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Abstract. We study the data complexity of instance checking and conjunctive
query answering in the EL family of description logics, with a particular em-
phasis on the boundary of tractability. We identify a large number of intractable
extensions of EL, but also show that in ELIf , the extension of EL with inverse
roles and global functionality, conjunctive query answering is tractable regarding
data complexity. In contrast, already instance checking in EL extended with only
inverse roles or global functionality is EXPTIME-complete regarding combined
complexity.

1 Introduction

In recent years, lightweight description logics (DLs) have experienced increased in-
terest because they admit highly efficient reasoning on large-scale ontologies. Most
prominently, this is witnessed by the ongoing research on the DL-Lite and EL fami-
lies of DLs (see also [12, 16] for other examples). The main application of EL and its
relatives is as an ontology language [6, 2, 4]. In particular, the DL EL++ proposed in
[2] admits tractable reasoning while still providing sufficient expressive power to rep-
resent, for example, life-science ontologies. In contrast, the DL-Lite family of DLs is
specifically tailored towards applications with a massive amount of instance data [9, 7,
8, 1]. In such applications, instance checking and conjunctive query answering are the
most relevant reasoning services and should thus be computationally cheap, preferably
tractable. When determining the computational complexity of these tasks for a given
DL, it is often realistic to consider data complexity, where the size of the input is mea-
sured only in terms of the ABox (which represents instance data), but not in terms of
the TBox (which corresponds to the schema) and the query, as the latter both tend to be
small compared to the former. This is in contrast to combined complexity, where also
the size of the TBox and query are taken into account.

The aim of this paper is to study the EL family of DLs in the light of data inten-
sive applications. To this end, we analyze the data complexity of instance checking and
conjunctive query answering in extensions of EL. For the DL-Lite family, such an inves-
tigation has been carried out e.g. in [8, 1], with complexities ranging from LOGSPACE-
complete to coNP-complete. It follows from the results in [8] that we cannot expect
the data complexity to be below PTIME for members of the EL family (at least in the
presence of so-called general TBoxes, i.e., sets of GCIs). The reason is that, in a crucial
aspect, DL-Lite is even more lightweight than EL: in contrast to EL, DL-Lite does not



Name Syntax Semantics

top > ∆I

conjunction C u D CI ∩ DI

existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

atomic negation ¬A ∆I \ AI

disjunction C t D CI ∪ DI

sink restriction ∀r.⊥ {x | ¬∃y : (x, y) ∈ rI}

value restriction ∀r.C {x | ∀y : (x, y) ∈ rI → y ∈ CI}

at-least restriction (> k r) {x | #{y ∈ ∆I | (x, y) ∈ rI} ≥ k}

at-most restriction (6 k r) {x | #{y ∈ ∆I | (x, y) ∈ rI} ≤ k}

inverse roles ∃r−.C {x | ∃y : (y, x) ∈ rI ∧ y ∈ CI}

role negation ∃¬r.C {x | ∃y ∈ ∆I : (x, y) /∈ rI ∧ y ∈ CI}

role union ∃r ∪ s.C {x | ∃y ∈ ∆I : (x, y) ∈ rI ∪ sI ∧ y ∈ CI}

transitive closure ∃r+.C {x | ∃y ∈ ∆I : (x, y) ∈ (rI)+ ∧ y ∈ CI}

Table 1. Syntax and semantics of relevant DL constructors.

allow for qualified existential (neither universal) restrictions, and thus the interaction
between different domain elements is very limited. When analyzing the data complex-
ity of instance checking and conjunctive query answering in EL and its extensions, we
therefore concentrate on mapping out the boundary of tractability.

We consider a wide range of extensions of EL, and analyze the data complexity
of the mentioned tasks with acyclic TBoxes and with general TBoxes. When select-
ing extensions of EL, we focus on DLs for which instance checking has been proved
intractable regarding combined complexity in [2]. We show that, in most of these ex-
tensions, instance checking is also intractable regarding data complexity. The notable
exceptions are EL extended with globally functional roles and EL extended with inverse
roles. It is shown in [3] that instance checking in these DLs is EXPTIME-complete re-
garding combined complexity. On the other hand, it follows from results in [12] that
instance checking is tractable regarding data complexity in ELIf , the extension of EL
with both globally functional and inverse roles. In this paper, we extend this result to
conjunctive query answering in ELIf , and show that this problem is still tractable re-
garding data complexity.

2 Preliminaries

In DLs, concepts are inductively defined with the help of a set of constructors, starting
with a set NC of concept names and a set NR of role names. In EL, concepts are formed
using the three topmost constructors in Table 1. There and in general, we use r and s
to denote role names, A and B to denote concept names, and C,D to denote concepts.
The additional constructors shown in Table 1 give rise to extensions of EL. We use



canonical names to refer to such extensions, writing e.g. EL∀r.⊥ for EL extended with
sink restrictions and ELCtD for EL extended with disjunction. Since we perform a
very fine grained analysis, EL(≤kr) means the extension of EL with (≤ k r) for some
fixed k ≥ 0 (but not for some fixed r).

In DLs, TBoxes are used to represent general knowledge about an application do-
main, and thus play the role of an ontology. We introduce two different forms of TBoxes.
An acyclic TBox T is a finite set of concept equations A

.
= C such that the left-hand

sides are unique and there are no cycles, i.e., if {A0
.
= C0, . . . , An−1

.
= Cn−1} ⊆ T

then for some i ≤ n, Ai does not occur in Ci+1 where An := A0 and Cn := C0. A
general TBox is a finite set of concept inclusions C v D (often called GCIs). Every
concept equation A

.
= C can be written as two inclusions A v C and C v A, and

thus general TBoxes subsume acyclic ones. ABoxes are used to represent instance data.
Let NI be a set of individual names. An ABox is a finite set of expressions A(a) and
r(a, b), where a and b are from NI (here and in what follows). Observe that we disallow
complex concepts in the ABox, as usual when studying data complexity.

The semantics of EL and its extensions is defined in terms of interpretations I =
(∆I , ·I). The domain ∆I is a non-empty set and the interpretation function ·I maps
each concept name A ∈ NC to a subset AI of ∆I , each role name r ∈ NR to a binary
relation rI on ∆I , and each individual name a ∈ NI to a domain element aI ∈ ∆I .
The extension of ·I to complex concepts is inductively defined as shown in the third
column of Table 1, where #S denotes the cardinality of the set S. An interpretation
I satisfies an equation A

.
= C iff AI = CI , an inclusion C v D iff CI ⊆ DI , an

assertion C(a) iff aI ∈ CI , and an assertion r(a, b) if (aI , bI) ∈ rI . It is a model of a
TBox T (ABox A) if it satsfies all equations/inclusions in T (assertions in A).

We will also consider ELkf , the extension of EL with k-functional roles, i.e., roles
for which every domain element can have at most k successors. In ELkf , there are no
additional concept constructors that may be used to build up complex concepts. Instead,
a new kind of expression > v (≤ k r) is allowed in the TBox. These expressions can
be understood as global at-most restrictions, in contrast to the local at-most restrictions
shown in Table 1. An interpretation I satisfies > v (≤ k r) if |{e | (d, e) ∈ rI}| ≤ k
for all d ∈ ∆I . Instead of 1-functional roles, we will speak of functional roles as usual.

The two main inference problems considered in this paper are instance checking and
conjunctive query entailment. An individual name a is an instance of a concept C w.r.t.
an ABox A and a TBox T (written A, T |= C(a)) iff aI ∈ CI in all models I of A
and T . The instance problem is to decide, given a, C, A and T , whether A, T |= C(a).

Conjunctive query entailment is the decision problem corresponding to conjunctive
query answering, which is a search problem. A conjunctive query is a set q of atoms
C(v) and r(u, v), where u, v are variables. We use Var(q) to denote the variables used
in q. If I is an interpretation and π is a mapping from Var(q) to ∆I , we write I |=π

C(v) if π(v) ∈ CI , I |=π r(u, v) if (π(u), π(v)) ∈ rI , I |=π q if I |=π α for all
α ∈ q, and I |= q if I |=π q for some π. Finally, A, T |= q means that for all models
I of the ABox A and the TBox T , we have I |= q. Now, conjunctive query entailment
is to decide given A, T , and q, whether A, T |= q.

It is not hard to see that, in EL, instance checking is a special case of conjunctive
query entailment, as every EL-concept C can be converted into a tree-shaped query.



Note that we do not partition the variables in a conjunctive query into answer variables
and existentially quantified variables as usual. Since we are dealing with query entail-
ment instead of query answering, this distinction is meaningless. Also observe that we
do not allow individual names in conjunctive queries in place of variables. It is well-
known that individual names in the query can be simulated by concept names with only
a linear blowup of the input, see for example [10] for details.

The last preliminary worth mentioning is the unique name assumption (UNA), which
requires that for all a, b ∈ NI with a 6= b, we have aI 6= bI . Most of our results do not
depend on the UNA. Whenever they do, we will state explicitly whether the UNA is
adopted or not.

3 Lower Bounds

We show that, in almost all extensions of EL introduced in Section 2, instance checking
is co-NP-hard regarding data complexity. All our lower bounds assume only acyclic
TBoxes.

For the sake of completeness, we note that the case where there is no TBox is not
very interesting: because only concept names are admitted in the ABox, the additional
concept constructors can then only occur in the query (which is a concept in the case of
instance checking and a conjunctive query otherwise). In most cases (such as EL(¬) and
EL∀r.C), this means that no query which contains the additional constructor is entailed
by any ABox. Thus, there is a trivial reduction to query answering in basic EL. In other
cases such as ELCtD, it is easily shown that conjunctive query containment is tractable
regarding data complexity. A notable exception is ELkf , k ≥ 2, for which instance
checking is coNP-complete already without TBoxes (as is proved below).

3.1 Basic Cases

In [19], Schaerf proves that instance checking in EL¬A is co-NP-hard regarding data
complexity. He uses a reduction from a variant of SAT that he calls 2+2-SAT. Our
lower bounds for extensions of EL are obtained by variations of Schaerf’s reduction.
For this reason, we start with repeating the original reduction of Schaerf. Before we go
into detail, a remark on EL¬A is in order. In this extension of EL, the application of
negation is restricted to concept names. However, full negation can easily be recovered
using acyclic TBoxes: instead of writing ¬C, we may write ¬A and add a concept
equation A

.
= C, with A a fresh concept name. Thus, we restrict the use of negation

even further, namely to concept names that do not occur on the left-hand side of any
concept equation in the (acyclic) TBox. As we shall see shortly, the TBoxes required
for our lower bound are actually of very simple form.

A 2+2 clause is of the form (p1 ∨ p2 ∨¬n1 ∨¬n2), where each of p1, p2, n1, n2 is
a propositional letter or a truth constant 1, 0. A 2+2 formula is a finite conjunction of
2+2 clauses. Now, 2+2-SAT is the problem of deciding whether a given 2+2 formula is
satisfiable. It is shown in [19] that 2+2-SAT is NP-complete.

Let ϕ = c0 ∧ · · · ∧ cn−1 be a 2+2-formula in m propositional letters q0, . . . , qm−1.
Let ci = pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all i < n. We use f , the propositional letters



q0, . . . , qm−1, the truth constants 1, 0, and the clauses c0, . . . , cn−1 as individual names.
Define the TBox T as {A

.
= ¬A} and the ABox Aϕ as follows, where c, p1, p2, n1,

and n2 are role names:

Aϕ := {A(1), A(0)} ∪

{c(f, c0), . . . , c(f, cn−1)} ∪
⋃

i<n{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

It should be obvious that Aϕ is a straightforward representation of ϕ. Models of Aϕ

and T represent truth assignments for ϕ by way of setting qi to true if qi ∈ AI and
to false if qi ∈ A

I
. Since I is a model of T , this truth assignment is well-defined. Set

C := ∃c.(∃p1.A u ∃p2.A u ∃n1.A u ∃n2.A). Intuitively, C expresses that ϕ is not
satisfied, i.e., there is a clause in which the two positive literals and the two negative
literals are all false. It is not hard to show the following.

Lemma 1 (Schaerf). Aϕ, T 6|= C(f) iff ϕ is satisfiable.

Thus, instance checking in EL¬A w.r.t. acyclic TBoxes is co-NP-hard regarding data
complexity.

This reduction can easily be adapted to EL∀r.⊥. In all interpretations I, ∃r.> and
∀r.⊥ partition the domain ∆I and can thus be used to simulate the concept name A and
its negation ¬A in the original reduction. We can thus simply replace the TBox T with
T ′ := {A

.
= ∃r.>, A

.
= ∀r.⊥}.

In some extensions of EL, we only find concepts that cover the domain, but not
necessarily partition it. An example is EL(≤kr), k ≥ 1, in which ∃r.> and (≤ k r)
provide a covering (for k = 0, observe that (≤ k r) is equivalent to ∀r.⊥). Interestingly,
this does not pose a problem for the reduction. In the case of EL(≤kr), we use the TBox
T := {A

.
= ∃r.>, A

.
= (≤ k r)}, and the ABox Aϕ as well as the query concept C

remain unchanged. Let us show that

Lemma 2. Aϕ, T 6|= C(f) iff ϕ is satisfiable.

Proof. “if”. This direction is as in the proof of Lemma 1. Let t be a truth assignment
satisfying ϕ. Define an interpretation I as follows:

∆I := {f, c0, . . . , cn−1, q0, . . . , qm−1, 0, 1, d}
cI := {(f, c0), . . . , (f, cn−1)}
pIj := {(c0, p0,j), . . . , (cn−1, pn−1,j)}
nI

j := {(c0, n0,j), . . . , (cn−1, nn−1,j)}
AI := {1} ∪ {qi | i < m and t(qi) = 1}

A
I

:= ∆I \ AI

rI := {(e, d) | e ∈ AI}

All individual names are interpreted as themselves. It is not hard to verify that I is a
model of Aϕ and T , and that f /∈ CI .
“only if”. Here we need to deal with the non-disjointness of ∃r.> and (≤ k r). Let I
be a model of Aϕ and T such that f /∈ CI . Define a truth assignment t by choosing



for each propositional letter qi, a truth value t(qi) such that t(qi) = 1 implies qIi ∈ A
and t(qi) = 0 implies qIi ∈ A. Such a truth assignment exists since A and A cover
the domain. However, it is not necessarily unique since A and A need not be disjoint.
To show that t satisfies ϕ, assume that it does not. Then there is a clause ci = (pi,1 ∨

pi,2 ∨ ¬ni,1 ∨ ¬ni,2) that is not satisfied by t. By definition of t, pi,1, pi,2 ∈ A
I

and
ni,1, ni,2 ∈ AI . Thus cIi ∈ (∃p1.A u ∃p2.A u ∃n1.A u ∃n2.A)I and we get f ∈ CI ,
which is a contradiction. o

The cases EL∀r.C and EL∃¬r.C can be treated similarly because a covering of the do-
main can be achieved by choosing the concepts ∃r.> and ∀r.X in the case of EL∀r.C ,
and ∃r.> and ∃¬r.> in the case of EL∃¬r.C . In the case, ELCtD, we use a TBox
T ′ := {V

.
= X t Y }. In all models of T ′, the extension of V is covered by the con-

cepts X and Y . Thus, we can use the above ABox Aϕ, add V (qi) for all i < m, and
use the TBox T := T ′ ∪ {A

.
= X,A

.
= Y } and the same query concept C as above.

The case EL∃r+.C is quite similar. In all models of the TBox T ′ := {V
.
= ∃r+.C}, the

extension of V is covered by the concepts ∃r.C and ∃r.∃r+.C. Thus, we can use the
same ABox and query concept as for ELCtD, together with the TBox T := T ′∪{A

.
=

∃r.C,A
.
= ∃r.∃r+.C}.

Theorem 1. For the following, instance checking w.r.t. acyclic TBoxes is co-NP-hard
regarding data complexity: EL¬A, EL∀r.⊥, EL∀r.C , EL∃¬r.C , ELCtD, EL∃r+.C , and
EL(≤kr) for all k ≥ 0.

For EL∀r.⊥, EL∀r.C , and ELCtD, co-NP-hardness of conjunctive query containment
w.r.t. general TBoxes has been established in [8]. It seems likely that the proofs (which
are not given in detail) actually apply to instance checking and acyclic TBoxes.

3.2 Cases that depend on the UNA

The results in the previous subsection are independent of whether or not the UNA is
adopted. In the following, we consider some cases that depend on the (non-)UNA, start-
ing with EL(≥k r).

In EL(≥k r), k ≥ 2, it does not seem possible to find two concepts that a priori cover
the domain and can be used to represent truth values in truth assignments. However, if
we add slightly more structure to the ABox, such concepts can be found. We treat only
the case k = 3 explicitly, but it easily generalizes to other values of k as long as k ≥ 2.
Consider the following auxiliary ABox, also shown in Figure 1.

A = {r(a, b1), r(a, b2), r(a, b3), r(b1, b2), r(b2, b3), r(b1, b3)}.

Without the UNA, there are two cases for models of A: either two of b1, b2, b3 identify
the same domain element or they do not. In the first case, a satisfies ∃r4.>, where ∃r4

denotes the four-fold nesting of ∃r. In the second case, a satisfies (≥ 3 r). It follows
that we can reduce satisfiability of 2+2 formulas using a reduction very similar to the
one for EL(≤k r). The main differences are that (i) a copy of A is plugged in for each
qi, with a replaced by qi and (ii) we use the TBox T := {A

.
= ∃r4.>, A

.
= (≥ 3 r)}.
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Fig. 1. Auxiliary ABox A for EL(≥ 3 r) without UNA.

Unlike the previous results, this lower bound clearly depends on the fact that the
UNA is not adopted. If the UNA is adopted, we can prove the same result using a
different auxiliary ABox. Again, we only treat the case k = 3, which easily generalizes.
Let

A′ = {r(a, b1), r(a, b2), V (a), A(b1), A(b2)}

and consider the TBox T ′ = {V
.
= ∃r.B}. In every model I of A′ and T ′, there

is a d ∈ BI such that (aI , d) ∈ rI . We can distinguish two cases: if d = bi for
some i ∈ {1, 2}, then a satisfies ∃r.(A u B). Otherwise, a satisfies (≥ 3 r). We can
now continue the reduction as in the previous cases. Start with the ABox Aϕ from the
reduction for EL¬A, add V (qi) for all i < m and a copy of A′ for each qi, with a
replaced by qi. Then use the TBox T = T ′ ∪ {A

.
= ∃r.(A uB), A

.
= (≥ 3 r)} and the

original query concept C. Observe that this reduction does not work without the UNA.

Theorem 2. For EL(≥k r) with k ≥ 2, instance checking w.r.t. acyclic TBoxes is co-
NP-hard regarding data complexity, both with and without the UNA.

Another case that depends on the (non-)UNA is ELkf with k ≥ 2. We start with proving
coNP-hardness provided that the UNA is not adopted. For the case EL1f , we will prove
in Section 4 that instance checking (and even conjunctive query entailment) is tractable
regarding data complexity, with or without the UNA. For simplicity, we only treat the
case EL2f explicitly. It is easy to generalize our argument to larger values of k. Like in
EL(≥3r), in EL2f it does not seem possible to find two concepts that cover the domain
without providing additional structure via an ABox. Set

A′′ = {r(a, b1), r(a, b2), r(a, b3), r(b1, b2), A(b1), A(b2), B(b3)}}.

where r is 2-functional and thus at least two of b1, b2, b3 have to identify the same do-
main element. A graphical representation is given in Figure 2. Regarding models of A′′,
we can distinguish two cases: either b3 is identified with b1 or b2, then a satisfies ∃r.(Au
B). Or b1 and b2 are identified, then a satisfies ∃r3.>, where ∃r3 denotes the three-fold
nesting of ∃r. It follows that we can reduce satisfiability of 2+2 formulas using a re-
duction very similar to that for EL(≥3r) above. Observe that we do not need a TBox at
all to make this work. We take the original ABox Aϕ defined for EL¬A, add a copy of
A′′ for each qi with a replaced by qi, and replace A(1) with {r(1, e), A(e), B(e)} and
A(0) with {r(0, e0), r(e0, e1), r(e1, e2)}. Thus, 1 satisfies ∃r.(A u B) (representing
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Fig. 2. Auxiliary ABox A′′ for EL2f without UNA.

true) and 0 satisfies ∃r3.> (representing false). It remains to modify the query concept
to C ′ := ∃c.(∃p1.∃r3.> u ∃p2.∃r3.> u ∃n1.∃r.(A u B) u ∃n2.∃r.(A u B)).

With the UNA and without TBoxes, instance checking in ELkf , k ≥ 2 is tractable
regarding data complexity. The same holds for conjunctive query answering. In a nut-
shell, a polytime algorithm is obtained by considering the input ABox as a (complete)
description of an interpretation and then checking all possible matches of the conjunc-
tive query. A special case that has to be taken into account are inconsistent ABoxes such
as those containing {r(a, b1), r(a, b2), r(a, b3)} for a 2-functional role r and with the
bi mutually distinct. Such inconsistencies are easily detected. If found, the algorithm
returns “yes” because an inconsistent ABox entails every consequence.

If we add acyclic TBoxes, instance checking in ELkf , k ≥ 2, becomes co-NP-hard
also with the UNA. We only treat the case k = 3, but our arguments generalize. As
in the case of EL2f without UNA, we have to give additional structure to the ABox.
Consider the TBox T ′′ = {V

.
= ∃r.B} and the ABox

A′′′ = {V (a), r(a, b1), r(a, b2), r(a, b3), s(a, b1), s
′(a, b2), s

′(a, b3)}.

with r a 3-functional role. Then a satisfies ∃r.B in all models I of A′′′ and T ′′. Because
of the UNA, we can distinguish two cases: either b1 satisfies B or one of b2, b3 does.
In the first case, a satisfies ∃s.B and in the second case, it satisfies ∃s′.B. We can then
continue the reduction as in the previous cases.

Theorem 3. For ELkf with k ≥ 2, instance checking is

– tractable w.r.t. the empty TBox and with UNA;
– co-NP-hard in the following cases: (i) w.r.t. the empty TBox and without UNA, and

(ii) w.r.t. acyclic TBoxes and with UNA.

4 Upper Bound

The only remaining extensions of EL introduced in Section 2 are EL∃r−.C and EL1f .
For both of them, instance checking w.r.t. general TBoxes is EXPTIME-complete re-
garding combined complexity [2]. In this section, we consider the union ELIf of
EL∃r−.C and EL1f , i.e., the extension of EL with both inverse roles and globally func-
tional roles. It follows from the results on Horn-SHIQ in [12] that instance checking
in ELIf w.r.t. general TBoxes is tractable regarding data complexity. A direct proof



can be found in [14]. Here, we show that even conjunctive query answering in ELIf is
tractable regarding data complexity.

An inverse role is an expression r− with r a role name. The interpretation of an
inverse role is (r−)I = {(e, d) | (d, e) ∈ rI}. In ELIf , roles and also their inverses
can be declared functional using statements > v (≤ 1 r) in the TBox. For conveniently
dealing with inverse roles, we use the following convention: if r = s− (with s a role
name), then r− denotes s. Observe that w.l.o.g., we do not admit inverse roles in the
ABox and the query.

As a preliminary, we assume that TBoxes are in a normal form, i.e., all concept
inclusions are of one of the following forms, where A, A1, A2, and B are concept
names or > and r is a role name or an inverse role:

A v B, A v ∃r.B, > v (≤ 1 r)
A1 u A2 v B, ∃r.A v B

Let T be a TBox. T can be converted into normal form T ′ in polytime, by introducing
additional concept names. See [2] for more details. Moreover, it is not too difficult to
see that for every ABox A and conjunctive query q not using any of the concept names
that occur in T ′ but not in T , we have A, T |= q iff A′, T ′ |= q.

Two other (standard) assumptions that we make w.l.o.g. is that (i) in all atoms C(v)
in a conjunctive query q, C is a concept name; and (ii) conjunctive queries are con-
nected, i.e., for all u, v ∈ Var(q), there are atoms r(u0, u1), . . . , r(un−1, un) ∈ q,
n ≥ 0, such that u = u0 and v = un. It is easy to achieve (i) by replacing C(v) with
A(v) and adding A

.
= C to the TBox, with A a fresh concept name. Regarding (ii),

it is well-known that entailment of non-connected queries can easily (and polynomi-
ally) be reduced to entailment of connected queries: if q is a non-connected query, then
A, T |= q iff A, T |= q′ for all connected components q′ of q; see e.g. [10].

Our algorithm for conjunctive query answering in ELIf is based on canonical mod-
els. To introduce canonical models, we need some preliminaries. Let T be a TBox and
Γ a finite set of concept names. We use N

T
C

to denote the set of all concept names oc-
curring in T and “vT ” to denote subsumption w.r.t. T , i.e., C vT D iff CI ⊆ DI for
all models I of T . We write

subT (Γ ) := {A ∈ N
T
C | u

A′∈Γ
A′ vT A}

to denote the closure of Γ under subsuming concept names w.r.t. T . For the next def-
inition, the reader should intuitively assume that we want to make all elements of Γ
(jointly) true at a domain element in a model of T . If A ∈ Γ and A v ∃r.B ∈ T , then
we say that Γ has ∃r.B-obligation O, where

O = {B} ∪ {B′ ∈ N
T
C | ∃A′ ∈ Γ : ∃r−.A′ v B′ ∈ T } ∪ O′,

with O′ = ∅ if > v (≤ 1 r) /∈ T and O′ = {B′ ∈ N
T
C
| ∃A′ ∈ Γ : A′ v ∃r.B′ ∈ T }

otherwise.
Let T be a TBox in normal form and A an ABox, for which we want to decide

conjunctive query entailment (for a yet unspecified query q). We use Ind(A) to denote



the set of individual names occurring in A. To define a canonical model for A and T ,
we have to require that A is admissible w.r.t. T . What admissibility means depends on
whether or not we make the UNA: A is admissible w.r.t. T if (i) the UNA is made and
A is consistent w.r.t. T or (ii) the UNA is not made and (> v (≤ 1 r)) ∈ T implies that
there are no a, b, c ∈ Ind(A) with r(a, b), r(a, c) ∈ A and b 6= c. As will be discussed
later, admissibility can be ensured by an easy (polytime) preprocessing step.

We define a sequence of interpretations I0, I1, . . . , and the canonical model for A
and T will then be the limit of this sequence. To facilitate the construction, it is helpful
to use domain elements that have an internal structure. An existential for T is a concept
∃r.A that occurs on the right-hand side of some inclusion in T . A path p for T is a
finite (possibly empty) sequence of existentials for T . We use ex(T ) to denote the set
of all existentials for T , ex(T )∗ to denote the set of all paths for T , and ε to denote the
empty path. All interpretations Ii in the above sequence will satisfy

∆Ii ⊆ {〈a, p〉 | a ∈ Ind(A) and p ∈ ex
∗(T )}

For convenience, we use a slightly non-standard representation of interpretations when
defining the sequence I0, I1, . . . and canonical interpretations: the function ·I maps
every element d ∈ ∆I to a set of concept names dI instead of every concept name A to
a set of elements AI . It is obvious how to translate back and forth between the standard
representation and this one, and we will switch freely in what follows.

To start the construction of the sequence I0, I1, . . . , define I0 as follows:

∆I0 := {〈a, ε〉 | a ∈ Ind(A)}

rI0 := {(〈a, ε〉, 〈b, ε〉) | r(a, b) ∈ A}

〈a, ε〉I0 := {A ∈ NC | A, T |= A(a)}

aI0 := 〈a, ε〉

Now assume that Ii has already been defined. We want to construct Ii+1. If it exists,
select a 〈a, p〉 ∈ ∆Ii and an α = ∃r.A ∈ ex(T ) such that 〈a, p〉Ii has α-obligation O,
and (i) (> v (≤ 1 r)) /∈ T and 〈a, pα〉 /∈ ∆Ii or (ii) there is no 〈b, p′〉 ∈ ∆Ii with
(〈a, p〉, 〈b, p′〉) ∈ rIi . Then do the following:

– add 〈a, pα〉 to ∆Ii ;
– if r is a role name, add (〈a, p〉, 〈a, pα〉) to rIi ;
– if r = s−, add (〈a, pα〉, 〈a, p〉) to sIi ;
– set 〈a, pα〉Ii := subT (O).

The resulting interpretation is Ii+1 (and Ii+1 = Ii if there are no 〈a, p〉 and α to be
selected). We assume that the selected 〈a, p〉 is such that the length of p is minimal, and
thus all obligations are eventually satisfied. To ensure that the constructed canonical
model is unique, we also assume that the set ex(T ) is well-ordered and the selected α
is minimal for the node 〈a, p〉.

A proof of the following result can be found in the appendix.

Lemma 3. The canonical model I for T and A is a model of T and of A.



Our aim is to prove that we can verify whether A and T entail a conjunctive query q by
checking whether the canonical model I for A and T matches q. Key to this result is the
observation that the canonical model of A and T can be homomorphically embedded
into any model of A and T . We first define homomorphisms and then state the relevant
lemma.

Let I and J be interpretations. A function h : ∆I → ∆J is a homomorphism from
I to J if the following holds:

1. for all individual names a, h(aI) = aJ ;
2. for all concept names A and all d ∈ ∆I , d ∈ AI implies h(d) ∈ AJ ;
3. for all (maybe inverse) roles r and d, e ∈ ∆I , (d, e) ∈ rI implies (h(d), h(e)) ∈ rJ .

Lemma 4. Let I be the canonical model for A and T , and J a model of A and T .
Then there is a homomorphism h from I to J .

Proof. Let I and J be as in the lemma. For each interpretation Ii in the sequence
I0, I1, . . . used to construct I, we define a homomorphism hi from Ii to J . The limit
of the sequence h0, h1, . . . is then the desired homomorphism h from I to J . To start,
define h0 by setting h0(〈a, ε〉) := aJ for all individual names a. Clearly, h0 is a homo-
morphism:

– Condition 1 is satisfied by construction.
– For Condition 2, let 〈a, ε〉 ∈ AI0 . Then A, T |= A(a). Since J is a model of A and
T , h0(〈a, ε〉) = aJ ∈ AJ .

– For Condition 3, let (〈a, ε〉, 〈b, ε〉) ∈ rI0 . Then r(a, b) ∈ A and since J is a model
of A and by definition of h0, we have (h0(〈a, ε〉), h0(〈b, ε〉)) ∈ rJ .

Now assume that hi has already been defined. If Ii+1 = Ii, then hi+1 = hi. Otherwise,
there is a unique 〈a, pα〉 ∈ ∆Ii+1 \ ∆Ii . Then 〈a, p〉 ∈ ∆Ii , and 〈a, p〉Ii has α =
∃r.B-obligation O such that 〈a, pα〉Ii+1 = subT (O). Let A ∈ 〈a, p〉Ii such that A v
∃r.B ∈ T . By Condition 2 of homomorphisms, we have d = hi(〈a, p〉) ∈ AJ . Since
A v ∃r.B ∈ T , there is an e ∈ BJ with (d, e) ∈ rJ . Define hi+1 as the extension of
hi with hi+1(〈a, pα〉) := e. We prove that the three conditions of homomorphisms are
preserved:

– Condition 1 is untouched by the extension.
– Now for Condition 2. Since 〈a, pα〉Ii+1 = subT (O) and J is a model of T , it suffices

to show that for all B′ ∈ O, we have e ∈ B′J . Let B′ ∈ O. By definition of O, we
can distinguish three cases.
First, let B′ = B. Then we are done by choice of e.
Second, let there be an A′ ∈ 〈a, p〉Ii such that ∃r−.A′ v B′ ∈ T . Since hi satisfies
Condition 2 of homomorphisms, we have d ∈ A′J . Since J is a model of T and
(d, e) ∈ rJ , it follows that e ∈ B′J .
The third case is that > v (≤ 1 r) ∈ T and there is an A′ ∈ 〈a, p〉Ii such that
A′ v ∃r.B′ ∈ T . It is similar to the previous case.

– Condition 3 was satisfied by Ii and is clearly preserved by the extension to Ii+1. o



Lemma 5. Let I be the canonical model for A and T , and q a conjunctive query. Then
A, T |= q iff I |= q.

Proof. Let I and q be as in the lemma, and n, m, and k as above. If I 6|= q, then
A, T 6|= q since, by Lemma 3, I is a model of A and T . Now assume I |=π q, and
let J be a model of A and T . By Lemma 4, there is a homomorphism h from I to J .
Define π′ : Var(q) → ∆J by setting π′(v) := h(π(v)). It is easily seen that J |=π′

q.
o

Thus, we can decide query entailment by looking only at the canonical model. At this
point, we are faced with the problem that we cannot simply construct the canonical
model I and check whether I |= q since I is infinite. However, we can show that if
I |= q, then I |=π q for some match π that maps all variables to elements that can be
reached by travelling only a bounded number of role edges from some ABox individual.
Thus, it suffices to construct a sufficiently large “initial part” of I and check whether it
matches q.

To make this formal, let n be the size of A, m the size of T , and k the size of q. In
the following, we use |p| to denote the length of a path p. The initial canonical model
I ′ for A and T is obtained from the canonical model I for A and T by setting

∆I′

:= {〈a, p〉 | |p| ≤ 2m + k}

AI′

:= AI ∩ ∆I′

rI
′

:= rI ∩ (∆I′

× ∆I′

)

aI′

:= aI

Lemma 6. Let I be the canonical model for A and T , I ′ the initial canonical model,
and q a conjunctive query. Then I |= q iff I ′ |= q.

Proof. Let I, I ′, and q be as in the lemma. It is obvious that I ′ |= q implies I |= q. For
the converse direction, let I |=π q. First assume that there is an a ∈ Ind(A) and a v ∈
Var(q) such that π(v) = aI . Since q is connected, this means that for all v ∈ Var(q),
we have π(v) = 〈a, p〉 such that |p| ≤ k. It follows that I ′ |=π q.

Now assume that there are no such a and v. Again since q is connected, this means
that there is an a ∈ Ind(A) such that for all v ∈ Var(q), we have π(v) = 〈a, p〉, for
some p ∈ ex

∗(T ). If π(v) = 〈a, p〉 with |p| ≤ 2m +k for all v ∈ Var(q), then I ′ |=π q.
Otherwise, there is a v ∈ Var(q) such that π(v) = 〈a, p〉 with p ∈ ex

∗(T ) such that
|p| > 2m + k. Since q is connected, this implies that for all v ∈ Var(q), we have
π(v) = 〈a, p〉, for some p ∈ ex

∗(T ) with |p| > 2m. Once more since q is connected,
there is a v0 ∈ Var(q) such that π(v0) = 〈a, p0〉 and for all v ∈ Var(q), we have
π(v) = 〈a, p〉 with p0 a prefix of p.

Since |p0| > 2m and the number of distinct labels dI , d ∈ ∆I , is bounded by 2m,
we can split p0 into p1p2p3 such that 〈a, p1〉

I = 〈a, p1p2〉
I , and p2 6= ε. Now, let π′ :

Var(q) → ∆I be obtained by setting π′(v) := 〈a, p1p3p〉 if π(v) = 〈a, p1p2p3p〉. In
the full version of the proof given in the appendix, we show that I |=π′

q. Moreover, for
each v ∈ Var(q) with π(v) = 〈a, p〉 and π′(v) = 〈a, p′〉, we have that the length of p′ is
strictly smaller than that of p. It follows that we can repeat the described construction to



construct a new match from an existing one only a finite number of times. We ultimately
end up with a π∗ such that I |=π∗

q and for all v ∈ Var(q), π∗(v) = 〈a, p〉 with
|p| ≤ 2m + k. o

The initial canonical model I ′ for A and T can be constructed in time polynomial
in the size of A. In particular, (i) I0 can be constructed in polytime since, due to the
results of [12, 14], instance checking in ELIf is tractable regarding data complexity;
(ii) obligations can be computed in polytime since subsumption in ELIf w.r.t. general
TBoxes is decidable and the required checks are independent of the size of A; (iii) the
number of elements in the initial canonical model is bounded by ` := n ·m2m+k and is
thus independent of the size of A.

Our algorithm for deciding entailment of a conjunctive query q by a TBox T in nor-
mal form and an ABox A is as follows. If the UNA is made, we first check consistency
of A w.r.t. T using one of the polytime algorithms from [12, 14]. If A is inconsistent
w.r.t. T , we answer “yes”. If the UNA is not made, then we convert A into an ABox
A′ that is admissible w.r.t. T , and continue working with A′. Obviously, the conversion
can be done in time polynomial in the size of A simply by identifying ABox individ-
uals. Both with and without UNA, at this point we have an ABox that is admissible
w.r.t. T . The next step is to construct the initial canonical structure I ′ for T and A,
and then check matches of q against this structure. The latter can be done in time poly-
nomial in the size of A: there are at most `k (and thus polynomially many) mappings
τ : Var(q) → ∆I′

, and each of them can be checked for being a match in polynomial
time. We thus obtain a time bound for our algorithm of p(nk · mk·2m+k2

), with p() a
polynomial. This bound is clearly polynomial in n

Theorem 4. In ELIf , conjunctive query answering w.r.t. general TBoxes is in P re-
garding data complexity.

We conjecture that the time bound can be improved to O((n + 2m)k) (only single-
exponential in m) by a more refined approach to canonical models. Basically, the idea
is to work with the filtration of the canonical model instead of with the initial part.

A matching lower bound can be taken from [8] (which relies on the presence of
general TBoxes and already applies to the instance problem), and thus we obtain P-
completeness.

5 Summary and Outlook

The results of our investigation are summarized in Table 2. In all cases the lower bounds
apply to instance checking and the upper bounds to conjunctive query entailment. The
co-NP upper bounds are a consequence of the results in [10]. When the UNA is not
explicitly mentioned, the results hold both with and without UNA. We point out two
interesting issues. First, for all of the considered extensions we were able to show
tractability regarding data complexity if and only if the logic is convex regarding in-
stances, i.e., A, T |= C(a) with C = D0 t · · · t Dn−1 implies A, T |= Di(a) for
some i < n. It would be interesting to capture this phenomenon in a general result. And
second, it is interesting to point out that subtle differences such as the UNA or local



Extensions of EL w.r.t. acyclic TBoxes w.r.t. general TBoxes

EL¬A coNP-complete coNP-complete

ELCtD coNP-complete coNP-complete

EL∀r.⊥, EL∀r.C coNP-complete coNP-complete

EL(≤kr), k ≥ 0 coNP-complete coNP-complete

ELkf w/o UNA, k ≥ 2 coNP-complete coNP-complete
(even w/o TBox)

ELkf , k ≥ 2 with UNA coNP-complete coNP-complete
(in P w/o TBox)

EL(≥kr), k ≥ 2 coNP-complete coNP-complete

EL∃¬r.C coNP-hard coNP-hard

EL∃r∪s.C coNP-hard coNP-hard

EL∃r+.C coNP-hard coNP-hard

ELIf in P P-complete

Table 2. Complexity of instance checking and conjunctive query entailment

versus global functionality (for the latter, see EL(≤1r) vs. ELIf ) can have an impact
on tractability.

As future work, it would be interesting to extend our upper bound by including more
operators from the tractable description logic EL++ as proposed in [2]. For a start, it is
not hard to show that conjunctive query entailment in full EL++ is undecidable due to
the presence of role inclusions r1 ◦ · · · ◦ rn v s. In the following, we briefly sketch the
proof, which is by reduction of the problem of deciding whether the intersection of two
languages defined by given context-free grammars Gi = (Ni, T, Pi, Si), i ∈ {1, 2}, is
empty. We assume w.l.o.g. that the set of non-terminals N1 and N2 are disjoint. Then
define a TBox

T := {> v ∃ra.> | a ∈ T} ∪ {rA1
◦ · · · ◦ rAn

v rA | A → A1 · · ·An ∈ P1 ∪ P2}.

It is not too difficult to see that L(G1)∩L(G2) 6= ∅ iff the conjunctive query S1(u, v)∧
S2(u, v) is entailed by the ABox {>(a)} and TBox T .

We have learned recently that the same undecidability result has been shown inde-
pendently and in parallel in the workshop papers [17, 18]. For people interested in the
complexity of conjunctive querying entailment in the EL family of DLs, both papers are
recommended reading. In particular, the algorithms for query answering presented there
seem more suitable for implementation than the brute-force canonical model approach
pursued in Section 4. We have also learned that our undecidability result is very similar
to a number of undecidability results for subsumption in extensions of EL proved in
[13].

Acknowledgement We are grateful to Markus Krötzsch and Meng Suntisrivaraporn for
valuable comments on earlier versions of this paper.
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A Omitted Proofs

Lemma 3. The canonical model I for T and A is a model of T and of A.

Proof. By definition of I0 and I, the canonical model is a model of A. To show that
it is also a model of T , we make a case distinction according to the possible forms of
concept inclusions in T :

– A v B and A1 u A2 v B. Satisfied since for all 〈a, p〉 ∈ ∆I , we clearly have
〈a, p〉I = subT (〈a, p〉I).

– A v ∃r.B. Let 〈a, p〉 ∈ AI . This together with A v ∃r.B ∈ T means that 〈a, p〉I0

has α-obligation O, where α = ∃r.B. Clearly, B ∈ O. There are two cases.
? If p = ε, then A ∈ 〈a, ε〉I0 and thus A, T |= A(a). We distinguish three subcases.

For the first subcase, assume that (> v (≤ 1 r)) /∈ T . By construction, there is
an i > 0 such that (〈a, ε〉, 〈a, α〉) ∈ rIi ⊆ rI and 〈a, α〉Ii = subT (O). Since
B ∈ O, 〈a, α〉 ∈ BIi . It follows that 〈a, ε〉 ∈ (∃r.B)I .
For the second subcase, assume that (> v (≤ 1 r)) ∈ T and there is a b ∈
Ind(A) such that r(a, b) ∈ A. Then A, T |= B(b). By construction of I0, we have
(〈a, ε〉, 〈b, ε〉) ∈ rI0 ⊆ rI and B ∈ 〈b, ε〉I0 . We thus obtain 〈a, p〉 ∈ (∃r.B)I by
definition of I and the semantics.
For the third subcase, assume that (> v (≤ 1 r)) ∈ T and there is no b ∈ Ind(A)
such that r(a, b) ∈ A. By construction, there is a β = ∃r.B ′ ∈ ex(T ) such that
〈a, p〉I0 has β-obligation O′ and there is an i > 0 such that (〈a, ε〉, 〈a, β〉) ∈ rIi ⊆
rI and 〈a, β〉Ii = subT (O′). Since (> v (≤ 1 r)) ∈ T , O = O′. Since B ∈ O,
〈a, β〉 ∈ BIi . It follows that 〈a, ε〉 ∈ (∃r.B)I .

? Let p 6= ε. Then there is an i > 0 such that 〈a, p〉 ∈ ∆Ii . Let i be minimal with
this property. There are again three subcases.
First, assume that (> v (≤ 1 r)) /∈ T . Then, there is a j > i with (〈a, p〉, 〈a, pα〉) ∈
rIj and 〈a, pα〉I = subT (O). Since B ∈ O,〈a, p〉 ∈ (∃r.B)I .
Second, assume that (> v (≤ 1 r)) ∈ T and there is no 〈b, p′〉 ∈ ∆Ii such that
(〈a, p〉, 〈b, p′〉) ∈ rIi . By construction, there is a β = ∃r.B′ ∈ ex(T ) such that
〈a, p〉Ii has β-obligation O′ and there is a j > i such that (〈a, p〉, 〈a, pβ〉) ∈ rIj

and 〈a, pβ〉Ij = subT (O′). Since (> v (≤ 1 r)) ∈ T , O = O′. Since B ∈ O,
〈a, pβ〉 ∈ BIi . It follows that 〈a, p〉 ∈ (∃r.B)I .
Last, assume that (> v (≤ 1 r)) ∈ T and there is a 〈b, p′〉 ∈ ∆Ii such that
(〈a, p〉, 〈b, p′〉) ∈ rIi . By construction of the sequence I0, I1, . . . and since p 6= ε,
this can only be the case if a = b and
1. p = p′α or for some β = ∃r−.B′ ∈ ex(T ), or
2. p′ = pα for some β = ∃r.B′ ∈ ex(T ).
First for Case 1. Then 〈a, p′〉Ii has β-obligation O′, and 〈a, p〉Ii = subT (O′). By
definition of obligations, A ∈ subT (O′) implies that uX∈〈a,p′〉Ii X vT ∃r−.A.
Together with (> v (≤ 1 r)) ∈ T and A v ∃r.B ∈ T , we getuX∈〈a,p′〉Ii X vT

B. Since 〈a, p′〉Ii = subT (〈a, p′〉Ii), we thus have B ∈ 〈a, p′〉Ii . By the seman-
tics, 〈a, p〉 ∈ (∃r.B)I .
Now for Case 2. Then 〈a, p〉Ii has β-obligation O′, and 〈a, p′〉Ii = subT (O′).
Since (> v (≤ 1 r)) ∈ T and A v ∃r.B ∈ T , we have B ∈ O. Thus B ∈
〈a, p′〉Ii and, 〈a, p〉 ∈ (∃r.B)I .



– ∃r.A v B. Let 〈a, p〉 ∈ (∃r.A)I . Then there is a 〈b, p′〉 ∈ AI and such that
(〈a, p〉, 〈b, p′〉) ∈ rI . We distinguish four cases.
? p = p′ = ε. Then r(a, b) ∈ A and A, T |= A(b). Thus, A, T |= B(a) and a ∈ BI

by definition of I0.
? p = ε, p′ 6= ε. By construction of the sequence I0, I1, . . . , this implies a = b and

p′ = α = ∃r.B′ ∈ ex(T ). Also by construction, 〈a, ε〉I has ∃r.B′-obligation O,
and 〈a, α〉I = subT (O). Since A ∈ subT (O), it follows that uX∈〈a,ε〉IX vT

∃r.A. Together with ∃r.A v B ∈ T , we get uX∈〈a,ε〉IX vT B. Thus, B ∈

〈a, ε〉I .
? p 6= ε, p′ 6= ε. There are two subcases. If p′ = pα for some α = ∃r.B′ ∈ ex(T ),

then we can argue analogous to the previous case. Thus, we only consider the
case p = p′α for some α = ∃r−.B′ ∈ ex(T ). In this case, 〈a, p′〉I has ∃r−.B′-
obligation O, and 〈a, p〉I = subT (O). Since A ∈ 〈a, p′〉I and ∃r.A v B, B ∈ O.
It follows that 〈a, p〉 ∈ BI .

? p 6= ε, p′ = ε. By construction of the sequence I0, I1, . . . , this implies a = b and
p = α = ∃r−.B′ ∈ ex(T ). Also by construction, 〈a, ε〉I has ∃r−.B′-obligation
O, and 〈a, α〉I = subT (O). Since A ∈ 〈a, ε〉I and ∃r.A v B ∈ T , we have
B ∈ O. Thus, 〈a, α〉 = 〈a, p〉 ∈ BI .

– > v (≤ 1 r). Since A is admissible w.r.t. T , there are no a, b, c ∈ Ind(A) with b 6= c
such that for some role name r, r(a, b) and r(a, c) are in A and > v (≤ 1 r) ∈ T .
It follows that I0 satisfies all > v (≤ 1 r) ∈ T . This property is clearly preserved
when constructing Ii with i > 0, and thus it holds for I.

o

Lemma 6. Let I be the canonical model for A and T , I ′ the initial canonical model,
and q a conjunctive query. Then I |= q iff I ′ |= q.

Proof. (Full Version) Let I, I ′, and q be as in the lemma. It is obvious that I ′ |= q
implies I |= q. For the converse direction, let I |=π q. First assume that there is an
a ∈ Ind(A) and a v ∈ Var(q) such that π(q) = aI . Since q is connected, this means
that for all v ∈ Var(q), we have π(v) = 〈a, p〉 such that |p| ≤ k. It follows that I ′ |=π q.

Now assume that there are no such a and v. Again since q is connected, this means
that there is an a ∈ Ind(A) such that for all v ∈ Var(q), we have π(v) = 〈a, p〉, for
some p ∈ ex

∗(T ). If π(v) = 〈a, p〉 with |p| ≤ 2m +k for all v ∈ Var(q), then I ′ |=π q.
Otherwise, there is a v ∈ Var(q) such that π(v) = 〈a, p〉 with p ∈ ex

∗(T ) such that
|p| > 2m + k. Since q is connected, this implies that for all v ∈ Var(q), we have
π(v) = 〈a, p〉, for some p ∈ ex

∗(T ) with |p| > 2m. Once more since q is connected,
there is a v0 ∈ Var(q) such that π(v0) = 〈a, p0〉 and for all v ∈ Var(q), we have
π(v) = 〈a, p〉 with p0 a prefix of p.

Since |p0| > 2m and the number of distinct labels dI , d ∈ ∆I , is bounded by 2m,
we can split p0 into p1p2p3 such that 〈a, p1〉

I = 〈a, p1p2〉
I , and p2 6= ε. Now, let

π′ : Var(q) → ∆I be obtained by setting π′(v) := 〈a, p1p3p〉 if π(v) = 〈a, p1p2p3p〉.
We show the following: for all v ∈ Var(q),

1. π′(v) ∈ ∆I and π(v)I = π′(v)I ;
2. I |=π′

q.



For Point 1, let π(v) = 〈a, p1p2p3p〉. Then π(v′) = 〈a, p1p3p〉. We prove by induction
on the length of p′ that for all prefixes p′ of p3p,

a) 〈a, p1p
′〉 ∈ ∆I and

b) 〈a, p1p
′〉I = 〈a, p1p2p

′〉I .

For p′ = ε, Point a) is true since 〈a, p0〉 ∈ ∆I and by construction of I, 〈a, p′′〉 ∈ ∆I

for all prefixes p′′ of p0, including p′′ = p1. Moreover, Point b) is true by choice of p1

and p2.
Now assume that the claim has already been shown for p′, and let α ∈ ex(T )

such that p′α is a prefix of p3p. Then p1p2p
′ has α-obligation O and 〈a, p1p2p

′α〉I =
subT (O). By induction hypothesis, 〈a, p1p

′〉I = 〈a, p1p2p
′〉I . It follows that p1p

′ also
has α-obligation O (here we exploit the well-order on ex(T ). By construction of I, we
thus have 〈a, p1p

′α〉 ∈ ∆I and 〈a, p1p
′α〉I = subT (O). The former proves Point a)

and the latter Point b). This finishes the proof of Point 1.
For Point 2, let A(v) ∈ q. By Point 1, I |=π A(v) implies I |=π′

A(v). Now let
r(u, v) ∈ q. Then (π(u), π(v)) ∈ rI . By construction of I, this implies that one of the
following holds:

1. π(u) = 〈a, p1p2p3p〉 and π(v) = 〈a, p1p2p3pα〉 for some α = ∃r.B ∈ ex(T );
2. π(u) = 〈a, p1p2p3pα〉 and π(v) = 〈a, p1p2p3p〉 for some α = ∃r−.B ∈ ex(T ).

In Case 1, we have π′(u) = 〈a, p1p3p〉 and π(v) = 〈a, p1p3pα〉. Again by construction
of I, this means (π′(u), π′(v)) ∈ rI . Case 2 is analogous.

We have thus proved Point 2, i.e. I |=π′

q. Moreover, for each v ∈ Var(q) with
π(v) = 〈a, p〉 and π′(v) = 〈a, p′〉, we obviously have that the length of p′ is strictly
smaller than that of p. It follows that we can repeat the described construction to con-
struct a new match from an existing one only a finite number of times. We ultimately
end up with a π∗ such that I |=π∗

q and for all v ∈ Var(q), π∗(v) = 〈a, p〉 with
|p| ≤ 2m + k. o


