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Abstra
t. Logi
al formalisms for reasoning about relations between spatial regions play

a fundamental role in geographi
al information systems, spatial and 
onstraint databases,

and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logi
 of time

intervals based on the Allen relations, we introdu
e a family of modal logi
s equipped with

eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations

between regions in topologi
al spa
es su
h as the real plane. We investigate the expressive

power and 
omputational 
omplexity of logi
s obtained in this way. It turns out that our

modal logi
s have the same expressive power as the two-variable fragment of �rst-order

logi
, but are exponentially less su

in
t. The 
omplexity ranges from (unde
idable and)

re
ursively enumerable to �

1

1

-hard, where the re
ursively enumerable logi
s are obtained

by 
onsidering substru
tures of stru
tures indu
ed by topologi
al spa
es. As our unde
id-

ability results also 
apture logi
s based on the real line, they improve upon unde
idability

results for interval temporal logi
s by Halpern and Shoham. We also analyze modal logi
s

based on the �ve RCC5 relations, with similar results regarding the expressive power, but

weaker results regarding the 
omplexity.

1. Introdu
tion

Reasoning about topologi
al relations between regions in spa
e is re
ognized as one of

the most important and 
hallenging resear
h areas within spatial reasoning in arti�
ial intel-

ligen
e (AI) and philosophy, spatial and 
onstraint databases, and geographi
al information

systems (GISs). Resear
h in this area 
an be 
lassi�ed a

ording to the logi
al apparatus

employed:

{ First-order theories of topologi
al relations between regions, as studied in AI and philos-

ophy [Cla85, RCC92, PS98, CH01℄, spatial databases [PSV99, SS01℄ and from an algebrai


viewpoint in [DWM01, Ste00, DW05℄;

{ Purely existential theories formulated as 
onstraint satisfa
tion systems over jointly ex-

haustive and mutually disjoint sets of topologi
al relations between regions [Ege94, RN99,

GPP95, SS01, RCC92, Ben94, CH01℄

2000 ACM Subje
t Classi�
ation: F4.1, H2.8, I2.4.
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{ Modal logi
s of spa
e with operators interpreted by the 
losure and interior operator of

the underlying topologi
al spa
e and propositions interpreted as subsets of the topologi
al

spa
e, see e.g., [KT44, Ben96, AvB02, Nut99, PH02℄.

A similar 
lassi�
ation 
an be made for temporal reasoning: we have general �rst-order

theories [All84℄, temporal 
onstraint systems [All83, VKV90, NB95℄ and modal temporal

logi
s like Prior's tense logi
s, LTL, and CTL [GHR94, Eme90℄. Surprisingly, one of the

most natural approa
hes to temporal reasoning has not yet found a fully developed analogue

on the spatial reasoning resear
h agenda: Halpern and Shoham's modal logi
 of intervals

[HS91℄, in whi
h propositions are evaluated at intervals (rather than time points), and

where referen
e to other intervals is enabled by modal operators interpreted by Allen's 13

relations between intervals, see also [vB83, Gal87℄. Despite its bad 
omputational behavior

(unde
idable, usually not even r.e.), this framework proved rather fruitful and in
uential in

temporal reasoning, see e.g. [Ven90, Ven92, AF98, Ras99, Lod00, Lut03℄.

In this paper, we 
onsider modal logi
s in whi
h propositions are evaluated at the re-

gions of topologi
al spa
es, and referen
e to other regions is enabled by modal operators

interpreted as topologi
al relations. For de�ning su
h logi
s, the two most important de-


isions to be made are 
hoosing an appropriate set of relations and identifying a suitable

notion of a \region" in a topologi
al spa
e.

Regarding the relations, in the initially mentioned resear
h areas there appears to be


onsensus that the eight Egenhofer-Franzosa (or RCC8) relations, whi
h have been inde-

pendently introdu
ed in [RCC92℄ and [EF91℄, and their 
oarser relative RCC5 
onsisting

of only �ve relations, are the most fundamental sets of relations between regions of topo-

logi
al spa
es|both from a theoreti
al and a pra
ti
al viewpoint, see e.g. [PSV99, Ege94,

RN99, SS01, RCC92℄. Therefore, in the 
urrent paper we 
on
entrate on these two sets

of relations. We should note that modal logi
s based on the Egenhofer-Franzosa relations

have been suggested in an early paper by Cohn [Coh93℄ and further 
onsidered in [Wes01℄.

However, it proved diÆ
ult to analyze the expressive power and 
omputational behavior

of su
h logi
s: despite several e�orts, to the best of our knowledge no results have been

obtained so far.

Con
erning the regions of a topologi
al spa
e, we adopt a rather relaxed view: we

generally assume that regions are non-empty regular 
losed subsets of a topologi
al spa
e,

but we do not require that every su
h subset is a region. This view allows us to 
onsider

logi
al stru
tures, hen
eforth 
alled region stru
tures, that are based on various kinds of

regions. Among others, we 
onsider the following options:

{ Region stru
tures in whi
h the set of regions is exa
tly the set of non-empty regular 
losed

subsets of a topologi
al spa
e.

{ In the Eu
lidean spa
e R

n

, region stru
tures where regions are identi�ed with all non-

empty 
onvex regular 
losed sets, or with all hyper-re
tangles.

{ Substru
tures of the above region stru
tures: for example, we may admit region stru
tures

in whi
h only some, but not all hyper-re
tangles of R

n

are regions. To distinguish this 
ase

from the former two, we 
all region stru
tures in whi
h all regions of a parti
ular kind are

present full region stru
tures.

{ Finite substru
tures of the above region stru
tures.

The rationale behind the latter two 
hoi
es of stru
tures is that, for 
ertain appli
ations,

it is suÆ
ient to require the presen
e of only those regions in region stru
tures that are
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inhabited by spatial obje
ts. If it is known that there are only �nitely many su
h obje
ts,

but their exa
t number is unknown, then �nite substru
tures are the appropriate 
hoi
e.

The main purpose of this paper is to introdu
e modal logi
s of topologi
al relations in a

systemati
 way, to perform an investigation of their expressiveness and relationships, and to

analyze their 
omputational behavior. Regarding expressiveness, our main result 
on
erns

the relationship to �rst-order theories of topologi
al relations. The expressive power of our

modal logi
s is in
omparable with that standard theories of this kind sin
e modal logi
s o�er

an in�nite supply of propositional variables 
orresponding to unary predi
ates of �rst-order

logi
. In 
ontrast, standard �rst-order theories of topologi
al relations o�er only eight binary

predi
ates interpreted as topologi
al relations, and no unary predi
ates [RCC92, PS98,

PSV99, SS01℄. Therefore, we 
onsider the extension of �rst-order theories of topologi
al

relations with an in�nite number of \free" unary predi
ates. Then, we 
an show that our

logi
s based on the Egenhofer-Franzosa or RCC5 relations has exa
tly the same expressive

power as the two-variable fragment of �rst-order logi
 on the same set of relations (indeed,

this holds for any mutually disjoint and jointly exhaustive set of topologi
al relations). We

also show that �rst-order logi
 is exponentially more su

in
t. We argue that the availability

of unary predi
ates is essential for a wide range of appli
ation areas: in 
ontrast to des
ribing

only purely topologi
al properties of regions, it allows one to also 
apture other properties

su
h as being a 
ountry (in a GIS), a ball (for a so

er-playing robot), or a prote
ted area

(in a spatial database). In our modal logi
s, we 
an thus formulate 
onstraints based on

non-spatial properties su
h as \there are no two overlapping regions that are both 
ountries"

and \every river is 
onne
ted to an o
ean or a lake".

The main results of this paper 
on
ern the 
omputational behavior of modal logi
s of

topologi
al relations. We prove a very general unde
idability result that 
aptures all modal

logi
s of the RCC8 relations that are determined by a 
lass of region stru
tures whose

regions are (not ne
esserily all) non-empty regular 
losed sets, and that 
ontains at least

one in�nite stru
ture. It is interesting to note that this result also 
overs logi
s that are

determined by substru
tures of region stru
tures. In parti
ular, it 
aptures the substru
tures

of the real line where regions are intervals, and thus improves upon unde
idability results

for interval temporal logi
s by Halpern and Shoham that do not 
apture substru
tures of

interval stru
tures [HS91℄. Using a variation of the proof of our 
entral theorem, we 
an

even show that logi
s based on �nite substru
tures of region stru
tures are unde
idable.

Although our results show that moving from full region stru
tures to substru
tures does

not help to regain de
idability, there is an improvement in 
omputational 
omplexity: we

show that most logi
s of RCC8 relations based on full region stru
tures are �

1

1

-hard and

thus not re
ursively enumerable. In 
ontrast, we also prove that many logi
s determined

by substru
tures are re
ursively enumerable. Finally, we establish the unde
idability of a

number of modal logi
s based on the RCC5 relations. The result is less general and, for

example, does not 
over the substru
ture 
ase. Re
ursive enumerability of RCC5-based

logi
s is left as an open problem.

This paper is organized as follows: in Se
tion 2, we introdu
e region stru
tures as the

semanti
al basis for modal logi
s of topologi
al relations. The modal language is introdu
ed

in Se
tion 3. In this se
tion, we also 
ompare its expressiveness to that of �rst-order logi
.

Additionally, we show that our modal logi
s are stri
tly more expressive than topologi
al


onstraint satisfa
tion problems. In Se
tion 4, we introdu
e a number of natural modal

logi
s based on the Egenhofer-Franzosa relations that are indu
ed by di�erent notions of

regions, and brie
y analyze their relationship. In Se
tion 5, we then prove the 
entral
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unde
idability result 
apturing basi
ally all interesting modal logi
s of RCC8 relations de-

termined by sets of region stru
tures 
ontaining at least one in�nite stru
ture. For logi
s

of full region stru
tures, this is strengthened to a �

1

1

-hardness proof in Se
tion 6. We also

prove re
ursive enumerability of many modal logi
s based on substru
tures of region stru
-

tures. In Se
tion 7, we prove unde
idability of logi
s determined by 
lasses of �nite region

stru
tures. Finally, in Se
tion 8 we 
onsider modal logi
s based on the RCC5 relations.

2. Stru
tures

The purpose of the logi
s 
onsidered in this paper is to reason about regions in topolog-

i
al spa
es. In this se
tion, we show how a topologi
al spa
e together with an appropriate

de�nition of \region" indu
es a logi
al stru
ture, and establish some basi
 properties of the

stru
tures obtained in this way.

Re
all that a topologi
al spa
e is a pair T = (U;I), where U is a set and Iis an interior

operator on U , i.e., for all s; t � U , we have

I(U) = U I(s) � s

I(s)\ I(t) = I(s\ t) II(s) = I(s):

The 
losure C (s) of s is C (s) = U � I(U � s): Of parti
ular interest for spatial reasoning

are n-dimensional Eu
lidean spa
es R

n

based on Cartesian produ
ts of the real line with

the standard topology indu
ed by the Eu
lidean metri
. Depending on the appli
ation

domain, di�erent de�nitions of regions in topologi
al spa
es have been introdu
ed. Almost

all of them have in 
ommon that the regions of a topologi
al spa
e T = (U;I) are identi�ed

with some set of non-empty, regular 
losed subsets of U , where a subset s � U is 
alled

regular 
losed if CI(s) = s.

1

Some popular 
hoi
es for topologi
al spa
es and regions are

the following:

� the set T

reg

of all non-empty regular 
losed subsets of some topologi
al spa
e T, in

parti
ular the topologi
al spa
es R

n

for some n � 1;

� the set R

n


onv

of non-empty 
onvex regular 
losed subsets of R

n

, for some n � 1;

� the set R

n

re
t

of 
losed hyper-re
tangular subsets of R

n

, i.e., regions of the form

Q

n

i=1

C

i

, where C

1

; : : : ; C

n

are non-singleton 
losed intervals in R, for some n � 1.

Sometimes, regions are required to satisfy additional 
onstraints su
h as being 
onne
ted

or homeomorphi
 to the 
losed unit dis
.

Given a topologi
al spa
e T and a set of regions U

T

, we de�ne the extension of the eight

Egenhofer-Franzosa (or RCC8) relations d
 (`dis
onne
ted'), e
 (`externally 
onne
ted'), tpp

(`tangential proper part'), tppi (`inverse of tangential proper part'), po (`partial overlap'),

eq (`equal'), ntpp (`non-tangential proper part'), and nttpi (`inverse of non-tangential proper

part') as the following subsets of U

T

� U

T

:

(s; t) 2 d


T

i� s \ t = ;

(s; t) 2 e


T

i� I(s)\ I(t) = ; ^ s \ t 6= ;

(s; t) 2 po

T

i� I(s)\ I(t) 6= ; ^ s 6� t ^ t 6� s

(s; t) 2 eq

T

i� s = t

1

Another possibility is to identify regions with non-empty regular open sets instead of non-empty regular


losed ones. The results presented in this paper hold for this alternative de�nition of regions as well.
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Figure 1: The eight relations between regions.

(s; t) 2 tpp

T

i� s � t ^ s 6� I(t) ^ s 6= t

(s; t) 2 ntpp

T

i� s � I(t) ^ s 6= t

(s; t) 2 tppi

T

i� (t; s) 2 tpp

T

(s; t) 2 ntppi

T

i� (t; s) 2 ntpp

T

:

Figure 1 shows examples of the RCC8 relations in the real plane R

2

. The stru
ture

R(T; U

T

) := hU

T

; d


T

; e


T

; po

T

; eq

T

; tpp

T

; ntpp

T

; tppi

T

; ntppi

T

i is 
alled the 
on
rete region

stru
ture indu
ed by (T; U

T

). Observe that 
on
rete region stru
tures do not in
lude a val-

uation of propositional letters, and thus 
orrespond to a frame in standard modal logi
.

We will later extend region stru
tures to region models by augmenting them with valuation

fun
tions.

We now develop a �rst-order 
hara
terization of 
on
rete region stru
tures. This will

establish some fundamental properties of 
on
rete region stru
tures that are used through-

out the whole paper, and will also provide us with an easy proof of the fa
t that 
ertain

logi
s 
onsidered in this paper are re
ursively enumerable. We 
all a relational stru
ture

R = hW; d


R

; e


R

; po

R

; eq

R

; tpp

R

; ntpp

R

; tppi

R

; ntppi

R

i

a general region stru
ture if W is a non-empty set and the r

R

are binary relations on W

that are mutually disjoint (i.e., r

R

\ q

R

= ;, for r 6= q), jointly exhaustive (i.e., the union

of all r

R

is W �W ), and satisfy the following:

� eq is interpreted as the identity on W , d


R

, e


R

, and po

R

are symmetri
, and tppi

R

and ntppi

R

are the inverse relations of ttp

R

and ntpp

R

, respe
tively;

� the rules of the 
omposition table (Figure 2) are satis�ed in the sense that, for any

entry q

1

; : : : ; q

k

in row r

1

and 
olumn r

2

, the �rst-order senten
e

8x8y8z((r

1

(x; y) ^ r

2

(y; z))! (q

1

(x; z) _ � � � _ q

k

(x; z))

is valid (� is the disjun
tion over all eight relations).

The following theorem shows that, in some sense, 
on
rete region stru
tures and general

region stru
tures are inter
hangable. In what follows, we will thus often only speak of

region stru
tures and only distinguish between general and 
on
rete region stru
tures when

ne
essary. A proof 
an be found in Appendix A.
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Æ d
 e
 tpp tppi po ntpp ntppi

d
,e
, d
,e
, d
,e
, d
,e
,

d
 � po,tpp, po,tpp, d
 po,tpp, po,tpp, d


ntpp ntpp ntpp ntpp

d
,e
, d
,e
, e
,po, d
,e
, po,

e
 po,tppi, po,tpp, tpp, d
,e
 po,tpp, tpp, d


ntppi tppi,eq ntpp ntpp ntpp

d
,e
, d
,e
, d
,e
,

tpp d
 d
,e
 tpp,ntpp po,tpp, po,tpp, ntpp po,tppi,

tppi,eq ntpp ntppi

d
,e
, e
,po, po,eq, po, po,

tppi po,tppi, tppi, tpp, tppi,ntppi tppi, tpp, ntppi

ntppi ntppi tppi ntppi ntpp

d
,e
, d
,e
, po, d
,e
, po, d
,e
,

po po,tppi, po,tppi, tpp, po,tppi, � tpp, po,tppi,

ntppi ntppi ntpp ntppi ntpp ntppi

d
,e
, d
,e
,

ntpp d
 d
 ntpp po,tpp, po,tpp, ntpp �

ntpp ntpp

d
,e
, po, po, po, po, tppi,

ntppi po,tppi, tppi, tppi, ntppi tppi, tpp,ntpp, ntppi

ntppi ntppi ntppi ntppi ntppi,eq

Figure 2: The 
omposition table.

Theorem 1 (Representation theorem).

(i) Every 
on
rete region stru
ture is a general region stru
ture;

(ii) every general region stru
ture is isomorphi
 to a 
on
rete region stru
ture;

(iii) for every n > 0, every 
ountable general region stru
ture is isomorphi
 to a 
on
rete

region stru
ture of the form R(R

n

; U

R

n

) (with U

R

n

� R

n

reg

).

Note that Points (ii) and (iii) of Theorem 1 rely on the fa
t that we admit any non-empty

set of non-empty regular 
losed sets as a possible 
hoi
e for the regions of a topologi
al

spa
e. This is of 
ourse di�erent from admitting only stru
tures in whi
h, for example, all

non-empty regular 
losed sets are required to be regions, or all 
losed hyper-re
tangles are

required to be regions. The logi
s introdu
ed in Se
tion 4 will be based on both kinds of

stru
tures. Quite informally, we shall in the following 
all stru
tures of the latter kind full


on
rete region stru
tures. We introdu
e some useful 
lasses of region stru
tures:

� RS is the 
lass of all general region stru
tures;

� T OP denotes the 
lass of all region stru
tures R(T;T

reg

).

Observe that the stru
tures in T OP are full 
on
rete region stru
tures. It is interesting

to note that, in 
ontrast to RS, T OP 
annot be 
hara
terized by means of a re
ursively

enumerable set of �rst-order senten
es. This follows from the non-re
ursive enumerability

of the logi
 of T OP to be introdu
ed and investigated later.

We should also note that the region stru
ture R(R;R

re
t

) = R(R;R


onv

) is an interval

stru
ture. Therefore, topologi
al modal logi
s interpreted in su
h stru
tures may be viewed

as temporal interval logi
s similar to the ones de�ned by Halpern and Shoham in [HS91℄.

A minor te
hni
al di�eren
e between our interval stru
ture and the ones 
onsidered by

Halpern and Shoham is that our requirement of regular 
losedness ex
ludes point-intervals,

while su
h intervals are admitted by Halpern and Shoham.
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3. The Language

The modal language L

RCC8

extends propositional logi
 with 
ountably many variables

p

1

; p

2

; : : : and the Boolean 
onne
tives : and ^ by means of the unary modal operators

[d
℄, [e
℄, et
. (one for ea
h topologi
al relation). A region model M = hR; p

M

1

; p

M

2

; : : :i for

L

RCC8


onsists of a region stru
ture R = hW; d


R

; e


R

; : : :i and the interpretation p

M

i

of the

variables p

i

of L

RCC8

as subsets of W . A formula ' is either true at a region s 2 W (written

M; s j= ') or false at s (written M; s 6j= '), the indu
tive de�nition being as follows:

(1) if ' is a prop. variable, then M; s j= ' i� s 2 '

M

;

(2) M; s j= :' i� M; s 6j= ';

(3) M; s j= '

1

^ '

2

i� M; s j= '

1

and M; s j= '

2

;

(4) M; s j= [r℄' i�, for all t 2 W , (s; t) 2 r

R

implies M; t j= '.

We use the usual abbreviations: '!  for :' _  and hri' for :[r℄:'.

In the remainder of this se
tion, we dis
uss the expressive power of the language L

RCC8

.

The dis
ussion starts with some simple observations.

� First, the di�eren
e modality 2

d

', investigated for example in [dR92℄, has the fol-

lowing semanti
s:

M; s j= 2

d

' i� M; t j= ' for all t 2 W su
h that t 6= s:

In L

RCC8

, it 
an be expressed as

V

r2RCC8�feqg

[r℄' sin
e the relations are jointly

exhaustive and mutually ex
lusive.

� Se
ond, the useful universal box 2

u

', whi
h is well-known from modal logi
 [GP92℄,

has the following semanti
s:

M; s j= 2

u

' i� M; t j= ' for all t 2 W:

In L

RCC8

, it 
an be expressed as ' ^ 2

d

'.

� Third, we 
an express that a formula ' holds in pre
isely one region (i.e., is a

nominal [GV93℄) by writing

nom(') = 3

u

(' ^2

d

:');

where 3

u

' = :2

u

:'. The availability of nominals means that we 
an introdu
e

names for regions; e.g., the formulas

nom(Elbe); nom(Dresden)

state that \Elbe" (the name of a river) and \Dresden" ea
h apply to exa
tly one

region.

� Finally, it is often useful to de�ne operators [pp℄ and [ppi℄ as abbreviations:

[pp℄' = [tpp℄' ^ [nttp℄'

[ppi℄' = [tppi℄' ^ [nttpi℄':

As in the temporal 
ase [HS91℄ and following Cohn [Coh93℄, we 
an use these new

operators to 
lassify formulas ' a

ording to whether

{ they are homogeneous, i.e. they hold 
ontinuously throughout regions:

2

u

('! [pp℄')

{ they are anti-homogeneous, i.e. they hold only in regions whose interiors are

mutually disjoint:

2

u

('! ([pp℄:' ^ [po℄:')
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Instan
es of anti-homogeneous propositions are \river" and \university 
ampus",

while \o

upied-by-water" is homogeneous.

As this paper 
on
entrates on the investigation of the expressivity and 
omputational prop-

erties of topologi
al modal logi
s, it is out of s
ope to des
ribe potential appli
ations in

detail. Therefore, we only give a few illustrative examples of statements in L

RCC8

. The fol-

lowing example des
ribes, in a drasti
ally simpli�ed way, the relationship of 
ities, harbours,

rivers, and the sea. Based on this `ba
kground theory', it then des
ribes the relationship of

the 
ity of Dresden and the river Elbe.

2

u

(harbor-
ity$ (
ity ^ hppiiharbor))

2

u

(harbor! (he
iriver_ he
isea))

2

u

(Dresden! harbor-
ity)

2

u

(Elbe! river)

2

u

(Dresden!

V

r2RCC8�fd
g

[r℄:sea)

2

u

(Dresden! (hpoiElbe^

V

r2RCC8�fd
g

[r℄(river! Elbe)))

From these formulas, it follows that Dresden has a part that is a harbor and is related via

e
 to the river Elbe.

The example suggests a s
heme for the representation of spatial knowledge in L

RCC8

that

is known from des
ription logi
 [BCM

+

03℄: a ba
kground theory (
alled TBox in des
rip-

tion logi
) represents knowledge about general 
lasses of regions su
h as those des
ribing

harbors and rivers. Knowledge about parti
ular regions is formulated by using nominals

and expressing spatial relations between them. In des
ription logi
, knowledge of this latter

kind would be stored in an ABox.

We now relate the expressive power of the modal language L

RCC8

to the expressive

power of two standard formalisms for spatial reasoning: 
onstraint networks and spatial

�rst-order theories.

RCC8 
onstraint networks are a basi
, but rather popular formalism for representing

spatial knowledge using the RCC8 relations [RN99, Ege94, GPP95, SS01, RCC92℄. In the

following, we show that our modal language L

RCC8


an 
apture 
onstraint networks in a

straightforward way. An RCC8 
onstraint network is a �nite set of 
onstraints (s r r) with

s; r region variables and r an RCC8 relation. Su
h a network N is satis�able in a topologi
al

spa
e T with regions U

T

if there exists an assignment Æ of regions in U

T

to region variables

su
h that (s r r) 2 N implies Æ(s) r

T

Æ(r). In our language L

RCC8

, we 
an express a


onstraint network N that uses region variables s

1

; : : : ; s

k

by writing

^

(s

i

rs

j

)2N

3

u

(p

i

^ hrip

j

) ^

^

1�i�k

nom(p

i

):

This formula is 
learly satis�able i� N is satis�able.

Spatial �rst-order theories are usually formulated in �rst-order languages equivalent

to the �rst-order language FO

RCC8

that has equality, eight binary predi
ates for the RCC8

relations, no fun
tion symbols, and no unary predi
ates [PSV99, PS98, SS01, RCC92℄. Intu-

itively, we 
annot redu
e L

RCC8

to su
h languages be
ause they do not o�er a 
ounterpart of

L

RCC8

's propositional letters. A formal proof is provided by the following two observations:

(1) FO

RCC8

is de
idable over the region stru
ture R(R

2

;R

2

re
t

). Indeed, it is not hard

to verify that there is a redu
tion to the �rst-order theory of hR; <i whi
h 
oin
ides

with the �rst-order theory of hQ; <i and, therefore, is de
idable [End72℄. Details
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of the redu
tion are omitted as it is similar to the proof of Theorem 14 given in

Appendix C (but simpler).

(2) In Se
tion 6, we show that L

RCC8

is not re
ursively enumerable over R(R

2

;R

2

re
t

).

Thus, the adequate �rst-order language to 
ompare L

RCC8

with is the monadi
 extension

FO

m

RCC8

of FO

RCC8

that is obtained by adding 
ountably many unary predi
ates p

1

; p

2

; : : :.

By well-known results from modal 
orresponden
e theory [Gab81b℄, any L

RCC8

formula '


an be polynomially translated into a formula '

�

of FO

m

RCC8

with only two variables su
h

that, for any region model M and any region s,

M; s j= ' i� M j= '

�

[s℄:

More surprisingly, the 
onverse holds as well: this follows from re
ent results of [LSW01℄

sin
e the RCC8 relations are mutually ex
lusive and jointly exhaustive. A proof sket
h of

the following theorem 
an be found in Appendix B.

Theorem 2. For every FO

m

RCC8

-formula '(x) with free variable x that uses only two vari-

ables, one 
an e�e
tively 
onstru
t a L

RCC8

-formula '

�

of length at most exponential in the

length of '(x) su
h that, for every region model M and any region s, M; s j= '

�

i� M j=

'[s℄:

However, there is also an important di�eren
e between L

RCC8

and the two-variable fragment

of FO

m

RCC8

: the latter is exponentially more su

in
t than the former. This 
an be shown

using a formula proposed by Etessami, Vardi, and Wilke [EVW02℄ stating that any two

regions agreeing on p

0

; : : : ; p

n�1

also agree on p

n

. A proof 
an be found in Appendix B.

Theorem 3. For n � 1, de�ne a FO

m

RCC8

formula

'

n

:= 8x8y

�

^

i<n

(p

i

(x)$ p

i

(y))! (p

n

(x)$ p

n

(y))

�

Then every L

RCC8

-formula  

n

that is equivalent to '

n

on the 
lass of all region stru
tures

RS has length 2


(n)

.

2

We believe that this su

in
tness result also holds on other 
lasses of region stru
tures su
h

as the singleton fR(R

n

;R

n

reg

)g, but leave the proof as an open problem.

4. Logi
s

In this se
tion, we de�ne a number of topologi
al modal logi
s by applying the language

L

RCC8

to di�erent 
lasses of region stru
tures. We also establish a number of separation

results showing that logi
s obtained from di�erent 
lasses of region stru
tures do not usually


oin
ide.

Let S be a 
lass of region stru
tures. An L

RCC8

formula ' is valid in S if it is true

in all regions of all models based on region stru
tures from S. We use L

RCC8

(S) to denote

the logi
 of S, i.e., the set of all L

RCC8

-formulas valid in S. If S = fR(T; U

T

)g for some

topologi
al spa
e T with regions U

T

, then we abbreviate L

RCC8

(S) by writing L

RCC8

(T; U

T

).

The following logi
s of full 
on
rete region stru
tures (see Se
tion 2) will play a prominent

role in this paper:

2

Following the formulation of Theorem 2, the formula  

n

is 
alled equivalent to '

n

if the following holds:

for every region model M and any region s, M; s j=  

n

i� M j= '

n

[s℄. As the formula '

n

does not have a

free variable, the right hand side of this equivalen
e does not depend on s.
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� the logi
 L

RCC8

(T OP) of all full 
on
rete region stru
tures of regular 
losed regions

R(T;T

reg

);

� logi
s based on the R

n

, for some n � 1: L

RCC8

(R

n

;R

n

reg

), L

RCC8

(R

n

;R

n


onv

), and

L

RCC8

(R

n

;R

n

re
t

).

We will also study the logi
 L

RCC8

(RS) of all region stru
tures. Note that the region 
lasses

underlying the above logi
s admit unbounded regions su
h as R

n

. However, the te
hni
al

results proved in this paper also hold if we 
onsider bounded regions, only.

We now investigate the relationship between the introdu
ed logi
s. As an exhaustive

analysis is out of the s
ope of this paper, we only treat some important 
ases:

(1) L

RCC8

(T OP) 6� L

RCC8

(RS) and L

RCC8

(R

n

;R

n

x

) 6� L

RCC8

(RS) for x2freg; 
onv; re
tg

and n > 0 sin
e

(nom(p) ^ nom(q) ^3

u

(p ^ hd
iq))! 3

u

(hppiip ^ hppiiq)

is not valid in RS (it states that any two dis
onne
ted regions are proper parts of

a region). The 
onverse in
lusions obviously hold for all n > 0.

(2) L

RCC8

(R

n

;R

n

x

) 6� L

RCC8

(T OP) for x 2 freg; 
onv; re
tg and n > 0: hppii> is

valid in R(R

n

;R

n

x

), but not in T OP . For the 
onverse dire
tion, we 
learly have

L

RCC8

(T OP) � L

RCC8

(R

n

;R

n

reg

) for all n > 0.

(3) For n;m > 0 and m

0

> 1, L

RCC8

(R

n

;R

n

re
t

) 6� L, where L is any logi
 from

L

RCC8

(R

n+1

;R

n+1

re
t

), L

RCC8

(R

m

0

;R

m

0


onv

), L

RCC8

(R

m

;R

m

reg

), L

RCC8

(T OP), L

RCC8

(RS).

To see this de�ne, for k > 0, an RCC8 
onstraint network e
[k℄ as follows:

e
[k℄ = f(x

i

e
 x

j

) j 1 � i; j � kg:

For n > 0, e
[2

n

+ 1℄ is not satis�able in R(R

n

;R

n

re
t

), but it is satis�able in the


lasses of region stru
tures determining the logi
s L. Observe that the 
ondition

m

0

> 1 is required be
ause R(R;R


onv

) = R(R;R

re
t

).

(4) For n > 0, L

RCC8

(R

n

;R

n


onv

) 6� L

RCC8

(R

n+1

;R

n+1


onv

). Sin
e L

RCC8

(R;R


onv

) =

L

RCC8

(R;R

re
t

), the 
ase n = 1 follows from the previous item. Regarding the


ases n > 1, for simpli
ity we only 
onsider n = 2 expli
itly. A generalization is

straightforward. Take region variables x

ij

, 1 � i < j � 4. Then the 
onstraint

network obtained as the union of e
[4℄,

f(x

i

pp x

ij

); (x

j

pp x

ij

) j 1 � i < j � 4g

and

f(x

ij

e
 x

k

) j 1 � i < j � 4; k 2 f1; 2; 3; 4g� fi; jgg

is satis�able in R(R

3

;R

3


onv

) but not in R(R

2

;R

2


onv

).

(5) For all n;m > 0, L

RCC8

(R

n

;R

n

reg

) 6� L

RCC8

(R

m

;R

m


onv

) and L

RCC8

(R

n

;R

n

reg

) 6�

L

RCC8

(R

m

;R

m

re
t

): the following formula states that, for any three pair-wise dis
on-

ne
ted regions, there is another region 
ontaining only the �rst two (but not the

third) as a proper part:

�

^

1�i�3

nom(p

i

) ^

^

1�i<j�3

3

u

(p

i

^ hd
ip

j

)

�

!

3

u

(hppiip

1

^ hppiip

2

^ :hppiip

3

):

This formula is valid in R(R

n

;R

n

reg

), but not in R(R

n

;R

n


onv

) and R(R

n

;R

n

re
t

).
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As these examples show, L

RCC8

is powerful enough to \feel" the di�eren
e between di�erent

topologi
al spa
es and di�erent 
hoi
es of regions.

While full 
on
rete region stru
tures are appropriate for reasoning about topologi
al

spa
es themselves, for many appli
ations it is not adequate to demand that models have

to 
omprise all regions of a parti
ular form (su
h as the non-empty regular 
losed ones

or the 
losed hyper-re
tangles). In su
h appli
ations, models may 
ontain only some su
h

regions|those that are inhabited by spatial obje
ts that are relevant for the appli
ation.

This observation gives rise to another 
lass of topologi
al modal logi
s: given a 
lass S

of region stru
tures, we use L

S

RCC8

(S) to denote the logi
 determined by the 
lass of all

substru
tures of stru
tures in S. Note that the 
lass RS is 
losed under substru
tures by

de�nition, and thus we have L

RCC8

(RS) = L

S

RCC8

(RS). Taking this idea one step further,

we may even be 
on
erned with appli
ations where the number of relevant spatial obje
ts

is known to be �nite, but their exa
t number is unknown. Then, we should 
onsider only

models 
omprising a �nite number of regions, without assuming an upper bound on their

number. Thus, we use L

�n

RCC8

(S) to denote the logi
 of all �nite substru
tures of stru
tures

in S.

The in
lusion of su
h substru
ture logi
s and their �nite versions is a distinguishing fea-

ture of the unde
idability results proved in this paper: the general unde
idability theorems

presented in Se
tions 5 and 7 
over all logi
s of full 
on
rete region stru
tures introdu
ed

in this se
tion, as well as their substru
ture variants and �nite substru
ture variants. In


ontrast, the unde
idability proofs of Halpern and Shoham for interval temporal logi
s are

not appli
able to the substru
ture variants of these logi
s [HS91℄. Moreover, it will turn out

that logi
s of full 
on
rete region stru
tures are usually �

1

1

-hard, while their substru
ture


ounterparts are usually re
ursively enumerable.

We now 
ontinue our investigation of the relationship between topologi
al modal logi
s,

taking into a

ount substru
ture logi
s and their �nite 
ompanions. Some of the new family

members turn out to be already known:

Theorem 4. For n > 0, we have

(1) L

RCC8

(RS) = L

S

RCC8

(T OP) = L

S

RCC8

(R

n

;R

n

reg

);

(2) L

�n

RCC8

(RS) = L

�n

RCC8

(T OP) = L

�n

RCC8

(R

n

;R

n

reg

).

Proof All the mentioned logi
s are modal logi
s determined by 
lasses of stru
tures that

are 
losed under substru
tures. As shown in [Wol97℄, Corollary 3.8, su
h modal logi
s are

determined by the at most 
ountable members of those 
lasses. Thus, Theorem 4 is an

immediate 
onsequen
e of Theorem 1.

A few additional interesting observations are the following:

(6) The non-in
lusions given under Items 3 and 4 above also hold for the 
orresponding

substru
ture and �nite substru
ture 
ases. The proofs are identi
al.

(7) The arguments given in Items 1, 2 and 5 do not 
arry over sin
e the given formulas

are not valid in the 
orresponding substru
tures and �nite substru
tures. Indeed, by

Theorem 4, in these 
ases the �rst 
laim of Item 1 does not hold and the remaining


laims of Item 1 and 2 do not hold for x = reg. In Item 5, the statement is wrong

in the substru
ture 
ase and �nite substru
ture 
ase: it is not hard to see that, e.g.,

L

S

RCC8

(R

n

;R

n

reg

) � L

S

RCC8

(R

n

;R

n


onv

) and L

S

RCC8

(R

n

;R

n

reg

) � L

S

RCC8

(R

n

;R

n

re
t

) for

all n > 0, and analogous 
laims hold in the �nite substru
ture 
ase.
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L

�n

RCC8

(R;R

re
t

) = L

�n

RCC8

(R;R


onv

)

[ [

L

�n

RCC8

(R

2

;R

2

re
t

) � L

�n

RCC8

(R

2

;R

2


onv

)

[ [

L

�n

RCC8

(R

3

;R

3

re
t

) � L

�n

RCC8

(R

3

;R

3


onv

)

[ [

L

�n

RCC8

(RS) = L

�n

RCC8

(R

n

;R

n

reg

)

[ [

L

RCC8

(RS) = L

S

RCC8

(R

n

;R

n

reg

)

\

L

RCC8

(T OP)

\

L

RCC8

(R

n

;R

n

reg

)

Figure 3: In
lusions between logi
s.

(8) L

�n

RCC8

(S) 6� L for any 
lass of region stru
tures S and L among L

RCC8

(RS),

L

RCC8

(T OP) and L

RCC8

(R

n

; U

n

) with n � 1 and R

n

re
t

� U

n

: the L�ob-formula

from modal logi


[pp℄([pp℄p! p)! [pp℄p:

is valid in a relational stru
ture i� there is no in�nite as
ending pp-
hain, see

[GKWZ03℄, pages 8-12. Thus, this formula is valid in all �nite region stru
tures,

but not in all in�nite ones.

(9) A number of additional in
lusions is easily derived su
h as L

S

RCC8

(R

n+1

;R

n+1

re
t

) �

L

S

RCC8

(R

n

;R

n

re
t

), for n > 0: it is easy to 
onvert a substru
ture of R(R

n+1

;R

n+1

re
t

)

into an isomorphi
 substru
ture of R(R

n

;R

n

re
t

).

The derived in
lusions are summarized in Figure 3. By Points 1 to 9 above, all listed

in
lusions are indeed proper. For the sake of readability, we do not attempt to display all

derived non-in
lusions in Figure 3.

5. Unde
idability

We now establish the 
entral result of this paper: a rather general unde
idability result

that 
overs all logi
s introdu
ed in the previous se
tion. The only ex
eptions are logi
s based

on 
lasses of �nite region stru
tures, whose unde
idability will be established in Se
tion 7.

To the best of our knowledge, the unde
idability result proved in this se
tion 
overs all


lasses of region stru
tures that have been 
onsidered in the literature and 
ontain at least

one in�nite stru
ture. As the pre
ise formulation of the result is somewhat te
hni
al, we

start with a weaker version in whi
h we require that the 
lass of region stru
tures 
ontains

at least one stru
ture of the form R(R

n

; U) with R

n

re
t

� U . This 
ondition will later be

repla
ed with a more general one.

Theorem 5. Let S � RS and suppose there exists n > 0 and a set U � R

n

reg

su
h that

R

n

re
t

� U and R(R

n

; U) 2 S. Then L

RCC8

(S) is unde
idable.
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1 2 4

53

6

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

Figure 4: Enumerating tile positions.

Con
erning the logi
s introdu
ed in Se
tion 4, we thus obtain the following:

Corollary 6. The logi
s L

RCC8

(S) and L

S

RCC8

(S) are unde
idable, for S one of RS, T OP,

R(R

n

;R

n

reg

), R(R

n

;R

n


onv

), and R(R

n

;R

n

re
t

), with n > 0.

We now develop the proof of Theorem 5. As we shall see, the proof suggests the mentioned

generalization of Theorem 5, whi
h will be stated subsequently. To ease notation, in the

proofs given in this and the following se
tions we denote a

essibility relations in models

simply with d
, e
, et
., instead of with d


R

, e


R

, et
.

The proof of Theorem 5 is by redu
tion of the domino problem that requires tiling of

the �rst quadrant of the plane to the satis�ability of L

RCC8

formulas. As usual, a formula '

is 
alled satis�able in a region model M = hW; d
; e
; : : : ; p

M

1

; p

M

2

; : : :i if there is an s 2 W

with M; s j= '.

De�nition 7. Let D = (T;H; V ) be a domino system, where T is a �nite set of tile types

and H; V � T � T represent the horizontal and verti
al mat
hing 
onditions. We say that

D tiles the �rst quadrant of the plane i� there exists a mapping � : N

2

! T su
h that, for

all (x; y) 2 N

2

:

� if �(x; y) = t and �(x+ 1; y) = t

0

, then (t; t

0

) 2 H

� if �(x; y) = t and �(x; y + 1) = t

0

, then (t; t

0

) 2 V

Su
h a mapping � is 
alled a solution for D.

For redu
ing this domino problem to satis�ability in region models based on S, we �x

an enumeration of all the tile positions in the �rst quadrant of the plane as indi
ated in

Figure 4. The fun
tion � takes positive integers to N � N-positions, i.e. �(1) = (0; 0),

�(2) = (1; 0), �(3) = (1; 1), et
.

The idea of the redu
tion is to 
onstru
t a formula '

D

that enfor
es the existen
e of

a sequen
e of regions r

1

; r

2

; : : : su
h that r

i

ntpp r

j

if i < j. Intuitively, ea
h region r

i


orresponds to the position �(i) of the �rst quadrant of the plane. We introdu
e additional

regions \
onne
ting" ea
h r

i

with r

i+1

to fa
ilitate writing formulas that express statements

su
h as \if the 
urrent region r

i

satis�es ', then the next region r

i+1

satis�es  ", and likewise

for the previous region. Similarly, we introdu
e additional regions that 
onne
t ea
h region

r

i

with the region r

j

su
h that the position �(j) is to the right of the position �(i) in the

�rst quadrant of the plane. These latter regions allow statements su
h as \if the 
urrent

region r

i

satis�es ', then the region representing the position to its right satis�es  ". Using

su
h statements, it is obviously easy to enfor
e the horizontal tiling 
ondition. By virtue of

our enumeration of plane positions, rea
hing the position above the 
urrent one is simply

a matter of going to the right and then advan
ing by one in the enumeration. Thus, we
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a ^ b

a ^ b

a ^ b

a^ b







1

2

3

4

a ^ b

a ^:b

a ^ b

a ^:b

a ^ b

pos. 1

pos. 2

pos. 3

Figure 5: Left: a dis
rete ordering in the plane; Right: the \going right" regions.


an also enfor
e the verti
al tiling 
ondition. One of the main diÆ
ulties of the proof will

be to enfor
e the existen
e of the 
onne
ting regions for \going to the right". The pursued

solution is inspired by [MR99, RZ01℄.

Now let D = (T;H; V ) be a domino system. For 
onstru
ting '

D

, we use the following

variables:

� for ea
h tile type t 2 T , a variable p

t

;

� variables a, b, and 
 that are used to mark important regions;

� variables wall and 
oor that are used to identify regions 
orresponding to positions

from the sets f0g �N (the wall) and N� f0g (the 
oor), respe
tively.

The redu
tion formula '

D

is de�ned as

a ^ b ^ wall ^ 
oor ^ [ntppi℄:a ^ 2

u

�;

where � is the 
onjun
tion of a number of formulas. We list these formulas together with

some intuitive explanations:

(1) Ensure that the regions fs 2 W jM; s j= ag are ordered by the relation pp (i.e. the

union of tpp and ntpp):

a! ([d
℄:a ^ [e
℄:a ^ [po℄:a) (5.1)

(2) Enfor
e that the regions fs j M; s j= a ^ bg are dis
retely ordered by ntpp. These

regions will 
onstitute the sequen
e r

1

; r

2

; : : : des
ribed above. In order to ensure

dis
reteness, we use a sequen
e of alternating a ^ b and a ^ :b regions as shown in

the left part of Figure 5.

a ^ b ! htppi(a ^ :b) (5.2)

a ^ :b ! htppi(a ^ b) (5.3)

a ^ :b ! [tpp℄(a! b) (5.4)

a ^ b ! [tpp℄(a! :b) (5.5)

A formal proof that these formulas work as des
ribed is given below (Point 5 of

Claim 1). If we are at an a ^ b region, we 
an a

ess the region 
orresponding to

the next position in the plane (w.r.t. the �xed enumeration) and to the previous
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position using

3

+

' = htppi(a ^ :b ^ htppi(a ^ b ^ '))

3

�

' = htppii(a^ :b ^ htppii(a ^ b ^ ')):

(3) The additional regions that will eventually allow us to \go right" in the plane satisfy

the propositional letter 
 and are related to the regions 
orresponding to plane

positions as indi
ated in the right part of Figure 5. For example, Position 2 in the

�gure is right of Position 1, and Position 4 is right of Position 2. We start with

stating the following:

a ^ b ! htppi
 (5.6)


 ! htppi(a^ b) (5.7)


 ! ([d
℄:
 ^ [e
℄:
 ^ [po℄:
 ^ [tpp℄:
 ^ [tppi℄:
) (5.8)

These formulas do not yet ensure that the 
 regions a
tually bring us to the 
orre
t

position. Roughly spoken, they only help to ensure that \going to the right via

regions satisfying 
" is a well-de�ned, monotone, and inje
tive total fun
tion.

After further 
onstraining the 
 regions, we will be able to go to the right and

upper position with

3

R

' = htppi(
 ^ htppi(a ^ b ^ '))

3

U

' = 3

R

3

+

':

Similarly, we will be able to go to the left and down:

3

L

' = htppii(
 ^ htppii(a ^ b ^ '))

3

D

' = 3

L

3

�

':

(4) Axiomatizing the behavior of tiles on the 
oor and on the wall ensures that our

\going to the right" relation a
tually brings us to the expe
ted position in the �rst

quadrant of the plane:

(
oor ^ wall) ! [ntppi℄:a (5.9)

wall ! 3

+


oor (5.10)

wall ! 3

U

wall (5.11)

[ntppi℄:a _ (wall ! 3

D

wall) (5.12)

a ^ b ! 3

R

:wall (5.13)

(a ^ b ^ :wall) ! 3

L

> (5.14)

(5) Finally, we enfor
e the tiling:

^

t;t

0

2T

:(p

t

^ p

t

0

) (5.15)

a ^ b!

_

(t;t

0

)2H

(p

t

^3

R

p

t

0

) (5.16)

a ^ b!

_

(t;t

0

)2V

(p

t

^3

U

p

t

0

) (5.17)
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We now prove two lemmas asserting the 
orre
tness of the redu
tion. The �rst one is


on
erned with 
onstru
ting solutions for D from region models for '

D

. Observe that this

lemma does not assume anything about the involved region model.

Lemma 8. If the formula '

D

is satis�able, then the domino system D has a solution.

Proof Let M = hR; p

M

1

; p

M

2

; : : :i be a region model of '

D

with R = hW; d
; e
; : : :i.

Claim 1. There exists a sequen
e r

1

; r

2

; : : : 2 W su
h that

(1) M; r

1

j= '

D

,

(2) r

1

ntpp r

2

ntpp r

3

ntpp � � � ,

(3) M; r

i

j= a ^ b for i � 1.

(4) for ea
h i � 1, there exists a region s

i

2 W su
h that

(a) r

i

tpp s

i

,

(b) M; s

i

j= a ^ :b,

(
) s

i

tpp r

i+1

,

(d) for ea
h region s with r

i

tpp s and M; s j= a ^ :b, we have s = s

i

, and

(e) for ea
h region r with s

i

tpp r and M; r j= a ^ b, we have r = r

i+1

,

(5) for all r 2 W with M; r j= a ^ b, we have that r = r

i

for some i � 1 or r

i

ntpp r for

all i � 1.

Proof: We start with indu
tively 
onstru
ting a sequen
e r

1

; r

2

; � � � 2 W satisfying Proper-

ties 1 to 4. Afterwards, we prove that Property 5 is also satis�ed. Sin
e M is a model of

'

D

, there is a region r

1

su
h thatM; r

1

j= '

D

. By de�nition of '

D

, Point 3 is satis�ed. Due

to Formulas (5.2) and (5.3), there are regions s

1

and r

2

su
h that r

1

tpp s

1

,M; s

1

j= a^:b,

s

1

tpp r

2

, and M; r

2

j= a ^ b. We show that all ne
essary Properties are satis�ed:

� Point 2. Sin
e r

1

tpp s

1

and s

1

tpp r

2

, we have r

1

tpp r

2

or r

1

ntpp r

2

a

ording

to the 
omposition table whi
h applies to all region stru
tures by Theorem 1. But

then, the �rst possibility is ruled out by Formula (5.5).

� Point 4d. Suppose there is an s 6= s

1

with r

1

tpp s and M; s j= a ^ :b. Sin
e

r

1

tpp s

1

, s

1

and s are related via one of po, tpp, and tppi by the 
omposition

table. But then, the �rst option is ruled out by Formula (5.1) and the last two by

Formula (5.4).

� Point 4e. Analogous to the previous 
ase.

The indu
tion step is similar: as M; r

i

j= a ^ b, we may use Formulas (5.2) and (5.3) to

�nd the region r

i+1

, and then show in the same way as above that it satis�es all relevant

properties. It thus remains to prove Point 5. Assume that there is a region r su
h that

M; r j= a^b, r 6= r

i

for all i � 1, and r

k

ntpp r does not hold for some k � 1. Sin
e r

k

ntpp r

does not hold and r

k

6= r, r

k

and r are related by one of d
, e
, po, tpp, tppi, and ntppi.

The �rst three possibilities are ruled out by Formula (5.1), and tpp and tppi are ruled out

by Formula (5.5). It thus remains to treat the 
ase r

k

ntppi r. Consider the relationship

between r

1

and r. Sin
e r

1

6= r and due to Formulas (5.1) and (5.5), there are only two

possibilities for this relation;

� r ntpp r

1

. Impossible by '

D

's subformula [ntppi℄:a.

� r

1

ntpp r. Then we have r

1

ntpp r ntpp r

k

. Take the maximal i su
h that r

i

ntpp r

and the minimal j su
h that r ntpp r

j

. Sin
e r 6= r

n

for all n � 1, we have j = i+1.

By Point 4, there is a region s with r

i

tpp s, M; s j= a ^ :b, and s tpp r

j

. Then

we have r nttpi r

i

tpp s. By the 
omposition table, r is related to s by po, tppi, or
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ntppi. On the other hand, r nttp r

j

tppi s. By the 
omposition table, we have one

of the relations d
, e
, po, tpp, or ntpp between r and s. Together we obtain r po s

whi
h 
ontradi
ts Formula (5.1).

The next 
laim identi�es the regions needed for \going right" in the plane.

Claim 2. For ea
h i � 1, there exist regions t

i

and u

i

su
h that

(1) r

i

tpp t

i

,

(2) M; t

i

j= 
,

(3) for ea
h region t with r

i

tpp t and M; t j= 
, we have t = t

i

,

(4) t

i

tpp u

i

,

(5) M; u

i

j= a ^ b,

(6) for ea
h region u with t

i

tpp u and M; u j= a ^ b, we have u = u

i

.

Proof: Let i � 1. By Formula (5.6), there is a t

i

with r

i

tpp t

i

and M; t

i

j= 
. Let us show

that t

i

satis�es Property 3. To this end, let t 6= t

i

su
h that r

i

tpp t and M; t j= 
. Then t

and t

i

are related via one of po, tpp, and tppi. But then, all these options are ruled out by

Formula (5.8). Now for Points 4 to 6. By Formula (5.7), there is an r su
h that t

i

tpp r and

M; r j= a ^ b. Point 6 
an now be be proved analogously to Point 3, using Formulas (5.1)

and (5.5) instead of Formula (5.8). This �nishes the proof of Claim 2.

The next 
laim states that the regions u

i

�xed in Claim 2 are ordered by ntpp.

Claim 3. Let i; j � 1 with i < j. Then u

i

ntpp u

j

.

Proof: By Claims 1 and 2, we have (i) r

i

ntpp r

j

, (ii) r

i

tpp t

i

, and (iii) r

j

tpp t

j

. By the


omposition table, (i) and (iii) yield r

i

ntpp t

j

, whi
h together with (ii) implies that t

i

and

t

j

are related by po, tpp, or ntpp. Sin
e M; t

i

j= 
 andM; t

j

j= 
 by Claim 2, all but the last

possibility are ruled out by Formula (5.8). Therefore t

i

ntpp t

j

whi
h together with t

j

tpp u

j

(Claim 2) implies t

i

ntpp u

j

. By Claim 2 we also have t

i

tpp u

i

whi
h by the 
omposition

table implies that u

i

and u

j

are related by po, tpp, or ntpp. Again by Claim 2,M; u

i

j= a^b

and M; u

j

j= a ^ b. Hen
e the �rst two possibilities are ruled out by Formulas (5.1) and

(5.5). It follows that u

i

ntpp u

j

, as required.

Before pro
eeding, let us introdu
e some notation.

� for i; j > 0, we write i ) j if the tile position �(j) 
an be rea
hed from �(i) by

going one step to the right. Similarly, we de�ne a relation i * j for going one step

up;

� for i; j > 0 we write r

i

! r

j

if u

i

= r

j

. Similarly, we write r

i

" r

j

if r

i

! r

j�1

.

Clearly, the \!" and \"" relations are partial fun
tions by Claims 1 and 2. The following


laim establishes some other important properties of \!": �rst, it moves only ahead in the

sequen
e r

1

; r

2

; : : : , but never ba
k. And se
ond, it is monotone and inje
tive.

Claim 4. Let i; j � 1. Then the following holds:

(1) if r

i

! r

j

, then i < j;

(2) if i < j, r

i

! r

k

, and r

j

! r

`

, then k < `;

Proof: First for Point 1. Suppose r

i

! r

j

and i � j. Then u

i

= r

j

and, by Claim 2,

r

i

tpp t

i

tpp r

j

. By the 
omposition table, r

i

is related to r

j

by tpp or ntpp. But by

Claim 1, i � j implies r

i

eq r

j

or r

i

ntppi r

j

. We have derived a 
ontradi
tion. Hen
e

r

i

! r

j

implies i < j.

Now for Point 2. Assume i < j, r

i

! r

k

, and r

j

! r

`

. We have u

i

= r

k

and u

j

= r

`

.

Hen
e, by Claim 3, r

k

ntpp r

`

. Using Claim 1 and the 
omposition table, we derive k < `.



18 C. LUTZ AND F. WOLTER

The following 
laim establishes the 
ore part of the proof: the fa
t that the \!" relation

\
oin
ides" with the \)" relation, and similar for \"" and \*". More pre
isely, this follows

from Point 3 of the following 
laim. For te
hni
al reasons, we simultaneously prove some

other, te
hni
al properties. The proof of this 
laim follows the lines of Marx and Reynolds

[MR99℄.

Claim 5. Let i � 1 and i) j. Then the following holds:

(1) if �(j) is on the 
oor, then M; r

j

j= 
oor;

(2) M; r

j

6j= wall;

(3) r

i

! r

j

and r

i

" r

j+1

.

(4) if �(j + 1) is on the wall, then M; r

j+1

j= wall

Proof: All sub
laims are proved simultaneously by indu
tion on i. First for the indu
tion

start. Then we have i = 1 and j = 2.

(1) Clearly, �(2) is on the 
oor. Sin
e M; r

1

j= '

D

, we have M; r

1

j= wall. Thus

Formula (5.10) yields M; r

2

j= 
oor.

(2) We have 1 ) 2. Point 1 gives us M; r

2

j= 
oor. Sin
e r

1

ntpp r

2

, we also have

M; r

2

6j= [ntppi℄:a. Thus, Formula (5.9) yields M; r

2

6j= wall.

(3) By Point 2, we have M; r

2

6j= wall. By Formula (5.14), there are regions r; s 2 W

su
h that M; r j= a ^ b, r tpp s, M; s j= 
, and s tpp r

2

. By Point 5 of Claim 1, we

have either r = r

i

for some i � 1 or r

i

ntpp r for all i � 1. In the �rst 
ase, we

have r

i

! r

2

. Claim 4.1 yields i = 1 and we are done. In the se
ond 
ase, we have

r

2

ntpp r: 
ontradi
tion to r tpp s and s tpp r

2

. Finally, r

1

" r

3

is an immediate


onsequen
e of r

1

! r

2

and the de�nition of \"".

(4) Sin
e �(3) is on the wall, we have to show that M; r

3

j= wall. By Point 3, we have

r

1

" r

3

. Thus, Formula (5.11) yields the desired result.

Now for the indu
tion step.

(1) Suppose that �(j) is on the 
oor. Sin
e obviously j > 1, �(j � 1) is on the wall.

Sin
e i > 1, there is a k with i � 1 ) k. It is readily 
he
ked that j � 1 = k + 1.

Thus, IH (Point 4) yieldsM; r

j�1

j= wall and we 
an use Formula (5.10) to 
on
lude

that M; r

j

j= 
oor as required.

(2) First assume that �(j) is on the 
oor. Sin
e j > 1, we have M; r

j

6j= [ntppi℄:a.

Thus, Point 1 and Formula (5.9) yield M; r

j

6j= wall as required.

Now assume that �(j) is not on the 
oor. Suppose, to the 
ontrary of what is

to be shown, that M; r

j

j= wall. Sin
e j > 1, we have M; r

j

6j= [ntppi℄:a. Thus,

by Formula (5.12) we obtain M; r

j

j= 3

D

wall. Sin
e j is not on the 
oor, i ) j

implies i � 1 ) j � 1. Thus, the IH (Point 3) yields r

i�1

" r

j

. Hen
e, we 
an

use M; r

j

j= 3

D

wall to derive M; r

i�1

j= wall. By IH (Point 2), we 
annot have

m ) i � 1 for any m. Thus, �(i � 1) is on the wall implying that �(i) is on the


oor. We have established a 
ontradi
tion sin
e, with i) j, this yields that j is on

the 
oor.

(3) We start with showing r

i

! r

j

. To this end, let us prove that we have r

k

! r

j

for

some k < j. By Point 2, we haveM; r

j

6j= wall. By Formula (5.14), there are regions

r; s 2 W su
h that M; r j= a ^ b, r tpp s, M; s j= 
, and s tpp r

j

. By Point 5 of

Claim 1, we have either r = r

k

for some k � 1 or r

n

ntpp r for all n � 1. In the �rst


ase, Claim 4.1 yields k < j and we are done. In the se
ond 
ase, we have r

j

ntpp r:


ontradi
tion to r tpp s and s tpp r

j

.
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Next, we show that k = i. To this end, assume that k 6= i. We distinguish two


ases:

� k < i. Let ` be su
h that k ) `. By IH (Point 3), we have r

k

! r

`

. Due to

fun
tionality of \!" (Claim 2) and sin
e r

k

! r

j

, we have ` = j. Due to the

inje
tivity of \)", we get k = i, whi
h is a 
ontradi
tion.

� i < k. By Claim 2, we have r

i

ntpp u

i

andM; u

i

j= a^b. By Point 5 of Claim 1,

we have either (i) u

i

= r

`

for some ` � 1 or (ii) r

n

ntpp u

i

for all n � 1. In

Case (ii), in parti
ular we have r

j

ntpp u

i

. Sin
e r

k

! r

j

, we have r

j

= u

k

, and

thus u

k

ntpp u

i

. As i < k, we have obtained a 
ontradi
tion to Claim 3. Thus,

Case (ii) is impossible and we 
on
lude u

i

= r

`

for some ` � 1. Next, we make

a 
ase distin
tion as follows:

{ ` < j. There are two sub
ases: the tile position �(`) may or may not be

on the wall.

First assume that it is not. Then there is an h < ` with h ) `. By

de�nition of the \)" fun
tion, i ) j, h ) `, and ` < j this implies

h < i. Thus we 
an use IH (Point 3) to 
on
lude r

h

! r

`

, a 
ontradi
tion

to the inje
tivity of \!" (Claim 4.2) and the fa
ts that r

i

! r

`

and h < i.

Now assume that �(`) is on the wall. Sin
e 1 < i < `, there is a h su
h

that h " ` and h ! ` � 1. Thus, IH (Point 4) yields M; r

`

j= wall. But

then, r

i

! r

`

and Formula (5.13) yield a 
ontradi
tion.

{ ` = j. Then r

i

! r

j

and r

k

! r

j

, whi
h is a 
ontradi
tion to the

inje
tivity of \!" (Claim 4.2) sin
e i 6= k.

{ ` > j. Contradi
tion to the monotoni
ity of \!" (Claim 4.2).

The se
ond part of Point 3, i.e. r

i

" r

j+1

, is now an immediate 
onsequen
e of the

fa
t that r

i

! r

j

and the de�nition of \"".

(4) Suppose that �(j+1) is on the wall. Then �(i) is also on the wall. Sin
e additionally

i > 1, there is a k su
h that k * i and k ) i� 1. By IH (Point 4), the latter yields

M; r

i

j= wall. Sin
e Point 3 yields r

i

" r

j+1

, Formula (5.11) yields M; r

j+1

j= wall.

This �nishes the proof of Claim 5. By de�nition of \)", \*", \!", and \"", Point 3 of

this 
laim yields the following:

i) j implies r

i

! r

j

and i * j implies r

i

" r

j

: (�)

Using this property, we 
an �nally de�ne the solution of D: set �(i; j) to the unique t 2 T

su
h that M; r

n

j= p

t

, where �(n) = (i; j). This is well-de�ned due to Formulas (5.15)

and (5.16). Thus, it remains to 
he
k the mat
hing 
onditions:

� Let (i; j) 2 N

2

, �(n) = (i; j), and �(m) = (i + 1; j). Then n ) m. By (�), this

yields r

n

! r

m

. By Formula (5.16), there are (t; t

0

) 2 H su
h that M; r

n

j= p

t

and M; r

m

j= p

t

0

. Sin
e this implies �(i; j) = t and �(i + 1; j) = t

0

, the horizontal

mat
hing 
ondition is satis�ed.

� The verti
al mat
hing 
ondition 
an be veri�ed analogously using Formula (5.17).

The se
ond lemma deals with the 
onstru
tion of models for '

D

from solutions for D.

Here, we have to make a suitable assumption on the 
lass of region stru
tures S for the


onstru
tion to su

eed. One possible su
h assumption is given in Theorem 5. It turns out,

however, that the following more general 
ondition is also suÆ
ient.
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De�nition 9 (Domino ready). Let R = hW; d
; e
; : : :i be a region stru
ture. Then R

is 
alled domino ready if it satis�es the following property: the set W 
ontains sequen
es

x

1

; x

2

; : : : and y

1

; y

2

; : : : su
h that, for i; j � 1, we have

(1) x

i

tpp x

i+1

;

(2) x

i

ntpp x

j

if j > i+ 1;

(3) x

2i�1

tpp y

i

;

(4) y

i

tpp x

2j�1

i� the position �(j) 
an be rea
hed from �(i) by going one step to the

right;

(5) y

i

ntpp y

j

if j > i.

Before dis
ussing this property in some more detail, let us show that it is indeed suitable

for our proof.

Lemma 10. Let R = hW; d
; e
; : : :i be a region stru
ture that is domino ready. If the

domino system D has a solution, then the formula '

D

is satis�able in a region model based

on R.

Proof Let R be a region stru
ture that is domino ready, D = (T;H; V ) a domino system,

and � a solution of D. We introdu
e new names for the regions listed in De�nition 9 that

are 
loser to the names used in the proof of Lemma 8:

� r

i

:= x

2i�1

for i � 1;

� s

i

:= x

2i

for i � 1;

� t

i

:= y

i

.

Now de�ne a region modelM based on R by interpreting the propositional letters as follows:

� a

M

= fr

i

; s

i

j i � 1g;

� b

M

= fr

i

j i � 1g;

� 


M

= ft

i

j i � 1g;

� wall

M

= fr

i

j �(i) is on the wallg;

� 
oor

M

= fr

i

j �(i) is on the 
oorg;

� p

M

t

= fr

i

j �(�(i)) = tg.

It is now easy to verify that � is satis�ed by every region of M, and that M; r

1

j= '

D

.

We have thus proved the following theorem.

Theorem 11. Let S � RS su
h that some R 2 S is domino ready. Then L

RCC8

(S) is

unde
idable.

We now show that this theorem implies Theorem 5.

Lemma 12. Ea
h region stru
ture R(R

n

; U) with n > 0 and R

n

re
t

� U is domino ready.

Proof We start with n = 1. Thus, we must exhibit the existen
e of two sequen
es of 
onvex,


losed intervals x

1

; x

2

; : : : and y

1

; y

2

; : : : satisfying Properties 1 to 5 from De�nition 9: for

i � 1, set

� x

i

:= [�j; j℄ if i = 2j � 1;

� x

i

:= [�j; j + 1℄ if i = 2j;

� y

i

:= [�i; j℄ if �(j) is the position rea
hed from �(i) by going a single step to the

right.

It is readily 
he
ked that these sequen
es of intervals are as required. To �nd sequen
es for

n > 1, just use the n-dimensional produ
ts of these intervals.
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Note that we 
an also prove this lemma if we admit only bounded re
tangles of R

n

as

regions: the 
onstru
tion from Lemma 12 
an easily be modi�ed so that the sequen
e of

a ^ b-re
tangles 
onverges against a �nite re
tangle, rather than against R

n

.

indeed more general than Theorem 5. For example, region stru
tures that are obtained

by 
hoosing all 
losed 
ir
les or ellipses as regions are easily seen to be domino ready, but

they do not satisfy the 
ondition from Theorem 5.

6. Re
ursive Enumerability

In this se
tion, we dis
uss the question whether modal logi
s of topologi
al relations

are re
ursively enumerable. We start with a simple observation.

Theorem 13. For n > 0, L

RCC8

(RS) = L

S

RCC8

(T OP) = L

S

RCC8

(R

n

;R

n

reg

) are re
ursively

enumerable.

Proof The equality has already been shown in Theorem 4. L

RCC8

(RS) is re
ursively enumer-

able sin
e (i) the 
lass of all region stru
tures RS is �rst-order de�nable (
.f. its de�nition in

Se
tion 2); (ii) it is a standard result that L

RCC8

formulas 
an be translated into equivalent

formulas of FO

m

RCC8

(see Se
tion 4); (iii) �rst-order logi
 is re
ursively enumerable.

An alternative proof of Theorem 13 
an be obtained by expli
itly giving an axiomatiza-

tion of L

RCC8

(RS). Sin
e this is interesting in its own right, in the following we develop su
h

an axiomatization based on a non-standard rule. Non-standard rules, whi
h are sometimes


alled non-orthodox or Gabbay-Burgess style rules, were introdu
ed in temporal logi
 in

[Bur80, Gab81a℄ and often enable �nite axiomatizations of modal logi
s for whi
h no �nite

standard axiomatization (using only the rules modus ponens and ne
essitation) is known.

For L

RCC8

(RS), we leave it as an open problem whether a �nite standard axiomatization

exists. To guarantee a simple presentation, we develop an axiomatization for the extension

of our language L

RCC8

with 
ountably many nominals, i.e. a new sort of variables i; j; k; : : :

interpreted in singleton sets. As noted in Se
tion 3, nominals 
an be de�ned in the original

language, but here it is more 
onvenient to treat them as �rst-
lass 
itizens sin
e this en-

ables the appli
ation of general 
ompleteness results from modal logi
.

3

The universal box

2

u

is still used as an abbreviation. Then the logi
 of all region stru
tures is axiomatized

by the following axiom and rule s
hemata, where ' and  range over formulas of L

RCC8

extended with nominals, i over the nominals, and r, r

1

, r

2

over the RCC8-relations:

� axioms of propositional logi
;

� [r℄('!  )! ([r℄'! [r℄ );

� hr

1

ii! :hr

2

ii, for r

1

6= r

2

. These axioms ensure that the r are mutually disjoint;

� hr

1

ihr

2

i'! hq

1

i' _ � � � _ hq

k

i', whenever

8x8y8z((r

1

(x; y) ^ r

2

(y; z))! (q

1

(x; z) _ � � � _ q

k

(x; z))

is in the RCC8-
omposition table;

� '! [r℄hri', whenever r is symmetri
;

� '! [r

1

℄hr

2

i' and '! [r

2

℄hr

1

i', whenever r

1

is the inverse of r

2

;

3

One 
ould also give a �nite non-standard axiomatization without adding nominals to the language by

making use of the de�nable di�eren
e modality 2

d

and then applying a general 
ompleteness result of [Ven92℄

(Theorem 2.7.7).
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� 2

u

' ! ', 2

u

' ! 2

u

2

u

', and ' ! 2

u

3

u

'. These axioms ensure that 2

u

is a

S5-modality;

� [eq℄'$ ';

� 3

u

i. This axiom ensures that the interpretation of nominals is non-empty;

� 3

u

(i^ ')! 2

u

(i! '). This axiom together with the rule 
ov below ensures that

the interpretation of nominals are at most singleton sets;

� the rules modus ponens, ne
essitation, and the non-standard rule 
ov:

'; '!  

 

'

2

u

'

i! '

'

if i not in '.

It is straightfoward to prove the soundness of this axiomatization. Completeness follows

from a general 
ompleteness result of [GV01℄ for logi
s with nominals and the universal

modality, sin
e all the axioms not involving nominals are Sahlqvist axioms, and, for ea
h

modal operator [r℄, we have an operator [r

�1

℄ interpreted by the 
onverse of the a

essibility

relation for [r℄.

Returning to our original proof of Theorem 13, we note that there is another 
lass of log-

i
s for whi
h re
ursive enumerability 
an be proved using �rst-order logi
: L

S

RCC8

(R

n

;R

n

re
t

),

n � 1. In this 
ase, however, we need a di�erent translation that takes into a

ount the

underlying region stru
tures and the shape of regions. The proof is similar to the transla-

tion of interval temporal logi
 into �rst-order logi
 given by Halpern and Shoham in [HS91℄.

The important di�eren
e is that Halpern and Shoham use their translation to prove re
ur-

sive enumerability of interval temporal logi
s determined by full interval stru
tures that

are �rst-order de�nable, whereas we prove re
ursive enumerability of a logi
 determined by

substru
tures of a stru
ture that is not �rst-order de�nable. The proof 
an be found in

Appendix C.

Theorem 14. For n � 1, L

S

RCC8

(R

n

;R

n

re
t

) is re
ursively enumerable.

With the ex
eption of the 
lass of logi
s L

S

RCC8

(R

n

;R

n


onv

), whose re
ursive enumerability

status we have to leave as an open problem, it thus turns out that all logi
s introdu
ed

in Se
tion 4 that are based on substru
tures of 
on
rete region stru
tures are re
ursively

enumerable.

4

Interestingly, this is not the 
ase for logi
s based on full 
on
rete region

stru
tures, and thus going from full 
on
rete region stru
tures to substru
tures yields a


omputational bene�t. In the following, we prove that most of the logi
s introdu
ed in

Se
tion 4 based on full 
on
rete region stru
tures are �

1

1

-hard, and thus not re
ursively

enumerable. Note, however, that the 
onditions listed in the theorem are mu
h less general

than those from Theorem 11.

Theorem 15. The following logi
s are �

1

1

-hard: L

RCC8

(T OP) and L

RCC8

(R

n

; U

n

) with

U

n

2 fR

n

reg

;R

n


onv

g and n � 1.

To prove Theorem 15, the domino problem of De�nition 7 is modi�ed by requiring that, in

solutions, a distinguished tile t

0

2 T o

urs in�nitely often in the �rst 
olumn of the �rst

quadrant, i.e. on the wall. It has been shown in [Har85℄ that this variant of the domino

problem is �

1

1

-hard. Sin
e we redu
e it to satis�ability as in the proof of Theorem 5, this

yields a �

1

1

-hardness bound for validity.

As a �rst step toward redu
ing this stronger variant of the domino problem, we extend '

D

with the following 
onjun
t stating thatM; s j= '

D

implies that we �nd an in�nite sequen
e

4

Re
all that 
on
rete region stru
tures are those region stru
tures indu
ed by topologi
al spa
es.
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of regions r

1

; r

2

; : : : su
h that s = r

1

, r

i

ntpp r

i+1

, andM; r

i

j= a^b^wall^p

t

0

for all i � 1:

2

u

(a ^ b! hntppi(a^ b ^ wall^ p

t

0

)) (6.1)

However, this is not yet suÆ
ient: in models of '

D

, we 
an have not only one dis
rete

ordering of a^ b regions, but rather many su
h orderings that are \sta
ked". For example,

there 
ould be two sequen
es of regions r

1

; r

2

; : : : , and r

0

1

; r

0

2

; : : : su
h that

r

1

ntpp r

2

ntpp r

3

� � � ; r

0

1

ntpp r

0

2

ntpp r

0

3

� � � ; and r

i

ntpp r

0

j

for all i; j � 1:

Due to this e�e
t, the above formula does not enfor
e that the main ordering (there is only

one for whi
h we 
an ensure a proper \going to the right relation") has in�nitely many

o

urren
es of t

0

.

The obvious solution to this problem is to prevent sta
ked orderings. This is done by

enfor
ing that there is only one \limit region", i.e. only one region approa
hed by an in�nite

sequen
e of a-regions in the limit. We add the following formula to '

D

:

2

u

�

[tppi℄hpoia! (:a ^ [tpp℄:a ^ [ntpp℄:a)

�

(6.2)

Let '

0

D

be the resulting extension of '

D

. The 
lasses of region stru
tures to whi
h the

extended redu
tion applies is more restri
ted than for the original one. We require that

they are 
on
rete, i.e. indu
ed by a topologi
al spa
e, and additionally adopt the following

property:

De�nition 16 (Closed under in�nite unions). Suppose thatR = R(T; U

T

) = hW; d
; e
; : : :i

is a 
on
rete region stru
ture. Then R is 
losed under in�nite unions if, for any sequen
e

r

1

; r

2

; : : : 2W with r

1

ntpp r

2

ntpp r

3

� � � , we have CI(

S

i2!

r

i

) 2 W .

We 
an now formulate the �rst part of 
orre
tness for the extended redu
tion.

Lemma 17. Let R(T; U

T

) = hW; d
; e
; : : :i be a 
on
rete region stru
ture that is 
losed

under in�nite unions. If the formula '

0

D

is satis�able in a region model based on R, then

the domino system D has a solution with t

0

o

urring in�nitely often on the wall.

Proof Let R(T; U

T

) = hW; d
; e
; : : :i be a 
on
rete region stru
ture that is 
losed under

in�nite unions, M = hR; p

M

1

; p

M

2

; : : :i a region model based on R(T; U

T

), and w 2 W su
h

thatM; w j= '

0

D

. We may establish Claims 1 to 5 as in the proof of Lemma 8, and we will

use the same terminology in what follows. We �rst strengthen Point 5 of Claim 1:

Claim 1'. There exists a sequen
e r

1

; r

2

; � � � 2 W su
h that

(1) M; r

1

j= '

D

,

(2) r

1

ntpp r

2

ntpp r

3

ntpp � � � ,

(3) M; r

i

j= a ^ b for i � 1.

(4) for ea
h i � 1, there exists a region s

i

2 W su
h that

(a) r

i

tpp s

i

,

(b) M; s

i

j= a ^ :b,

(
) s

i

tpp r

i+1

,

(d) for ea
h region s with r

i

tpp s and M; s j= a ^ :b, we have s = s

i

, and

(e) for ea
h region r with s

i

tpp r and M; r j= a ^ b, we have r = r

i+1

,

(5') for all r 2 W with M; r j= a ^ b, we have r = r

i

for some i � 1.
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Proof: We 
onstru
t the sequen
e r

1

; r

2

; : : : as in the proof of Claim 1. Sin
e Properties 1

to 4 are satis�ed by 
onstru
tion, it remains to prove Point 5': as R(T; U

T

) is 
losed under

in�nite unions, we have t = CI(

S

i2!

r

i

) 2 W: We �rst show that

t j= [tppi℄




poia (�)

To this end, suppose t tppi q. Then we have the following:

(1) q � r

i

6= ; for all i > 0.

Sin
e t tppi q, there exists x 2 q su
h that x 62 I(t). Suppose x 2 r

i

, for some r

i

.

Sin
e r

i

ntpp r

i+1

, this yields x 2 I(r

i+1

). By de�nition of t, we get x 2 I(t) and

have a 
ontradi
tion.

(2) There exists n > 0 su
h that i � n implies r

i

� q 6= ;.

Suppose r

i

� q, for all i > 0. Then s =

S

i2!

r

i

� q. Sin
e q 2 U

T

, we have

q = CI(q). Thus t = CI(s) � q, and we have a 
ontradi
tion to t tppi q.

(3) There exists m > 0 su
h that j � m implies I(r

j

) \ I(q) 6= ;.

Sin
e q = CI(q), we have I(q) 6= ;. Take any x 2 I(q). Sin
e t = CI(

S

i2!

r

i

) and

t tppi q, this yields x 2

S

i2!

r

i

. Thus there is a j with x 2 r

j

. Then x 2 I(r

j+1

).

Set m := j + 1. Sin
e r

m

ntpp r

i

for all i > m, we have x 2 I(q)\ I(r

j+1

) for all

i � m.

Take k = maxfn;mg. Using the above Points 1 to 3 and the de�nition of the po relation,

it is easily veri�ed that q po r

k

, thus �nishing the proof of (�).

Now we 
an establish Point 5'. By Point 5 of the original Claim 1, for all r 2 W with

M; r j= a^ b, we have that r = r

i

for some i � 1 or r

i

ntpp r for all i � 1. It thus suÆ
es to

show that the latter alternative yields a 
ontradi
tion. Thus assume r

i

ntpp r for all i � 1.

Sin
e r

1

ntpp r

2

ntpp � � � and t = CI(

S

i2!

r

i

), it is not hard to verify that this yields r = t,

t tpp r, or t ntpp r. By (�), t satis�es [tppi℄hpoia. By Formula (6.2), t thus also satis�es

:a ^ [tpp℄:a ^ [ntpp℄:a: 
ontradi
tion sin
e M; r j= a.

Lemma 8. By Point 5' of Claim 1' and Formula (6.1), this solution is su
h that the tile

t

0

o

urs in�nitely often on the wall.

For the se
ond part of 
orre
tness, we 
onsider region stru
tures R(R

n

; U) with R

n

re
t

�

U as in Theorem 5. In 
ontrast to the previous se
tion, it does not suÆ
e to demand that

region stru
tures are domino ready.

Lemma 18. If the domino system D has a solution with t

0

o

urring in�nitely often on

the wall, then the formula '

0

D

is satis�able in a region model based on R(R

n

; U), for ea
h

n � 1 and ea
h U with R

n

re
t

� U � R

n

reg

.

Proof Let � be a solution of D with t

0

appearing in�nitely often on the wall. It was shown

in the proof of Lemma 12 that the region spa
es we are 
onsidering are domino ready. Thus

we 
an use � to 
onstru
t a model M based on the region spa
e R(R

n

; U) exa
tly as in

the proof of Lemma 10. It suÆ
es to show that M satis�es, additionally, Formulas (6.1)

and (6.2). This is easy for Formula (6.1) sin
e � has been 
hosen su
h that t

0

appears

in�nitely often. Thus, let us 
on
entrate on Formula (6.2).

Let r

1

; r

2

; : : : be the regions from the 
onstru
tion of M in the proof of Lemma 10. If

t = CI(

[

i2!

r

i

) = R

n

2 W;
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then t satis�es :a^ [tpp℄:a^ [ntpp℄:a sin
e, 
learly, t is not related via eq, tpp, and ntpp to

any of the r

i

. To show that Formula (6.2) holds, it thus suÆ
es to prove that, for all s 2 W

su
h that s 6= t,M; s j= :[tppi℄




poia. Hen
e �x an s 2 W and assume that s 6= t. Sin
e it is

a region, s is non-empty and regular 
losed. Therefore, we �nd a hyper-re
tangle h 2 R

n

re
t


ontained in s. By expanding h until we hit a point x 2 s � Is, we obtain an h

0

2 R

n

re
t

su
h that h � h

0

and h

0

is a tangential proper part of s. Now �x an x 2 h

0

\ (s�Is). Then,

by the 
onstru
tion of the sequen
e r

1

; r

2

; : : : , we 
an �nd a hyper-re
tangle h

00

� h

0

whi
h


ontains x but is not in the relation po with any r

i

. In 
on
lusion, M; h

00

j= [po℄:a and,

therefore, M; s j= htppii[po℄:a.

Note that any region stru
ture R(T;T

reg

), in parti
ular the stru
tures R(R

n

;R

n

reg

), are


losed under in�nite unions. This applies as well to R(R

n

;R

n


onv

). Sin
e R

n

re
t

� R

n


onv

�

R

n

reg

, Lemmas 17 and 18 immediately yield Theorem 15.

It is worth noting that there are a number of interesting region stru
tures to whi
h

this proof method does not apply. Interesting examples are the region stru
ture of hyper-

re
tangles in R

n

, n � 2, the region stru
ture based on simply 
onne
ted regions in R

2

[SS01℄, and the stru
ture of polygons in R

2

[PS98℄. Sin
e these spa
es are not 
losed under

in�nite unions, the above proof does not show the non-axiomatizability of the indu
ed logi
s.

We believe, however, that slight modi�
ations of the proof introdu
ed here 
an be used to

prove their �

1

1

-hardness as well.

7. Finite Region Stru
tures

As dis
ussed in Se
tion 4, it 
an be useful to only admit models with a �nite (but

unbounded) number of regions. In this 
ase, we 
an again establish a quite general un-

de
idability result. Moreover, unde
idability of a logi
 L

�n

RCC8

(S) implies that it is not

re
ursively enumerable if S is �rst-order de�nable. We start with proving unde
idability.

Theorem 19. If R(R

n

;R

n

re
t

) � S � RS for some n � 1, then L

�n

RCC8

(S) is unde
idable.

We obtain the following 
orollary.

Corollary 20. The following logi
s are unde
idable for n � 1: L

�n

RCC8

(RS), L

�n

RCC8

(T OP),

L

�n

RCC8

(R

n

;R

n

reg

), L

�n

RCC8

(R

n

;R

n


onv

), and L

�n

RCC8

(R

n

;R

n

re
t

).

To prove this result, we redu
e yet another variant of the domino problem. For k 2 N, the

k-triangle is the set f(i; j) j i + j � kg � N

2

. The task of the new domino problem is,

given a domino system D = (T;H; V ), to determine whether D tiles an arbitrary k-triangle,

k 2 N, su
h that the position (0; 0) is o

upied with a distinguished tile s

0

2 T , and some

position is o

upied with a distinguished tile f

0

2 T . It is shown in Appendix D that the

existen
e of su
h a tiling is unde
idable.

Given a domino system D, the redu
tion formula '

D

is de�ned as

a ^ b ^ wall^ 
oor ^ s

0

^ [ntppi℄:a ^ 2

u

� ^ (f

0

_ hntppi(a^ b ^ f

0

));

where � is the 
onjun
tion of the Formulas (5.1), (5.3) to (5.5), and (5.7) to (5.17) of

Se
tion 5, and the following formulas:

� The �rst tile that has no tile to the right is on the 
oor:

�

a ^ b ^ :3

R

> ^ [ntppi℄((a^ b)! 3

R

>)

�

! 
oor (7.1)
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� If a tile has no tile to the right, then the next tile (if existent) also has no tile to

the right:

(a ^ b ^ :3

R

>)! (:3

+

> _3

+

:3

R

>) (7.2)

� The last tile is on the wall and we have no sta
ked orderings:

(a^ b ^ :3

+

>)! (wall ^ [ntpp℄:(a ^ b)) (7.3)

The proof of the following lemma is now a variation of the proofs of Lemma 8 and Lemma 10.

Details are left to the reader.

Lemma 21. Let D be a domino system. Then:

(i) if the formula '

D

is satis�able in a �nite region model, then D tiles a k-triangle for

some k � 1;

(ii) if D tiles a k-triangle for some k � 1, then '

D

is satis�able in a region model based on

a �nite substru
ture of R(R

n

;R

n

re
t

), for ea
h n � 1.

Obviously, Theorem 19 is an immediate 
onsequen
e of Lemma 21.

Sin
e RS is �rst-order de�nable, we 
an enumerate all �nite region models and also

all formulas satis�able in �nite region models. Similarly, the proof of Theorem 14 shows

that the 
lass of at most 
ountable substru
tures of R(R

n

;R

n

re
t

) is �rst-order de�nable

(relative to the 
lass of all at most 
ountable stru
tures), for n � 1. Thus, the 
omple-

ments of L

�n

RCC8

(RS) and L

�n

RCC8

(R

n

;R

n

re
t

) are re
ursively enumerable and Theorem 19 and

Theorem 4 give us the following:

Corollary 22. The following logi
s are not r.e., for ea
h n � 1: L

�n

RCC8

(RS), L

�n

RCC8

(T OP),

L

�n

RCC8

(R

n

;R

n

reg

), and L

�n

RCC8

(R

n

;R

n

re
t

).

We leave it as an open problem whether the logi
s L

�n

RCC8

(R

n

;R

n


onv

), n � 2, are re
ursively

enumerable.

8. The RCC5 set of Relations

When sele
ting a set of relations between regions in topologi
al spa
es, the eight Egen-

hofer-Franzosa relations appear to be the most popular 
hoi
e in the spatial reasoning


ommunity. However, it is not the only 
hoi
e possible. For example, a re�nement of RCC8

into 23 relations has been proposed and RCC5, a 
oarsening into �ve relations, is also rather

popular [GPP95, DWM01, Ben94, CH01℄. Sin
e we have shown that modal logi
s based

on the Egenhofer-Franzosa relations are unde
idable and often even �

1

1

-
omplete, a natural

next step for improving the 
omputational behaviour is to 
onsider modal logi
s based on

a 
oarser set of relations. In this se
tion, we de�ne and investigate modal logi
s based on

the RCC5 set of relations. It turns our that often reasoning is still unde
idable, although

di�erent proof methods have to be used that yield less general theorems. For example, the

re
ursive enumerability of modal logi
s determined by full 
on
rete RCC5 region stru
tures

is left as an open problem.

The RCC5 set of relations is obtained from RCC8 by keeping the relations eq and po, but


oarsening (1) the tpp and ntpp relations into a new \proper-part of" relation pp; (2) the tppi

and ntppi relations into a new \has proper-part" relation ppi; and (3) the d
 and e
 relations

into a new disjointness relation dr. Thus, a 
on
rete RCC5-stru
ture R

5

(T; U

T

) indu
ed by a

topologi
al spa
e T and a set of regions U

T

� T

reg

is the tuple hU

T

; eq

R

; po

R

; dr

R

; pp

R

; ppi

R

i

where eq and po are interpreted as before and
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Æ dr po pp ppi

dr � dr,po,pp dr,po,pp dr

po dr,po,ppi, � po,pp dr,po,ppi

pp dr dr,po,pp pp �

ppi dr,po,ppi, po,pp eq,po,pp,ppi ppi

Figure 6: The RCC5 
omposition table.

� dr

R

= d


R

[ e


R

;

� pp

R

= tpp

R

[ nttp

R

;

� ppi

R

= tppi

R

[ nttpi

R

.

It is interesting to note that the RCC5 relations 
an be de�ned without appealing to the

topologi
al notions of interior and 
losure. Hen
e, modal logi
s based on RCC5 may also

be viewed as modal logi
s determined by the following relations between sets: `having non-

empty interse
tion', `being disjoint', and `is a subset of'. They are thus related to the logi
s


onsidered in [Vak95℄.

Similarly to 
on
rete region stru
tures indu
ed by the eight Egenhofer-Franzosa rela-

tions, the 
lass of 
on
rete RCC5-stru
tures 
an be 
hara
terized by �rst-order senten
es.

Denote by RS

5

the 
lass of all general RCC5-stru
tures

hW; dr

R

; eq

R

; pp

R

; ppi

R

; po

R

i

where W is non-empty and the r

R

are mutually ex
lusive and jointly exhaustive binary

relations on W su
h that (1) eq is interpreted as the identity relation on W , (2) po

R

and

dr

R

are symmetri
, (3) pp

R

is the inverse of ppi

R

and (4) the rules of the RCC5-
omposition

table (Figure 6) are valid.

The following representation theorem is proved by �rst establishing Point (ii) for �nite

RCC5-stru
tures and then applying the same te
hnique as in the proof of Theorem 1.

Theorem 23.

(i) Every 
on
rete RCC5-stru
ture is a ageneral RCC5-stru
ture;

(ii) every general RCC5-stru
ture is isomorphi
 to a 
on
rete RCC5-stru
ture.

(iii) for every n > 0, every 
ountable general RCC5-stru
ture is isomorphi
 to a 
on
rete

RCC5-stru
ture of the form R

5

(R

n

; U

R

n

) (with U

R

n

� R

n

reg

).

As in the RCC8 
ase, we only distinguish between 
on
rete and general RCC5-stru
tures if

ne
essary. RCC5-models are de�ned in the obvious way by extending RCC5-stru
tures with

a valuation fun
tion.

The modal language L

RCC5

for reasoning about RCC5-stru
tures extends propositional

logi
 with unary modal operators [dr℄, [eq℄, et
. (one for ea
h RCC5 relation). A number of

results from our investigation of L

RCC8

have obvious analogues for L

RCC5

.

The results established in Se
tion 3 have 
ounterparts in the RCC5 
ase: RCC5 
on-

straint networks 
an be translated into L

RCC5

in a straightforward way by de�ning nominals.

Moreover, L

RCC5

has the same expressive power as the two-variable fragment of FL

m

RCC5

,

i.e. the �rst-order language with the �ve binary RCC5-relation symbols and in�nitely many

unary predi
ates. Finally, the two-variable fragment of FL

m

RCC5

is exponentially more su
-


in
t on the 
lass of stru
tures RS

5

than L

RCC5

. The proofs are analogous to those from

Se
tion 3 and Appendix B.
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Analogous to the RCC8 
ase, we de�ne logi
s of full RCC5-stru
tures, substru
ture

variants, and �nite substru
ture variants: given a 
lass S of RCC5-stru
tures, we denote

with L

RCC5

(S) the set of L

RCC5

-formulas whi
h are valid in all members of S; with L

S

RCC5

(S)

the set of L

RCC5

-formulas whi
h are valid in all substru
tures of members of S; and with

L

�n

RCC5

(S) the set of L

RCC5

-formulas whi
h are valid in all �nite substru
tures of members

of S. For brevity, we refrain from developing formulas that separate the di�erent logi
s

obtained by applying L

RCC5

to di�erent 
lasses of RCC5-stru
tures. Instead, we only note

that there is an obvious analogue of Theorem 4.

Theorem 24. For n > 0, we have

(1) L

RCC5

(RS) = L

S

RCC5

(T OP) = L

S

RCC5

(R

n

;R

n

reg

);

(2) L

�n

RCC5

(RS) = L

�n

RCC5

(T OP) = L

�n

RCC5

(R

n

;R

n

reg

).

We now investigate the 
omputational properties of logi
s based on L

RCC5

. Analogously to

the RCC8 
ase, many natural logi
s are unde
idable. Still, our RCC5 unde
idability result is


onsiderably less powerful than the one for RCC8. Intuitively, we have to restri
t ourselves to

RCC5-stru
tures with the following property: for any set S � W of 
ardinality two or three,

there exists a unique smallest region Sup(S) that 
overs all regions from S. Formally, we

de�ne the 
lass RS

9

of RCC5-stru
tures hW; dr

R

; eq

R

; : : :i satisfying the following 
ondition:

for every set S �W of 
ardinality two or three, there exists a region Sup(S) 2 W su
h that

� s eq Sup(S) or s pp Sup(S) for ea
h s 2 S;

� for every region t 2 W with s pp t for ea
h s 2 S, we have Sup(S) eq t or Sup(S) pp t;

� for every region t 2W with t dr s for ea
h s 2 S, we have t dr Sup(S).

Region stru
tures based on all non-empty regular 
losed sets in a topologi
al spa
e belong

to RS

9

. This applies, in parti
ular, to the stru
tures R

5

(R

n

;R

n

reg

), for n � 1. However,

their substru
tures usually do not belong to RS

9

. For example, the stru
tures R

5

(R

n

;R

n

x

)

with x 2 f
onv; re
tg and n � 1, are not in RS

9

. Our aim is to prove the following theorem:

Theorem 25. Suppose R

5

(R

n

;R

n

reg

) 2 S � RS

9

, for some n � 1. Then L

RCC5

(S) is

unde
idable.

This 
learly yields the following 
orollary:

Corollary 26. The following logi
s are unde
idable, for ea
h n � 1: L

RCC5

(T OP) and

L

RCC5

(R

n

;R

n

reg

).

The proof of Theorem 25 is by redu
tion of the satis�ability problem for the unde
idable

modal logi
 S5

3

to sati�ability of L

RCC5

formulas in S. The original unde
idability proof

for S5

3

has been given by Maddux in an algebrai
 setting [Mad80℄. For the redu
tion, we

use the modal notation of [GKWZ03℄. More pre
isely, the language L

3

is the extension of

propositional logi
 by means of unary modal operators 3

1

, 3

2

and 3

3

. L

3

is interpreted in

S5

3

-models

W = hW

1

�W

2

�W

3

; p

W

1

; p

W

2

; : : :i

where the W

i

are non-empty sets and p

W

i

� W

1

�W

2

�W

3

. The truth-relation j= between

pairs (W; (w

1

; w

2

; w

3

)) with w

i

2 W

i

, and L

3

-formulas ' is de�ned indu
tively as follows:

� W; (w

1

; w

2

; w

3

) j= p

i

i� (w

1

; w

2

; w

3

) 2 p

W

i

;

� W; (w

1

; w

2

; w

3

) j= :' i� W; (w

1

; w

2

; w

3

) 6j= ';

� W; (w

1

; w

2

; w

3

) j= '

1

^ '

2

i� W; (w

1

; w

2

; w

3

) j= '

1

and W; (w

1

; w

2

; w

3

) j= '

2

;

� W; (w

1

; w

2

; w

3

) j= 3

1

' i� there exists w

0

1

2 W

1

su
h that W; (w

0

1

; w

2

; w

3

) j= ';
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� W; (w

1

; w

2

; w

3

) j= 3

2

' i� there exists w

0

2

2 W

2

su
h that W; (w

1

; w

0

2

; w

3

) j= ';

� W; (w

1

; w

2

; w

3

) j= 3

3

' i� there exists w

0

3

2 W

3

su
h that W; (w

1

; w

2

; w

0

3

) j= '.

A formula ' 2 L

3

is 
alled S5

3

-satis�able if there exists an S5

3

-model W and a triple

(w

1

; w

2

; w

3

) su
h that W; (w

1

; w

2

; w

3

) j= '.

Now for the redu
tion. The basi
 idea is to introdu
e three variables a

1

; a

2

; a

3

and then

to represent ea
h set W

i

of an S5

3

-model by the set of pairwise dis
onne
ted regions

fr 2 W jM; r j= a

i

g:

The set W

1

�W

2

�W

3

is then represented by the set of regions

fSup(fw

1

; w

2

; w

3

g) jM; w

i

j= a

i

for i 2 f1; 2; 3gg:

The regions in this set will be marked with a variable d. To simulate the modal operators

of S5

3

, we will additionally refer to regions Sup(fw

i

; w

j

g) with 1 � i < j � 3. Su
h regions

are marked with the variable d

i;j

.

The details of the redu
tion are as follows: with every S5

3

-formula ', we asso
iate an

L

RCC5

-formula

2

u

� ^ d ^ '

℄

(�)

where '

℄

is indu
tively de�ned below and � is the 
onjun
tion of the following formulas:

(1) regions representing elements from W

1

[W

2

[W

3

are pairwise dis
onne
ted, ea
h

su
h region represents an element from W

i

for a unique i, and the sets W

i

are

non-empty: for i = 1; 2; 3, put

a

i

!

^

j=1;2;3

([pp℄:a

j

^ [ppi℄:a

j

^ [po℄:a

j

) (8.1)

a

1

! :a

2

; a

1

! :a

3

; a

2

! :a

3

; (8.2)

^

i=1;2;3

3

u

a

i

(8.3)

(2) the variable d identi�es regions representing elements of W

1

�W

2

�W

3

:

d$ (

^

i=1;2;3

hppiia

i

) ^ :hppii(

^

i=1;2;3

hppiia

i

) (8.4)

(3) d

i;j

identi�es regions representing elements of W

i

�W

j

: for 1 � i < j � 3, put

d

ij

$ (

^

k=i;j

hppiia

k

) ^ :hppii(

^

k=i;j

hppiia

k

): (8.5)

Now, we de�ne '

℄

indu
tively by

p

℄

i

:= p

i

(:')

℄

:= d ^ :'

℄

(' ^  )

℄

:= '

℄

^  

℄

(3

1

')

℄

:= hppii(d

23

^ hppi(d^ '

℄

))

(3

2

')

℄

:= hppii(d

13

^ hppi(d^ '

℄

))

(3

3

')

℄

:= hppii(d

12

^ hppi(d^ '

℄

))

The following Lemma immediately yields Theorem 25.
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Lemma 27. Suppose R(R

n

;R

n

reg

) 2 S � RS

9

, for some n � 1. Then an S5

3

-formula ' is

satis�able in an S5

3

-model i� 2

u

� ^ d ^ '

℄

is satis�able in S.

Proof (() Suppose the region model

M = hR; a

M

1

; a

M

2

; a

M

3

; d

M

; d

M

12

; : : : ; p

M

1

; : : :i

satis�es 2

u

� ^ d ^ '

℄

, where R = hW; dr

R

; eq

R

; : : :i 2 RS

9

. De�ne

W = hW

1

�W

2

�W

3

; p

W

1

; p

W

2

; : : :i

by setting

� W

i

= a

M

i

, for i = 1; 2; 3;

� for all (w

1

; w

2

; w

3

) 2 W

1

�W

2

�W

3

and i < !,

(w

1

; w

2

; w

3

) 2 p

W

i

i� Sup(fw

1

; w

2

; w

3

g) 2 p

M

i

.

By Formula (8.3), the W

i

are non-empty. Now, the fun
tion f : W

1

� W

2

� W

3

! d

M

;

de�ned by putting

f(w

1

; w

2

; w

3

) = Supfw

1

; w

2

; w

3

g;

is a well-de�ned bije
tion:

� f is well-de�ned (i.e., Supfw

1

; w

2

; w

3

g 2 d

M

) by the properties of Sup(S) and by

Formula (8.4);

� f is inje
tive sin
e, by Formulas (8.1) and (8.2), we have w

1

dr w

2

for distin
t

w

1

; w

2

2 W

1

[W

2

[W

3

. By the properties of Sup(S), we thus get w dr Supfw

1

; w

2

; w

3

g

for every w 2 W

1

[W

2

[W

3

di�erent from w

1

; w

2

; w

3

;

� By Formula (8.4), f is surje
tive.

Using Formula (8.5), one 
an show in the same way that f

ij

: W

i

�W

j

! d

M

ij

, 1 � i < j � 3,

de�ned by

f

ij

(w

i

; w

j

) = Supfw

i

; w

j

g;

are well-de�ned bije
tions. Moreover, for all (w

1

; w

2

; w

3

) 2 W

1

� W

2

�W

3

and u 2 W

i

,

v 2 W

j

, 1 � i < j � 3, we obtain Supfu; vg pp Supfw

1

; w

2

; w

3

g i� u = w

i

and v = w

j

.

Now it is straightforward to show by stru
tural indu
tion that, for all subformulas  of

' and all (w

1

; w

2

; w

3

) 2W

1

�W

2

�W

3

, we have

W; (w

1

; w

2

; w

3

) j=  i� M; f(w

1

; w

2

; w

2

) j=  

℄

:

Take (w

1

; w

2

; w

3

) 2 W

1

�W

2

�W

3

su
h that f(w

1

; w

2

; w

3

) j= '

℄

. Then (w

1

; w

2

; w

3

) j= '.

()) By the standard translation of S5

3

into �rst-order logi
 and the theorem of L�owenheim-

Skolem, every satis�able S5

3

formula ' is satis�able in a 
ountable model

W = hW

1

�W

2

�W

3

; p

W

1

; p

W

2

; : : :i:

We may assume w.l.o.g. that the sets W

i

are mutually disjoint. Now let n > 0 and de�ne

a model M for 2

u

� ^ d ^ '

℄

based on the stru
ture R

5

(R

n

;R

n

reg

) as follows. Let f :

W

1

[W

2

[W

3

! R

n

reg

be an inje
tive mapping su
h that f(w) dr f(w

0

) if w 6= w

0

, and set

� a

M

i

= ff(w) j w 2W

i

g, for i = 1; 2; 3;

� d

M

= ff(w

1

) [ f(w

2

) [ f(w

3

) j (w

1

; w

2

; w

3

) 2 W

1

�W

2

�W

3

g;

� d

M

ij

= ff(w

i

) [ f(w

j

) j (w

i

; w

j

) 2 W

i

�W

j

g, for 1 � i < j � 3;

� p

M

i

= ff(w

1

) [ f(w

2

) [ f(w

3

) j (w

1

; w

2

; w

3

) j= p

i

g for i < !.



MODAL LOGICS OF TOPOLOGICAL RELATIONS 31

It is straightforward to prove that � is true in every point of M. Moreover, one 
an easily

prove by indu
tion that, for every subformula  of ' and every (w

1

; w

2

; w

3

) 2 W

1

�W

2

�W

3

,

we have

W; (w

1

; w

2

; w

3

) j=  i� M; f(w

1

) [ f(w

2

) [ f(w

3

) j=  

℄

:

Sin
e ' is satis�ed in W, we thus obtain that 2

u

� ^ d^ '

℄

is satis�ed in M.

The de
idability of other RCC5 logi
s is left as an open problem. In parti
ular, the

de
idability status of substru
ture logi
s and their �nite 
ompanions is one of the most

intriguing open problems suggested by the work presented in this paper.

Con
ering the re
ursive enumerability of logi
s based on L

RCC5

, we only note that a


ounterpart of Theorem 13 is easily obtained using an analogous proof:

Theorem 28. For n > 0, L

RCC5

(RS) = L

S

RCC5

(T OP) = L

S

RCC5

(R

n

;R

n

reg

) are re
ursively

enumerable.

As already noted, the re
ursive enumerability of RCC5 logi
s determined by full 
on
rete

RCC5-stru
tures is left as an open problem.

9. Con
lusion

We �rst 
ompare our results with Halpern and Shoham results for interval temporal

logi
 [HS91℄. Although one might be tempted to 
onje
ture that their unde
idability proofs


an be extended to logi
s of region spa
es, a 
lose inspe
tion shows that the only spa
es

for whi
h this might be possible are the logi
s of hyper-re
tangles L

RCC8

(R

n

;R

n

re
t

). An

extension is not possible, however, for L

RCC8

(T OP) and L

RCC8

(R

n

;R

n

reg

), and not even for

L

S

RCC8

(R

n

;R

n

re
t

). In fa
t, the proof te
hnique developed in this paper is more powerful

than that of [HS91℄: Theorems 5, 15, and 19 apply to logi
s indu
ed by the region spa
e

R(R;R


onv

), whi
h is 
learly an interval stru
ture.

5

Interestingly, on this interval stru
ture

our results are stronger than those of Halpern and Shoham in two respe
ts: �rst, we only

need the RCC8 relations, whi
h 
an be viewed as a \
oarsening" of the Allen interval

relations used by Halpern and Shoham. Se
ond and more interestingly, by Theorem 5

we have also proved unde
idability of the substru
ture logi
 L

S

RCC8

(R;R


onv

), whi
h is a

natural but mu
h weaker variant of the full (interval temporal) logi
 L

RCC8

(R;R


onv

), and

not 
aptured by Halpern and Shoham's unde
idability proof.

Several open questions for future resear
h remain. Similar to the temporal 
ase, the

main 
hallenge is to exhibit a de
idable and still useful variant of the logi
s proposed in

this paper. Perhaps the most interesting 
andidate is L

RCC5

(RS), whi
h 
oin
ides with

the logi
s L

S

RCC5

(R

n

;R

n

reg

), and to whi
h the redu
tion exhibited in Se
tion 8 does not

apply. Other 
andidates 
ould be obtained by modifying the set of relations, e.g. giving up

some of them. It has, for example, been argued that dropping po still results in a useful

formalism for appli
ations in geographi
 information systems. An interesting step in this

dire
tion is [SS05℄, where a number of de
idability and axiomatizability results are proved for

modal logi
s over region stru
tures with only one modal operator 
orresponding to 
ertain

in
lusion relations between regions. Finally, it is an open problem whether L

RCC5

(RS) and

5

Noti
e that Halpern and Shoham allow for intervals 
onsisting of a single point while our intervals have

to be regular 
losed sets and therefore non-singletons. However, as single point intervals are de�nable using

the formula [pp℄?, all our negative results extend to interval stru
ture with single point intervals.
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L

RCC5

(R

n

;R

n

reg

) are re
ursively enumerable. Although we believe that they are r.e. (in


ontrast to their RCC8 
ounterparts), a proof is yet la
king.
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Appendix A. Proof of Representation Theorem

Theorem 1 (Representation theorem).

(i) Every 
on
rete region stru
ture is a general region stru
ture;

(ii) every general region stru
ture is isomorphi
 to a 
on
rete region stru
ture;

(iii) for every n > 0, every 
ountable general region stru
ture is isomorphi
 to a 
on
rete

region stru
ture of the form R(R

n

; U

R

n

) (with U

R

n

� R

n

reg

).

The proof of this theorem refers to RCC8 
onstraint networks as introdu
ed in Se
tion 3,

with the only di�eren
e that, in the following, we also admit in�nite su
h networks. For


onvenien
e, we repeat the de�nition here. An RCC8 
onstraint network is a set of 
on-

straints (s r r) with s; r region variables and r an RCC8 relation. Su
h a network N is

satis�able in a topologi
al spa
e T with regions U

T

if there exists an assignment Æ of regions

in U

T

to region variables su
h that (s r r) 2 N implies Æ(s) r

T

Æ(r).

Proof (i) Is easily proved by verifying the 
onditions formulated for general region models.

This in
ludes veri�
ation of the 
omposition table, 
.f. [CCR93℄.

(ii) is well-known for �nite general region stu
tures, see [Ben98℄. Thus, it remains to extend

the result to in�nite stru
tures. We are going to prove this extension with the help of the


ompa
tness theorem for �rst-order logi
. To this end, we redu
e satis�ability of RCC8


onstraint networks in topologi
al spa
es to satis�ability in 
ertain relational stru
tures.

Fix a general region stru
ture R = hW; d


R

; e


R

; : : :i with W in�nite. An asso
iated RCC8


onstraint network, 
alled the diagram of R and denoted with diag(R), is de�ned by

diag(R) = f(s

w

r s

v

) j w; v 2 W and M j= w r vg;

where the s

w

, w 2 W , are region variables. To prove (ii), it suÆ
es to show that diag(R) is

satis�able in some topologi
al spa
e T with a set U

T

of non-empty regular 
losed regions:

if this is the 
ase, then

R(T; fÆ(s

w

) j w 2 Wg)

is a 
on
rete region stru
ture isomorphi
 to R, where Æ is the assignment witnessing satis-

fa
tion of diag(R) in (T; U

T

).

Re
all that every partial order (V;R) indu
es a topologi
al spa
e (V;I

R

) by setting, for

X � V ,

I

R

X = fx 2 V j 8y (xRy ! y 2 X)g

(and thus C

R

X = fx 2 V j 9y (xRy ^ y 2 X)g). We 
all (V;I

R

) the topologi
al spa
e

indu
ed by (V;R). Of parti
ular interest for us are topologi
al spa
es indu
ed by partial

orders that are fork frames: a partial order (V;R) is a fork frame if it is the disjoint union

of forks, where a fork is a partial order (fx

b

; x

l

; x

r

g; S) su
h that S is the re
exive 
losure

of f(x

b

; x

l

); (x

b

; x

r

)g. For example, Figure 7 
ontains an example fork frame whose indu
ed

topologi
al spa
e satis�es the 
onstraints (r po s), (s e
 t), and (r d
 t) if r, s, and t

are interpreted as regular-
losed sets as indi
ated. Denote by F the 
lass of all topologi
al

spa
es based on fork frames. It is shown in [Ben98, Ren02℄ that every �nite 
onstraint

network whi
h is satis�able in a general region stru
ture is satis�able in a topologi
al spa
e

T 2 F with regions T

reg

. As diag(R) is trivially satis�able in the general region stru
ture R,

every �nite subset of diag(R) is satis�able in a topologi
al spa
e T 2 F with regions T

reg

.

Next, we give a translation of subsets N of the RCC8 
onstraint network diag(R) to sets

�(N) of �rst-order senten
es using a binary predi
ate R for the partial order in fork frames,
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s t

s; t

r; s

r; s

r; s r r

r

Figure 7: A fork frame satisfying (r po s), (s e
 t), and (r d
 t).

and unary predi
ates (P

w

)

w2W

for regions. The translation is su
h that, for all T 2 F based

on a fork frame F = (V; S), the following 
onditions are equivalent:

� an assignment Æ witnesses satisfa
tion of N in T with regions T

reg

;

� �(N) is satis�ed in the �rst-order stru
tureM with universe V that is obtained by

setting R

M

:= S and P

M

w

:= Æ(s

w

) for all region variables s

w

in N .

The translation introdu
es one senten
e for ea
h 
onstraint in N . We only treat the 
ase

(s

w

e
 s

v

):

9x(P

w

(x) ^ P

v

(x))^ :9x(P

w

(x) ^ 8y(xRy ! P

v

(y)))^ :9x(P

v

(x) ^ 8y(xRy ! P

w

(y))):

The 
ases for other RCC8 relations are easily derived from their semanti
s and the de�nition

of the topologi
al spa
es in F. Extend �(N) to another set of �rst-order senten
es �

�

(N)

by adding the following:

� \P

w

is non-empty and regular 
losed", for all w 2 W :

9xP

w

(x) ^ 8x(P

w

(x)$ 9y(xRy ^ 8z(yRz ! P

w

(z)))):

� \R is a disjoint union of forks" (details are left to the reader).

Clearly, �

�

(N) is satis�able in an arbitrary �rst-order stru
ture i� �(N) is satis�ed in a

�rst-order stru
tureM obtained from a fork frame as des
ribed above i� N is satis�able in

a topologi
al spa
e T 2 F with regions T

reg

.

Thus, satis�ability of every �nite subset of diag(R) in a topologi
al spa
e T 2 F with

regions T

reg

yields that every �nite subset of �

�

(diag(R)) is satis�able. By 
ompa
tness of

�rst-order logi
, �

�

(diag(R)) is also satis�able and thus diag(R) is satis�able in a topologi
al

spa
e T 2 F with regions T

reg

.

(iii) Suppose that R = hW; d


R

; e


R

; : : :i is at most 
ountable. From the en
oding of 
on-

straint networks as sets of �rst-order senten
es to be interpreted in fork frames and by

L�owenheim-Skolem, we obtain that diag(R) is satis�able in a topologi
al spa
e T 2 F based

on a fork frame (V; S) with V 
ountable. Let Æ be the assignment witnessing this satis-

fa
tion. To satisfy diag(R) in R with regions R

reg

, assume that we have an enumeration

(fx

i

b

; x

i

l

; x

i

r

g; S

i

), i 2 N, of the forks of (V; S). To de�ne an assignment Æ

0

in R

reg

, 
onsider

the sets

W

i

= fw 2 W j Æ(s

w

) � fx

i

b

; x

i

r

; x

i

l

gg

and take mappings g

i

from W

i

into the open interval (

1

4

;

1

3

) su
h that

(1) g

i

(w) � g

i

(v) if Æ(s

w

) � Æ(s

v

);

(2) g

i

(w) 6= g

i

(v) if Æ(s

w

) 6= Æ(s

v

).

Su
h mappings exist be
ause for ea
h S

i

= fÆ(s

w

) j w 2 W

i

g the partial order (S

i

;�) 
an

be extended to a linear order whi
h 
an then be embedded into the open interval (

1

4

;

1

3

).
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Now set, for w 2 W ,

Æ

0

(s

w

) =

[

i2N;x

i

r

2Æ(w);x

i

l

62Æ(w)

[i; i+

1

4

℄ [

[

i2N;x

i

l

2Æ(w);x

i

r

62Æ(w)

[i�

1

4

; i℄[

[

i2N;x

i

l

;x

i

r

2Æ(w)

[i� g

i

(w); i+ g

i

(w)℄:

It is not hard to verify that ea
h Æ

0

(s

w

) is non-empty and regular 
losed sin
e non-emptyness

and regular 
losedness of Æ(s

w

) implies that x

i

b

2 Æ(s

w

) i� fx

i

l

; x

i

r

g \ Æ(s

w

) 6= ;. With the

ex
eption of the ntpp-
ase, we leave it to the reader to 
he
k that the assignment Æ

0

witnesses

satisfa
tion of diag(R) in R with regions R

reg

. For ntpp, suppose that (s

w

ntpp s

v

) 2

diag(R). Then Æ(s

w

) is in the relation ntpp to Æ(s

v

) in the topologi
al spa
e indu
ed by

(V; S). We show that Æ

0

(s

w

) is in the relation ntpp to Æ

0

(s

v

) in R. Clearly, by Condition 1 for

the fun
tions g

i

, Æ

0

(s

w

) is a subset of Æ

0

(s

v

). To show that Æ

0

(s

w

) is in
luded in the interior

of Æ

0

(s

v

) we show that Æ

0

(s

w

)\ [i�

1

3

; i+

1

3

℄ is in
luded in the interior of Æ

0

(s

v

)\ [i�

1

3

; i+

1

3

℄,

for all i 2 N. Let i 2 N. We distinguish four 
ases.

� Æ(s

w

) � fx

i

r

; x

i

l

g. Then Æ(s

v

) � fx

i

r

; x

i

l

g and therefore

Æ

0

(s

u

) \ [i�

1

3

; i+

1

3

℄ = [i� g

i

(u); i+ g

i

(u)℄;

for u = w; v. By Conditions 1 and 2 on the fun
tions g

i

, [i � g

i

(w); i+ g

i

(w)℄ is

in
luded in the interior of [i� g

i

(v); i+ g

i

(v)℄.

� x

i

l

2 Æ(s

w

) and x

i

r

62 Æ(s

w

). Then Æ(s

v

) � fx

i

r

; x

i

l

g (be
ause otherwise Æ(s

w

) would

not be in
luded in the interior of Æ(s

v

)). But then the 
laim follows from the fa
t

that [i�

1

4

; i℄ is in the interior of [i� g

i

(v); i+ g

i

(v)℄.

� x

i

r

2 Æ(s

w

) and x

i

l

62 Æ(s

w

). Dual to the previous 
ase.

� Æ(s

w

) \ fx

i

r

; x

i

r

g = ;. Then Æ

0

(s

w

) \ [i�

1

3

; i+

1

3

℄ = ; and the 
laim follows.

Assignments witnessing satisfa
tion of diag(R) in R

n

with regions R

n

reg

, n > 1, 
an be


onstru
ted similarly using hyper-re
tangles.

Appendix B. Expressivity and Su

in
tness

The proof of the following theorem is an adaptation of the proof in [EVW02℄, and a

minor variant of the proof in [LSW01℄ that is provided here for 
onvenien
e. Throughout

this se
tion, we use 2FO

m

RCC8

to denote the two-variable fragment of FO

m

RCC8

and assume

that its two variables are 
alled x and y.

Theorem 2. For every 2FO

m

RCC8

-formula '(x) with free variable x, one 
an e�e
tively


onstru
t a L

RCC8

-formula '

�

of length at most exponential in the length of '(x) su
h that,

for every region model M and region s, we have M; s j= '

�

i� M j= '[s℄.

Proof A 2FO

m

RCC8

-formula � is 
alled a unary atom if it is of the form r(x; x), r(y; y), p

i

(x),

or p

i

(y). It is 
alled a binary atom if it is of the form r(x; y), r(y; x), x = y, or y = x.

W.l.o.g. we assume that 2FO

m

RCC8

-formulas are built using the operators 9, ^, and : only.

We indu
tively de�ne two mappings �

�

x

and �

�

y

, the former taking ea
h 2FO

m

RCC8

-formula

'(x) with free variable x to the 
orresponding L

RCC8

-formula '

�

x

, and the latter doing the

same for 2FO

m

RCC8

-formulas '(y) with free variable y. We only give the details of �

�

x

sin
e

�

�

y

is de�ned analogously by swit
hing the roles of x and y:

{ If '(x) = p

i

(x), then put ('(x))

�

x

= p

i

.

{ If '(x) = r(x; x), then put ('(x))

�

x

= > if r = eq, and ('(x))

�

x

= ? otherwise.

{ If '(x) = �

1

^ �

2

, then put ('(x))

�

x

= �

�

x

1

^ �

�

x

2

.
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{ If '(x) = :�, then put ('(x))

�

x

= :(�

�

x

).

{ If '(x) = 9y�(x; y), then �(x; y) 
an be written as

�(x; y) = 
[�

1

; : : : ; �

r

; 


1

(x); : : : ; 


l

(x); �

1

(y); : : : ; �

s

(y)℄;

i.e. as a Boolean 
ombination 
 of �

i

, 


i

(x), and �

i

(y), where the �

i

are binary atoms, the




i

(x) are unary atoms or of the form 9y


0

i

, and the �

i

(y) are unary atoms or of the form

9x�

0

i

. We may assume w.l.o.g. that x o

urs free in '(x). Our �rst step is to move all

formulas without a free variable y out of the s
ope of 9: obviously, '(x) is equivalent to

_

hw

1

;:::;w

`

i2f>;?g

`

(

^

1�i�`

(


i

$ w

i

) ^ 9y
(�

1

; : : : ; �

r

; w

1

; : : : ; w

l

; �

1

; : : : ; �

s

)): (�)

Now we \guess" a relation r that holds between x and y, and then repla
e all binary atoms

by either true or false a

ording to the guess. For r an RCC8 relation and 1 � i � r, let

� �

r

i

= > if �

i

= r(x; y);

� �

r

i

= > if �

i

= r(y; x) for r 2 fd
; e
; pog;

� �

r

i

= > if �

i

= tpp(y; x) and r = tppi or �

i

= ntpp(y; x) and r = ntppi;

� �

r

i

= > if �

i

is x = y and r = eq;

� �

r

i

= ? otherwise.

Using this notiation, (�) is equivalent to

W

hw

1

;:::;w

`

i2f>;?g

`

(

V

1�i�`

(


i

$ w

i

) ^

W

r2RCC8

9y(r(x; y)^ 
(�

r

1

; : : : ; �

r

r

; w

1

; : : : ; w

l

; �

1

; : : : ; �

s

))):

Now 
ompute, re
ursively, 


�

x

i

and �

�

y

i

, and de�ne '(x)

�

as

W

hw

1

;:::;w

`

i2f>;?g

`

(

V

1�i�`

(


�

x

i

$ w

i

)^

W

r2RCC8

hri
(�

r

1

; : : : ; �

r

r

; w

1

; : : : ; w

l

; �

�

y

1

; : : : ; �

�

y

s

)):

Theorem 3. For n � 1, de�ne a FO

m

RCC8

formula

'

n

:= 8x8y

�

^

i<n

(p

i

(x)$ p

i

(y))! (p

n

(x)$ p

n

(y))

�

Then every L

RCC8

-formula  

n

that is equivalent to '

n

on the 
lass of all region stru
tures

RS has length 2


(n)

.

Proof Etessami et al. [EVW02℄ show that, on !-words, every temporal logi
 formula equiv-

alent to '

n

is of length at least 2


(n)

, where temporal logi
 is assumed to have the operators

\next", \previously", \always in the future" (2

+

'), and \always in the past" (2

�

'). As-

sume, to the 
ontrary of what is to be shown, that there is an n � 1 and an L

RCC8

formula

 su
h that  is equivalent to '

n

on the 
lass of stru
tures RS and the length of  is

smaller than 2


(n)

. Let R = hW; d


R

; e


R

; : : :i 2 RS be su
h that W = fs

0

; s

1

; s

2

; : : :g and

s

i

ntpp

R

s

j

if j > i. Clearly,  is equivalent to '

n

on R. We 
onstru
t a new formula  

�

by exhaustively performing the following rewritings on (subformulas of)  :

6

� [r℄# > if r =2 fntpp; ntppig;

� [eq℄# #.

6

Re
all that hri# is only an abbreviation.
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The formula  

�

is equivalent to  (and thus to '

n

) on R, it only refers to the relations ntpp

and ntppi, and it may only be shorter, but not longer than  . We may now 
onvert  

�

into

a temporal logi
 formula  

t

by substituting subformulas [ntpp℄# with 2

+

# and subformulas

[ntppi℄# with 2

�

#. It is not hard to see that  

t

is equivalent to '

n

on !-words. Thus,

we have derived a 
ontradi
tion to the fa
t that there is no su
h temporal logi
 formula of

length smaller than 2


(n)

.

Appendix C. Re
ursive Enumerability of L

S

RCC8

(R

n

;R

n

re
t

)

Theorem 14. For n � 1, L

S

RCC8

(R

n

;R

n

re
t

) is re
ursively enumerable.

Proof We show this result for n = 2. For n = 1 and n > 2, the proof is similar and left to

the reader. Take the �rst-order language FL

4

with one binary relation symbol <, in�nitely

many 4-ary relation symbols P

1

; P

2

; : : :, and one extra 4-ary relation symbol exists. De�ne

a 4-ary predi
ate re
t(x

1

; x

2

; x

3

; x

4

) by setting

re
t(x

1

; x

2

; x

3

; x

4

) = (x

1

< x

2

) ^ (x

3

< x

4

):

Clearly, we 
an identify any ve
tor ~a = (a

1

; a

2

; a

3

; a

4

) 2 R

2

su
h that R j= re
t(~a) with the

re
tangle

[a

1

; a

2

℄� [a

3

; a

4

℄ 2 R

2

re
t

:

Moreover, it is easy (but tedious) to �nd, for every RCC8 relation r, a FL

4

formula

'

r

(x

1

; : : : ; x

4

; y

1

; : : :y

4

) su
h that, for any two re
tangles [a

1

; a

2

℄�[a

3

; a

4

℄ and [b

1

; b

2

℄�[b

3

; b

4

℄,

we have

[a

1

; a

2

℄� [a

3

; a

4

℄ r [b

1

; b

2

℄� [b

3

; b

4

℄ i� R

2

j= '

r

(~a;

~

b):

The details of working out these formulas are left to the reader. Now �x variables ~x =

x

1

; : : : ; x

4

and ~y = y

1

; : : : ; y

4

, and de�ne a translation s from L

RCC8

into FL

4

by

p

s

i

= re
t(~x) ^ exists(~x) ^ P

i

(~x)

( 

1

^  

2

)

s

=  

s

1

^  

s

2

(: )

s

= re
t(~x) ^ exists(~x) ^ : 

s

(hri )

s

= re
t(~x) ^ exists(~x) ^ 9~y('

r

(~x; ~y) ^  

s

(~y=~x)):

Claim. For every formula ' 2 L

RCC8

, ' is satis�able in a substru
ture of R(R

2

;R

2

re
t

) i�

'

s

is satis�able in a �rst-order model of the form Q = (Q; <; exists

Q

; P

Q

1

; P

Q

2

; : : :).

()) Suppose ' is satis�ed in a region model M based on a substru
ture of R(R

2

;R

2

re
t

).

Then '

s

is satis�able in the �rst-order model

R = (R; <; exists

R

; P

R

1

; P

R

2

; : : :)

in whi
h exists is interpreted as the set of all re
tangles belonging to the domain of M and

the P

i

are interpreted as the set of re
tangles in whi
h p

i

is true in M. By L�owenheim-

Skolem, there exists a 
ountably in�nite elementary substru
ture ofR in whi
h '

s

is satis�ed

(see [End72℄). Clearly, this stru
ture is a dense linear order without endpoints. As every


ountable dense linear order without endpoints is isomorphi
 to (Q; <), this stru
ture is of

the form required.

(() Suppose '

s

is satis�able in Q = (Q; <; exists

Q

; P

Q

1

; P

Q

2

; : : :). De�ne a region model M

based on a substru
ture of R(R

2

;R

2

re
t

) with domain U and valuation V as follows: let U

denote the set of re
tangles of the form [a

1

; a

2

℄� [a

3

; a

4

℄ su
h that Q j= re
t(~a) ^ exists(~a).
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Let V(p

i

) be the set of all re
tangles ~a in U su
h that Q j= P

i

(~a). Then it is readily 
he
ked

thatM satis�es '.

This �nishes the proof of the 
laim. Now set '

t

= 8~x(re
t(~x) ^ exists(~x) ! '

s

), for every

' 2 L

RCC8

. Moreover, let � be the 
onjun
tion of the usual �rst-order axioms for dense

linear orders without endpoints (see e.g. [End72℄). It follows from the 
laim above that

' is valid in all substru
tures of R(R

2

;R

2

re
t

) i� � ! '

t

is a theorem of �rst-order logi
.

Thus, re
ursive enumerability of L

S

RCC8

(R

2

;R

2

re
t

) is obtained from re
ursive enumerability

of �rst-order logi
.

Appendix D. The Domino Problem for k-triangles

Re
all that, for k 2 N, the k-triangle is the set f(i; j) j i+ j � kg � N

2

: We are going

to prove the following unde
idability result:

Theorem 29. Given a domino system D = (T;H; V ), it is unde
idable whether D tiles a

k-triangle, k � 1, su
h that the position (0; 0) is o

upied by a distinguished tile s

0

2 T and

some position is o

upied by a distinguished tile f

0

2 T .

The proof is via a redu
tion of the halting problem for Turing ma
hines with a single

right-in�nite tape that are started on the empty tape. The basi
 idea of the proof is to

represent a run of the Turing ma
hine as a sequen
e of 
olumns of a k-triangle, where

ea
h 
olumn represents a 
on�guration (with the left-most tape 
ell at the bottom of the


olumn). Let A be a single-tape right-in�nite Turing ma
hine with state spa
e Q, initial

state q

0

, halt state q

f

, tape alphabet � (b 2 � stands for blank), and transition relation

� � Q���Q���fL;Rg. W.l.o.g., we assume that Turing ma
hines have the following

properties:

� the initial state q

0

is only used at the beginning of 
omputations, but not later;

� the TM 
omes to a stop only if it rea
hes q

f

;

� if the TM halts, its last step is to the right;

� if the TM halts, then it labels the halting position with a spe
ial symbol # 2 �

before;

� the blank symbol is never written.

It is easily 
he
ked that every TM 
an be modi�ed to satisfy these requirements. The


on�gurations of A will be represented by �nite words of one of the forms

(1) xb

m

,

(2) a

0

� � �a

k

xya

0

0

� � �a

0

`

b

m

,

(3) a

0

� � �a

k

yxa

0

0

� � �a

0

`

b

m

,

where

� m > 0,

� all a

i

and a

0

i

are in �,

� x 2 A := Q � � � fL;Rg represents the a
tive tape 
ell, its 
ontent, the 
urrent

state, and the dire
tion to whi
h the TM has moved to rea
h the 
urrent position,

and

� y 2 A

y

:= fhq; �;Mi

y

j hq; �;Mi 2 Ag represents the previously a
tive tape 
ell, its


urrent 
ontent, the 
urrent state, and the dire
tion to whi
h A moved to rea
h the


urrent position.
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Note that the only di�eren
e between elements of A and elements of A

y

is that the latter

are marked with the symbol \y". Intuitively, the elements of A des
ribe the 
urrent head

position while the elements of A

y

des
ribe the previous one. For te
hni
al reasons, the

information whether the last step was to the left or to the right is stored twi
e in ea
h


olumn: both in the x 
ell and in the y 
ell. Con�gurations of Form 1 represent the initial


on�guration and thus do not 
omprise the des
ription of a previous state.

Given a Turing ma
hine A, we de�ne a domino system D

A

= (T;H; V; s

0

; f

0

) as follows:

� T := � [ A [A

y

[ f$g;

� s

0

:= hq

0

; b; Li;

� f

0

:= hq

f

;#; Ri;

�

H := f(�; �) j � 2 �g [

f(hq; �;Mi; hq

0

; �

0

;M

0

i

y

) j (q; �; q

0

; �

0

;M

0

) 2 �;M 2 fL;Rgg [

f(�; hq; �;Mi); (hq; �;Mi

y

; hq

0

; �;M

0

i) j � 2 �; q; q

0

2 Q;M;M

0

2 fL;Rgg [

f(hq; �;Mi

y

; �) j q 2 Q; � 2 �;M 2 fL;Rgg [

f(hq

f

;#; Ri; $); ($; $)g[ f(�; $) j � 2 �g [

f(hq; �;Mi

y

; $) j q 2 Q;M 2 fL;Rgg

�

V := f(�; �

0

) 2 �

2

j � = b implies �

0

= bg [

f(�; hq; �

0

; Li); (hq; �

0

; Ri; �) j �; �

0

2 �; q 2 Qg [

f(hq; �

0

; Li

y

; �); (�; hq; �

0

; Ri

y

) j �; �

0

2 �; q 2 Qg [

f(hq; �; Li; hq; �

0

; Li

y

); (hq; �

0

; Ri

y

; hq; �; Ri) j �; �

0

2 �; q 2 Qg [

($; $)g

The tile \$" is used for padding purposes: assume that there exists a terminating 
ompu-

tation of A on the empty tape. Then this 
omputation indu
es in an obvious way the tiling

of a �nite re
tangle su
h that s

0

is at position (0; 0), f

0

o

urs somewhere in the right-most


olumn, and the height of the re
tangle is bounded by the width w of the re
tangle. We

may now perform a padding of the 
olumns and rows in order to extend this re
tangle to

a 2w-triangle: for extending the height of 
olumns, we may pad with the blank symbol

\b", and for extending the width of rows, we may pad with the spe
ial symbol \$". Sin
e

the existen
e of a tiling of a k-re
tangle with s

0

at position (0; 0) and f

0

o

urring some-

where indu
es a halting 
omputation of A in a straightforward way, we obtain the following

lemma.

Lemma 30. The Turing ma
hine A halts on the empty tape i� the domino system D

A

tiles

a k-triangle, for some k � 1, su
h that position (0; 0) is o

upied by the tile s

0

and some

position is o

upied by f

0

.

Finally, Theorem 29 is an immediate 
onsequen
e of Lemma 30.
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