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1 Introduction

Fuzzy variants of Description Logics (DLs) were introduced in order to deal
with applications where not all concepts can be defined in a precise way. A
great variety of fuzzy DLs have been investigated in the literature [12,8]. In fact,
compared to crisp DLs, fuzzy DLs offer an additional degree of freedom when
defining their expressiveness: in addition to deciding which concept constructors
(like conjunction, disjunction, existential restriction) and which TBox formalism
(like no TBox, acyclic TBox, general concept inclusions) to use, one must also
decide how to interpret the concept constructors by appropriate functions on
the domain of fuzzy values [0, 1]. For example, conjunction can be interpreted
by different t-norms (such as Gödel, Łukasiewicz, and product) and there are
also different options for how to interpret negation (such as involutive negation
and residual negation). In addition, one can either consider all models or only
so-called witnessed models [10] when defining the semantics of fuzzy DLs.

Decidability of fuzzy DLs is often shown by adapting the tableau-based algo-
rithms for the corresponding crisp DL to the fuzzy case. This was first done for
the case of DLs without general concept inclusion axioms (GCIs) [19,17,14,6],
but then also extended to GCIs [16,15,18,4,5]. Usually, these tableau algorithms
reason w.r.t. witnessed models.1 It should be noted, however, that in the pres-
ence of GCIs there are different ways of extending the notion of witnessed models
from [10], depending on whether the witnessed property is required to apply also
to GCIs (in which case we talk about strongly witnessed models) or not (in which
case we talk about witnessed models).

The paper [4] considers the case of reasoning w.r.t. fuzzy GCIs in the set-
ting of a logic with product t-norm and involutive negation. More precisely, the
tableau algorithm introduced in that paper is supposed to check whether an on-
tology consisting of fuzzy GCIs and fuzzy ABox assertions expressed in this DL
has a strongly witnessed model or not.2 Actually, the proof of correctness of this
algorithm given in [4] implies that, whenever such an ontology has a strongly
witnessed model, then it has a finite model. However, it was recently shown in [2]
1 In fact, witnessed models were introduced in [10] to correct the proof of correctness
for the tableau algorithm presented in [19].

2 Note that the authors of [4] actually use the term “witnessed models” for what we
call “strongly witnessed models.”



that this is not the case in the presence of general concept inclusion axioms, i.e.,
there is an ontology written in this logic that has a strongly witnessed model,
but does not have a finite model. Of course, this does not automatically imply
that the algorithm itself is wrong. In fact, if one applies the algorithm from [4] to
the ontology used in [2] to demonstrate the failure of the finite model property,
then one obtains the correct answer, and in [2] the authors actually conjecture
that the algorithm is still correct. However, incorrectness of the algorithm has
now independently been shown in [3] and in [1]. Thus, one can ask whether the
fuzzy DL considered in [4] is actually decidable. Though this question is not
answered in [1], the paper gives strong indications that the answer might in fact
be “no.” More precisely, [1] contains a proof of undecidability for a variant of
the fuzzy DL considered in [4], which (i) additionally allows for strict GCIs, i.e.,
GCIs whose fuzzy value is required to be strictly greater than a given rational
number; and (ii) where the notion of strongly witnessed models used in [4] is
replaced by the weaker notion of witnessed models.

In this paper, we consider a different fuzzy DL with product t-norm, where
disjunction and involutive negation are replaced by the constructor implication,
which is interpreted as the residuum. In this logic, residual negation can be
expressed, but neither involutive negation nor disjunction. It was introduced in
[10], where decidability of reasoning w.r.t. witnessed models was shown for the
case without GCIs. In [7], an analogous decidability result was shown for the case
of reasoning w.r.t. so-called quasi-witnessed models. Following [7], we call this
logic ∗-ALE . In the present paper we show that adding GCIs makes reasoning
in ∗-ALE undecidable w.r.t. several variants of the notion of witnessed models
(including witnessed, quasi-witnessed, and strongly witnessed models).

2 Preliminaries

In this section, we introduce the logic ∗-ALE and some of the properties that
will be useful throughout the paper.

The syntax of this logic is slightly different from standard description logics,
as it allows for an implication constructor, and no negation or disjunction. ∗-ALE
concepts are built through the syntactic rule

C ::= A | ⊥ | > | C1 u C2 | C1 → C2 | ∃r.C | ∀r.C

where A is a concept name and r is a role name.
A ∗-ALE ABox is a finite set of assertion axioms of the form 〈a : C B q〉 or

〈(a, b) : r B q〉, where C is a ∗-ALE concept, r ∈ NR, q is a rational number in
[0, 1], a, b are individual names and B is either ≥ or =. A ∗-ALE TBox is a finite
set of concept inclusion axioms of the form 〈C v D ≥ q〉, where C,D are ∗-ALE
concepts and q is a rational number in [0, 1]. A ∗-ALE ontology is a tuple (A, T ),
where A is a ∗-ALE ABox and T a ∗-ALE TBox. In the following we will often
drop the prefix ∗-ALE , and speak simply of e.g. TBoxes and ontologies.

The semantics of this logic extends the classical DL semantics by interpreting
concepts and roles as fuzzy sets over an interpretation domain. Given a non-
empty domain ∆, a fuzzy set is a function F : ∆→ [0, 1], with the intuition that



an element δ ∈ ∆ belongs to F with degree F (δ). Here, we focus on the product
t-norm semantics, where logical constructors are interpreted using the product
t-norm ⊗ and its residuum ⇒ defined, for every α, β ∈ [0, 1], as follows:

α⊗ β := α · β,

α⇒ β :=

{
1 if α ≤ β
β/α otherwise.

The semantics of ∗-ALE is based on interpretations. An interpretation is a
tuple I = (∆I , ·I) where ∆I is a non-empty set, called the domain, and the
function ·I maps each individual name a to an element of ∆I , each concept
name A to a function AI : ∆I → [0, 1] and each role name r to a function
rI : ∆I × ∆I → [0, 1]. The interpretation function is extended to arbitrary
∗-ALE concepts as follows. For every δ ∈ ∆I ,

>I(δ) = 1,

⊥I(δ) = 0,

(C1 u C2)
I(δ) = CI1 (δ)⊗ CI2 (δ)

(C1 → C2)
I(δ) = CI1 (δ)⇒ CI2 (δ)

(∃r.C)I(δ) = sup
γ∈∆I

rI(δ, γ)⊗ CI(γ)

(∀r.C)I(δ) = inf
γ∈∆I

rI(δ, γ)⇒ CI(γ).

The interpretation I = (∆I , ·I) satisfies the assertional axiom 〈a : C B q〉 iff
CI(aI)Bq, it satisfies 〈(a, b) : r B q〉 iff rI(aI , bI)Bq and it satisfies the concept
inclusion 〈C v D ≥ q〉 iff infδ∈∆I (CI(δ) ⇒ DI(δ)) ≥ q. This interpretation is
called a model of the ontology O if it satisfies all the axioms in O.

In fuzzy DLs, reasoning is often restricted to witnessed models [10]. An in-
terpretation I is called witnessed if it satisfies the following two conditions:

(wit1) for every δ ∈ ∆I , role r and concept C there exists γ ∈ ∆I such that
(∃r.C)I(δ) = rI(δ, γ)⊗ CI(γ), and

(wit2) for every δ ∈ ∆I , role r and concept C there exists γ ∈ ∆I such that
(∀r.C)I(δ) = rI(δ, γ)⇒ CI(γ).

This model is called weakly witnessed if it satisfies (wit1) and quasi-witnessed
if it satisfies (wit1) and the condition

(wit2’) for every δ ∈ ∆I , role r and concept C, either (∀r.C)I = 0 or there
exists γ ∈ ∆I such that (∀r.C)I(δ) = rI(δ, γ)⇒ CI(γ).

In the presence of GCIs, witnessed interpretations are sometimes further
restricted [6,2,8] to satisfy

(wit3) for every two concepts C,D, there is a γ such that

inf
η∈∆I

(CI(η)⇒ DI(η)) = CI(γ)⇒ DI(γ).



Witnessed interpretations that satisfy this third restriction (wit3) are called
strongly witnessed interpretations.

We say that an ontology O is consistent (resp. weakly witnessed consistent,
quasi-witnessed consistent, witnessed consistent, strongly witnessed consistent)
if it has a model (resp. a weakly witnessed model, a quasi-witnessed model,
a witnessed model, a strongly witnessed model). Obviously, strongly witnessed
consistency implies witnessed consistency, which implies quasi-witnessed consis-
tency, which itself implies weakly witnessed consistency. The converse implica-
tions, however, need not hold; for instance, a quasi-witnessed consistent ∗-ALE
ontology that has no witnessed models can be derived from the example in [7].

We now describe some properties of t-norms and axioms that will be useful
for the rest of the paper. For every α, β ∈ [0, 1] it holds that α ⇒ β = 1 iff
α ≤ β. Thus, given two concepts C,D, the axiom 〈C v D ≥ 1〉 expresses that
CI(δ) ≤ DI(δ) for all δ ∈ ∆I . Additionally, 1 ⇒ β = β and 0 ⇒ β = 1 for all
β ∈ [0, 1], and α⇒ 0 = 0 for all α ∈ (0, 1].

In the following, we will use the expression 〈C r
 D〉 to abbreviate the axioms

〈C v ∀r.D ≥ 1〉 , 〈∃r.D v C ≥ 1〉. To understand this abbreviation, consider an
interpretation I satisfying 〈C r

 D〉 and let δ, γ ∈ ∆I with rI(δ, γ) = 1. From
the first axiom it follows that

CI(δ) ≤ (∀r.D)I(δ) = inf
η∈∆I

rI(δ, η)⇒ DI(η)

≤ rI(δ, γ)⇒ DI(γ) = 1⇒ DI(γ) = DI(γ).

From the second axiom it follows that

CI(δ) ≥ (∃r.D)I(δ) = sup
η∈∆I

rI(δ, η) ·DI(η)

≥ rI(δ, γ) ·DI(γ) = DI(γ),

and hence, both axioms together imply that CI(δ) = DI(γ). In other words,
〈C r
 D〉 expresses that the value of CI(δ) is propagated to the valuation

of the concept D on all r successors with degree 1 of δ. Conversely, given an
interpretation I such that rI(δ, γ) ∈ {0, 1} for all δ, γ ∈ ∆I , if rI(δ, γ) = 1

implies CI(δ) = DI(γ), then I is a model of 〈C r
 D〉.

For a concept C, and a natural number n ≥ 1, the expression Cn will denote

the concatenation of C with itself n times; that is, Cn :=

nu
j=1

C. The semantics

of u yields (Cn)I(δ) = (CI(δ))n, for every model I and δ ∈ ∆I .
We will show that consistency of ∗-ALE ontologies w.r.t. the different variants

of witnessed models introduced above is undecidable. We will show this using
a reduction from the Post correspondence problem, which is well-known to be
undecidable [13].

Definition 1 (PCP). Let (v1, w1), . . . , (vm, wm) be a finite list of pairs of words
over an alphabet Σ = {1, . . . , s}, s > 1. The Post correspondence problem (PCP)



asks whether there is a non-empty sequence i1, i2, . . . , ik, 1 ≤ ij ≤ m such that
vi1vi2 · · · vik = wi1wi2 · · ·wik . If such a sequence exists, then the word i1i2 · · · ik
is called a solution of the problem.

We assume w.l.o.g. that there is no pair vi, wi where both words are empty.
For a word µ = i1i2 · · · ik ∈ {1, . . . ,m}∗, we will denote as vµ and wµ the words
vi1vi2 · · · vik and wi1wi2 · · ·wik , respectively.

The alphabet Σ consists of the first s positive integers. We can thus view
every word in Σ∗ as a natural number represented in base s+1 in which 0 never
occurs. Using this intuition, we will express the empty word as the number 0.

In the following reductions, we will encode the word w inΣ∗ using the number
2−w ∈ [0, 1]. We will construct an ontology whose models encode the search for
a solution. The interpretation of two designated concept names A and B at a
node will correspond to the words vµ, wµ, respectively, for µ ∈ {1, . . . ,m}∗.

3 Undecidability w.r.t. Witnessed Models

We will show undecidability of consistency w.r.t. witnessed models by construct-
ing, for a given instance P = ((v1, w1), . . . , (vm, wm)) of the PCP, an ontology
OP such that for every witnessed model I of OP and every µ ∈ {1, . . . ,m}∗ there
is an element δµ ∈ ∆I with AI(δµ) = 2−vµ and BI(δµ) = 2−wµ . Additionally,
we will show that this ontology has a witnessed model whose domain has only
these elements. Then, P has a solution iff for every witnessed model I of OP
there exist a δ ∈ ∆I such that AI(δ) = BI(δ).

Let δ ∈ ∆I encode the words v, w ∈ Σ∗; i.e., AI(δ) = 2−v and BI(δ) = 2−w,
and let i, 1 ≤ i ≤ m. Assume additionally that we have concept names Vi,Wi

with V Ii (δ) = 2−vi and W Ii (δ) = 2−wi . We want to ensure the existence of a
node γ that encodes the concatenation of the words v, w with the i-th pair from
P; i.e. vvi and wwi. This is done through the TBox

T iP := {〈> v ∃ri.> ≥ 1〉 , 〈(Vi uA(s+1)|vi|)
ri A〉, 〈(Wi uB(s+1)|wi|)

ri B〉}.

Recall that we are viewing words in Σ∗ as natural numbers in base s+1. Thus,
the concatenation of two words u, u′ corresponds to the operation u·(s+1)|u

′|+u′.
We then have that

(Vi uA(s+1)|vi|)I(δ) = V Ii (δ) · (AI(δ))(s+1)|vi| = 2−vvi .

If I is a witnessed model of T iP , then from the first axiom it follows that
(∃ri.>)I(δ) = 1, and according to (wit1), there must exist a γ ∈ ∆I with
rI(δ, γ) = 1. The last two axioms then ensure that AI(γ) = 2−vvi and BI(γ) =
2−wwi ; thus, the concept names A and B encode, at node γ, the words vvi and
wwi, as desired. If we want to use this construction to recursively construct
all the pairs of concatenated words defined by P, we need to ensure also that
V Ij (γ) = 2−vj , W Ij (γ) = 2−wj hold for every j, 1 ≤ j ≤ m. This can be done
through the axioms

T 0
P := {〈Vj

ri Vj〉, 〈Wj
ri Wj〉 | 1 ≤ i, j ≤ m}.



It only remains to ensure that there is a node δε where AI(δε) = BI(δε) =
1 = 20 (that is, where A and B encode the empty word) and V Ij (δε) = 2−vj ,
W Ij (δε) = 2−wj hold for every j, 1 ≤ i ≤ m. This condition is easily enforced
through the ABox3

A0
P := {〈a : A = 1〉 , 〈a : B = 1〉} ∪

{
〈
a : Vi = 2−vi

〉
,
〈
a :Wi = 2−wi

〉
| 1 ≤ i ≤ m}.

Finally, we include a concept name H that must be interpreted as 0.5 in
every domain element. This is enforced by the following axioms:

A0 := {〈a : H = 0.5〉},
T0 := {〈H ri H〉 | 1 ≤ i ≤ m}.

This concept name will later be used to detect whether P has a solution (see
Theorem 3).

Let now OP := (AP , TP) where AP = A0
P ∪A0 and TP := T0 ∪

⋃m
i=0 T iP . We

define the interpretation IP := (∆IP , ·IP ) as follows:

– ∆IP = {1, . . . ,m}∗,
– aIP = ε,

for every µ ∈ ∆IP ,

– AIP (µ) = 2−vµ , BIP (µ) = 2−wµ , HIP (µ) = 0.5,

and for all j, 1 ≤ j ≤ m

– V IPj (µ) = 2−vj , W IPj (µ) = 2−wj , and
– rIPj (µ, µj) = 1 and rIPj (µ, µ′) = 0 if µ′ 6= µj.

It is easy to see that IP is in fact a witnessed model of OP , since every node
has exactly one ri successor with degree greater than 0, for every i, 1 ≤ i ≤ m.
More interesting, however, is that for every witnessed model I of OP , there is
an homomorphism from IP to I as described in the following lemma.

Lemma 2. Let I be a witnessed model of OP . Then there exists a function
f : ∆IP → ∆I such that, for every µ ∈ ∆IP , CIP (µ) = CI(f(µ)) holds for
every concept name C and rIi (f(µ), f(µi)) = 1 holds for every i, 1 ≤ i ≤ m.

Proof. The function f is built inductively on the length of µ. First, as I is a
model of AP , there must be a δ ∈ ∆I such that aI = δ. Notice that AP fixes
the interpretation of all concept names on δ and hence f(ε) = δ satisfies the
condition of the lemma.
3 Notice that equality is necessary for this construction; since there is no negation
constructor, it is not possible to express 〈a : X = q〉 with q < 1 using only axioms
of the form 〈a : Y ≥ q′〉.



Let now µ be such that f(µ) has already been defined. By induction, we
can assume that AI(f(µ)) = 2−vµ , BI(f(µ)) = 2−wµ , HI(f(µ)) = 0.5, and for
every j, 1 ≤ j ≤ m, V Ij (f(µ)) = 2−vj ,W Ij (f(µ)) = 2−wj . Since I is a witnessed
model of 〈> v ∃ri.> ≥ 1〉, for all i, 1 ≤ i ≤ m there exists a γ ∈ ∆I with
rI(f(µ), γ) = 1, and as I satisfies all the axioms of the form 〈C r

 D〉 ∈ TP , it
follows that

AI(γ) = 2−vµvi = 2−vµi , BI(γ) = 2−wµwi = 2−wµi ,

HI(γ) = 0.5 and for all j, 1 ≤ j ≤ m, V Ij (γ) = 2−vj ,W Ij (γ) = 2−wj . Setting
f(µi) = γ thus satisfies the required property. ut

From this lemma it follows that, if the PCP P has a solution µ for some µ ∈
{1, . . . ,m}+, then every witnessed model I of OP contains a node δ = f(µ) such
that AI(δ) = BI(δ); that is, where A and B encode the same word. Conversely,
if every witnessed model contains such a node, then in particular IP does, and
thus P has a solution. The question is now how to detect whether a node with
this characteristics exists in every model. We will extend OP with axioms that
further restrict IP to satisfy AIP (µ) 6= BIP (µ) for every µ ∈ {1, . . . ,m}+. This
will ensure that the extended ontology will have a model iff P has no solution.

Suppose for now that, for some µ ∈ {1, . . . ,m}∗, it holds that

2−vµ = AIP (µ) > BIP (µ) = 2−wµ .

We then have that vµ < wµ and hence wµ − vµ ≥ 1. It thus follows that

(A→ B)IP (µ) = 2−wµ/2−vµ = 2−(wµ−vµ) ≤ 2−1 = 0.5

and thus ((A → B) u (B → A))IP (µ) ≤ 0.5. Likewise, if AIP (µ) < BIP (µ), we
also get ((A → B) u (B → A))IP (µ) ≤ 0.5. Additionally, if AIP (µ) = BIP (µ),
then it is easy to verify that ((A → B) u (B → A))IP (µ) = 1. From all this it
follows that, for every µ ∈ {1, . . . ,m}∗,

AIP (µ) 6= BIP (µ) iff ((A→ B) u (B → A))IP (µ) ≤ 0.5. (1)

Thus, the instance P has no solution iff for every µ ∈ {1, . . . ,m}+ it holds that
((A→ B) u (B → A))IP (µ) ≤ 0.5.

We define now the ontology O′P := (AP , T ′P) where

T ′P := TP ∪ {〈> v ∀ri.(((A→ B) u (B → A))→ H) ≥ 1〉 | 1 ≤ i ≤ m}.

Theorem 3. The instance P of the PCP has a solution iff the ontology O′P is
not witnessed consistent.

Proof. Assume first that P has a solution µ = i1 · · · ik and let u = vµ = wµ and
µ′ = i1i2 · · · ik−1 ∈ {1, . . . ,m}∗. Suppose there is a witnessed model I of O′P .
Since OP ⊆ O′P , I must also be a model of OP . From Lemma 2 it then follows



that there are nodes δ, δ′ ∈ ∆I such that AI(δ) = AIP (µ) = BIP (µ) = BI(δ)
and rIik(δ

′, δ) = 1. Then, ((A→ B) u (B → A))I(δ) = 1 and hence

(((A→ B) u (B → A))→ H)I(δ) = 1⇒ 0.5 = 0.5.

This then means that (∀rik .(((A→ B) u (B → A))→ H))I(δ′) ≤ 0.5, violating
one of the axioms in T ′P . Hence I is cannot be a model of O′P .

For the converse, assume that O′P is not witnessed consistent. Then IP is not
a model of O′P . Since it is a model of OP , there must exist an i, 1 ≤ i ≤ m such
that IP violates the axiom 〈> v ∀ri.(((A→ B) u (B → A))→ H) ≥ 1〉. This
means that there is some µ ∈ {1, . . . ,m}∗ such that

(∀ri.(((A→ B) u (B → A))→ H))IP (µ) < 1.

Since rIPi (µ, µ′) = 0 for all µ′ 6= µi and rIPi (µ, µi) = 1, this implies that (((A→
B) u (B → A)) → H)IP (µi) < 1, i.e. ((A → B) u (B → A))IP (µi) > 0.5.
From (1) it follows that AIP (µi) = BIP (µi) and hence µi is a solution of P. ut

Corollary 4. Witnessed consistency of ∗-ALE ontologies is undecidable.

Notice that in the proofs of Lemma 2 and Theorem 3, the second condition
of the definition of witnessed models was never used. Moreover, the witnessed
interpretation IP is obviously also weakly witnessed. We thus have the following
corollary.

Corollary 5. Weakly witnessed consistency and quasi-witnessed consistency of
∗-ALE ontologies are undecidable.

4 Undecidability w.r.t. Strongly Witnessed Models

Unfortunately, the model IP constructed in the previous section is not a strongly
witnessed model of OP since, for instance, infη∈∆IP (>IP (η) ⇒ AIP (η)) = 0,
but there is no δ ∈ ∆IP with AIP (δ) = 0. Thus, the construction of OP does
not yield an undecidability result for strongly witnessed consistency in ∗-ALE .

Thus, we need a new reduction that proves undecidability of strongly wit-
nessed consistency. This reduction will follow a similar idea to the one used in the
previous section, in which models describe a search for a solution of the PCP P.
However, rather than building the whole search tree, models will describe only
individual branches of this tree. The condition (wit3) will be used to ensure
that at some point in this branch a solution is found.

Before describing the reduction in detail, we recall a property of t-norms.
From a t-norm ⊗ and residuum⇒, one can express the minimum and maximum
operators as follows [9]:

– min(α, β) = α⊗ (α⇒ β),
– max(α, β) = min(((α⇒ β)⇒ β), ((β ⇒ α)⇒ α)).



We can thus introduce w.l.o.g. the ∗-ALE concept constructor max with the
obvious semantics. We will use this constructor to simulate the non-deterministic
choices in the search tree as described next.

Given an instance P = ((v1, w1), . . . , (vm, wm)) of the PCP, we define the
ABox A0

P and the TBox T 0
P as in the previous section, and for every i, 1 ≤ i ≤ m

we construct the TBox

T siP := {〈Ci v ∃ri.> ≥ 1〉 , 〈Vi uA(s+1)|vi| ri A〉, 〈Wi uB(s+1)|wi| ri B〉}.

The only difference between the TBoxes T iP and T siP is in the first axiom. In-
tuitively, the concept names Ci encode the choice of the branch in the tree to
be expanded. If CIi (δ) = 1, there will be an ri successor with degree 1, and the
i-th branch of the tree will be explored. For this intuition to work, we need to
ensure that at least one of the Cis is interpreted as 1 in every node. On the other
hand, we can stop expanding the tree once a solution has been found. Using this
intuition, we define the ontology OsP := (AsP , T sP) where

AsP := A0
P ∪ {a : max(C1, . . . , Cm) = 1},

T sP := T 0
P ∪

m⋃
i=1

T siP ∪ {〈(A uB)→ ⊥ v ⊥ ≥ 1〉} ∪

{〈> v ∀ri.max((A→ B) u (B → A), C1, . . . , Cm) ≥ 1〉 | 1 ≤ i ≤ m}.

Theorem 6. The instance P of the PCP has a solution iff the ontology OsP is
strongly witnessed consistent.

Proof. Let ν = i1i2 · · · ik be a solution of P and let pre(ν) denote the set of all
prefixes of ν. We build the finite interpretation IsP as follows:

– ∆I
s
P := pre(ν),

– aI
s
P = ε,

for all µ ∈ ∆IsP ,

– AI
s
P (µ) = 2−vµ , BI

s
P (µ) = 2−wµ ,

and for all j, 1 ≤ j ≤ m

– V
IsP
j (µ) = 2−vj , W

IsP
j (µ) = 2−wj ,

– C
IsP
j (µ) = 1 if µj ∈ pre(ν) and CI

s
P
j (µ) = 0 otherwise, and

– r
IsP
j (µ, µj) = 1 if µj ∈ pre(ν) and rI

s
P
j (µ, µ′) = 0 if µ′ ∈ pre(ν) and µ′ 6= µj.

We show now that IsP is a model of OsP . Since IsP is finite, it follows imme-
diately that it is also strongly witnessed. Clearly IsP satisfies all axioms in
A0
P ; additionally, we have that CI

s
P
i1

(ε) = 1 and thus, IsP satisfies AsP . The
axiom 〈(A uB)→ ⊥ v ⊥ ≥ 1〉 expresses that (A u B)I

s
P (µ) ⇒ 0 = 0, and

hence (A u B)I
s
P (µ) > 0 for all µ ∈ pre(ν), which clearly holds. We now

show that the rest of the axioms are also satisfied for every µ ∈ pre(ν). Let



µ ∈ pre(ν) \ {ν}. Then we know that there exists i, 1 ≤ i ≤ m such that
C
IsP
i (µ) = 1 and rI

s
P
i (µ, µi) = 1; thus IsP satisfies the axioms in T siP . Moreover,

C
IsP
j (µ) = 0 = r

IsP
j (µ, µ′) for all j 6= i and all µ′ ∈ pre(ν) which means that IsP

trivially satisfies all axioms in T sjP .
If µi = ν, then as ν is a solution ((A→ B)u (B → A))I

s
P (µi) = 1; otherwise,

there is a j, 1 ≤ j ≤ m with µij ∈ pre(ν) and thus CI
s
P
j (µi) = 1. This means

that IsP satisfies the last axioms in T sP . Finally, if µ = ν, then rI
s
P
i (µ, µ′) = 0 and

Ci(µ) = 0, for all µ′ ∈ pre(ν), 1 ≤ i ≤ m, and thus the axioms are all trivially
satisfied.

For the converse, let I be a strongly witnessed model of OsP . Then, there must
be an element δ0 ∈ ∆I with aI = δ0. Since I must satisfy all axioms in AsP ,
there is an i1, 1 ≤ i1 ≤ m such that CIi1(δ0) = 1. Since it must satisfy the axioms
in T si1P , there must exist a δ1 ∈ ∆I with rIi1(δ0, δ1) = 1, AI(δ1) = 2−vi1 , and
BI(δ1) = 2−wi1 . If AI(δ1) = BI(δ1), then i1 is a solution of P. Otherwise, from
the last set of axioms in T sP , there must exist an i2, 1 ≤ i2 ≤ m with CIi2(δ1) = 1.
We can then iterate this same process to generate a sequence i3, i4, . . . of indices
and δ2, δ3, . . . ∈ ∆I where AI(δk) = 2−vi1 ···vik , and BI(δk) = 2−wi1 ···wik .

If there is some k such that AI(δk) = BI(δk), then i1 · · · ik is a solution
of P. Assume now that no such k exists. We then have an infinite sequence
of indices i1, i2, . . . and since for every i, 1 ≤ i ≤ m either vi 6= 0 or wi 6= 0,
then at least one of the sequences vi1 · · · vik , wi1 · · ·wik diverges. Thus, for every
natural number n there is a k such that either vi1 · · · vik > n or wi1 · · ·wik > n;
equivalently, (A uB)I(δk) < 1/n. This implies that

inf
η∈∆I

(>I(η)⇒ (A uB)I(η)) = 0

and since I is strongly witnessed, there must exist a γ ∈ ∆I with

0 = >I(γ)⇒ (A uB)I(γ) = (A uB)I(γ).

But from this it follows that ((A u B) → ⊥)I(γ) ⇒ 0 = 0, contradicting the
axiom 〈(A uB)→ ⊥ v ⊥ ≥ 1〉 of T sP . Thus, P has a solution. ut

Notice that, if P has no solution, then OsP still has witnessed models, but
no strongly witnessed models. It is also relevant to point out that OsP has a
strongly witnessed model iff it has a finite model. In fact, the condition of strongly
witnessed was only used for ensuring finiteness of the model, and hence, that a
solution is indeed found.

Corollary 7. For ∗-ALE ontologies, strongly witnessed consistency and consis-
tency w.r.t. finite models are undecidable.

5 Conclusions

We have shown that consistency of ∗-ALE ontologies w.r.t. a wide variety of
models, ranging from finite models to weakly witnessed models, is undecidable if



the product t-norm semantics are used. Whether consistency in general, that is,
without restricting the class of interpretations used, is also undecidable is still
an open problem. In [11] it was shown that, if only crisp axioms are used, then
consistency is equivalent to quasi-witnessed consistency. However, it is unclear
how to extend this result to the fuzzy axioms used in this paper.

As future work we plan to study whether these undecidability results still hold
if the disjunction and negation constructors are used in place of the implication
considered in this paper. Additionally, we will study the decidability status of
these logics if different t-norms are chosen for the semantics.
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