
A Platform to Automatically Generate and Incorporate
Documents into an Ontology-Based Content Repository

Matthias Heinrich
SAP AG, SAP Research

Dresden, Germany
matthias.heinrich@sap.com

Antje Boehm-Peters
SAP AG, SAP Research

Dresden, Germany
antje.boehm-peters@sap.com

Martin Knechtel
SAP AG, SAP Research

Dresden, Germany
martin.knechtel@sap.com

ABSTRACT
In order to access large information pools efficiently data has
to be structured and categorized. Recently, applying ontolo-
gies to formalize information has become an established ap-
proach. In particular, ontology-based search and navigation
are promising solutions which are capable to significantly
improve state of the art systems (e.g. full-text search en-
gines). However, the ontology roll-out and maintenance are
costly tasks. Therefore, we propose a documentation gen-
eration platform that automatically derives content and in-
corporates generated content into an existing ontology. The
demanding task of classifying content as concept instances,
setting data type and object properties is accomplished by
the documentation generation platform. Eventually, our ap-
proach results in a semantically enriched content base. Note
that no manual effort is required to establish links between
content objects and the ontology.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation; I.7.2 [Document and
Text Processing]: Document Preparation

General Terms
Documentation

Keywords
Software Documentation, Text Generation, Semantic Anno-
tation, Ontology Completion

Notice
c©ACM, 2009. This is the author’s version of the work. It
is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published
in Proceedings of DocEng’09.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09 ...$10.00.

1. INTRODUCTION
The increasing digital knowledge base created by the in-

formation society asks for potent content search and query
methods. Traditionally, search engines solely rely on algo-
rithms indexing a given content base. Besides analyzing
text syntactically advanced techniques are capable to ex-
ploit metadata. This approach enables end-users to navi-
gate, filter and search various information sources more ef-
ficiently. In order to use metadata-based access strategies,
existing content repositories have to be annotated. Enrich-
ing information pools with metadata or so called semantic
annotations is a major effort. In particular large information
repositories need automatic or semi-automatic processing in
order to constrain costs.

Hence, we propose a documentation generation platform
that allows for content creation and automatic content an-
notation. The software documentation domain is utilized to
validate the platform. All generated content is derived from
graphical software models (e.g. BPMN, UML). The pre-
processed content (bullet point lists, screenshots, etc.) em-
powers technical authors to efficiently write requested doc-
umentation (e.g. end-user manual, technical specification).
As stated before, the content generation is accompanied by
metadata creation. That includes the instantiation of indi-
viduals, object properties and data type properties which
are all specified with the Web Ontology Language (OWL)
[7]. The ontology captures the domain knowledge. There-
fore, the typical workflow of technical authors can be sup-
ported by various features (e.g. display relevant context in-
formation, semantic drill-down, semantic search) leveraging
generated semantic annotations. Eventually, the proposed
documentation generation platform enables semantic enrich-
ment at lean costs.

In this paper, we proceed with a brief discussion of related
work in section 2. Section 3 describes the distinct platform
components and section 4 outlines the required steps to ap-
ply the documentation generation platform. In section 5, we
summarize the benefits and propose several enhancements
with respect to the introduced platform.

2. RELATED WORK
Documentation generation can be initiated in two differ-

ent software development steps, either during or after the
implementation phase.

The method to extract documentation from compiled soft-
ware is called reverse engineering. This extraction method
focuses on technical artifacts, such as API definitions or sys-
tem architecture information. Reverse engineering systems

are described in [14] and [12].
There are several means to integrate documentation tasks

within the implementation phase. One way is to annotate
source code. Literate Programming [9] and Elucidative Pro-
gramming [11] are examples of this approach. Literate Pro-
gramming is a method to combine source code and docu-
mentation in a human-readable fashion. High level descrip-
tions such as process definitions are not covered. Elucidative
Programming is a variation of literate programming that es-
tablishes links between source code and documentation. A
tool supporting Elucidative Programming is the Develop-
ment Environment for Tutorials [3]. It allows writing and
maintaining tutorials while integrating source code snippets.
If the documented source code changes, the examples in the
tutorial change as well.

Another technique to generate documentation is coupled
with the software generation process. Software Documenta-
tion Support [8] fosters information generation at the spec-
ification and development phase.

Ontologies are used to interlink software artifacts and doc-
umentation. In [6] their goal is to improve system mainte-
nance. Other approaches describe a method to populate on-
tologies from a set of documents. For example Witte et al.
describe in [16] an ontological formalism to integrate source
code and software documentation. The method incorporates
two specific ontologies, a source code and a documentation
ontology. Both ontologies are automatically populated using
source code analysis and text mining respectively. The on-
tologies support tasks to establish traceability links between
source code and documentation. In this approach, informa-
tion is extracted from existing documentation whereas we
focus on documentation generation with automatic annota-
tion.

3. PLATFORM
The documentation generation platform implements a two-

step process: generate content and classify the derived con-
tent. The platform’s high-level architecture is illustrated in
figure 1 and consists of 3 major building blocks. At first,
software engineers have to specify software models using the
developer’s workbench. After completing the software model
specification, the extraction component runs and filters rele-
vant information for documentation purposes. That results
in saving derived data in the content and ontology store. Fi-
nally, technical authors access the content and ontology store
through a dedicated authoring environment and transform
the preprocessed content into final documentation.

Figure 1: Overview of the Documentation Genera-
tion Platform

Figure 2 shows the detailed platform architecture. In or-
der to automatically process software models they have to be
stored in a structured manner. The model structure is man-
ifested in a so called metamodel. A metamodel formalizes
how a valid model (or instance of a metamodel) has to be

constructed. The developer’s workbench offers a dedicated
set of editors which is based on metamodels and therefore
enforces metamodel-compliance. The current prototype uses
the Eclipse Modeling Framework (EMF) [13] in order to fa-
cilitate metamodel definition and model management (e.g.
load, save, access models).

Figure 2: Detailed Architecture of the Documenta-
tion Generation Platform

In order to filter information represented in software mod-
els, the extraction component evaluates models. Rules defin-
ing whether information blocks are valuable for the doc-
umentation process are captured in text generation tem-
plates. Since templates are also metamodel-based, they can
traverse the underlying metamodel structure. Thus, the ex-
traction component – unlike simple transformation engines
– is able to access associated model elements. Hence, the
entire model-context can be interpreted in order to deter-
mine relevant content. Besides generation, templates also
define links between information objects and ontological en-
tities. Generated content for instance might be a member of
a class, a data type or an object property. Possible values
are defined in the linked ontology. The content creation is
accomplished by a generator engine. The engine reads in
models and metamodels in order to process the text gen-
eration templates. The implementation is realized using
the openArchitectureWare (oAW) framework [5]. The oAW
framework supports EMF models and provides the text gen-
eration language Xpand [2] as well as an Xpand editor. The
generator engine is distributed as a set of Eclipse plug-ins.

The storage component saves and manages generated con-
tent delivered by the extraction component. It is divided in
a content store and an ontology store. The saved informa-
tion is exhibited through an authoring environment where
technical authors can refine raw, semantically enriched in-
formation. Once the documentation is completed, a trans-
formation to an established publishing format concludes the
documentation process. The prototypical implementation
leverages the Semantic MediaWiki (SMW) [10] that is de-
signed to hold content interwoven with semantic annota-
tions.

4. EXAMPLE
This minimal example demonstrates the application of the

documentation generation platform. The objective of the ex-
ample is to support technical authors. They are supposed to
document business processes. Therefore, they have to trans-

form existing process models into documentation. While
writing business process documentation, a convenient fea-
ture is a process drill-down view that permits quick access
to all information described by the process. Figure 3 displays
a process drill-down view and its linked process model.

Figure 3: Drill-Down View and the underlying Busi-
ness Process

The shown drill-down view can be generated from the
linked business process. This example lists crucial steps to
derive the drill-down view’s data by applying the documen-
tation generation platform.

Initially, the documentation generation platform requires
some configuration effort. This includes the following steps:

1. Create an ontology taking into account relevant do-
main concepts and their relations.

2. Write text generation templates with respect to the
supported metamodels.

In the example, the ontology has to capture parent-child
relationships. These relationships are exploited in order to
construct the drill-down view. Such relationships are for
instance

• business process diagrams consist of multiple pools or

• process lanes hold a set of tasks.

The defined OWL ontology is depicted in figure 4.

Figure 4: Visualization of the Domain Ontology

The ontology comprises OWL classes (BPMNElement, BPMN-
Container) and OWL object properties (hasContainers, is-
PartOf, etc). Since the storage component is realized using
the SMW, the OWL ontology has to be transformed to the
SMW vocabulary according to table 1.

Table 1: OWL to SMW Mapping [15]
Web Ontology Language Semantic MediaWiki
Class Category
Object Property Relation
Data Type Property Attribute

After mapping classes and object properties to categories
and relations, BPMNContainer and BPMNElement can be
instantiated in the SMW. Figure 5 illustrates the syntax to
create a SMW page that is an instance of category BPMN-
Container. Besides creating instances, relations to other
SMW pages are established using the ”=” operator.

Figure 5: Example Instance of Category BPMN-
Container (using SMW-Template Syntax)

Until now, the storage component is capable of manag-
ing ontological entities that adhere to the ontology in fig-
ure 4. The next step is the specification of text generation
templates. The templates generate BPMNContainer and
BPMNElement instances while respecting the SMW syntax.
Typically, templates define static and dynamic aspects. In
figure 5 everything except the object property values (Or-
der Pool, Receive Order, Fill Order) are static parts. In
the Xpand code generation template in figure 6 one can eas-
ily recognize the static parts since they are defined in plain
text. Dynamic parts are marked by guillemets (<<, >>).
They evaluate data provided by the business process model.
For instance, the << pool.name >> expression in figure 6
calculates the name of the pool the lane belongs to. The
syntax to navigate the model (e.g. << pool.name >>) is
defined by the BPMN metamodel1 which is imported into
the Xpand template. Besides dynamically determining the
pool name, the hasElements object property enumerates all
tasks included in the current lane. Consequently, the tem-
plate in figure 6 specifies a rule expandActivity which prints
all task names separated by comma.

After completing the Xpand template description, the gen-
erator engine executes templates and submits generated text
to the SMW system. To programmatically initiate text
generation the oAW framework accommodates a workflow
mechanism [2]. Data submission is facilitated by a dedicated
MediaWiki API [1]. As soon as all components are properly
setup, business processes can be automatically parsed and
content will be pushed into the SMW. Finally, all semantic
relations required by the drill-down view are established.

The example demonstrates the ease of automatically de-
riving and storing data in an ontology-based content repos-
itory. Thereby, the generation process is fully supported by
the documentation generation platform.

5. CONCLUSION AND FUTURE WORK
1The example utilizes the metamodel specified by the
Eclipse BPMN Modeler [4].

Figure 6: Xpand Template to Generate BPMNCon-
tainer Instances

In this paper, we demonstrated a documentation genera-
tion platform that is capable of extracting raw information
and linked semantics from software models. Applying the
documentation generation platform leads to a semantically
enriched content base. Machine-readable semantics are the
key to elevate search engines to the next level and produce
more precise result sets. Enhancing content repositories
with semantic annotations goes beyond advancing search
engines. It offers new ways to navigate information pools
using typed hyperlinks. Furthermore, the usage of the W3C
standard OWL fosters the integration of heterogeneous in-
formation sources. An OWL-based ontology establishes a
common vocabulary throughout various systems. The uni-
form vocabulary promotes modularization and evolvement
which are essential assets to an open system landscape. To
summarize, the presented documentation generation plat-
form unlocks the benefits of an OWL-based content reposi-
tory in a cost-efficient manner.

Currently, the documentation generation platform only
masters text generation from software models. However,
several context parameters also contain valuable informa-
tion. For example a technical author might use contacts
attached to generated artifacts to initiate author-developer
communication. Therefore, the inclusion of context infor-
mation within the generation process will be elaborated.

Another task is the design of a semantic-driven user in-
terface. The SMW user interface is suited to collaboratively
edit documents but lacks a lot of features provided by enter-
prise authoring environments. Thus, a user interface stream-
lining the authoring process and leveraging semantic anno-
tations will be implemented.

Eventually, the documentation generation platform has
to be evaluated. This covers a comparison of state of the
art systems with the presented system. The evaluation will
especially focus on process efficiency.

6. ACKNOWLEDGMENTS
The project was funded by means of the German Federal

Ministry of Economy and Technology under the promotional
reference ”01MQ07012”. The authors take the responsibility
for the contents.

7. REFERENCES
[1] MediaWiki API Documentation, 2008.

http://www.mediawiki.org/wiki/API.

[2] openArchitectureWare User Guide, 2008.
http://www.openarchitectureware.org/pub/

documentation/4.3.1/html/contents/.

[3] DEFT - Development Environment For Tutorials,
2009.
http://sourceforge.net/projects/deftproject.

[4] Eclipse BPMN Modeler, 2009.
http://www.eclipse.org/bpmn/.

[5] openArchitectureWare Framework, 2009.
http://www.openarchitectureware.org/.

[6] A. P. Ambrosio, D. C. de Santos, F. N. de Lucena,
and J. da Silva. Software engineering documentation:
An ontology-based approach. In Proceedings of the

Webmedia and La-Web Joint Conference - 10th

Brazilian Symposium on Multimedia and the Web 2nd

Latin American Web Congress, 2004.

[7] S. Bechhofer, F. van Harmelen, J. Hendler,
I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein. OWL Web Ontology Language

Reference, 2004. http://www.w3.org/TR/owl-ref/.

[8] E. Horowitz and R. C.Williamson. Sodos: a software
documentation environment-its use. IEEE

Transactions on Software Engineering,
12(11):1076–1087, 1986.

[9] D. E. Knuth. Literate programming. Computer

Journal, 27(2):97–111, 1984.

[10] M. Krötzsch, D. Vrandecic, and M. Völkel. Semantic
mediawiki. In Proceedings of the 5th International

Semantic Web Conference, 2006.

[11] K. Nørmark. The Elucidative Programming Home

Page, 2009. http://www.cs.aau.dk/~normark/
elucidative-programming.

[12] C. Riva and Y. Yang. Generation of architectural
documentation using xml. In Proceedings of the Ninth

Working Conference on Reverse Engineering, 2002.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley, 2 edition, 2009.

[14] A. van Deursen and T. Kuipers. Building
documentation generators. In Proceedings of the IEEE

international Conference on Software Maintenance,
1999.

[15] D. Vrandecic and M. Krötzsch. Reusing ontological
background knowledge in semantic wikis. In
Proceedings of the First Workshop on Semantic Wikis:

From Wiki to Semantics, 2006.

[16] R. Witte, Y. Zhang, and J. Rilling. Empowering
software maintainers with semantic web technologies.
In Proceedings of the 4th European Conference on the

Semantic Web: Research and Applications, 2007.

