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Abstract. Description Logics (DLs) are the formalism underlying the standard
web ontology language OWL 2. DLs have formal semantics which are the basis
for powerful reasoning services. In this paper, we introduce the basic notions
of DLs and the techniques that realize subsumption—the fundamental reasoning
service of DL systems. We discuss two reasoning methods for this service: the
tableau method for expressive DLs such as ALC and the completion method for
the light-weight DL EL. We also present methods for generating explanations for
computed subsumption relationships in these two DLs.

1 Introduction

The ontology language for the semantic web OWL provides means to describe enti-
ties of a application domain in an ontology. The underlying formalism for OWL are
Description Logics, which have well-defined syntax and formal semantics. The recent
version of the W3C standard OWL 2.0 has four language variants: the OWL 2 language
itself and three profiles. The latter are light-weight ontology languages of relatively low
expressivity and that are tailored to be efficient for specific reasoning tasks. We are
interested in the reasoning task of computing subsumption, i.e., sub- and super-class re-
lationships, and providing explanations for the obtained reasoning results. In this paper,
we discuss reasoning techniques for computing subsumption relationships for the core
description logics underlying the OWL 2 language: ALC and the core description log-
ics underlying the EL profile: EL. The EL profile is particularly suitable for applications
with ontologies that define very large numbers of classes and that need subsumption as
the main inference service. Based on the reasoning techniques for subsumption, we dis-
cuss methods to compute explanations for detected subsumption relationships in ALC
and EL. Before we turn to the reasoning techniques, we give general overview of De-
scription Logics.

Description Logics (DLs) [6] are a family of knowledge representation formalisms
that have formal semantics. This family of logics is tailored towards representing ter-
minological knowledge of an application domain in a structured and formally well-
understood way. Description logics allow users to define important notions, such as
classes or relations of their application domain in terms of concepts and roles. These
concepts (unary predicates) and roles (binary predicates) then restrict the way these
classes and relations are interpreted. Based on these definitions, implicitly captured



knowledge can be inferred from the given descriptions of concepts and roles, as for
instance sub-class or instance relationships.

The name Description Logics is motivated by the fact that classes and relations
are defined in terms of concept descriptions. These concept descriptions are complex
expressions built from atomic concepts and atomic roles using the concept constructors
offered by the particular DL in use. Based on their formal semantics, a whole collection
of inference services has been defined and investigated for different DLs. DLs have
been employed in various domains, such as databases, biomedical or context-aware
applications [3, 96]. Their most notable success so far is probably the adoption of the
DL-based language OWL1 as standard ontology language for the Semantic Web [53].

Historically, DLs stem from knowledge representation systems such as semantic
networks [85, 94] or frame systems [73]. These early knowledge representation systems
were motivated by linguistic applications and allow to specify information from the
domain of discourse. They offer methods to compute inheritance relations between the
specified notions. Early frame-based systems and semantic networks both have oper-
ational semantics, i.e., the semantics of reasoning is given by its implementation. As
a consequence, the result of the reasoning process depends on the implementation of
the reasoner and thus the result may differ from system to system for the same input
[95]. To remedy this, DLs and their reasoning services are based on formal semantics.
The information about the application domain is represented in a declarative and unam-
biguous way. More importantly, the formal semantics of the reasoning services ensure
predictable and thus reliable behavior of the DL reasoning systems—independent of
the implementation.

The investigation of algorithms for reasoning services and their complexity is the
main focus of the DL research community. Typically, one can distinguish the following
phases of DL research during the last decades. In the late eighties, reasoning algorithms
have been devised for DL systems that mostly were sound, but incomplete, i.e., they
would return correct answers, but would not find all correct answers. This development
was led by the belief that terminological reasoning is inherently intractable [79, 80], and
thus completeness was traded for tractability. These algorithms have been implemented
in systems such as Classic [23, 22, 84] and Back [79, 81]. During the nineties, sound and
complete reasoning methods were investigated for the core inferences of DL systems:
consistency and subsumption. Consistency assures that the specification of the concepts,
roles and individuals are free of contradictions. For subsumption one computes super-
and sub-concept relations from the given specifications of concepts and roles. The use
of incomplete algorithms for these inferences has largely been abandoned in the DL
community since then, mainly because of the problem that the behavior of the systems
is no longer determined by the semantics of the description language: an incomplete
algorithm may claim that a subsumption relationship does not hold, although it should
hold according to the semantics.

The underlying technique for computing the basic DL inferences is the tableau
method [37], which was adapted to DLs in [91]. This method was extended to more
and more expressive DLs (for an overview, see [17]). The gain in expressiveness came
at the cost of higher complexity for the reasoning procedures—reasoning for the DLs in-

1 http://www.w3.org/TR/owl-features/



vestigated is PSpace-complete or even ExpTime-complete [66, 54, 98] (for an overview
see [17, 31]).

Despite the high complexity, highly optimized DL reasoning systems were imple-
mented based on the tableau method—most prominently the FACT system [49] and
RACER [43]. These systems employed optimization methods developed for DL reason-
ing based on tableaux [7, 48, 58, 45] and demonstrated that the high worst case complex-
ities would hardly be encountered in practice [49, 52, 58, 42, 50, 100]. In fact, it turned
out that these highly optimized implementations of the reasoning methods do perform
surprisingly well on DL knowledge bases from practical applications.

Encouraged by these findings and driven by application needs researchers inves-
tigated tableau algorithms for even more expressive DLs [55, 56, 51, 57] in the last
decade. At the same time, the idea of the Semantic Web emerged and DLs became
the basis for the W3C standardized web ontology language OWL [53, 44]. This brought
DLs into the attention of new users from various application areas, which in turn neces-
sitated automated support of ontology services and motivated research on various new
inferences for DLs. For instance,

– the generation of explanations of consequences that the DL reasoner detected [90,
83, 63, 61, 15],

– support for building ontologies by computing generalizations [10, 27, 18, 101, 35],
– conjunctive queries as a means to access the instance data of an ontology [76, 29,

30, 39, 82, 36, 67], and
– computing modularizations of an ontology as means to facilitate their reuse [38,

69, 33, 32, 70].

All of them are currently investigated reasoning services for DLs and most of them
are implemented in specialized reasoners. At the same time, the need for faster rea-
soners for the afore mentioned basic inferences for DLs led to two developments. On
the one hand, the new tableau-based reasoners for expressive DL were developed such
as PELLET [93], FACT++ [99, 100] and RACERPRO [86] and new reasoning methods
for expressive DLs were investigated and implemented such as resolution [74, 76] in
KAON2 and hyper-tableau [77, 78] in HERMIT. On the other hand, light-weight DLs,
which are DLs with relatively limited expressivity, but good computational properties
for specific reasoning tasks were designed [13]. Reasoning even for large ontologies
written in these DLs can be done efficiently, since the respective reasoning methods
are tractable. There are two “families” of lightweight DLs: the EL family [25, 4, 5],
for which the subsumption and the instance problem are polynomial, and the DL Lite
family [28, 30], for which the instance problem and query answering are polynomial. A
member of each of these families is the DL corresponding to one of the profiles of the
OWL 2 standard.

In this paper, we examine the basic reasoning services for DLs for the light-weight DL
EL and for expressive DLs. In the next section, we give basic definitions for the fun-
damental DLs ALC and EL. We introduce basic notions such as concept descriptions,
TBoxes and ABoxes and their semantics. Based on this, we define the central reasoning
services common to most DL systems. In Section 3, we discuss the reasoning meth-
ods for basic reasoning problems: we describe the tableau method for ALC and the



completion-based approach for EL. In Section 4, we turn to another reasoning service,
namely the computation of explanations for (probably unexpected) reasoning results.
Again, we consider methods for expressive DLs and for EL for this task.

2 Basic Definitions

The central notion for DLs are concept descriptions, which can be built from concept
names and so-called concept constructors. For instance, one can describe a course as
an event given by a lecturer in the following way by a concept description:

Event u ∃ given-by.Lecturer u ∃ has-topic.>

This concept description is a conjunction (indicated by u) of the concept Event, the
existential restriction ∃ given-by.Lecturer and the existential restriction ∃ has-topic.>.
The first existential restriction consists of the role name given-by and concept Lecturer,
which relates the Lecturer to the course. The latter existential restriction states that there
is a topic (which is not specified).

In general, concept descriptions are built from the set of concept names NC and
the set of role names NR using concept constructors. Every DL offers a different set
of concept constructors. The DL EL allows only for the concept constructors that were
used in the example concept description above.

Definition 1 (EL-concept descriptions). Let NC be a set of concept names and NR a
set of role names. The set of EL-concept descriptions is the smallest set such that

– all concept names are EL-concept descriptions;
– if C andD are EL-concept descriptions, then CuD is also an EL-concept descrip-

tion;
– if C is an EL-concept description and r ∈ NR, then ∃r.C is also an EL-concept

description.

If this set of concept constructors is extended to all Boolean connectors, i.e., extended
by disjunction (t) and full negation (¬), one obtains the DLALC. We can defineALC-
concept descriptions inductively.

Definition 2 (ALC-concept descriptions). Let NC be a set of concept names and NR
a set of role names. The set of ALC-concept descriptions is the smallest set such that

– all concept names are ALC-concept descriptions;
– if C and D are ALC-concept descriptions, then ¬C, C u D and C t D are also
ALC-concept descriptions;

– if C is an ALC-concept description and r ∈ NR, then ∃r.C and ∀r.C are also
ALC-concept descriptions.

We call concept descriptions of the form ∃r.C existential restrictions and concept de-
scriptions of the form ∀r.C value restrictions. The semantics of DL concept descriptions
is given by means of interpretations.



Definition 3 (Semantics ofALC-concept descriptions). LetC andD beALC-concept
descriptions and r a role name. An interpretation is a pair I = (∆I , ·I) where the do-
main ∆I is a non-empty set and ·I is a function that assigns to every concept name A a
set AI ⊆ ∆I and to every role name r a binary relation rI ⊆ ∆I ×∆I . This function
is extended to complex ALC-concept descriptions as follows:

– (C uD)I = CI ∩DI;
– (C tD)I = CI ∪DI;
– (¬C)I = ∆I \ CI;
– (∃r.C)I = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI}; and
– (∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I , (x, y) ∈ rI implies y ∈ CI}.

This definitions clearly also captures the semantics of the less expressive DL EL. Both,
EL and ALC also offer the top-concept >, which is always interpreted as the whole
domain ∆I . In addition ALC also offers the bottom concept ⊥, which is always inter-
preted as the empty set. Now, with the ALC-concept constructors at hand, one can, for
instance, characterize a graduate CS student by the following concept description:

∃ studies-subject. CS u (Master-Student t PhD-Student)

Concept description like these are the main building blocks to model terminological
knowledge.

2.1 Terminological Knowledge

A name can be assigned to a concept description by a concept definition. For instance,
we can write Course≡ Event u ∃ given-by.Lecturer u ∃ has-topic.> to supply a concept
definition for the concept Course.

Definition 4 (Concept definition, general concept inclusion). Let A be a concept
name and C, D be (possibly) complex concept description.

– A concept definition is a statement of the form A ≡ C.
– A general concept inclusion (GCI for short) is a statement of the form C v D.

It is easy to see that every concept definition A ≡ C can be expressed by two GCIs:
A v C and C v A. The terminological information expressed by GCIs is collected in
the so-called TBox.

Definition 5 (TBox). A finite set of GCIs is called a TBox.
An interpretation is a model of a TBox T , if it satisfies all GCIs, i.e., if CI ⊆ DI

for all C v D in T .

If all concept descriptions in a TBox T are from a description logic L, then we call T
a L-TBox.

If a concept definition A ≡ C in a TBox uses a concept name B directly, i.e., B
appears in C, or if B is used indirectly by the definitions of the names appearing in C,
we say that the TBox is cyclic. Otherwise a TBox is acyclic.



Definition 6 (Unfoldable TBox). A TBox T is a finite set of concept definitions that is
acyclic and such that every concept name appears at most once on the left-hand side
of the concept definitions in T . Given a TBox T , we call the concept name A a defined
concept, ifA occurs on the left-hand side of a concept definition in T . All other concepts
are called primitive concepts.

One of the basic reasoning services in DL systems is to test for the satisfiability of
a concept or a TBox, i.e., to test whether the information specified in it contains logical
contradictions or not. In case the TBox contains a contradiction, any consequence can
follow logically from the TBox. Moreover, if a TBox is not satisfiable, the specified
information can hardly capture the intended meaning from an application domain. To
test for satisfiability is often a first step for a user to check whether a TBox models
something “meaningful”.

Definition 7 (Concept satisfiability, TBox satisfiability). Let C be a concept descrip-
tion and T a TBox. The concept description C is satisfiable iff it has a model, i.e., iff
there exists an interpretation I such that CI 6= ∅. A TBox T is satisfiable iff it has a
model, i.e., an interpretation that satisfies all GCIs in T .

If a concept or TBox is not satisfiable, it is called unsatisfiable. Other typical reason-
ing services offered in DL systems test for equivalence or inclusion relations between
concepts. In the latter case, if one concept of the TBox models a more general category
than another one, we say that this concept subsumes the other one.

Definition 8 (Concept subsumption, concept equivalence). Let C,D be two concept
descriptions and T a (possibly empty) TBox. The concept description C is subsumed
by the concept description D w.r.t. T (C vT D), iff CI ⊆ DI holds in every model
I of T . Two concepts C,D are equivalent w.r.t. T (C ≡T D), iff CI = DI holds for
every model I of T .

The computation of the subsumption relations for all named concepts mentioned in the
TBox T is called classification of the TBox T and yields the concept hierarchy of the
TBox T .

2.2 Assertional Knowledge

Facts about individuals from the application domain can be stated by assertions. There
are two basic kinds of assertions for DL systems—one expresses that an individual
belongs to a concept and the other one specifies that two individuals are related via a
role. The set NI is the set of all individual names.

Definition 9 (Assertion, ABox). Let C be a concept description, r ∈ NR a role name
and i, j ({i, j} ⊆ NI) be two individual names, then

– C(i) is called a concept assertion and
– r(i, j) is called a role assertion.

An ABox A is a finite set of concept assertions and role assertions.



For instance, we can express that Dresden is a city located at the river Elbe by the
following ABox:

{ City(Dresden), River(Elbe), located-at(Dresden, Elbe) }

If all concept descriptions in an ABox A are from a Description Logic L, then we call
A a L-ABox. In order to capture ABoxes, the interpretation function is now extended
to individual names. Each individual name is mapped by the interpretation function to
an element of the domain ∆I .

Definition 10 (Semantics of assertions, semantics of ABoxes). Let C be a concept
description, r a role name and i, j two individual names, then an interpretation I sat-
isfies

– the concept assertion C(i) if iI ∈ CI and
– the role assertion r(i, j) if (iI , jI) ∈ rI .

An interpretation I is a model of an ABox A, if I satisfies every assertion in A.

A DL knowledge base K consists of an ABox A and a TBox T . We write K = (T , A).
We can now test for the absence of contradictions in ABoxes.

Definition 11 (ABox consistency, instance of). An ABox A is consistent w.r.t. a TBox
T , iff it has a model that is also a model for T . The individual i is an instance of
the concept description C w.r.t. an ABox A and a TBox T (we write A |=T C(i)),
iff iI ∈ CI for all models I of T and A.

ABox realization is a reasoning service that computes for each individual i of an ABox
A and a TBox T the set of all named concepts A appearing in A and T that (1) have i
as an instance (A |=T A(i)) and (2) that is least w.r.t. vT .

Typically, all the reasoning services introduced in this section are implemented in
DL systems. In Section 3, we discuss the reasoning algorithms for these inferences for
ALC and in more detail for EL. Before we do so, we survey some extensions of these
two basic DLs.

2.3 Extensions of Basic DLs

The basic DLALC has been extended in many ways and, as mentioned in the introduc-
tion, reasoning algorithms have been devised for many of these extensions, see [31]. We
consider here now some of those extensions that are captured in the OWL 2 standard
[102] and that are also covered in the OWL 2 EL profile [75]. The DLs underlying these
standardized ontology languages are SROIQ [51] and EL++ [5], respectively. Both
DLs allow to specify more information on roles.

A role r can be declared to be a transitive role in the TBox. The semantics is
straight-forward. An interpretation I satisfies a transitive role declaration transitive(r)
if {(a, b), (b, c)} ⊆ rI implies (a, c) ∈ rI . Transitive roles can be used in concept
descriptions. Assume that the role has-part is transitive, then the two axioms:

Summer-school ≡ ∃ has-part. Course
Course ≡ ∃ has-part. Lesson



imply that a Summer school has a part that is a lesson. The declaration of an inverse role
applies to a role name r and yields its inverse r−1, where the semantics is the obvious
one, i.e.,

(r−1)I := {(e, d) | (d, e) ∈ rI}.

Using the inverse of the role attends, we can define the concept of a speaker giving a
boring talk as

Speaker u ∃gives.(Talk u ∀attends−1.(Bored t Sleeping)).

Furthermore, it can be specified that a role is a super-role of another role by a role
inclusion axiom. The set of all role inclusions form the role hierarchy. An interpretation
I satisfies a role inclusion axiom r v s if rI ⊆ sI .

For instance, we might capture the fact that everybody who is attending something
(a course) is also interested in this (course) by a role inclusion axiom

attends v interested-in.

DL researchers have introduced many additional constructors to the basic DL ALC
and investigated various DLs obtained by combining such constructors. Here, we only
introduce qualified number restrictions as example for additional concept constructors.
This extension is covered also in the DL SROIQ, but not in EL++. See [1] for an
extensive list of additional concept and role constructors.

Qualified number restrictions are of the form (≥n r.C) (at-least restriction) and
(≤n r.C) (at-most restriction), where n ≥ 0 is a non-negative integer, r ∈ NR is a role
name, and C is a concept description. The semantics of these additional constructors is
defined as follows:

(≥n r.C)I := {d ∈ ∆I | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≥ n},
(≤n r.C)I := {d ∈ ∆I | card({e | (d, e) ∈ rI ∧ e ∈ CI}) ≤ n},

where card(X) yields the cardinality of the set X . Using qualified number restrictions,
we can define the concept of all persons that attend at most 20 talks, of which at least 3
have the topic DL:

Person u (≤ 20 attends.Talk) u (≥ 3 attends.(Talk u ∃topic.DL)).

2.4 Relations of DLs to Other Logics

Description logics are logic-based knowledge representation formalisms. A natural ques-
tion is how they are related to other logics. In fact, it is easy to see, given their semantics,
that most description logics are a fragment of first order logic (FOL). Concept descrip-
tions can be translated into FOL formulae with one free variable. Concept names can be
interpreted as unary predicates and role names as binary relations, see for example [88,
68, 59]. An arbitraryALC-concept description can be translated into a FOL formula τx,
where x is a free variable in the following way:

– τx(A) := A(x) for a concept name A,



– τx(¬C) := ¬ τx(C),
– τx(C uD) := τx(C) ∧ τx(D),
– τx(C tD) := τx(C) ∨ τx(D),
– τx(∃r.C) := ∃y.(r(x, y) ∨ τy(C)), where y is a variable different from x, and
– τx(∀r.C) := ∀y.(r(x, y)→ τy(C)), where y is a variable different from x.

The intuition of the translation to FOL is that the formula τx(C) describes all domain
elements d from ∆I that make the formula τx true if x is replaced by d. This clearly
coincides with the interpretation of the concept description CI . The translation does
not yield arbitrary FOL formulae, but formulae from the two-variable fragment [41]
and the guarded fragment [40]. Both of which are known to be decidable.

Description Logics are closely related to modal logics (see e.g. [37, 21]). For instance,
the DL ALC is a syntactic variant of the multimodal logic K, see [89]. The multimodal
logic K introduces several box and diamond operators that are indexed with the name of
the corresponding transition relation, which can be directly translated into ALC using
role names corresponding to the transition relations.

AnyALC interpretation I can be viewed as a Kripke structureKI . The elements of
the domain w ∈ ∆I correspond to possible worlds inKI . A propositional variableA is
true in world w, iff w ∈ AI . There is a transition relation r in the Kripke structure from
worldw1 to worldw2 iff (w1, w2) ∈ rI . Many theoretical results on reasoning in modal
logics carry directly over to standard inferences in DLs due to this direct translation.

3 DL Reasoning

In this section we present reasoning methods for the DL reasoning problems defined in
the last section: satisfiability and subsumption. These problems are decision problems
and we devise decision procedures for them. Before we do so, we recall some general
requirements that we would like to hold for such decision procedures. Such a procedure
must be:

– sound, i.e., the positive answers should be correct;
– complete, i.e., the negative answers should be correct; and
– terminating, i.e., it should always give an answer in finite time.

Together these properties ensure that we always obtain an answer and that every given
answer of the procedure is correct. These properties guarantee that applications built on
top of these procedures are predictable and reliable. To employ the decision procedures
in real world applications, we also would like our decision procedure to be

– efficient, i.e., it should be optimal w.r.t. the (worst-case) complexity of the problem,
and

– practical, i.e., easy to implement and optimize, and behave well for application
cases.

DL research has mostly been dedicated to design decision procedures that fulfill these
requirements. The underlying techniques to realize reasoning procedures that we are
considering in the following are the tableaux method for expressive DLs and completion
for EL.



3.1 Reasoning in Expressive DLs

By expressive DLs we refer to DLs that offer at least all Boolean constructors and
that are thus closed under negation. For this kind of DLs, it is not necessary to design
and implement different algorithms for the different reasoning problems introduced
in the last section, since there exist polynomial time reductions, which only require
the availability of the concept constructors conjunction and negation in the description
language. For the TBox reasoning problems there are the following reductions:

– Subsumption can be be reduced in polynomial time to equivalence:

C vT D iff C uD ≡T C.

– Equivalence can be be reduced in polynomial time to subsumption:

C ≡T D iff C vT D and D vT C.

– Subsumption can be be reduced in polynomial time to (un)satisfiability:

C vT D iff C u ¬D is unsatisfiable w.r.t. T .

– Satisfiability can be be reduced in polynomial time to (non-)subsumption:

C is satisfiable w.r.t. T iff not C vT ⊥.

For reasoning problems w.r.t. ABoxes (and TBoxes) there are similar polynomial time
reductions:

– Satisfiability can be be reduced in polynomial time to consistency:

C is satisfiable w.r.t. T iff the ABox {C(a)} is consistent w.r.t. T .

– The instance problem can be reduced in polynomial time to (in)consistency:

A |=T C(a) iff A ∪ {¬C(a)} is inconsistent w.r.t. T .

– Consistency can be reduced in polynomial time to the (non-)instance problem:

A is consistent w.r.t. T iff A 6|=T ⊥(a).

With these reductions at hand, it suffices to investigate a reasoning procedure for one of
the reasoning problems. In this section, we restrict ourselves to unfoldable TBoxes, i.e.,
TBoxes without GCIs and cyclic definitions. We present a tableau algorithm for decid-
ing ABox consistency in this setting. Such a tableau-based algorithm tries to construct a
model for the ABox by breaking down the concept descriptions in the knowledge base
and inferring new constraints on the elements of this model. The algorithm either stops
because all attempts to build a model failed due to obvious contradictions, or it stops
with a “canonical” model.

In a first step of the consistency test, negation is treated by transforming the concept
description from the knowledge base into negation normal form (NNF). This normal
form pushes all negations into the description until they occur only in front of concept
names, using de Morgan’ rules.



The→u-rule
Condition: A contains (C1 u C2)(x), but not both C1(x) and C2(x).
Action: A′ := A ∪ {C1(x), C2(x)}.

The→t-rule
Condition: A contains (C1 t C2)(x), but neither C1(x) nor C2(x).
Action: A′ := A ∪ {C1(x)}, A′′ := A ∪ {C2(x)}.

The→∃-rule
Condition: A contains (∃r.C)(x), but there is no individual name z such that C(z)

and r(x, z) are in A.
Action: A′ := A ∪ {C(y), r(x, y)} where y is an individual name not occurring in A.

The→∀-rule
Condition: A contains (∀r.C)(x) and r(x, y), but it does not contain C(y).
Action: A′ := A ∪ {C(y)}.

Fig. 1. Tableau rules of the consistency algorithm for ALC.

Definition 12 (ALC-negation normal form). AnALC-concept description is inALC-
negation normal form (NNF) if the following rules have been applied exhaustively:

¬⊥ → > ¬(C uD)→ (¬C t ¬D) ¬(∃r.C)→ (∀r.¬C)
¬> → ⊥ ¬(C tD)→ (¬C u ¬D) ¬(∀r.C)→ (∃r.¬C)

¬¬C → C

A TBox or an ABox is in NNF, if all concept descriptions appearing in it are in NNF.

The size of an ALC-concept description is the number of occurrences of all concept
and role names that appear in the concept description. The size of a TBox is the sum
of the sizes of all the concept descriptions appearing in the TBox. Similarly, the size
of an ABox is the sum of all the concept descriptions appearing the concept assertions
plus the number of role assertions. Transforming anALC-concept description into NNF
yields an equivalent concept description, TBox or ABox of the same size.

LetA0 be anALC-ABox that is to be tested for consistency. In a first preprocessing
step the definitions from the TBox are expanded.2 More precisely, names of defined
concepts are replaced by the right-hand sides of their definitions in the TBox. This
replacement is done exhaustively until only names of primitive concepts appear in the
ABox A0. Next, this ABox is transformed into NNF. In order to test consistency of the
normalized A0, the algorithm applies tableau rules to this ABox until no more rules
apply. The tableau rules for ALC are depicted in Fig. 1. Tableau rules in general are
consistency preserving transformation rules.

The tableau rule →t that handles disjunction is nondeterministic. It transforms a
given ABox into two new ABoxes such that the original ABox is consistent if one of
the new ABoxes is so. For this reason, we will consider finite sets of ABoxes S =
{A1, . . . ,Ak} instead of single ones. Such a set of ABoxes is consistent iff there is

2 Recall, that we are dealing with unfoldable TBoxes (Def. 6).



some i, 1 ≤ i ≤ k, such that Ai is consistent. A tableau rule of Fig. 1 is applied to a
given finite set of ABoxes S as follows: it takes an element A of S, and replaces it by
one ABox A′ or, in case of→t by two ABoxes A′ and A′′.

Definition 13 (Clash, complete ABox, closed ABox). An ABox A contains a clash iff
{A(x), ¬A(x)} ⊆ A for some individual name x and some concept name A. An ABox
A is called

– complete iff none of the tableau rules of Fig. 1 applies to it, and
– closed if it contains a clash, and open otherwise.

The consistency algorithm for ALC proceeds in the following steps. It starts with
the singleton set of ABoxes {A0}, and applies the rules from Fig. 1 in arbitrary order
until no more rules apply. The algorithm returns “consistent” if the set Ŝ of ABoxes
obtained by exhaustively applying the tableau rules contains an open ABox, and “in-
consistent” otherwise.

For this procedure, one can show that it is sound, complete and terminating by
examining the individual tableau rules. For termination, it is easy to see that each rule
application is monotonic in the sense that every rule application extends the number
of concept assertions for the individuals in A and it never removes elements from A.
Furthermore, each concept description that appears in A due to the application of the
tableau rules is a sub-concept description of a concept description that appears already
in the initial ABox A0. These two facts together imply that the application of tableau
rules terminates. Completeness of the procedure can easily be seen from the definition
of a clash. Soundness can be shown by showing local correctness of the individual
tableau rules. Local correctness means that the rules preserve consistency, i.e., if Ŝ ′ is
obtained from the finite set of ABoxes Ŝ by application of a transformation rule, then
Ŝ is consistent iff Ŝ ′ is consistent.

Due to space limitations, we refer the reader to [2, 6] for the proofs for soundness,
completeness and termination of the tableau algorithm for ALC.

For general TBoxes, the tableau algorithm needs to be extended by a rule for treating
GCIs and a more complex mechanism to ensure termination. For a given general TBox
T = {C1 v D1, . . . , Cn v Dn}, it is easy to see that the general TBox consisting of
the single GCI of the form

> v (¬C1 tD1) u . . . u (¬Cn tDn)

is equivalent to T , i.e., they have the same models. Thus, reasoning for general TBoxes
can be done by taking a general TBox that consists of a single GCI of the form > v C,
where C is a concept description constructed from the GCIs as above. This GCI states
that every element in the model belongs to C. To capture this in the tableau method,
we add a new rule: the →T vC-rule adds the concept assertion C(x) in case the indi-
vidual name x occurs in the ABox A, and C(x) is not yet present in A. Local correct-
ness, soundness, and completeness of this procedure can easily be shown. However,
the procedure does not terminate, due to cyclic axioms. To regain termination, cyclic
computations need to be detected and the application of the→∃-rule must be blocked.
For two individuals a and b, we say that a is younger than b, if a was introduced by an



application of the→∃-rule after b was already present in the ABox. The application of
the→∃-rule to an individual x is blocked by an individual y in an ABox A iff

– x is younger than y, and
– {C | C(x) ∈ A} ⊆ {C | C(y) ∈ A}.

The main idea underlying blocking is that the blocked individual x can use the role
successors of y instead of generating new role successors.

The complexity of the consistency problem inALC w.r.t. unfoldable TBoxes is PSpace-
complete [92, 66]. In case general TBoxes are used, the complexity of testing consis-
tency is ExpTime-complete [89]. For the DLs underlying the OWL standard the com-
plexity of testing consistency is even higher. Reasoning in the DL underlying the OWL
1.0 standard SHOIQ is NExpTime-complete [98] and for the DL SROIQ, which is
the basis for the OWL 2 standard, it is even N2ExpTime [64].

3.2 Reasoning in EL

Since the DL EL does neither offer negation nor the bottom concept, contradictions can-
not be expressed and thus testing satisfiability is trivial in EL. For testing subsumption
in EL, it was shown in [25] that reasoning can be done in polynomial time. This result
was rather surprising. For the very similar DL FL0, which allows for value restrictions
instead of existential restrictions, reasoning w.r.t. general TBoxes is ExpTime-complete
[46]. For a collection of extensions of EL it was investigated, whether they have the
same nice computational properties [26, 4, 5]. These investigations identified extensions
of EL that allow for efficient classification. The DL EL++ extends EL with the bottom
concept (⊥), nominals, a restricted form of concrete domains, and a restricted form of
so-called role-value maps. For this DL, it was shown in [5] that almost all additions of
other typical DL constructors to ELmake subsumption w.r.t. general TBoxes ExpTime-
complete. The DL EL++ is the closest DL to the OWL 2 EL profile.

Despite its limited expressivity, EL is highly relevant for practical applications. In
fact, both the large medical ontology SNOMED CT3 and the Gene Ontology4 can be
expressed in EL.

3.3 Subsumption in EL

The polynomial time algorithm for computing subsumption w.r.t. a general TBox actu-
ally performs classification of the whole TBox, i.e., it computes the subsumption rela-
tionships between all named concepts of a given TBox simultaneously. This algorithm
proceeds in four steps:

1. Normalize the TBox.
2. Translate the normalized TBox into completion sets.
3. Complete these sets using completion rules.
4. Read off the subsumption relationships from the normalized graph.
3 http://www.ihtsdo.org/snomed-ct/
4 http://www.geneontology.org/



NF1 C u D̂ v E −→ { D̂ v A, C uA v E }

NF2 ∃r.Ĉ v D −→ { Ĉ v A,∃r.A v D }

NF3 Ĉ v D̂ −→ { Ĉ v A, A v D̂ }

NF4 B v ∃r.Ĉ −→ { B v ∃r.A, A v Ĉ }

NF5 B v C uD −→ { B v C, B v D }

where Ĉ, D̂ are complex concept descriptions and A is a new concept name.

Fig. 2. EL normalization rules

The normal form for EL-TBoxes required in the first step is defined as follows.

Definition 14 (Normal form for EL-TBoxes). An EL-TBox T is in normal form if all
concept inclusions have one of the following forms:

A1 v B, A1 uA2 v B, A1 v ∃r.A2 or ∃r.A1 v B,

where A1, A2 and B are concept names appearing in T or the top-concept >.

Any EL-TBox T can be transformed into a normalized TBox T ′ by simply introducing
new concept names. EL-TBoxes can be transformed into normal form by applying the
normalization rules displayed in Fig. 2 exhaustively. These rules replace the GCI on
the left-hand side of the rule with the set of GCIs on the right-hand side of the rule.
The idea behind the normalization rules is to introduce names for complex sub-concept
descriptions. It suffices to obtain a TBox that is a subsumption-equivalent TBox to the
original one, i.e., the original and the normalized TBox capture the same subsumption
relationships for the named concepts from the original TBox. Thus it suffices to intro-
duce the new concept names with GCIs instead of equivalences. The transformation
into normal form can be done in linear time.

The completion algorithm works on a data-structure called completion sets. There
are two kinds of completion sets used in the algorithm:

– S(A) for each concept name A mentioned in the normalized TBox, and
– S(A, r) for each concept name A and role name r mentioned in the normalized

TBox.

Both kinds of completion sets contain concept names and >. By ST we denote the
set containing all completion sets of the TBox T . In the completion algorithm, the
completion sets are initialized as follows:

– S(A) := {A,>} for each concept name A mentioned in the normalized TBox,
and

– S(A, r) := ∅ for each concept name A and role name r mentioned in the normal-
ized TBox.



CR1 If C′ v D ∈ T , C′ ∈ S(C), and D 6∈ S(C)
then add D to S(C).

CR2 If C1 u C2 v D ∈ T , C1, C2 ∈ S(C), and D 6∈ S(C)
then add D to S(C).

CR3 If C′ v ∃r.D ∈ T , C′ ∈ S(C), and D /∈ S(C, r)
then add D to S(C, r).

CR4 If ∃r.D′ v E ∈ T , D ∈ S(C, r), D′ ∈ S(D), and E /∈ S(C)
then add E to S(C).

Fig. 3. EL completion rules

The intuition is that the completion rules make implicit subsumption relationships ex-
plicit in the following sense:

– B ∈ S(A) implies that A vT B, i.e., S(A) contains only subsumers of A, and
– B ∈ S(A, r) implies that A vT ∃r.B, i.e., S(A, r) contains only concept names
B s.t. A is subsumed by ∃r.B.

In fact, it can be shown that these properties of the completion sets are invariants and
thus do not change during completion. Clearly, this holds for the initial elements of the
completion. After initialization all completion sets in ST are extended by applying the
completion rules that are shown in Fig. 3 exhaustively, i.e., until no more rule applies.
It is easy to see that the rules preserve the above invariants. In each of the rules the last
condition ensures that the rule is only applied once to the same concepts and completion
sets. The first rule CR1 propagates the transitivity of subsumption. The second CR2 en-
sures that if a conjunction implies a concept C w.r.t. T and the conjuncts are already in
the completion set of a concept, then C has to be in that completion set as well. The rule
CR3 is applicable if a concept name implies an existential restriction w.r.t. T and this
concept name is contained in the completion set S(C), then the existential restriction is
implied by C as well. The most complicated rule is CR4. The axiom ∃r.D′ v E ∈ T
implies ∃r.D′ vT E, and the assumption that the invariants are satisfied before apply-
ing the rule yieldsD vT D′ and C vT ∃r.D. The subsumption relationshipD vT D′
then implies ∃r.D vT ∃r.D′. By applying transitivity of the subsumption relation vT ,
we obtain C vT E.

Once the completion process has terminated, the subsumption relation between two
named concepts A and B can be tested by checking whether B ∈ S(A). The fact that
subsumption in EL w.r.t. general TBoxes can be decided in polynomial time follows
from the following statements:

1. Rule application terminates after a polynomial number of steps.
2. If no more rules are applicable, then A vT B iff B ∈ S(A).

The first statement holds, since the number of completion sets, of the kind S(A) is linear
in size of the TBox. In addition, the number of completion set of the kind S(A, r) is
quadratic in the size of T . The size of the completion sets is bounded by the number of
concept names and role names, and each rule application extends at least one label.



Theorem 1. Subsumption in EL is polynomial w.r.t. general TBoxes.

This nice computational property transfers also to EL++ [5], the DL corresponding
closest to the OWL 2 EL profile.

The first implementation of the subsumption algorithm for EL sketched above is the
CEL system [11, 71]. This system showed that the classification of the very large knowl-
edge bases can be done in runtime acceptable for practical applications. For instance,
classifying the knowledge base SNOMED CT, which contains more than 300.000 axioms
takes less than half an hour and classification of the Gene Ontology, which contains
more than 20.000 axioms, takes only 6 seconds [12].

4 Explanation of Reasoning Results

DL knowledge bases often contain thousands of axioms and have a complex structure
due to the use of GCIs. These knowledge bases are developed by users who are experts
in the domain to be modeled, but have little expertise in knowledge representation or
logic. For this sort of applications, it is necessary that the development process of the
knowledge base is supported by automated services implemented in the DL system.

Classical DL reasoning systems can detect that a certain consequence holds, such as
an inconsistency or a subsumption relation, but they give no evidence why it holds. The
reasoning service explanation facilitates better understanding of the knowledge base
and gives a starting point to resolve an unwanted consequence in the knowledge base.
For instance, the SNOMED ontology contains the subsumption relation:

Amputation-of-Finger v Amputation-of-Arm.

A user who wants to correct this, faces the task of finding the axioms responsible for this
unintended subsumption relation among 350.000 others. Clearly, automated support is
needed for this task. A first step towards providing such support was described in [90],
where an algorithm for computing all minimal subsets of a given knowledge base that
have a given consequence is described. This approach was extended to expressive DLs
in [83].

For a TBox T and a consequence c an explanation points to the “source” of the
consequence, which is a subset of T that contributes to the consequence c. We call a
minimal axiom set (MinA) a minimal subset (w.r.t. size) of a TBox T , that has a certain
consequence. Axiom pinpointing is the process of computing MinAs.

Example 1. Consider the following TBox:

Tex ={ Cat v ∃ has-parent. Cat, I
Cat v Pet, II

∃ has-parent.Pet v Animal, III
Pet v Animal } IV

For the TBox Tex, we find the consequence Cat vTex Animal. The consequence holds
since axiom I says that cats are pets and pets are in turn animals by axiom IV. This



consequence also follows from Tex by using axiom I and axiom II, which together say
that a cat has a parent that is a pet. Now from this together with axiom III it, follows
that cats are animals. Thus, the one consequence has several MinAs, namely: {I, IV}
and {I, II, III}.

It turns out that there may be exponentially many MinAs, which shows that an
algorithm for computing all MinAs needs exponential time in the size of the input
TBox. In order to obtain an explanation for a consequence, we need to compute one
single MinA of the consequence. There are two general approaches for pinpointing,
i.e., computing a MinA of a consequence:

Black box approach, which uses a DL reasoner as an oracle, i.e, it repetitively queries
the reasoner to compute a MinA.

Glass box approach, which modifies the internals of a DL reasoner s.t. it yields a
MinA directly when computing an inference.

While the black box approach is independent of the reasoner, the glass box approach
needs to be tailored to the reasoning method in use. We examine the black box approach
first, which is the method of choice for expressive DLs, then we discuss the glass box
approach for completion-based reasoning in EL.

The task of computing explanations has also been considered in other research ar-
eas. For example, in the SAT community, people have considered the problem of com-
puting minimally unsatisfiable subsets of a set of propositional formulae. Approaches
for computing these sets developed there include algorithms that call a SAT solver as a
black box [65, 20] but also algorithms that extend a resolution-based SAT solver directly
[34, 103].

4.1 Black Box Method for Pinpointing

Assume we want to perform pinpointing for the consequenceA v B w.r.t. the TBox T .
The basic idea underlying the black box method is a kind of uninformed search: Given
a TBox T and the consequence A v B: simply remove the first axiom from the TBox
T and test whether the consequence still holds. If so, continue with the second axiom.
If the consequence does not follow from the TBox with the first axiom removed, put
the axiom back to the TBox and then test the second axiom. This naive method always
performs as many subsumption tests as the number of axioms in the TBox. Since MinAs
are often quite small, this is not a feasible method for very large TBoxes.

A more efficient method would not proceed axiom-wise, but first compute a not
necessarily minimal subset of the TBox from which the consequence follows and then
minimize this set using the naive procedure. This approach is only feasible if the algo-
rithm for the first step produces fairly small sets of axioms and is efficient.

The black box method is independent of the DL in use and can be used to compute
explanations for any DL, provided there is a DL reasoner for the DL and the conse-
quence in question. This method can easily be implemented on top of a DL reasoner
and does not require to change the internal structure of the reasoner. This is the reason
why most implementations of pinpointing are based on the black box approach.



For EL the black box pinpointing algorithm has been implemented in the DL rea-
soning system CEL [16, 19, 97]. For a variant of the medical knowledge base GALEN
[87] with 4000 axioms the overall run-time for computing a MinA with the non-naive
method took 9:45 min. In contrast the naive method took seven hours for the same
task. The first implementation of the black box method for pinpointing was done for the
ontology editor SWOOP [62] based on the methods described in [83]. A more recent im-
plementation of black box pinpointing was done in the ontology editor PROTÉGÉ. This
implementation allows pinpointing even for parts of axioms that contribute to deriving
a consequence [47].

4.2 Glass Box Pinpointing for EL

The glass box approach for computing an explanation depends on the DL used and the
reasoning method employed. It requires that the internals of a reasoner are modified
by adding label sets to the reasoning procedure that collect the relevant axioms already
during the computation of the consequence. For EL, we modify the completion algo-
rithm for subsumption from Section 3.3 to compute one explanation for a subsumption
relationship. To this end, we annotate every element in the completion sets in S with a
monotone Boolean formula that captures the MinAs.5 The glass box algorithm for EL
was described in [15] and extended in [16].

The basic labeling assigns to every GCI t ∈ T a unique propositional variable
lab(t) as a label. By lab(T ) we denote the set of all propositional variables labeling
GCIs in the TBox T . Now, a monotone Boolean formula over lab(T ) is a Boolean
formula using

– (some of) the variables in lab(T ), and
– only the connectives ∧, ∨ and true for truth.

Its propositional valuation (denoted ν) is the set of propositional variables that make
the formula true when they are assigned the value true. For a valuation ν ⊆ lab(T ), let
Tν := {t ∈ T | lab(T ) ∈ ν}. The idea is that the valuation characterizes a combination
of axiom labels. These labels are mapped back to the actual axioms from the TBox T
by Tν .

Definition 15 (Pinpointing formula). Let T be an EL-TBox and A and B concept
names occurring in T . The monotone Boolean formula φ over lab(T ) is a pinpointing
formula for T w.r.t. A vT B, if the following holds for every valuation ν ⊆ lab(T ):

A vTν B iff ν satisfies φ.

Consider Example 1 again. Take lab(Tex) := {I, II, III, IV} as the set of proposi-
tional variables, then II∧(IV∨(I∧III)) is a pinpointing formula for Tex w.r.t.A vTex B.

Lemma 1. Let φ be a pinpointing formula for the TBox T w.r.t. A vT B. If valuations
are ordered by set inclusions, then

5 This method for generating explanations was first applied for default reasoning in [8].



M = {Tν | ν is a minimal valuation satisfying φ}

is the set of all MinAs for T w.r.t. A vT B.

Proof. We need to show the following claims:

1. M contains only MinAs.
2. There is no MinA m1 s.t. m1 /∈M .

Show claim 1.:
For each set of axioms m ∈ M there is a valuation νm s.t. νm = lab(m), which is
minimal in size and that satisfies φ. Since φ is satisfied, A vT B holds. Since νm is
minimal there is no subset of νm satisfying φ, and thus m is a MinA.
Show claim 2.:
Assume m1 is a MinA for T w.r.t. A vT B and m1 /∈ M . Since m1 is a MinA, m1 is
minimal andA vm1 B holds. Let νm1 be the valuation νm1 = lab(m1). FromA vT B
follows νm1 satisfies the pinpointing formula φ. Thus, m1 induces a minimal valuation
satisfying φ, which is a contradiction to m1 /∈M . o

Lemma 1 guarantees that it is enough to compute the pinpointing formula to obtain
all MinAs, i.e., explanations for the consequence in question. However, to obtain one
MinA from the pinpointing formula, one can transform the pinpointing formula into
disjunctive normal form, remove those disjuncts that are implied by other disjuncts and
then pick one disjunct as the explanation.

Next, we describe the computation algorithm for pinpointing formulae in EL based
on completion. Again, we want to explain A v B w.r.t. the EL-TBox T . Since the
completion algorithm starts by normalizing the TBox, we need to introduce the labels
for the original TBox and labels for the normalized TBox T ′ as well. The labels of the
normalized TBox T ′ need to “keep track” of the corresponding axioms in the original
TBox.

The completion procedure needs to be adapted to propagate the labels and to con-
struct the pinpointing formula. To this end, each element of the completion sets, say
X ∈ S(A), is labelled with a monotone Boolean formula: lab(A,X). The initial ele-
ments of the completions sets A ∈ S(A) and > ∈ S(A) are labelled with true , i.e.,
lab(A,A) = lab(A,>) = true for all concept names appearing in T . Now, we need
to modify the completion rules from Fig. 3. Let the precondition of a completion rule
CRi be satisfied for a set of completion sets ST ′ w.r.t. the TBox T ′. The modified rule
collects the labels of those GCIs and completion sets that make the rule CRi applicable.
Let φ be the conjunction of :

– labels of GCIs in T ′ that appear in the precondition of CRi, and
– labels of elements in completion sets in ST ′ that appear in the precondition of CRi.

The conjunction collected in φ needs to be propagated to the consequence of the rule
CRi. If the completion set element in the consequence of CRi is not in ST ′ , then it is
added with label φ. In case the consequence of CRi is already in ST ′ and has the label
ψ, the completion algorithm has derived the consequence again. In this case, ψ and φ
are compared. If ψ∧φ 6≡ ψ, the consequence of CRi is derived in an alternative way and



the label of this consequence is changed to φ ∨ ψ. The new label of the consequence is
a more general Boolean formula. If ψ ∧ φ ≡ ψ, then φ implies ψ. In this case the rule
CRi is not applied.

Example 2. Consider Example 1 again. To compute the pinpointing formula for Cat
vTex Animal, the set of completion sets STex is initialized as follows:

STex = { (Cat,>)true , (Cat, Cat)true ,
(Pet,>)true , (Pet, Pet)true ,
(Animal,>)true , (Animal, Animal)true }.

Then we can apply the modified rules:

– Using axiom II: Cat v Pet ∈ Tex and (Cat, Cat)true ∈ STex ,
add (Cat,Pet)II∧true to STex .

– Using axiom I: Cat v ∃ has-parent. Cat ∈ Tex and (Cat, Cat)true ∈ STex ,
add (Cat, has-parent, Pet)I∧true to STex .

– Using axiom IV: Pet v Animal ∈ Tex and (Cat,Pet)II∧true ∈ STex ,
add (Cat, Animal)II∧IV∧true to STex .

– Using axiom III: ∃ has-parent.Pet v Animal ∈ Tex and
{(Cat, Pet)II∧true , (Cat, has-parent, Pet)I∧true)} ⊂ STex ,
modify (Cat, Animal)II∧IV∧true to (Cat, Animal)(II∧IV∧true)∨(III∧II∧I∧true).

Now, lab(Cat, Animal) = (II ∧ IV) ∨ (III ∧ II ∧ I) is the pinpointing formula for Tex
w.r.t. Cat vTex Animal.

The modified completion algorithm always terminates, but not necessarily in poly-
nomial time due to the possibility of repeated generalization of the label. Testing equiv-
alence of monotone Boolean formulae is an NP-complete problem. However, given
formulae over n propositional variables whose size is exponential in n, equivalence can
be tested in time exponential in n. Thus, there are at most exponentially many rule ap-
plications and each of them takes at most exponential time. This yields an exponential
time bound for the execution of the pinpointing algorithm.

However, the set of completion sets S obtained by the described process is identical
to the one obtained by the unmodified algorithm. After the modified completion algo-
rithm has terminated, the label lab(A,B) is a pinpointing formula for T w.r.t.A vT B.

Theorem 2. Given an EL-TBox T in normal form, the pinpointing algorithm termi-
nates in time exponential in the size of T . After termination, the resulting set of comple-
tion sets ST satisfies the following two properties for all concept names A,B occurring
in T :

1. A vT B iff (S(A), B) ∈ ST , and
2. lab(A,B) is a pinpointing formula for T w.r.t A vT B.

This result was shown in [16] for the DL EL++. In the example, the TBox Tex is already
in normal form. In the general case, the TBox needs to be normalized and the pinpoint-
ing formula obtained by the modified completion needs to reconstruct the labels for the
original axioms from the label of the normalized axioms.



The propositional variables from the normalized TBox in φ are replaced with those
of the original one. More precisely, each label of a normalized GCI is replaced by the
disjunction of its source GCIs. Once the de-normalized pinpointing formula is obtained,
it is transformed into disjunctive normal form. One disjunct of this formula yields a
MinA and thus an explanation of the consequence. To sum up, the pinpointing extension
of the EL subsumption algorithm proceeds in the following steps:

1. Label all axioms in T .
2. Normalize T according the rules from Fig. 2.
3. Label each axiom in the normalized TBox T ′ and keep the source GCI of every

normalized GCI.
4. Apply the completion rules from Fig. 3 modified as described.
5. De-normalize the pinpointing formula.
6. Build the disjunctive normal form.
7. Pick one disjunct as explanation.

Note that the transformation into disjunctive normal form may cause an exponential
blow-up, which means that, in some cases, the pinpointing formula provides us with a
compact representation of the set of all MinAs. Also note that this blow-up is not in the
size of the pinpointing formula but rather in the number of variables. Thus, if the size
of the pinpointing formula is already exponential in the size of the TBox T , computing
all MinAs from it is still “only” exponential in the size of T .

The glass box approach for pinpointing has also been investigated for more expres-
sive DLs such as ALC in [72]. A more general view on tableaux and pinpointing was
taken in [14].

We presented methods to obtain an explanation for a consequence. In order to actu-
ally repair a DL knowledge base, it is necessary to alleviate all causes of an unwanted
consequence. In order to support users to repair a knowledge base, all MinAs need to
be computed. The glass box method for EL computes all MinAs and can be employed
for knowledge base repair directly. For the black box approach, a method for obtaining
all MinAs is described in [90, 60]. This method computes the first MinA by the algo-
rithms described above and then employs a method based on hitting sets to obtain the
remaining MinAs.

The mechanism of pinpointing is not only useful for explanation or repair of DL
knowledge bases. Access restrictions to knowledge bases can be supported as well [9].
If a user only has access to a part of the ontology, it is not obvious whether certain
consequences can be accessed by the user as well. By computing all MinAs for the
consequence, it can be tested whether the consequence follows from the accessible part
alone. In that case access to the consequence does not violate the access restrictions.
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