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Abstrat. Logial formalisms for reasoning about relations between spatial regions play

a fundamental role in geographial information systems, spatial and onstraint databases,

and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logi of time

intervals based on the Allen relations, we introdue a family of modal logis equipped with

eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations

between regions in topologial spaes suh as the real plane. We investigate the expressive

power and omputational omplexity of logis obtained in this way. It turns out that our

modal logis have the same expressive power as the two-variable fragment of �rst-order

logi, but are exponentially less suint. The omplexity ranges from (undeidable and)

reursively enumerable to �

1

1

-hard, where the reursively enumerable logis are obtained

by onsidering substrutures of strutures indued by topologial spaes. As our undeid-

ability results also apture logis based on the real line, they improve upon undeidability

results for interval temporal logis by Halpern and Shoham. We also analyze modal logis

based on the �ve RCC5 relations, with similar results regarding the expressive power, but

weaker results regarding the omplexity.

1. Introdution

Reasoning about topologial relations between regions in spae is reognized as one of

the most important and hallenging researh areas within spatial reasoning in arti�ial intel-

ligene (AI) and philosophy, spatial and onstraint databases, and geographial information

systems (GISs). Researh in this area an be lassi�ed aording to the logial apparatus

employed:

{ First-order theories of topologial relations between regions, as studied in AI and philos-

ophy [Cla85, RCC92, PS98, CH01℄, spatial databases [PSV99, SS01℄ and from an algebrai

viewpoint in [DWM01, Ste00, DW05℄;

{ Purely existential theories formulated as onstraint satisfation systems over jointly ex-

haustive and mutually disjoint sets of topologial relations between regions [Ege94, RN99,

GPP95, SS01, RCC92, Ben94, CH01℄

2000 ACM Subjet Classi�ation: F4.1, H2.8, I2.4.
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{ Modal logis of spae with operators interpreted by the losure and interior operator of

the underlying topologial spae and propositions interpreted as subsets of the topologial

spae, see e.g., [KT44, Ben96, AvB02, Nut99, PH02℄.

A similar lassi�ation an be made for temporal reasoning: we have general �rst-order

theories [All84℄, temporal onstraint systems [All83, VKV90, NB95℄ and modal temporal

logis like Prior's tense logis, LTL, and CTL [GHR94, Eme90℄. Surprisingly, one of the

most natural approahes to temporal reasoning has not yet found a fully developed analogue

on the spatial reasoning researh agenda: Halpern and Shoham's modal logi of intervals

[HS91℄, in whih propositions are evaluated at intervals (rather than time points), and

where referene to other intervals is enabled by modal operators interpreted by Allen's 13

relations between intervals, see also [vB83, Gal87℄. Despite its bad omputational behavior

(undeidable, usually not even r.e.), this framework proved rather fruitful and inuential in

temporal reasoning, see e.g. [Ven90, Ven92, AF98, Ras99, Lod00, Lut03℄.

In this paper, we onsider modal logis in whih propositions are evaluated at the re-

gions of topologial spaes, and referene to other regions is enabled by modal operators

interpreted as topologial relations. For de�ning suh logis, the two most important de-

isions to be made are hoosing an appropriate set of relations and identifying a suitable

notion of a \region" in a topologial spae.

Regarding the relations, in the initially mentioned researh areas there appears to be

onsensus that the eight Egenhofer-Franzosa (or RCC8) relations, whih have been inde-

pendently introdued in [RCC92℄ and [EF91℄, and their oarser relative RCC5 onsisting

of only �ve relations, are the most fundamental sets of relations between regions of topo-

logial spaes|both from a theoretial and a pratial viewpoint, see e.g. [PSV99, Ege94,

RN99, SS01, RCC92℄. Therefore, in the urrent paper we onentrate on these two sets

of relations. We should note that modal logis based on the Egenhofer-Franzosa relations

have been suggested in an early paper by Cohn [Coh93℄ and further onsidered in [Wes01℄.

However, it proved diÆult to analyze the expressive power and omputational behavior

of suh logis: despite several e�orts, to the best of our knowledge no results have been

obtained so far.

Conerning the regions of a topologial spae, we adopt a rather relaxed view: we

generally assume that regions are non-empty regular losed subsets of a topologial spae,

but we do not require that every suh subset is a region. This view allows us to onsider

logial strutures, heneforth alled region strutures, that are based on various kinds of

regions. Among others, we onsider the following options:

{ Region strutures in whih the set of regions is exatly the set of non-empty regular losed

subsets of a topologial spae.

{ In the Eulidean spae R

n

, region strutures where regions are identi�ed with all non-

empty onvex regular losed sets, or with all hyper-retangles.

{ Substrutures of the above region strutures: for example, we may admit region strutures

in whih only some, but not all hyper-retangles of R

n

are regions. To distinguish this ase

from the former two, we all region strutures in whih all regions of a partiular kind are

present full region strutures.

{ Finite substrutures of the above region strutures.

The rationale behind the latter two hoies of strutures is that, for ertain appliations,

it is suÆient to require the presene of only those regions in region strutures that are
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inhabited by spatial objets. If it is known that there are only �nitely many suh objets,

but their exat number is unknown, then �nite substrutures are the appropriate hoie.

The main purpose of this paper is to introdue modal logis of topologial relations in a

systemati way, to perform an investigation of their expressiveness and relationships, and to

analyze their omputational behavior. Regarding expressiveness, our main result onerns

the relationship to �rst-order theories of topologial relations. The expressive power of our

modal logis is inomparable with that standard theories of this kind sine modal logis o�er

an in�nite supply of propositional variables orresponding to unary prediates of �rst-order

logi. In ontrast, standard �rst-order theories of topologial relations o�er only eight binary

prediates interpreted as topologial relations, and no unary prediates [RCC92, PS98,

PSV99, SS01℄. Therefore, we onsider the extension of �rst-order theories of topologial

relations with an in�nite number of \free" unary prediates. Then, we an show that our

logis based on the Egenhofer-Franzosa or RCC5 relations has exatly the same expressive

power as the two-variable fragment of �rst-order logi on the same set of relations (indeed,

this holds for any mutually disjoint and jointly exhaustive set of topologial relations). We

also show that �rst-order logi is exponentially more suint. We argue that the availability

of unary prediates is essential for a wide range of appliation areas: in ontrast to desribing

only purely topologial properties of regions, it allows one to also apture other properties

suh as being a ountry (in a GIS), a ball (for a soer-playing robot), or a proteted area

(in a spatial database). In our modal logis, we an thus formulate onstraints based on

non-spatial properties suh as \there are no two overlapping regions that are both ountries"

and \every river is onneted to an oean or a lake".

The main results of this paper onern the omputational behavior of modal logis of

topologial relations. We prove a very general undeidability result that aptures all modal

logis of the RCC8 relations that are determined by a lass of region strutures whose

regions are (not neesserily all) non-empty regular losed sets, and that ontains at least

one in�nite struture. It is interesting to note that this result also overs logis that are

determined by substrutures of region strutures. In partiular, it aptures the substrutures

of the real line where regions are intervals, and thus improves upon undeidability results

for interval temporal logis by Halpern and Shoham that do not apture substrutures of

interval strutures [HS91℄. Using a variation of the proof of our entral theorem, we an

even show that logis based on �nite substrutures of region strutures are undeidable.

Although our results show that moving from full region strutures to substrutures does

not help to regain deidability, there is an improvement in omputational omplexity: we

show that most logis of RCC8 relations based on full region strutures are �

1

1

-hard and

thus not reursively enumerable. In ontrast, we also prove that many logis determined

by substrutures are reursively enumerable. Finally, we establish the undeidability of a

number of modal logis based on the RCC5 relations. The result is less general and, for

example, does not over the substruture ase. Reursive enumerability of RCC5-based

logis is left as an open problem.

This paper is organized as follows: in Setion 2, we introdue region strutures as the

semantial basis for modal logis of topologial relations. The modal language is introdued

in Setion 3. In this setion, we also ompare its expressiveness to that of �rst-order logi.

Additionally, we show that our modal logis are stritly more expressive than topologial

onstraint satisfation problems. In Setion 4, we introdue a number of natural modal

logis based on the Egenhofer-Franzosa relations that are indued by di�erent notions of

regions, and briey analyze their relationship. In Setion 5, we then prove the entral
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undeidability result apturing basially all interesting modal logis of RCC8 relations de-

termined by sets of region strutures ontaining at least one in�nite struture. For logis

of full region strutures, this is strengthened to a �

1

1

-hardness proof in Setion 6. We also

prove reursive enumerability of many modal logis based on substrutures of region stru-

tures. In Setion 7, we prove undeidability of logis determined by lasses of �nite region

strutures. Finally, in Setion 8 we onsider modal logis based on the RCC5 relations.

2. Strutures

The purpose of the logis onsidered in this paper is to reason about regions in topolog-

ial spaes. In this setion, we show how a topologial spae together with an appropriate

de�nition of \region" indues a logial struture, and establish some basi properties of the

strutures obtained in this way.

Reall that a topologial spae is a pair T = (U;I), where U is a set and Iis an interior

operator on U , i.e., for all s; t � U , we have

I(U) = U I(s) � s

I(s)\ I(t) = I(s\ t) II(s) = I(s):

The losure C (s) of s is C (s) = U � I(U � s): Of partiular interest for spatial reasoning

are n-dimensional Eulidean spaes R

n

based on Cartesian produts of the real line with

the standard topology indued by the Eulidean metri. Depending on the appliation

domain, di�erent de�nitions of regions in topologial spaes have been introdued. Almost

all of them have in ommon that the regions of a topologial spae T = (U;I) are identi�ed

with some set of non-empty, regular losed subsets of U , where a subset s � U is alled

regular losed if CI(s) = s.

1

Some popular hoies for topologial spaes and regions are

the following:

� the set T

reg

of all non-empty regular losed subsets of some topologial spae T, in

partiular the topologial spaes R

n

for some n � 1;

� the set R

n

onv

of non-empty onvex regular losed subsets of R

n

, for some n � 1;

� the set R

n

ret

of losed hyper-retangular subsets of R

n

, i.e., regions of the form

Q

n

i=1

C

i

, where C

1

; : : : ; C

n

are non-singleton losed intervals in R, for some n � 1.

Sometimes, regions are required to satisfy additional onstraints suh as being onneted

or homeomorphi to the losed unit dis.

Given a topologial spae T and a set of regions U

T

, we de�ne the extension of the eight

Egenhofer-Franzosa (or RCC8) relations d (`disonneted'), e (`externally onneted'), tpp

(`tangential proper part'), tppi (`inverse of tangential proper part'), po (`partial overlap'),

eq (`equal'), ntpp (`non-tangential proper part'), and nttpi (`inverse of non-tangential proper

part') as the following subsets of U

T

� U

T

:

(s; t) 2 d

T

i� s \ t = ;

(s; t) 2 e

T

i� I(s)\ I(t) = ; ^ s \ t 6= ;

(s; t) 2 po

T

i� I(s)\ I(t) 6= ; ^ s 6� t ^ t 6� s

(s; t) 2 eq

T

i� s = t

1

Another possibility is to identify regions with non-empty regular open sets instead of non-empty regular

losed ones. The results presented in this paper hold for this alternative de�nition of regions as well.
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Figure 1: The eight relations between regions.

(s; t) 2 tpp

T

i� s � t ^ s 6� I(t) ^ s 6= t

(s; t) 2 ntpp

T

i� s � I(t) ^ s 6= t

(s; t) 2 tppi

T

i� (t; s) 2 tpp

T

(s; t) 2 ntppi

T

i� (t; s) 2 ntpp

T

:

Figure 1 shows examples of the RCC8 relations in the real plane R

2

. The struture

R(T; U

T

) := hU

T

; d

T

; e

T

; po

T

; eq

T

; tpp

T

; ntpp

T

; tppi

T

; ntppi

T

i is alled the onrete region

struture indued by (T; U

T

). Observe that onrete region strutures do not inlude a val-

uation of propositional letters, and thus orrespond to a frame in standard modal logi.

We will later extend region strutures to region models by augmenting them with valuation

funtions.

We now develop a �rst-order haraterization of onrete region strutures. This will

establish some fundamental properties of onrete region strutures that are used through-

out the whole paper, and will also provide us with an easy proof of the fat that ertain

logis onsidered in this paper are reursively enumerable. We all a relational struture

R = hW; d

R

; e

R

; po

R

; eq

R

; tpp

R

; ntpp

R

; tppi

R

; ntppi

R

i

a general region struture if W is a non-empty set and the r

R

are binary relations on W

that are mutually disjoint (i.e., r

R

\ q

R

= ;, for r 6= q), jointly exhaustive (i.e., the union

of all r

R

is W �W ), and satisfy the following:

� eq is interpreted as the identity on W , d

R

, e

R

, and po

R

are symmetri, and tppi

R

and ntppi

R

are the inverse relations of ttp

R

and ntpp

R

, respetively;

� the rules of the omposition table (Figure 2) are satis�ed in the sense that, for any

entry q

1

; : : : ; q

k

in row r

1

and olumn r

2

, the �rst-order sentene

8x8y8z((r

1

(x; y) ^ r

2

(y; z))! (q

1

(x; z) _ � � � _ q

k

(x; z))

is valid (� is the disjuntion over all eight relations).

The following theorem shows that, in some sense, onrete region strutures and general

region strutures are interhangable. In what follows, we will thus often only speak of

region strutures and only distinguish between general and onrete region strutures when

neessary. A proof an be found in Appendix A.
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Æ d e tpp tppi po ntpp ntppi

d,e, d,e, d,e, d,e,

d � po,tpp, po,tpp, d po,tpp, po,tpp, d

ntpp ntpp ntpp ntpp

d,e, d,e, e,po, d,e, po,

e po,tppi, po,tpp, tpp, d,e po,tpp, tpp, d

ntppi tppi,eq ntpp ntpp ntpp

d,e, d,e, d,e,

tpp d d,e tpp,ntpp po,tpp, po,tpp, ntpp po,tppi,

tppi,eq ntpp ntppi

d,e, e,po, po,eq, po, po,

tppi po,tppi, tppi, tpp, tppi,ntppi tppi, tpp, ntppi

ntppi ntppi tppi ntppi ntpp

d,e, d,e, po, d,e, po, d,e,

po po,tppi, po,tppi, tpp, po,tppi, � tpp, po,tppi,

ntppi ntppi ntpp ntppi ntpp ntppi

d,e, d,e,

ntpp d d ntpp po,tpp, po,tpp, ntpp �

ntpp ntpp

d,e, po, po, po, po, tppi,

ntppi po,tppi, tppi, tppi, ntppi tppi, tpp,ntpp, ntppi

ntppi ntppi ntppi ntppi ntppi,eq

Figure 2: The omposition table.

Theorem 1 (Representation theorem).

(i) Every onrete region struture is a general region struture;

(ii) every general region struture is isomorphi to a onrete region struture;

(iii) for every n > 0, every ountable general region struture is isomorphi to a onrete

region struture of the form R(R

n

; U

R

n

) (with U

R

n

� R

n

reg

).

Note that Points (ii) and (iii) of Theorem 1 rely on the fat that we admit any non-empty

set of non-empty regular losed sets as a possible hoie for the regions of a topologial

spae. This is of ourse di�erent from admitting only strutures in whih, for example, all

non-empty regular losed sets are required to be regions, or all losed hyper-retangles are

required to be regions. The logis introdued in Setion 4 will be based on both kinds of

strutures. Quite informally, we shall in the following all strutures of the latter kind full

onrete region strutures. We introdue some useful lasses of region strutures:

� RS is the lass of all general region strutures;

� T OP denotes the lass of all region strutures R(T;T

reg

).

Observe that the strutures in T OP are full onrete region strutures. It is interesting

to note that, in ontrast to RS, T OP annot be haraterized by means of a reursively

enumerable set of �rst-order sentenes. This follows from the non-reursive enumerability

of the logi of T OP to be introdued and investigated later.

We should also note that the region struture R(R;R

ret

) = R(R;R

onv

) is an interval

struture. Therefore, topologial modal logis interpreted in suh strutures may be viewed

as temporal interval logis similar to the ones de�ned by Halpern and Shoham in [HS91℄.

A minor tehnial di�erene between our interval struture and the ones onsidered by

Halpern and Shoham is that our requirement of regular losedness exludes point-intervals,

while suh intervals are admitted by Halpern and Shoham.
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3. The Language

The modal language L

RCC8

extends propositional logi with ountably many variables

p

1

; p

2

; : : : and the Boolean onnetives : and ^ by means of the unary modal operators

[d℄, [e℄, et. (one for eah topologial relation). A region model M = hR; p

M

1

; p

M

2

; : : :i for

L

RCC8

onsists of a region struture R = hW; d

R

; e

R

; : : :i and the interpretation p

M

i

of the

variables p

i

of L

RCC8

as subsets of W . A formula ' is either true at a region s 2 W (written

M; s j= ') or false at s (written M; s 6j= '), the indutive de�nition being as follows:

(1) if ' is a prop. variable, then M; s j= ' i� s 2 '

M

;

(2) M; s j= :' i� M; s 6j= ';

(3) M; s j= '

1

^ '

2

i� M; s j= '

1

and M; s j= '

2

;

(4) M; s j= [r℄' i�, for all t 2 W , (s; t) 2 r

R

implies M; t j= '.

We use the usual abbreviations: '!  for :' _  and hri' for :[r℄:'.

In the remainder of this setion, we disuss the expressive power of the language L

RCC8

.

The disussion starts with some simple observations.

� First, the di�erene modality 2

d

', investigated for example in [dR92℄, has the fol-

lowing semantis:

M; s j= 2

d

' i� M; t j= ' for all t 2 W suh that t 6= s:

In L

RCC8

, it an be expressed as

V

r2RCC8�feqg

[r℄' sine the relations are jointly

exhaustive and mutually exlusive.

� Seond, the useful universal box 2

u

', whih is well-known from modal logi [GP92℄,

has the following semantis:

M; s j= 2

u

' i� M; t j= ' for all t 2 W:

In L

RCC8

, it an be expressed as ' ^ 2

d

'.

� Third, we an express that a formula ' holds in preisely one region (i.e., is a

nominal [GV93℄) by writing

nom(') = 3

u

(' ^2

d

:');

where 3

u

' = :2

u

:'. The availability of nominals means that we an introdue

names for regions; e.g., the formulas

nom(Elbe); nom(Dresden)

state that \Elbe" (the name of a river) and \Dresden" eah apply to exatly one

region.

� Finally, it is often useful to de�ne operators [pp℄ and [ppi℄ as abbreviations:

[pp℄' = [tpp℄' ^ [nttp℄'

[ppi℄' = [tppi℄' ^ [nttpi℄':

As in the temporal ase [HS91℄ and following Cohn [Coh93℄, we an use these new

operators to lassify formulas ' aording to whether

{ they are homogeneous, i.e. they hold ontinuously throughout regions:

2

u

('! [pp℄')

{ they are anti-homogeneous, i.e. they hold only in regions whose interiors are

mutually disjoint:

2

u

('! ([pp℄:' ^ [po℄:')
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Instanes of anti-homogeneous propositions are \river" and \university ampus",

while \oupied-by-water" is homogeneous.

As this paper onentrates on the investigation of the expressivity and omputational prop-

erties of topologial modal logis, it is out of sope to desribe potential appliations in

detail. Therefore, we only give a few illustrative examples of statements in L

RCC8

. The fol-

lowing example desribes, in a drastially simpli�ed way, the relationship of ities, harbours,

rivers, and the sea. Based on this `bakground theory', it then desribes the relationship of

the ity of Dresden and the river Elbe.

2

u

(harbor-ity$ (ity ^ hppiiharbor))

2

u

(harbor! (heiriver_ heisea))

2

u

(Dresden! harbor-ity)

2

u

(Elbe! river)

2

u

(Dresden!

V

r2RCC8�fdg

[r℄:sea)

2

u

(Dresden! (hpoiElbe^

V

r2RCC8�fdg

[r℄(river! Elbe)))

From these formulas, it follows that Dresden has a part that is a harbor and is related via

e to the river Elbe.

The example suggests a sheme for the representation of spatial knowledge in L

RCC8

that

is known from desription logi [BCM

+

03℄: a bakground theory (alled TBox in desrip-

tion logi) represents knowledge about general lasses of regions suh as those desribing

harbors and rivers. Knowledge about partiular regions is formulated by using nominals

and expressing spatial relations between them. In desription logi, knowledge of this latter

kind would be stored in an ABox.

We now relate the expressive power of the modal language L

RCC8

to the expressive

power of two standard formalisms for spatial reasoning: onstraint networks and spatial

�rst-order theories.

RCC8 onstraint networks are a basi, but rather popular formalism for representing

spatial knowledge using the RCC8 relations [RN99, Ege94, GPP95, SS01, RCC92℄. In the

following, we show that our modal language L

RCC8

an apture onstraint networks in a

straightforward way. An RCC8 onstraint network is a �nite set of onstraints (s r r) with

s; r region variables and r an RCC8 relation. Suh a network N is satis�able in a topologial

spae T with regions U

T

if there exists an assignment Æ of regions in U

T

to region variables

suh that (s r r) 2 N implies Æ(s) r

T

Æ(r). In our language L

RCC8

, we an express a

onstraint network N that uses region variables s

1

; : : : ; s

k

by writing

^

(s

i

rs

j

)2N

3

u

(p

i

^ hrip

j

) ^

^

1�i�k

nom(p

i

):

This formula is learly satis�able i� N is satis�able.

Spatial �rst-order theories are usually formulated in �rst-order languages equivalent

to the �rst-order language FO

RCC8

that has equality, eight binary prediates for the RCC8

relations, no funtion symbols, and no unary prediates [PSV99, PS98, SS01, RCC92℄. Intu-

itively, we annot redue L

RCC8

to suh languages beause they do not o�er a ounterpart of

L

RCC8

's propositional letters. A formal proof is provided by the following two observations:

(1) FO

RCC8

is deidable over the region struture R(R

2

;R

2

ret

). Indeed, it is not hard

to verify that there is a redution to the �rst-order theory of hR; <i whih oinides

with the �rst-order theory of hQ; <i and, therefore, is deidable [End72℄. Details
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of the redution are omitted as it is similar to the proof of Theorem 14 given in

Appendix C (but simpler).

(2) In Setion 6, we show that L

RCC8

is not reursively enumerable over R(R

2

;R

2

ret

).

Thus, the adequate �rst-order language to ompare L

RCC8

with is the monadi extension

FO

m

RCC8

of FO

RCC8

that is obtained by adding ountably many unary prediates p

1

; p

2

; : : :.

By well-known results from modal orrespondene theory [Gab81b℄, any L

RCC8

formula '

an be polynomially translated into a formula '

�

of FO

m

RCC8

with only two variables suh

that, for any region model M and any region s,

M; s j= ' i� M j= '

�

[s℄:

More surprisingly, the onverse holds as well: this follows from reent results of [LSW01℄

sine the RCC8 relations are mutually exlusive and jointly exhaustive. A proof sketh of

the following theorem an be found in Appendix B.

Theorem 2. For every FO

m

RCC8

-formula '(x) with free variable x that uses only two vari-

ables, one an e�etively onstrut a L

RCC8

-formula '

�

of length at most exponential in the

length of '(x) suh that, for every region model M and any region s, M; s j= '

�

i� M j=

'[s℄:

However, there is also an important di�erene between L

RCC8

and the two-variable fragment

of FO

m

RCC8

: the latter is exponentially more suint than the former. This an be shown

using a formula proposed by Etessami, Vardi, and Wilke [EVW02℄ stating that any two

regions agreeing on p

0

; : : : ; p

n�1

also agree on p

n

. A proof an be found in Appendix B.

Theorem 3. For n � 1, de�ne a FO

m

RCC8

formula

'

n

:= 8x8y

�

^

i<n

(p

i

(x)$ p

i

(y))! (p

n

(x)$ p

n

(y))

�

Then every L

RCC8

-formula  

n

that is equivalent to '

n

on the lass of all region strutures

RS has length 2


(n)

.

2

We believe that this suintness result also holds on other lasses of region strutures suh

as the singleton fR(R

n

;R

n

reg

)g, but leave the proof as an open problem.

4. Logis

In this setion, we de�ne a number of topologial modal logis by applying the language

L

RCC8

to di�erent lasses of region strutures. We also establish a number of separation

results showing that logis obtained from di�erent lasses of region strutures do not usually

oinide.

Let S be a lass of region strutures. An L

RCC8

formula ' is valid in S if it is true

in all regions of all models based on region strutures from S. We use L

RCC8

(S) to denote

the logi of S, i.e., the set of all L

RCC8

-formulas valid in S. If S = fR(T; U

T

)g for some

topologial spae T with regions U

T

, then we abbreviate L

RCC8

(S) by writing L

RCC8

(T; U

T

).

The following logis of full onrete region strutures (see Setion 2) will play a prominent

role in this paper:

2

Following the formulation of Theorem 2, the formula  

n

is alled equivalent to '

n

if the following holds:

for every region model M and any region s, M; s j=  

n

i� M j= '

n

[s℄. As the formula '

n

does not have a

free variable, the right hand side of this equivalene does not depend on s.
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� the logi L

RCC8

(T OP) of all full onrete region strutures of regular losed regions

R(T;T

reg

);

� logis based on the R

n

, for some n � 1: L

RCC8

(R

n

;R

n

reg

), L

RCC8

(R

n

;R

n

onv

), and

L

RCC8

(R

n

;R

n

ret

).

We will also study the logi L

RCC8

(RS) of all region strutures. Note that the region lasses

underlying the above logis admit unbounded regions suh as R

n

. However, the tehnial

results proved in this paper also hold if we onsider bounded regions, only.

We now investigate the relationship between the introdued logis. As an exhaustive

analysis is out of the sope of this paper, we only treat some important ases:

(1) L

RCC8

(T OP) 6� L

RCC8

(RS) and L

RCC8

(R

n

;R

n

x

) 6� L

RCC8

(RS) for x2freg; onv; retg

and n > 0 sine

(nom(p) ^ nom(q) ^3

u

(p ^ hdiq))! 3

u

(hppiip ^ hppiiq)

is not valid in RS (it states that any two disonneted regions are proper parts of

a region). The onverse inlusions obviously hold for all n > 0.

(2) L

RCC8

(R

n

;R

n

x

) 6� L

RCC8

(T OP) for x 2 freg; onv; retg and n > 0: hppii> is

valid in R(R

n

;R

n

x

), but not in T OP . For the onverse diretion, we learly have

L

RCC8

(T OP) � L

RCC8

(R

n

;R

n

reg

) for all n > 0.

(3) For n;m > 0 and m

0

> 1, L

RCC8

(R

n

;R

n

ret

) 6� L, where L is any logi from

L

RCC8

(R

n+1

;R

n+1

ret

), L

RCC8

(R

m

0

;R

m

0

onv

), L

RCC8

(R

m

;R

m

reg

), L

RCC8

(T OP), L

RCC8

(RS).

To see this de�ne, for k > 0, an RCC8 onstraint network e[k℄ as follows:

e[k℄ = f(x

i

e x

j

) j 1 � i; j � kg:

For n > 0, e[2

n

+ 1℄ is not satis�able in R(R

n

;R

n

ret

), but it is satis�able in the

lasses of region strutures determining the logis L. Observe that the ondition

m

0

> 1 is required beause R(R;R

onv

) = R(R;R

ret

).

(4) For n > 0, L

RCC8

(R

n

;R

n

onv

) 6� L

RCC8

(R

n+1

;R

n+1

onv

). Sine L

RCC8

(R;R

onv

) =

L

RCC8

(R;R

ret

), the ase n = 1 follows from the previous item. Regarding the

ases n > 1, for simpliity we only onsider n = 2 expliitly. A generalization is

straightforward. Take region variables x

ij

, 1 � i < j � 4. Then the onstraint

network obtained as the union of e[4℄,

f(x

i

pp x

ij

); (x

j

pp x

ij

) j 1 � i < j � 4g

and

f(x

ij

e x

k

) j 1 � i < j � 4; k 2 f1; 2; 3; 4g� fi; jgg

is satis�able in R(R

3

;R

3

onv

) but not in R(R

2

;R

2

onv

).

(5) For all n;m > 0, L

RCC8

(R

n

;R

n

reg

) 6� L

RCC8

(R

m

;R

m

onv

) and L

RCC8

(R

n

;R

n

reg

) 6�

L

RCC8

(R

m

;R

m

ret

): the following formula states that, for any three pair-wise dison-

neted regions, there is another region ontaining only the �rst two (but not the

third) as a proper part:

�

^

1�i�3

nom(p

i

) ^

^

1�i<j�3

3

u

(p

i

^ hdip

j

)

�

!

3

u

(hppiip

1

^ hppiip

2

^ :hppiip

3

):

This formula is valid in R(R

n

;R

n

reg

), but not in R(R

n

;R

n

onv

) and R(R

n

;R

n

ret

).
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As these examples show, L

RCC8

is powerful enough to \feel" the di�erene between di�erent

topologial spaes and di�erent hoies of regions.

While full onrete region strutures are appropriate for reasoning about topologial

spaes themselves, for many appliations it is not adequate to demand that models have

to omprise all regions of a partiular form (suh as the non-empty regular losed ones

or the losed hyper-retangles). In suh appliations, models may ontain only some suh

regions|those that are inhabited by spatial objets that are relevant for the appliation.

This observation gives rise to another lass of topologial modal logis: given a lass S

of region strutures, we use L

S

RCC8

(S) to denote the logi determined by the lass of all

substrutures of strutures in S. Note that the lass RS is losed under substrutures by

de�nition, and thus we have L

RCC8

(RS) = L

S

RCC8

(RS). Taking this idea one step further,

we may even be onerned with appliations where the number of relevant spatial objets

is known to be �nite, but their exat number is unknown. Then, we should onsider only

models omprising a �nite number of regions, without assuming an upper bound on their

number. Thus, we use L

�n

RCC8

(S) to denote the logi of all �nite substrutures of strutures

in S.

The inlusion of suh substruture logis and their �nite versions is a distinguishing fea-

ture of the undeidability results proved in this paper: the general undeidability theorems

presented in Setions 5 and 7 over all logis of full onrete region strutures introdued

in this setion, as well as their substruture variants and �nite substruture variants. In

ontrast, the undeidability proofs of Halpern and Shoham for interval temporal logis are

not appliable to the substruture variants of these logis [HS91℄. Moreover, it will turn out

that logis of full onrete region strutures are usually �

1

1

-hard, while their substruture

ounterparts are usually reursively enumerable.

We now ontinue our investigation of the relationship between topologial modal logis,

taking into aount substruture logis and their �nite ompanions. Some of the new family

members turn out to be already known:

Theorem 4. For n > 0, we have

(1) L

RCC8

(RS) = L

S

RCC8

(T OP) = L

S

RCC8

(R

n

;R

n

reg

);

(2) L

�n

RCC8

(RS) = L

�n

RCC8

(T OP) = L

�n

RCC8

(R

n

;R

n

reg

).

Proof All the mentioned logis are modal logis determined by lasses of strutures that

are losed under substrutures. As shown in [Wol97℄, Corollary 3.8, suh modal logis are

determined by the at most ountable members of those lasses. Thus, Theorem 4 is an

immediate onsequene of Theorem 1.

A few additional interesting observations are the following:

(6) The non-inlusions given under Items 3 and 4 above also hold for the orresponding

substruture and �nite substruture ases. The proofs are idential.

(7) The arguments given in Items 1, 2 and 5 do not arry over sine the given formulas

are not valid in the orresponding substrutures and �nite substrutures. Indeed, by

Theorem 4, in these ases the �rst laim of Item 1 does not hold and the remaining

laims of Item 1 and 2 do not hold for x = reg. In Item 5, the statement is wrong

in the substruture ase and �nite substruture ase: it is not hard to see that, e.g.,

L

S

RCC8

(R

n

;R

n

reg

) � L

S

RCC8

(R

n

;R

n

onv

) and L

S

RCC8

(R

n

;R

n

reg

) � L

S

RCC8

(R

n

;R

n

ret

) for

all n > 0, and analogous laims hold in the �nite substruture ase.
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L

�n

RCC8

(R;R

ret

) = L

�n

RCC8

(R;R

onv

)

[ [

L

�n

RCC8

(R

2

;R

2

ret

) � L

�n

RCC8

(R

2

;R

2

onv

)

[ [

L

�n

RCC8

(R

3

;R

3

ret

) � L

�n

RCC8

(R

3

;R

3

onv

)

[ [

L

�n

RCC8

(RS) = L

�n

RCC8

(R

n

;R

n

reg

)

[ [

L

RCC8

(RS) = L

S

RCC8

(R

n

;R

n

reg

)

\

L

RCC8

(T OP)

\

L

RCC8

(R

n

;R

n

reg

)

Figure 3: Inlusions between logis.

(8) L

�n

RCC8

(S) 6� L for any lass of region strutures S and L among L

RCC8

(RS),

L

RCC8

(T OP) and L

RCC8

(R

n

; U

n

) with n � 1 and R

n

ret

� U

n

: the L�ob-formula

from modal logi

[pp℄([pp℄p! p)! [pp℄p:

is valid in a relational struture i� there is no in�nite asending pp-hain, see

[GKWZ03℄, pages 8-12. Thus, this formula is valid in all �nite region strutures,

but not in all in�nite ones.

(9) A number of additional inlusions is easily derived suh as L

S

RCC8

(R

n+1

;R

n+1

ret

) �

L

S

RCC8

(R

n

;R

n

ret

), for n > 0: it is easy to onvert a substruture of R(R

n+1

;R

n+1

ret

)

into an isomorphi substruture of R(R

n

;R

n

ret

).

The derived inlusions are summarized in Figure 3. By Points 1 to 9 above, all listed

inlusions are indeed proper. For the sake of readability, we do not attempt to display all

derived non-inlusions in Figure 3.

5. Undeidability

We now establish the entral result of this paper: a rather general undeidability result

that overs all logis introdued in the previous setion. The only exeptions are logis based

on lasses of �nite region strutures, whose undeidability will be established in Setion 7.

To the best of our knowledge, the undeidability result proved in this setion overs all

lasses of region strutures that have been onsidered in the literature and ontain at least

one in�nite struture. As the preise formulation of the result is somewhat tehnial, we

start with a weaker version in whih we require that the lass of region strutures ontains

at least one struture of the form R(R

n

; U) with R

n

ret

� U . This ondition will later be

replaed with a more general one.

Theorem 5. Let S � RS and suppose there exists n > 0 and a set U � R

n

reg

suh that

R

n

ret

� U and R(R

n

; U) 2 S. Then L

RCC8

(S) is undeidable.
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Figure 4: Enumerating tile positions.

Conerning the logis introdued in Setion 4, we thus obtain the following:

Corollary 6. The logis L

RCC8

(S) and L

S

RCC8

(S) are undeidable, for S one of RS, T OP,

R(R

n

;R

n

reg

), R(R

n

;R

n

onv

), and R(R

n

;R

n

ret

), with n > 0.

We now develop the proof of Theorem 5. As we shall see, the proof suggests the mentioned

generalization of Theorem 5, whih will be stated subsequently. To ease notation, in the

proofs given in this and the following setions we denote aessibility relations in models

simply with d, e, et., instead of with d

R

, e

R

, et.

The proof of Theorem 5 is by redution of the domino problem that requires tiling of

the �rst quadrant of the plane to the satis�ability of L

RCC8

formulas. As usual, a formula '

is alled satis�able in a region model M = hW; d; e; : : : ; p

M

1

; p

M

2

; : : :i if there is an s 2 W

with M; s j= '.

De�nition 7. Let D = (T;H; V ) be a domino system, where T is a �nite set of tile types

and H; V � T � T represent the horizontal and vertial mathing onditions. We say that

D tiles the �rst quadrant of the plane i� there exists a mapping � : N

2

! T suh that, for

all (x; y) 2 N

2

:

� if �(x; y) = t and �(x+ 1; y) = t

0

, then (t; t

0

) 2 H

� if �(x; y) = t and �(x; y + 1) = t

0

, then (t; t

0

) 2 V

Suh a mapping � is alled a solution for D.

For reduing this domino problem to satis�ability in region models based on S, we �x

an enumeration of all the tile positions in the �rst quadrant of the plane as indiated in

Figure 4. The funtion � takes positive integers to N � N-positions, i.e. �(1) = (0; 0),

�(2) = (1; 0), �(3) = (1; 1), et.

The idea of the redution is to onstrut a formula '

D

that enfores the existene of

a sequene of regions r

1

; r

2

; : : : suh that r

i

ntpp r

j

if i < j. Intuitively, eah region r

i

orresponds to the position �(i) of the �rst quadrant of the plane. We introdue additional

regions \onneting" eah r

i

with r

i+1

to failitate writing formulas that express statements

suh as \if the urrent region r

i

satis�es ', then the next region r

i+1

satis�es  ", and likewise

for the previous region. Similarly, we introdue additional regions that onnet eah region

r

i

with the region r

j

suh that the position �(j) is to the right of the position �(i) in the

�rst quadrant of the plane. These latter regions allow statements suh as \if the urrent

region r

i

satis�es ', then the region representing the position to its right satis�es  ". Using

suh statements, it is obviously easy to enfore the horizontal tiling ondition. By virtue of

our enumeration of plane positions, reahing the position above the urrent one is simply

a matter of going to the right and then advaning by one in the enumeration. Thus, we
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a ^ b

a ^ b

a ^ b

a^ b





1

2

3

4

a ^ b

a ^:b

a ^ b

a ^:b

a ^ b

pos. 1

pos. 2

pos. 3

Figure 5: Left: a disrete ordering in the plane; Right: the \going right" regions.

an also enfore the vertial tiling ondition. One of the main diÆulties of the proof will

be to enfore the existene of the onneting regions for \going to the right". The pursued

solution is inspired by [MR99, RZ01℄.

Now let D = (T;H; V ) be a domino system. For onstruting '

D

, we use the following

variables:

� for eah tile type t 2 T , a variable p

t

;

� variables a, b, and  that are used to mark important regions;

� variables wall and oor that are used to identify regions orresponding to positions

from the sets f0g �N (the wall) and N� f0g (the oor), respetively.

The redution formula '

D

is de�ned as

a ^ b ^ wall ^ oor ^ [ntppi℄:a ^ 2

u

�;

where � is the onjuntion of a number of formulas. We list these formulas together with

some intuitive explanations:

(1) Ensure that the regions fs 2 W jM; s j= ag are ordered by the relation pp (i.e. the

union of tpp and ntpp):

a! ([d℄:a ^ [e℄:a ^ [po℄:a) (5.1)

(2) Enfore that the regions fs j M; s j= a ^ bg are disretely ordered by ntpp. These

regions will onstitute the sequene r

1

; r

2

; : : : desribed above. In order to ensure

disreteness, we use a sequene of alternating a ^ b and a ^ :b regions as shown in

the left part of Figure 5.

a ^ b ! htppi(a ^ :b) (5.2)

a ^ :b ! htppi(a ^ b) (5.3)

a ^ :b ! [tpp℄(a! b) (5.4)

a ^ b ! [tpp℄(a! :b) (5.5)

A formal proof that these formulas work as desribed is given below (Point 5 of

Claim 1). If we are at an a ^ b region, we an aess the region orresponding to

the next position in the plane (w.r.t. the �xed enumeration) and to the previous
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position using

3

+

' = htppi(a ^ :b ^ htppi(a ^ b ^ '))

3

�

' = htppii(a^ :b ^ htppii(a ^ b ^ ')):

(3) The additional regions that will eventually allow us to \go right" in the plane satisfy

the propositional letter  and are related to the regions orresponding to plane

positions as indiated in the right part of Figure 5. For example, Position 2 in the

�gure is right of Position 1, and Position 4 is right of Position 2. We start with

stating the following:

a ^ b ! htppi (5.6)

 ! htppi(a^ b) (5.7)

 ! ([d℄: ^ [e℄: ^ [po℄: ^ [tpp℄: ^ [tppi℄:) (5.8)

These formulas do not yet ensure that the  regions atually bring us to the orret

position. Roughly spoken, they only help to ensure that \going to the right via

regions satisfying " is a well-de�ned, monotone, and injetive total funtion.

After further onstraining the  regions, we will be able to go to the right and

upper position with

3

R

' = htppi( ^ htppi(a ^ b ^ '))

3

U

' = 3

R

3

+

':

Similarly, we will be able to go to the left and down:

3

L

' = htppii( ^ htppii(a ^ b ^ '))

3

D

' = 3

L

3

�

':

(4) Axiomatizing the behavior of tiles on the oor and on the wall ensures that our

\going to the right" relation atually brings us to the expeted position in the �rst

quadrant of the plane:

(oor ^ wall) ! [ntppi℄:a (5.9)

wall ! 3

+

oor (5.10)

wall ! 3

U

wall (5.11)

[ntppi℄:a _ (wall ! 3

D

wall) (5.12)

a ^ b ! 3

R

:wall (5.13)

(a ^ b ^ :wall) ! 3

L

> (5.14)

(5) Finally, we enfore the tiling:

^

t;t

0

2T

:(p

t

^ p

t

0

) (5.15)

a ^ b!

_

(t;t

0

)2H

(p

t

^3

R

p

t

0

) (5.16)

a ^ b!

_

(t;t

0

)2V

(p

t

^3

U

p

t

0

) (5.17)
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We now prove two lemmas asserting the orretness of the redution. The �rst one is

onerned with onstruting solutions for D from region models for '

D

. Observe that this

lemma does not assume anything about the involved region model.

Lemma 8. If the formula '

D

is satis�able, then the domino system D has a solution.

Proof Let M = hR; p

M

1

; p

M

2

; : : :i be a region model of '

D

with R = hW; d; e; : : :i.

Claim 1. There exists a sequene r

1

; r

2

; : : : 2 W suh that

(1) M; r

1

j= '

D

,

(2) r

1

ntpp r

2

ntpp r

3

ntpp � � � ,

(3) M; r

i

j= a ^ b for i � 1.

(4) for eah i � 1, there exists a region s

i

2 W suh that

(a) r

i

tpp s

i

,

(b) M; s

i

j= a ^ :b,

() s

i

tpp r

i+1

,

(d) for eah region s with r

i

tpp s and M; s j= a ^ :b, we have s = s

i

, and

(e) for eah region r with s

i

tpp r and M; r j= a ^ b, we have r = r

i+1

,

(5) for all r 2 W with M; r j= a ^ b, we have that r = r

i

for some i � 1 or r

i

ntpp r for

all i � 1.

Proof: We start with indutively onstruting a sequene r

1

; r

2

; � � � 2 W satisfying Proper-

ties 1 to 4. Afterwards, we prove that Property 5 is also satis�ed. Sine M is a model of

'

D

, there is a region r

1

suh thatM; r

1

j= '

D

. By de�nition of '

D

, Point 3 is satis�ed. Due

to Formulas (5.2) and (5.3), there are regions s

1

and r

2

suh that r

1

tpp s

1

,M; s

1

j= a^:b,

s

1

tpp r

2

, and M; r

2

j= a ^ b. We show that all neessary Properties are satis�ed:

� Point 2. Sine r

1

tpp s

1

and s

1

tpp r

2

, we have r

1

tpp r

2

or r

1

ntpp r

2

aording

to the omposition table whih applies to all region strutures by Theorem 1. But

then, the �rst possibility is ruled out by Formula (5.5).

� Point 4d. Suppose there is an s 6= s

1

with r

1

tpp s and M; s j= a ^ :b. Sine

r

1

tpp s

1

, s

1

and s are related via one of po, tpp, and tppi by the omposition

table. But then, the �rst option is ruled out by Formula (5.1) and the last two by

Formula (5.4).

� Point 4e. Analogous to the previous ase.

The indution step is similar: as M; r

i

j= a ^ b, we may use Formulas (5.2) and (5.3) to

�nd the region r

i+1

, and then show in the same way as above that it satis�es all relevant

properties. It thus remains to prove Point 5. Assume that there is a region r suh that

M; r j= a^b, r 6= r

i

for all i � 1, and r

k

ntpp r does not hold for some k � 1. Sine r

k

ntpp r

does not hold and r

k

6= r, r

k

and r are related by one of d, e, po, tpp, tppi, and ntppi.

The �rst three possibilities are ruled out by Formula (5.1), and tpp and tppi are ruled out

by Formula (5.5). It thus remains to treat the ase r

k

ntppi r. Consider the relationship

between r

1

and r. Sine r

1

6= r and due to Formulas (5.1) and (5.5), there are only two

possibilities for this relation;

� r ntpp r

1

. Impossible by '

D

's subformula [ntppi℄:a.

� r

1

ntpp r. Then we have r

1

ntpp r ntpp r

k

. Take the maximal i suh that r

i

ntpp r

and the minimal j suh that r ntpp r

j

. Sine r 6= r

n

for all n � 1, we have j = i+1.

By Point 4, there is a region s with r

i

tpp s, M; s j= a ^ :b, and s tpp r

j

. Then

we have r nttpi r

i

tpp s. By the omposition table, r is related to s by po, tppi, or
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ntppi. On the other hand, r nttp r

j

tppi s. By the omposition table, we have one

of the relations d, e, po, tpp, or ntpp between r and s. Together we obtain r po s

whih ontradits Formula (5.1).

The next laim identi�es the regions needed for \going right" in the plane.

Claim 2. For eah i � 1, there exist regions t

i

and u

i

suh that

(1) r

i

tpp t

i

,

(2) M; t

i

j= ,

(3) for eah region t with r

i

tpp t and M; t j= , we have t = t

i

,

(4) t

i

tpp u

i

,

(5) M; u

i

j= a ^ b,

(6) for eah region u with t

i

tpp u and M; u j= a ^ b, we have u = u

i

.

Proof: Let i � 1. By Formula (5.6), there is a t

i

with r

i

tpp t

i

and M; t

i

j= . Let us show

that t

i

satis�es Property 3. To this end, let t 6= t

i

suh that r

i

tpp t and M; t j= . Then t

and t

i

are related via one of po, tpp, and tppi. But then, all these options are ruled out by

Formula (5.8). Now for Points 4 to 6. By Formula (5.7), there is an r suh that t

i

tpp r and

M; r j= a ^ b. Point 6 an now be be proved analogously to Point 3, using Formulas (5.1)

and (5.5) instead of Formula (5.8). This �nishes the proof of Claim 2.

The next laim states that the regions u

i

�xed in Claim 2 are ordered by ntpp.

Claim 3. Let i; j � 1 with i < j. Then u

i

ntpp u

j

.

Proof: By Claims 1 and 2, we have (i) r

i

ntpp r

j

, (ii) r

i

tpp t

i

, and (iii) r

j

tpp t

j

. By the

omposition table, (i) and (iii) yield r

i

ntpp t

j

, whih together with (ii) implies that t

i

and

t

j

are related by po, tpp, or ntpp. Sine M; t

i

j=  andM; t

j

j=  by Claim 2, all but the last

possibility are ruled out by Formula (5.8). Therefore t

i

ntpp t

j

whih together with t

j

tpp u

j

(Claim 2) implies t

i

ntpp u

j

. By Claim 2 we also have t

i

tpp u

i

whih by the omposition

table implies that u

i

and u

j

are related by po, tpp, or ntpp. Again by Claim 2,M; u

i

j= a^b

and M; u

j

j= a ^ b. Hene the �rst two possibilities are ruled out by Formulas (5.1) and

(5.5). It follows that u

i

ntpp u

j

, as required.

Before proeeding, let us introdue some notation.

� for i; j > 0, we write i ) j if the tile position �(j) an be reahed from �(i) by

going one step to the right. Similarly, we de�ne a relation i * j for going one step

up;

� for i; j > 0 we write r

i

! r

j

if u

i

= r

j

. Similarly, we write r

i

" r

j

if r

i

! r

j�1

.

Clearly, the \!" and \"" relations are partial funtions by Claims 1 and 2. The following

laim establishes some other important properties of \!": �rst, it moves only ahead in the

sequene r

1

; r

2

; : : : , but never bak. And seond, it is monotone and injetive.

Claim 4. Let i; j � 1. Then the following holds:

(1) if r

i

! r

j

, then i < j;

(2) if i < j, r

i

! r

k

, and r

j

! r

`

, then k < `;

Proof: First for Point 1. Suppose r

i

! r

j

and i � j. Then u

i

= r

j

and, by Claim 2,

r

i

tpp t

i

tpp r

j

. By the omposition table, r

i

is related to r

j

by tpp or ntpp. But by

Claim 1, i � j implies r

i

eq r

j

or r

i

ntppi r

j

. We have derived a ontradition. Hene

r

i

! r

j

implies i < j.

Now for Point 2. Assume i < j, r

i

! r

k

, and r

j

! r

`

. We have u

i

= r

k

and u

j

= r

`

.

Hene, by Claim 3, r

k

ntpp r

`

. Using Claim 1 and the omposition table, we derive k < `.
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The following laim establishes the ore part of the proof: the fat that the \!" relation

\oinides" with the \)" relation, and similar for \"" and \*". More preisely, this follows

from Point 3 of the following laim. For tehnial reasons, we simultaneously prove some

other, tehnial properties. The proof of this laim follows the lines of Marx and Reynolds

[MR99℄.

Claim 5. Let i � 1 and i) j. Then the following holds:

(1) if �(j) is on the oor, then M; r

j

j= oor;

(2) M; r

j

6j= wall;

(3) r

i

! r

j

and r

i

" r

j+1

.

(4) if �(j + 1) is on the wall, then M; r

j+1

j= wall

Proof: All sublaims are proved simultaneously by indution on i. First for the indution

start. Then we have i = 1 and j = 2.

(1) Clearly, �(2) is on the oor. Sine M; r

1

j= '

D

, we have M; r

1

j= wall. Thus

Formula (5.10) yields M; r

2

j= oor.

(2) We have 1 ) 2. Point 1 gives us M; r

2

j= oor. Sine r

1

ntpp r

2

, we also have

M; r

2

6j= [ntppi℄:a. Thus, Formula (5.9) yields M; r

2

6j= wall.

(3) By Point 2, we have M; r

2

6j= wall. By Formula (5.14), there are regions r; s 2 W

suh that M; r j= a ^ b, r tpp s, M; s j= , and s tpp r

2

. By Point 5 of Claim 1, we

have either r = r

i

for some i � 1 or r

i

ntpp r for all i � 1. In the �rst ase, we

have r

i

! r

2

. Claim 4.1 yields i = 1 and we are done. In the seond ase, we have

r

2

ntpp r: ontradition to r tpp s and s tpp r

2

. Finally, r

1

" r

3

is an immediate

onsequene of r

1

! r

2

and the de�nition of \"".

(4) Sine �(3) is on the wall, we have to show that M; r

3

j= wall. By Point 3, we have

r

1

" r

3

. Thus, Formula (5.11) yields the desired result.

Now for the indution step.

(1) Suppose that �(j) is on the oor. Sine obviously j > 1, �(j � 1) is on the wall.

Sine i > 1, there is a k with i � 1 ) k. It is readily heked that j � 1 = k + 1.

Thus, IH (Point 4) yieldsM; r

j�1

j= wall and we an use Formula (5.10) to onlude

that M; r

j

j= oor as required.

(2) First assume that �(j) is on the oor. Sine j > 1, we have M; r

j

6j= [ntppi℄:a.

Thus, Point 1 and Formula (5.9) yield M; r

j

6j= wall as required.

Now assume that �(j) is not on the oor. Suppose, to the ontrary of what is

to be shown, that M; r

j

j= wall. Sine j > 1, we have M; r

j

6j= [ntppi℄:a. Thus,

by Formula (5.12) we obtain M; r

j

j= 3

D

wall. Sine j is not on the oor, i ) j

implies i � 1 ) j � 1. Thus, the IH (Point 3) yields r

i�1

" r

j

. Hene, we an

use M; r

j

j= 3

D

wall to derive M; r

i�1

j= wall. By IH (Point 2), we annot have

m ) i � 1 for any m. Thus, �(i � 1) is on the wall implying that �(i) is on the

oor. We have established a ontradition sine, with i) j, this yields that j is on

the oor.

(3) We start with showing r

i

! r

j

. To this end, let us prove that we have r

k

! r

j

for

some k < j. By Point 2, we haveM; r

j

6j= wall. By Formula (5.14), there are regions

r; s 2 W suh that M; r j= a ^ b, r tpp s, M; s j= , and s tpp r

j

. By Point 5 of

Claim 1, we have either r = r

k

for some k � 1 or r

n

ntpp r for all n � 1. In the �rst

ase, Claim 4.1 yields k < j and we are done. In the seond ase, we have r

j

ntpp r:

ontradition to r tpp s and s tpp r

j

.
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Next, we show that k = i. To this end, assume that k 6= i. We distinguish two

ases:

� k < i. Let ` be suh that k ) `. By IH (Point 3), we have r

k

! r

`

. Due to

funtionality of \!" (Claim 2) and sine r

k

! r

j

, we have ` = j. Due to the

injetivity of \)", we get k = i, whih is a ontradition.

� i < k. By Claim 2, we have r

i

ntpp u

i

andM; u

i

j= a^b. By Point 5 of Claim 1,

we have either (i) u

i

= r

`

for some ` � 1 or (ii) r

n

ntpp u

i

for all n � 1. In

Case (ii), in partiular we have r

j

ntpp u

i

. Sine r

k

! r

j

, we have r

j

= u

k

, and

thus u

k

ntpp u

i

. As i < k, we have obtained a ontradition to Claim 3. Thus,

Case (ii) is impossible and we onlude u

i

= r

`

for some ` � 1. Next, we make

a ase distintion as follows:

{ ` < j. There are two subases: the tile position �(`) may or may not be

on the wall.

First assume that it is not. Then there is an h < ` with h ) `. By

de�nition of the \)" funtion, i ) j, h ) `, and ` < j this implies

h < i. Thus we an use IH (Point 3) to onlude r

h

! r

`

, a ontradition

to the injetivity of \!" (Claim 4.2) and the fats that r

i

! r

`

and h < i.

Now assume that �(`) is on the wall. Sine 1 < i < `, there is a h suh

that h " ` and h ! ` � 1. Thus, IH (Point 4) yields M; r

`

j= wall. But

then, r

i

! r

`

and Formula (5.13) yield a ontradition.

{ ` = j. Then r

i

! r

j

and r

k

! r

j

, whih is a ontradition to the

injetivity of \!" (Claim 4.2) sine i 6= k.

{ ` > j. Contradition to the monotoniity of \!" (Claim 4.2).

The seond part of Point 3, i.e. r

i

" r

j+1

, is now an immediate onsequene of the

fat that r

i

! r

j

and the de�nition of \"".

(4) Suppose that �(j+1) is on the wall. Then �(i) is also on the wall. Sine additionally

i > 1, there is a k suh that k * i and k ) i� 1. By IH (Point 4), the latter yields

M; r

i

j= wall. Sine Point 3 yields r

i

" r

j+1

, Formula (5.11) yields M; r

j+1

j= wall.

This �nishes the proof of Claim 5. By de�nition of \)", \*", \!", and \"", Point 3 of

this laim yields the following:

i) j implies r

i

! r

j

and i * j implies r

i

" r

j

: (�)

Using this property, we an �nally de�ne the solution of D: set �(i; j) to the unique t 2 T

suh that M; r

n

j= p

t

, where �(n) = (i; j). This is well-de�ned due to Formulas (5.15)

and (5.16). Thus, it remains to hek the mathing onditions:

� Let (i; j) 2 N

2

, �(n) = (i; j), and �(m) = (i + 1; j). Then n ) m. By (�), this

yields r

n

! r

m

. By Formula (5.16), there are (t; t

0

) 2 H suh that M; r

n

j= p

t

and M; r

m

j= p

t

0

. Sine this implies �(i; j) = t and �(i + 1; j) = t

0

, the horizontal

mathing ondition is satis�ed.

� The vertial mathing ondition an be veri�ed analogously using Formula (5.17).

The seond lemma deals with the onstrution of models for '

D

from solutions for D.

Here, we have to make a suitable assumption on the lass of region strutures S for the

onstrution to sueed. One possible suh assumption is given in Theorem 5. It turns out,

however, that the following more general ondition is also suÆient.
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De�nition 9 (Domino ready). Let R = hW; d; e; : : :i be a region struture. Then R

is alled domino ready if it satis�es the following property: the set W ontains sequenes

x

1

; x

2

; : : : and y

1

; y

2

; : : : suh that, for i; j � 1, we have

(1) x

i

tpp x

i+1

;

(2) x

i

ntpp x

j

if j > i+ 1;

(3) x

2i�1

tpp y

i

;

(4) y

i

tpp x

2j�1

i� the position �(j) an be reahed from �(i) by going one step to the

right;

(5) y

i

ntpp y

j

if j > i.

Before disussing this property in some more detail, let us show that it is indeed suitable

for our proof.

Lemma 10. Let R = hW; d; e; : : :i be a region struture that is domino ready. If the

domino system D has a solution, then the formula '

D

is satis�able in a region model based

on R.

Proof Let R be a region struture that is domino ready, D = (T;H; V ) a domino system,

and � a solution of D. We introdue new names for the regions listed in De�nition 9 that

are loser to the names used in the proof of Lemma 8:

� r

i

:= x

2i�1

for i � 1;

� s

i

:= x

2i

for i � 1;

� t

i

:= y

i

.

Now de�ne a region modelM based on R by interpreting the propositional letters as follows:

� a

M

= fr

i

; s

i

j i � 1g;

� b

M

= fr

i

j i � 1g;

� 

M

= ft

i

j i � 1g;

� wall

M

= fr

i

j �(i) is on the wallg;

� oor

M

= fr

i

j �(i) is on the oorg;

� p

M

t

= fr

i

j �(�(i)) = tg.

It is now easy to verify that � is satis�ed by every region of M, and that M; r

1

j= '

D

.

We have thus proved the following theorem.

Theorem 11. Let S � RS suh that some R 2 S is domino ready. Then L

RCC8

(S) is

undeidable.

We now show that this theorem implies Theorem 5.

Lemma 12. Eah region struture R(R

n

; U) with n > 0 and R

n

ret

� U is domino ready.

Proof We start with n = 1. Thus, we must exhibit the existene of two sequenes of onvex,

losed intervals x

1

; x

2

; : : : and y

1

; y

2

; : : : satisfying Properties 1 to 5 from De�nition 9: for

i � 1, set

� x

i

:= [�j; j℄ if i = 2j � 1;

� x

i

:= [�j; j + 1℄ if i = 2j;

� y

i

:= [�i; j℄ if �(j) is the position reahed from �(i) by going a single step to the

right.

It is readily heked that these sequenes of intervals are as required. To �nd sequenes for

n > 1, just use the n-dimensional produts of these intervals.
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Note that we an also prove this lemma if we admit only bounded retangles of R

n

as

regions: the onstrution from Lemma 12 an easily be modi�ed so that the sequene of

a ^ b-retangles onverges against a �nite retangle, rather than against R

n

.

indeed more general than Theorem 5. For example, region strutures that are obtained

by hoosing all losed irles or ellipses as regions are easily seen to be domino ready, but

they do not satisfy the ondition from Theorem 5.

6. Reursive Enumerability

In this setion, we disuss the question whether modal logis of topologial relations

are reursively enumerable. We start with a simple observation.

Theorem 13. For n > 0, L

RCC8

(RS) = L

S

RCC8

(T OP) = L

S

RCC8

(R

n

;R

n

reg

) are reursively

enumerable.

Proof The equality has already been shown in Theorem 4. L

RCC8

(RS) is reursively enumer-

able sine (i) the lass of all region strutures RS is �rst-order de�nable (.f. its de�nition in

Setion 2); (ii) it is a standard result that L

RCC8

formulas an be translated into equivalent

formulas of FO

m

RCC8

(see Setion 4); (iii) �rst-order logi is reursively enumerable.

An alternative proof of Theorem 13 an be obtained by expliitly giving an axiomatiza-

tion of L

RCC8

(RS). Sine this is interesting in its own right, in the following we develop suh

an axiomatization based on a non-standard rule. Non-standard rules, whih are sometimes

alled non-orthodox or Gabbay-Burgess style rules, were introdued in temporal logi in

[Bur80, Gab81a℄ and often enable �nite axiomatizations of modal logis for whih no �nite

standard axiomatization (using only the rules modus ponens and neessitation) is known.

For L

RCC8

(RS), we leave it as an open problem whether a �nite standard axiomatization

exists. To guarantee a simple presentation, we develop an axiomatization for the extension

of our language L

RCC8

with ountably many nominals, i.e. a new sort of variables i; j; k; : : :

interpreted in singleton sets. As noted in Setion 3, nominals an be de�ned in the original

language, but here it is more onvenient to treat them as �rst-lass itizens sine this en-

ables the appliation of general ompleteness results from modal logi.

3

The universal box

2

u

is still used as an abbreviation. Then the logi of all region strutures is axiomatized

by the following axiom and rule shemata, where ' and  range over formulas of L

RCC8

extended with nominals, i over the nominals, and r, r

1

, r

2

over the RCC8-relations:

� axioms of propositional logi;

� [r℄('!  )! ([r℄'! [r℄ );

� hr

1

ii! :hr

2

ii, for r

1

6= r

2

. These axioms ensure that the r are mutually disjoint;

� hr

1

ihr

2

i'! hq

1

i' _ � � � _ hq

k

i', whenever

8x8y8z((r

1

(x; y) ^ r

2

(y; z))! (q

1

(x; z) _ � � � _ q

k

(x; z))

is in the RCC8-omposition table;

� '! [r℄hri', whenever r is symmetri;

� '! [r

1

℄hr

2

i' and '! [r

2

℄hr

1

i', whenever r

1

is the inverse of r

2

;

3

One ould also give a �nite non-standard axiomatization without adding nominals to the language by

making use of the de�nable di�erene modality 2

d

and then applying a general ompleteness result of [Ven92℄

(Theorem 2.7.7).
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� 2

u

' ! ', 2

u

' ! 2

u

2

u

', and ' ! 2

u

3

u

'. These axioms ensure that 2

u

is a

S5-modality;

� [eq℄'$ ';

� 3

u

i. This axiom ensures that the interpretation of nominals is non-empty;

� 3

u

(i^ ')! 2

u

(i! '). This axiom together with the rule ov below ensures that

the interpretation of nominals are at most singleton sets;

� the rules modus ponens, neessitation, and the non-standard rule ov:

'; '!  

 

'

2

u

'

i! '

'

if i not in '.

It is straightfoward to prove the soundness of this axiomatization. Completeness follows

from a general ompleteness result of [GV01℄ for logis with nominals and the universal

modality, sine all the axioms not involving nominals are Sahlqvist axioms, and, for eah

modal operator [r℄, we have an operator [r

�1

℄ interpreted by the onverse of the aessibility

relation for [r℄.

Returning to our original proof of Theorem 13, we note that there is another lass of log-

is for whih reursive enumerability an be proved using �rst-order logi: L

S

RCC8

(R

n

;R

n

ret

),

n � 1. In this ase, however, we need a di�erent translation that takes into aount the

underlying region strutures and the shape of regions. The proof is similar to the transla-

tion of interval temporal logi into �rst-order logi given by Halpern and Shoham in [HS91℄.

The important di�erene is that Halpern and Shoham use their translation to prove reur-

sive enumerability of interval temporal logis determined by full interval strutures that

are �rst-order de�nable, whereas we prove reursive enumerability of a logi determined by

substrutures of a struture that is not �rst-order de�nable. The proof an be found in

Appendix C.

Theorem 14. For n � 1, L

S

RCC8

(R

n

;R

n

ret

) is reursively enumerable.

With the exeption of the lass of logis L

S

RCC8

(R

n

;R

n

onv

), whose reursive enumerability

status we have to leave as an open problem, it thus turns out that all logis introdued

in Setion 4 that are based on substrutures of onrete region strutures are reursively

enumerable.

4

Interestingly, this is not the ase for logis based on full onrete region

strutures, and thus going from full onrete region strutures to substrutures yields a

omputational bene�t. In the following, we prove that most of the logis introdued in

Setion 4 based on full onrete region strutures are �

1

1

-hard, and thus not reursively

enumerable. Note, however, that the onditions listed in the theorem are muh less general

than those from Theorem 11.

Theorem 15. The following logis are �

1

1

-hard: L

RCC8

(T OP) and L

RCC8

(R

n

; U

n

) with

U

n

2 fR

n

reg

;R

n

onv

g and n � 1.

To prove Theorem 15, the domino problem of De�nition 7 is modi�ed by requiring that, in

solutions, a distinguished tile t

0

2 T ours in�nitely often in the �rst olumn of the �rst

quadrant, i.e. on the wall. It has been shown in [Har85℄ that this variant of the domino

problem is �

1

1

-hard. Sine we redue it to satis�ability as in the proof of Theorem 5, this

yields a �

1

1

-hardness bound for validity.

As a �rst step toward reduing this stronger variant of the domino problem, we extend '

D

with the following onjunt stating thatM; s j= '

D

implies that we �nd an in�nite sequene

4

Reall that onrete region strutures are those region strutures indued by topologial spaes.
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of regions r

1

; r

2

; : : : suh that s = r

1

, r

i

ntpp r

i+1

, andM; r

i

j= a^b^wall^p

t

0

for all i � 1:

2

u

(a ^ b! hntppi(a^ b ^ wall^ p

t

0

)) (6.1)

However, this is not yet suÆient: in models of '

D

, we an have not only one disrete

ordering of a^ b regions, but rather many suh orderings that are \staked". For example,

there ould be two sequenes of regions r

1

; r

2

; : : : , and r

0

1

; r

0

2

; : : : suh that

r

1

ntpp r

2

ntpp r

3

� � � ; r

0

1

ntpp r

0

2

ntpp r

0

3

� � � ; and r

i

ntpp r

0

j

for all i; j � 1:

Due to this e�et, the above formula does not enfore that the main ordering (there is only

one for whih we an ensure a proper \going to the right relation") has in�nitely many

ourrenes of t

0

.

The obvious solution to this problem is to prevent staked orderings. This is done by

enforing that there is only one \limit region", i.e. only one region approahed by an in�nite

sequene of a-regions in the limit. We add the following formula to '

D

:

2

u

�

[tppi℄hpoia! (:a ^ [tpp℄:a ^ [ntpp℄:a)

�

(6.2)

Let '

0

D

be the resulting extension of '

D

. The lasses of region strutures to whih the

extended redution applies is more restrited than for the original one. We require that

they are onrete, i.e. indued by a topologial spae, and additionally adopt the following

property:

De�nition 16 (Closed under in�nite unions). Suppose thatR = R(T; U

T

) = hW; d; e; : : :i

is a onrete region struture. Then R is losed under in�nite unions if, for any sequene

r

1

; r

2

; : : : 2W with r

1

ntpp r

2

ntpp r

3

� � � , we have CI(

S

i2!

r

i

) 2 W .

We an now formulate the �rst part of orretness for the extended redution.

Lemma 17. Let R(T; U

T

) = hW; d; e; : : :i be a onrete region struture that is losed

under in�nite unions. If the formula '

0

D

is satis�able in a region model based on R, then

the domino system D has a solution with t

0

ourring in�nitely often on the wall.

Proof Let R(T; U

T

) = hW; d; e; : : :i be a onrete region struture that is losed under

in�nite unions, M = hR; p

M

1

; p

M

2

; : : :i a region model based on R(T; U

T

), and w 2 W suh

thatM; w j= '

0

D

. We may establish Claims 1 to 5 as in the proof of Lemma 8, and we will

use the same terminology in what follows. We �rst strengthen Point 5 of Claim 1:

Claim 1'. There exists a sequene r

1

; r

2

; � � � 2 W suh that

(1) M; r

1

j= '

D

,

(2) r

1

ntpp r

2

ntpp r

3

ntpp � � � ,

(3) M; r

i

j= a ^ b for i � 1.

(4) for eah i � 1, there exists a region s

i

2 W suh that

(a) r

i

tpp s

i

,

(b) M; s

i

j= a ^ :b,

() s

i

tpp r

i+1

,

(d) for eah region s with r

i

tpp s and M; s j= a ^ :b, we have s = s

i

, and

(e) for eah region r with s

i

tpp r and M; r j= a ^ b, we have r = r

i+1

,

(5') for all r 2 W with M; r j= a ^ b, we have r = r

i

for some i � 1.
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Proof: We onstrut the sequene r

1

; r

2

; : : : as in the proof of Claim 1. Sine Properties 1

to 4 are satis�ed by onstrution, it remains to prove Point 5': as R(T; U

T

) is losed under

in�nite unions, we have t = CI(

S

i2!

r

i

) 2 W: We �rst show that

t j= [tppi℄




poia (�)

To this end, suppose t tppi q. Then we have the following:

(1) q � r

i

6= ; for all i > 0.

Sine t tppi q, there exists x 2 q suh that x 62 I(t). Suppose x 2 r

i

, for some r

i

.

Sine r

i

ntpp r

i+1

, this yields x 2 I(r

i+1

). By de�nition of t, we get x 2 I(t) and

have a ontradition.

(2) There exists n > 0 suh that i � n implies r

i

� q 6= ;.

Suppose r

i

� q, for all i > 0. Then s =

S

i2!

r

i

� q. Sine q 2 U

T

, we have

q = CI(q). Thus t = CI(s) � q, and we have a ontradition to t tppi q.

(3) There exists m > 0 suh that j � m implies I(r

j

) \ I(q) 6= ;.

Sine q = CI(q), we have I(q) 6= ;. Take any x 2 I(q). Sine t = CI(

S

i2!

r

i

) and

t tppi q, this yields x 2

S

i2!

r

i

. Thus there is a j with x 2 r

j

. Then x 2 I(r

j+1

).

Set m := j + 1. Sine r

m

ntpp r

i

for all i > m, we have x 2 I(q)\ I(r

j+1

) for all

i � m.

Take k = maxfn;mg. Using the above Points 1 to 3 and the de�nition of the po relation,

it is easily veri�ed that q po r

k

, thus �nishing the proof of (�).

Now we an establish Point 5'. By Point 5 of the original Claim 1, for all r 2 W with

M; r j= a^ b, we have that r = r

i

for some i � 1 or r

i

ntpp r for all i � 1. It thus suÆes to

show that the latter alternative yields a ontradition. Thus assume r

i

ntpp r for all i � 1.

Sine r

1

ntpp r

2

ntpp � � � and t = CI(

S

i2!

r

i

), it is not hard to verify that this yields r = t,

t tpp r, or t ntpp r. By (�), t satis�es [tppi℄hpoia. By Formula (6.2), t thus also satis�es

:a ^ [tpp℄:a ^ [ntpp℄:a: ontradition sine M; r j= a.

Lemma 8. By Point 5' of Claim 1' and Formula (6.1), this solution is suh that the tile

t

0

ours in�nitely often on the wall.

For the seond part of orretness, we onsider region strutures R(R

n

; U) with R

n

ret

�

U as in Theorem 5. In ontrast to the previous setion, it does not suÆe to demand that

region strutures are domino ready.

Lemma 18. If the domino system D has a solution with t

0

ourring in�nitely often on

the wall, then the formula '

0

D

is satis�able in a region model based on R(R

n

; U), for eah

n � 1 and eah U with R

n

ret

� U � R

n

reg

.

Proof Let � be a solution of D with t

0

appearing in�nitely often on the wall. It was shown

in the proof of Lemma 12 that the region spaes we are onsidering are domino ready. Thus

we an use � to onstrut a model M based on the region spae R(R

n

; U) exatly as in

the proof of Lemma 10. It suÆes to show that M satis�es, additionally, Formulas (6.1)

and (6.2). This is easy for Formula (6.1) sine � has been hosen suh that t

0

appears

in�nitely often. Thus, let us onentrate on Formula (6.2).

Let r

1

; r

2

; : : : be the regions from the onstrution of M in the proof of Lemma 10. If

t = CI(

[

i2!

r

i

) = R

n

2 W;
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then t satis�es :a^ [tpp℄:a^ [ntpp℄:a sine, learly, t is not related via eq, tpp, and ntpp to

any of the r

i

. To show that Formula (6.2) holds, it thus suÆes to prove that, for all s 2 W

suh that s 6= t,M; s j= :[tppi℄




poia. Hene �x an s 2 W and assume that s 6= t. Sine it is

a region, s is non-empty and regular losed. Therefore, we �nd a hyper-retangle h 2 R

n

ret

ontained in s. By expanding h until we hit a point x 2 s � Is, we obtain an h

0

2 R

n

ret

suh that h � h

0

and h

0

is a tangential proper part of s. Now �x an x 2 h

0

\ (s�Is). Then,

by the onstrution of the sequene r

1

; r

2

; : : : , we an �nd a hyper-retangle h

00

� h

0

whih

ontains x but is not in the relation po with any r

i

. In onlusion, M; h

00

j= [po℄:a and,

therefore, M; s j= htppii[po℄:a.

Note that any region struture R(T;T

reg

), in partiular the strutures R(R

n

;R

n

reg

), are

losed under in�nite unions. This applies as well to R(R

n

;R

n

onv

). Sine R

n

ret

� R

n

onv

�

R

n

reg

, Lemmas 17 and 18 immediately yield Theorem 15.

It is worth noting that there are a number of interesting region strutures to whih

this proof method does not apply. Interesting examples are the region struture of hyper-

retangles in R

n

, n � 2, the region struture based on simply onneted regions in R

2

[SS01℄, and the struture of polygons in R

2

[PS98℄. Sine these spaes are not losed under

in�nite unions, the above proof does not show the non-axiomatizability of the indued logis.

We believe, however, that slight modi�ations of the proof introdued here an be used to

prove their �

1

1

-hardness as well.

7. Finite Region Strutures

As disussed in Setion 4, it an be useful to only admit models with a �nite (but

unbounded) number of regions. In this ase, we an again establish a quite general un-

deidability result. Moreover, undeidability of a logi L

�n

RCC8

(S) implies that it is not

reursively enumerable if S is �rst-order de�nable. We start with proving undeidability.

Theorem 19. If R(R

n

;R

n

ret

) � S � RS for some n � 1, then L

�n

RCC8

(S) is undeidable.

We obtain the following orollary.

Corollary 20. The following logis are undeidable for n � 1: L

�n

RCC8

(RS), L

�n

RCC8

(T OP),

L

�n

RCC8

(R

n

;R

n

reg

), L

�n

RCC8

(R

n

;R

n

onv

), and L

�n

RCC8

(R

n

;R

n

ret

).

To prove this result, we redue yet another variant of the domino problem. For k 2 N, the

k-triangle is the set f(i; j) j i + j � kg � N

2

. The task of the new domino problem is,

given a domino system D = (T;H; V ), to determine whether D tiles an arbitrary k-triangle,

k 2 N, suh that the position (0; 0) is oupied with a distinguished tile s

0

2 T , and some

position is oupied with a distinguished tile f

0

2 T . It is shown in Appendix D that the

existene of suh a tiling is undeidable.

Given a domino system D, the redution formula '

D

is de�ned as

a ^ b ^ wall^ oor ^ s

0

^ [ntppi℄:a ^ 2

u

� ^ (f

0

_ hntppi(a^ b ^ f

0

));

where � is the onjuntion of the Formulas (5.1), (5.3) to (5.5), and (5.7) to (5.17) of

Setion 5, and the following formulas:

� The �rst tile that has no tile to the right is on the oor:

�

a ^ b ^ :3

R

> ^ [ntppi℄((a^ b)! 3

R

>)

�

! oor (7.1)
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� If a tile has no tile to the right, then the next tile (if existent) also has no tile to

the right:

(a ^ b ^ :3

R

>)! (:3

+

> _3

+

:3

R

>) (7.2)

� The last tile is on the wall and we have no staked orderings:

(a^ b ^ :3

+

>)! (wall ^ [ntpp℄:(a ^ b)) (7.3)

The proof of the following lemma is now a variation of the proofs of Lemma 8 and Lemma 10.

Details are left to the reader.

Lemma 21. Let D be a domino system. Then:

(i) if the formula '

D

is satis�able in a �nite region model, then D tiles a k-triangle for

some k � 1;

(ii) if D tiles a k-triangle for some k � 1, then '

D

is satis�able in a region model based on

a �nite substruture of R(R

n

;R

n

ret

), for eah n � 1.

Obviously, Theorem 19 is an immediate onsequene of Lemma 21.

Sine RS is �rst-order de�nable, we an enumerate all �nite region models and also

all formulas satis�able in �nite region models. Similarly, the proof of Theorem 14 shows

that the lass of at most ountable substrutures of R(R

n

;R

n

ret

) is �rst-order de�nable

(relative to the lass of all at most ountable strutures), for n � 1. Thus, the omple-

ments of L

�n

RCC8

(RS) and L

�n

RCC8

(R

n

;R

n

ret

) are reursively enumerable and Theorem 19 and

Theorem 4 give us the following:

Corollary 22. The following logis are not r.e., for eah n � 1: L

�n

RCC8

(RS), L

�n

RCC8

(T OP),

L

�n

RCC8

(R

n

;R

n

reg

), and L

�n

RCC8

(R

n

;R

n

ret

).

We leave it as an open problem whether the logis L

�n

RCC8

(R

n

;R

n

onv

), n � 2, are reursively

enumerable.

8. The RCC5 set of Relations

When seleting a set of relations between regions in topologial spaes, the eight Egen-

hofer-Franzosa relations appear to be the most popular hoie in the spatial reasoning

ommunity. However, it is not the only hoie possible. For example, a re�nement of RCC8

into 23 relations has been proposed and RCC5, a oarsening into �ve relations, is also rather

popular [GPP95, DWM01, Ben94, CH01℄. Sine we have shown that modal logis based

on the Egenhofer-Franzosa relations are undeidable and often even �

1

1

-omplete, a natural

next step for improving the omputational behaviour is to onsider modal logis based on

a oarser set of relations. In this setion, we de�ne and investigate modal logis based on

the RCC5 set of relations. It turns our that often reasoning is still undeidable, although

di�erent proof methods have to be used that yield less general theorems. For example, the

reursive enumerability of modal logis determined by full onrete RCC5 region strutures

is left as an open problem.

The RCC5 set of relations is obtained from RCC8 by keeping the relations eq and po, but

oarsening (1) the tpp and ntpp relations into a new \proper-part of" relation pp; (2) the tppi

and ntppi relations into a new \has proper-part" relation ppi; and (3) the d and e relations

into a new disjointness relation dr. Thus, a onrete RCC5-struture R

5

(T; U

T

) indued by a

topologial spae T and a set of regions U

T

� T

reg

is the tuple hU

T

; eq

R

; po

R

; dr

R

; pp

R

; ppi

R

i

where eq and po are interpreted as before and
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Æ dr po pp ppi

dr � dr,po,pp dr,po,pp dr

po dr,po,ppi, � po,pp dr,po,ppi

pp dr dr,po,pp pp �

ppi dr,po,ppi, po,pp eq,po,pp,ppi ppi

Figure 6: The RCC5 omposition table.

� dr

R

= d

R

[ e

R

;

� pp

R

= tpp

R

[ nttp

R

;

� ppi

R

= tppi

R

[ nttpi

R

.

It is interesting to note that the RCC5 relations an be de�ned without appealing to the

topologial notions of interior and losure. Hene, modal logis based on RCC5 may also

be viewed as modal logis determined by the following relations between sets: `having non-

empty intersetion', `being disjoint', and `is a subset of'. They are thus related to the logis

onsidered in [Vak95℄.

Similarly to onrete region strutures indued by the eight Egenhofer-Franzosa rela-

tions, the lass of onrete RCC5-strutures an be haraterized by �rst-order sentenes.

Denote by RS

5

the lass of all general RCC5-strutures

hW; dr

R

; eq

R

; pp

R

; ppi

R

; po

R

i

where W is non-empty and the r

R

are mutually exlusive and jointly exhaustive binary

relations on W suh that (1) eq is interpreted as the identity relation on W , (2) po

R

and

dr

R

are symmetri, (3) pp

R

is the inverse of ppi

R

and (4) the rules of the RCC5-omposition

table (Figure 6) are valid.

The following representation theorem is proved by �rst establishing Point (ii) for �nite

RCC5-strutures and then applying the same tehnique as in the proof of Theorem 1.

Theorem 23.

(i) Every onrete RCC5-struture is a ageneral RCC5-struture;

(ii) every general RCC5-struture is isomorphi to a onrete RCC5-struture.

(iii) for every n > 0, every ountable general RCC5-struture is isomorphi to a onrete

RCC5-struture of the form R

5

(R

n

; U

R

n

) (with U

R

n

� R

n

reg

).

As in the RCC8 ase, we only distinguish between onrete and general RCC5-strutures if

neessary. RCC5-models are de�ned in the obvious way by extending RCC5-strutures with

a valuation funtion.

The modal language L

RCC5

for reasoning about RCC5-strutures extends propositional

logi with unary modal operators [dr℄, [eq℄, et. (one for eah RCC5 relation). A number of

results from our investigation of L

RCC8

have obvious analogues for L

RCC5

.

The results established in Setion 3 have ounterparts in the RCC5 ase: RCC5 on-

straint networks an be translated into L

RCC5

in a straightforward way by de�ning nominals.

Moreover, L

RCC5

has the same expressive power as the two-variable fragment of FL

m

RCC5

,

i.e. the �rst-order language with the �ve binary RCC5-relation symbols and in�nitely many

unary prediates. Finally, the two-variable fragment of FL

m

RCC5

is exponentially more su-

int on the lass of strutures RS

5

than L

RCC5

. The proofs are analogous to those from

Setion 3 and Appendix B.
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Analogous to the RCC8 ase, we de�ne logis of full RCC5-strutures, substruture

variants, and �nite substruture variants: given a lass S of RCC5-strutures, we denote

with L

RCC5

(S) the set of L

RCC5

-formulas whih are valid in all members of S; with L

S

RCC5

(S)

the set of L

RCC5

-formulas whih are valid in all substrutures of members of S; and with

L

�n

RCC5

(S) the set of L

RCC5

-formulas whih are valid in all �nite substrutures of members

of S. For brevity, we refrain from developing formulas that separate the di�erent logis

obtained by applying L

RCC5

to di�erent lasses of RCC5-strutures. Instead, we only note

that there is an obvious analogue of Theorem 4.

Theorem 24. For n > 0, we have

(1) L

RCC5

(RS) = L

S

RCC5

(T OP) = L

S

RCC5

(R

n

;R

n

reg

);

(2) L

�n

RCC5

(RS) = L

�n

RCC5

(T OP) = L

�n

RCC5

(R

n

;R

n

reg

).

We now investigate the omputational properties of logis based on L

RCC5

. Analogously to

the RCC8 ase, many natural logis are undeidable. Still, our RCC5 undeidability result is

onsiderably less powerful than the one for RCC8. Intuitively, we have to restrit ourselves to

RCC5-strutures with the following property: for any set S � W of ardinality two or three,

there exists a unique smallest region Sup(S) that overs all regions from S. Formally, we

de�ne the lass RS

9

of RCC5-strutures hW; dr

R

; eq

R

; : : :i satisfying the following ondition:

for every set S �W of ardinality two or three, there exists a region Sup(S) 2 W suh that

� s eq Sup(S) or s pp Sup(S) for eah s 2 S;

� for every region t 2 W with s pp t for eah s 2 S, we have Sup(S) eq t or Sup(S) pp t;

� for every region t 2W with t dr s for eah s 2 S, we have t dr Sup(S).

Region strutures based on all non-empty regular losed sets in a topologial spae belong

to RS

9

. This applies, in partiular, to the strutures R

5

(R

n

;R

n

reg

), for n � 1. However,

their substrutures usually do not belong to RS

9

. For example, the strutures R

5

(R

n

;R

n

x

)

with x 2 fonv; retg and n � 1, are not in RS

9

. Our aim is to prove the following theorem:

Theorem 25. Suppose R

5

(R

n

;R

n

reg

) 2 S � RS

9

, for some n � 1. Then L

RCC5

(S) is

undeidable.

This learly yields the following orollary:

Corollary 26. The following logis are undeidable, for eah n � 1: L

RCC5

(T OP) and

L

RCC5

(R

n

;R

n

reg

).

The proof of Theorem 25 is by redution of the satis�ability problem for the undeidable

modal logi S5

3

to sati�ability of L

RCC5

formulas in S. The original undeidability proof

for S5

3

has been given by Maddux in an algebrai setting [Mad80℄. For the redution, we

use the modal notation of [GKWZ03℄. More preisely, the language L

3

is the extension of

propositional logi by means of unary modal operators 3

1

, 3

2

and 3

3

. L

3

is interpreted in

S5

3

-models

W = hW

1

�W

2

�W

3

; p

W

1

; p

W

2

; : : :i

where the W

i

are non-empty sets and p

W

i

� W

1

�W

2

�W

3

. The truth-relation j= between

pairs (W; (w

1

; w

2

; w

3

)) with w

i

2 W

i

, and L

3

-formulas ' is de�ned indutively as follows:

� W; (w

1

; w

2

; w

3

) j= p

i

i� (w

1

; w

2

; w

3

) 2 p

W

i

;

� W; (w

1

; w

2

; w

3

) j= :' i� W; (w

1

; w

2

; w

3

) 6j= ';

� W; (w

1

; w

2

; w

3

) j= '

1

^ '

2

i� W; (w

1

; w

2

; w

3

) j= '

1

and W; (w

1

; w

2

; w

3

) j= '

2

;

� W; (w

1

; w

2

; w

3

) j= 3

1

' i� there exists w

0

1

2 W

1

suh that W; (w

0

1

; w

2

; w

3

) j= ';
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� W; (w

1

; w

2

; w

3

) j= 3

2

' i� there exists w

0

2

2 W

2

suh that W; (w

1

; w

0

2

; w

3

) j= ';

� W; (w

1

; w

2

; w

3

) j= 3

3

' i� there exists w

0

3

2 W

3

suh that W; (w

1

; w

2

; w

0

3

) j= '.

A formula ' 2 L

3

is alled S5

3

-satis�able if there exists an S5

3

-model W and a triple

(w

1

; w

2

; w

3

) suh that W; (w

1

; w

2

; w

3

) j= '.

Now for the redution. The basi idea is to introdue three variables a

1

; a

2

; a

3

and then

to represent eah set W

i

of an S5

3

-model by the set of pairwise disonneted regions

fr 2 W jM; r j= a

i

g:

The set W

1

�W

2

�W

3

is then represented by the set of regions

fSup(fw

1

; w

2

; w

3

g) jM; w

i

j= a

i

for i 2 f1; 2; 3gg:

The regions in this set will be marked with a variable d. To simulate the modal operators

of S5

3

, we will additionally refer to regions Sup(fw

i

; w

j

g) with 1 � i < j � 3. Suh regions

are marked with the variable d

i;j

.

The details of the redution are as follows: with every S5

3

-formula ', we assoiate an

L

RCC5

-formula

2

u

� ^ d ^ '

℄

(�)

where '

℄

is indutively de�ned below and � is the onjuntion of the following formulas:

(1) regions representing elements from W

1

[W

2

[W

3

are pairwise disonneted, eah

suh region represents an element from W

i

for a unique i, and the sets W

i

are

non-empty: for i = 1; 2; 3, put

a

i

!

^

j=1;2;3

([pp℄:a

j

^ [ppi℄:a

j

^ [po℄:a

j

) (8.1)

a

1

! :a

2

; a

1

! :a

3

; a

2

! :a

3

; (8.2)

^

i=1;2;3

3

u

a

i

(8.3)

(2) the variable d identi�es regions representing elements of W

1

�W

2

�W

3

:

d$ (

^

i=1;2;3

hppiia

i

) ^ :hppii(

^

i=1;2;3

hppiia

i

) (8.4)

(3) d

i;j

identi�es regions representing elements of W

i

�W

j

: for 1 � i < j � 3, put

d

ij

$ (

^

k=i;j

hppiia

k

) ^ :hppii(

^

k=i;j

hppiia

k

): (8.5)

Now, we de�ne '

℄

indutively by

p

℄

i

:= p

i

(:')

℄

:= d ^ :'

℄

(' ^  )

℄

:= '

℄

^  

℄

(3

1

')

℄

:= hppii(d

23

^ hppi(d^ '

℄

))

(3

2

')

℄

:= hppii(d

13

^ hppi(d^ '

℄

))

(3

3

')

℄

:= hppii(d

12

^ hppi(d^ '

℄

))

The following Lemma immediately yields Theorem 25.



30 C. LUTZ AND F. WOLTER

Lemma 27. Suppose R(R

n

;R

n

reg

) 2 S � RS

9

, for some n � 1. Then an S5

3

-formula ' is

satis�able in an S5

3

-model i� 2

u

� ^ d ^ '

℄

is satis�able in S.

Proof (() Suppose the region model

M = hR; a

M

1

; a

M

2

; a

M

3

; d

M

; d

M

12

; : : : ; p

M

1

; : : :i

satis�es 2

u

� ^ d ^ '

℄

, where R = hW; dr

R

; eq

R

; : : :i 2 RS

9

. De�ne

W = hW

1

�W

2

�W

3

; p

W

1

; p

W

2

; : : :i

by setting

� W

i

= a

M

i

, for i = 1; 2; 3;

� for all (w

1

; w

2

; w

3

) 2 W

1

�W

2

�W

3

and i < !,

(w

1

; w

2

; w

3

) 2 p

W

i

i� Sup(fw

1

; w

2

; w

3

g) 2 p

M

i

.

By Formula (8.3), the W

i

are non-empty. Now, the funtion f : W

1

� W

2

� W

3

! d

M

;

de�ned by putting

f(w

1

; w

2

; w

3

) = Supfw

1

; w

2

; w

3

g;

is a well-de�ned bijetion:

� f is well-de�ned (i.e., Supfw

1

; w

2

; w

3

g 2 d

M

) by the properties of Sup(S) and by

Formula (8.4);

� f is injetive sine, by Formulas (8.1) and (8.2), we have w

1

dr w

2

for distint

w

1

; w

2

2 W

1

[W

2

[W

3

. By the properties of Sup(S), we thus get w dr Supfw

1

; w

2

; w

3

g

for every w 2 W

1

[W

2

[W

3

di�erent from w

1

; w

2

; w

3

;

� By Formula (8.4), f is surjetive.

Using Formula (8.5), one an show in the same way that f

ij

: W

i

�W

j

! d

M

ij

, 1 � i < j � 3,

de�ned by

f

ij

(w

i

; w

j

) = Supfw

i

; w

j

g;

are well-de�ned bijetions. Moreover, for all (w

1

; w

2

; w

3

) 2 W

1

� W

2

�W

3

and u 2 W

i

,

v 2 W

j

, 1 � i < j � 3, we obtain Supfu; vg pp Supfw

1

; w

2

; w

3

g i� u = w

i

and v = w

j

.

Now it is straightforward to show by strutural indution that, for all subformulas  of

' and all (w

1

; w

2

; w

3

) 2W

1

�W

2

�W

3

, we have

W; (w

1

; w

2

; w

3

) j=  i� M; f(w

1

; w

2

; w

2

) j=  

℄

:

Take (w

1

; w

2

; w

3

) 2 W

1

�W

2

�W

3

suh that f(w

1

; w

2

; w

3

) j= '

℄

. Then (w

1

; w

2

; w

3

) j= '.

()) By the standard translation of S5

3

into �rst-order logi and the theorem of L�owenheim-

Skolem, every satis�able S5

3

formula ' is satis�able in a ountable model

W = hW

1

�W

2

�W

3

; p

W

1

; p

W

2

; : : :i:

We may assume w.l.o.g. that the sets W

i

are mutually disjoint. Now let n > 0 and de�ne

a model M for 2

u

� ^ d ^ '

℄

based on the struture R

5

(R

n

;R

n

reg

) as follows. Let f :

W

1

[W

2

[W

3

! R

n

reg

be an injetive mapping suh that f(w) dr f(w

0

) if w 6= w

0

, and set

� a

M

i

= ff(w) j w 2W

i

g, for i = 1; 2; 3;

� d

M

= ff(w

1

) [ f(w

2

) [ f(w

3

) j (w

1

; w

2

; w

3

) 2 W

1

�W

2

�W

3

g;

� d

M

ij

= ff(w

i

) [ f(w

j

) j (w

i

; w

j

) 2 W

i

�W

j

g, for 1 � i < j � 3;

� p

M

i

= ff(w

1

) [ f(w

2

) [ f(w

3

) j (w

1

; w

2

; w

3

) j= p

i

g for i < !.
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It is straightforward to prove that � is true in every point of M. Moreover, one an easily

prove by indution that, for every subformula  of ' and every (w

1

; w

2

; w

3

) 2 W

1

�W

2

�W

3

,

we have

W; (w

1

; w

2

; w

3

) j=  i� M; f(w

1

) [ f(w

2

) [ f(w

3

) j=  

℄

:

Sine ' is satis�ed in W, we thus obtain that 2

u

� ^ d^ '

℄

is satis�ed in M.

The deidability of other RCC5 logis is left as an open problem. In partiular, the

deidability status of substruture logis and their �nite ompanions is one of the most

intriguing open problems suggested by the work presented in this paper.

Conering the reursive enumerability of logis based on L

RCC5

, we only note that a

ounterpart of Theorem 13 is easily obtained using an analogous proof:

Theorem 28. For n > 0, L

RCC5

(RS) = L

S

RCC5

(T OP) = L

S

RCC5

(R

n

;R

n

reg

) are reursively

enumerable.

As already noted, the reursive enumerability of RCC5 logis determined by full onrete

RCC5-strutures is left as an open problem.

9. Conlusion

We �rst ompare our results with Halpern and Shoham results for interval temporal

logi [HS91℄. Although one might be tempted to onjeture that their undeidability proofs

an be extended to logis of region spaes, a lose inspetion shows that the only spaes

for whih this might be possible are the logis of hyper-retangles L

RCC8

(R

n

;R

n

ret

). An

extension is not possible, however, for L

RCC8

(T OP) and L

RCC8

(R

n

;R

n

reg

), and not even for

L

S

RCC8

(R

n

;R

n

ret

). In fat, the proof tehnique developed in this paper is more powerful

than that of [HS91℄: Theorems 5, 15, and 19 apply to logis indued by the region spae

R(R;R

onv

), whih is learly an interval struture.

5

Interestingly, on this interval struture

our results are stronger than those of Halpern and Shoham in two respets: �rst, we only

need the RCC8 relations, whih an be viewed as a \oarsening" of the Allen interval

relations used by Halpern and Shoham. Seond and more interestingly, by Theorem 5

we have also proved undeidability of the substruture logi L

S

RCC8

(R;R

onv

), whih is a

natural but muh weaker variant of the full (interval temporal) logi L

RCC8

(R;R

onv

), and

not aptured by Halpern and Shoham's undeidability proof.

Several open questions for future researh remain. Similar to the temporal ase, the

main hallenge is to exhibit a deidable and still useful variant of the logis proposed in

this paper. Perhaps the most interesting andidate is L

RCC5

(RS), whih oinides with

the logis L

S

RCC5

(R

n

;R

n

reg

), and to whih the redution exhibited in Setion 8 does not

apply. Other andidates ould be obtained by modifying the set of relations, e.g. giving up

some of them. It has, for example, been argued that dropping po still results in a useful

formalism for appliations in geographi information systems. An interesting step in this

diretion is [SS05℄, where a number of deidability and axiomatizability results are proved for

modal logis over region strutures with only one modal operator orresponding to ertain

inlusion relations between regions. Finally, it is an open problem whether L

RCC5

(RS) and

5

Notie that Halpern and Shoham allow for intervals onsisting of a single point while our intervals have

to be regular losed sets and therefore non-singletons. However, as single point intervals are de�nable using

the formula [pp℄?, all our negative results extend to interval struture with single point intervals.
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L

RCC5

(R

n

;R

n

reg

) are reursively enumerable. Although we believe that they are r.e. (in

ontrast to their RCC8 ounterparts), a proof is yet laking.
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Appendix A. Proof of Representation Theorem

Theorem 1 (Representation theorem).

(i) Every onrete region struture is a general region struture;

(ii) every general region struture is isomorphi to a onrete region struture;

(iii) for every n > 0, every ountable general region struture is isomorphi to a onrete

region struture of the form R(R

n

; U

R

n

) (with U

R

n

� R

n

reg

).

The proof of this theorem refers to RCC8 onstraint networks as introdued in Setion 3,

with the only di�erene that, in the following, we also admit in�nite suh networks. For

onveniene, we repeat the de�nition here. An RCC8 onstraint network is a set of on-

straints (s r r) with s; r region variables and r an RCC8 relation. Suh a network N is

satis�able in a topologial spae T with regions U

T

if there exists an assignment Æ of regions

in U

T

to region variables suh that (s r r) 2 N implies Æ(s) r

T

Æ(r).

Proof (i) Is easily proved by verifying the onditions formulated for general region models.

This inludes veri�ation of the omposition table, .f. [CCR93℄.

(ii) is well-known for �nite general region stutures, see [Ben98℄. Thus, it remains to extend

the result to in�nite strutures. We are going to prove this extension with the help of the

ompatness theorem for �rst-order logi. To this end, we redue satis�ability of RCC8

onstraint networks in topologial spaes to satis�ability in ertain relational strutures.

Fix a general region struture R = hW; d

R

; e

R

; : : :i with W in�nite. An assoiated RCC8

onstraint network, alled the diagram of R and denoted with diag(R), is de�ned by

diag(R) = f(s

w

r s

v

) j w; v 2 W and M j= w r vg;

where the s

w

, w 2 W , are region variables. To prove (ii), it suÆes to show that diag(R) is

satis�able in some topologial spae T with a set U

T

of non-empty regular losed regions:

if this is the ase, then

R(T; fÆ(s

w

) j w 2 Wg)

is a onrete region struture isomorphi to R, where Æ is the assignment witnessing satis-

fation of diag(R) in (T; U

T

).

Reall that every partial order (V;R) indues a topologial spae (V;I

R

) by setting, for

X � V ,

I

R

X = fx 2 V j 8y (xRy ! y 2 X)g

(and thus C

R

X = fx 2 V j 9y (xRy ^ y 2 X)g). We all (V;I

R

) the topologial spae

indued by (V;R). Of partiular interest for us are topologial spaes indued by partial

orders that are fork frames: a partial order (V;R) is a fork frame if it is the disjoint union

of forks, where a fork is a partial order (fx

b

; x

l

; x

r

g; S) suh that S is the reexive losure

of f(x

b

; x

l

); (x

b

; x

r

)g. For example, Figure 7 ontains an example fork frame whose indued

topologial spae satis�es the onstraints (r po s), (s e t), and (r d t) if r, s, and t

are interpreted as regular-losed sets as indiated. Denote by F the lass of all topologial

spaes based on fork frames. It is shown in [Ben98, Ren02℄ that every �nite onstraint

network whih is satis�able in a general region struture is satis�able in a topologial spae

T 2 F with regions T

reg

. As diag(R) is trivially satis�able in the general region struture R,

every �nite subset of diag(R) is satis�able in a topologial spae T 2 F with regions T

reg

.

Next, we give a translation of subsets N of the RCC8 onstraint network diag(R) to sets

�(N) of �rst-order sentenes using a binary prediate R for the partial order in fork frames,
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s t

s; t

r; s

r; s

r; s r r

r

Figure 7: A fork frame satisfying (r po s), (s e t), and (r d t).

and unary prediates (P

w

)

w2W

for regions. The translation is suh that, for all T 2 F based

on a fork frame F = (V; S), the following onditions are equivalent:

� an assignment Æ witnesses satisfation of N in T with regions T

reg

;

� �(N) is satis�ed in the �rst-order strutureM with universe V that is obtained by

setting R

M

:= S and P

M

w

:= Æ(s

w

) for all region variables s

w

in N .

The translation introdues one sentene for eah onstraint in N . We only treat the ase

(s

w

e s

v

):

9x(P

w

(x) ^ P

v

(x))^ :9x(P

w

(x) ^ 8y(xRy ! P

v

(y)))^ :9x(P

v

(x) ^ 8y(xRy ! P

w

(y))):

The ases for other RCC8 relations are easily derived from their semantis and the de�nition

of the topologial spaes in F. Extend �(N) to another set of �rst-order sentenes �

�

(N)

by adding the following:

� \P

w

is non-empty and regular losed", for all w 2 W :

9xP

w

(x) ^ 8x(P

w

(x)$ 9y(xRy ^ 8z(yRz ! P

w

(z)))):

� \R is a disjoint union of forks" (details are left to the reader).

Clearly, �

�

(N) is satis�able in an arbitrary �rst-order struture i� �(N) is satis�ed in a

�rst-order strutureM obtained from a fork frame as desribed above i� N is satis�able in

a topologial spae T 2 F with regions T

reg

.

Thus, satis�ability of every �nite subset of diag(R) in a topologial spae T 2 F with

regions T

reg

yields that every �nite subset of �

�

(diag(R)) is satis�able. By ompatness of

�rst-order logi, �

�

(diag(R)) is also satis�able and thus diag(R) is satis�able in a topologial

spae T 2 F with regions T

reg

.

(iii) Suppose that R = hW; d

R

; e

R

; : : :i is at most ountable. From the enoding of on-

straint networks as sets of �rst-order sentenes to be interpreted in fork frames and by

L�owenheim-Skolem, we obtain that diag(R) is satis�able in a topologial spae T 2 F based

on a fork frame (V; S) with V ountable. Let Æ be the assignment witnessing this satis-

fation. To satisfy diag(R) in R with regions R

reg

, assume that we have an enumeration

(fx

i

b

; x

i

l

; x

i

r

g; S

i

), i 2 N, of the forks of (V; S). To de�ne an assignment Æ

0

in R

reg

, onsider

the sets

W

i

= fw 2 W j Æ(s

w

) � fx

i

b

; x

i

r

; x

i

l

gg

and take mappings g

i

from W

i

into the open interval (

1

4

;

1

3

) suh that

(1) g

i

(w) � g

i

(v) if Æ(s

w

) � Æ(s

v

);

(2) g

i

(w) 6= g

i

(v) if Æ(s

w

) 6= Æ(s

v

).

Suh mappings exist beause for eah S

i

= fÆ(s

w

) j w 2 W

i

g the partial order (S

i

;�) an

be extended to a linear order whih an then be embedded into the open interval (

1

4

;

1

3

).
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Now set, for w 2 W ,

Æ

0

(s

w

) =

[

i2N;x

i

r

2Æ(w);x

i

l

62Æ(w)

[i; i+

1

4

℄ [

[

i2N;x

i

l

2Æ(w);x

i

r

62Æ(w)

[i�

1

4

; i℄[

[

i2N;x

i

l

;x

i

r

2Æ(w)

[i� g

i

(w); i+ g

i

(w)℄:

It is not hard to verify that eah Æ

0

(s

w

) is non-empty and regular losed sine non-emptyness

and regular losedness of Æ(s

w

) implies that x

i

b

2 Æ(s

w

) i� fx

i

l

; x

i

r

g \ Æ(s

w

) 6= ;. With the

exeption of the ntpp-ase, we leave it to the reader to hek that the assignment Æ

0

witnesses

satisfation of diag(R) in R with regions R

reg

. For ntpp, suppose that (s

w

ntpp s

v

) 2

diag(R). Then Æ(s

w

) is in the relation ntpp to Æ(s

v

) in the topologial spae indued by

(V; S). We show that Æ

0

(s

w

) is in the relation ntpp to Æ

0

(s

v

) in R. Clearly, by Condition 1 for

the funtions g

i

, Æ

0

(s

w

) is a subset of Æ

0

(s

v

). To show that Æ

0

(s

w

) is inluded in the interior

of Æ

0

(s

v

) we show that Æ

0

(s

w

)\ [i�

1

3

; i+

1

3

℄ is inluded in the interior of Æ

0

(s

v

)\ [i�

1

3

; i+

1

3

℄,

for all i 2 N. Let i 2 N. We distinguish four ases.

� Æ(s

w

) � fx

i

r

; x

i

l

g. Then Æ(s

v

) � fx

i

r

; x

i

l

g and therefore

Æ

0

(s

u

) \ [i�

1

3

; i+

1

3

℄ = [i� g

i

(u); i+ g

i

(u)℄;

for u = w; v. By Conditions 1 and 2 on the funtions g

i

, [i � g

i

(w); i+ g

i

(w)℄ is

inluded in the interior of [i� g

i

(v); i+ g

i

(v)℄.

� x

i

l

2 Æ(s

w

) and x

i

r

62 Æ(s

w

). Then Æ(s

v

) � fx

i

r

; x

i

l

g (beause otherwise Æ(s

w

) would

not be inluded in the interior of Æ(s

v

)). But then the laim follows from the fat

that [i�

1

4

; i℄ is in the interior of [i� g

i

(v); i+ g

i

(v)℄.

� x

i

r

2 Æ(s

w

) and x

i

l

62 Æ(s

w

). Dual to the previous ase.

� Æ(s

w

) \ fx

i

r

; x

i

r

g = ;. Then Æ

0

(s

w

) \ [i�

1

3

; i+

1

3

℄ = ; and the laim follows.

Assignments witnessing satisfation of diag(R) in R

n

with regions R

n

reg

, n > 1, an be

onstruted similarly using hyper-retangles.

Appendix B. Expressivity and Suintness

The proof of the following theorem is an adaptation of the proof in [EVW02℄, and a

minor variant of the proof in [LSW01℄ that is provided here for onveniene. Throughout

this setion, we use 2FO

m

RCC8

to denote the two-variable fragment of FO

m

RCC8

and assume

that its two variables are alled x and y.

Theorem 2. For every 2FO

m

RCC8

-formula '(x) with free variable x, one an e�etively

onstrut a L

RCC8

-formula '

�

of length at most exponential in the length of '(x) suh that,

for every region model M and region s, we have M; s j= '

�

i� M j= '[s℄.

Proof A 2FO

m

RCC8

-formula � is alled a unary atom if it is of the form r(x; x), r(y; y), p

i

(x),

or p

i

(y). It is alled a binary atom if it is of the form r(x; y), r(y; x), x = y, or y = x.

W.l.o.g. we assume that 2FO

m

RCC8

-formulas are built using the operators 9, ^, and : only.

We indutively de�ne two mappings �

�

x

and �

�

y

, the former taking eah 2FO

m

RCC8

-formula

'(x) with free variable x to the orresponding L

RCC8

-formula '

�

x

, and the latter doing the

same for 2FO

m

RCC8

-formulas '(y) with free variable y. We only give the details of �

�

x

sine

�

�

y

is de�ned analogously by swithing the roles of x and y:

{ If '(x) = p

i

(x), then put ('(x))

�

x

= p

i

.

{ If '(x) = r(x; x), then put ('(x))

�

x

= > if r = eq, and ('(x))

�

x

= ? otherwise.

{ If '(x) = �

1

^ �

2

, then put ('(x))

�

x

= �

�

x

1

^ �

�

x

2

.
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{ If '(x) = :�, then put ('(x))

�

x

= :(�

�

x

).

{ If '(x) = 9y�(x; y), then �(x; y) an be written as

�(x; y) = [�

1

; : : : ; �

r

; 

1

(x); : : : ; 

l

(x); �

1

(y); : : : ; �

s

(y)℄;

i.e. as a Boolean ombination  of �

i

, 

i

(x), and �

i

(y), where the �

i

are binary atoms, the



i

(x) are unary atoms or of the form 9y

0

i

, and the �

i

(y) are unary atoms or of the form

9x�

0

i

. We may assume w.l.o.g. that x ours free in '(x). Our �rst step is to move all

formulas without a free variable y out of the sope of 9: obviously, '(x) is equivalent to

_

hw

1

;:::;w

`

i2f>;?g

`

(

^

1�i�`

(

i

$ w

i

) ^ 9y(�

1

; : : : ; �

r

; w

1

; : : : ; w

l

; �

1

; : : : ; �

s

)): (�)

Now we \guess" a relation r that holds between x and y, and then replae all binary atoms

by either true or false aording to the guess. For r an RCC8 relation and 1 � i � r, let

� �

r

i

= > if �

i

= r(x; y);

� �

r

i

= > if �

i

= r(y; x) for r 2 fd; e; pog;

� �

r

i

= > if �

i

= tpp(y; x) and r = tppi or �

i

= ntpp(y; x) and r = ntppi;

� �

r

i

= > if �

i

is x = y and r = eq;

� �

r

i

= ? otherwise.

Using this notiation, (�) is equivalent to

W

hw

1

;:::;w

`

i2f>;?g

`

(

V

1�i�`

(

i

$ w

i

) ^

W

r2RCC8

9y(r(x; y)^ (�

r

1

; : : : ; �

r

r

; w

1

; : : : ; w

l

; �

1

; : : : ; �

s

))):

Now ompute, reursively, 

�

x

i

and �

�

y

i

, and de�ne '(x)

�

as

W

hw

1

;:::;w

`

i2f>;?g

`

(

V

1�i�`

(

�

x

i

$ w

i

)^

W

r2RCC8

hri(�

r

1

; : : : ; �

r

r

; w

1

; : : : ; w

l

; �

�

y

1

; : : : ; �

�

y

s

)):

Theorem 3. For n � 1, de�ne a FO

m

RCC8

formula

'

n

:= 8x8y

�

^

i<n

(p

i

(x)$ p

i

(y))! (p

n

(x)$ p

n

(y))

�

Then every L

RCC8

-formula  

n

that is equivalent to '

n

on the lass of all region strutures

RS has length 2


(n)

.

Proof Etessami et al. [EVW02℄ show that, on !-words, every temporal logi formula equiv-

alent to '

n

is of length at least 2


(n)

, where temporal logi is assumed to have the operators

\next", \previously", \always in the future" (2

+

'), and \always in the past" (2

�

'). As-

sume, to the ontrary of what is to be shown, that there is an n � 1 and an L

RCC8

formula

 suh that  is equivalent to '

n

on the lass of strutures RS and the length of  is

smaller than 2


(n)

. Let R = hW; d

R

; e

R

; : : :i 2 RS be suh that W = fs

0

; s

1

; s

2

; : : :g and

s

i

ntpp

R

s

j

if j > i. Clearly,  is equivalent to '

n

on R. We onstrut a new formula  

�

by exhaustively performing the following rewritings on (subformulas of)  :

6

� [r℄# > if r =2 fntpp; ntppig;

� [eq℄# #.

6

Reall that hri# is only an abbreviation.
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The formula  

�

is equivalent to  (and thus to '

n

) on R, it only refers to the relations ntpp

and ntppi, and it may only be shorter, but not longer than  . We may now onvert  

�

into

a temporal logi formula  

t

by substituting subformulas [ntpp℄# with 2

+

# and subformulas

[ntppi℄# with 2

�

#. It is not hard to see that  

t

is equivalent to '

n

on !-words. Thus,

we have derived a ontradition to the fat that there is no suh temporal logi formula of

length smaller than 2


(n)

.

Appendix C. Reursive Enumerability of L

S

RCC8

(R

n

;R

n

ret

)

Theorem 14. For n � 1, L

S

RCC8

(R

n

;R

n

ret

) is reursively enumerable.

Proof We show this result for n = 2. For n = 1 and n > 2, the proof is similar and left to

the reader. Take the �rst-order language FL

4

with one binary relation symbol <, in�nitely

many 4-ary relation symbols P

1

; P

2

; : : :, and one extra 4-ary relation symbol exists. De�ne

a 4-ary prediate ret(x

1

; x

2

; x

3

; x

4

) by setting

ret(x

1

; x

2

; x

3

; x

4

) = (x

1

< x

2

) ^ (x

3

< x

4

):

Clearly, we an identify any vetor ~a = (a

1

; a

2

; a

3

; a

4

) 2 R

2

suh that R j= ret(~a) with the

retangle

[a

1

; a

2

℄� [a

3

; a

4

℄ 2 R

2

ret

:

Moreover, it is easy (but tedious) to �nd, for every RCC8 relation r, a FL

4

formula

'

r

(x

1

; : : : ; x

4

; y

1

; : : :y

4

) suh that, for any two retangles [a

1

; a

2

℄�[a

3

; a

4

℄ and [b

1

; b

2

℄�[b

3

; b

4

℄,

we have

[a

1

; a

2

℄� [a

3

; a

4

℄ r [b

1

; b

2

℄� [b

3

; b

4

℄ i� R

2

j= '

r

(~a;

~

b):

The details of working out these formulas are left to the reader. Now �x variables ~x =

x

1

; : : : ; x

4

and ~y = y

1

; : : : ; y

4

, and de�ne a translation s from L

RCC8

into FL

4

by

p

s

i

= ret(~x) ^ exists(~x) ^ P

i

(~x)

( 

1

^  

2

)

s

=  

s

1

^  

s

2

(: )

s

= ret(~x) ^ exists(~x) ^ : 

s

(hri )

s

= ret(~x) ^ exists(~x) ^ 9~y('

r

(~x; ~y) ^  

s

(~y=~x)):

Claim. For every formula ' 2 L

RCC8

, ' is satis�able in a substruture of R(R

2

;R

2

ret

) i�

'

s

is satis�able in a �rst-order model of the form Q = (Q; <; exists

Q

; P

Q

1

; P

Q

2

; : : :).

()) Suppose ' is satis�ed in a region model M based on a substruture of R(R

2

;R

2

ret

).

Then '

s

is satis�able in the �rst-order model

R = (R; <; exists

R

; P

R

1

; P

R

2

; : : :)

in whih exists is interpreted as the set of all retangles belonging to the domain of M and

the P

i

are interpreted as the set of retangles in whih p

i

is true in M. By L�owenheim-

Skolem, there exists a ountably in�nite elementary substruture ofR in whih '

s

is satis�ed

(see [End72℄). Clearly, this struture is a dense linear order without endpoints. As every

ountable dense linear order without endpoints is isomorphi to (Q; <), this struture is of

the form required.

(() Suppose '

s

is satis�able in Q = (Q; <; exists

Q

; P

Q

1

; P

Q

2

; : : :). De�ne a region model M

based on a substruture of R(R

2

;R

2

ret

) with domain U and valuation V as follows: let U

denote the set of retangles of the form [a

1

; a

2

℄� [a

3

; a

4

℄ suh that Q j= ret(~a) ^ exists(~a).
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Let V(p

i

) be the set of all retangles ~a in U suh that Q j= P

i

(~a). Then it is readily heked

thatM satis�es '.

This �nishes the proof of the laim. Now set '

t

= 8~x(ret(~x) ^ exists(~x) ! '

s

), for every

' 2 L

RCC8

. Moreover, let � be the onjuntion of the usual �rst-order axioms for dense

linear orders without endpoints (see e.g. [End72℄). It follows from the laim above that

' is valid in all substrutures of R(R

2

;R

2

ret

) i� � ! '

t

is a theorem of �rst-order logi.

Thus, reursive enumerability of L

S

RCC8

(R

2

;R

2

ret

) is obtained from reursive enumerability

of �rst-order logi.

Appendix D. The Domino Problem for k-triangles

Reall that, for k 2 N, the k-triangle is the set f(i; j) j i+ j � kg � N

2

: We are going

to prove the following undeidability result:

Theorem 29. Given a domino system D = (T;H; V ), it is undeidable whether D tiles a

k-triangle, k � 1, suh that the position (0; 0) is oupied by a distinguished tile s

0

2 T and

some position is oupied by a distinguished tile f

0

2 T .

The proof is via a redution of the halting problem for Turing mahines with a single

right-in�nite tape that are started on the empty tape. The basi idea of the proof is to

represent a run of the Turing mahine as a sequene of olumns of a k-triangle, where

eah olumn represents a on�guration (with the left-most tape ell at the bottom of the

olumn). Let A be a single-tape right-in�nite Turing mahine with state spae Q, initial

state q

0

, halt state q

f

, tape alphabet � (b 2 � stands for blank), and transition relation

� � Q���Q���fL;Rg. W.l.o.g., we assume that Turing mahines have the following

properties:

� the initial state q

0

is only used at the beginning of omputations, but not later;

� the TM omes to a stop only if it reahes q

f

;

� if the TM halts, its last step is to the right;

� if the TM halts, then it labels the halting position with a speial symbol # 2 �

before;

� the blank symbol is never written.

It is easily heked that every TM an be modi�ed to satisfy these requirements. The

on�gurations of A will be represented by �nite words of one of the forms

(1) xb

m

,

(2) a

0

� � �a

k

xya

0

0

� � �a

0

`

b

m

,

(3) a

0

� � �a

k

yxa

0

0

� � �a

0

`

b

m

,

where

� m > 0,

� all a

i

and a

0

i

are in �,

� x 2 A := Q � � � fL;Rg represents the ative tape ell, its ontent, the urrent

state, and the diretion to whih the TM has moved to reah the urrent position,

and

� y 2 A

y

:= fhq; �;Mi

y

j hq; �;Mi 2 Ag represents the previously ative tape ell, its

urrent ontent, the urrent state, and the diretion to whih A moved to reah the

urrent position.
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Note that the only di�erene between elements of A and elements of A

y

is that the latter

are marked with the symbol \y". Intuitively, the elements of A desribe the urrent head

position while the elements of A

y

desribe the previous one. For tehnial reasons, the

information whether the last step was to the left or to the right is stored twie in eah

olumn: both in the x ell and in the y ell. Con�gurations of Form 1 represent the initial

on�guration and thus do not omprise the desription of a previous state.

Given a Turing mahine A, we de�ne a domino system D

A

= (T;H; V; s

0

; f

0

) as follows:

� T := � [ A [A

y

[ f$g;

� s

0

:= hq

0

; b; Li;

� f

0

:= hq

f

;#; Ri;

�

H := f(�; �) j � 2 �g [

f(hq; �;Mi; hq

0

; �

0

;M

0

i

y

) j (q; �; q

0

; �

0

;M

0

) 2 �;M 2 fL;Rgg [

f(�; hq; �;Mi); (hq; �;Mi

y

; hq

0

; �;M

0

i) j � 2 �; q; q

0

2 Q;M;M

0

2 fL;Rgg [

f(hq; �;Mi

y

; �) j q 2 Q; � 2 �;M 2 fL;Rgg [

f(hq

f

;#; Ri; $); ($; $)g[ f(�; $) j � 2 �g [

f(hq; �;Mi

y

; $) j q 2 Q;M 2 fL;Rgg

�

V := f(�; �

0

) 2 �

2

j � = b implies �

0

= bg [

f(�; hq; �

0

; Li); (hq; �

0

; Ri; �) j �; �

0

2 �; q 2 Qg [

f(hq; �

0

; Li

y

; �); (�; hq; �

0

; Ri

y

) j �; �

0

2 �; q 2 Qg [

f(hq; �; Li; hq; �

0

; Li

y

); (hq; �

0

; Ri

y

; hq; �; Ri) j �; �

0

2 �; q 2 Qg [

($; $)g

The tile \$" is used for padding purposes: assume that there exists a terminating ompu-

tation of A on the empty tape. Then this omputation indues in an obvious way the tiling

of a �nite retangle suh that s

0

is at position (0; 0), f

0

ours somewhere in the right-most

olumn, and the height of the retangle is bounded by the width w of the retangle. We

may now perform a padding of the olumns and rows in order to extend this retangle to

a 2w-triangle: for extending the height of olumns, we may pad with the blank symbol

\b", and for extending the width of rows, we may pad with the speial symbol \$". Sine

the existene of a tiling of a k-retangle with s

0

at position (0; 0) and f

0

ourring some-

where indues a halting omputation of A in a straightforward way, we obtain the following

lemma.

Lemma 30. The Turing mahine A halts on the empty tape i� the domino system D

A

tiles

a k-triangle, for some k � 1, suh that position (0; 0) is oupied by the tile s

0

and some

position is oupied by f

0

.

Finally, Theorem 29 is an immediate onsequene of Lemma 30.
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