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Abstract. Finding the justifications for an entailment (i.e., minimal sets
of axioms responsible for it) is a prominent reasoning service in ontology
engineering, as justifications facilitate important tasks like debugging in-
consistencies or undesired subsumption. Though several algorithms for
finding all justifications exist, issues concerning efficiency and scalability
remain a challenge due to the sheer size of real-life ontologies. In this
paper, we propose a novel method for finding all justifications in OWL
DL ontologies by limiting the search space to smaller modules. To this
end, we show that so-called locality-based modules cover all axioms in
the justifications. We present empirical results that demonstrate an im-
provement of several orders of magnitude in efficiency and scalability of
finding all justifications in OWL DL ontologies.

1 Introduction

Since the Web Ontology Language (OWL) has become a W3C standard, it is
widely believed that ontologies play a prominent role in formal representation
of knowledge on the Semantic Web. The main advantages of employing OWL
in knowledge engineering are twofold. On the one hand, the well-defined seman-
tics of Description Logic (DL), which is the logical underpinning of OWL, helps
guarantee that everyone on the Web understands the described knowledge in a
consistent way. On the other hand, reasoning services can be exploited to derive
implicit knowledge from the one explicitly given. DL systems can, for example,
identify unsatisfiable concepts and classify a given ontology, i.e., compute all the
subsumption (subconcept–superconcept) relationships between the concepts de-
fined in the ontology. These “standard” reasoning services have proved essential
but not sufficient in engineering real-world ontologies. This is because building
ontologies is an error-prone endeavor. Although most DL systems can detect an
error (an unsatisfiable concept or undesired subsumption) in a given ontology,
additional reasoning is needed in order to find its justifications, i.e., minimal
subsets of the ontology that still have the error.

Several techniques for finding all justifications have been proposed in the
literature in the past decade which can be categorized into glass-box approaches
and black-box approaches.
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Glass-box approaches require the decision (e.g., tableau) procedure to be mod-
ified, usually by adding labels to keep track of relevant axioms used during the
computation [14,12,11,1,2]. Most of the work in this direction considers specific
Description Logics, e.g., ALC, and a specific type of entailment, e.g., concept un-
satisfiability. In [14], Schlobach and Cornet proposed an extension to the tableau
algorithm for ALC with unfoldable TBoxes. The extension uses labels to keep
track of axioms used during the computation which directly corresponds to justi-
fications. They also coined the name “axiom pinpointing” for the task of finding
justifications for an entailment. Since glass-box approaches are based on modify-
ing the internals of a DL reasoning algorithm, an extension has to be developed
for each DL. Meyer et al. extended the idea to ALC with general concept in-
clusions (GCIs) [12], and Kalyanpur et al. extended it to the more expressive
DL SHIF(D) [11] and SHOIN (D) [10] which underly the core of OWL. In
[1], a general approach for extending a tableau-based algorithm to a pinpointing
algorithm is proposed which can be used to find all justifications for a given
entailment. Most previous work on glass-box methods considers tableau-based
reasoning algorithm. An exception is the work by Baader et al. [2] which ex-
tends the polytime classification algorithm in order to compute justifications for
a subsumption relation in the lightweight DL EL+, and also shows that axiom
pinpointing is inherently hard, i.e., determining whether there is a justification
within a given cardinality bound is NP-complete despite tractability of the un-
derlying DL.

The other class of approaches to axiom pinpointing is known as black-box,
where a DL reasoner is merely used to test specific entailment queries, and as
such its internals need not be modified. With a näıve pruning algorithm, a jus-
tification can be computed by invoking the DL reasoner linear number of times
[11,2]. The näıve algorithm essentially sweeps through all the axioms in the on-
tology and tests if the entailment still holds in absence of each axiom. Since
this approach is independent from reasoning algorithms, it can be easily imple-
mented on top of any existing DL reasoners. The main disadvantage, however,
is that it typically requires several calls to the DL reasoning services that are
already computationally expensive. Therefore, several optimization techniques
have very recently been proposed that help to reduce the number of calls to
the DL reasoner and hence speed up the black-box approach. Examples include
the ‘sliding window’ technique employed in the fast pruning algorithm [10], the
‘binary-search’ idea adapted to obtain a best-case logarithmic pruning algorithm
[3], and the ‘relevance-based selection function’ that syntactically select relevant
axioms from the ontology [9]. Based on a black-box pruning algorithm for com-
puting a single justification, the hitting set tree (HST) algorithm [13,10,9] can
be used to recursively compute all justifications.

Recently, ontology modularity and modularization have been studied exten-
sively, with various applications ranging from ontology re-use and optimization
of classical reasoning such as subsumption, as well as non-classical reasoning
such as incremental classification [5] and axiom pinpointing [3]. Closely related
to [9] is the modularization-based approach to axiom pinpointing where relevant
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Table 1. Syntax and semantics of SHOIQ concepts and axioms

Name Syntax Semantics

top � ΔI

concept name A AI ⊆ ΔI

nominal {a} {aI}
negation ¬C ΔI\CI

conjunction C �D CI ∩DI

exists restriction ∃r.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}
at-least restriction ≥ n s.C {x ∈ ΔI | �{y : (x, y) ∈ sI ∧ y ∈ CI} ≥ n}
role name r rI ⊆ ΔI ×ΔI

inverse role r− {(x, y) ∈ ΔI ×ΔI | (y, x) ∈ rI}
role hierarchy r 
 s rI ⊆ sI

transitivity Trans(r) (x, y), (y, z) ∈ rI implies (x, z) ∈ rI

GCI C 
 D CI ⊆ DI

axioms are precisely those axioms in the module [3]. In order to exploit modu-
larity in black-box axiom pinpointing, Baader and Suntisrivaraporn showed that
the reachability-based module [16] covers all justifications for an entailment of
interest in EL+ [3].

In the present paper, we combine the relevance-based techniques developed
in [9] and the modularization-based techniques in [3] to effectively enhance the
HST pinpointing algorithm. Since the results in [3] are w.r.t. reachability-based
modules for EL+, we need to adopt the locality-based module [6] for SHOIQ.
Our main contributions in the present paper are twofold. In theory, we show that
the minimal locality-based module is a subsumption module (first defined in [3]),
i.e., it covers all justifications. As a consequence, it suffices to focus on axioms
in the module when finding all justifications and when testing subsumption. In
practice, we have implemented the approach using KAON2 as the black-box rea-
soner and evaluated it on realistic ontologies. Our empirical results demonstrate
an improvement of several orders of magnitude in the efficiency and scalability of
finding all justifications. The results thus render the black-box approach feasible
for application-scale OWL DL ontologies.

2 Preliminaries

In this section, we give formal definitions for SHOIQ ontologies, justifications
and locality-based modules. Then, we introduce selection functions and the HST
pinpointing algorithm.

Description logic and justifications

To make the paper self-contained, we first introduce the Description Logic (DL)
SHOIQ [7] which is the underpinning DL formalism of the Web Ontology Lan-
guage (OWL DL and OWL Lite).
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Starting with disjoint sets of concept names CN, role names RN and individuals
Ind, a SHOIQ-role is either a role name r ∈ RN or an inverse role r− with
r ∈ RN. We denote by Rol the set of all SHOIQ-roles. SHOIQ-concepts can
be built using the constructors shown in the upper part of Table 1, where a ∈
Ind, r, s ∈ Rol with s a simple role1, n is a positive integer, A ∈ CN, and C, D
are SHOIQ-concepts.2 We use the standard abbreviations: ⊥ stands for ¬�;
C � D stands for ¬(¬C � ¬D); ∀r.C stands for ¬(∃r.¬C); and ≤ ns.C stands
for ¬(≥ (n + 1)s.C). We denote by Con the set of all SHOIQ-concepts.

A SHOIQ ontology O is a finite set of role hierarchy axioms r � s, transitivity
axioms Trans(r), and a general concept inclusion axioms (GCIs) C � D with
r, s ∈ Rol and C, D ∈ Con.3 We write CN(O), RN(O) and Ind(O) to denote,
respectively, the set of concept names, role names and individuals occurring in
the the ontology O, and Sig(O) to denote the signature of O, i.e., CN(O) ∪
RN(O) ∪ Ind(O). Similarly, Sig(r), Sig(C) and Sig(α) are used to denote the
signature of a role, a concept and an axiom, respectively.

The DL semantics is defined by means of interpretations I with a non-empty
domain ΔI and a function ·I that maps each concept C ∈ Con to a subset of
the domain and each role r ∈ Rol to a binary relation over the domain. An
interpretation I is a model of an ontology O (I |= O), if the conditions given
in the semantics column of Table 1 are satisfied. The main types of entailments
are concept satisfiability: C is satisfiable w.r.t. O if there exists a model I of
O such that CI 
= ∅; and concept subsumption: C is subsumed by D w.r.t. O
(written O |= C � D or C �O D) if, for every model I of O, CI ⊆ DI . Without
loss of generality, we restrict attention to concept subsumption in what follows.
Considering an example ontology depicted in Figure 1, all DL reasoners are able
to detect that the subsumption Oex |= σ = (Endocarditis � HeartDisease) holds.

Definition 1 (Justification). Let O be a SHOIQ ontology with an entailment
σ (i.e., O |= σ). A subset J ⊆ O is a justification for σ in O if J |= σ and, for
every J ′ ⊂ J , J ′ 
|= σ.

Justifications for an entailment need not be unique. Moreover, given an ontology
and an entailment, the number of justifications may be exponential in the size
of the ontology. For the small example ontology Oex (see Figure 1), it is not
difficult to infer that there are precisely two justifications for σ: one consisting
of axioms marked by •, and the other by �.

Modularization
We now introduce the notions of syntactic locality and locality-based module,
which have been first introduced in [6]. Syntactic locality is used to define the
notion of module for a signature, i.e., a subset of the ontology that preserves the
meaning of names in the signature.
1 A simple role is neither transitive nor a superrole of a transitive role.
2 Concepts and roles in DL correspond to classes and properties in OWL, respectively.
3 A concept definition A ≡ C is an abbreviation of two GCIs A 
 C and C 
 A,

while ABox assertions C(a) and r(a, b) can be expressed as the GCIs {a} 
 C and
{a} 
 ∃r.{b}, respectively.
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α1 Pericardium 
 Tissue � ∃part-of.Heart

α2 Endocardium 
 Tissue � ∃part-of.HeartValve • �

� ∃part-of.HeartWall

α3 HeartValve 
 BodyValve � ∃part-of.Heart •
α4 HeartWall 
 BodyWall � ∃part-of.Heart �

α5 Pericarditis 
 Inflammation � ∃has-loc.Pericardium

α6 Endocarditis 
 Inflammation � ∃has-loc.Endocardium • �

α7 Inflammation 
 Disease � ∃acts-on.Tissue • �

α8 Disease � ∃has-loc.Heart 
 HeartDisease • �

α9 part-of 
 has-loc • �

α10 Trans(has-loc) • �

Fig. 1. An example ontology Oex; the minimal locality-based module Oloc
Endocarditis; and

the justifications for Endocarditis 
O HeartDisease

Definition 2 (Syntactic locality for SHOIQ). Let S be a signature. The
following grammar recursively defines two sets of concepts Con⊥(S) and Con�(S)
for a signature S:

Con⊥(S) ::= A⊥ | (¬C�) | (C � C⊥) | (∃r⊥.C) | (∃r.C⊥)
| (≥ n r⊥.C) | (≥ n r.C⊥)

Con�(S) ::= (¬C⊥) | (C�
1 � C�

2 )

where A⊥ 
∈ S is a concept name, C is a SHOIQ-concept, C⊥ ∈ Con⊥(S),
C�

i ∈ Con�(S) (for i = 1, 2), and Sig(r⊥) 
⊆ S.
An axiom α is syntactically local w.r.t. S if it is of one of the following

forms: (i) r⊥ � r, (ii) Trans(r⊥), (iii) C⊥ � C or (iv) C � C�. The set of all
SHOIQ-axioms that are syntactically local w.r.t. S is denoted by s local(S). A
SHOIQ-ontology O is syntactically local w.r.t. S if O ⊆ s local(S).

Intuitively, if an axiom α is syntactically local w.r.t. S, its interpretation is
directly affected by that of symbols in S, in the sense that α is true in every
interpretation I in which concept and role names from S are interpreted with
the empty set. Based on this notion, locality-based modules can be defined as
follows: Let O be a SHOIQ ontology, O′ ⊆ O a subset of it, and S a signature.
Then, O′ is a locality-based module for S in O if every axiom α ∈ O\O′ is
syntactically local w.r.t. S ∪ Sig(O′). Given an ontology O and a signature S,
there always exists a unique, minimal locality-based module [4], denoted by Oloc

S .
In the example ontology, it can be easily verified that the underlined axioms are
precisely those in Oloc

{Endocarditis}.

The notion of strong subsumption module (first introduced in [3]) is essential
for our modularization-based approach.
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Definition 3 (Strong subsumption module). Let S ⊆ O be SHOIQ on-
tologies, and A a concept name. Then, S is a subsumption module for A in O
if, for all B ∈ CN(O): A �O B iff A �S B.

A subsumption module S for A in O is called strong if, for all B ∈ CN(O):
A �O B implies that J ⊆ S, for every justification J for A � B in O.

Observe that the largest such strong subsumption module is the whole ontology
itself, and the smallest such module is precisely the union of all justifications
J for A � B in O, for all superconcept B of A. For our purpose, the minimal
locality-based module is of interest since it is relative small (though not smallest)
and cheap to compute (i.e., quadratic time).

Selection functions
We introduce the notion of selection function in a single ontology given in [8],
which will be used in our algorithm to extract a subset of an ontology relevant
to a subsumption to some degree. Though applied to arbitrary DL languages,
we here restrict attention to SHOIQ:

Definition 4 (Selection function). Let L be the set of all SHOIQ axioms
over a set of signature. Then, a selection function for L is a mapping sL :
P(L) × L× N → P(L) s.t. sL(O, α, k) ⊆ O, where P(L) is the power set of L.

Intuitively, a selection function selects a subset of an ontology w.r.t. an axiom
at step k. A specific selection function based on syntactic relevance is employed
in our algorithm. We begin with defining direct relevance between two axioms.

Definition 5 (Direct relevance). Two axioms α and β are directly relevant
iff Sig(α) ∩ Sig(β) 
= ∅.
The intuition is that two axioms are directly relevant if they share a common
(concept or role) name. Another relevance relation is given in [15]. However, that
relevance relation is tailored for unfoldable DL ALC, and as such the selection
function defined by it cannot be used to find all justifications in our setting, so
we do not consider it here.

Based on the notion of direct relevance, we can define the notion of relevance
between an axiom and an ontology.

Definition 6. An axiom α is relevant to an ontology O iff there exists an axiom
β in O such that α and β are directly relevant.

We introduce the relevance-based selection function which can be used to find
all the axioms in an ontology that are relevant to an axiom to some degree.

Definition 7 (Relevance-based selection function). Let O be an ontology,
α be an axiom and k be an integer. The relevance-based selection function,
written srel , is defined inductively as follows:
srel(O, α, 0) = ∅
srel(O, α, 1) = {β ∈ O : α and β are directly relevant}
srel(O, α, k) = {β ∈ O : β is directly relevant to srel(O, α, k − 1)}, where k > 1.

We call srel(O, α, k) the k-relevant subset of O w.r.t. α. For convenience, we
define sk(O, α) = srel(O, α, k) \ srel(O, α, k − 1) for k ≥ 1.
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Hitting set tree (HST) algorithm
We briefly introduce some notions regarding Reiter’s Hitting Set Tree algorithm
given in [13] which will be used in our algorithm to find all justifications. We
follow the reformulated notions in Reiter’s theory in [10]. Given a universal set
U , and a set S = {s1, ..., sn} of subsets of U which are conflict sets, i.e. subsets of
the system components responsible for the error. A hitting set T for S is a subset
of U such that si ∩ T 
= ∅ for all 1 ≤ i ≤ n. A minimal hitting set T for S is a
hitting set such that no T ′ ⊂ T is a hitting set for S. A hitting set T is cardinality-
minimal if there is no other hitting set T ′ such that |T ′| < |T |. Reiter’s algorithm
is used to calculate minimal hitting sets for a collection S = {s1, ..., sn} of sets
by constructing a labeled tree, called a Hitting Set Tree (HST). In a HST, each
node is labeled with a set si ∈ S, and each edge is labeled with an element in
∪si∈Ssi. For each node n in a HST, let H(n) be the set of edge labels on the
path from the root of the HST to n. Then the label for n is any set s ∈ S such
that s ∩ H(n) = ∅, if such a set exists. Suppose s is the label of a node n, then
for each σ ∈ s, n has a successor nσ connected to n by an edge with σ in its
label. If the label of n is the empty set, then we have that H(n) is a hitting set
of S. In the case of finding justifications, the universal set corresponds to the
ontology and a conflict set corresponds to a justification [10].

3 Justification Coverage in Locality-Based Modules

This section presents the main technical contribution of the paper that lays the
foundation of our modularization-based algorithm. We show that a locality-based
module for S={A} in O is a strong subsumption module for A in O.

Proposition 1. Let S be a signature, and I = (ΔI , ·I) an interpretation such
that xI = ∅ for all (concept and role) names x 
∈ S. Then, (C⊥)I = ∅ for every
concept C⊥ ∈ Con⊥(S), and (C�)I = ΔI for every concept C� ∈ Con�(S).

The proof is an easy induction on the structure of the concepts C⊥ and C�.
Intuitively, every concept in Con�(S) (Con⊥(S), resp.) behaves as if it were the
top concept (the bottom concept, resp.) in any interpretation I with xI = ∅ for
all x 
∈ S. It follows that syntactically local axioms of the form C⊥ � C and
C � C� are vacuously satisfied by such an interpretation I. This property of
syntactically local axioms is used to prove the following lemma.

Lemma 1. Let O be a SHOIQ ontology, A, B concept names in Sig(O) such
that A �O B, Oloc

A a locality-based module for {A} in O. If A �S B for an
S ⊆ O such that S 
⊆ Oloc

A , then A �S′ B with S′ = S ∩ Oloc
A .

Proof. We show the contraposition by assuming that A 
�S′ B and then demon-
strating that A 
�S B. Since A 
�S′ B, there must be a model I ′ of S′ and
an individual w ∈ ΔI′

such that w ∈ AI′\BI′
. Construct a new interpreta-

tion I based on I ′ by setting xI := ∅ for all symbols (role or concept names)
x ∈ Sig(O)\Sig(Oloc

A ). Obviously, w ∈ AI since I does not change the interpre-
tation of A ∈ Sig(Oloc

A ). There are two possibilities for B: either BI = BI′
or

BI = ∅. In either case, we have that w 
∈ BI .
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It remains to show that I is a model of S, i.e., satisfies every axiom α =
(αL � αR) in S. We make a case distinction as follows:

– α ∈ Oloc
A . It follows that α ∈ S′, and thus I ′ |= α. By construction, both I

and I ′ agree on the interpretation of symbols in Sig(Oloc
A ) and thus Sig(α).

Hence, I |= α as required.
– α 
∈ Oloc

A . By definition of locality-based modules, α is syntactically local
w.r.t. S = Sig(Oloc

A ) ∪ {A}. Then, there are four possibilities for α:
• α = r⊥ � r. First, assume that r⊥ is a role name. Then, r⊥ 
∈ S and

thus r⊥ ∈ Sig(O)\Sig(Oloc
A ). By construction of I, (r⊥)I = ∅. Otherwise,

r⊥ is an inverse role s−. Then, s ∈ Sig(r⊥) 
⊆ S. It follows that s ∈
Sig(O)\Sig(Oloc

A ), and thus (r⊥)I = sI = ∅. In both cases, I |= α as
required.

• α = Trans(r⊥). Analogous to the first case.
• α = C⊥ � C. By Proposition 1, (C⊥)I = ∅. Hence, I |= α.
• α = C � C�. By Proposition 1, (C�)I = ΔI . Hence, I |= α.

Since I is a model of S such that w ∈ AI\BI , we have A 
�S B, contradicting
the premise of the lemma. ❏

Now, we are ready to establish the required property of the modules:

Theorem 1 (Oloc
A is a strong subsumption module). Let O be a SHOIQ

ontology and A a concept name. Then Oloc
A is a strong subsumption module for

A in O.

Proof. The fact that Oloc
A is a subsumption module has been shown in [4]. It

remains to show that it is strong, i.e., every justification J ⊆ O for A �O B is
contained in Oloc

A , for every concept name B ∈ CN(O).
Assume to the contrary that there is a concept name B and a justification

J for A �O B that is not contained in Oloc
A . By Lemma 1, the strict subset

J ′ = J ∩Oloc
A of J is such that A �J′ B. Obviously, J is not minimal and hence

cannot be a justification for A �O B, contradicting the initial assumption. ❏

Intuitively, the (minimal) locality-based module for S = {A} in a SHOIQ-
ontology O contains all the relevant axioms for any subsumption σ = (A �O B),
in the sense that all responsible axioms for σ are included. In other words, in
order to find all justifications for a certain entailment in an OWL ontology,
it is sufficient to consider only axioms in the locality-based module. Since the
minimal locality-based modules are relatively very small (see, e.g., [6,16]), our
modularization-based approach proves promising. The empirical results on real-
life ontologies are described in Section 5.

4 Our Modularization-Based Algorithm

In this section, we propose a new algorithm for finding all justifications based
on the relevance-based algorithm and the modularization extraction algorithm.
Before we describe our algorithm, we need to recap the relevance-based algorithm
given in [9].
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Algorithm 1. REL ALL JUSTS(A � B,O, s)
Data: An ontology O, a subsumption A 
 B and a selection function s.
Result: All justifications J
begin1

Globals : J ← ∅;2

O′ ← HS ← HS local ← ∅; k← 1;3

S ← s(O, A 
 B, k);4

while S �= ∅ do5

O′ ← O′ ∪ S ;6

if HS local �= ∅ then7

for P ∈ HS local do /* Get global hitting sets */8

if O \ P �|= A 
 B then9

HS ← HS ∪ {P};10

HS local ← HS local \HS ;11

if (HS local = ∅) then12

return J /* Early termination */;13

HS temp ← HS local ;14

for P ∈ HS temp do /* Expand hitting set tree */15

(J ′,HS ′
local )← EXPAND HST(A 
 B,O′ \ P );16

J ← J ∪ J ′;17

HS local ← HS local ∪ {P ∪ P ′|P ′ ∈ HS ′
local} \ {P};18

else if O′ |= A 
 B then19

(J ,HS local )← EXPAND HST(A 
 B,O′);20

k ← k + 1;21

S ← sk(O, A 
 B);22

return J23

end24

The relevance-based algorithm (Algorithm 1) receives an ontology O, a sub-
sumption A � B of O and a selection function s, and outputs the set of all
justifications J . We sketch the basic idea of the algorithm and refer to [9] for
details of the algorithm. First of all, we find the first k such that A � B is
inferred by the k-relevant subset O′ of O, i.e., the “if” condition in line 19 is
satisfied. We then call Algorithm 2 to find a set of justifications for A � B in
O′ and a set of local hitting sets, where a local hitting set is a hitting set for all
justifications in the selected sub-ontology, i.e., O′ in line 20. We then add to the
sub-ontology obtained in the previous iteration those axioms that are directly
relevant this sub-ontology. For those local hitting sets that are not hitting sets of
all justifications in the entire ontology O, we call Algorithm 2 to further expand
them, and so on.

To compute a single justification in Algorithm 2, we invoke a sub-procedure
SINGLE JUST(σ,O) which is a black-box pinpointing algorithm optimized either
by the sliding window technique in [10] or by binary search technique in [3].

The correctness of Algorithm 1 follows from Theorem 1 in [9].
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Algorithm 2. EXPAND HST(A � B,O)
Data: An ontology O and a subsumption A 
 B of O
Result: A set of justifications J for A 
 B in O and a set of hitting sets
begin1

HS ← HS1 ← ∅2

J ← SINGLE JUST(A 
 B,O)3

J ← J ∪ {J}4

for α ∈ J do /* Create all possible branches. */5

HS1 ← HS1 ∪ {{α}}6

while true do7

HS2 ← ∅8

for (P ∈ HS1) do9

if O \ P �|= A 
 B then10

HS ← HS ∪ {P}11

else12

HS2 ← HS2 ∪ {P} /* Branches need to be expanded */13

if (HS1 = ∅) or (HS 2 = ∅) then14

return (J ,HS)15

HS1 ← ∅16

for P ∈ HS2 do17

J ← SINGLE JUST(A 
 B,O \ P )18

J ← J ∪ {J}19

for α ∈ J do20

HS1 ← HS1 ∪ {P ∪ {α}}21

end22

Theorem 2. Given an ontology O, a subsumption A � B of O and a relevance-
based selection function srel , J returned by Algorithm 1 is the set of all justifi-
cations for A � B.

Based on the algorithms introduced above, we propose our novel algorithm for
computing all the justification. The idea of our algorithm is straightforward:
to find all justifications for a subsumption A � B in O, we first extract the
locality-based module Oloc

A for S = {A} in O and then apply Algorithm 1.
The method is outlined in Algorithm 3, where EXTRACT MODULE implements
the locality-based extraction algorithm in [4], and srel is the relevance-based
selection function. The correctness of the algorithm can be seen by Theorem 1
and Theorem 2. We illustrate the effectiveness of our algorithm by means of an
example:

Example 1. Consider an ontology O that contains the following axioms:

α1i : A1i � P1i � Q1i � Z, α2i : P1i � A2i � Z, α3i : Q1i � A2i � Z

α4i : A2i � P2i � Q2i � Z, α5i : P2i � A3i � Z, α6i : Q2i � A3i � Z,
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Algorithm 3. MODULE ALL JUSTS(A � B,O)
Data: An ontology O and a subsumption A 
 B
Result: All justifications J
begin1

Oloc
A ← EXTRACT MODULE(O,A)2

return REL ALL JUSTS(A 
 B,Oloc
A , srel)3

end4

{ 11, 21, 41, 51}

11 21

{ 11, 31, 41, 51} { 11, 31, 41, 61}

41 51

31 41
61

{ 11, 21, 41, 61}

11 31 41 51

{ 11, 31, 41, 61}

11 

11 31 41 61 11 21 41 61

Fig. 2. Finding all justifications by HST algorithm on the locality-based module. Each
rectangle represents a justification, and the bold rectangle indicates a justification
reuse. ‘×’ means early path termination, while ‘

√
’ means a hitting set is found.

for 1 ≤ i ≤ 10000. Obviously, O comprises 60 000 axioms and entails the sub-
sumption σ = (A11 � A31). While such an ontology clearly is not a realistic
ontology, it well demonstrates the need and potential of search space reduction.
If algorithm REL ALL JUSTS is applied directly to this ontology, one cannot
expect an acceptable performance when finding all justifications. This is be-
cause: (i) SINGLE JUST(σ,O) has to prune a very large set, and (ii) each sub-
sumption test is w.r.t. the entire ontology O since all the axioms O share a
common concept Z. In our modularization-based approach, however, we first
extract the locality-based module Oloc

A11
for S = {A11} in O, and then apply

REL ALL JUSTS to Oloc
A11

instead of O. Since the module contains only 6 axioms,
i.e., Oloc

A11
= {α11, α21, α31, α41, α51, α61}, both points above can be achieved in

much less time.
Figure 2 illustrates the process of finding all justifications by means of expand-

ing a hitting set tree (HST). To begin with, a justification {α11, α21, α41, α51} is
computed by SINGLE JUST(σ,Oloc

A11
), which is taken as the root of the tree. Since

Oloc
A11

dispensed with α11 does not entail σ, {α11} is a hitting set. On the other
hand, O′ = Oloc

A11
\{α21} still entails σ, and thus another justification can be com-

puted by calling SINGLE JUST(σ,O′). The process continues to expand HST un-
til it finds all other justifications for σ: {α11, α31, α41, α51}, {α11, α31, α41, α61},
{α11, α21, α41, α61}. Observe that the node following the branch {α51} is a result
of the optimization ‘justification reuse.’
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Table 2. Benchmark ontologies and their characteristics

Ontologies �Axioms �Concepts �Roles Module size Extraction time
Average Maximum (sec)

Galen 4 529 2 748 413 75 530 6
Go 28 897 20 465 1 16 125 40
Nci 46 940 27 652 70 29 436 65

5 Empirical Results

Our algorithm has been realized by using KAON24 as the black-box reasoner. Of
course, the method (like other black-box approaches) can be applied to any other
reasoner, e.g., RacerPro5 and FaCT++6. To fairly compare with the pinpointing
algorithm in [10], we re-implemented it with KAON2 API (henceforth referred
to as ALL JUSTS algorithm). The experiments have been performed on a Linux
server with an Intel(R) CPU Xeon(TM) 3.2GHz running Sun’s Java 1.5.0 with
allotted 2GB heap space.

Benchmark ontologies used in our experiments are the Galen Medical Knowl-
edge Base7, the Gene Ontology (Go)8 and the US National Cancer Institute
thesaurus (Nci)9. The three biomedical ontologies are well-known to both the
life science and Semantic Web communities since they are employed in real-world
applications and often used as benchmarks for testing DL reasoners. Both Go
and Nci are formulated in the lightweight DL EL, while Galen uses expressiv-
ity of the more complex DL SHF . Some information concerning the size and
characteristics of the benchmark ontologies are given in the left part of Table 2.

Modularization reveals structures and dependencies of concepts in the ontologies
as argued in [4,16]. We extract the (minimal) locality-based module for S = {A}
in O, for every benchmark ontology O and each concept name A ∈ CN(O). The
size of the modules and the time required to extract them are shown in the last
three columns of Table 2. Observe that the modules in Galen are larger than
those in the other two ontologies although the ontology itself is smaller. This
suggests that Galen is more complex in the sense that more axioms in it are
non-local (thus relevant) according to Definition 2.
In the experiments, we consider three concept names in CN(O) for each benchmark
ontologyO such that one of them has the largest locality-based module10. For the
sake of brevity, we denote by subs(O) the set of all tested subsumptions A � B
in O, with A one of the three concept names mentioned above and B an inferred

4 http://kaon2.semanticweb.org/
5 http://www.racer-systems.com/
6 http://owl.man.ac.uk/factplusplus/
7 http://www.openclinical.org/prj galen.html
8 http://www.geneontology.org
9 http://www.mindswap.org/2003/CancerOntology/nciOntology.owl

10 The concept name with largest module is hand-picked in order to cover hard cases in
our experiments, while the other two are randomly selected.

http://kaon2.semanticweb.org/
http://www.racer-systems.com/
http://owl.man.ac.uk/factplusplus/
http://www.openclinical.org/prj_galen.html
http://www.geneontology.org
http://www.mindswap.org/2003/CancerOntology/nciOntology.owl
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subsumer of A. For each O of our benchmark ontologies, we compute all justifica-
tions for σ in O, where σ ∈ subs(O). In order to compare with the other existing
approaches, we perform the following for each σandO to compute all justifications:

1. ALL JUSTS(σ,O) (i.e., the algorithm in [10]).
2. REL ALL JUSTS(σ,O, srel );
3. MODULE ALL JUSTS(σ,O);

The justification results by MODULE ALL JUSTS are shown in Table 3, where
the ontology marked with � means that some run does not terminate within the
two hour time-out. Precisely, there are three subsumptions in Go and one in Nci,
for which the computation took more than two hours. The statistics given on
the right hand side of the table does not take into account these subsumptions.

Table 3. Justification results using the modularization-based approach

Ontologies �Subsumptions �Justifications Justification size
|subs(O)| Average Maximum Average Maximum

Galen 69 1.5 4 9.7 24
Go� 53 3.2 11 5.3 9
Nci� 23 1.6 8 5.4 9

To visualize the time performances of the three algorithms, we randomly
selected two subsumptions σ1 and σ2 from subs(O) for each ontology O and
compared their computation time required by the three algorithms. These sub-
sumptions are shown as follows:

Galen:σ1 AcuteErosionOfStomach � GastricPathology
Galen:σ2 AppendicularArtery � PhysicalStructure

Go:σ1 GO 0000024 � GO 0007582
Go:σ2 GO 0000027 � GO 0044238
Nci:σ1 CD97 Antigen � Protein
Nci:σ2 APC 8024 � Drugs and Chemicals

The chart in Figure 3 depicts the overall computation time required for each
algorithm to find all justifications for each tested subsumption. Unlike the time
results reported in [10], which excluded the time for satisfiability checking, we re-
port here the overall computation time, i.e. the total time of the algorithm includ-
ing the time needed by the black-box reasoner for the standard reasoning tasks.
Observe that both ALL JUSTS and REL ALL JUSTS did not yield results within
the time-out of two hours on three out of six tested subsumptions (marked by
“TO” on the chart). Comparing these two algorithms (without modularization),
REL ALL JUSTS performs noticeably better than ALL JUSTS in most cases. For
instance, on the subsumptions Galen:σ2 and Nci:σ2, REL ALL JUSTS outper-
forms ALL JUSTS by about 10 and 20 minutes, respectively. On the subsumption
Go:σ2, both algorithms show a similar performance, i.e., time difference is less
than a minute. More explanations on the comparison between these two algo-
rithms can be found in [9].
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Fig. 3. The time performance of three algorithms for finding all justifications

Interestingly, MODULE ALL JUSTS outperforms all the other algorithms on
all subsumptions, and the improvement is tremendous as can be seen in all
cases in the chart. This empirically confirms our initial conjecture that, given
the strongness property (in the sense of Definition 3) and the small size (see
Table 2 and [6,16]) of locality-based modules, our optimization should be highly
effective. As an example, MODULE ALL JUSTS took only 0.6 seconds to find
all the justifications for Nci:σ2, while REL ALL JUSTS needed 3 242 seconds. In
this case, the locality-based module for APC 8024 in Nci consists of 9 axioms,
whereas the whole ontology has some tens of thousands of axioms. Although
the selection function used in REL ALL JUSTS also prunes the search space by
considering only “k-directly relevant” axioms (see Definition 7) when HST algo-
rithm is executed, several irrelevant axioms (in the sense of syntactic locality)
are still considered.

6 Conclusion

In this paper, we proposed a novel approach for finding all justifications for an
entailment in OWL DL. The approach is based on the computation of minimal
locality-based modules. We first showed that locality-based modules always cover
all axioms in all justifications and exploited this property to limit the search
space when finding all justifications. Then, we presented a modularization-based
pinpointing algorithm that is based on relevance-based techniques and a hitting
set tree algorithm. Finally, we reported on several promising empirical results
that demonstrate an improvement of several orders of magnitude in efficiency and
scalability of finding all justifications in OWL DL ontologies. Our work is based
on locality-based modules. As future work, we shall investigate different kinds
of modules and selection functions that hopefully produce even more relevant
axioms for pinpointing.
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