
PSpace Automata for Description Logics

Jan Hladik∗

Rafael Peñaloza†

Abstract

Tree automata are often used for satisfiability testing in the area of
description logics, which usually yields ExpTime complexity results. We
examine conditions under which this result can be improved, and we de-
fine two classes of automata, called segmentable and weakly-segmentable,
for which emptiness can be decided using space logarithmic in the size of
the automaton (and thus polynomial in the size of the input). The use-
fulness of segmentable automata is demonstrated by reproving the known
PSpace result for satisfiability of ALC concepts with respect to acyclic
TBoxes.

1 Introduction

Tableau- and automata-based algorithms are two mechanisms which are widely
used for testing satisfiability in description logics (DLs). Aside from consid-
erations regarding implementation (most of the efficient implementations are
tableau-based) and elegance (tableaus for expressive logics require a blocking
condition to ensure termination), there is also a difference between the complex-
ity results which can be obtained “naturally”, i.e. without using techniques with
the sole purpose of remaining in a specific complexity class. With tableaus, the
natural complexity class is usually NExpTime, e.g. for SHIQ [HST00, BS01]
or SHIQ(D) [Lut04], although this result is not optimal in the former case.
With automata, one usually obtains an ExpTime result, e.g. for ALC with
general TBoxes [Sch94].

Previously, we examined which properties of a NExpTime tableau algo-
rithm make sure that the logic is decidable in ExpTime, and we defined a
class of tableau algorithms for which an ExpTime automata algorithm can be
automatically derived [BHLW03]. For ExpTime automata, a frequently used

∗Automata Theory, TU Dresden (jan.hladik@tu-dresden.de)
†Intelligent Systems, Uni Leipzig (rpenalozan@yahoo.com)

method to obtain a lower complexity class is testing emptiness of the language
accepted by the automaton on the fly, i.e. without keeping the entire automaton
in the memory at the same time. Examples for DLs can be found in [HST00]
for SI and in [BN03] for ALCN . Furthermore, the inverse method [Vor01] for
the modal logic K can be regarded as an optimised emptiness test of the cor-
responding automaton [BT01], and also the “bottom up” version of the binary
decision diagram based satisfiability test presented in [PSV02] can be considered
as an on-the-fly emptiness test.

In this paper, our aim is to generalise these results by finding properties of
ExpTime automata algorithms which guarantee that the corresponding logic
can be decided in PSpace, and to develop a framework which can be used to
automatically obtain PSpace results for new logics.

2 Preliminaries

We will first define the automata which in the following will be used to decide
the satisfiability problem for DLs. These automata operate on infinite k-ary
trees, for which the root node is identified by ε and the i-th successor of a node
n is identified by n · i for 1 ≤ i ≤ k. Thus, the set of all nodes is {1, . . . , k}∗,
and in the case of labelled trees, we will refer to the labelling of the node n in
the tree t by t(n).

The following definition of automata does not include an alphabet for la-
belling the tree nodes, because in order to decide the emptiness problem, we are
only interested in the existence of a model and not in the labelling of its nodes.

Definition 1 (Automaton, run, accepted language.) A Büchi automaton
over k-ary trees is a tuple (Q, ∆, I, F), where Q is a finite set of states, ∆ ⊆ Qk+1

is the transition relation, I ⊆ Q is the set of initial states, and F ⊆ Q is the set
of final states.

A looping automaton is a Büchi automaton where all states are accepting,
i.e. F = Q. For simplicity, it will be written (Q, ∆, I).

A run of an automaton A = (Q, ∆, I, F) on a k-ary tree t is a labelled
k-ary tree r such that r(ε) ∈ I and, for all w ∈ {1, . . . , k}∗, it holds that
(r(w), r(w ·1), . . . , r(w ·k)) ∈ ∆. A run r is accepting if every path of r contains
a final state infinitely often.

The language accepted by A, L(A), is the set of all trees t such that there
exists an accepting run of A on t.

For the DL ALC [SS91], it is well-known that looping automata can be
used to decide satisfiability of a concept C: we define a looping automaton
AC = (Q, ∆, I), where the set of states Q consists of (propositionally expanded
and clash-free) sets of subformulas of C, and the transition relation ∆ ensures

that the successor states of a state q contain those concepts which are required
by the universal and existential concepts in q. Since #Q, the cardinality of Q, is
exponential in the size of C and T (because it is bounded by the number of sets
of subformulas of C and T) and the emptiness test is linear [BT01, VW86] in
the cardinality of Q, this yields an ExpTime algorithm. This result is optimal
for ALC with general TBoxes, but not for ALC with acyclic (or empty) TBoxes.

In the following, we will define this algorithm in detail. We assume that
acyclic TBoxes are sets of concept definitions Ai

.
= Ci, for concept names Ai

and concept terms Ci, where there is at most one definition for a concept name
and there is no sequence of concept definitions A1

.
= C1, . . . , An

.
= Cn such

that Ci contains Ai+1 for 1 ≤ i < n and Cn contains A1. In contrast, general
TBoxes can additionally contain general concept inclusion axioms (GCIs) of
the kind Ci v Di for arbitrary concept terms Ci and Di. For the sake of
simplicity, we will assume that all concepts are in negation normal form (NNF),
i.e. negation appears only directly before concept names. All ALC concepts
can be transformed into NNF in linear time using de Morgan’s laws and their
analogues for universal and existential formulas. We will denote the NNF of a
concept C by nnf(C) and nnf(¬C) by vC.

The data structures that will serve as models for ALC concepts are Hin-
tikka trees, a special kind of trees whose nodes are labelled with propositionally
expanded and clash-free sets of ALC concepts.

Definition 2 (Sub-concept, Hintikka set, Hintikka tree.) Let C be an
ALC concept term. The set of sub-concepts of C, sub(C), is the minimal set
S which contains C and has the following properties: if S contains ¬A for a
concept name A, then A ∈ S; if S contains D t E or D u E, then {D,E} ⊆ S;
if S contains ∃r.D or ∀r.D, then D ∈ S.

For a TBox T , sub(C, T) is defined as follows:

sub(C) ∪
⋃

A
.
=D∈T

(A ∪ sub(D) ∪ sub(vD)) ∪
⋃

CvD∈T

sub(vC t D)

A set H ⊆ sub(C, T) is called a Hintikka set for C if the following three
conditions are satisfied: if D u E ∈ H, then {D,E} ⊆ H; if D t E ∈ H, then
{D,E} ∩ H 6= ∅; there is no concept name A with {A,¬A} ⊆ H.

For a TBox T , a Hintikka set S is called T -expanded if for every GCI C v
D ∈ T , it holds that vC tD ∈ S, and for every concept definition A

.
= C ∈ T ,

it holds that if A ∈ S then C ∈ S and if ¬A ∈ S then vC ∈ S. We will refer to
this technique of handling definitions as lazy unfolding because, in contrast to
GCIs, we use the definition only if A or ¬A is explicitly present in a node label.

For a concept term C and TBox T , fix an ordering of the existential concepts
in sub(C, T) and let ϕ : {∃r.D ∈ sub(C, T)} → {1, . . . , k} be the corresponding

ordering function. Then the tuple (S, S1, . . . , Sk) is called C, T -compatible if,
for every existential formula ∃r.D ∈ sub(C, T), it holds that if ∃r.D ∈ S, then
Sϕ(∃r.D) contains D and every concept Ei for which there is a universal formula
∀r.Ei ∈ S.

A k-ary tree t is called a Hintikka tree for C and T if, for every node n ∈
{1, . . . , k}∗, t(n) is a T -expanded Hintikka set and the tuple (t(n), t(n·1), . . . , t(n·
k)) is C, T -compatible.

Note that in a Hintikka tree t, the k-th successor of a node n stands for the
individual satisfying the k-th existential formula D if D ∈ t(n). We can use
Hintikka trees to test the satisfiability in ALC:

Lemma 3 An ALC concept term C is satisfiable w.r.t. a TBox T iff there is a
C, T -compatible Hintikka tree t with C ∈ t(ε).

Proof sketch. The proof is similar to the one presented for ALC¬ in [LS00]
where the “if” direction is shown by defining a model (∆I , ·I) from a Hintikka
tree in the following way:

• ∆I := {n ∈ {1, . . . , k}∗ | n = ε or n = m · ϕ(∃r.D) for some m with
∃r.D ∈ t(m)};

• for a role name r, rI := {(n, n · i) | ∃r.C ∈ t(n) and ϕ(∃r.C) = i};

• for a concept name A, AI := {n | A ∈ t(n)};

• the function ·I is extended to concept terms in the natural way.

For our Hintikka trees, we have to modify the definition of AI for concept
names A in order to deal with TBoxes. For a GCI C v D, it follows immediately
from the definition of T -expanded that a node whose label contains C also
contains D. However, concept definitions need special consideration because due
to the lazy unfolding of A

.
= C, a node label might contain C but not A, thus

we have to modify the definition of AI . To this end, we define a hierarchy ≺ on
concept names in such a way that if a concept name A appears in the definition
of B, then A ≺ B. As the concept definitions are acyclic, this hierarchy is well-
founded. When we define the interpretation of concept names, we start with the
lowest ones in the hierarchy, i.e. the primitive concepts, and define AI := {n ∈
∆I | A ∈ t(n)}. Then we move gradually up in the hierarchy and define, for a
defined concept B

.
= C, BI = {n ∈ ∆I | B ∈ t(n)} ∪ {n ∈ ∆I | n ∈ CI}. This

is well-defined because the interpretation of all concept names appearing in C
has already been defined.

Our Hintikka trees differ from those in [LS00] in that, if an existential formula
∃r.D is not present in a node n, we do not require that n · ϕ(∃r.D) is labelled
with ∅. However, it can still be shown that if a concept term C is contained in

the label of a node n of the Hintikka tree, then n ∈ CI , because in the definition
of the interpretation for the role names, we consider only the successors that will
satisfy the existential restrictions of a node, and pay no attention to any other
possible successors. The universal restrictions are then immediately satisfied by
the definition of C,T -compatible.

The “only-if” direction does not require significant modifications, because if
there is a model for a concept C and a TBox T , the node labels of the Hintikka
tree constructed as in [LS00] can easily be extended to reflect the constraints
imposed by the TBox. n

With this result, we can use automata operating on Hintikka trees to test
for the existence of models. As mentioned before, we can omit the labelling of
the tree, since we are only interested in the existence of a model and all relevant
information to answer this question is kept in the transition relation.

Definition 4 (Automaton AC,T .) For a concept C and a TBox T , let
k be the number of existential formulas in sub(C, T). Then the loop-
ing automaton AC,T = (Q, ∆, I) is defined as follows: Q = {S ⊆
sub(C, T) | S is a T -expanded Hintikka set}; ∆ = {(S, S1, . . . , Sk) |
(S, S1, . . . , Sk) is C, T -compatible}; I = {S ∈ Q | C ∈ S}.

Using AC,T , we can reduce the satisfiability problem for ALC to the (non-)
emptiness problem of L(AC,T). Since these results are well known, they will not
be formally proved.

Theorem 5 The language accepted by the automaton AC,T is empty iff C is
unsatisfiable w.r.t. T .

Corollary 6 Satisfiability of ALC concepts w.r.t. general TBoxes is decidable
in ExpTime.

For general TBoxes, this complexity bound is tight [Spa93], but in the special
case of an empty or acyclic TBoxes, it can be improved to PSpace. Usually, this
is proved using a tableau algorithm, but in the next section we will show how
the special properties of acyclic TBoxes can be used to perform the emptiness
test of the automaton with logarithmic space.

3 Segmentable automata

In this section we will show how the space efficiency for the construction and
the emptiness test of the automaton can be improved under specific conditions.
The idea is to define a hierarchy of states and ensure that the level of the state
decreases with every transition. In Section 4 we will then show how the role
depth of concepts can be used to define this hierarchy.

1: guess an initial state q ∈ I
2: if there is a transition from q then
3: guess a transition (q, q1, . . . , qk) ∈ ∆
4: else
5: return “empty”
6: end if
7: push (SQ, (q1, . . . , qk)); push (SN, 0)
8: while SN is not empty do
9: (q1, . . . , qk) := pop (SQ)

10: n := pop (SN) + 1
11: if n ≤ k then
12: push(SQ,(q1, . . . , qk))
13: push(SN,n)
14: if qn /∈ Q0 then
15: if there is a transition from qn then
16: guess a transition (qn, q

′
1, . . . , q

′
k)

17: else
18: return “empty”
19: end if
20: push(SQ,(q′1, . . . , q

′
k))

21: push(SN,0)
22: end if
23: end if
24: end while
25: return “not empty”

Figure 1: Emptiness test for segmentable automata

Definition 7 (Q0-looping, m-segmentable.) Let A = (Q, ∆, I, F) be a
Büchi automaton over k-ary trees and Q0 ⊆ F . We call A Q0-looping if for every
q ∈ Q0 there exists a set of states {q1, . . . , qk} ⊆ Q0 such that (q, q1, . . . , qk) ∈ ∆.

An automaton A = (Q, ∆, I, F) is called m-segmentable if there exists
a partition Q0, Q1, . . . , Qm of Q such that A is Q0-looping and, for every
(q, q1, . . . , qk) ∈ ∆, it holds that if q ∈ Qn, then qi ∈ Q<n for 1 ≤ i ≤ k,
where Q<n denotes Q0 ∪

⋃n−1
j=1 Qj.

Note that it follows immediately from this definition that for every element
q of Q0 there exists an infinite tree with q as root which is accepted by A. The
hierarchy Qm, . . . , Q0 ensures that Q0 is reached eventually.

Our algorithm performing the emptiness test for m-segmentable Büchi au-
tomata is shown in Figure 1. Essentially, we perform a depth-first traversal of
a run. Since A is m-segmentable, we do not have to go to a depth larger than

�

q5

�

q4
�

q4
�

q0

�

q3
�

q2
�

q2

�

q1
�

q0
	

q1

SQ SN

(q4, q4, q0) 1

(q3, q2, q2) 3

(q1, q0, q1) 1

Figure 2: state of SQ, SN and the associated run, at an iteration of the algorithm

m. Moreover, since the different branches of the tree are independent, we only
have to keep one of them in memory at a time. Note that the construction
of the automaton is interleaved with the emptiness test, so we also never keep
the whole automaton in memory, but only the states which are relevant for the
current branch.

In order to remember the backtracking information for the depth first traver-
sal, we use two data structures: SQ is a stack storing, for every predecessor of
the current node, the transition which led to that node, and thus it contains the
required node labels for the nodes of the current branch and their siblings. SN

is another stack recording the current path by storing, for every level of the tree,
the number of the node on the current path. If we refer to the elements in SN

by SN(1)(the bottom element), . . . , SN(d)(the top element), the next node to be
checked is SN(1) ·SN(2) · . . . ·SN(d)+1 (d is the depth of SN). Thus, SQ ∈ (Qk)∗,
because every transition is a k-ary tuple, and SN ∈ {1, . . . , k}∗.

Figure 2 shows the values stored in each of the stacks SQ and SN at the
beginning of an iteration, and their relation with the traversal of the run. The
circled nodes represent the path followed to reach the node about to be checked.
The values of the elements of the stack are shown next to the depth in the run
to which they correspond. For this reason, the stacks appear backwards, with
their bottom element at the top of the figure, and vice versa.

After starting the algorithm, we first guess an initial transition. If we can
find one, we push the labels of the nodes 1, . . . , k onto SQ and the number 0 onto
SN. Then we enter the while loop. As long as the stacks are not empty, we take
the top elements of both stacks. If n > k in line 11, this indicates that we have
checked all nodes on this level, and we backtrack without pushing anything on
the stacks, which means that we will continue at the next upper level in the next
loop. Otherwise, we store the information that we have to check our next sibling

by pushing the same tuple of states onto SQ and the incremented number n onto
SN. If the current node belongs to Q0 (line 14), we backtrack, which means that
we will continue with the next sibling. Otherwise, we try to guess a transition
from this node, and if we can find one, we push the required node labels for the
children of the current node onto SQ and the value 0 onto SN (line 20), which
means that we will descend to the first child of the current node in the next
loop.

Theorem 8 The emptiness problem of the language accepted by an m-
segmentable Büchi automaton A = (Q, ∆, I, F) over k-ary trees can be decided
by a non-deterministic algorithm using space O(log(#Q) · m · k).

Proof. In order to show soundness, we will prove the claim “if the algorithm
processes a node n or backtracks without descending into n, then there is a run
r in which n is labelled with the same state as in the algorithm” by induction
over the iterations of the while loop. Initially, if the algorithm does not answer
“empty”, there is a transition (q0, q1, . . . , qk) from an initial state, which can
serve as root of the run r, and for which the states 1, . . . , k of r can be labelled
with q1, . . . , qk.

If the algorithm has reached a node n = n0·n1·. . .·n` without failing, it follows
by induction hypothesis that each of the previously visited nodes corresponds
to a node in r. Now there are two possibilities: firstly, if r(n) ∈ Q0, then,
since A is Q0-looping, there exists a k-ary subtree rooted at n all of whose
states are accepting. Otherwise, since the algorithm does not answer “empty”,
there is a transition (r(n), q′1, . . . , q

′
k), and we can use the same transition in the

construction of a run.
In order to show completeness, we will prove the claim “if there exists a run,

the algorithm can reach or skip every node in {1, . . . , k}∗ without failing” by
induction over the structure of the run r. Since there is a run, we can guess
an initial transition, and the nodes of the first level have the same labels in the
algorithm as in r. If we have reached a node n which corresponds to the node
n in r with r(n) = q, there are again two possibilities: if q ∈ Q0, the algorithm
will backtrack and skip over all successor nodes of n. Otherwise, since r is a
run, there exists a transition (q, q′1, . . . , q

′
k), which the algorithm can guess, and

therefore it will not fail.
Regarding memory consumption, observe that the SQ stack contains, for

every level, k states, each of which can be represented using space logarithmic
in the number of states, e.g. by using binary coding. Since A is m-segmentable,
there can be at most m tuples before the current state qn belongs to Q0, thus
the size of SQ is bounded by log(#Q) · m · k. SN stores at most m numbers
between 0 and k, so the algorithm uses space logarithmic in the size of A. n

The condition that an automaton A is m-segmentable is rather strong since it
requires the transition relation to reduce the class with every possible transition,
and thus e.g. the automaton AC,T in Definition 4 cannot easily be proved to
be segmentable even if the TBox is empty. The reason for this is that AC,T

does not require the Hintikka sets of the successor states to use only a lower
quantification depth. However, in order to test emptiness, we only need the
existence of such a transition. This is the idea behind the generalisation in the
following definition.

Definition 9 (Weakly-m-segmentable, reduced.) A Büchi automaton
A = (Q, ∆, I, F) is called weakly-m-segmentable if there exists a partition
Q0, Q1, . . . , Qm of Q such that A is Q0-looping and for every q ∈ Q there exists
a function fq : Q → Q which satisfies the following conditions:

1. if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆, and if q ∈ Qn, then
fq(qi) ∈ Q<n for all 1 ≤ i ≤ k;

2. if (q′, q1, . . . , qk) ∈ ∆, then (fq(q
′), fq(q1), . . . , fq(qk)) ∈ ∆.

If A = (Q, ∆, I, F) is a weakly-m-segmentable automaton, then Ar, the
reduced automaton of A, is defined as follows: Ar = (Q, ∆′, I, F) with ∆′ =
{(q, q1, . . . , qm) ∈ ∆ | if q ∈ Qn then qi ∈ Q<n for 1 ≤ i ≤ k}.

Note that the reduced automaton Ar is m-segmentable by definition. Intu-
itively, condition 1 ensures that that the class decreases for the first transition,
and condition 2 ensures that there are still transitions for all nodes after modi-
fying the node labels according to fq.

We can transfer the complexity result from segmentable to weakly-
segmentable automata:

Theorem 10 Let A = (Q, ∆, I, F) be a weakly-m-segmentable automaton.
Then L(A) is empty iff L(Ar) is empty.

Proof. Since every run of Ar is also a run of A, L(A) can only be empty if
L(Ar) is empty, thus the “only if” direction is obvious. For the “if” direction,
we will show how to transform an accepting run r of A into an accepting run
s of Ar. To do this, we traverse r breadth-first, creating an intermediate run
r̂, which initially is equal to r. At every node n ∈ {1, . . . , k}∗, we replace the
labels of the direct and indirect successors of n with their respective fn values
(see Definition 9). More formally, at node n, we replace r̂(p) with fn(r̂(p)) for
all p ∈ {n · q | q ∈ {1, . . . , k}+}, where for a set S, S+ denotes S∗ \ {ε}. By
definition 9, r̂ is still a run after the replacement, and all direct successors of
n are in a lower class than n (or Q0 if r̂(n) ∈ Q0). Note that the labels of
n’s successors are not modified anymore after n has been processed. We can

therefore define s(n) as the value of r̂(n) after n has been processed. As argued
before, s is a run in which every node is in a lower class than its father node
(or both are in class 0). Consequently, all transitions used in s belong to the
transition relation of Ar. n

Corollary 11 The emptiness problem for weakly-m-segmentable automata is
in NLogSpace.

4 An application to ALC with acyclic TBoxes

In order to apply our framework to ALC with acyclic TBoxes, we will use the
role depth to define the different classes. The following definition of role depth
considers concept definitions:

Definition 12 (Expanded role depth.) For an ALC concept C and an
acyclic TBox T , the expanded role depth rdT (C) is inductively defined as fol-
lows: for a primitive role name A, rdT (A) = 0; for a concept definition
A

.
= C, rdT (A) = rdT (C); rdT (¬A) = rdT (A); rdT (D u E) = rdT (D t E) =

max{rdT (D), rdT (E)}; rdT (∀r.D) = rdT (∃r.D) = rdT (D) + 1. For a set of con-
cepts S, rdT (S) is defined as max{rdT (D) | D ∈ S}.

The set sub<n(C, T) is defined as {D ∈ sub(C, T) | rdT (D) ≤ max{0, n−1}}.

Again, note that rdT is well-defined because T is acyclic.
The intuition behind using the role depth is that, for a node q in a Hintikka

tree, any concept having a higher role depth than q is superfluous in successors
of q and thus the tuple without these formulas is also in the transition relation.

Lemma 13 Let C be an ALC concept, T an acyclic TBox, (S, S1, . . . , Sk)
a C,T -compatible tuple, and n = rdT (S). Then (S, sub<n(C, T) ∩ S1,
. . ., sub<n(C, T) ∩ Sk) is C,T -compatible, and for every m ≥ 0, the tuple
(sub<m(C, T) ∩ S, sub<m(C, T) ∩ S1, . . ., sub<m(C, T) ∩ Sk) is C,T -compatible.

Proof. We need to show that the conditions in Definition 2 are satisfied
for both tuples. In the case of the first tuple suppose that ∃r.D ∈ S. Then,
Sϕ(∃r.D) contains D and every concept Ei for which there is a universal formula
∀r.Ei ∈ S. But since rdT (D) < rdT (∃.rD) ≤ n and rdT (Ei) < rdT (∀r.Ei) ≤ n,
it holds that sub<n(C, T) ∩ Sϕ(∃r.D) contains D and each of the Ei concepts.

For the second tuple, if ∃r.D ∈ sub<m(C, T) ∩ S, then rdT (∃r.D) < m and
D ∈ Sϕ(∃r.D). If additionally there is a concept term Ei such that the universal
formula ∀r.Ei ∈ sub<m(C, T) ∩ S, then again rdT (Ei) < m and Ei ∈ Sϕ(∃r.D).
Hence, sub<m(C, T) ∩ Sϕ(∃r.D) contains D and each such concept Ei. n

Theorem 14 Let C be an ALC concept, T an acyclic TBox and m =
max{rdT (D) | D ∈ sub(C, T)}. Then AC,T is weakly-m-segmentable.

Proof. We have to give the segmentation of Q and the functions fq and show
that they satisfy the conditions in Definition 9. Define the classes Qi := {S ∈
Q | rdT (S) = i}, 0 ≤ i ≤ m and fq(q

′) := q′ ∩ sub<n(C, T), where n = rdT (q) for
every q, q′ ∈ Q. By this definition, it is obvious that for every q ′, fq(q

′) is in a
lower class than q (or in Q0 if q ∈ Q0). Lemma 13 shows that conditions 1 and
2 of Definition 9 are satisfied. It remains to show that AC,T is Q0-looping. If
q ∈ Q0, there are no existential formulas in q, and therefore (q, ∅, . . . , ∅) ∈ ∆.

n

Although our algorithm in Figure 1 is non-deterministic, we can obtain a
deterministic complexity class by using Savitch’s theorem [Sav70].

Corollary 15 Satisfiability of ALC concepts with respect to acyclic TBoxes is
in PSpace.

5 Conclusion

We have introduced segmentable and weakly-segmentable Büchi automata, two
classes of automata for which the emptiness problem of the accepted language
is decidable in NLogSpace, whereas in general the complexity class of this
problem for Büchi automata is P. The complexity bound is proved by testing
the possibility of a model on the fly using depth-first search. This generalises
previous results of on-the-fly emptiness tests for several modal and description
logics. As an example, we showed how our framework can be used to obtain
the PSpace upper complexity bound for ALC with acyclic TBoxes in an easy
way. We hope that this framework will make it easier to prove a PSpace upper
bound also for new logics.

Acknowledgements

We would like to thank Franz Baader for fruitful discussions. We also thank the
reviewers for suggesting improvements of this paper.

References

[BHLW03] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to
automata for description logics. Fundamenta Informaticae, 57:1–33,
2003.

[BN03] F. Baader and W. Nutt. The Description Logic Handbook, chapter
2: Basic Description Logics. Cambridge University Press, 2003.

[BS01] F. Baader and U. Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69, 2001.

[BT01] F. Baader and S. Tobies. The inverse method implements the au-
tomata approach for modal satisfiability. In R. Goré, A. Leitsch, and
T. Nipkow, editors, Proceedings of IJCAR-01, volume 2083 of LNAI.
Springer-Verlag, 2001.

[HST00] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very
expressive description logics. Logic Journal of the IGPL, 8(3):239–
264, 2000.

[LS00] C. Lutz and U. Sattler. Mary likes all cats. In F. Baader and U. Sat-
tler, editors, Proceedings of DL 2000, CEUR Proceedings, 2000.

[Lut04] C. Lutz. NExpTime-complete description logics with concrete do-
mains. ACM Transactions on Computational Logic, 5(4):669–705,
2004.

[PSV02] G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures
for K. In Proceedings of the Conference on Automated Deduction,
volume 2392 of Lecture Notes in Artificial Intelligence, 2002.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deter-
ministic tape complexities. Journal of computer and system sciences,
4(2):177–192, 1970.

[Sch94] K. Schild. Terminological cycles and the propositional µ-calculus.
In J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings of
KR-94. Morgan Kaufmann, 1994.

[Spa93] E. Spaan. Complexity of Modal Logics. PhD thesis, University of
Amsterdam, 1993.

[SS91] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991.

[Vor01] A. Voronkov. How to optimize proof-search in modal logics: new
methods of proving reduncancy criteria for sequent calculi. ACM
transactions on computational logic, 2(2), 2001.

[VW86] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for
modal logics of programs. J. of Computer and System Science,
32:183–221, 1986.

