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1 INTRODUCTION

Description logics (DLs) [12] are a family of knowledge representation languages which
can be used to represent the terminological knowledge of an application domain in a
structured and formally well-understood way. The name description logics is motivated
by the fact that, on the one hand, the important notions of the domain are described
by concept descriptions, i.e., expressions that are built from atomic concepts (unary
predicates) and atomic roles (binary predicates) using the concept and role constructors
provided by the particular DL. For example, the concept of “a man that is married to a
doctor, and has only happy children” can be expressed using the concept description

Man ⊓ ∃married.Doctor ⊓ ∀child.Happy.
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On the other hand, DLs differ from their predecessors in that they are equipped with a
formal, logic-based semantics, which can, e.g., be given by a translation into first-order
predicate logic. For example, the above concept description can be translated into the
following first-order formula (with one free variable x):

Man(x) ∧ ∃y(married(x, y) ∧ Doctor(y)) ∧ ∀y(child(x, y) → Happy(y)).

The motivation for introducing the early predecessors of DLs, such as semantic networks
and frames [133, 125], actually was to develop means of representation that are closer
to the way humans represent knowledge than a representation in formal logics, like first-
order predicate logic. Minsky [125] even combined his introduction of the frame idea
with a general rejection of logic as an appropriate formalism for representing knowledge.
However, once people tried to equip these “formalisms” with a formal semantics, it turned
out that they can be seen as syntactic variants of (subclasses of) first-order predicate
logic [83, 144].

The immediate precursors of DLs, Brachman’s structured inheritance networks [42],
were an attempt to define a formalism that allows for a structured representation of
knowledge in the spirit of semantics networks and frames, but nevertheless is equipped
with a formal semantics. The original description logics used in systems that imple-
mented these ideas in the 1980ies [45, 132, 124, 123] turned out to correspond to rather
inexpressive and somewhat unusual subclasses of first-order predicate logic. On the one
hand, none of them was propositionally closed since they did not allow for disjunction
or negation. On the other hand, they were equipped with certain other complex con-
structors (like number restrictions and role-value-maps), which, though expressible in
first-order predicate logic, are not considered as atomic constructors there. For example,
the number restriction (> 5 child) describes people having at least five children, and the
role-value-map child◦friend ⊆ know describes people that know all their children’s friends.

The main inference problem to be solved in description logics is the subsumption prob-
lem, i.e., deciding whether one concept is a subconcept of another one. The early DL
systems cited above employed so-called structural subsumption algorithms, which first
normalise the concept descriptions, and then recursively compare the syntactic structure
of the normalised descriptions. These algorithms are usually very efficient (polynomial),
but they have the disadvantage that they are complete only for rather inexpressive DLs,
i.e., for more expressive DLs they cannot detect all the existing subsumption relation-
ships. To overcome this problem, Schmidt-Schauß and Smolka [143] made DLs into “real”
logics by introducing negation. Their main motivation for this was that they wanted to
reduce the subsumption problem to the satisfiability problem. They introduced a basic
propositionally closed DL, which they called ALC, developed a tableau-like algorithm
for satisfiability in ALC, and showed that the subsumption and satisfiability problem in
ALC are PSpace-complete.

A reader of the Handbook of Modal Logic who followed us so far may rightfully ask:
And what has all this to do with Modal Logic? The answer was given by Schild, who
noticed that ALC is just a syntactic variant of multi-modal K, i.e., the basic modal logic
of Kripke frames with several accessibility relations (and thus several pairs of box- and
diamond operators). In fact, the translations of ALC and of K into first-order predicate
logic yield exactly the same class of first-order formulae. This connection between DLs
and modal logic was used by Schild and others (see, e.g., [139, 140, 54, 55]) to transfer
decidability and complexity results from modal logic to DLs, but also to extend these
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results to logics with other DL constructors. At the same time, tableau-based algorithms
were developed for more and more expressive DLs (see [30] for an overview), and highly-
optimized implementations of these algorithms [92] turned out to behave quite well on
artificial benchmarks from modal logic [131] and also in practice [78].

Though there is a very close connection between DLs and modal logics (MLs), the
underlying intuition as well as the intended applications differ significantly. As a conse-
quence, the focus of research in DL and in modal logic also differs. While mentioning
the similarities, this chapter will focus on topics that are specific for DLs.

Section 2 formally introduces syntax and semantics of the basic DL ALC, and shows
its relationship to multi-modal K. It then introduces additional DL constructors, and
describes their ML counterparts. In addition to these constructors, DLs provide their
users with a terminological formalism, which (in its simplest form) allows to introduce
names for complex concepts, and an assertional formalism, which allows to state facts
about specific individuals/objects. Though these components are usually not available in
ML, there are some connections to things known in ML (such as nominals, the universal
modality, fixpoint operators, etc.).

In Section 3, we introduce the standard inference problems in description logics, show
how they can be reduced to each other, and how they relate to inference problems in
ML. The standard way of solving these problems in propositionally closed DLs is using
tableau-based algorithms. Since these algorithms are treated in other chapters, we only
give some references to the relevant chapters.

Section 4 considers DLs that are not propositionally closed, and where consequently
subsumption cannot be reduced to satisfiability. We review the known complexity results
for such DLs, and then describe (complete) structural subsumption algorithms for some
of them. In addition, we mention bi-simulation characterizations of the corresponding
ML fragments.

Section 5 is concerned with so-called non-standard inferences in DLs, like computing
the least common subsumer and the most specific concept, and rewriting, unification, and
matching of concepts. These inferences have been introduced with the goal of supporting
the user when building and maintaining large DL knowledge bases. With the exception
of unification, none of them have been investigated in ML.

Finally, Section 6 introduces means of expressiveness that do not have immediate ML
counterparts.

2 BASIC DEFINITIONS AND CONNECTION TO MODAL LOGIC

In this section, we introduce the basic components of description logics: concept lan-
guages, terminological formalisms, and assertional formalisms.

2.1 Concept Languages

We first define the basic propositionally closed concept language ALC introduced by
Schmidt-Schauß and Smolka [143], and then describe a number of natural extensions
that are important for many applications and offered by modern DL reasoners. Assume
that a countably infinite supply of concept names, usually denoted A and B, and of role
names, usually denoted r and s, are available. Concept descriptions in ALC are formed
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Name Syntax Semantics

top concept ⊤ ∆I

bottom concept ⊥ ∅

negation ¬C ∆I \ CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

value restriction ∀r.C {d ∈ ∆I | ∀e.(d, e) ∈ rI → e ∈ CI}

existential restriction ∃r.C {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}

transitive role r rI transitive

inverse role r− {(d, e) | (e, d) ∈ rI}

nominal I II singleton

qualifying number 6 n r C {d ∈ ∆I | #{(d, e) ∈ rI | d ∈ CI} ≤ n}
restrictions > n r C {d ∈ ∆I | #{(d, e) ∈ rI | e ∈ CI} ≥ n}

number 6 n r {d ∈ ∆I | #{(d, e) ∈ rI} ≤ n}
restrictions > n r {d ∈ ∆I | #{(d, e) ∈ rI} ≥ n}

Figure 1.1. Semantics of concept and role constructors

according to the following syntax rule:

C, D −→ A | ⊤ | ⊥ | ¬C | C ⊓ D | C ⊔ D | ∀r.C | ∃r.C

where A ranges over concept names and r ranges over role names. In examples, we will
usually use uppercase names for concept names and lowercase names for role names, thus
obtaining ALC concept descriptions such as the one given in the introduction:

Man ⊓ ∃married.Doctor ⊓ ∀child.Happy.

The semantics of ALC is based on interpretations, i.e., pairs I = (∆I , ·I) where ∆I is
a non-empty set (the domain of I), and ·I is the interpretation function, assigning to
each concept name A a set AI ⊆ ∆I and to each role name r a binary relation rI ⊆
∆I × ∆I . The interpretation function is inductively extended to concept descriptions
as shown in (the upper part of) Figure 1.1, which also lists the names that we use for
ALC constructors. An interpretation I is a model of a concept description C if CI 6= ∅.
In the following, we will sometimes call concept languages “description logics”, ignoring
further ingredients to DLs such as the terminological formalism.

As first observed by Schild [138], ALC is a notational variant of the multi-modal
logic K. Syntactically, concept names can simply be viewed as propositional variables
and role names can be viewed as names for accessibility relations. Then, interpretations
of ALC are obviously just Kripke structures with ∆I the set of worlds and ·I providing
both the accessibility relations and the valuation of the propositional variables. With
this reading, the value restriction ∀r.C becomes a box operator �rC referring to the
accessibility relation denoted by r, and ∃r.C becomes a diamond operator ♦rC. This
connection is also witnessed by the usual translation of ALC to first-order predicate
logic [37, 38], which is identical to the standard translation for modal logic presented in
Chapter 1.

The concept language ALC is only one member of a large family of concept lan-
guages. These languages can be obtained from ALC by disallowing certain constructors
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(thus obtaining the sub-Boolean description logics discussed in Section 4) and/or adding
various combinations of additional constructors. Such additional constructors can be
concept constructors, or they can be role constructors allowing to construct compound
role descriptions to be used in place of role names. We now discuss several additional
constructors that are related to expressive means common in modal logic. Construc-
tors that have been considered in the context of description logics, but lack a modal
counterpart will be discussed in more depth in Section 6.

When the connection between DLs and modal logic was discovered, one of it’s first uses
was to transfer results from propositional dynamic logic (PDL) to description logics [138,
139, 54]. The description logic counterpart of PDL is called ALCreg, which stands for
“ALC with regular expressions on roles” [3, 138]. ALCreg extends ALC by allowing
compound role descriptions inside value restrictions and existential restrictions. Such
role descriptions are built using the binary constructors for union (“⊔”) and composition
(“;”) and a unary constructor for reflexive-transitive closure (“·∗”). The semantics is
given in the straightforward way by interpreting the constructors using the corresponding
relational operations. For example, the additional constructors could be used in the
concept description

Man ⊓ ∃child.Human ⊓ ∀(child; child∗).Happy

where (child; child∗) describes the transitive closure of the role child, i.e., the descendant

relation. The work on ALCreg has led to several variants and extensions whose expressive
power goes beyond that of PDL [54, 56, 57]. However, many of today’s most used concept
languages do not include the role constructors of ALCreg. The main reason is that
applications demand an implementation of description logic reasoning, and the presence
of the reflexive-transitive closure constructor makes obtaining efficient implementations
much harder.

Another important family of description logics is obtained by considering fragments of
the concept language SHOIQ [94, 98, 95], which extends ALC with several expressive
means that are discussed in detail below.1 The importance of SHOIQ stems from the
fact that it and its fragments are used in two of the most influential application areas of
description logics: reasoning about conceptual database models [52] and reasoning in the
semantic web [19]. In the latter application, the fragment SHOIN roughly corresponds
to the ontology language OWL-DL [93], which was recommended by the W3C as the
standard web ontology language. The fragment SHIQ is the concept language supported
by modern description logic systems such as FaCT and RACER [91, 79]. A tableau
algorithm for full SHOIQ was introduced in [97], and optimized implementations of this
algorithm are under development.

Compared to ALC, the additional expressive means provided by SHOIQ are transitive
roles, role hierarchies, inverse roles, qualifying number restrictions, and nominals. With
the exception of role hierarchies, the formal semantics of these extensions can be found
in the lower part of Figure 1.1. Below, we discuss each means of expressiveness in
more detail. Before that, a remark on the naming scheme used to describe fragments of
SHOIQ is in order. To avoid long sequences of letters, the abbreviation S was introduced
for ALC with transitive roles. The additional presence of role hierarchies is indicated by

1The naming of description logics is historically grown, and there are several naming schema in use;
see the Appendix of [12].
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Symbol Syntax SHIQ SHOIQ SHIN SHOIN
H r ⊑ s x x x x

I r− x x x x

N (6n r), (>n r) x x x x

Q (6 n r C), (> n r C) x x

O I x x

Figure 1.2. Some members of the S family of DLs.

the letter H, of inverse roles by I, of (qualifying) number restrictions by N (Q), and of
nominals by O (see Figure 1.2).

Transitive roles. ALC can be extended with transitive roles by adding a new sort of role
names whose interpretation is required to be transitive [135]. The resulting description
logic is a notational variant of the fusion of multi-modal K and multi-modal K4. One of
the most important uses of transitive roles is for the representation of knowledge about
parts and wholes by means of a transitive role part-of [136].

Inverse roles extend ALC with a unary role constructor ·−. Roles of the form r− cor-
respond to “backwards modalities” as known from temporal logic and converse PDL
[154]. They allow, for example, to define the converse parent of the relation child, and
the converse has-part of part-of.

Role hierarchies are not a part of the concept language, but rather “external” to it [91].
Formally, a role hierarchy is a finite set of inclusion statement r ⊑ s with r and s role
descriptions. Intuitively, the presence of a role hierarchy puts constraints on the class of
accepted interpretations: if r ⊑ s is in the hierarchy, then we only accept interpretations
in which rI ⊆ sI . Thus, role hierarchies are much closer in spirit to TBoxes (see below)
than to concept or role constructors. The connection between role hierarchies and modal
logics will be discussed in a more general context in Section 6.2.

Nominals are an additional sort of concept names that are required to be interpreted as
singleton sets. The name has been adopted from modal logics, where nominals appear
e.g. in the context of hybrid logic, c.f. Chapter 14 and [1, 74]. There are several natural
concepts, such as Pope, that require nominals for an adequate modelling. In description
logics, nominals sometimes occur in the form of two concept constructors called “one of”
and “fills”, see [44] for more details.

Qualifying number restrictions. Corresponding to graded modalities in modal logic [70,
71, 153], qualifying number restrictions allow to put counting constraints on the number
of domain elements that are related via a certain role and belong to a certain concept
[88]. This constructor allows, e.g., the formulation of concepts such as Father ⊓ (6
1 child Female) describing fathers that have at most one daughter (but arbitrarily many
sons). Number restrictions also appear in a non-qualifying variant 6 n r and > n r, in
which the third argument implicitly is the top concept. They are a very important means
of expressivity that appeared already in early description logic systems such as KL-ONE
[45]. In the case of SHOIQ and its fragments, number restrictions are usually restricted
to simple roles, i.e. roles having no transitive subroles according to the role hierarchy. If
this syntactic restriction is not adopted, reasoning in SHOIQ is undecidable [98].

For the sake of brevity, the list of concept and role constructors given above is not
exhaustive. For example, ALC has also been extended with Boolean role constructors,
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Woman ≡ Person ⊓ Female Man ≡ Person ⊓ ¬Woman

Mother ≡ Woman ⊓ ∃child.Person Father ≡ Man ⊓ ∃child.Person

Parent ≡ Mother ⊔ Father

Figure 1.3. An example TBox formulated in ALC.

which corresponds to going from multi-modal K to Boolean modal logic [101, 122, 121].

2.2 Terminological Formalisms

The concept language is only one part of description logics. To capture the terminologi-
cal knowledge of application domains in a structured way, it is not sufficient to formulate
single concept descriptions. Additionally, we must be able to organize and interrelate
multiple concept descriptions in a suitable way. This is achieved through the termino-
logical formalism. Just like concept languages, terminological formalisms come in several
flavors. One of the most fundamental variants is the following: a TBox (terminological
box) T is a finite set of concept definitions

A ≡ C

with A a concept name and C a concept description, such that no concept name appears
on the left-hand side of two different concept definitions in T . An example of a TBox
formulated in ALC is displayed in Figure 1.3. A concept name is called a defined concept if
it appears on the left-hand side of a concept definition, and a primitive concept otherwise.

When defining the semantics, we face the difficulty of treating terminological cycles
which may occur in the kind of TBoxes considered here. We say that a concept name A
directly uses a concept name B w.r.t. a TBox T if there is a concept definition A ≡ C ∈ T
with B occurring C. Let uses be the transitive closure of directly uses. Then a TBox
T contains a terminological cycle if there is a concept name that uses itself w.r.t. T ;
otherwise T is called acyclic. For example, the TBox displayed in Figure 1.3 is acyclic,
whereas the following concept definition induces a terminological cycle (Adam and Eve

are nominals):

Human ≡ Adam ⊔ Eve ⊔ ∃parent.Human.

In the following, we sometimes call the general form of TBoxes introduced above cyclic
TBoxes to distinguish them from acyclic ones. However, this does not imply that the
TBoxes in question necessarily contains a terminological cycle.

For acyclic TBoxes, the natural semantics is descriptive semantics : an interpretation
I satisfies a concept definition A ≡ C if AI = CI , and I is a model of the TBox T if it
satisfies all concept definitions in T . Intuitively, acyclic TBoxes merely state that defined
concepts are abbreviations for certain compound concept descriptions. These compound
concepts can be made explicit by expanding the acyclic TBox T : exhaustively replace
all concept names A on the left-hand side of concept definitions A ≡ C by their defining
concept descriptions C. After this expansion, the compound concept abbreviated by a
defined concept can simply be read off from the corresponding concept definition. For
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example, the defined concept Father in Figure 1.3 abbreviates the compound concept

Person ⊓ ¬(Person ⊓ Female) ⊓ ∃child.Person.

A primitive interpretation for a TBox T is an interpretation that interprets only the
primitive concept names and role names, but not the defined concepts. A (full) interpre-
tation I is called an extension of a primitive interpretation J if it agrees with J on the
domain and the interpretation of the primitive concepts and role names. We say that T
is definitorial if every primitive interpretation has exactly one extension that is a model
of T . Since we can expand them, acyclic TBoxes are clearly definitorial: if T is an acyclic
TBox and T ′ = {A1 ≡ C1, . . . , Ak ≡ Ck} has been obtained from T by expansion, then
the unique extension of a primitive interpretation J that is a model of T is obtained by
setting AI

i := CJ
i for 1 ≤ i ≤ k.

If we do not require TBoxes to be acyclic, then TBoxes are no longer definitorial under
descriptive semantics. For example, the TBox

T ≡ {Human ≡ ∀parent.Human}

has no primitive concept, and the primitive interpretation J with ∆J = {d} and
parentJ = {(d, d)} can be extended to two different models of T . Thus, the above TBox
does not provide an unequivocal definition of Human. To obtain definitorial TBoxes in
the presence of terminological cycles, two steps are necessary [129]: first, descriptive se-
mantics is changed to a (least/greatest) fixpoint semantics; and second, the syntax of
TBoxes is restricted to ensure that least and greatest fixpoints indeed exist. To illustrate
why fixpoints are a natural choice for defining TBox semantics, we note that they can be
used to characterize models of a TBox in a straightforward way. Let T be a TBox and J
a primitive interpretation for T . We write T (A) to denote the concept description C if
A ≡ C ∈ T . With ExtJ , we denote the set of all extensions of J . Let TJ : ExtJ → ExtJ
be the mapping that maps the extension I of J to the extension TJ (I) of J defined
by setting ATJ (I) := (T (A))I for each defined concept A. It is trivial to verify that an
interpretation I is a model of T if and only if I is a fixpoint of TJ with J the restriction
of I to a primitive interpretation.

To make the TBox formalism definitorial in the presence of terminological cycles, we
restrict the set of fixpoints of TJ that are intended as models. Let I be a model of
T and J the restriction of I to a primitive interpretation. Then I is a least fixpoint
model (greatest fixpoint model) of T if AI ⊆ AI′

(AI ⊇ AI′

) for every defined concept
A and every fixpoint I ′ of TJ . We obtain the least fixpoint semantics (greatest fixpoint
semantics) by admitting only the least fixpoint models (greatest fixpoint models) of T
as intended models. However, the obtained semantics is still not definitorial, at least not
for all TBoxes: let T = {A ≡ ∀r.¬A} and J the primitive interpretation with ∆J = {d}
and rJ = {(d, d)}. Then J has no extension that is a model of T . The usual way
to get around such a problem, as e.g. used in the modal µ-calculus [104], is to adopt a
syntactic monotonicity restriction. In the setting of cyclic TBoxes, this restriction can be
formulated as follows: a TBox T is called monotone if, on the right-hand side of concept
definitions in T , defined concepts appear only under an even number of negations. It
is easy to show that, according to least or greatest fixpoint semantics every monotone
TBox is definitorial: every primitive interpretation can be uniquely extended to a least
or greatest fixpoint model of the TBox.
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Whether least fixpoint semantics or greatest fixpoint semantics is preferable depends
on the concept definition at hand: for the concept definition Human ≡ Adam ⊔ Eve ⊔
∃parent.Human from above, we should use the least fixpoint semantics to avoid that
individuals on cyclic or infinite parent-paths have to be Humans. In other cases, greatest
fixpoint semantics can be more appropriate: say we want to define top researchers (in a
somewhat incestuous way) as researchers who are renowned and collaborate only with
top researchers:

TopResearcher ≡ Researcher ⊓ Renowned ⊓ ∀collaborates-with.TopResearcher.

Then least fixpoint semantics is not convincing since two renowned researchers who
collaborate mutually (but not with anybody else) will not be classified as top researchers.
In contrast, greatest fixpoint semantics yields the intended models. These two examples
illustrate that the most flexible solution is to use a mixed semantics: least fixpoints for
some defined concepts, and greatest fixpoints for others [140]. Note that, in the case of
an acyclic TBox, least fixpoint semantics, greatest fixpoint semantics, and descriptive
semantics coincide in the sense that they admit exactly the same models.

It is also possible to use descriptive semantics for cyclic TBoxes. As discussed above,
this implies that TBoxes will no longer be definitorial. While this is inappropriate if the
goal is to define concepts, it poses no problem if we view TBoxes simply as formulating
constraints on the intended models. This view of TBoxes, which is rather natural in a
number of applications, leads to the idea of general concept inclusion axioms (GCIs). A
GCI is an expression of the form

C ⊑ D,

where both C and D are (possibly compound) concept descriptions. An interpretation I
satisfies the GCI C ⊑ D if CI ⊆ DI . When working with GCIs as constraints on models,
no syntactic restrictions such as unique left-hand sides, acyclicity, or monotonicity needs
to be adopted. For example, we could use a GCI to state that all persons having an
uncle who is a father also have a cousin:2

Person ⊓ ∃uncle.Father ⊑ ∃cousin.Person

Since the concept definition A ≡ C can be rewritten as the pair of GCIs A ⊑ C and
C ⊑ A, GCIs strictly generalize acyclic TBoxes as well as cyclic TBoxes with descriptive
semantics. It should be noted that GCIs are the terminological formalism that is usually
supported by modern description logic systems.

We now discuss the relation between terminological formalisms and modal logic. In
the case of descriptive semantics, there is a close relationship to the universal modality:
let T be a set of GCIs and U the universal role, i.e. UI = ∆I ×∆I for all interpretations
I. Then we can translate T into a concept CT by setting

CT := ∀U. ⊓
D⊑E∈T

¬D ⊔ E.

Then we have the following: if an interpretation I is a model of T , then CI
T := ∆I ;

and if CI
T 6= ∅, then I is a model of T . We will see in Section 3.1 that this translation

can sometimes be used to reduce reasoning with TBoxes to reasoning without TBoxes.

2This could be modelled in an even better way using role value maps, c.f. Section 6.
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Logician(DAVID) supervisor(DONALD, VAUGHAN)
supervisor(VAUGHAN, DAVID) (Man ⊓ ∃child.Woman)(DONALD)

Figure 1.4. An example ABox formulated in ALC.

In a weaker sense, we can also do the converse translation, i.e. simulate the universal
modality using GCIs—see Section 2.2.1 of [112] for more details.

In the case of fixpoint semantics, Schild [140] observed that there is a direct corre-
spondence between TBoxes and (an alternation-free fragment of) Vardi and Wolper’s
version of the propositional µ-calculus [155]. In contrast to the standard µ-calculus as
proposed by Kozen [104], this variant provides for multiple fixpoints that correspond to
constructing fixpoints for all defined concepts of a TBox simultaneously.

Finally, there is an intimate connection between our notion of definitorial TBoxes and
the Beth definability property as known from modal logic [72]. Roughly, a description
logic has the Beth definability property if and only if every TBox that is definitorial
under descriptive semantics is equivalent to an acyclic TBox (see also [29]).

2.3 Assertional Formalisms

Apart from the concept language and the terminological formalism, there is one more
important ingredient to description logics. This is the assertional formalism, which allows
to describe (a snapshot of) the world by means of individuals populating the world,
conceptual memberships of individuals, and roles relating individuals. The combination
of a TBox and an ABox is commonly called a knowledge base. Assume that a countably
infinite supply of individual names, usually denoted by a, b, c, is available. An ABox
(assertional box) is a finite set of assertions of the form

C(a) (concept assertion)
r(a, b) (role assertion)

where a and b are individual names, C is a concept description, and r is a role description.
An example of an ABox is given in Figure 1.4. We us all-uppercase words to denote
concrete individual names.

To assign a semantics to ABoxes, we have to extend interpretations to individual
names: interpretations I are now required to map, additionally, every individual name a
to a domain element aI ∈ ∆I . Usually, the unique name assumption (UNA) is adopted,
which requires that different individual names are mapped to distinct domain elements,
i.e., a 6= b implies aI 6= bI . The interpretation I satisfies the concept assertion C(a) if
aI ∈ CI , and it satisfies the role assertion r(a, b) if (aI , bI) ∈ rI . An interpretation is a
model of an ABox A if it satisfies all assertions in A. Often, we are interested in models
of an ABox A w.r.t. a TBox T , i.e. common models of A and T .

There is an obvious connection between ABoxes and nominals which provides a link
between ABoxes and modal logic: if a concept language providing for nominals, con-
junction, and existential restrictions is used, then we can simulate an ABox A using the
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concept description

CA := ⊓
D(a)∈A

∃u.(a ⊓ D) ⊓ ⊓
r(a,b)∈A

∃u.(a ⊓ ∃r.b)

where u is a role name not used in A, and we assume that, for each individual name, there
exists a nominal of the same name.3 This is a simulation in the sense that every model
for CA is a model for A, and every model I for A can be extended to a model for CA

by setting uI = ∆I ×∆I . However, nominals are strictly more expressive than ABoxes.
For example, this is reflected by the complexity of reasoning in ALCI, the extension of
ALC with inverse roles: while reasoning in ALCI with ABoxes but without TBoxes is
PSpace-complete, reasoning in ALCI extended with nominals is ExpTime-complete.4

The latter is due to the possibility of defining “spy-points” in ALCI with nominals (see
Chapter 14), which is not possible using ABoxes.

3 STANDARD DESCRIPTION LOGIC INFERENCES

Reasoning has always been a major emphasis of description logic research. The main
purpose of reasoning in DLs is to explicate knowledge that is contained only implicitly in
a given concept description, TBox, or ABox. This inferencing capability can be used by
applications to infer new knowledge when needed, and it helps knowledge engineers to
construct and structure complex knowledge bases. In this section, we introduce the infer-
ence problems for description logics that have direct counterparts in modal logic. Because
these inference problems have played an important rôle since the very beginnings of de-
scription logic, they are often referred to as “standard inference problems”—in contrast
to the more recent “non-standard inference problems” that are discussed in Section 5.
We also give a brief survey of the most important results and techniques concerning the
decidability and computational complexity of the standard inference problems. In doing
so, we concentrate on description logics that have close counterparts in modal logics and
defer the treatment of logics that are less common from the modal logic perspective to
Section 6. Our discussion of results and techniques will be brief as these or very similar
issues are covered in more detail in other chapters of this handbook.

3.1 Terminological Reasoning

The inference problems introduced here operate on concept descriptions and TBoxes,
without reference to ABoxes. The basic such inference problems are the following:

Satisfiability. A concept description C is satisfiable with respect to a TBox T if there
exists a common model of C and T .

Subsumption. A concept description C is subsumed by a concept description D with
respect to a TBox T if CI ⊆ DI for every model I of T (written C ⊑T D).

In both cases, we simply drop the reference “with respect to T ” (and the index T from
C ⊑T D) if we are interested in reasoning w.r.t. the empty TBox. In this case, we also
talk about reasoning with concept descriptions. Intuitively, satisfiability is important to

3The additional role can be omitted if the “@a” operator of hybrid logic is used, c.f. Chapter 14.
4With “reasoning” we refer to ABox consistency, c.f. Section 3.2.
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(automatically) verify whether a concept description makes sense from a logical perspec-
tive, i.e., whether it is contradictory in itself or to a given TBox. Satisfiability also plays
an important rôle because many other inference problems can be reduced to it. Sub-
sumption can be used to check whether a concept D is more general than a concept C,
i.e., whether each instance of C also is an instance of D. For example, the concept name
Parent is subsumed by the concept description Man ⊔ Woman w.r.t. the TBox shown in
Figure 1.3: by the semantics, every Parent is also a Man or a Woman. As we will discuss
in more detail later, subsumption defines a hierarchy of the concept names occurring in a
TBox w.r.t. their generality. There are some additional terminological inference problems
such as the equivalence of concept descriptions: C and D are equivalent with respect to
a TBox T (written C ≡T D) iff CI = DI for all models I of T . We will not consider
such additional inference problems in this chapter since they can clearly be reduced to
subsumption and satisfiability in a trivial way.

There is a straightforward connection between satisfiability and subsumption: if a
concept language provides for negation and conjunction, we can polynomially reduce
subsumption to unsatisfiability: C ⊑T D if and only C⊓¬D is unsatisfiable w.r.t. T . We
can also do the converse reduction if the concept language provides for (or can express)
the bottom concept: C is satisfiable w.r.t. T if and only if C 6⊑T ⊥. Because of this
close connection, many description logic systems concentrate on providing algorithms for
solving satisfiability, and treat subsumption by means of the above reduction.5 Another
important group of reductions is concerned with reducing satisfiability with respect to
TBoxes to satisfiability w.r.t. the empty TBox. Whether such a reduction can be done
depends on the concept language and the chosen TBox formalism. Here we discuss the
two most important cases.

Eliminating acyclic TBoxes. As already mentioned in Section 2.2, acyclic TBoxes merely
define abbreviations for compound concept descriptions. This suggests the following re-
duction: to decide whether a concept description C is satisfiable w.r.t. the acyclic TBox
T , first expand T (c.f. Section 2.2), then replace all defined concepts in C according to
their definition in the expansion of T , and finally decide satisfiability of the resulting
concept description without reference to a TBox. As observed by Nebel [128], this re-
duction may yield an exponential blowup even for the concept language FL0 that only
provides for the concept constructors conjunction and value restriction. For example,
expanding the following TBox of size O(n) yields a TBox of size 2n:

C1 ≡ ∀r1.C0 ⊓ ∀r2.C0

...
Cn ≡ ∀r1.Cn−1 ⊓ ∀r2.Cn−1

This exponential blowup can sometimes be avoided by devising satisfiability algorithms
that explicitly take acyclic TBoxes into account. For example, satisfiability of ALC
concept descriptions w.r.t. acyclic TBoxes is PSpace-complete, and without TBoxes
this problem is of exactly the same complexity [142, 110]. However this is not always the
case: in Sections 4 and 6, we will discuss DLs for which reasoning w.r.t. acyclic TBoxes
is considerably more difficult than reasoning without them.

Eliminating GCIs. In several expressive description logics, it is possible to reduce sat-
isfiability w.r.t. GCIs to satisfiability without reference to GCIs. Two examples are the

5An important exception are sub-Boolean DLs that do not provide for general negation; c.f. Section 4.
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description logics ALCreg and SHOIQ. It is not difficult to prove that, in ALCreg, a
concept description C is satisfiable w.r.t. T if, and only if, C ⊓ ∀(r1 ⊔ · · · ⊔ rk)∗.CT is
satisfiable, where r1, . . . , rk are the role names used in C and T , and CT is defined at
the end of Section 2.2. Similarly, it has been observed in [94] that, in SHOIQ, a con-
cept description C is satisfiable w.r.t. a TBox T and a role hierarchy H6 if and only if
C⊓∀r.CT is satisfiable w.r.t. the role hierarchy H∪{r1 ⊑ r, . . . , rk ⊑ r}, where r1, . . . , rk

are the role names used in C and T , and r is a transitive role not occurring in C and T .
Reductions like the ones sketched above are often called internalizations of TBoxes, and
have first been proposed in [11]. However, implemented reasoning systems usually treat
GCIs in an explicit way for efficiency reasons [90, 99].

We now give a brief survey of the results and techniques for terminological reasoning.
The main driving force behind the research on DL reasoning is the following trade-
off between expressivity and computational complexity: on the one hand, non-trivial
applications require a high expressivity of the concept language and of the terminological
and assertional formalism; on the other hand, applications need an implementation of
DL inference algorithms in an actual knowledge representation system that exhibits an
acceptable run-time behavior on “realistic” inputs, i.e. on inputs that stem from an
application and have not been artificially crafted to make reasoning hard.

It is generally agreed upon that an implemented DL system should be based on al-
gorithms that are sound, complete, and terminating, i.e., decidability of the relevant in-
ference problems is indispensable. Fortunately, satisfiability and subsumption is indeed
decidable for almost all possible combinations of concept language and TBox formalism
that we have introduced up to this point, including ALC with cyclic TBoxes and fix-
point semantics [140], ALCreg with GCIs [54], and SHOIQ with GCIs [150].7 However,
decidability of reasoning is usually only a necessary, but not a sufficient condition for
the usefulness of a description logic. Additionally, it is important that the computa-
tional complexity of reasoning is within acceptable bounds, and that there exist practical
reasoning algorithms, i.e. algorithms that have the potential of being implemented in a
system that behaves well on realistic inputs as demanded above.

The general opinion on the (worst-case) complexity that is acceptable has changed
dramatically over time. Historically, the early times of DL research have been concen-
trating on identifying formalisms for which reasoning is tractable, i.e. can be performed
in polynomial time.8 Obviously, demanding tractability means that we cannot include
all Boolean operators in the concept language, and thus are in the realm of sub-Boolean
DLs. The complexity of satisfiability and subsumption in this family of DLs is laid out
in detail in Section 4, ranging from tractable to ExpTime-complete depending on the
choice of constructors and TBox formalism. Around 1990, the KRIS system showed
that tableau algorithms for satisfiability and subsumption in ALC w.r.t. acyclic TBoxes,
two PSpace-complete inference problems, can be implemented in a system with accept-
able run-time behavior on realistic inputs [17]. A step towards even more expressive
DLs has been made around 1997 by Ian Horrocks and his FaCT system, which origi-
nally implemented satisfiability and subsumption for an ExpTime-complete fragment of

6C is satisfiable w.r.t. T and H if there is a model I of C and T with rI ⊆ sI for all r ⊑ s ∈ H.
7An exception is satisfiability of SHOIQ-concepts w.r.t. TBoxes with least fixpoint semantics, which

was shown to be undecidable by Bonatti [35].
8Curiously, it was found later that reasoning in the description logic supported by the very first

description logic system KL-ONE is undecidable [141]—c.f. Section 5.
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SHOIQ with GCIs. The complexity of most description logics extending ALC is be-
tween PSpace-complete and NExpTime-complete. Some important landmarks are the
following:

• satisfiability of ALC concept descriptions without reference to TBoxes is PSpace-
complete [142]; this also holds in the presence of acyclic TBoxes [110];

• satisfiability of ALC concept descriptions w.r.t. cyclic TBoxes or GCIs is Exp-

Time-complete; this holds for fixpoint semantics as well as for descriptive semantics
[138, 140];

• satisfiability of SHOIQ concept descriptions w.r.t. GCIs is NExpTime-complete,
with the lower bound applying to all extensions of ALC that provide for (qualifying
or non-qualifying) number restrictions, inverse roles, and nominals [150].

All these bounds transfer to subsumption with the exception of the last one, where NExp-

Time-completeness of satisfiability flips to co-NExpTime-completeness of subsumption.
It should be mentioned that the exact meaning of an “acceptable run-time behavior” of
course also depends on the concrete application at hand. As argued e.g. in [51], there are
applications that require “real” tractability and therefore research in tractable DLs is an
ongoing endeavour [51, 46, 10]. Since our survey of the complexity of reasoning in DLs
is by no means exhaustive, we refer the interested reader to [61] for more information on
the complexity of DLs.

The issue of practicability is not only related to computational complexity, but also
to the techniques that are used to obtain decision procedures for DL reasoning. A large
number of such techniques have been proposed and investigated. For sub-Boolean DLs,
so-called “structural algorithms” play the most important role, and we describe them
in detail in Section 4. For ALC and its many extensions, the following approaches
are most important: tableau algorithms [30], reduction techniques [54], automata-based
approaches [122, 50], and resolution calculi [101, 100]. With respect to practicability,
tableau algorithms are the most successful approach so far: they proved to be amenable
to a number of powerful optimization techniques (see Chapter 4 and [92]), and highly-
optimized implementations of tableau algorithms in DL systems have performed extraor-
dinarily well in system comparisons. As a result, nowadays almost all state-of-the-art
DL reasoners, such as FaCT and RACER [91, 79], are based on tableau algorithms.

From the perspective of modal logic, satisfiability of concept descriptions clearly cor-
responds to standard formula satisfiability, whereas a subsumption C ⊑ D corresponds
to the validity of the implication C → D. For this reason, the discussion of tableau-
and resolution-based algorithms for modal logics provided in Chapter 4 of this handbook
applies to description logics as well, and we omit further details.

3.2 Assertional Reasoning

The inference problems discussed in this section operate on knowledge bases, i.e. on pairs
(A, T ) with A an ABox and T a TBox. The fundamental inference problems are the
following:

Consistency. An ABox A is consistent w.r.t. a TBox T if there exists a common model
of A and T .
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Instance Checking. An individual name a in an ABox A is an instance of a concept
description C w.r.t. a TBox T if aI ∈ CI for all models I of A and T (denoted with
A |=T C(a)).

Consistency is the ABox-analogue of satisfiability, i.e., it can be used to check whether a
given knowledge base is contradictory. The purpose of instance checking is also obvious:
it is used to derive concept memberships of individuals that are not stated explicitly.
For example, the individual DONALD in the ABox shown in Figure 1.4 is an instance of
Father w.r.t. the TBox in Figure 1.3.

As in the previous section, there is a close connection between the two fundamental
inference problems if certain Boolean constructors are available. First, consistency can
be polynomially reduced to (non-)instance checking if the bottom concept is available:
an ABox A is consistent w.r.t. a TBox T if and only if A 6|=T ⊥(a) with a an arbitrary
individual name. And second, we can do the converse reduction if full negation is avail-
able: A |=T C(a) if and only if A ∪ {¬C(a)} is inconsistent w.r.t. T . It is sometimes
also possible to eliminate acyclic TBoxes and GCIs as discussed in the previous section.
In the presence of nominals, it is possible to polynomially reduce consistency (and thus
also instance checking) to the satisfiability of concept descriptions using the simulation
sketched at the end of Section 2.3.

The techniques used to devise decision procedures for consistency and instance check-
ing are essentially the same as those employed for concept satisfiability and subsumption.
In the case of tableau algorithms, there are two approaches for reasoning with ABoxes:
first, ABox consistency can sometimes be reduced to concept satisfiability using the pre-
completion technique described in [87]; and second, tableau algorithms can be extended
to treat ABoxes in a direct way (see e.g. [86, 15, 77]). Regarding practicability, it should
be noted that some optimization techniques fail or become significantly more complex in
the presence of ABoxes.

Concerning the decidability and computational complexity of assertional reasoning,
one should distinguish sub-Boolean DLs from ALC and its extensions. In the sub-Boolean
case, there are some description logics for which instance checking is harder than concept
subsumption (see Section 4.3). If all Boolean constructors are available, the complexity
of instance checking coincides with the complexity of subsumption for all such descrip-
tion logics investigated so far. For example, instance checking in ALC ABoxes without
reference to TBoxes is known to be PSpace-complete [18], and instance checking in
ALC ABoxes w.r.t. GCIs is ExpTime-complete [54]—just as the corresponding cases of
subsumption.

3.3 Compound Inference Problems

Some of the most important inference problems in DLs are of a compound nature in the
sense that, in principle, they can be reduced to multiple invocations of the more basic
inference problems mentioned above. However, when the goal is to achieve an efficient
implementation, it is vital to consider compound inferences as first-class citizens [13].
Here we discuss the three most important such problems.

Classification. Given a TBox T , compute the restriction of the subsumption relation
“⊑T ” to the set of concept names used in T .

Realization. Given an ABox A, a TBox T , and an individual name a, compute the set
RA,T (a) of those concept names A that are used in T , satisfy A |=T A(a), and are
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minimal with this property w.r.t. the subsumption relation “⊑T ”.

Retrieval. Given an ABox A, a TBox T , and a concept C, compute the set IA,T (C) of
individual names a used in A and satisfying A |=T C(a).

Compound inferences are a very important interface to description logics reasoners and
are offered by almost all systems. The purpose of classification is to construct a hi-
erarchy of concept names w.r.t. their generality, with more general concepts higher up
in the hierarchy: B is above A if and only if A ⊑T B. Such a hierarchy can then be
presented to a knowledge engineer for browsing and structuring the TBox. Realization
also facilitates browsing and understanding of the knowledge base, and is a precursor to
certain operations on knowledge bases that presuppose knowledge of the concept mem-
berships of individuals. The main use of retrieval is database-like querying of description
logic knowledge bases: in some applications, it is natural to define ABoxes with a huge
number of individual names, and to query such ABoxes like a database with deductive
capabilities [78].

By definition, compound inferences can be reduced to more basic inference problems.
For classification, we may simply check whether A ⊑T B for all concept names A, B
used in T . In the case of realization, we can obviously just use multiple invocations of
instance checking and subsumption. Similarly, multiple instance checks suffice to get a
näıve implementation of retrieval. However, basic inferences such as subsumption and
instance checking are potentially very costly, and thus it is vital for DL reasoners to
replace these “brute force” methods of compound inferences by more subtle approaches.

To illustrate how compound inferences can be implemented in a more efficient way, we
exemplarily consider classification. Here, the aim is to minimize the number of subsump-
tion tests, of which the näıve approach performs n2 many with n the number of concept
names in T . The common strategies for achieving this minimization are described and
evaluated by Baader et al. in [13]. Although Baader et al. restrict themselves to acyclic
TBoxes, the proposed strategies can also be used for cyclic ones. In general, two kinds
of optimizations can be distinguished. Firstly, classification can be conceived as an ab-
stract combinatorial problem on partial orders: compute a complete representation of a
partial ordering by making as few as possible comparisons. This quite general problem
is also considered in non-DL contexts, see e.g. [69]. Secondly, we can take into account
the structure of concept descriptions to reveal obvious subsumption relationships and
to control the order in which concepts are added to the hierarchy. In the following, we
assume that the restriction of “⊑T ” to the concepts names of T is represented as a Hasse
diagram, i.e. as a directed acyclic graph (DAG) such that

• nodes are sets of concept names that are pair-wise equivalent w.r.t. T ;

• two nodes S1, S2 are connected by an edge if every A2 ∈ S2 is a direct subsumer
of every A1 ∈ S1, i.e., we have (i) A1 ⊑T A2 and (ii) A1 ⊑T B ⊑T A2 implies
B ≡T A1 or B ≡T A2 for all concept names B in T .

To this diagram, we henceforth refer as the (concept) hierarchy. We assume that the
hierarchy always contains a top node whose label includes ⊤, and a bottom node whose
label includes ⊥.9 In DL TBoxes originating from applications, the concept hierarchy is
usually not too deep, i.e., the represented order has short chains and long antichains.

9In case of unsatisfiable TBoxes, the top node and bottom node coincide.
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One way to compute the concept hierarchy with only few subsumption tests is to
use an incremental algorithm [13]: we start with a hierarchy containing only ⊤ and ⊥,
and then repeatedly place additional concept names at the appropriate position in the
(growing) hierarchy. The placing of a new concept name A consists of two phases: a
top search phase computing the direct subsumers of A that are already contained in
the hierarchy, and a bottom search phase computing the set of all concept names that
are already contained in the hierarchy, and of which A is a direct subsumer. Obviously,
knowledge of these two sets allows us to place A appropriately. Due to the transitivity of
the subsumption relation, the top search phase is best implemented as a top down search,
whereas a bottom up approach is appropriate for the bottom search phase. Additionally,
failed tests can be propagated down the hierarchy in the top search phase: if A 6⊑T B
and B′ is below B in the hierarchy (implying B′ ⊑T B), then it follows immediately
that A 6⊑T B′. Analogously to propagation in the top search phase, successful tests can
be propagated up the hierarchy in the bottom search phase. Finally, it is possible to use
information gained in the top search phase to speed up the bottom search phase, and
vice versa (see [13] for details).

Using the structure of concepts, we can additionally avoid subsumption tests in a
straightforward way: if we find a concept definition A ≡ C with C a conjunction having
as one of its conjuncts a concept name B, then A ⊑T B holds trivially. In this case, B
is a told subsumer of A. Of course, if B is a defined concept, it can have told subsumers
as well, and these (and their told subsumers, etc.) can also be viewed as told subsumers
of A. The information about the told subsumers can be propagated down the hierarchy
before starting the top search phase. To take full advantage of this idea, it is advisable
to classify concepts in definition order. This means that a concept is not classified until
all of its told subsumers are classified.

These optimizations typically reduce the number of necessary subsumption tests to
a small fraction of n2 (see [13] for details). Most techniques sketched here can be used
in the same or a slightly modified form if sets of GCIs are used instead of TBoxes. Of
course, it is (at least) equally important to optimize the subsumption test itself. More
on this issue can be found in Chapter 4.

4 SUB-BOOLEAN DESCRIPTION LOGICS

As mentioned in the introduction, the DLs used in the first DL systems did not allow
for all Boolean operators. Usually, these DLs provided for conjunction, value-restriction,
and number restriction, and some other special constructors, but existential restriction,
disjunction and full negation were not available. In some of these formalisms, disjointness
statements between concept names or atomic negation (i.e., negation restricted to concept
names) were allowed.

This restriction to sub-Boolean logics was, on the one hand, due to the origins of
DLs. These formalisms were not primarily seen as logics (where the inclusion of at least
proposition logic is natural), but as knowledge representation formalisms in the spirit
of semantic networks and frames, though equipped with a formal semantics. Graph-
based formalisms like semantic networks usually favor a conjunctive point of view since
conjunction corresponds to just drawing several things in the same picture, whereas
expressing disjunction and negation would require special conventions (like drawing a
box around the parts that are negated, as in conceptual graphs [147]), which easily
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destroy the readability of such graphical representations.

On the other hand, the restriction to sub-Boolean DLs was motivated by the goal of
designing representation formalisms with tractable (i.e., polynomial-time decidable) in-
ference problems, which would be precluded by the presence of all Boolean operators. The
first paper addressing the trade-off between expressiveness and tractability of reasoning
in the context of DL was [109], where it was shown that a seemingly minor extension of
the description language can make the subsumption problem intractable. This work trig-
gered an extensive investigation of the borderline between tractability and intractability
of reasoning in sub-Boolean DLs [127, 145, 63, 62, 40, 65].10 In Section 4.1, we give a
brief review of these results. We also sketch in more detail polynomial-time subsumption
algorithms for the DL FL0 (which allows for conjunction and value restriction only) and
some of its extensions. The results mentioned until now were all restricted to extensions
of FL0. The reason was that until the late 1990ies, both conjunction and value restriction
were assumed to be indispensable for a DL. For conjunction this indeed appears to be the
case since one usually wants to require several properties simultaneously when defining
a concept. In order to obtain more than just a fragment of propositional logic, one also
needs at least one constructor involving roles. However, instead of value restrictions one
could also use existential restrictions. In fact, there are large DL-based medical termi-
nologies [134, 148] that employ existential restrictions rather than value restrictions. The
complexity of reasoning in DLs extending EL, which allows for conjunction, existential
restriction, and the top-concept, is less well-investigated than for extensions of FL0. We
will briefly review the results in [84], where the complexity of the satisfiability problem
in all fragments of ALC, including ones that do not extend FL0, is investigated. In
addition, we sketch a polynomial-time subsumption algorithms for EL.

All the complexity results mentioned until now are concerned with satisfiability and
subsumption of concept descriptions. If one considers reasoning w.r.t. a TBox, then
the complexity may increase drastically, even for acyclic TBoxes, which do not increase
the expressive power. The first such result is due to Nebel [128], who showed that the
subsumption problem w.r.t. acyclic TBoxes is coNP-complete for the DL FL0. Recall
that subsumption of FL0 concept descriptions is polynomial. If one allows for cyclic
TBoxes, then subsumption in FL0 becomes PSpace-complete, and in the presence of
GCIs it becomes even ExpTime-complete. In contrast, the subsumption problem in
EL remains polynomial in the presence of acyclic or cyclic TBoxes and GCIs. These
results for reasoning w.r.t. TBoxes in sub-Boolean DLs will be described in more detail
in Section 4.2.

Not only TBox reasoning, but also ABox reasoning, may be harder than reasoning
with concept descriptions. Section 4.3 gives an example, due to A. Schaerf [137], of a
sub-Boolean DL where the instance problem is harder than the subsumption problem.

Finally, Section 4.4 reviews bisimulation characterizations for various sub-Boolean DLs
due to de Rijke and Kurtonina [105], which can be used to characterize the expressive
power of these DLs.

10We have not included [64] in this list since the polynomiality results for subsumption claimed there
turned out to be incorrect (see [66] for details).
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Symbol Syntax ALN ALE ALU ALUN ALEN ALC ALCN
E ∃r.C x x x x

U C ⊔ D x x x x

N (6n r), (>n r) x x x x

Figure 1.5. The AL family of DLs.

4.1 Reasoning with concept descriptions in sub-Boolean DLs

Donini et al. [65] start their investigation of the complexity of sub-Boolean DLs with the
DL AL, whose concept descriptions are formed according to the following syntax rule:

C, D −→ A | ⊤ | ⊥ | ¬A | C ⊓ D | ∀r.C | ∃r.⊤

The difference to ALC is that the application of negation is restricted to concept names
(atomic negation) and that in existential restrictions only the top concept may occur
(restricted existential quantification).

In the following, we consider the extensions of AL by subsets of the following set of
constructors: (full) existential restriction, number restrictions, and disjunction.11 This
yields the 7 different extensions of AL shown in Figure 1.5. Note that adding both
existential restriction and disjunction to AL yields ALC. This is due to the presence of
atomic negation in AL. In fact, by using de Morgan’s law, the duality of the quantifiers,
and the removal of double negation, any ALC concept description can be transformed
into an equivalent one that employs only atomic negation.

Figure 1.6 gives a complete classification of the DLs belonging to the AL family
regarding the worst-case complexity of subsumption and (un)satisfiability of concept
descriptions. Except for the case of ALEN , these results are shown in [65]. PSpace-
hardness of ALEN was shown by Hemaspaandra [84].

Before trying to explain some of these results, let us first point out that subsumption
and unsatisfiability are in general not trivially interreducible in sub-Boolean DLs. We
have seen that

C is unsatisfiable iff C ⊑ ⊥,
C ⊑ D iff ¬C ⊓ D is unsatisfiable.

Since ⊥ is available in the DLs of the AL family, unsatisfiability can be reduced in this
way to subsumption, and thus subsumption is at least as hard as unsatisfiability, and
unsatisfiability is at least as easy as subsumption. However, for a DL strictly below ALC,
¬C ⊓D usually does not belong to this DL even if C and D do. Nevertheless, the results
summarized in Figure 1.6 show that, for the AL family, the complexities of unsatisfia-
bility and of subsumption coincide. In general, this need not be the case. For example,
the extension ALNI of ALN by inverse roles has a polynomial-time (un)satisfiability
problem, but the subsumption problem is coNP-hard [66]. In very simple DLs such as
FL0 and EL, satisfiability is even trivial (in contrast to subsumption) since there are no
unsatisfiable concepts We exemplarily discuss at least one DL for each of the complexity
classes appearing in Figure 1.6. Satisfiability in intractable DLs is treated in Section 4.1
and subsumption in tractable DLs such as FL0 and ALN is discussed in Section 4.1.

11Donini et al. [65] actually consider a somewhat larger family of DLs, where also intersection of roles
is available as a constructor.
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ALU
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NP-complete

coNP-complete

PSpace-complete

Figure 1.6. The complexity of unsatisfiability and subsumption for the AL family of
DLs.

In Section 4.1 we review the results from [84] on satisfiability in other sub-Boolean DLs,
and in Section 4.1 we sketch a polynomial-time subsumption algorithm for EL concept
description.

(Un)satisfiability in ALC, ALU , and ALE

One way of deciding satisfiability in ALC is to use a tableau algorithm, as described in
more detail in Chapter 4 for the modal logic equivalent Kn of ALC. This algorithm tries
to generate a finite, tree-shaped model for a given input concept description C. This
tree model is of depth linear in the size of C, but may still be exponentially large due to
the branching in the tree model. There are two sources of complexity for this approach:
first, the potentially exponential size of the model that must be generated, and second
the non-deterministic treatment of disjunction when trying to generate the model. In
order to stay within PSpace, one generates one branch of the tree at a time, whereas
non-determinism is harmless since it is well-known that NPSpace = PSpace.

If we restrict this approach to ALU , then it is easy to see that the tree models generated
by a tableau-based algorithm are of polynomial size. Thus, to decide satisfiability within
NP (and thus unsatisfiability within coNP) one can simply guess an interpretation of
polynomial size, and check whether it is a model. NP-hardness is trivial since ALU
contains full propositional logic.

In the case of ALE , the model generated by a tableau-based algorithm may still be
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exponentially large, but the process of generating it is deterministic. In order to check
unsatisfiability within NP (and thus satisfiability within coNP), one can guess one path
through the potential model, and then check whether it must satisfy contradictory con-
straints. To be more precise, instead of trying to generate successors for all existential
restrictions, one non-deterministically chooses the ones that actually lead to a contra-
diction. Since the paths are linear in the size of the input description, this leads to an
NP-algorithm for unsatisfiability.

Showing the lower complexity bound for ALE is less trivial than for ALU . To show that
unsatisfiability of concept descriptions in ALE is NP-complete, we sketch the reduction
from set traversal given in [62]. An instance of the set traversal problem is given by a
finite collection M = {M1, . . . , Mm} of finite sets of positive integers. A set traversal is
a finite set of positive integers N such that N ∩Mℓ is a singleton set for all ℓ, 1 ≤ ℓ ≤ m.
NP-hardness of the existence of a set traversal is an immediate consequence of the fact
that monotone ONE-IN-THREE 3SAT [73] is a special case of this problem.

Let M = {M1, . . . , Mm} be an instance of the set traversal problem, and assume
without loss of generality that the numbers occurring in the sets are the ones from 1 to
n for some positive integer n. We define the corresponding ALE concept description as

CM := C1 ⊓ . . . ⊓ Cn ⊓ D,

where
Cℓ := Q1,ℓr.Q2,ℓr. · · ·Qm,ℓr. Q1,ℓr.Q2,ℓr. · · ·Qm,ℓr. ⊤

such that

Qi,ℓ =

{
∃ if ℓ ∈ Mi,
∀ if ℓ 6∈ Mi,

and D is the nesting of 2m value restrictions followed by ⊥, i.e.,

D := ∀r.· · · ∀r.︸ ︷︷ ︸
2m times

⊥.

As an example, consider the two instances

M := {{1, 3, 5}, {2, 4}, {4, 5}} and M′ := {{1, 3}, {2, 4}, {4, 5}}

of the set traversal problem. Then the corresponding ALE concept descriptions look as
follows:

C1 = ∃∃∃r.∀r.∀r. ∃∃∃r.∀r.∀.r ⊤, C′
1 = ∃∃∃r.∀r.∀r. ∃∃∃r.∀r.∀.r ⊤,

C2 = ∀r.∃∃∃r.∀r. ∀r.∃∃∃r.∀r. ⊤, C′
2 = ∀r.∃∃∃r.∀r. ∀r.∃∃∃r.∀r. ⊤,

C3 = ∃∃∃r.∀r.∀r. ∃∃∃r.∀r.∀r. ⊤, C′
3 = ∃∃∃r.∀r.∀r. ∃∃∃r.∀r.∀r. ⊤,

C4 = ∀r.∃∃∃r.∃∃∃r. ∀r.∃∃∃r.∃∃∃r. ⊤, C′
4 = ∀r.∃∃∃r.∃∃∃r. ∀r.∃∃∃r.∃∃∃r. ⊤,

C5 = ∃∃∃r.∀r.∃∃∃r. ∃∃∃r.∀r.∃∃∃r. ⊤, C′
5 = ∀r.∀r.∃∃∃r. ∀r.∀r.∃∃∃r. ⊤,

D = ∀r.∀r.∀r. ∀r.∀r.∀r. ⊥, D′ = ∀r.∀r.∀r. ∀r.∀r.∀r. ⊥.

One can view the quantifier prefixes as a matrix, where the rows correspond to the el-
ements of the sets, whereas the columns correspond to the sets (written twice). The
existential quantifier indicates that the element belongs to the respective set. For exam-
ple, the first existential quantifier in C5 expresses that 5 belongs to the first set of M,
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whereas the universal quantifier at the same position in C′
5 says that 5 does not belong

to the first set of M′.
In [62], it is shown that CM is unsatisfiable iff M has a set traversal. We illustrate

the connection between unsatisfiability of CM and the existence of a set traversal for M
on our example. For CM to be unsatisfiable, the conjunction of the concept descriptions
Ci must enforce an r-path of length 2m, which then clashes with the ⊥ in D. The set
{1, 2, 5} is a set traversal for M′. This implies that C′

1⊓C′
2⊓C′

5 enforces a path of length
6. In fact, C′

1 starts with an existential restriction, and C′
2 and C′

5 with value restrictions.
Thus, there is an r-successor of the initial element that must satisfy the conjunction of the
three concept description C′′

1 , C′′
2 , C′′

5 that are respectively obtained from C′
1, C

′
2, C

′
5 by

removing the first quantifier. Now C′′
2 starts with an existential quantifier, and the other

two with value restrictions. Thus, we can continue with the corresponding r-successor.
In general, the properties of a set traversal ensure that each time we have one existential
restriction, whereas all the others are value restrictions (and thus the remaining parts
of the concept descriptions are propagated to the r-successor required by the existential
restriction).

It remains to explain why we have to encode the sets twice. Again, we illustrate
this on our example. It is easy to see that the collection M := {{1, 3, 5}, {2, 4}, {4, 5}}
does not have a set traversal. Nevertheless, if we consider the simpler reduction concept
ĈM := Ĉ1 ⊓ Ĉ2 ⊓ Ĉ3 ⊓ Ĉ4 ⊓ Ĉ5 ⊓ D̂ where

Ĉ1 = ∃∃∃r.∀r.∀.r ⊤,

Ĉ2 = ∀r.∃∃∃r.∀r. ⊤,

Ĉ3 = ∃∃∃r.∀r.∀r. ⊤,

Ĉ4 = ∀r.∃∃∃r.∃∃∃r. ⊤,

Ĉ5 = ∃∃∃r.∀r.∃∃∃r. ⊤,

D̂ = ∀r.∀r.∀r. ⊥,

then ĈM is unsatisfiable. In fact, Ĉ4 ⊓ Ĉ5 enforce a path of length 3. The corresponding
set {4, 5} is not a set traversal since its intersection with M3 = {4, 5} is not a singleton.

For the shorter reduction concept ĈM, the fact that Ĉ4 and Ĉ5 have an existential
restriction in the same row is irrelevant. However, for the correct longer reduction concept
CM this means that, for one of the two, the remaining part is missing in the second round.

Subsumption in FL0 and ALN

Subsumption in ALN can be decided in polynomial time using a structural subsumption
algorithm, i.e., an algorithm that normalizes the descriptions to be tested for subsump-
tion, and then compares the syntactic structure of the normal forms. For simplicity, we
first explain the ideas underlying this approach for the small DL FL0, which allows for
conjunction (C ⊓ D) and value restriction (∀r.C) only. Subsequently, we show how the
bottom concept (⊥), atomic negation (¬A), and number restrictions (6n r and >n r)
can be handled.

An FL0 concept description is in normal form iff it is of the form

A1 ⊓ . . . ⊓ Am ⊓ ∀r1.C1 ⊓ . . . ⊓ ∀rn.Cn,

where A1, . . . , Am are distinct concept names, r1, . . . , rn are distinct role names, and
C1, . . . , Cn are FL0 concept descriptions in normal form. It is easy to see that any
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description can be transformed into an equivalent one in normal form, using associativity,
commutativity and idempotence of ⊓, and the fact that the descriptions ∀r.(C ⊓D) and
(∀r.C) ⊓ (∀r.D) are equivalent. Now, let

C ≡ A1⊓ . . .⊓Am ⊓∀r1.C1 ⊓ . . .⊓∀rn.Cn and D ≡ B1⊓ . . .⊓Bk ⊓∀s1.D1⊓ . . .⊓∀sℓ.Dℓ

respectively be the normal forms of the FL0 concept descriptions C and D. Then C ⊑ D
iff the following two conditions hold:

1. for all i, 1 ≤ i ≤ k, there exists j, 1 ≤ j ≤ m such that Bi = Aj .

2. For all i, 1 ≤ i ≤ ℓ, there exists j, 1 ≤ j ≤ n such that si = rj and Cj ⊑ Di.

It is easy to see that this characterization of subsumption is sound (i.e., the “if” direction
of the equivalence holds) and complete (i.e., the “only-if” direction of the equivalence
holds as well). This characterization yields an obvious recursive algorithm for computing
subsumption. This algorithm can easily be shown to be of polynomial time complexity:
in Condition 2, there is at most one subsumption test per role name occurring in C and
D since all role names in r1, . . . , rn and all role names in s1, . . . , sℓ are distinct.

If we extend FL0 by language constructors that can express unsatisfiable concepts,
then we must, on the one hand, change the definition of the normal form. On the other
hand, the structural comparison of the normal forms must take into account that an
unsatisfiable concept is subsumed by every concept. The simplest DL where this occurs
is FL⊥, the extension of FL0 by the bottom concept ⊥. An FL⊥ concept description is
in normal form iff it is ⊥ or of the form

A1 ⊓ . . . ⊓ Am ⊓ ∀R1.C1 ⊓ . . . ⊓ ∀Rn.Cn,

where A1, . . . , Am are distinct concept names different from ⊥, R1, . . . , Rn are distinct
role names, and C1, . . . , Cn are FL⊥ concept descriptions in normal form. Again, such
a normal form can easily be computed. In principle, one just computes the FL0-normal
form of the description (where ⊥ is treated as an ordinary concept name): B1 ⊓ . . . ⊓
Bk ⊓ ∀R1.D1 ⊓ . . . ⊓ ∀Rn.Dn. If one of the Bis is ⊥, then replace the whole description
by ⊥. Otherwise, apply the same procedure recursively to the Djs. For example, the
FL0-normal form of ∀R.∀R.B ⊓ A ⊓ ∀R.(A ⊓ ∀R.⊥) is A ⊓ ∀R.(A ⊓ ∀R.(B ⊓ ⊥)), which
yields the FL⊥-normal form A ⊓ ∀R.(A ⊓ ∀R.⊥).

The structural subsumption algorithm for FL⊥ works just like the one for FL0, with
the only difference that ⊥ is subsumed by any description. For example, ∀r.∀r.B ⊓ A ⊓
∀r.(A ⊓ ∀r.⊥) ⊑ ∀r.∀r.A ⊓A ⊓ ∀r.A since the recursive comparison of their FL⊥-normal
forms A ⊓ ∀r.(A ⊓ ∀r.⊥) and A ⊓ ∀r.(A ⊓ ∀r.A) finally leads to the comparison of ⊥ and
A.

The extension of FL⊥ by atomic negation (i.e., negation applied to concept names
only) can be treated similarly. During the computation of the normal form, negated
concept names are just treated like concept names. If, however, a name and its negation
occur on the same level of the normal form, then ⊥ is added, which can then be treated
as described above. For example, ∀r.¬A ⊓ A ⊓ ∀r.(A ⊓ ∀r.B) is first transformed into
A⊓∀r.(A⊓¬A⊓∀r.B), then into A⊓∀r.(⊥⊓A⊓¬A⊓∀r.B), and finally into A⊓∀r.⊥.
The structural comparison of the normal forms treats negated concept names just like
concept names.
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Finally, if we consider the language ALN , the additional presence of number restric-
tions leads to a new type of conflict. On the one hand, as in the case of atomic negation,
number restrictions may be conflicting with each other (e.g., > 2 r and 6 1 r). On the
other hand, at-least restrictions >n r for n ≥ 1 are in conflict with value restrictions
∀r.⊥ that prohibit role successors. When computing the normal form, one can again
treat number restrictions like concept names, and then take care of the new types of
conflicts by introducing ⊥ and using it for normalization as described above. During the
structural comparison of normal forms, one must also take into account inherent sub-
sumption relationships between number restrictions (e.g., >n r ⊑ >m r iff n ≥ m). A
more detailed description of a structural subsumption algorithm working on a graph-like
data structure for a DL extending ALN can be found in [40].

Satisfiability in other sub-Boolean DLs

Until now, we have only considered sub-Boolean DLs that extend AL. Hemaspaandra
[84] looks at all possible combinations of the constructors

⊤, ⊥, C ⊓ D, C ⊔ D, ¬A, ¬C, ∀r.C, ∃r.C,

and shows that there are only four possibilities for the complexity of the satisfiability
problem:12 P, NP-complete, coNP-complete, and PSpace-complete:

• DLs that contain a complete basis for ALC have a PSpace-complete satisfiability
problem.

• DLs that contain a complete basis for propositional logic, but not for ALC, have
an NP-complete satisfiability problem.

• The DL ALE and its sublanguages where ⊥, ⊤, or both are disallowed, have a
coNP-complete satisfiability problem.

• The DL defined by the constructors ⊥, C ⊓D, C ⊔D, ∀r.C, ∃r.C has a PSpace-
complete satisfiability problem.

• All other DLs obtained as a combination of the above constructors have a polyno-
mial satisfiability problem.

Subsumption in EL

Recall that EL is defined by the constructors top concept (⊤), conjunction (C ⊓D), and
existential restriction (∃r.C). We show that subsumption of EL concept descriptions can
be decided in polynomial time by reducing the subsumption problem to a combinatorial
problem on trees. Any EL concept description C can be represented as a tree GC whose
edges are labeled with role names and whose nodes are labeled with sets of primitive
concepts (where the empty set stands for ⊤). For example, the EL concept descriptions

C := P ⊓ ∃r.(∃r.(P ⊓ Q) ⊓ ∃s.Q) ⊓ ∃r.(P ⊓ ∃s.P )
D := ∃r.(∃r.P ⊓ ∃s.Q) ⊓ ∃r.P

yield the EL description trees GC and GD depicted in Figure 1.7 (see [25] for a formal
definition of the translation between EL concept descriptions and EL description trees).

12Unfortunately, the complexity of subsumption is not considered in [84].
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Figure 1.7. Two EL description trees.

Let C, D be EL concept descriptions. A simulation from GD to GC is a binary relation
Z between the nodes of GD and the nodes of GC such that

1. (v′, v) ∈ Z implies that the label of v′ is contained in the label of v;

2. (v′, v) ∈ Z implies that, for every r-successor u′ of v′ there is an r-successor u of v
such that (u′, u) ∈ Z.

Subsumption between EL concept descriptions corresponds to the existence of a simula-
tion relation13 between the corresponding trees: if v0 is the root of GC and v′0 the root
of GD, then we have

C ⊑ D iff there is a simulation Z from GD to GC such that (v′0, v0) ∈ Z.

In our example, we have C ⊑ D since the following relation Z is a simulation from GD

to GC :
Z := {(v′0, v0), (v′1, v1), (v′2, v2), (v′3, v3), (v′4, v4)}.

The definition of a simulation suggests the following top-down algorithm for constructing
a simulation Z containing the tuple consisting of the roots (v′0, v0). First, put (v′0, v0) into
Z and check whether the first property of a simulation (containment of labels) is satisfied
for this tuple. If not, then stop with failure. Otherwise, try to extend Z by guessing pairs
of successors of v′0 and v0, respectively, such that the second property of a simulation
is satisfied for the pair (v′0, v0). Then continue the process with these new pairs. Since
there are different ways of pairing off the successors, this algorithm is non-deterministic,
and thus it does not yield a deterministic polynomial-time subsumption algorithm.

Fortunately, one can do better. One can compute the largest simulation between
two trees (and actually also between two graphs with distinguished “root” nodes) by
starting with all pairs of nodes, and then successively removing pairs that violate the
first condition in the definition of a simulation or the second one (w.r.t. the current
relation). It is easy to see that this procedure terminates after polynomially many steps

with the largest simulation Ẑ from GC to GD (see [85] for a more efficient algorithm). We
have C ⊑ D iff the pair consisting of the root nodes has not been removed, i.e., belongs
to Ẑ (see [9] for more details).

13In [25], subsumption was actually characterized by the existence of a homomorphism, i.e., a simula-
tion that is a total function. However, it is easy to see that, in case of trees, the existence of a simulation
implies the existence of a homomorphism.
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4.2 TBox reasoning in sub-Boolean DLs

As mentioned in Section 3, reasoning w.r.t. acyclic TBoxes can be reduced to reasoning
on concept descriptions by expanding the definitions. Unfortunately, expansion may lead
to an exponential blow-up of the descriptions. Is this due to the inherent complexity of
reasoning with TBoxes, or can this exponential increase in the complexity be avoided?
It turns out that the answer to this question depends on which sub-Boolean DL we
consider.14

For the DL FL0, subsumption of concept descriptions is polynomial, whereas sub-
sumption w.r.t. acyclic TBoxes is coNP-complete, subsumption w.r.t. cyclic TBoxes is
PSpace-complete, and subsumption w.r.t. GCIs in ExpTime-complete. In contrast, for
the DL EL, subsumption remains polynomial even w.r.t. GCIs.

TBox reasoning in FL0

We start by describing an alternative approach for showing that subsumption of FL0

concept descriptions can be decided in polynomial time. In Section 4.1, the equivalence
∀r.C⊓∀r.D ≡ ∀r.(C⊓D) was used as a rewrite rule from left to right in order to compute
the structural subsumption normal form of FL0 concept descriptions. If we use this rule
in the opposite direction, we obtain a different normal form, which is called concept-
centered normal form in [24], since it groups the concept descriptions w.r.t. concept names
(and not w.r.t. role names, as the structural subsumption normal form does). Using this
rule, any FL0 concept description can be transformed into an equivalent description
that is a conjunction of descriptions of the form ∀r1. · · · ∀rm.A for m ≥ 0 (not necessarily
distinct) role names r1, . . . , rm and a concept name A. We abbreviate ∀r1. · · · ∀rm.A by
∀r1 . . . rm.A, where r1 . . . rm is viewed as a word over the alphabet Σ of all role names.
In addition, instead of ∀w1.A ⊓ . . . ⊓ ∀wℓ.A we write ∀L.A where L := {w1, . . . , wℓ} is
a finite set of words over Σ. The term ∀∅.A is considered to be equivalent to the top
concept ⊤, which means that it can be added to a conjunction without changing the
meaning of the concept. Using these abbreviations, any pair of FL0 concept descriptions
C, D containing the concept names A1, . . . , Ak can be rewritten as

C ≡ ∀U1.A1 ⊓ . . . ⊓ ∀Uk.Ak and D ≡ ∀V1.A1 ⊓ . . . ⊓ ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role names. This normal
form provides us with the following characterization of subsumption of FL0 concept
descriptions [28]:

C ⊑ D iff Ui ⊇ Vi for all i, 1 ≤ i ≤ k.

Since the size of the concept-based normal forms is polynomial in the size of the original
descriptions, and since the inclusion tests Ui ⊇ Vi can also be realized in polynomial
time, this yields a polynomial-time decision procedure for subsumption in FL0. In fact,
as shown in [24], the structural subsumption algorithm for FL0 can be seen as a special
implementation of these inclusion tests.

This characterization of subsumption via inclusion of finite sets of words can be ex-
tended to cyclic TBoxes with greatest fixpoint semantics as follows. A given TBox T can

14The same is true for propositionally closed DLs (see Section 6).
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Figure 1.8. A cyclic FL0 TBox and the corresponding automaton.

be translated into a finite automaton15 AT whose states are the concept names occur-
ring in T and whose transitions are induced by the value restrictions occurring in T (see
Fig. 1.8 for an example and [5] for the formal definition). For a defined concept A and a
primitive concept P in T , the language LAT

(A, P ) is the set of all words labeling paths
in AT from A to P . The languages LAT

(A, P ) represent all the value restrictions that
must be satisfied by instances of the concept A. With this intuition in mind, it should
not be surprising that subsumption w.r.t. cyclic FL0 TBoxes can be characterized in
terms of inclusion of regular languages represented by automata. Indeed, the following
characterizes subsumption w.r.t. greatest fixpoint semantics:

A ⊑gfp,T B iff LAT
(A, P ) ⊇ LAT

(B, P ) for all primitive concepts P .

In the example of Fig. 1.8, we have LAT
(A, P ) = r∗ss∗ ⊃ rss∗ = LAT

(B, P ), and thus
A ⊑T B, but not B ⊑T A.

Obviously, the languages LAT
(A, P ) are regular, and any regular language can be

obtained as such a language. Since inclusion of regular languages is a PSpace-complete
problem [73], this shows that subsumption w.r.t. cyclic FL0 TBoxes with greatest fixpoint
semantics is PSpace-complete [5]. The same complexity can be shown for subsumption
in cyclic FL0 TBoxes interpreted with least fixpoint semantics or with descriptive se-
mantics [5, 102]. In addition, the PSpace-completeness result can be extended to the
DL ALN [106].

For an acyclic FL0 TBox T , the automaton AT is acyclic as well. Since inclusion of
languages accepted by acyclic finite automata is coNP-complete [73] and subsumption
w.r.t. greatest fixpoint semantics coincides with subsumption w.r.t. descriptive semantics
in the case of acyclic TBoxes, this proves Nebel’s result that subsumption w.r.t. acyclic
FL0-TBoxes is coNP-complete [128]. Thus, for FL0, even the presence of acyclic TBoxes
increases the complexity of the subsumption problem.

Finally, ExpTime-hardness of subsumption in FL0 w.r.t. GCIs was shown in [10].
The ExpTime-upper bound follows from the fact that subsumption in ALC w.r.t. GCIs
is in ExpTime [138].

15Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions that may be
labeled by a word over Σ rather than a letter of Σ.
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Figure 1.9. A normalized EL TBox and the corresponding description graph.

TBox reasoning in EL

The approach for deciding subsumption between EL concept descriptions sketched in
Section 4.1 can be extended to EL TBoxes [9]. In fact, one can show that any EL
TBox can be transformed in polynomial time into an equivalent normalized TBox whose
definitions are of the form

A ≡ P1 ⊓ . . . ⊓ Pm ⊓ ∃r1.B1 ⊓ . . . ⊓ ∃rℓ.Bℓ,

where P1, . . . , Pm are primitive concepts, r1, . . . , rℓ roles, and B1, . . . , Bℓ defined concepts.
Any normalized EL TBox T can then be transformed into an EL description graph GT

whose nodes are the defined concepts of T . If A is a defined concept whose definition
in T is of the normalized form shown above, then A has label {P1, . . . , Pm}, and is the
source of the edges (A, r1, B1), . . . , (A, rℓ, Bℓ) (see Figure 1.9 for an example).

Subsumption w.r.t. greatest fixpoint semantics corresponds to the existence of an
appropriate simulation on GT [9]: if A, B are defined concepts in T , then

A ⊑gfp,T B iff there is a simulation Z from GT to GT such (B, A) ∈ Z.

Since the algorithm for computing the largest simulation sketched in Section 4.1 also
works on graphs, this shows that subsumption w.r.t. EL TBoxes interpreted with greatest
fixpoint semantics can be decided in polynomial time. In [9], the same result is also shown
for descriptive and least fixpoint semantics. As a special case we have that subsumption
w.r.t. acyclic EL TBoxes is polynomial.

In [46], it is shown that subsumption in EL remains polynomial even in the presence
of GCIs, and in [10] this result is extended to the DL EL++, which extends EL by the
bottom concept, nominals, a restricted form of concrete domains, and a restricted form
of role-value maps.16

The polynomial-time subsumption algorithms for EL and EL++ actually classify the
given set of GCIs T , i.e., they simultaneously compute all subsumption relationships
between the concept names occurring in T . In the following, we sketch an algorithm for
EL. This algorithm proceeds in four steps:

1. Normalize the set of GCIs.

2. Translate the normalized set of GCIs into a graph.

16Concrete domains and role-value maps will be introduced in Section 6. Adding unrestricted concrete
domains or role-value maps to EL with GCIs would cause undecidability of subsumption [10, 8].
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3. Complete the graph using completion rules.

4. Read off the subsumption relationships from the normalized graph.

A set of EL GCIs is normalized iff it only contains GCIs of the following form:

A1 ⊓ A2 ⊑ B, A ⊑ ∃r.B, ∃r.A ⊑ B,

where A, A1, A2, B are concept names or the top-concept ⊤. One can transform a given
set of GCIs into a normalized one by applying normalization rules. Instead of describing
these rules in the general case, we just illustrate them by an example:

∃r.A ⊓ ∃r.∃s.A ⊑ A ⊓ ∃r.⊤  ∃r.A ⊑ B1, B1 ⊓ ∃r.∃s.A ⊑ A ⊓ ∃r.⊤
 ∃r.A ⊑ B1, ∃r.∃s.A ⊑ B2, B1 ⊓ B2 ⊑ A ⊓ ∃r.⊤

 ∃r.A ⊑ B1, ∃s.A ⊑ B3, ∃r.B3 ⊑ B2, B1 ⊓ B2 ⊑ A ⊓ ∃r.⊤
 ∃r.A ⊑ B1, ∃s.A ⊑ B3, ∃r.B3 ⊑ B2, B1 ⊓ B2 ⊑ A, B1 ⊓ B2 ⊑ ∃r.⊤

For example, in the first normalization step we introduce the abbreviation B1 for the
description ∃r.A. One might think that one must make B1 equivalent to ∃r.A, i.e., also
add the GCI B1 ⊑ ∃r.A. However, it can be shown that adding just ∃r.A ⊑ B1 is
sufficient to obtain a subsumption-equivalent set of GCIs, i.e., a set that induces the
same subsumption relationships between the concept names occurring in the original set
of GCIs. All normalization rules preserve equivalence in this sense, and if one uses an
appropriate strategy (which basically defers the applications of the rule applied in the
last step of our example to the end), then the normal form can be computed in linear
time.

In the next step, we build the classification graph GT = (V, V × V, S, R) where

• V is the set of concept names (including ⊤) occurring in the normalized set of
GCIs T ;

• S labels nodes with sets of concept names (again including ⊤);

• R labels edges with sets of role names.

The label sets are supposed to satisfy the following invariants :

• B ∈ S(A) implies A ⊑T B, i.e., S(A) contains only subsumers of A w.r.t. the set
of GCIs T .

• r ∈ R(A, B) implies A ⊑T ∃r.B, i.e., R(A, B) contains only roles r such that ∃r.B
subsumes A.

Initially, we set S(A) := {A,⊤} for all nodes A ∈ V , and R(A, B) := ∅ for all edges
(A, B) ∈ V × V . Obviously, the above invariants are satisfied by these initial label sets.

The labels of nodes and edges are then extended by applying the rules of Figure 1.10.
Note that such a rule is only applied if it really extends a label set. It is easy to see that
these rules preserve the above invariants. For example, consider the (most complicated)
rule (R3). Obviously, ∃r.B1 ⊑ A1 ∈ T implies ∃r.B1 ⊑T A1, and the assumption that
the invariants are satisfied before applying the rule yields B ⊑T B1 and A ⊑T ∃r.B.
The subsumption relationship B ⊑T B1 obviously implies ∃r.B ⊑T ∃r.B1. By applying
transitivity of the subsumption relation ⊑T , we thus obtain A ⊑T A1.

The fact that subsumption in EL w.r.t. GCIs can be decided in polynomial time is an
immediate consequence of the following statements:
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(R1) A1 ⊓ A2 ⊑ B ∈ T and A1, A2 ∈ S(A) then add B to S(A)
(R2) A1 ⊑ ∃r.B ∈ T and A1 ∈ S(A) then add r to R(A, B)
(R3) ∃r.B1 ⊑ A1 ∈ T and B1 ∈ S(B), r ∈ S(A, B) then add A1 to S(A)

Figure 1.10. The completion rules for subsumption in EL w.r.t. GCIs.

1. Rule application terminates after a polynomial number of steps.

2. If no more rules are applicable, then A ⊑T B iff B ∈ S(A).

Regarding the first statement, note that the number of nodes is linear and the number
of edges is quadratic in the size of T . In addition, the size of the label sets is bounded
by the number of concept names and role names, and each rule application extends at
least one label. Regarding the equivalence in the second statement, the “if” direction
follows from the fact that the above invariants are preserved under rule application. To
show the “only-if” direction, assume that B 6∈ S(A). Then the following interpretation
I is a model of T in which A ∈ AI , but A 6∈ BI :

• ∆I := V ;

• rI := {(A′, B′) | r ∈ R(A′, B′)} for all role names r;

• B′I := {A′ | B′ ∈ S(A′)} for all concept names A′.

More details can be found in [46, 10].

4.3 ABox reasoning in sub-Boolean DLs

In [67], the complexity of instance checking in DLs of the AL family is investigated.
With one exception, the complexity17 of instance checking coincides with the complexity
of subsumption. This one exception is ALE , where the subsumption problem is NP-
complete, whereas instance checking is PSpace-complete. In the following, we sketch
the PSpace-hardness proof given in [67]. It depends on the PSpace-hardness proof
of satisfiability in ALC given in [143], which works by a reduction18 from Quantified
Boolean Formulae (QBF), whose validity problem is known to be PSpace-complete [73].
A given QBF ϕ is translated in polynomial time into an ALC concept description Cϕ such
that ϕ is valid iff Cϕ is satisfiable. For the purpose of sketching the PSpace-hardness
proof from [67], it is not really necessary to know what a QBF is and how the reduction
concept Cϕ is defined in detail. The first important observation made in [67] is that Cϕ

is equivalent to a concept description of the form

D ⊓ ¬D1 ⊓ . . . ⊓ ¬Dn

17To be more precise, the “combined complexity” of A |= C(a), i.e., w.r.t. both the size of A and the
size of C.

18Note that this reduction actually differs from the one usually employed in modal logic to show
PSpace-hardness of K [81].
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where D, D1, . . . , Dn are ALE concept descriptions whose size is polynomially related to
the size of Cϕ. Thus, it remains to be shown that satisfiability of concept descriptions of
this form can be reduced in polynomial time to instance checking in ALE .

Assume that ALE concept descriptions D, D1, . . . , Dn are given. Let q be a new role
and En a new concept name. We define ALE concept descriptions E0, . . . , En−1 as
follows:

Ei := ∃q.(Di+1 ⊓ Ei+1) for i = 0, . . . , n − 1.

The ABox A is defined as

A := { q(a, a), q(a, b), D1(a), . . . , Dn(a), E1(b), . . . , En(b), D(b) }

In [67], it is shown that

D ⊓ ¬D1 ⊓ . . . ⊓ ¬Dn is satisfiable iff A 6|= E0(a).

In fact, assume that A 6|= E0(a). Then there is a model I of A such that

aI ∈ (¬E0)
I = (∀q.(¬D1 ⊔ ¬E1))

I .

Thus (aI , aI) ∈ qI , aI ∈ DI
1 and (aI , bI) ∈ qI , bI ∈ E1 imply that aI ∈ (¬E1)

I and bI ∈
(¬D1)

I . We can now apply the same argument to aI ∈ (¬E1)
I = (∀q.(¬D2 ⊔ ¬E2))

I ,
etc. In the end, we obtain that bI ∈ (¬Di)

I for i = 1, . . . , n, and since we also have
bI ∈ DI this shows that D ⊓ ¬D1 ⊓ . . . ⊓ ¬Dn is satisfiable.

Conversely, it is easy to see that a model of D ⊓ ¬D1 ⊓ . . . ⊓ ¬Dn can be used to
construct a model of A in which a does not belong to E0.

4.4 Bi-simulation characterizations of sub-Boolean DLs

As noted before, concept descriptions of the AL family (and also of many other DLs)
can be translated into first-order formulae with one free variable. Thus, any such DL
L yields a fragment FOL of first-order predicate logic, which consists of those formulae
with one free variable that are equivalent to the first-order translation of an L concept
description. These fragments can be used to compare the expressive power19 of DLs.

We say that a DL L2 is strictly more expressive than a DL L1 (L1 ≺ L2) iff FOL1
⊂

FOL2
, i.e., every first-order translation of an L1 concept description is equivalent to the

first-order translation of an L2 concept description, and there is an L2 concept description
whose translation is not equivalent to any translation of an L1 concept description.

Usually, the inclusion between two fragments FOL1
and FOL2

is relatively easy to
show. However, how can one show that such an inclusion is strict? One way of doing
this is to use an appropriate bisimulation characterization of the first-order fragments.
For example, it is well-know that the fragment FOALC consists of those first-order for-
mulae that are preserved under bisimulation (see Chapter 1). This can be used to show
that ALC ≺ ALCN by giving an example of an ALCN concept description that is not
preserved under bisimulation (see [105]).

In [105], the bisimulation characterization of the first-order fragment corresponding to
ALC is adapted to various sub-Boolean DLs, and then used to compare their expressive
power. Here, we only sketch the characterization of FOAL.

19The definition of the expressive power of DLs obtained this way is used in [105]; it is weaker than
the one defined in [4] since it does not allow one to extend the vocabulary.
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First, we must introduce some notation. If X, Y are subsets of a set ∆, and R is a
binary relation on ∆, then we define

X R↑ Y iff for all d ∈ X there is e ∈ Y such that (d, e) ∈ R,

X R↓ Y iff for all e ∈ Y there is d ∈ X such that (d, e) ∈ R.

In order to explain the intuition underlying this definition from a DL point of view, as-
sume that r is a role, C, D are concept descriptions, and I = (∆I , ·I) is an interpretation,
and define R := rI , X := CI , and Y := DI . Then X R↑ Y means that CI ⊆ (∃r.D)I ,
and X R↓ Y means that DI ⊆ (∃r−.C)I .

Let I = (∆I , ·I) and J = (∆J , ·J ) be two interpretations. An AL-simulation between

I and J is a non-empty relation Z ⊆ 2∆I

×∆J such that the following three conditions
are satisfied:

1. If (X1, d2) ∈ Z, then X1 ⊆ AI implies d2 ∈ AJ and X1 ⊆ (¬A)I implies d2 ∈
(¬A)J for all concept names A.

2. For every role name r, if (X1, d2) ∈ Z and X1 (rI)
↑
Y1, then there is an e2 ∈ ∆J

such that (d2, e2) ∈ rI .

3. For every role name r, if (X1, d2) ∈ Z and (d2, e2) ∈ rJ , then there is an Y1 ⊆ ∆I

such that X1 (rI)
↓
Y1 and (Y1, e2) ∈ Z.

Intuitively, the fact that AL-simulations are binary relations between subsets of ∆I and
∆J makes sure that disjunction (which is not available in AL) is not preserved. The
first clause of the definition ensures that concept names and negated concept names (but
not full negation) are preserved. The second clause ensures preservation of restricted
existential restrictions ∃r.⊤, but not of full existential restrictions ∃r.C (since we do not
require (Y1, e2) ∈ Z). The third clause ensures that value restrictions are preserved.

The first order formula α(x) is preserved under AL-simulations iff for all interpreta-
tions I = (∆I , ·I) and J = (∆J , ·J ) and all AL-simulations Z between I and J , we
have:

(X, d2) ∈ Z and I |= α(d1) for all d1 ∈ X implies I |= α(d2).

In [105], it is shown that FOAL consists of those first-order formulae that are preserved
under AL-simulations.

This result can be used to show that ALU is strictly more expressive than AL. In fact,
the formula A(x) ∨ B(x) obtained by translating the ALU concept description A ⊔ B
into first-order logic is not preserved under AL-simulations. To see this, let I be the
interpretation consisting of two elements d1, e1, where d1 belongs to A and e1 belongs to
B, and let J be the interpretation consisting of the element d2, which belongs neither to
A nor to B. It is easy to see that Z := {({d1, e1}, d2)} is an AL-simulation between I
and J . However, ({d1, e1}, d2) ∈ Z and both d1 and e1 satisfy A(x) ∨B(x), but d2 does
not satisfy A(x) ∨ B(x).

5 NON-STANDARD INFERENCES

After motivating the need for non-standard inferences in DLs and illustrating some of
them by examples, we give formal definitions of the most important non-standard infer-
ences considered until now, and review the existing results.
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5.1 Motivation

All DL systems provide their users with standard inference services like computing the
subsumption hierarchy, testing ABox consistency, and instance checking. These infer-
ences are not only useful when working with “finished” knowledge bases, they can also
support the knowledge engineer while building a knowledge base, by pointing out incon-
sistencies and unwanted consequences. They can help the knowledge engineer to check
whether a concept definition makes sense, but they provide no support for actually com-
ing up with a first version of the definition. The non-standard inferences introduced in
this section can be used to overcome this deficit, basically by providing two ways of re-
using “old” knowledge when defining new one: (i) constructing concepts by generalizing
from examples, and (ii) constructing concepts by modifying “similar” ones.

The first approach was introduced as bottom-up construction of description logic
knowledge bases in [20, 25]. Instead of defining the relevant concepts of an applica-
tion domain from scratch, this methodology allows the user to give typical examples of
individuals belonging to the concept to be defined. These individuals are then general-
ized to a concept by first computing the most specific concept (msc) of each individual
(i.e., the least concept description w.r.t. subsumption in the available description lan-
guage that has this individual as an instance), and then computing the least common
subsumer (lcs) of these concepts (i.e., the least concept description w.r.t. subsumption
in the available description language that subsumes all these concepts). The knowledge
engineer can then use the computed concept as a starting point for the concept defini-
tion. As a simple example, assume that the knowledge engineer has already defined the
concept of a man and a woman as

Man ≡ Human ⊓ Male and Woman ≡ Human ⊓ Female,

and now wants to define the concept of a parent, but does not know how to do this within
the available DL (which we assume to be EL in this example). However, the available
ABox

Man(JACK), child(JACK, CAROLINE), Woman(CAROLINE),
Woman(JACKIE), child(JACKIE, JOHN), Man(JOHN),

contains the individuals JACK and JACKIE, of whom the knowledge engineer knows that
they are parents. The most specific concepts of JACK and JACKIE in the given ABox are

Man ⊓ ∃child.Woman and Woman ⊓ ∃child.Man,

respectively, and the least common subsumer (in EL) of these two concepts w.r.t. the
definitions of Man and Woman is

Human ⊓ ∃child.Human,

which looks like a good starting point for a definition of parent.
In contrast to standard inferences like subsumption and instance checking, the output

of the non-standard inferences we have mentioned until now (computing the msc and
the lcs) is a concept description rather than a yes/no answer. In such a setting, it is
important that the returned descriptions are as readable and comprehensible as possible.
Unfortunately, the descriptions that are produced by the known algorithms for computing
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the lcs and the msc do not satisfy this requirement. The reason is that – like most
algorithms for the standard inference problems – these algorithms work on expanded
concept descriptions, i.e., concept descriptions that do not contain names defined in the
underlying TBox. Consequently, the descriptions that the algorithms produce also do
not use defined concepts, which makes them in many cases large and hard to read and
comprehend.20 This problem can be overcome by rewriting the resulting concept w.r.t.
the given TBox. Informally, the problem of rewriting a concept given a terminology can
be stated as follows: given an acyclic TBox T and a concept description C that does not
contain concept names defined in T , can this description be rewritten into an equivalent
shorter description E by using (some of) the names defined in T ? For example, w.r.t.
the TBox in Figure 1.3, the concept description

Person ⊓ ∀child.Female ⊓ ∃child.⊤ ⊓ ∀child.Person

can be rewritten to the equivalent concept Parent ⊓ ∀child.Woman.
Rewriting w.r.t. a TBox is just one instance of a more general rewriting framework,

which will be introduced below. Another instance of this framework is approximation,
where one tries to express a concept description C1 defined in one DL L1 by a concept
description C2 expressed in another DL L2. If L1 is strictly more expressive than L2,
then it is not always possible to find a concept description C2 that is equivalent to C1. In
this case, one can try to approximate C1 by an L2 concept description that is as “close”
as possible to C1, for example by trying to find an L2 concept description that subsumes
C1 and is minimal w.r.t. subsumption. One possible application for such an inference is
translating knowledge bases from the language employed by one system into the language
employed by another system.

In order to apply the second approach of constructing concepts by modifying existing
ones, one must first find the right candidates for modification. One way of doing this
is to give a partial description of the concept to be defined as a concept pattern (i.e.,
a concept description containing variables standing for concept descriptions), and then
look for concept descriptions that match this pattern. For example, the pattern

Man ⊓ ∃child.(Man ⊓ X) ⊓ ∃spouse.(Woman ⊓ X)

looks for descriptions of classes of men whose wives and sons share some characteristic.
An example of a concept description matching this pattern is Man⊓∃child.(Man⊓Tall)⊓
∃spouse.(Woman ⊓ Tall).

Unification is a generalization of matching where both concepts may contain variables.
The main motivation for introducing unification in DLs was to avoid redundancies in
knowledge bases that are built by several knowledge engineers over a long time period. In
this setting, it frequently happens that the same (intuitive) concept is introduced several
times, often with slightly differing descriptions. Testing for equivalence of concepts is not
always sufficient to find out whether, for a given concept description, there already exists
another concept description in the knowledge base describing the same notion. As an
example, lets us ask whether the following two FL0 concept descriptions might denote

20In the above example, this means that the definitions of Man and Woman are expanded before
applying the lcs algorithm. If Human also had a definition, then it would also be expanded, and instead
of the concept description containing Human shown above, the algorithm would return its expanded
version.
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the same (intuitive) concept:

∀child.∀child.Rich ⊓ ∀child.Rmr and Acr ⊓ ∀child.Acr ⊓ ∀child.∀spouse.Rich.

The answer is yes, since replacing the concept name Rmr by the description Rich ⊓
∀spouse.Rich and Acr by ∀child.Rich yields the descriptions

∀child.∀child.Rich ⊓ ∀child.(Rich ⊓ ∀spouse.Rich),
∀child.Rich ⊓ ∀child.∀child.Rich ⊓ ∀child.∀spouse.Rich,

which are obviously equivalent. Thus, under the assumption that Rmr stands for “Rich
and married rich” and Acr for “All children are rich”, we can conclude that both descrip-
tions are meant to express the concept “All grandchildren are rich and all children are
rich and married rich”. This connection between the two description can be found by a
unification algorithm if we declare Rmr and Acr to be variables. Of course, unifiability
does not necessarily mean that the concept descriptions are meant to represent the same
concept. Unifiability only suggests that there is a possible connection: the final decision
must be taken by the knowledge engineer.

5.2 Least common subsumers and most specific concepts

Intuitively, the least common subsumer of a given collection of concept descriptions is
a description that represents the properties that all the elements of the collection have
in common. More formally, it is the most specific concept description that subsumes
the given descriptions. What this most specific description looks like, whether it really
captures the intuition of representing the properties common to the input descriptions,
and whether it exists at all strongly depends on the DL under consideration.

Let L be a DL. A concept description E of L is a least common subsumer (lcs) of the
concept descriptions C1, . . . , Cn in L (lcsL(C1, . . . , Cn) for short) iff it satisfies

1. Ci ⊑ E for all i = 1, . . . , n, and

2. E is the least L concept description with this property, i.e., if E′ is an L concept
description satisfying Ci ⊑ E′ for all i = 1, . . . , n, then E ⊑ E′.

As an easy consequence of this definition, the lcs is unique up to equivalence, which
justifies talking about the lcs. In addition, the n-ary lcs as defined above can be reduced
to the binary lcs (the case where n = 2). Indeed, it is easy to see that lcsL(C1, . . . , Cn) ≡
lcsL(C1, . . . , lcsL(Cn−1, Cn) · · · ). Thus, it is enough to devise algorithms for computing
the binary lcs.

It should be noted, however, that the lcs need not always exist. This can have different
reasons: (a) there may not exist a concept description in L satisfying (i) of the defini-
tion (i.e., subsuming C1, . . . , Cn); (b) there may be several subsumption incomparable
minimal concept descriptions satisfying (i) of the definition; (c) there may be an infinite
chain of more and more specific descriptions satisfying (i) of the definition. Obviously,
(a) cannot occur for DLs containing the top concept. It is easy to see that, for DLs al-
lowing for conjunction of descriptions, (b) cannot occur. An example for a DL exhibiting
behavior (c) can be found in [6], where the lcs is defined w.r.t. a cyclic TBox.

It is also clear that in DLs allowing for disjunction, the lcs of C1, . . . , Cn is their
disjunction C1 ⊔ . . . ⊔ Cn. In this case, the lcs is not really of interest. Instead of
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Figure 1.11. The product of EL description trees.

extracting properties common to C1, . . . , Cn, it just gives their disjunction, which does
not provide us with new information. Thus, it only makes sense to look at the lcs in
sub-Boolean DLs.

For DLs whose expressive power lies between FL0 and ALN , one can use the charac-
terization of subsumption via finite languages over the alphabet of the role names (see
Subsection 4.2) to compute the lcs. Recall that any pair of FL0 concept descriptions
C, D containing the concept names A1, . . . , Ak can be written as

C ≡ ∀U1.A1 ⊓ . . . ⊓ ∀Uk.Ak and D ≡ ∀V1.A1 ⊓ . . . ⊓ ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role names, and that C ⊑ D
iff Ui ⊇ Vi for i = 1, . . . , k. As an easy consequence of this characterization we obtain
that the lcs E of C, D is of the form

E ≡ ∀(U1 ∩ V1).A1 ⊓ . . . ⊓ ∀(Uk ∩ Vk).Ak.

Using the language-based characterization of subsumption in ALN [106], this approach
for computing the lcs by language intersection can be extended to ALN [20], but this
involves the use of certain infinite regular languages.

For DLs with existential restrictions, the characterization of subsumption via the exis-
tence of certain simulation relations between description trees (see Subsection 4.2) implies
that the lcs corresponds to the product of the description trees [25]. The product GC ×GD

of two EL description trees GC and GD is defined by induction on the depth of the trees.
Its root is the pair (v0, w0) consisting of the roots of GC and GD, and the label of (v0, w0)
is the intersection of the labels of v0 and w0. For each r-successor v of v0 in GC and w of
w0 in GD, we obtain an r-successor (v, w) of (v0, w0) in GC × GD that is the root of the
product of the subtree of GC with root v and the subtree of GD with root w.

As an example, the product of the description tree GC shown in Figure 1.7 and the
description tree GD′ shown in Figure 1.11 is depicted on the right-hand side of Figure 1.11.
Thus, the lcs in EL of the concept descriptions

C := P ⊓ ∃r.(∃r.(P ⊓ Q) ⊓ ∃s.Q) ⊓ ∃r.(P ⊓ ∃s.P ) and D′ := ∃r.(P ⊓ ∃r.P ⊓ ∃s.Q)

is lcsEL(C, D′) ≡ ∃r.(∃r.P ⊓ ∃s.Q) ⊓ ∃r.(P ⊓ ∃s.⊤).
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This approach of computing the lcs as a product of description trees can be extended
to ALE [25] and to ALEN [108]. The main difference is that the concept descriptions
must be normalized appropriately before building the description trees.

Now, we come to the formal definition of the most specific concept. Let L be a DL.
The L concept description E is the most specific concept (msc) in L of the individual a
in the L ABox A (mscL(a) for short) iff

1. A |= E(a), and

2. E is the least concept satisfying (i), i.e., if E′ is an L concept description satisfying
A |= E′(a) then E ⊑ E′.

As with the lcs, the msc is unique up to equivalence, if it exists. In contrast to the lcs,
which usually exists for standard DLs, the msc does not always exist in EL, ALN , and
ALE . This is due to the presence of so-called role cycles in the ABox. For example,
w.r.t. the ABox

{loves(NARCIS, NARCIS), Vain(NARCIS)},

the individual NARCIS does not have an msc in EL. In fact, assume that E is the msc
of NARCIS. Then E has a finite role depth, i.e., a finite maximal number of nestings of
existential restrictions. If this role depth is smaller than n, then E is not subsumed by
the EL concept description

E′ := ∃loves.· · · ∃loves.︸ ︷︷ ︸
n times

Vain,

in spite of the fact that NARCIS is an instance of E′. The same example works for ALE ,
and a similar one can be given for ALN [20].

One way to overcome this problem is to allow for cyclic TBoxes interpreted with
greatest fixpoint semantics. In the above example, the defined concept Narcis ≡ Vain ⊓
∃loves.Narcis is then an msc of the individual NARCIS. In order to employ this approach
in the bottom-up construction of DL knowledge bases, one must allow these knowledge
bases to contain cyclic definitions. Thus, also the subsumption problem and the problem
of computing the lcs must be solved w.r.t. cyclic definitions interpreted with greatest
fixpoint semantics. In [106, 20], this is done for ALN , and in [9, 7] for EL. The
appropriate treatment of cyclic TBoxes in ALE is still an open problem.

Another possibility is to approximate the msc by restricting the attention to concept
descriptions whose role depth is bounded by a fixed number k [53, 107].

5.3 Matching and unification

Concept patterns are concept descriptions in which concept variables (usually denoted by
X, Y , etc.) may occur in place of concept names. The main difference between concept
names and concept variables is that the latter can be replaced by concept descriptions
when applying a substitution.

For example, D := P ⊓X ⊓∀r.(Y ⊓∀r.X) is a concept pattern containing the concept
variables X and Y . By applying the substitution σ := {X 7→ Q, Y 7→ ∀r.P} to it, we
obtain the concept description

σ(D) = P ⊓ Q ⊓ ∀r.(∀r.P ⊓ ∀r.Q).
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Let L be a DL. An L unification problem is of the form

C1 ≡? D1, . . . , Cn ≡? Dn,

where C1, . . . , Dn are L concept patterns. A unifier of this problem is a substitution σ
such that σ(Ci) ≡ σ(Di) for i = 1, . . . , n.

For unification, the only results available until now are for the small DL FL0 and
its extension FLreg by the role constructors union, composition, and reflexive-transitive
closure. In [28], it is shown that deciding unifiability of FL0-patterns is an ExpTime-
complete problem, and in [22] this result is extended to FLreg and it’s extension with
⊥. In the following, we sketch how the results for unification in FL0 can be obtained.
As shown in [28], we can without loss of generality restrict the attention to unification
problems consisting of a single equation C ≡? D. Using the language-based normal form
of FL0 concept descriptions, we can write the patterns C, D in the form

C ≡ ∀S0,1.A1 ⊓ . . . ⊓ ∀S0,k.Ak ⊓ ∀S1.X1 ⊓ . . . ⊓ ∀Sn.Xn,
D ≡ ∀T0,1.A1 ⊓ . . . ⊓ ∀T0,k.Ak ⊓ ∀T1.X1 ⊓ . . . ⊓ ∀Tn.Xn,

where A1, . . . , Ak are the concept names and X1, . . . , Xn the concept variables occurring
in C, D, and S0,i, Sj , T0,i, Tj (i = 1, . . . , k, j = 1, . . . , n) are finite sets of words over the
alphabet of all role names. In [28], it is shown that C ≡? D has a unifier iff for all
i = 1, . . . , k, the linear language equation

S0,i ∪ S1X1,i ∪ · · · ∪ SnXn,i = T0,i ∪ T1X1,i ∪ · · · ∪ TnXn,i

has a solution, i.e., we can substitute the variables Xj,i by finite languages such that
the equation holds. Note that this is not a system of k equations that must be solved
simultaneously: since they do not share variables, each of these equations can be solved
separately.

Let us illustrate the connection between FL0 unification problems and linear language
equations by a simple example. The normal forms of the concept patterns

C := ∀r.(A1 ⊓ ∀r.A2) ⊓ ∀r.∀s.X1 and D := ∀r.∀s.(∀s.A1 ⊓ ∀r.A2) ⊓ ∀r.X1 ⊓ ∀r.∀r.A2

are

C ≡ ∀{r}.A1 ⊓ ∀{rr}.A2 ⊓ ∀{rs}.X1 and D ≡ ∀{rss}.A1 ⊓ ∀{rsr, rr}.A2 ⊓ ∀{r}.X1.

Thus, the unification problem C ≡? D leads to the two linear language equations

{r} ∪ {rs}X1,1 = {rss} ∪ {r}X1,1,
{rr} ∪ {rs}X1,2 = {rsr, rr} ∪ {r}X1,2.

The first equation (the one for A1) has X1,1 = {ε, s} as a solution, and the second (the
one for A2) has X1,2 = {r} as a solution. These two solutions yield the following unifier
of C ≡? D:

{X1 7→ A1 ⊓ ∀s.A1 ⊓ ∀r.A2}.

By an exponential time reduction to the emptiness problem of top-down automata on
finite trees it is shown in [28] that solvability of linear language equations of the form
introduced above can be decided in exponential time. ExpTime-hardness is shown by
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a reduction from the intersection emptiness problem for deterministic top-down tree
automata. This shows that solvability of FL0 unification problems is an ExpTime-
complete problem. In [22], these results are extended to FLreg. Basically, instead of
linear language equations over finite sets, one obtains linear language equations over
regular sets, and uses automata working on infinite trees to solve them.

An extension of these results to more expressive DLs, such as ALC, appears to be very
hard. This is supported by the fact that research on unification in modal logics has also
not yet produced results on unification in K. In modal logic, unification can be seen as a
special case of testing for the admissibility of an inference rule (see Chapter 8 for more
details and references). The rule

α1(x1, . . . , xn), . . . , αm(x1, . . . , xn)

β(x1, . . . , xn)

is called admissible in a logic L iff every substitution of the xi by formulae making
α1, . . . , αm valid also makes β valid. If L is consistent, then the rule α(x1, . . . , xn)/⊥ is
admissible iff α(x1, . . . , xn) ≡? ⊤ is not unifiable. If the logic is propositionally closed,
then all unification problems can be brought into this form. Consequently, decidability
of the admissible inference rule problem (e.g., in K4, Grz) implies decidability of the
unification problem.

Kracht also shows in Chapter 8 that admissibility of inference rules can be reduced to
unification if every unification problem has a computable finite complete set of unifiers
(see [32] for the relevant definitions from unification theory). Using Ghilardi’s results
that unification in K4, S4, and intuitionistic logic is finitary in this sense [76, 75], this
shows that admissibility of inference rules is decidable for intuitionistic logic. It should
be noted however, that these result consider only elementary unification, i.e., unification
without free constants. In the DL setting introduced above, this means that they do
not allow for concept names in concept descriptions (only concept variables). Also note
that unification in FL0 is not finitary [2]. For the modal logic K, decidability of both
admissibility of inference rules and unification are open problems (and generally assumed
to be very hard).

Matching can be seen as a special case of unification where the left-hand sides of
the unification problem are concept descriptions, i.e., the concept descriptions Ci in
Ci ≡? Di do not contain variables. For DLs that are propositionally closed, unification
can be reduced to matching. Indeed, it is easy to see that the equation C ≡? D has the
same solutions as ⊤ ≡? (C ⊓ D) ⊔ (¬C ⊓ ¬D). Thus, for ALC, matching is as hard as
unification. For sub-Boolean DLs, matching can be significantly easier than unification
(see below).

In [39], a different notion of matching, called matching modulo subsumption, was intro-
duced.21 In this setting, a matching problem is of the form C ⊑? D where C is a concept
description and D a concept pattern. A matcher is then a substitution σ such that
C ⊑ σ(D). Since C ⊑ σ(D) iff C ⊓σ(D) ≡ C, and C ⊓σ(D) = σ(C)⊓σ(D) = σ(C ⊓D),
this matching problem modulo subsumption can be reduced to the following matching
problem modulo equivalence: C ≡? C ⊓ D.

However, in many cases, matching modulo subsumption is simpler than matching
modulo equivalence since it can be reduced to the subsumption problem. This is the case

21In the following, we call matching problems of the form C ≡? D matching problems modulo equiva-
lence to distinguish them from matching problems modulo subsumption.
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for DLs that allow for ⊤ and where all constructors are monotonic, i.e., replacing their
arguments by larger ones w.r.t. subsumption yields a larger description. An example of
a monotonic constructor is conjunction: if C ⊑ C′ and D ⊑ D′, then C ⊓ D ⊑ C′ ⊓ D′.
Other examples are value and existential restrictions as well as disjunction. For such a
DL, C ⊑? D has a matcher iff the substitution σ⊤ that replaces all variables by ⊤ is
a matcher, i.e., if C ⊑ σ⊤(D). In fact, monotonicity of the constructors implies that
σ(D) ⊑ σ⊤(D) holds for all substitutions σ, and thus whenever there is a matcher σ,
then σ⊤ is also a matcher. Also note that matching cannot be simpler than subsumption
since the matching problem C ⊑? D where D does not contain variables has a solution
iff C ⊑ D.

In the context of matching modulo subsumption, one is, however, usually not interested
in arbitrary solution, and in particular not in the trivial largest one σ⊤, but rather in
minimal ones, i.e., in matchers σ of C ⊑? D such that there does not exist another
substitution δ such that C ⊑ δ(D) ⊏ σ(D) (see [39] for a motivation). Computing
minimal matcher may again be harder than simply testing whether the trivial solution
candidate σ⊤ is indeed a matcher.

In [28], the language-based approach for unification is used to show that solvability
of matching problems modulo equivalence (and thus also modulo subsumption) in FL0

can be decided in polynomial time, and that minimal matchers of matching problems
modulo subsumption are unique up to equivalence and can be computed in polynomial
time. In [23], this result is extended to ALN .22 Matching in EL and ALE is considered in
[21]. For both DLs, matching modulo equivalence is NP-complete. As explained above,
the complexity of matching modulo subsumption coincides with the complexity of the
subsumption problem, i.e., it is polynomial for EL and NP-complete for ALE . In the
following, we consider the complexity of matching modulo equivalence in EL and ALE
in some more detail. NP-hardness of matching in ALE is an immediate consequence of
NP-hardness of subsumption in ALE .

NP-hardness of matching modulo equivalence in EL is shown in [21] by a reduction
from SAT. Let φ = ϕ1 ∧ · · · ∧ ϕm be a propositional formula in conjunctive normal form
and let {p1, . . . , pn} be the propositional variables of this problem. For these variables,
we introduce the concept variables {X1, . . . , Xn, X1, . . . , Xn}. Furthermore, we need
concept names A and B as well as role names r1, . . . , rn and s1, . . . , sm. First, we specify
a matching problem Cn ≡? Dn that encodes the truth values of the n propositional
variables:

Cn := ∃r1.A ⊓ ∃r1.B ⊓ . . . ⊓ ∃rn.A ⊓ ∃rn.B
Dn := ∃r1.X1 ⊓ ∃r1.X1 ⊓ . . . ⊓ ∃rn.Xn ⊓ ∃rn.Xn.

The matchers of this problem are exactly the substitutions that replace Xi by A and Xi

by B (corresponding to pi = true), or vice versa (corresponding to pi = false).
In order to encode φ, we introduce a concept pattern Dϕi

for each clause ϕi. For
example, if ϕi = p1 ∨ ¬p2 ∨ p3 ∨ ¬p4, then Dϕi

:= X1 ⊓ X2 ⊓ X3 ⊓ X4 ⊓ B. The whole
formula is then represented by the matching problem Cφ ≡? Dφ, where

Cφ := ∃s1.(A ⊓ B) ⊓ . . . ⊓ ∃sm.(A ⊓ B) and Dφ := ∃s1.Dϕ1
⊓ . . . ⊓ ∃sm.Dϕm

.

This matching problem ensures that, among all the variables in Dϕi
, at least one must

be replaced by A. This corresponds to the fact that, within one clause ϕi, there must

22In the presence of atomic negation one defines patterns such atomic negation may not be applied to
variables, and thus atomic negation does not destroy the monotonicity property introduced above.
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C := W ⊓ ∃c.(W ⊓ ∃c.(W ⊓ D) ⊓ ∃c.(W ⊓ P)) ⊓ ∃c.(W ⊓ D ⊓ ∃c.(W ⊓ P))

D := W ⊓ ∃c.(X ⊓ ∃c.(W ⊓ Y )) ⊓ ∃c.(X ⊓ Y )
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Figure 1.12. An EL concept description and an EL concept pattern, and the correspond-
ing description trees.

be at least one literal that evaluates to true. Note that we need the concept B in Dϕi
to

cover the case where all variables in Dϕi
are substituted with A. If we combine the two

matching problems introduced above into a single problem Cn ⊓Cφ ≡? Dn ⊓Dφ, then it
is easy to verify that φ is satisfiable iff this matching problem is solvable.

Membership in NP for matching modulo equivalence in EL and ALE is an easy con-
sequence of the following two (non-trivial) facts [21]. If an EL or ALE matching problem
modulo equivalence has a matcher, then it has one of size polynomially bounded by the
size of the problem. Furthermore, this matcher uses only concept and role names already
contained in the matching problem. Thus, one can simply guess a substitution satisfying
the given size bound, and then test (in P for EL and in NP for ALE) whether it is a
matcher.

Of course, this NP-algorithm for testing solvability of a matching problem does not
yield a practical algorithm for actually computing matchers. A more practical algorithm
that computes all minimal matchers of EL and ALE matching problems modulo sub-
sumption is based on the characterization of subsumption through the existence of a
homomorphism (i.e., a simulation relation that is a function) between the corresponding
description trees [25]. As an example, consider the EL matching problem C ⊑? D for
the concept description C and the concept pattern D depicted in Figure 1.12. Readers
not liking such abstract examples may read W as Woman, D as Doctor, P as Professor,
and c as child. Thus, the pattern describes concepts consisting of women that have (i) a
child satisfying some property X and having a female child satisfying some property Y ,
and (ii) a child satisfying both X and Y .

When considering homomorphisms between the description trees of a concept pattern
and a concept description, we simply ignore the concept variables, i.e., the inclusion
condition between the labels does not take variables into account. In our example, there
are six homomorphisms from GD into GC . We consider the ones mapping wi onto vi for
i = 0, 1, 2, and w3 onto v3 or w3 onto v4, which we denote by h1 and h2, respectively.
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The matching algorithm described in [21] tries to construct substitutions τ such that
C ⊑ τ(D), i.e., there is a homomorphism from Gτ(D) into GC . This is achieved by first
computing all homomorphisms from GD into GC . Assume that the node w in GD, whose
label contains X , is mapped onto the note v of GC . The idea is then to substitute X
with the concept description corresponding to the subtree of GC starting with the node v.
We will denote this description by Cv in the following. The remaining problem is that a
variable X may occur more than once in D, and thus nodes containing X may be mapped
to several nodes in GC . Thus, we cannot simply define τ(X) as Ch(w) where w is such that
X occurs in the label of w. Since there may exist several nodes w with this property, we
take the least common subsumer of the corresponding parts of C. The reason for taking
the least common subsumer is that we want to compute minimal matchers.

In our example, the homomorphism h1 yields the substitution τ1:

τ1(X) := lcs(Cv1
, Cv2

) ≡ W ⊓ ∃c.(W ⊓ P), τ1(Y ) := lcs(Cv2
, Cv3

) ≡ W ⊓ D,

whereas h2 yields the substitution τ2:

τ2(X) := lcs(Cv1
, Cv2

) ≡ W ⊓ ∃c.(W ⊓ P), τ2(Y ) := lcs(Cv2
, Cv4

) ≡ W.

The algorithm is guaranteed to compute all minimal matchers, but may also compute
some non-minimal ones, which must be removed in a post-processing step. In our ex-
ample, the substitution τ1 is a minimal matcher, but τ2 is not minimal. In general, a
given matching problem modulo subsumption may have exponentially many inequivalent
minimal matchers, and the size of these minimal matchers may also be exponential in
the size of the matching problem [21].

5.4 Rewriting and approximation

In [26], a very general framework for rewriting in DLs is introduced, which has several
interesting instances. In order to introduce this framework, we fix a set NR of role names
and a set NP of primitive concept names. Now, let Ls, Ld, and Lt be three DLs (the
source-, destination, and TBox-DL, respectively). A rewriting problem is given by

• an Lt TBox T containing only role names from NR and primitive concepts from
NP ; the set of defined concepts occurring in T is denoted by ND;

• an Ls concept description C using only the names from NR and NP ;

• a binary relation ρ between Ls concept descriptions and Ld concept descriptions.

An Ld rewriting of C using T is an Ld concept description E built using role names from
NR and concept names from NP ∪ ND such that CρE. Given an appropriate ordering
� on Ld concept descriptions, a rewriting E is called �-minimal iff there does not exist
a rewriting E′ such that E′ ≺ E.

To illustrate the use of this general framework by examples, we consider two of its
instances in more detail: the minimal rewriting problem and the approximation problem.
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Minimal rewriting

This is the instance of the framework where (i) all three DLs are the same language L;
(ii) the TBox T is acyclic; (iii) the binary relation ρ corresponds to equivalence w.r.t.
the TBox; and (iv) L concept descriptions are ordered by size, i.e., E � E′ iff |E| ≤ |E′|.
The size |E| of a concept description E is defined to be the number of occurrences of
concept and role names in E.

In order to determine the complexity of the minimal rewriting problem, Baader et al.
[26] first analyse the decision problem induced by this optimization problem for a given
DL L: given an L concept description C, an acyclic L TBox T , and a nonnegative integer
κ, does there exist an L rewriting E of C using T such that |E| ≤ κ? Since this decision
problem can obviously be reduced to the problem of computing a minimal rewriting
of C using T , hardness results for the decision problem carry over to the optimization
problem.

For ALC, this decision problem is PSpace-hard since the PSpace-complete subsump-
tion problem can be reduced to it. Indeed, let C, D be two ALC concept descriptions,
and A, P1, P2 three different concept names not occurring in C, D. Then C ⊑ D iff there
exists a minimal rewriting of size 1 of the ALC concept description P1 ⊓ P2 ⊓ C using
the TBox T := {A ≡ P1 ⊓ P2 ⊓ C ⊓ D} [26]. The two concept names P1 and P2 are
introduced to ensure that the size of the concept description to be rewritten is strictly
larger than the size of A.

However, subsumption is not the only source of complexity for the minimal rewriting
problem. In fact, even for the small DL FL0, for which subsumption of concept de-
scriptions and w.r.t. expanded TBoxes is polynomial, the rewriting problem (using an
expanded TBox) is NP-hard. This is shown in [26] by a reduction from the set cover
problem.

For an arbitrary DL L, the minimal rewriting decision problem can obviously be de-
cided by a non-deterministic polynomial time algorithm that uses an oracle for subsump-
tion. This algorithm just guesses an L concept description over the available vocabulary
and of size at most κ, and then checks whether this description is equivalent to the
input description modulo the TBox. For ALC, this shows that the minimal rewriting
decision problem is PSpace-complete. It can also be used to show that the problem is
NP-complete for FL0 (see [26] for details).

Let us now come to the problem of actually computing minimal rewritings. The
hardness results mentioned above imply that computing one minimal rewriting is already
a hard problem. In addition, the following simple example shows that the number of
minimal rewritings of a concept description C using a TBox T can be exponential in the
size of C and T .

For a nonnegative integer n, let Cn := P1 ⊓ . . . ⊓ Pn and Tn := {Ai ≡ Pi | 1 ≤ i ≤ n}.
For each vector i = (i1, . . . , in) ∈ {0, 1}n, we define

Ei := ⊓
1≤j≤n,ij=0

Pj ⊓ ⊓
1≤j≤n,ij=1

Aj .

Obviously, for all i ∈ {0, 1}n, Ei is a rewriting of Cn of size |Ei| = n = |Cn|. Furthermore,
it is easy to see that there does not exist a smaller rewriting of Cn using Tn. Hence, there
exists an exponential number of different minimal rewritings of Cn using Tn.

A näıve algorithm for computing one minimal rewriting would enumerate all concept
descriptions E of size k = 1, then k = 2, etc., until a rewriting E0 of C using T is
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encountered. By construction, this rewriting is minimal, and since C is a rewriting of
itself, one need not consider sizes larger than |C|. If one is interested in computing all
minimal rewritings, it remains to enumerate all concept descriptions of size |E0|, and test
for each of them whether they are equivalent to C modulo T . Obviously, this algorithm
is not practical.

The main ideas underlying the more practical algorithm described in [26] is the fol-
lowing. For a given input description C, one splits the computation of rewritings into
two steps:

• Compute an extension C∗ of C. Such an extension is obtained from C by conjoining
defined concepts at some positions of C while making sure that C ≡T C∗ holds.

• Compute a reduction Ĉ of C∗. Such a reduction is obtained from C∗ by removing
certain parts of C∗ while making sure that C∗ ≡T Ĉ holds.

The exact definitions of the right notions of extension and reduction depend, of course,
on the DL under consideration. In [26], these definitions are given for ALE . It is shown
that the algorithm obtained this way computes only writings of the input description,
and that all minimal rewritings are among the computed rewritings. In addition, [26]
describes a more efficient heuristic algorithm that is not guaranteed to find minimal
rewritings, but behaves quite well in practice. Basically, this algorithm uses a greedy
strategy in the extension step, i.e., it conjoins as many defined concepts as possible to
each position of C.

Approximation

This is the instance of the framework where (i) T is empty, and thus Lt is irrelevant; (ii)
both ρ and � are the subsumption relation ⊑. In this case, we talk about approximation
rather than rewriting. Given two DLs Ls and Ld, an Ld approximation of an Ls concept
description C is thus an Ld concept description D such that C ⊑ D and D is minimal
(w.r.t. subsumption) with this property.

The case where Ls = ALC and Ld = ALE is investigated in [48]. Recall that the
only difference between ALC and ALE is that disjunction is disallowed in ALE concept
descriptions.23 If C1, C2 are ALE concept descriptions, then it is easy to see that the
approximation of the ALC concept description C1⊔C2 by an ALE concept description is
lcsALE(C1, C2). This suggests the following approach for approximating an ALC concept
description C by an ALE concept description: just replace every disjunction in C by an
application of the lcs operation. The following example demonstrates that this approach
is too näıve: let C := (∀r.B ⊔ (∃r.B ⊓ ∀r.A)) ⊓ ∃r.A. If we replace the disjunction by an
lcs operation and then compute the lcs, we obtain the ALE concept description

lcsALE(∀r.B, (∃r.B ⊓ ∀r.A)) ⊓ ∃r.A ≡ ⊤ ⊓ ∃r.A ≡ ∃r.A.

However, this concept description is too general. It is easy to see that C ⊑ ∃r.(A⊓B) ⊏
∃r.A. In fact, ∃r.(A ⊓ B) is the correct approximation.

In order to overcome this problem, the ALC concept description has to be transformed
into an appropriate normal form. Basically, this normal form is obtained by distributing

23Here we assume without loss of generality that all ALC concept descriptions are in negation normal
form where negation occurs only in front of concept names.
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conjunctions over disjunctions, and by applying the rule ∀r.C ⊓ ∀r.D → ∀r.(C ⊓D). For
the example from above, the normal form is

C ≡ (∀r.B ⊓ ∃r.A) ⊔ (∃r.B ⊓ ∀r.A ⊓ ∃r.A),

and lcsALE(∀r.B ⊓ ∃r.A, ∃r.B ⊓ ∀r.A ⊓ ∃r.A) = ∃r.(A ⊓ B).
However, even for ALC concept descriptions in this normal form, one cannot simply

replace disjunction by the lcs operation to obtain their ALE approximation. Consider
the ALC concept description C′ = ∃r.A ⊓ ∃r.B ⊓ ∀r.(¬A ⊔¬B). If we simply replace the
disjunction by the lcs, then we obtain ∃r.A ⊓ ∃r.B ⊓ ∀r.⊤ ≡ ∃r.A ⊓ ∃r.B. However, C′ is
also subsumed by the more specific ALE concept description ∃r.(A⊓¬B)⊓∃r.(B ⊓¬A).
This problem can be overcome by also propagating value restrictions onto existential
restrictions. An approximation algorithms based on these ideas is described in [48].
It is shown that every ALC concept description has an ALE approximation, and this
approximation is unique up to equivalence, i.e., there is always a least approximation.
However, the size of the approximation may grow exponentially with the size of the
input description. The algorithm for computing the approximation given in [48] runs in
doubly-exponential time, and it is not clear whether this time bound can be improved.
In [47], these results are extended to the approximation of ALCN concepts descriptions
by ALEN concept descriptions.

6 NON-STANDARD EXPRESSIVITY

As discussed in Section 2, many expressive means of description logics have a counterpart
in modal logic. In this section, we discuss two expressive means that are important for
DLs, but lack a direct modal counterpart: concrete domains and role value maps.

6.1 Concrete Domains

The purpose of concrete domains is to enable the definition of concept descriptions with
reference to concrete qualities of real-world objects such as their age, weight, temperature,
and spatial extension. For example, we may define a teenager as a human whose age is
between 10 and 19, or formulate a GCI stating that the age of a child is always smaller
than the age of its parents. Representing concrete qualities and constraints of this form
is necessary in almost all applications of description logics, such as reasoning about the
semantic web [19] and about conceptual database models [114]. For this reason, even
early DL systems such as meson [68] and Classic [44] addressed the issue of representing
concrete qualities. However, these early approaches were of a rather ad hoc nature.
The first approach that was fully (and formally) integrated with a description logic was
presented by Baader and Hanschke [14], who proposed to extend the description logic
ALC with so-called concrete domains.

Definitions

A concrete domain D is a pair (∆D, ΦD) consisting of a non-empty set ∆D and a collection
ΦD of predicates names such that each predicate P ∈ ΦD is equipped with an arity n
and a fixed extension PD ⊆ (∆D)n. Slightly abusing notation, we will sometimes refer to
the set ∆D as the concrete domain. In contrast, the domain ∆I of interpretations I will
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be called the abstract domain. For many application areas, the most interesting concrete
domains are numerical ones. A typical numerical concrete domain is Q = (Q, ΦQ), where
Q denotes the rational numbers, and ΦQ is comprised of the following predicates:

• unary predicates Pq for each P ∈ {<,≤, =, 6=,≥, >} and each q ∈ Q with (Pq)
Q =

{q′ ∈ Q | q′ P q};

• binary predicates <,≤, =, 6=,≥, > with the obvious extensions;

• a ternary predicate + with (+)Q = {(q, q′, q′′) ∈ Q3 | q + q′ = q′′}.

By integrating a concrete domain D into ALC, we obtain the basic description logic
with concrete domains ALC(D). More precisely, ALC(D) is obtained from ALC by
augmenting it with

• abstract features : a new sort of roles that is interpreted as a partial function from
∆I to ∆I ; abstract features can be used inside value restrictions and existential
restrictions;

• concrete features : a new sort of roles that is interpreted as a partial function from
the abstract domain ∆I into the concrete domain ∆D; concrete features can not
be used inside value restrictions and existential restrictions;

• a new concept constructor P (u1, . . . , un), where P ∈ ΦD is a predicate of arity n,
and each ui is an expression f1 ◦ · · ·◦fk ◦g with f1, . . . , fk (k ≥ 0) abstract features
and g a concrete feature. In the following, such expressions will be called concrete
paths. The semantics of the new constructor is

P (u1, . . . , un)I := {d ∈ ∆I | ∃x1, . . . , xn ∈ ∆D :uI
i (d) = xi for 1 ≤ i ≤ n

and (x1, . . . , xn) ∈ PD},

where the interpretation uI of a concrete path u = f1 ◦ · · · ◦ fk ◦ g is defined as the
partial function that maps d ∈ ∆I to gI(fI

k · · · (fI
1 (d)) · · · ).

Using the concrete domain Q, the teenagers mentioned above can now be defined as

Teenager ≡ Human ⊓ >9(age) ⊓ <20(age)

where age is a concrete feature. Similarly, the constraint saying that the age of children
is smaller than the age of their parents can be formulated as

⊤ ⊑ <(age, mother ◦ age) ⊓ <(age, father ◦ age),

where mother and father are abstract features.
There is a slight difference between the logic ALC(D) as defined here and the original

version introduced in [14]: Baader and Hanschke’s variant uses only a single type of
feature whose interpretation is a partial function from ∆I to ∆I ∪ ∆D. Thus, this type
of feature combines our abstract and concrete features into one sort. In the literature,
both versions of ALC(D) are considered. All results discussed in this section hold for both
versions. Also note that the assumption that ALC is extended with only one concrete
domain can be made without loss of generality, as it is shown in [14] that multiple
concrete domains can be combined into a single one. In the world of modal logic, the
closest relatives to DLs with concrete domains are linear temporal logics with constraints,
see for example [33, 60].
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Basic Results

When considering a description logic that is equipped with concrete domains, it is most
desirable to obtain decidability results and complexity bounds that do not depend on
a particular concrete domain, but rather apply to a class of concrete domains that is
as large as possible. The first (decidability) result in this spirit was given by Baader
and Hanschke in their original paper. Their result concerns the satisfiability of ALC(D)
concept descriptions, where the concrete domain D is only required to satisfy some weak
conditions. These conditions are derived from the fact that any satisfiability algorithm
not committing itself to a particular concrete domain must call some concrete domain
reasoner as a subprocedure via a well-defined interface. This observation leads to the
notion of admissibility.

Let D be a concrete domain and V a countably infinite set of variables. A D-
conjunction is a predicate conjunction of the form

c =
∧

i<k

Pi(x
(i)
0 , . . . , x(i)

ni
)

where Pi ∈ ΦD is an ni-ary predicate for each i < k and the x
(i)
j are variables from V.

A D-conjunction c is satisfiable iff there exists a function δ mapping the variables in c

to elements of ∆D such that (δ(x
(i)
0 ), . . . , δ(x

(i)
ni )) ∈ PD

i for each i < k. We say that the
concrete domain D is admissible iff

1. its set of predicates is closed under negation24 and contains a name ⊤D for ∆D,
and

2. the satisfiability of D-conjunctions is decidable.

We refer to the satisfiability of D-conjunctions as D-satisfiability. Property 1 of ad-
missibility has to be satisfied since ALC(D) provides for negation: for example, the
concept description C := =(g1, g1)) ⊓ =(g2, g2) ⊓ ¬<(g1, g2) is such that d ∈ CI implies
gI1 (d) ≥ gI2 (d) without explicitly using the “≥” predicate,25 and such information must
be conveyed to the concrete domain reasoner. Note that the concrete domain Q pre-
sented above can easily be extended to satisfy Property 1 of admissibility: simply add
predicates ⊤Q, ⊥Q, and + (i.e., the negation of “+”) with the obvious extensions. Let
Qa denote the extended version of Q. By using a reduction to linear programming, it is
straightforward to show that Qa-satisfiability is decidable in polynomial time [115], and
thus Qa is admissible.

The basic decidability result for ALC(D) given by Baader and Hanschke states that
satisfiability (and thus also subsumption) of ALC(D)-concept descriptions is decidable if
D is admissible [14]. The complexity of this problem has been analyzed by Lutz [113],
who proved PSpace-completeness under the assumption that D is admissible and D-
satisfiability is in PSpace. Thus if D-satisfiability is in PSpace, then adding concrete
domains to ALC does not increase the complexity of reasoning. Since Qa-satisfiability is
a polynomial time problem, we obtain PSpace-completeness for the instance ALC(Qa)
of ALC(D). A discussion of the complexity of D-satisfiability for a variety of numerical,
temporal, and spatial concrete domains can be found in [115, 112].

24i.e., for each P ∈ ΦD of arity n, we find a P ∈ ΦD with P
D

= (∆D)n \ PD.
25The first two conjuncts are needed to ensure that gI

1
(d) and gI

2
(d) are actually defined.
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When TBoxes are admitted, the complexity of reasoning increases drastically. We first
consider acyclic TBoxes. As discussed in Section 2.2, satisfiability and subsumption w.r.t.
acyclic TBoxes can be reduced to satisfiability w.r.t. the empty TBox using expansion.
Thus, we obtain decidability of ALC(D) reasoning w.r.t. acyclic TBoxes if D is admissible.
Since expansion is worst-case exponential, we also obtain an ExpSpace upper bound if
D-satisfiability is in PSpace. In the case of ALC without concrete domains, this upper
bound can be improved to a PSpace one. Quite surprisingly, we can only push down
the ExpSpace upper bound to a NExpTime one in the case of ALC(D): as proved
in [117], there exists a concrete domain D such that D-satisfiability is in PTime and
satisfiability in ALC(D) w.r.t. acyclic TBoxes is NExpTime-hard. A matching upper
bound states that satisfiability in ALC(D) w.r.t. acyclic TBoxes is in NExpTime if D
is admissible and D-satisfiability is in NP [117]. For subsumption, this yields analogous
co-NExpTime bounds.

The jump in complexity from PSpace-complete to NExpTime-complete that is in-
duced by adding acyclic TBoxes to ALC(D) is due to the fact that this addition increases
the succinctness of ALC(D) (but not the expressivity). The NExpTime lower bound has
been proved by reduction of a NExpTime-complete variant of the Post Correspondence
Problem (PCP). As we cannot describe the reduction in full detail here, we sketch only
how it makes use of the succinctness of acyclic TBoxes. The key observation is that it
is possible to devise an acyclic TBox of size O(k) that enforces models (of the concept
name L0) to contain a binary tree of depth k such that left successors are reachable via
the abstract feature ℓ and right successors are reachable via the abstract feature r:

L0 ≡ ∃ℓ.L1 ⊓ ∃r.L1, . . . , Lk−1 ≡ ∃ℓ.Lk ⊓ ∃r.Lk.

Without TBoxes, such a tree can only be enforced with a concept of length exponential in
k. For the reduction, we add concept definitions expressing that the (exponentially many)
leaves of the tree are connected via a chain of concrete domain predicates. For example,
if we augment the above TBox with the following concept definitions and consider models
of the conjunction L0 ⊓ C0, then we enforce that each leaf has a smaller number stored
in the concrete feature g than all leaves that are to the right of it:

C0 ≡ <(ℓrk−1g, rℓk−1g) ⊓ ∀ℓ.C1 ⊓ ∀r.C1,
...

Ck−2 ≡ <(ℓrg, rℓg) ⊓ ∀ℓ.Ck−1 ⊓ ∀r.Ck−1,
Ck−1 ≡ <(ℓg, rg).

Intuitively, the exponentially long chain of concrete domain predicates connecting the
leaves can now be used to simulate the exponentially time-bounded computation of a
Turing machine, or to talk about the concatenation of words in a PCP.

We now consider reasoning in ALC(D) with respect to GCIs, starting with a closely
related result: let ALC+(D) be the extension of ALC(D) with a transitive closure oper-
ator on roles and abstract features. Baader and Hanschke [16] prove that reasoning in
ALC+(R) w.r.t. the empty TBox is undecidable, where R is the concrete domain of real
numbers with predicates based on Tarski algebra [149]. Their proof can easily be adapted
to reasoning in ALC(R) w.r.t. GCIs, which is thus also undecidable. This adaptation is
performed in [117], where a more general result is obtained: satisfiability (and thus also
subsumption) in ALC(D) w.r.t. GCIs is undecidable if the concrete domain D satisfies
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N ⊆ ∆D, and ΦD provides for a unary predicate for equality with 0, a binary equality
predicate, and a binary predicate for incrementation. Thus, reasoning in ALC(Q) w.r.t.
GCIs is undecidable since, in Q, incrementation can be expressed using the predicates
“=1” and “+”. There are two ways for overcoming this rather disappointing result: ei-
ther use a less powerful concrete domain constructor or very carefully choose the concrete
domain.

The first approach was adopted, among others, by Möller et al. [80] and by Horrocks
and Sattler [95, 130]. The imposed restriction on the concrete domain constructor usu-
ally is to allow only concrete features inside the concrete domain constructor instead of
concrete paths of arbitrary length. In the following, the variant of ALC(D) obtained by
this restriction will be called path-free. A particular form of path-freeness is to admit only
unary predicates as proposed in [95]: in this case, reasoning in ALC(D) can be reduced
to reasoning in path-free ALC(D) by replacing each concept description P (f1◦· · ·◦fk ◦g)
with the equivalent path-free one ∃f1.∃f2. · · · .∃fk.P (g). In [78] and [130], it is shown
that reasoning in SHN (D) and SHOQ(D), the extensions of two expressive fragments
of SHOIQ by concrete domains, is decidable w.r.t. GCIs if path-freeness is assumed and
the concrete domain D is admissible. A more general result has been obtained in Section
5.3 of [27], where it is shown that any description logic L such that (i) satisfiability in
L w.r.t. GCIs is decidable and (ii) L’s class of interpretations is closed under disjoint
unions (see [27] for details) can be extended with the path-free variant of the concrete
domain constructor without losing decidability—provided that the concrete domain is
admissible. Indeed, the “harmlessness” of the path-free concrete domain constructor is
not very surprising since dropping concrete paths deprives concrete domains of most of
their expressive power. For this reason, the complexity of reasoning w.r.t. GCIs in a
DL incorporating path-free concrete domains is often not harder than the corresponding
problem without concrete domains (if it dominates the complexity of D-satisfiability).
For example, in Section 2.4.1 of [112], it is shown that satisfiability in path-free ALC(D)
w.r.t. GCIs is ExpTime-complete if D is admissible and D-satisfiability is in ExpTime.

The second approach to overcome undecidability of ALC(D) with GCIs is to keep the
original version of the concrete domain constructor and identify concrete domains that
do not destroy decidability of reasoning if combined with GCIs. The first positive result
following this route was established in [116], where a concrete domain C (for comparison)
is considered that is based on the rational numbers Q = ∆C, and provides for the binary
predicates <,≤, =, 6=,≥, and >. It is shown that satisfiability (and thus also subsump-
tion) in ALC(C) w.r.t. GCIs is ExpTime-complete, and that an analogous result holds
for an interval-based temporal concrete domain. In [111], these results are further im-
proved: first, the concrete domain C is extended to C+, which additionally admits unary
predicates =q for each q ∈ Q; and second, the description logic is extended from ALC(D)
to SHIQ(D), i.e. SHOIQ without nominals, but with the concrete domain C+. For this
extended logic, an ExpTime result analogous to the one stated above is established. A
more general result is proved in [120], where a property of concrete domains is identified
that is sufficient for decidability of ALC(D) with GCIs: a concrete domain D is called
ω-admissible if it satisfies all of the following:

• D has only binary predicates;

• D has compactness: an infinite D-conjunction is satisfiable if and only if every finite
sub-conjunction is satisfiable;
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• D has the patchwork property, which is defined as follows. A D-conjunction c is
complete iff, for all variables x, y occurring in c, c contains exactly one conjunct
P (x, y) and exactly one conjunct P (y, x). Then, D has the patchwork property
if the union of two satisfiable and complete D-conjunctions that agree w.r.t. the
conjuncts P (x, y) and P (y, x) w.r.t. all shared variables x, y is satisfiable.

The concrete domain C and the temporal concrete domain based on time intervals con-
sidered in [116] are ω-admissible. Additionally, it is shown in [120] that a spatial concrete
domain based on the topological RCC8 relations is also ω-admissible, and therefore the
corresponding incarnation of ALC(D) is decidable with GCIs. The result in [120] for DLs
with ω-admissible concrete domains is established using a tableau algorithm and does
not yield tight upper complexity bounds.

Roles in the Concrete Domain Constructor

The reader may wonder why the concrete domain constructor is introduced along with
abstract features, instead of admitting normal roles in concrete paths. Indeed, this
variant of concrete domains has also been considered by Hanschke [82]: a concrete role
path is an expression r1 ◦ · · · ◦ rk ◦ g with r1, . . . , rk roles and g a concrete feature. Then
we may extend ALC with the concept constructors ∀R1, . . . , Rk.P and ∃R1, . . . , Rk.P ,
where R1, . . . , Rk are concrete role paths and P ∈ ΦD is a predicate of arity k. The
semantics of these constructors is as follows:

(∀R1, . . . , Rk.P )I := {d ∈ ∆I | ∀x1, . . . , xk ∈ ∆D :
(d, xi) ∈ RI

i for 1 ≤ i ≤ k implies (x1, . . . , xk) ∈ PD}
(∃R1, . . . , Rk.P )I := {d ∈ ∆I | ∃x1, . . . , xk ∈ ∆D :

(d, xi) ∈ RI
i for 1 ≤ i ≤ k and (x1, . . . , xk) ∈ PD}

where the interpretation RI of concrete role paths R is defined in the obvious way
through relational composition.26 The resulting DL is called ALCP(D). Reasoning
with ALCP(D) concept descriptions has been proved to be decidable in [82]. When
investigating the complexity of ALCP(D), it becomes clear that the restriction to abstract
features inside the concrete domain constructor has computational advantages: it is
shown in [117] that there exists a concrete domain D such that D-satisfiability is in
PTime and satisfiability of ALCP(D) concept descriptions is NExpTime-hard. Again, a
matching upper bound is obtained for the case where D-satisfiability is in NP. This should
be contrasted with the PSpace-completeness of satisfiability of concept descriptions in
ALC(D).

We have seen that both the generalized concrete domain constructor and acyclic
TBoxes are seemingly moderate extension of ALC(D) that make reasoning considerably
harder. Other such extensions include inverse roles, role conjunction, nominals, and a
concrete domain role constructor [117, 118]. Thus, the PSpace upper bound of ALC(D)
is not robust w.r.t. extensions of the language.

Uniqueness Constraints and Functional Dependencies

Uniqueness constraints (sometimes also called identification constraints and keys) and
functional dependencies play an important role in the database area, and are also useful

26In ALC(D) with only functional roles inside the concrete domain constructor, the universal version
of this constructor can be defined in terms of the existential one (see e.g. [113]).
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in connection with concrete domains [118, 119].27 Say, for example, that there exists a
concrete feature socnum associating humans with their social security number. Then,
if a human is American, this person should be uniquely identified by this number: no
other instance of the concept name American should have the same value of the concrete
feature socnum. This corresponds to a uniqueness constraint. As another example, we
may want to enforce that all books having the same ISBN number share the same title.
This is a functional dependency, i.e. the value of the ISBN number determines the title
in a functional way. It is not a uniqueness constraint since different books may have the
same ISBN number (say, two different copies of the “Handbook of Modal Logic”).

In the following, we concentrate on uniqueness constraints. A key box is a finite set
of uniqueness constraints (u1, . . . , un keyfor C), where u1, . . . , un are concrete paths and
C is a concept description. An interpretation I satisfies (u1, . . . , un keyfor C) if, for all
d, e ∈ CI ,

uI
i (d) = uI

i (e) for 1 ≤ i ≤ n implies d = e,

and it is a model of a key box K if it satisfies all uniqueness constraints in K. In the
presence of key boxes, we are interested in the satisfiability of a concept description w.r.t.
a TBox and a key box, i.e. in joint models of all three components (and similarly for
subsumption).

It is interesting to note that there is a close relationship between nominals and key
boxes. For example, if used together with the uniqueness constraint (g keyfor ⊤), the
ALC(Q) concept description ∃g.=q behaves similar to a nominal for each q ∈ Q: it is
interpreted by a set of cardinality at most one. Key boxes are strong enough to render
reasoning in ALC(D) undecidable [118]: satisfiability of ALC(D) concept descriptions
w.r.t. key boxes is undecidable (even without TBoxes) if the concrete domain D satisfies
N ⊆ ∆D and ΦD provides a unary predicate for equality with 0, a binary equality
predicate, and a binary predicate for incrementation. Note that this result is similar to
the undecidability of satisfiability in ALC(D) w.r.t. GCIs.

Decidability can be regained by allowing only Boolean combinations of concept names
inside uniqueness constraints. Key boxes satisfying this property are called Boolean.
Even w.r.t. Boolean key boxes, reasoning is much harder than reasoning without key
boxes: there exists a concrete domain D such that D-satisfiability is in PTime and
satisfiability of ALC(D) concept descriptions w.r.t. Boolean key boxes is NExpTime-
hard [118]. This high complexity cannot even be reduced if paths are restricted to length
one inside ALC(D) concept descriptions and key boxes (path-freeness). The matching
upper bound relies on a modified notion of admissibility, called key-admissibility. Roughly
spoken, a concrete domain is key-admissible if it is admissible and provides for a binary
equality predicate. The original definition given in [118] is slightly more general, but
too complex to be repeated here. In [118] it is shown that satisfiability of ALC(D)
concept descriptions w.r.t. Boolean key boxes is in NExpTime if D is key-admissible
and D-satisfiability is in NP. In the same work, also a more powerful DL with concrete
domains, SHOQ(D), is extended with key boxes, and a decidability result for the path-
free case is established (where D is required to be key-admissible, but key boxes are not
expected to be Boolean).

In the case of functional dependencies, quite similar results can be established. We
refer to [119] for more details.

27They can also be used in description logics without concrete domains, c.f. [41, 49, 103, 151].
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Aggregation

Aggregation is a useful mechanism available in many expressive conceptual modelling
formalisms such as database schema languages and query languages. The use of aggre-
gation in the context of concrete domains has been proposed in [31]. As an example,
consider the following description of a process and its subprocesses:

Process ⊓ >0(duration) ⊓ ∀subproc.(Process ⊓ >0(duration)).

The aggregation function “sum” is needed if we want to express that the duration of the
mother process is identical to the sum of the durations of its subprocesses (of which there
may be arbitrarily many).

A concrete domain with aggregation is a concrete domain that, additionally, provides
for a set of aggregation functions agg(D), where each Γ ∈ agg(D) is associated with a
partial function ΓD from the set of finite multisets over ∆D into ∆D. To distinguish
concrete domains with aggregation from those without, we denote the former with Σ.
Typical aggregation functions are min, max, sum, count, and average. The set of ALC(Σ)
concept descriptions is now defined in the same way as ALC(D) concept descriptions,
except that aggregated features may be be used in place of concrete features, where an
aggregated feature is an expression Γ(r ◦ g) with r a role, g a concrete feature, and Γ
an aggregation function from Σ. The semantics of aggregated features is defined via
multisets: for each interpretation I and each d ∈ ∆I such that the set {e | (d, e) ∈ rI}
is finite, we use M r◦g

d to denote the multiset that, for each z ∈ ∆D, contains z exactly
|{e | (d, e) ∈ rI and gI(e) = z}| times. The semantics of aggregated features is now
defined as follows:

(Γ(r ◦ g))I(d) :=

{
ΓΣ(M r◦g

d ) if {e | (d, e) ∈ rI} is finite

undefined otherwise.

Returning to the initial example, we can now express the fact that the duration of the
mother process is identical to the sum of the durations of all its subprocesses by writing
=(duration, sum(subproc◦duration)). The investigations performed by Baader and Sattler
[31] reveal that the expressive power provided by aggregation functions is hard to tame in
order to obtain a decidable formalism: for concrete domains with aggregation Σ where (i)
N ⊆ ∆Σ, (ii) ΦΣ contains a (unary) predicate for equality with 1 and a (binary) equality
predicate, and (iii) agg(Σ) contains min, max, and sum, satisfiability of ALC(Σ) concept
descriptions is undecidable. This lower bound applies even if we admit only conjunction,
the ∀r.C constructor, and the concrete domain constructor, but drop all other concept
constructors. Rather strong measures have to be taken to regain decidability: either, we
have to drop the ∀r.C constructor from the language, thus obtaining a sub-Boolean DL,
or we have to confine ourselves to “well-behaved” aggregation functions such as min and
max of which there exist only very few. More details can be found in [31].

6.2 Role Value Maps

Role value maps are a family of concept constructors that were available in the first
description logic system, KL-ONE [45], and have since then been considered in several
variations. The original and most powerful variant of role value maps has later been
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found to cause undecidability, even if used with quite weak (sub-Boolean) description
logics such as the one available in the KL-ONE system.

To define role value maps, we must introduce the notion of a path, i.e., a composition
r1 ◦ · · · ◦ rn of role names. If R and S are paths, then the expression (R ⊆ S) is a
containment role value map and (R = S) is an equality role value map. To extend ALC
with role value maps, we admit them as additional concept constructors. The resulting
description logic is denoted ALCrvm. The semantics of the additional concept constructors
is as follows:

(R ⊆ S)I = {d ∈ ∆I | ∀e.(d, e) ∈ RI implies (d, e) ∈ SI},
(R = S)I = {e ∈ ∆I | ∀e.(d, e) ∈ RI iff (d, e) ∈ SI},

where the interpretation RI of paths R is defined in the obvious way through relational
composition. For example, the concept description Person ⊓ (child ◦ friend ⊆ knows)
describes persons knowing all the friends of their children.

Though there appears to be no direct modal counterpart to role value maps as a
concept constructor, there is a connection to modal reduction principles as discussed in
Chapter 7. Modal reduction principles (MRPs) are axioms of the form Mp → Np, where
M and N are sequences of modal operators �i and ♦j [152]. We call an MRP box-only
if M and N are non-empty sequences of box operators. There is a close correspondence
between normal modal logics axiomatized by box-only MRPs and ALCrvm: it follows
from Sahlqvist’s completeness theorem that normal modal logics axiomatized by a box-
only MRP ϕ = �i1 · · ·�in

p → �j1 · · ·�jmp are characterized by the class of frames
that validates ϕ; moreover, it is a routine task to show that the same class of frames is
determined by all models of the GCI ⊤ ⊑ (ri1 ◦ · · · ◦ rin

⊆ sj1 ◦ · · · ◦ sjm
). There is also a

close connection between role value maps and so-called grammar logics [58], which will
be discussed in more detail below.

Undecidability

Reasoning in the first description logic system KL-ONE was initially believed to be in
PTime. However, in 1989 Schmidt-Schauß was able to show that it is undecidable,
identifying role value maps as the main culprit [141]. More precisely, Schmidt-Schauß
proves that, even in the description logic FLrvm

0 providing only for the constructors
conjunction, value restriction, and role value maps, subsumption w.r.t. the empty TBox
is undecidable.

The proof of Schmidt-Schauß uses a reduction of the word problem for groups. We
present here a slight variation that reduces the word problem for semigroups [36].28 For
simplicity, we first show undecidability of FLrvm

0 w.r.t. GCIs, and then eliminate the GCIs
from the reduction. A finitely presented semigroup S is given in the form of defining
identities s1 = t1, . . . , sm = tm, where the si and ti are words over some finite alphabet
Σ. Then the word problem is to decide, given S and words s and t, whether s = t holds
in S, i.e., whether the identity s = t can be derived from the defining identities of S and
the usual axioms for semigroups. For the reduction, we view the symbols r1, . . . , rn of Σ

28The reduction of Schmidt-Schauß yields a slightly stronger result since it applies also to the case
where we have only equality role value maps, but no containment role value maps.
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as role names and construct a set of GCIs TS and a concept description Ds,t as follows:

TS := {⊤ ⊑ (s1 = t1) ⊓ · · · ⊓ (sm = tm)}
Ds,t := (s = t)

Then it is not hard to show that ⊤ ⊑TS
Ds,t if and only if s = t can be derived from

the defining identities of S. This yields undecidability of subsumption in FLrvm
0 w.r.t.

GCIs. To get rid of GCIs, we can internalize them (c.f. Section 3.1). More precisely, the
subsumption ⊤ ⊑TS

Ds,t holds if and only if CS ⊑ Ds,t, where CS is defines as follows:

CS := ⊓
r∈Σ

(
(r ⊆ u) ⊓ (u ◦ u ⊆ u)

)
⊓ ∀u.((s1 = t1) ⊓ · · · ⊓ (sm = tm))

where u is a role name that does not occur in Σ. It follows that subsumption in FLrvm
0

is undecidable also without GCIs.
There is a related result in modal logic that should be mentioned: Shehtman proved

in 1982 that there exists a set Γ of box-only modal reduction principles such that, in the
normal modal logic axiomatized by Γ, satisfiability is undecidable [146]. By what was
said above about the connection between MRPs and role value maps, and since GCIs
can be internalized in ALCrvm similar to what was done above in the case of FLrvm

0 , it is
obvious that this gives a proof of undecidability of reasoning in ALCrvm without TBoxes
and GCIs.

To avoid undecidability, two approaches have been considered: first, role value maps
have been weakened into feature agreements and feature disagreements, which have a
similar semantics but are restricted to paths comprised only of functional roles; and
second, the original role value maps have been used for paths of a syntactically restricted
form. In the next section, we describe the first approach. Syntactic restrictions on paths
are discussed subsequently in Section 6.2.

Feature Agreements

A feature path is a composition f1◦· · ·◦fn of abstract features as introduced in Section 6.1.
If u and v are feature paths, then the expression (u = v) is a feature agreement, and
(u 6= v) is a feature disagreement. The description logic ALCF is obtained from ALCrvm

by replacing role value maps with feature (dis)agreements. The semantics of the new
concept constructors is:

(u = v)I = {d ∈ ∆I | ∃e.(d, e) ∈ uI and (d, e) ∈ vI}
(u 6= v)I = {d ∈ ∆I | ∃e, e′.(d, e) ∈ uI , (d, e′) ∈ vI , and e 6= e′}

In the literature, feature agreements are sometimes called the same-as constructor, e.g.
in their incarnation in the Classic system [44]. The restriction of role value maps to
feature paths has an impairing effect on the usefulness of feature (dis)agreements. For
example, the concept description

Person ⊓ (child ◦ friend ⊆ knows)

cannot be expressed in ALCF since child and knows should not be forced to be functional.
However, feature (dis)agreements can still be usefully employed, as illustrated by the
following concept definition:

ParentsMarried ≡ (mother ◦ married-to = father)
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The main advantage of feature agreements over role value maps lies in their computa-
tional properties. Indeed, Hollunder and Nutt [89] show that satisfiability (and thus also
subsumption) of ALCF concept descriptions is decidable and PSpace-complete (see also
[113]).

When further expressive means are added to ALCF , the computational complexity
often gets dramatically worse. In this respect, feature (dis)agreements resemble con-
crete domains: the PSpace upper bound of the basic description logic with feature
(dis)agreements ALCF is rather fragile w.r.t. extensions of the language. An impor-
tant example for this behaviour are TBoxes. As shown in [110], satisfiability in ALCF
w.r.t. acyclic TBoxes is NExpTime-complete. The result is established by reduction
of a NExpTime-complete variant of the domino problem, and exploits the succinctness
gained by introducing acyclic TBoxes similar to what is discussed in Section 6.1 in the
context of concrete domains. When cyclic TBoxes or GCIs are admitted, satisfiability and
subsumption in ALCF even become undecidable [11], which can be shown by a reduction
of the word problem for groups. Other extensions of ALCF that make reasoning harder
include intersection of roles, inverse roles, and transitive closure of functional roles. In
the first case, satisfiability of concept descriptions becomes NExpTime-complete, while
it is undecidable in the latter two cases [11, 112].

Restricted Paths in Role Value Maps

In this section, we consider syntactic restrictions on paths inside role value maps. There
are some quite drastic restrictions that are easily seen to regain decidability of reasoning
in ALCrvm:

• Only allow paths of length one. In this case, reasoning in ALCrvm can be reduced
to reasoning in ALC¬,∩,∪, the extension of ALC with Boolean role constructors:
simply replace (r = s) with (r ⊆ s) ⊓ (s ⊆ r), and (r ⊆ s) with ∀(r ∩ ¬s).⊥. Since
satisfiability and subsumption in ALC¬,∩,∪ w.r.t. GCIs is known to be decidable
[122, 121], so is the restricted version of ALCrvm. Note that there is also a close
connection to role hierarchies: a role inclusion r ⊑ s as used in a role hierarchy can
be simulated using the concept equation ⊤ ≡ (r ⊆ s) in ALCrvm.

• Only admit role value maps of the form (r ◦ r ⊆ r). Clearly, we obtain a localized
variant of transitive roles. It is straightforward to adapt the standard techniques
for dealing with (globally) transitive roles [135, 94] to show that, in this variant
of ALCrvm, satisfiability and subsumption w.r.t. GCIs are decidable. It appears
to be an open problem whether admitting single-role role value maps of the form
(rn ⊆ rm), with n, m ∈ N and rn denoting the n-fold composition of r, yields a
decidable variant of ALCrvm.

More powerful decidable fragments of ALCrvm can be obtained by restricting paths in a
less strict way. This is done by Horrocks and Sattler [96] in their work on complex role
inclusion axioms (RIAs), and in the closely related area of grammar logics [58, 34, 59].
In both cases, role value maps are not considered to be concept constructors, but rather
they are global, similar to the role inclusions in a role hierarchy, i.e., the role value map
must hold for every element of the interpretation domain. In the following, we consider
ALC concept descriptions and assume the presence of a role box, i.e. a finite set of role
value maps (R ⊆ S). An interpretation I is a model of a role box R if it satisfies RI ⊆ SI
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for all (R ⊆ S) ∈ R. In this setting, we are interested in satisfiability and subsumption
w.r.t. TBoxes/GCIs and role boxes, i.e., in common models of all three inputs.

Translated to this terminology, the idea of grammar logic is to view a role value map
(r1 ◦ · · · ◦ rk ⊆ s1 ◦ · · · ◦ sℓ) as a production rule s1 · · · sℓ → r1 · · · rk, and a role box
as a formal grammar [58]. Here, the mapping from role names to terminal and non-
terminal symbols is arbitrary, but fixed. From the description logic perspective, the
most relevant results from grammar logic are the following. First, Demri shows that
satisfiability and subsumption of ALC concept descriptions is ExpTime-complete if only
role boxes corresponding to left-linear or right-linear grammars are admitted [59]. In role
boxes of this form, we can express properties such as “the enemies of my friends are my
enemies”:

(friend ◦ enemy ⊆ enemy).

Note that this result captures the case where paths are required to be of length at most
one, but not the case (r ◦ r ⊆ r). Second, Baldoni et al. show that satisfiability of ALC
concept descriptions is undecidable if role boxes corresponding to context-free grammars
are admitted [34]. This result was later strengthened by Demri to linear grammars [59].

Horrocks and Sattler consider the extension of SHIQ with global role value maps of
the form (r ⊆ s), (r ◦ s ⊆ r), and (s ◦ r ⊆ r), where r, s is a role name or the inverse of a
role name [96]. For example, the statement about enemies of friends from above can be
strengthened by additionally saying that the friends of my enemies are my enemies:

(friend ◦ enemy ⊆ enemy)
(enemy ◦ friend ⊆ enemy).

Note that this role box does not correspond to a left-linear or right-linear grammar.
Role value maps of this form are of particular interest since they allow to describe the
propagation of properties, e.g. along part-whole relations: “the owner of a whole is the
owner of all parts” can be written as (part-of ◦ owner ⊆ owner). Let us call Horrocks and
Sattler’s variant of role value maps HS-RVMs. Horrocks and Sattler obtain the following
results: first, reasoning in the extension of SHIQ with HS-RVMs is undecidable in the
general case. An inspection of the proof shows that undecidability already arises in ALC
extended with inverse roles, number restrictions of the form (6 1 r), GCIs, and HS-
RVMs. Decidability of plain ALC extended with HS-RVMs (and possibly GCIs) appears
to be an open problem. Second, satisfiability and subsumption in SHIQ w.r.t. GCIs
and role boxes becomes decidable if we admit only HS-RVMs and acyclic role boxes.
Acyclicity of role boxes is defined similar to the TBox case: a role r directly affects a role
s if r 6= s and there is an HS-RVM with (i) r appearing on the left-hand side (possibly
inside a composition) and s appearing on the right-hand side, or (ii) the inverse of r
appearing on the left-hand side and the inverse of s appearing on the right-hand side.
Affects is the transitive closure of “directly affects”. Then a role box is acyclic if no role
affects itself. Observe that the above example about friends and enemies is acyclic.

There are several other restrictions of paths that can be considered. An interesting
example is to admit only role value maps (R ⊆ S) with R and S paths of equal length.
This restriction has been investigated by Molitor [126], but the decidability status of
ALCrvm under this restriction is, as of now, unknown.
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