect is the PSPACE-complete since/until logic of the real
line [7], whose extension with a metric operator ‘sometime
in at leastn but not more thanm time units’ (n andm coded
in binary) becomes EXPSPACE-complete if the casen = m
is not admitted, and even undecidable if it is [1, 3, 5].

It is well known that the complexity of the metric tem-
poral logic obtained by this extension can be reduced to
PSPACE again by further restricting the values ofn andm,
e.g., by enforcing thatn = 0 [1]. However, in contrast to the
EXPSPACE-completeness and undecidability results above,

this improvement has only been proven under thefinite vari-
ability assumption (FVA) which states that no propositional
variable changes its truth-value infinitely many times in any
finite interval. While the FVA is a natural condition for var-
ious computer science applications, we believe that there
are at least two reasons to consider also the non-FVA case:
first, qualitative temporal logic originated in philosophy and
mathematics to study time itself, rather than the behaviour
of systems with discrete state changes as considered in com-
puter science. If quantitative TL is used for the former pur-
pose, the FVA is less convincing than in computer science
applications. Second, even in computer science reasoning
without the FVA can be fruitfully employed: assume that a
formulaϕ of a quantitative TL describes the specification of
a real-time system. Further assume thatϕ has been found
to be unsatisfiable under FVA, indicating that the described
specification is not realizable. If an additional satisfiability
checkwithout FVA is made revealing that dropping FVA
regains satisfiability ofϕ, then the user obtains additional
information on the source of the unrealizability of her spec-
ification: namely that it enforces an infinite number of state
changes in a finite interval.

The purpose of this paper is toinvestigate metric tempo-
ral logics of the real line that are at most PSPACE-complete.
More precisely, we prove three results. Our first result is
that extending since/until logic of the real line with metric
operators ‘sometime in at mostn time units’, n coded in
binary, is PSPACE-complete even without FVA. (Note that
the logic without FVA is more general than with FVA in
the sense that the latter logic can be polynomially reduced
to the former [5].) To show this result, we propose a new
method for polynomially reducing satisfiability in metric
TLs whose numerical parameters are coded in binary to sat-
isfiability in the same logic with numbers coded in unary.
The essence of the reduction is to introduce new proposi-
tional variables that serve as the bits of a binary counter
measuring distances. For the metric TL mentioned above,
we obtain a PSpace upper bound since Hirshfeld and Rabi-
novich have shown that QTL, i.e., the same logic with num-



bers coded in unary, is PSPACE-complete without FVA [5].
In the technical report accompanying this paper, we show
that our proof method can be used for other logics as well.
For instance, metric extensions of (discrete-time) LTL and
the branching time logic CTL are shown to be in PSPACE

and EXPTIME, respectively [6].
Our second result concerns a sharpening of PSPACE

lower bounds for metric temporal logics of the real line. In
the current literature, such logics usually contain qualitita-
tive since/until logic as a proper fragment, and thus trivially
inherit PSPACE-hardness [2, 5, 7]. We consider metric TLs
with weaker qualitative operators and show that PSPACE-
hardness can already be observed in the following three
cases: (i) a future diamond and a future operator ‘some-
time in at mostn time units’,n coded in unary; (ii)only the
future operator ‘sometime in at mostn time units’,n coded
in binary (i.e., no qualitative operators at all); (iii) only a
metric version of the until operator for the interval[0, 1].

As a third result, we explore the transition from NP
to PSPACE. In particular, we show that the quantitative
TL with only the metric operator ‘sometime withinn time
units’, n coded in unary, is NP-complete. This result ex-
tends the result of [10] that satisfiability of the qualitative
TL with operators ‘eventually in the future’ and ‘eventually
in the past’ over the real line is decidable in NP. When com-
pared with result (ii) above, it also shows that the complex-
ity of metric TLs without qualitative operators depends on
the coding of numbers. To establish the NP upper bound,
we show that satisfiability of a formulaϕ can be decided by
first ‘guessing’ a system of rational linear inequalities, and
checking whether this system has a solution over the real
(or, equivalently, rational) numbers.

2 Preliminaries

We introduce the metric temporal language QTL of [5],
which is closely related to the language MITL of [1]. Fix
a countably infinite supplyp0, p1, . . . of propositional vari-
ables. A QTL-formula is built according to the syntax rule

ϕ := p | ¬ϕ | ϕ ∧ ψ | ϕS ψ | ϕU ψ | ϕSIψ | ϕUIψ

with p ranging over the propositional variables andI rang-
ing over intervals of the forms(0, n), (0, n], [0, n), and
[0, n], wheren > 0 is a natural number. The Boolean op-
erators�, ∨, →, and↔ are defined as abbreviations in the
usual way. Moreover, we introduce additional future modal-
ities as abbreviations:♦IFϕ = �UI ϕ, �I

Fϕ = ¬♦IF¬ϕ,
♦Fϕ = �U ϕ, and�Fϕ = ¬♦F¬ϕ. Their past counter-
parts are defined analogously and have a subscriptP .

Note that formulas with rational numbers as parameters
of metric operatorsSI andUI can be translated (in poly-
nomial time) to satisfiability equivalent formulas contain-

ing only the natural numbers by multiplying with the least
common denominator of all (rational) parameters.

Formulas of QTL are interpreted on the real line. A
model M = 〈�,V〉 is a pair consisting of the real numbers
and a valuationV mapping every propositional variablep
to a setV(p) ⊆ �. The satisfaction relation ‘|=’ is defined
inductively as follows, where we writew + I to denote the
set{w+ x | x ∈ I} for each time pointw ∈ � and interval
I of one of the above forms;w − I is defined analogously.

M, w |= p iff w ∈ V(p)
M, w |= ¬ϕ iff M, w 
|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ

M, w |= ϕU ψ iff there existsu > w such that

M, u |= ψ andM, v |= ϕ

for all v such thatw < v < u

M, w |= ϕS ψ iff there existsu < w such that

M, u |= ψ andM, v |= ϕ

for all v such thatu < v < w

M, w |= ϕUI ψ iff there existsu ∈ w + I such that

M, u |= ψ andM, v |= ϕ

for all v such thatw < v < u

M, w |= ϕSI ψ iff there existsu ∈ w − I such that

M, u |= ψ andM, v |= ϕ

for all v such thatu < v < w

We will also writew |=V ϕ for 〈�,V〉, w |= ϕ. A QTL-
formula ϕ is satisfiable if there exists a modelM and a
w ∈ � such thatM, w |= ϕ. It is satisfiable under thefinite
variability assumption (FVA) if it is satisfiable in a model
in which no propositional variable changes its truth-value
infinitely many times in any finite interval.

Our presentation of QTL deviates from that of [5], where
only the metric operators♦(0,1)

F and♦(0,1)
P are admitted. If

the numerical parameters of the metric operators are coded
in unary, there exists an easy polynomial translation from
Hirshfeld and Rabinovich’s version of QTL to ours and vice
versa. However, in this paper we also consider binary cod-
ing of numbers. If we want to emphasize this fact, we shall
write QTLb instead of QTL, and likewise, QTLu will denote
unary coding of numbers.

We close this section with a discussion of the relation
between temporal logics with and without FVA. The satis-
fiability of a formulaϕ of a temporal logic with operators
since and until and with FVA can be polynomially reduced
to satisfiability in the same logic without FVA; see [5]: Let
δ =

∧
p used inϕ

(�P δp ∧ δp ∧ �F δp) where

δp =
(
(pU p) ∨ (¬pU ¬p))

∧(
(pS p) ∨ (¬pS ¬p)).



Then it is not hard to verify thatϕ is satisfiable with FVA
iff ϕ ∧ δ is without FVA. Note that the length ofϕ ∧ δ is
polynomial in the length ofϕ. To the best of our knowl-
edge there is no polynomial reduction of this type for the
language without since or until.

3 QTLb is PSPACE-complete without FVA

The purpose of this section is to prove that QTLb-
satisfiability without FVA is decidable in PSPACE. Note
that, due to polynomial reducibility of QTLb with FVA to
this logic, the upper complexity bound carries over. This re-
sult is already known for QTLu without FVA [5] and QTLu

with FVA [1]. We first show that our result indeed improves
upon the existing ones by proving that QTLb is exponen-
tially more succinct thanQTLu.

Theorem 1. Let ψ be a QTL-formula with numbers coded
in unary that is equivalent to �[0,n]

F p. Then ψ has length at
least n.

Proof. Suppose by contradiction that there exists a QTL-
formula ψ with numbers coded in unary such thatψ is
equivalent to�[0,n]

F p, for somen ≥ 1, and the length of
ψ is strictly smaller thann. We may assume thatψ contains
no other propositional letters thanp: otherwise, just replace
them with�. Then, forn ≥ 1, setVn(p) := [−n, n]
andMn := 〈R,Vn〉. ThenMn, 0 |= �[0,n]

F p. Therefore,
Mn, 0 |= ψ. Now, it is straightforward to prove the follow-
ing by induction: for every subformulaχ of ψ of length≤ k
and allx ≥ k such thatn− x ≥ −n+ k:

M, (n− k) |= χ iff Mn, (n− x) |= χ.

Since the length ofψ is smaller thann, it follows that, in
Mn, the points0 and1 satisfy the same subformulas ofψ.
In particular,Mn, 1 |= ψ. We have derived a contradiction
sinceMn, 1 
|= �[0,n]

F p. ❏

We now establish the first result of this paper.

Theorem 2. Satisfiability in QTL with numbers coded in
binary is PSPACE-complete without FVA.

Since (qualitative) since/until logic on the real line is
PSPACE-hard [7], it suffices to prove the upper bound. For
simplicity, we prove the upper bound for the future fragment
of QTL, i.e., we omit past operators. The proofs are easily
extended to the general case. Within the future fragment,
we consider only the metric operators♦(0,1)

F , ♦(0,1]
F , ♦[0,1)

F ,

and♦[0,n]
F . This can be done w.l.o.g. due to the following

observations:

First, satisfiability in QTLb can be reduced to satisfia-
bility in QTL b without the metric operatorsψ1 UI ψ2: to

decide satisfiability of a QTLb-formulaϕ, introduce a new
propositional variablepψ2 for everyψ2 which occurs in a
subformula of the formψ1 UI ψ2 of ϕ. Inductively define
a translation on QTLb-formulas such that, for any subfor-
mulaχ of ϕ, χp to denotes the result of replacing all outer-
most subformulasψ1 UI ψ2 of χ byψp1 U pψ2 ∧♦IF pψ2 . Set
�+
Fψ = ψ ∧ �Fψ. Thenϕ is satisfiable iff

ϕp ∧ �+
F

[ ∧
ψ1 UI ψ2∈sub(ϕ)

(pψ2 ↔ ψp2)
]

is satisfiable. Note that the length of the latter formula is
polynomial in the length ofϕ. Second, for any intervalI
of the form (0, n), (0, n], or [0, n) with n > 1, ♦IFϕ is

equivalent to♦JF♦[0,n−1]
F ϕ, whereJ is obtained fromI by

replacing the upper interval boundn by 1.

In the following, we reduce satisfiability of QTLb-
formulas to the satisfiability of QTL1-formula, i.e., QTL-
formulas in which all upper interval bounds have value 1.
As the coding of numbers is not an issue in the latter logic,
we obtain a PSPACEupper bound from the result of [5] that
QTLu-satisfiability in models without FVA is decidable in
PSPACE.

Letϕ be a QTL-formula meeting the restrictions laid out
above. Letk be the greatest number occurring as a param-
eter to a metric operator inϕ, nc = log2(k + 2)�, and
χ1, . . . , χ� the subformulas ofϕ that occur as an argument
to a metric operator of the form♦[0,n]

F with n > 1. We re-
serve, for1 ≤ i ≤ �, fresh propositional variablesxi, yi,
and cinc−1, . . . , c

i
0 that do not occur inϕ. The sequences

cinc−1, . . . , c
i
0 of propositional variables will be used to im-

plement binary counters, one for eachχi. Intuitively, these
counters measure the distance to the “nearest” future occur-
rence of the formulaχi, rounded up to the next largest nat-
ural number. A counter value greater than or equal tok + 1
is a special case indicating that the nearest occurrence is too
far away to be of any relevance. The variablesxi andyi will
serve as markers with the following meaning:xi holds in a
point iff there is a natural numbern such thatχi holds at dis-
tancen, but not in between; similarly,yi holds iff there is a
natural numbern such thatχi does not hold at any distance
up to (and including)n, but χi holds at future points that
converge from the right to the future point with distancen.
In the following, we call the structure imposed on the real
line by the markersxi andyi the (one-dimensional) ‘grid’.

To implement the counters, we introduce auxiliary for-
mulas. For1 ≤ i ≤ �, let

• (Ci = m) be a formula saying that, at the current
point, the value of thei-th counter ism, for 0 ≤ m <
2nc . There are exponentially many such formulas, but
we will use only polynomially many of them in the re-
duction.



• (Ci ≤ m) is a formula saying that, at the current point,
the value of thei-th counter does not exceedm, for
0 ≤ m < 2nc .

• ©ϕ := ¬(xi ∨ yi)U((xi ∨ yi) ∧ ϕ) says that, at the
next grid point,ϕ is satisfied.

To deal with effects of convergence, it is convenient to in-
troduce an additional abbreviation. The formularc(ψ) :=
¬(¬ψ U �) ∧ ¬ψ describes convergence ofψ-points from
the right against a point whereψ does not hold. We now
inductively define a translation of QTLb-formulas to QTL1-
formulas:

p∗ := p
(¬ψ)∗ := ¬ψ∗

(ψ1 ∧ ψ2)∗ := ψ∗
1 ∧ ψ∗

2

(ψ1 U ψ2)∗ := ψ∗
1 U ψ∗

2

(♦IFψ)∗ := ♦IFψ∗

(♦[0,n]
F χi)∗ := (Ci ≤ n− 1) ∨ (

(Ci = n) ∧ ¬yi
)

Here, I ranges over intervals(0, 1], (0, 1), and [0, 1). It
remains to enforce the existence of the grid and the behavior
of the counters as described above. This is done with the
following auxiliary formulas, for1 ≤ i ≤ �:

ϑi1 := (Ci = 0) ↔ (
χ∗
i ∨ rc(χ∗

i )
)

ϑi2 := xi ↔
[
χ∗
i ∨

(
�(0,1)
F (¬χ∗

i ∧ ¬xi ∧ ¬yi)
∧ ♦(0,1]

F xi ∧ ♦Fχ∗
i

)]

ϑi3 := yi ↔
[
rc(χ∗

i ) ∨
(
�(0,1)
F (¬χ∗

i ∧ ¬xi ∧ ¬yi)
∧ ♦(0,1]

F yi ∧ ♦F rc(χ∗
i )

)]

ϑi4 := ¬(Ci = 0) ∧ ♦(0,1]
F (xi ∨ yi) →( ∨

t=0..nc−1

(
cit ∧©¬cit ∧

∧
�=0..t−1

(¬ci� ∧©ci�)

∧
∧

�=t+1..nc−1

(ci� ↔ ©ci�)
) ∨

∧
�=0..nc−1

(ci� ∧©ci�)
)

ϑi5 := ¬♦[0,1)
F (xi ∨ yi) → (Ci = 2nc − 1)

Intuitively, ϑi1 initializes the counter,ϑi2 andϑi3 ensure that
the grid pointsxi andyi behave as described above,ϑi4 in-
crements the counter when travelling to the left, andϑi5 en-
sures that, when travelling left, the counter stays in maximal
value after the last occurrence ofχ∗

i . Letϑi be the conjunc-
tion of ϑi1 to ϑi5. The following is proved in [6] and finishes
the reduction.

Lemma 3. ϕ is satisfiable iff �F (ϑ1 ∧ · · · ∧ ϑ�) ∧ ϕ∗ is
satisfiable.

4 From NP to PSPACE

Qualitative since/until logic on the real line is PSPACE-
complete, and thus not computationally simpler than QTLb.
However, several natural fragments are only NP-complete,
an important example being the qualitative TL with tempo-
ral operators ‘eventually in the future’ and ‘eventually in the
past’ [10]. In this section, we explore the transition from
NP to PSPACE for fragments ofquantitative logics of the
real line, i.e., for QTL and its fragments. We start with de-
termining several weak, but still PSPACE-hard fragments of
QTL. Observe that two of the fragments are purely quanti-
tative, i.e., they do not admit qualitative temporal operators
at all.

Theorem 4. Satisfiability (with and without FVA) is
PSPACE-hard for the fragments of QTL whose only tempo-
ral operators are:

(i) ♦F and ♦[0,n]
F with n > 0 coded in unary;

(ii) ♦[0,n]
F with n > 0 coded in binary;

(iii) U [0,1].

Point (i) is proved by reducing satisfiability in LTL (i.e.,
qualitative temporal logic of the natural numbers) with the
only temporal operators© and♦F (which is PSPACE-hard
[9]) to satisfiability in the logic defined in (i). To do so, the
main task is to represent the discrete natural numbers on the
real line by alternating intervals makinga true and inter-
vals making¬a true, with the former representing the time
points of discrete time. This structure is enforced such that
the length of thea-intervals is between 2 and 3 (including
2), the length of the¬a-intervals is between 7 and 8 (in-
cluding 7), and the length of ana-interval together with the
subsequent¬a interval is between 9 and 10. This is done
by the formulaϑ = ϑ1 ∧ ϑ2 ∧ ϑ3:

ϑ1 = �[0,2]
F a,

ϑ2 = �F (a→ ♦[0,3]
F �[0,7]

F ¬a),
ϑ3 = �F (a→ ♦[0,10]

F �[0,2]
F a).

For the reduction, inductively define a translation(·)∗ as
follows:

p∗ := p
(¬ψ)∗ := ¬ψ∗

(ψ1 ∧ ψ2)∗ := ψ∗
1 ∧ ψ∗

2

(©ψ)∗ := ♦[0,3]
F

(
�[0,7]
F ¬a ∧ ♦[0,8]

F (ψ∗ ∧ a))
(♦Fψ)∗ := ♦F (¬a ∧ ♦F (ψ∗ ∧ a))

Additionally, a formulaϑ′ is needed to take care of unifor-
mity, i.e., to make sure that the same propositional variables



hold in all points of an interval that makesa true:

ϑ′ = �F

∧
p used inϕ

[(
p ∧ a→ �[0,3]

F (a→ p)
)

∧ (¬p ∧ a→ �[0,3]
F (a→ ¬p))].

Now,ϕ is satisfiable over the natural numbers iffϕ∗ ∧ ϑ ∧
ϑ′ ∧ a is satisfiable over the real numbers with FVA iff it is
satisfiable over the real numbers without FVA.

A similar reduction can be used to prove (ii). Notice that
satisfiability in LTL is already PSPACE-hard if the natural
numbers are replaced by a finite strict linear order (an initial
segment of the natural numbers). Moreover, any formulaϕ
which is satisfiable in a finite strict linear order is also sat-
isfiable in a finite strict linear order of length not exceeding
2|ϕ|. Based on this observation, using the operator♦[0,n]

F ,
n > 0 coded in binary, instead of♦F , we can reduce sat-
isfiability of an LTL-formulaϕ in such a finite strict linear
order to satisfiability over the real line (with and without
FVA).

Finally, (iii) can be proved by reducing satisfiability over
the real line in the qualitative fragment of QTL with the
only temporal operatorU (which is PSPACE-hard) to satisfi-
ability of formulas with the operatorU [0,1] over the interval
(0, 1); details can be found in [6].

We now exhibit a purely quantitative temporal logic of
the real line for which satisfiability is NP-complete: the
fragment of QTL with only the quantitative diamond and
numbers coded in unary, with and without FVA. This logic
may appear rather weak since it does not allow to make
statements aboutall time points. Still, it is useful for rea-
soning about the behaviour of systems up to a previously
fixed time point. Note that our NP-completeness result
shows that Points (i) and (ii) of Theorem 4 are optimal in
the following sense: in Point (i) we cannot drop♦F , and in
Point (ii) we cannot switch to unary coding.

Theorem 5. In the fragment of QTL with temporal opera-
tors ♦IF and ♦IP , I of the form (0, n), [0, n), [0, n], or (0, n],
and n > 0 coded in unary, satisfiability is decidable in NP,
both, with and without FVA.

The lower bound is immediate from propositional logic and
thus we only have to prove the upper bound. Since numbers
are coded in unary, we may restrict our attention to temporal
operators whose upper interval bound is1. In the proof, we
only consider the temporal operator♦[0,1]

F . An extension to
past operators and open intervals is straightforward.

Let ϕ be a formula whose satisfiability is to be decided.
We introduce some convenient abbreviations:mϕ denotes
the nesting depth of operators♦IF in ϕ (henceforthdiamond
depth), nϕ = 2|ϕ|3 + |ϕ|2, andrϕ = |ϕ| × nϕ. Denote
by cl(ϕ) the closure of the set of subformulas ofϕ under
single negation. Atype t for ϕ is a subset ofcl(ϕ) such that

(i) ¬ψ ∈ t iff ψ 
∈ t for each¬ψ ∈ cl(ϕ), and (ii)ψ1∧ψ2 ∈
t iff ψ1, ψ2 ∈ t for eachψ1 ∧ ψ2 ∈ cl(ϕ). For a model
〈�,V〉 andw ∈ �, set

t(w) = {ψ ∈ cl(ϕ) | w |=V ψ},
t<(w) = {♦IFψ ∈ cl(ϕ) | w |=V ♦IFψ}.

Notice thatt(w) is a type forϕ. First, we devise an algo-
rithm for satisfiability without FVA. To begin with, we show
that satisfiability ofϕ implies satisfiability ofϕ in a ‘homo-
geneous’ model. In particular, in such models the number
of realized types is polynomial in the length ofϕ.

Lemma 6. Let ϕ be satisfiable without FVA. Then there is a
sequence x0, . . . , xnϕ

in� such that 0 = x0 < x1 < · · · <
xnϕ

= mϕ, and a valuation V such that 〈�,V〉, 0 |= ϕ
and

• |{t(w) | 0 ≤ w ≤ mϕ}| ≤ rϕ;

• for every n with 0 ≤ n < nϕ and each type t for ϕ, the
set {w ∈ � | xn < w < xn+1 and w |=V t} is either
empty or dense in the interval (xn, xn+1).

Proof. Consider a modelM = 〈�,V′〉 with M, 0 |= ϕ. By
the semantics, we clearly have the following:

(∗) for any♦IFψ ∈ sub(ϕ), the set{w ∈ � | 0 ≤ w ≤
mϕ andw |=V′ ♦IFψ} is a union of intervals of length
at least1 and at most two intervals of length smaller
than 1.

The two possibly shorter intervals are the one starting at 0
and the one ending atmϕ. Using (∗), we can show that there
is a sequencey0, . . . , yk in� for somek ≤ 2|ϕ|2+|ϕ| such
that

• 0 = y0 < · · · < yk = mϕ and

• t<(w) = t<(w′) wheneveryi < w < w′ < yi+1 for
anyi < k.

To see this, take a formula♦IFψ ∈ sub(ϕ). The toggle
points for ♦IFψ in the interval[0,mϕ] are those pointsx
such that either (i) there is ay > x such that the truth value
of ♦IFψ at x is different from the truth value of♦IFψ at all
pointsz with x < z < y or (ii) there is ay < x such that
the truth value of♦IFψ atx is different from the truth value
of ♦IFψ at all pointsz with y < z < x. By (∗), there are at
most2 ·mϕ+1 < 2 · |ϕ|+1 toggle points for each formula
♦IFψ, and thus at most2|ϕ|2 + |ϕ| toggle points altogether.
These points form the required sequencey0, . . . , yk.

We convert this sequence into the desired sequence
x0, . . . , xnϕ

by arranging the elements of the set

{y0, . . . , yk} ∪
⋃
i<k

1≤j<mϕ

{yi + j | yi + j < mϕ}



in ascending order according to ‘<’, possibly introduc-
ing (arbitrary) intermediate points to obtain a sequence of
lengthnϕ + 1.

To obtain a valuationV as required by the lemma, fix a
setTi of types for eachi < nϕ as follows: for each♦IFψ ∈
sub(ϕ), choose aw ∈ (xi, xi+1) with ψ ∈ t(w) if such a
w exists. Then,Ti is the set of typest(w) of all pointsw
chosen in this way. Clearly|Ti| ≤ |ϕ|. For eachi < nϕ,
take a collection(Xi

t)t∈Ti
, of subsets of(xi, xi+1) which

form a partitioning of(xi, xi+1) such that eachXi
t is dense

in (xi, xi+1). Now define a valuationV by setting, for every
propositional variablep,

V(p) := (V′(p) ∩ {x0, . . . , xnϕ
}) ∪

⋃
i<nϕ,t∈Ti

{Xi
t | p ∈ t}.

Let ti, i ≤ nϕ, be the type{ψ ∈ sub(ϕ) | xi |=V′ ψ} for
ϕ realized in pointxi of the original modelM. To show
thatV is as required, it is sufficient to show that, for each
k ≤ mϕ, eachψ ∈ sub(ϕ) with diamond depth bounded
by k, and eachw ∈ [0,mϕ − k], we have

w |=V ψ iff there is ani ≤ nϕ such that

(a)w = xi andψ ∈ ti, or

(b)w ∈ Xi
t andψ ∈ t for somet ∈ Ti.

Proof. Let k, ψ, andw be as above. The proof is by in-
duction on the structure ofψ. The cases for propositional
variables,¬, and∧ are left to the reader. Consider the case
for ♦[0,1]

F .

“⇒”: Supposew |=V ♦[0,1]
F ψ. Then there is aw′ ∈

w + [0, 1] such thatw′ |=V ψ by the semantics. Distin-
guish four cases:

• w = xi for somei ≤ nϕ andw′ = xj for somej ≥ i.
By (a), the induction hypothesis yieldsψ ∈ tj . Then

xj |=V′ ψ. Fromxj−xi ≤ 1 followsxi |=V′ ♦[0,1]
F ψ.

Hence♦[0,1]
F ψ ∈ ti.

• w = xi for somei ≤ nϕ andw′ ∈ Xj
t for somej with

i ≤ j < nϕ and t ∈ Tj . The induction hypothesis
in (b) yieldsψ ∈ t. Then, by definition ofTj , there
is aw′′ ∈ (xj , xj+1) such thatw′′ |=V′ ψ. Note that
there is an� with i < � ≤ nϕ such thatx� = xi + 1.
But thenxj+1 ≤ x�; otherwisew′ ∈ Xj

t contradicts
w′ ∈ w + [0, 1]. Now, fromw′′ − w < 1 follows
w |=V′ ♦[0,1]

F ψ. Hence♦[0,1]
F ψ ∈ ti.

• w ∈ Xi
t for somei < nϕ andt ∈ Ti, andw′ = xj

for somej > i. By (a), the induction hypothesis yields
ψ ∈ tj . Thenxj |=V′ ψ. Now, from xj − w ≤ 1
follows w |=V′ ♦[0,1]

F ψ. But then, by definition of

the sequencex0, . . . , xnϕ
, it holds that, for allw′′ ∈

(xi, xi+1), w′′ |=V′ ♦[0,1]
F ψ. Therefore,♦[0,1]

F ψ ∈ t′

for anyt′ ∈ Ti. Hence♦[0,1]
F ψ ∈ t.

• w ∈ Xi
t for somei < nϕ andt ∈ Ti, andw′ ∈ Xj

t

for somej with i ≤ j < nϕ andt′ ∈ Tj . This case is
similar to the previous cases and left to the reader, see
[6].

“⇐”: Let i ≤ nϕ such that

(a) w = xi and♦[0,1]
F ψ ∈ ti. Thenxi |=V′ ♦[0,1]

F ψ. There
is aw′ ∈ xi + [0, 1] such thatw′ |=V′ ψ. Distinguish
two cases:

– w′ = xj for somej with i ≤ j ≤ nϕ. Then
ψ ∈ tj . The induction hypothesis in (a) yields
w′ |=V ψ. Fromw′ − xi ≤ 1 follows xi |=V

♦[0,1]
F ψ.

– w′ ∈ (xj , xj+1) for somej with i ≤ j < nϕ.
By definition ofTj , there is at ∈ Tj such that
ψ ∈ t. The induction hypothesis in (b) yields
w′′ |=V ψ for anyw′′ ∈ Xj

t . SinceXj
t is dense

in (xj , xj+1), there is such aw′′ such thatw′′ ≤
w′. Thenw′′ − xi ≤ 1. Hence,xi |=V ♦[0,1]

F ψ.

(b) w ∈ Xi
t and♦[0,1]

F ψ ∈ t for somet ∈ Ti. This case is
similar to the previous one and left to the reader.

❏

Lemma 6 suggests the following idea for deciding in non-
deterministic polynomial time whether a formulaϕ is sat-
isfiable: guess a (polynomially bounded) set of types for
ϕ to be realized in a homogeneous model, a sequence
v0, . . . , vnϕ

of variables, and construct a system of linear
inequalities whose solution in� determines a sequence of
points x0, . . . , xnϕ

from which we can build a homoge-
neous model realizing the guessed types. More precisely,
to decide the satisfiability ofϕ, we non-deterministically
choose

• a setT of types forϕ such that|T | ≤ rϕ;

• a typeti ∈ T such thatϕ ∈ t0, for everyi ≤ nϕ;

• a non-empty set of typesTi ⊆ T , for everyi < nϕ.

Intuitively, the typeti is to be realized at pointxi, and the
types inTi are those types realized in the interval(xi, xi+1).
Then, we take variablesv0, . . . , vnϕ

and check whether the
system of inequalities given in Figure 1 has a solution in�.
The Inequalities 2 to 9 are only added ifi < nϕ. To under-
stand the inequalities (in particular 4 and 5), note that the
point xi described by variablevi is not intended to realize
thewhole type ti, but only those elements ofti whose dia-
mond depth is at most�mϕ − xi�. Similarly, points from



(1) 0 = v0 < v1 < · · · < vnϕ = mϕ

(2) vj − vi > 1 if ¬♦[0,1]
F ψ ∈ ti, j ≥ i, andψ ∈ tj

(3) vj − vi ≥ 1 if ¬♦[0,1]
F ψ ∈ ti, j ≥ i, andψ ∈ t for somet ∈ Tj

(4)mϕ − vi < 1 if ♦[0,1]
F ψ ∈ ti, but there is noj ≥ i such thatψ ∈ tj orψ ∈ t for a t ∈ Tj

(5)mϕ − vi ≤ 1 if ♦[0,1]
F ψ ∈ t for somet ∈ Ti, there is noj > i such thatψ ∈ tj ,

and there is noj ≥ i such thatψ ∈ t′ for somet′ ∈ Tj

(6) vj − vi ≤ 1 if ♦[0,1]
F ψ ∈ ti andj ≥ i is minimal such thatψ ∈ tj and,

for everyj′ with i ≤ j′ < j, ψ �∈ t for anyt ∈ Tj′

(7) vj − vi < 1 if ♦[0,1]
F ψ ∈ ti andj ≥ i is minimal such thatψ ∈ t for somet ∈ Tj and

there is noj′ with i ≤ j′ ≤ j such thatψ ∈ tj′

(8) vj − vi ≤ 1 if ♦[0,1]
F ψ ∈ t for somet ∈ Ti, ψ �∈ t′ for anyt′ ∈ Ti, andj > i is minimal

such thatψ ∈ tj orψ ∈ t′ for somet′ ∈ Tj

(9) vj − vi+1 ≥ 1 if ¬♦[0,1]
F ψ ∈ t for somet ∈ Ti, and (j ≥ i andψ ∈ t′ for somet′ ∈ Tj) or

(j > i andψ ∈ tj)

Figure 1. The system of inequalities.

(xi, xi+1) described by a typet ∈ Ti realize only elements
of t whose diamond depth is at most�mϕ − xi�; cf. the
structural induction in the proof of Lemma 6.

The algorithm runs in non-deterministic polynomial time
and returns ‘ϕ is satisfiable’ if there is a solution to this sys-
tem of inequalities, and ‘ϕ is not satisfiable’ otherwise. By
considering the contrapositive, it is easily seen thatϕ is un-
satisfiable if the algorithm answers ‘no’: ifϕ has a model,
then by Lemma 6 it also has a homogeneous model, and this
model suggests a choice of types such that the correspond-
ing system of inequalities is satisfiable. Conversely, if the
algorithm returns ‘yes’, we can construct a homogeneous
model:

Lemma 7. If the algorithm returns ‘ϕ is satisfiable’, then
ϕ is satisfiable.

Proof. Suppose there are typesti, i ≤ nϕ, and sets of types
Ti, i < nϕ, such that there is a solutionx0, . . . , xnϕ

for
the corresponding system of inequalities. Fori < nϕ, take
a partitioning(Xi

t)t∈Ti
of (xi, xi+1) such that eachXi

t is
dense in(xi, xi+1). Now define a valuationV by putting,
for every propositional variablep,

V(p) :=
⋃
i≤nϕ

(
{xi | p ∈ ti} ∪

⋃
i<nϕ,t∈Ti

{Xi
t | p ∈ t}

)
.

In [6], the following is proved: for allk ≤ mϕ, all
ψ ∈ sub(ϕ) with diamond depth bounded byk, and all

w ∈ [0,mϕ − k], we have

w |=V ψ iff there is ani ≤ nϕ such that

(a)w = xi andψ ∈ ti, or

(b)w ∈ Xi
t andψ ∈ t for somet ∈ Ti.

It is an immediate consequence that0 |=V ϕ. ❏

We now come to the proof of Theorem 5 with FVA. Again,
the first step is to show that ifϕ is satisfiable under FVA,
then it is satisfiable in a homogeneous model (this time with
FVA) in which only polynomially many types are realized:

Lemma 8. Suppose ϕ is satisfiable with FVA. Then there
exists a sequence z0, . . . , zrϕ

in� such that 0 = z0 < z1 <
· · · < zrϕ

= mϕ, and a valuation V such that 〈�,V〉, 0 |=
ϕ and

• |{t(w) | 0 ≤ w ≤ mϕ}| ≤ rϕ;

• for all n with 0 ≤ n < rϕ, all ψ ∈ sub(ϕ), and all
zn < w < w′ < zn+1, w |=V ψ iff w′ |=V ψ.

Proof. Consider a modelM = 〈�,V′〉 with FVA satisfying
ϕ in 0. First, construct a sequence0 = y0 < y1 < · · · <
yk = mϕ, k ≤ 2|ϕ|2 + |ϕ|, as in Lemma 6. Then the
sequencex0, . . . , xnϕ

is obtained by arranging the elements



of the set

{y0, . . . , yk} ∪
⋃
i<k

1≤j<mϕ

{yi + j | yi + j < mϕ}

∪
⋃
i≤k

1≤j<mϕ

{yi − j | yi − j > 0}

in ascending order according to< (where we possibly have
to add newxi to obtain a sequence of lengthnϕ + 1). Let

σ = min{xi+1 − xi | 0 ≤ i < nϕ},

and set, fori < nϕ, σi = 1
|ϕ|i+1 × σ. The sequence

0 = z0 < z1 < · · · < zrϕ
= mϕ

is obtained by adding to the sequencex0, . . . , xnϕ
the

points

yji = xi +
j

|ϕ| × σi,

for all i < nϕ andj ≤ |ϕ|. For i < nϕ, denote byt−i the
typet which is realized in some interval of the form(xi, y).
Note that such an interval exists since we are in a model
with FVA. Also, denote byt+i the type which is realized in
some interval of the form(y, xi+1). Now, for i < nϕ, take
for any♦IFψ ∈ sub(ϕ) such that there existsw ∈ (xi, xi+1)
with ψ ∈ t(w) such a typet(w) and denote the collection of
selected types plus the typest−i andt+i by Ti. Notice that
|Ti| ≤ |ϕ|. Let ti0, . . . , t

i
|ϕ|−1 be an ordering of the types in

Ti such thatti0 = t−i (if Ti has cardinality< |ϕ|, then take
somet from Ti more than once in this ordering.) Define a
valuationV by setting, for every propositional variablep,

V(p) = {xi | i ≤ nϕ, xi |=V′ p}
∪

⋃
i<nϕ,j<|ϕ|

{(yji , yj+1
i ] | p ∈ tij}

∪
⋃
i<nϕ

{(y|ϕ|i , xi+1) | p ∈ t+i}.

We show thatV is as required. To this end, it is sufficient
to show by induction that, for eachk ≤ mϕ, everyψ ∈
sub(ϕ) in which the number of nestings of♦[0,1]

F does not
exceedk, and allw ∈ [0,mϕ − k]:

w |=V ψ ⇔ there is ani ≤ nϕ such that

(a)w = xi andxi |=V′ ψ, or

(b)w ∈ (y�i , y
�+1
i ] andψ ∈ ti� for

some� < |ϕ|, or

(c)w ∈ (y|ϕ|i , xi+1) andψ ∈ t+i.

Proof. Let k, ψ, andw be as above. The proof is by in-
duction on the structure ofψ. The cases for propositional
variables,¬, and∧ are left to the reader. Consider the case
for ♦[0,1]

F .

“⇒”: Supposew |=V ♦[0,1]
F ψ. Then there is aw′ ∈

w + [0, 1] such thatw′ |=V ψ. Similarly to the previous
proof distinguish four cases. Here only the most intricate
case is considered; the other cases are left to the reader and
can also be found in [6]:

• w ∈ (xi, xi+1) for somei < nϕ, andw′ ∈ (xj , xj+1)
for somej ≥ i. If w′ ∈ (y�j , y

�+1
j ] for some� < |ϕ|,

then the induction hypothesis in (b) yieldsψ ∈ tj� .

Otherwise, i.e., ifw′ ∈ (y|ϕ|j , xj+1), ψ ∈ t+j by the

induction hypothesis in (c). Sincetj� , t
+j ∈ Tj , it fol-

lows by definition ofTj that there is aw′′ ∈ (xj , xj+1)
such thatw′′ |=V′ ψ. Note that there is ani′ > i + 1
such thatxi′ = xi+1 + 1. But thenxj+1 ≤ xi′ ; oth-
erwisexj ≥ xi′ and thusw′ − w > 1 contradicting
w′ ∈ w+[0, 1]. Thus there is av ∈ (xi, xi+1) such that
w′′−v ≤ 1. By the semantics,v |=V′ ♦[0,1]

F ψ. Then it
follows by definition of the sequencex0, . . . , xnϕ

that

v′ |=V′ ♦[0,1]
F ψ for all v′ ∈ (xi, xi+1). Therefore,

♦[0,1]
F ψ ∈ t′ for any t′ ∈ Ti. Hence♦[0,1]

F ψ ∈ ti� if

w ∈ (y�i , y
�+1
i ] for some� < |ϕ|, and♦[0,1]

F ψ ∈ t+i if

w ∈ (y|ϕ|i , xi+1).

“⇐”: Here only Case (b) is considered; the cases (a) and
(c) are left to the reader and can also be found in [6]. Let
i ≤ nϕ such that (b)w ∈ (y�i , y

�+1
i ] and♦[0,1]

F ψ ∈ ti� for
some� < |ϕ|. By definition ofTi, there is aw′ ∈ (xi, xi+1)
such thatw′ |=V′ ♦[0,1]

F ψ. Then it follows by definition of

x0, . . . , xnϕ
thatw′′ |=V′ ♦[0,1]

F ψ for anyw′′ ∈ (xi, xi+1).
In particular,w |=V′ ♦[0,1]

F ψ. Thenv |=V′ ψ for some
v ∈ w + [0, 1] by the semantics. Distinguish three cases:

• v = xj for somej > i. The induction hypothesis in
(a) yieldsv |=V ψ. Sincev − w ≤ 1, it follows by the
semantics thatw |=V ♦[0,1]

F ψ.

• v ∈ (xi, xi+1). By definition of Ti, there is at ∈
Ti such thatψ ∈ t. Distinguish two subcases: First,
suppose thatψ ∈ ti�′ for some�′ ≥ �, or ψ ∈ t+i.
The induction hypothesis in (b) or (c) yieldsv′ |=V

ψ for all v′ ∈ (y�
′
j , y

�′+1
j ], or all v′ ∈ (y|ϕ|i , xi+1),

respectively. Then there is such av′ such thatv′−w <

1. Hencew |=V ♦[0,1]
F ψ.

Second, suppose there is no�′ ≥ � such thatψ ∈ ti�′ ,
andψ /∈ t+i. Note that this implies� > 0. Since
ψ /∈ t+i, there is an interval of the form(y, xi+1) such
that y′ 
|=V′ ψ for all y′ ∈ (y, xi+1). Take such a
y′. Sincew |=V′ ♦[0,1]

F ψ, it follows by definition of



x0, . . . , xnϕ
thaty′ |=V′ ♦[0,1]

F ψ. Then there is av′ ∈
y′ + [0, 1] such thatv′ |=V′ ψ andv′ ≥ xi+1. By
definition ofx0, . . . , xnϕ

, there is ani′ such thatxi′ =
xi + 1. Consider only the case wherev′ ∈ (xj , xj+1)
wherej = i′; the other cases are straightforward. Note
that there is no suchj > i′. For suppose otherwise, it
holds thatxi + 1 < xj < xi+1 + 1. By definition
of x0, . . . , xnϕ

, there is aj′ such thatxj′ = xj − 1.
Thusxi < xj′ < xi+1; a contradiction. Therefore
j = i′, i.e., xj = xi + 1. By definition ofTj , there
is an�′ < |ϕ| such thattj�′ ∈ Tj andψ ∈ tj�′ . Then
the induction hypothesis in (b) yieldsv′′ |=V ψ for all
v′′ ∈ (y�

′
j , y

�′+1
j ]. Take such av′′. Since� > 0 and

σj ≤ σi

|ϕ| by definition ofσj , it holds thaty�i + 1 ≥
xj + σj . Theny�

′+1
j − y�i < 1 and thusv′′ − w < 1.

Hencew |=V ♦[0,1]
F ψ.

• v ∈ (xj , xj+1) for somej > i. By definition of
x0, . . . , xnϕ

, there is ani′ such thatxi′ = xi + 1.
Consider only the case wherej = i′; the other cases
are straightforward. Note that there is no suchj > i′.
For suppose otherwise, it holds thatxi + 1 < xj <
xi+1 + 1. By definition ofx0, . . . , xnϕ

, there is aj′

such thatxj′ = xj − 1. Thusxi < xj′ < xi+1; a
contradiction.
Distinguish three subcases:

– � = 0 andw′ |=V′ ψ for somew′ with xi <
w′ ≤ xj . Then it is easy to see that there is a
v′′ ≥ w such thatv′′ |=V ψ andv′′ − w ≤ 1.
Hencew |=V ♦[0,1]

F ψ.

– � = 0 andw′ 
|=V′ ψ for all w′ with xi < w′ ≤
xj . Sincew |=V′ ♦[0,1]

F ψ, it follows by definition

of x0, . . . , xnϕ
thatw′′ |=V′ ♦[0,1]

F ψ for all w′′

with xi < w′′ < w. Take such aw′′. Then there
is a v′′ ∈ w′′ + [0, 1] such thatv′′ |=V′ ψ and
v′′ > xj . This implies thatψ ∈ t−j = tj0. Then
the induction hypothesis in (b) yieldsv′ |=V ψ
for all v′ ∈ (y0

j , y
1
j ]. Clearly, there is such av′

such thatw − v′ ≤ 1. Hencew |=V ♦[0,1]
F ψ.

– 1 ≤ � < |ϕ|. By definition ofTj , there is an�′ <
|ϕ| such thattj�′ ∈ Tj andψ ∈ tj�′ . The induction
hypothesis in (b) yieldsv′ |=V ψ for all v′ ∈
(y�

′
j , y

�′+1
j ]. Take such av′. Sinceσj ≤ σi

|ϕ| by

definition ofσj , it holds thaty�i + 1 ≥ xj + σj

and thusv′ − w < 1. Hencew |=V ♦[0,1]
F ψ.

❏

Using Lemma 8, one can now modify the decision pro-
cedure for satisfiability without FVA to obtain a decision
procedure running in nondeterministic polynomial time for

satisfiability with FVA. The crucial step is to determine a set
of rational linear inequalities which represent the truth con-
ditions in models of the form described in Lemma 8. We
leave this exercise to the reader.
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