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Most of the research on temporalized Description Logics (DLs) has concentrated on the case where
temporal operators can be applied to concepts, and sometimes additionally to TBox axioms and

ABox assertions. The aim of this paper is to study temporalized DLs where temporal operators

on TBox axioms and ABox assertions are available, but temporal operators on concepts are
not. While the main application of existing temporalized DLs is the representation of conceptual

models that explicitly incorporate temporal aspects, the family of DLs studied in this paper
addresses applications that focus on the temporal evolution of data and of ontologies. Our results

show that disallowing temporal operators on concepts can significantly decrease the complexity

of reasoning. In particular, reasoning with rigid roles (whose interpretation does not change over
time) is typically undecidable without such a syntactic restriction, whereas our logics are decidable

in elementary time even in the presence of rigid roles. We analyze the effects on computational

complexity of dropping rigid roles, dropping rigid concepts, replacing temporal TBoxes with global
ones, and restricting the set of available temporal operators. In this way, we obtain a novel family

of temporalized DLs whose complexity ranges from 2-ExpTime-complete via NExpTime-complete

to ExpTime-complete.

Categories and Subject Descriptors: I.2.4 [Artificial Intelligence]: Knowledge Representation

Formalisms and Methods; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical

Logic

General Terms: Knowledge Representation, Complexity

Additional Key Words and Phrases: Description Logics, Temporal Extensions

1. INTRODUCTION

Description logics (DLs) [Baader et al. 2003] are a family of logic-based knowledge
representation formalisms, which are employed in various application domains, such
as natural language processing, configuration, databases, and bio-medical ontolo-
gies, but their most notable success so far is the adoption of the DL-based language
OWL [Horrocks et al. 2003] as the standard ontology language for the web. In many
applications of DLs, such as the use of DLs as ontology languages or conceptual
modeling languages, being able to represent dynamic aspects of the application do-
main would be quite useful. This is, for instance, the case if one wants to use DLs as
conceptual modeling languages for temporal databases as proposed in [Artale et al.
2002]. In this area, dynamics is introduced via evolution constraints such as “every
ordered item will eventually be a shipped item.” Another example are medical on-
tologies, where the faithful representation of concepts often requires the description
of temporal patterns. As a simple example, consider the concept “Concussion with
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no loss of consciousness,” which is modeled as a primitive (i.e., not further defined)
concept in the well-known medical ontology SNOMED CT.1 As argued in [Schulz
et al. 2006], a correct representation of this concept should actually say that, after
the concussion, the patient remained conscious until the examination.

Since the expressiveness of pure DLs is not sufficient to describe such temporal
patterns, a multitude of temporal extensions of DLs have been investigated in the
literature.2 These include approaches as diverse as the combination of DLs with
Halpern and Shoham’s logic of time intervals [Schmiedel 1990], formalisms inspired
by action logics [Artale and Franconi 1998], the treatment of time points and inter-
vals as a concrete domains [Lutz 2001], and the combination of standard DLs with
standard (propositional) temporal logics into logics with a two-dimensional seman-
tics, where one dimension is for time and the other for the DL domain [Schild 1993;
Wolter and Zakharyaschev 1999; Gabbay et al. 2003]. In this paper, we follow the
last approach, where we use the basic DL ALC [Schmidt-Schauß and Smolka 1991]
in the DL component and linear temporal logic (LTL) [Pnueli 1977] (sometimes
also called propositional temporal logic (PTL) [Gabbay et al. 2003]) in the tempo-
ral component. However, even after the DL and the temporal logic to be combined
have been fixed, there remain several degrees of freedom when defining the resulting
temporalized DL.

On the one hand, one must decide to which pieces of syntax temporal opera-
tors can be applied. Temporal operators may be allowed to occur within concept
descriptions, as required by the above example of a concussion with no loss of
consciousness, which could be defined using the until-operator U of LTL as follows:

∃finding.Concussion u Conscious U∃procedure.Examination. (1)

Alternatively or in addition, temporal operators may be applied to TBox axioms
(i.e., general concept inclusions, GCIs) and/or to ABox assertions. For example,
the temporalized TBox axiom

32(UScitizen v ∃insured by.HealthInsurer)

says that there is a future time point from which on US citizens will always have
health insurance, and the formula ψ:

3
(
(BOB : ∃finding.Concussion) ∧ (2)

(BOB : Conscious)U(BOB : ∃procedure.Examination)
)

says that, sometime in the future, Bob will have a concussion with no loss of
consciousness between the concussion and the examination.

On the other hand, one must decide whether one wants to have rigid concepts
and/or roles, i.e., concepts/roles whose interpretation does not vary over time. For
example, the concept Human and roles such as has bloodtype and has genedefect
should probably be rigid since a human being will stay a human being and have
the same blood type and gene defects over his/her life-time, whereas the concept

1This ontology underlies the standardized medical terminology used in the health-care systems of

various countries such as Australia, USA, and UK; see http://www.ihtsdo.org/our-standards/
2For a more thorough survey of the literature on temporalized DLs, see the survey papers [Artale

and Franconi 2000; 2001; Lutz et al. 2008].

ACM Transactions on Computational Logic, Vol. 13, No. 3, August 2012.



LTL over Description Logic Axioms · 3

LTL operators LTL operators Rigid roles

on concepts on TBox/ABox axioms

X ExpTime-complete [Schild 1993]

X X ExpSpace-complete [Gabbay et al. 2003]

X X undecidable [Gabbay et al. 2003]

Table I. Some known complexity results for combinations of ALC and LTL

Conscious should be flexible (i.e., not rigid) since someone who is conscious at the
moment need not always by conscious. Similarly, insured by should be modeled as a
flexible role. Using a logic that cannot enforce rigidity of concepts/roles may result
in unintended models, and thus prevent certain useful inferences to be drawn. For
example, the concept description ∃has bloodtype.ABu3 (∀has bloodtype.A) is only
unsatisfiable w.r.t. the TBox AB v ¬A if both has bloodtype and (at least one of)
AB and A are rigid.

Related work. The combination of ALC with LTL was first considered by Schild
[Schild 1993] and, since then, has developed into a lively research area recently
surveyed in [Lutz et al. 2008]. In the temporalized DL proposed by Schild, temporal
operators can be applied to concept descriptions, but not to TBox axioms (and
ABoxes are not considered at all). Rigid concepts are definable in this logic, but
rigid roles are not. Schild observes that his logic behaves similarly to the so-
called fusion of ALC and LTL,3 which shows that the interaction between the
ALC component and the LTL component is limited. This observation forms the
basis for Schild’s proof that reasoning in his logic is ExpTime-complete.

The combination of (extensions of) ALC and LTL in which temporal operators
are applied to concept descriptions, TBox axioms, and ABox assertions has been
studied by Wolter, Zakharyaschev, and others (see, e.g., [Wolter and Zakharyaschev
1999; Gabbay et al. 2003]). In this more general setting, the interaction between
the DL component and LTL is stronger, and reasoning is ExpSpace-complete. As
in Schild’s logic, rigid concepts can be defined, but rigid roles cannot. In fact, as
shown in [Gabbay et al. 2003], the addition of rigid roles causes undecidability.
This already holds for concept satisfiability w.r.t. a global TBox (i.e., where the
same TBox axioms must hold at all time points), without ABoxes, and with only
a single rigid role. Decidability can be regained by dropping TBoxes altogether,
but the decision problem is still hard for non-elementary time [Gabbay et al. 2003].
The most relevant results mentioned up to here are summarized in Table I.

Decidable combinations of DLs and temporal logics that allow for rigid roles can
be obtained by strongly restricting either the temporal or the DL component. In
[Artale et al. 2007], temporal operators can be applied to concept descriptions,
TBoxes are global, and there are no ABoxes. The reason for decidability (more
precisely, 2-ExpTime-completeness) also in the presence of rigid roles is that the
only available temporal operators are an undirected diamond that says “at some
time point” and an undirected box that says “at all time points.” Here, undirected

3Note, however, that Schild’s proof of this fact is incorrect; a correct proof can be found in [Lutz

et al. 2008].
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means that these operators cannot discriminate between the past, the future, and
the current time point. The restriction imposed in [Artale et al. 2007] is different:
the temporal component is LTL, but ALC is replaced with the lightweight DL
DL-Litebool. Temporal operators can be applied to concept descriptions, TBoxes,
and ABoxes. Here, it is the weak expressive power of the DL component that is
responsible for decidability (more precisely, ExpSpace-completeness) of reasoning
also in the presence of rigid roles. In [Artale et al. 2009], the expressive power
is restricted further by (i) admitting only global TBoxes and (ii) restricting LTL
to the operators 3 and 2, with the consequence that the complexity of reasoning
drops to NP-complete even in the presence of rigid roles. In [Artale et al. 2007],
it is shown that concept subsumption w.r.t. global TBoxes and with rigid roles is
undecidable already in the lightweight description logic EL, which provides only for
the constructors conjunction and existential restriction.

Our contribution. In this paper, we study combinations of ALC with LTL in
which temporal operators are allowed to occur only in front of axioms (i.e., ABox
assertions and TBox axioms), but not as concept constructors. We show that rea-
soning becomes simpler in this setting: with rigid roles, satisfiability is decidable
(more precisely: 2-ExpTime-complete); without rigid roles (but with rigid con-
cepts), the complexity decreases to NExpTime-complete; and without any rigid
symbols, it decreases further to ExpTime-complete (i.e., the same complexity as
reasoning in ALC alone). We also consider two other ways of decreasing the com-
plexity of satisfiability to ExpTime. On the one hand, satisfiability without rigid
roles (but with rigid concepts) becomes ExpTime-complete if GCIs can occur only
as global axioms that must hold in every temporal world. Note that, in this case,
ABox assertions are not assumed to be global, i.e., the valid ABox assertions may
vary over time. On the other hand, satisfiability with rigid concepts and roles be-
comes ExpTime-complete if the temporal component is restricted appropriately by
replacing the temporal operators until (U) and next (X) of LTL with diamond (3),
which says “sometime in the future.”

The situation we concentrate on in this paper (i.e., where temporal operators
are allowed to occur only in front of axioms) has been considered before only for
the case where there are no rigid concepts or roles. The combination approach
introduced in [Finger and Gabbay 1992] yields a decision procedure for this case,
whose worst-case complexity is, however, non-optimal. Our ExpTime upper bound
for this case actually also follows from more general results in [Gabbay et al. 2003]
(see the remark following Theorem 14.15 on page 605). However, also in [Gabbay
et al. 2003], the setting where temporal operators are allowed to occur only in front
of axioms is considered only in the absence of rigid symbols.

Obviously, the temporalized DLs we investigate in this paper cannot be used to
define temporal concepts such as (1) for concussion with no loss of consciousness.
However, they are very useful in applications that focus on the temporal evolution
of data (stored in an ABox) or ontologies (represented by a TBox). As a concrete
example, consider an emergency ward where the vital parameters of a patient are
monitored in short intervals (not longer than 10 minutes), interpreted qualitatively,
and then stored in an ABox. Additional information is manually added by doc-
tors and nurses, and imported from historic patient records for the hospitalized
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patient. All medical information in the ABox is represented using concepts defined
in the medical ontology SNOMED CT; note that this is a realistic assumption as
SNOMED CT codes are adopted by standard formats for patient records such as
CDA (the Clinical Document Architecture).4 The sequence of ABoxes obtained
in this way can be captured by a single temporal ABox in the temporalized DLs
defined in this paper. Critical situations, which require the intervention of a doctor
and should thus result in an alarm being raised, can then be described by a formula
in our temporalized DL, and recognized using the reasoning procedures developed
in this paper. For example, given a formula φ encoding a sequence of ABoxes that
describe the medical status of Bob, starting at some time point t0, and the formula
ψ defined in (2), we can check whether Bob sometime after t0 had a concussion
with no loss of consciousness by testing φ ∧ ¬ψ for unsatisfiability. This concrete
application and the general ideas behind it are further developed in [Baader et al.
2009]. In particular, the authors develop an approach to runtime verification in the
temporalized DLs defined in this paper.

The paper is organized as follows. In Section 2, we introduce ALC-LTL, TBoxes,
ABoxes, and related notions. We define the different versions of the satisfiability
problem studied in this paper in Section 3. In the subsequent sections, we analyze
the complexity of reasoning with rigid roles and concepts (Section 4), without any
rigid symbols (Section 5), and with only rigid concepts (Section 6). The reason
for this order of Sections 5 and Section 6 is that the upper bound established
in Section 5 can be seen as a warmup exercise for the upper bound proved in
Section 6. We then move on to restricting the available temporal operators to 3

and 2 in Section 7. Finally, we briefly summarize the paper and discuss some
potential future research issues in Section 8. This paper is an extended version of
the conference paper [Baader et al. 2008].

2. BASIC DEFINITIONS

The temporalized DL ALC-LTL introduced in this paper combines the basic DL
ALC [Schmidt-Schauß and Smolka 1991] with linear temporal logic (LTL) [Pnueli
1977]. We start by recalling the relevant definitions for ALC.

Definition 2.1. Let NC , NR, and NI respectively be disjoint sets of concept
names, role names, and individual names. The set of ALC-concept descriptions is
the smallest set such that

—all concept names are ALC-concept descriptions;

—if C and D are ALC-concept descriptions, then so are ¬C, C tD, and C uD;

—if C is an ALC-concept description and r ∈ NR, then ∃r.C and ∀r.C are ALC-
concept descriptions.

A general concept inclusion axiom (GCI) is of the form C v D, where C,D are
ALC-concept descriptions, and an assertion is of the form a : C or (a, b) : r where C
is an ALC-concept description, r is a role name, and a, b are individual names. We
call both GCIs and assertions ALC-axioms. A Boolean combination of ALC-axioms
is called a Boolean ALC-knowledge base, i.e.,

4http://www.hl7.org/implement/standards/cda.cfm
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—every ALC-axiom is a Boolean ALC-knowledge base;

—if B1 and B2 are Boolean ALC-knowledge bases, then so are B1 ∧ B2, B1 ∨ B2,
and ¬B1.

An ALC-TBox is a conjunction of GCIs, and an ALC-ABox is a conjunction of
assertions.

According to this definition, TBoxes and ABoxes are special kinds of Boolean knowl-
edge bases. However, note that they are often written as sets of axioms rather than
as conjunctions of these axioms.

The semantics of ALC is defined through the notion of an interpretation.

Definition 2.2. An interpretation is a pair I = (∆I , ·I) where the domain ∆I

is a non-empty set, and ·I is a function that assigns to every concept name A a
set AI ⊆ ∆I , to every role name r a binary relation rI ⊆ ∆I ×∆I , and to every
individual name a an element aI ∈ ∆I . This function is extended to ALC-concept
descriptions as follows:

—(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI ;

—(∃r.C)I = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI};
—(∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I , (x, y) ∈ rI implies y ∈ CI}.

The interpretation I is a model of the ALC-axioms C v D, a : C, and (a, b) : r
iff it respectively satisfies CI ⊆ DI , aI ∈ CI , and (aI , bI) ∈ rI . The notion of a
model is extended to Boolean ALC-knowledge bases as follows:

—I is a model of B1 ∧ B2 iff it is a model of both B1 and B2;

—I is a model of B1 ∨ B2 iff it is a model of B1 or of B2;

—I is a model of ¬B1 iff it is not a model of B1.

We say that the Boolean ALC-knowledge base B is consistent iff it has a model.
The concept description C is satisfiable w.r.t. the GCI D1 v D2 iff there is a model
I of D1 v D2 with CI 6= ∅.

As usual, we will use > as an abbreviation for A t ¬A, i.e., > denotes the top
concept, which is always interpreted as the whole interpretation domain.

For LTL, we use the variant with a non-strict until (U) and a next (X) operator.
Instead of first introducing the propositional temporal logic LTL, we directly define
our new temporalized DL, called ALC-LTL. The difference between ALC-LTL and
LTL is that ALC-axioms replace propositional letters.

Definition 2.3. ALC-LTL formulae are defined by induction:

—if α is an ALC-axiom, then α is an ALC-LTL formula;

—if φ, ψ are ALC-LTL formulae, then so are φ ∧ ψ, φ ∨ ψ, ¬φ, φUψ, and Xφ.

As usual, we use true as an abbreviation for A(a)∨¬A(a), 3φ as an abbreviation
for trueUφ (diamond, which should be read as “sometime in the future”), and 2φ
as an abbreviation for ¬3¬φ (box, which should be read as “always in the future”).

The semantics of ALC-LTL is based on ALC-LTL structures, which are sequences
of ALC-interpretations over the same non-empty domain ∆. Assuming the same
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domain for every time point is usually called the constant domain assumption.
Other possible choices include expanding domains, decreasing domains, and varying
domains [Gabbay et al. 2003]. In contrast to temporalized DLs that allow the
application of temporal operators to concepts, there does not appear to be an easy
way to simulate these other choices by constant domains in ALC-LTL. However,
constant domains are usually considered the most natural choice. It is outside the
scope of this paper to investigate the other choices (see also Section 8, where this
is discussed as possible future work).

We also assume that every individual name stands for a unique element of ∆, i.e.,
the interpretation of individual names does not change over time (rigid individual
names). This is a standard assumption in temporalized DLs [Gabbay et al. 2003].
As usual in DLs, we also make the unique name assumption (UNA), i.e., different
individual names are interpreted by different elements of ∆.

Definition 2.4. An ALC-LTL structure is a sequence I = (Ii)i=0,1,... of ALC-
interpretations Ii = (∆, ·Ii) obeying the UNA (called worlds) such that aIi = aIj

for all individual names a and all i, j ∈ {0, 1, 2, . . .}. Given an ALC-LTL formula
φ, an ALC-LTL structure I = (Ii)i=0,1,..., and a time point i ∈ {0, 1, 2, . . .}, validity
of φ in I at time i (written I, i |= φ) is defined inductively:

I, i |= C v D iff CIi ⊆ DIi
I, i |= a : C iff aIi ∈ CIi
I, i |= (a, b) : r iff (aIi , bIi) ∈ rIi
I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= φ ∨ ψ iff I, i |= φ or I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= Xφ iff I, i+ 1 |= φ
I, i |= φUψ iff there is k ≥ i such that I, k |= ψ and

I, j |= φ for all j, i ≤ j < k

As mentioned above, for some concepts and roles, it is not desirable that their
interpretation changes over time. Thus, we will sometimes assume that a subset of
the set of concept and role names can be designated as being rigid. We will call
the elements of this subset rigid concept names and rigid role names. Concept and
role names that do not belong to this subset will be called flexible.

Definition 2.5. We say that the ALC-LTL structure I = (Ii)i=0,1,... respects
rigid concept names (role names) iff AIi = AIj (rIi = rIj ) holds for all i, j ∈
{0, 1, 2, . . .} and all rigid concept names A (rigid role names r).

3. THE SATISFIABILITY PROBLEM IN ALC-LTL

Depending on whether rigid concept and role names are considered or not, we
obtain different variants of the satisfiability problem.

Definition 3.1. Let φ be an ALC-LTL formula and assume that a subset of the
set of concept and role names has been designated as being rigid.

—We say that φ is satisfiable w.r.t. rigid names iff there is an ALC-LTL structure
I respecting rigid concept and role names such that I, 0 |= φ.
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—We say that φ is satisfiable w.r.t. rigid concepts iff there is an ALC-LTL structure
I respecting rigid concept names such that I, 0 |= φ.

—We say that φ is satisfiable without rigid names (or simply satisfiable) iff there
is an ALC-LTL structure I such that I, 0 |= φ.

In this article, we show that the complexity of the satisfiability problem for ALC-
LTL strongly depends on which of the above cases one considers. Note that it does
not really make sense to consider satisfiability w.r.t. rigid role names, but without
rigid concept names, as a separate case when investigating the complexity of the
satisfiability problem. In fact, rigid concepts can be simulated by rigid roles: just
introduce a new rigid role name rA for each rigid concept name A, and then replace
A by ∃rA.>.

Another dimension that influences the complexity of the satisfiability problem is
whether GCIs occur globally or locally in the formula. Intuitively, a GCI occurs
globally if it must hold in every world of the ALC-LTL structure.

Definition 3.2. We say that φ is an ALC-LTL formula with global GCIs iff it
is of the form φ = 2B∧ξ where B is a conjunction of ALC-axioms and ξ is an ALC-
LTL formula that does not contain GCIs. We denote the fragment of ALC-LTL
that contains only ALC-LTL formulae with global GCIs by ALC-LTL|gGCI.

In the above definition, saying that B is a conjunction of ALC-axioms just means
that B is a TBox together with an ABox. Equivalently, we could have restricted
B to being a conjunction of GCIs (i.e., a TBox) since assertions α in B could be
moved as conjuncts 2α to ξ.5 However, it turns out to be more convenient to allow
also ABox assertions to occur in the “global part” 2B of φ.

Note that, semantically, 2B does not express the condition that B is true at
every time point because 2 is directed towards the future. However, we are studying
satisfiability questions, and satisfiability in time point 0 is equivalent to satisfiability
in any time point: due to the lack of past temporal operators, it is always possible
to drop the time points that precede the point satisfying the formula. For this
reason, using 2B is sufficient to assert that B holds globally.

Instead of restricting to ALC-LTL formulae with global GCIs, we can also restrict
the temporal component, by considering the fragment ALC-LTL|3 of ALC-LTL
in which 3 is the only temporal operator. In this fragment, neither U nor X is
definable.

Definition 3.3. ALC-LTL|3 formulae are defined by induction:

—if α is an ALC-axiom, then α is an ALC-LTL|3 formula;

—if φ, ψ are ALC-LTL|3 formulae, then so are φ ∧ ψ, φ ∨ ψ, ¬φ, and 3φ.

The semantics of ALC-LTL|3 formulae is defined as in the case of ALC-LTL. In
particular, the interpretation of the diamond operator is defined as

I, i |= 3φ iff there is k ≥ i such that I, k |= φ.

Table II summarizes the results of our investigation of the complexity of the sat-
isfiability problem in ALC-LTL and its fragments. This table shows that the com-

5This is the reason why we talk about ALC-LTL formulae with global GCIs in this case, rather

than about ALC-LTL formulae with global axioms.
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W.r.t. rigid names W.r.t. rigid concepts Without rigid names

ALC-LTL 2-ExpTime-complete NExpTime-complete ExpTime-complete

ALC-LTL|gGCI 2-ExpTime-complete ExpTime-complete ExpTime-complete

ALC-LTL|3 ExpTime-complete ExpTime-complete ExpTime-complete

Table II. Complexity of the satisfiability problem in ALC-LTL and its fragments.

plexity of the satisfiability problem in ALC-LTL increases from ExpTime (which
is also the complexity of the satisfiability problem in ALC) to NExpTime if rigid
concept names are available. The additional presence of rigid role names further
increases the complexity to 2-ExpTime. The restriction to ALC-LTL|gGCI (i.e.,
global GCIs) has no effect on the complexity in the presence of rigid role names.
However, it decreases the complexity to ExpTime if only rigid concept names are
available. In ALC-LTL|3, the satisfiability problem is only ExpTime-complete
even w.r.t. rigid names.

4. REASONING WITH RIGID NAMES

In this section, we investigate the complexity of the satisfiability problem in ALC-
LTL and its fragment ALC-LTL|gGCI if rigid concept and role names are available.

Theorem 4.1. Satisfiability w.r.t. rigid names is 2-ExpTime-complete both in
ALC-LTL and in ALC-LTL|gGCI.

4.1 The complexity lower bound

2-ExpTime-hardness for satisfiability w.r.t. rigid names and with global GCIs (i.e.,
in ALC-LTL|gGCI) can be shown by a (quite intricate) reduction of the word prob-
lem for exponentially space-bounded alternating Turing machines. Obviously, this
also yields 2-ExpTime-hardness for the more general case with arbitrary GCIs (i.e.,
in ALC-LTL).

Lemma 4.2. The satisfiability problem in ALC-LTL|gGCI w.r.t. rigid names is
2-ExpTime-hard.

Proof. The proof is by reduction of the word problem for exponentially space-
bounded alternating Turing machines (ATMs). An ATM is of the form M =
(Q,Σ,Γ, q0, Θ), where Q = Q∃ ] Q∀ ] {qa, qr} is a finite set of states, partitioned
into existential states from Q∃, universal states from Q∀, an accepting state qa,
and a rejecting state qr; Σ is the input alphabet and Γ ⊇ Σ the work alphabet
containing a blank symbol B /∈ Σ; q0 ∈ Q∃ ∪ Q∀ is the initial state; and the
transition relation Θ is of the form Θ ⊆ Q×Γ×Q×Γ×{L,R}. We write Θ(q, a)
for {(q′, b,M) | (q, a, q′, b,M) ∈ Θ}.

A configuration of an ATM is a word uqu′ with u, u′ ∈ Γ∗ and q ∈ Q. The
intended meaning is that the (one-sided infinite) tape contains the word uu′ with
only blanks behind it, the machine is in state q, and the head is on the left-most
symbol of u′. The successor configurations of a configuration uqu′ are defined in the
usual way (i.e., as with normal, non-alternating Turing machines) in terms of the
transition relation Θ [Chandra et al. 1981]. A halting configuration is of the form
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uqu′ with q ∈ {qa, qr}. We may assume w.l.o.g. that any configuration other than a
halting configuration has at least one successor configuration. A computation of an
ATM M on a word w is a (finite or infinite) sequence of successive configurations
K1,K2, . . . , where K1 = q0w is the initial configuration for the input w. For the
ATMs considered here, we may assume without loss of generality that they have
only finite computations on any input. Since this case is simpler than the general
one, we define acceptance for ATMs with finite computations and refer to [Chandra
et al. 1981] for the full definition. LetM be such an ATM. A halting configuration
is accepting iff it is of the form uqau

′. For other configurations K = uqu′, the
acceptance behavior depends on q: if q ∈ Q∃, then K is accepting iff at least one
successor configuration is accepting; if q ∈ Q∀, then K is accepting iff all successor
configurations are accepting. Finally, the ATM M with initial state q0 accepts the
input w iff the initial configuration q0w is accepting. We use L(M) to denote the
language accepted by M, i.e.,

L(M) = {w ∈ Σ∗ | M accepts w}.

The word problem for M is the following decision problem: given a word w ∈ Σ∗,
does w ∈ L(M) hold or not?

There exists an exponentially space-bounded ATM M = (Q,Σ,Γ, q0,Θ) with
finite computations only whose word problem is 2-ExpTime-hard [Chandra et al.
1981]. Our aim is to reduce the word problem for this ATM M to satisfiability in
ALC-LTL w.r.t. rigid names. We may assume that the length of every computation

of M on w ∈ Σk is bounded by 22k , and all the configurations uqu′ in such com-
putations satisfy |uu′| ≤ 2k. We may also assume w.l.o.g. that M never attempts
to move to the left when it is on the left-most tape cell.

Let w = σ0 · · ·σk−1 ∈ Σ∗ be an input to M. In the following, we construct an
ALC-LTL|gGCI formula φM,w such that w ∈ L(M) iff φM,w is satisfiable w.r.t.
rigid names. The formula φM,w, that will be defined below is actually not of the
syntactic form 2B ∧ ξ (where B is a conjunction of ALC-axioms and ξ is an ALC-
LTL formula that does not contain GCIs) required for ALC-LTL formulae with
global GCIs. Instead, φM,w is a conjunction of formulae of the form

—2α where α is an ALC-axiom,

—ψ where ψ is an ALC-LTL formula not containing GCIs.

Since 2 distributes over conjunction, it is obvious that such a formula is equivalent
to an ALC-LTL formula with global GCIs.

In an ALC-LTL structure satisfying φM,w, an accepting computation of M is
encoded as a tree. The root of the tree is identified by an individual name a and
its edges are represented using a single rigid role r; thus, we can find the same tree
in every world of the structure. Each node in the tree corresponds to a single tape
cell of a configuration ofM. Going to an r-successor of such a node either leads to
the subsequent tape cell of the same configuration (if the current cell was not the
right-most one) or to the left-most cell of a successor configuration (otherwise).

Note that configurations are of length 2k, and thus each configuration is repre-
sented as a sequence of 2k nodes in the tree. Since the length of each computation

is bounded by 22k , the depth of the tree is thus bounded by 22k · 2k, the maximum
number of successive configurations multiplied by their length.
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Branching occurs whenever the Turing machine is in a universal configuration,
i.e., a configuration where the state is a universal one: then, we need to examine
(and thus represent) all successor configurations instead of just a single one. The
actual branching does not occur at the end of the universal configuration, but at
the tape cell where the head is located in that configuration. The representation of
the remaining part of the configuration (tape content after the head) is then copied
in every branch.

To realize this intuition in the formal definition of φM,w, we will use the following
symbols to represent the tree:

—a single individual name a identifies the root of the tree;

—a single rigid role name r represents the edges of the tree;

—the elements of Q and Γ are viewed as rigid concept names and used to represent
the tape content, the current state, and the head position in each configuration
in the tree; more precisely, ifM is in state q and the head is on the i-th tape cell,
then the concept name q is true at the node that represents this cell; similarly,
if σ is the symbol in the i-th tape cell, then the concept name σ is true at the
node that represents this cell;

—rigid concept names A0, . . . , Ak−1 are the bits of a binary counter that numbers
the tape cells in each configuration;

—rigid concept name I and H are used as markers: I is true for all nodes repre-
senting the initial configuration and H is true for all nodes representing a tape
cell that is located (an arbitrary number of steps) to the right of the head in the
represented configuration;

—rigid concept names Tq,σ,M for all q ∈ Q, σ ∈ Γ, and M ∈ {L,R} also serve as
markers; intuitively, Tq,σ,M is true at a tape cell if, in the represented configura-
tion, the head is on the left neighboring cell and the machine executes transition
(q, σ,M);

The main problem to solve when defining the reduction is the synchronization of
successor configurations, i.e., to ensure that the content of tape cells under the
head changes according to the chosen transition, and that all other cells remain
unchanged. Additionally, we have to exchange and move the concept name from
Q that marks the current state and head position to reflect the new state and
head position. To implement this synchronization, we will use several technical
tricks that make use of the temporal dimension (which is not used otherwise in the
reduction). To this end, we introduce the following additional symbols:

—flexible concept names A′0, . . . , A
′
k−1 realize a counter in the temporal dimension

(instead of along r); this counter is dual to the counter A0, . . . , Ak−1: it has a
different value in different temporal worlds, but within each single world all ele-
ments of the tree agree on the value of the A′-counter; a word where this counter
has value i will be used to synchronize the i-th tape cell of any configuration with
the i-th tape cell of its successor configurations;

—for each element of Q and Γ, a flexible concept name, which is distinguished from
its rigid version by a prime; these concept names will be used to ‘memorize’ the
state or content of a tape cell in the temporal worlds discussed in the previous
item.
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In the following, we use φ → ψ as an abbreviation for ¬φ ∨ ψ, C ⇒ D as an
abbreviation for ¬C tD, and C ⇔ D as an abbreviation for (C ⇒ D) u (D ⇒ C).
The reduction formula φM,w is the conjunction of several formulae. We start with
giving conjuncts that set up some basic elements of the tree structure, without
synchronizing successor configurations:

—there is always an r-successor, except when we meet the head in a halting con-
figuration:6

2 (¬(qa t qr) v ∃r.>)

Clearly, this enforces the existence of an r-chain without branching, and not a
tree (but it also does not disallow branching). For technical reasons, the actual
branching can only be enforced much later in the reduction. We still recommend
to the reader to think of r as the edges in a tree, as sketched above.

—the A-counter realized by A0, . . . , Ak−1 has value 0 at a, and it is incremented
along r, modulo 2k (corresponding to the reset of the counter value to 0 after a
complete configuration):

2 (a : (CA = 0))

2

(
> vu

i<k

(u
j<i

Aj
)
⇒
(
(Ai ⇒ ∀r.¬Ai) u (¬Ai ⇒ ∀r.Ai)

))
2

(
> vu

i<k

(t
j<i
¬Aj

)
⇒
(
(Ai ⇒ ∀r.Ai) u (¬Ai ⇒ ∀r.¬Ai)

))
where (CA = 0) denotes the concept that is true iff the counter A0, . . . , Ak−1

has minimum value, i.e., ¬A0 u . . . u ¬Ak−1; below, we will use similar concepts
(CA = i) for other fixed (but only polynomially many) values i without further
notice;

—I marks the initial configuration, whose first tape cell is represented by the indi-
vidual a:

2 (a : I)

2
(
I u ¬(CA = 2k − 1) v ∀r.I

)
—H marks the tape cells that are to the right of the head (recall that the head

position is indicated by having a concept from Q at this cell):

2

(
(H tt

q∈Q
q) u ¬(CA = 2k − 1) v ∀r.H

)
Now that we have the tree, we can start to enforce conditions that ensure that
the tree actually represents an accepting computation of M on w. Some of these
conditions can easily be formalized using the marker concepts I and H, but without
referring to the temporal dimension:

6In a halting configuration, the tape cells to the right of the head are not represented; in fact, once
a halting state is reached, the tape content is irrelevant, and thus there is no need for representing

these cells.
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—the first configuration (starting at a) is the initial one: M is in the initial state
q0, the head is on the left-most tape cell, and the tape content consists of the
input w = σ0 . . . σk−1 followed by blanks:

2 (a : q0)

2
(
a : ∀ri.σi

)
for i < k

2
(
a : ∀rk.B

)
2
(
I uB u ¬(CA = 2k − 1) v ∀r.B

)
—each tape cell is labelled with exactly one symbol and at most one state:

2

(
> vt

σ∈Γ
(σ u ¬ u

σ′∈Γ\{σ}
¬σ′)

)
2

(
> v u

q,q′∈Q,q 6=q′
¬(q u q′)

)
—there is only one head position per configuration:

2

(
H vu

q∈Q
¬q
)

It remains to synchronize successor configurations, as described above. Note that
this includes implementing the transitions. We start with setting up the A′-counter
based on the concept names A′0, . . . , A

′
k−1, which plays a central role in this part

of the reduction:

—for each possible value i of the counter, there is a temporal world in which the
concept memberships of a regarding the (flexible) concept names A′0, . . . , A

′
k−1

encode this value:

2

(∧
i<k

(∧
j<i a : A′j

)
→
(
(a : A′i → Xa : ¬A′i) ∧ (a : ¬A′i → Xa : A′i)

))
2

(∧
i<k

(∨
j<i a : ¬A′j

)
→
(
(a : A′i → Xa : A′i) ∧ (a : ¬A′i → Xa : ¬A′i)

))
This is basically the same formula as for the A-counter, but the values of the A′-
counter are considered for the fixed initial individual a, and they are incremented
along the temporal dimension. It is not necessary to set the value of the A′-
counter at the initial time point to zero. It will have some value, and since we
count modulo 2k every value between 0 and 2k−1 will be reached by successively
adding 1.

—The value of the A′-counter is preserved along r; thus, in any fixed world all
nodes of the tree agree on the value of the A′-counter (as announced above):

2 (A′i v ∀r.A′i)
2 (¬A′i v ∀r.¬A′i)

Before we can continue describing conjuncts of the reduction formula, we need to
introduce some abbreviations. In the following, we use (CA = CA′) to denote
the concept (A0 ⇔ A′0) u . . . u (Ak−1 ⇔ A′k−1), which states that the value of
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the A-counter coincides with the value of the A′-counter. Accordingly, (CA =
CA′ + 1 mod 2k) expresses the condition that the value of the A-counter is equal
to the value of the A′-counter plus 1 (modulo 2k). This can be expressed by a
recasting of the incrementation concept given already twice above:

(CA = CA′ + 1 mod 2k) := u
i<k

(u
j<i

A′j
)
⇒
(
(A′i ⇒ ¬Ai) u (¬A′i ⇒ Ai)

)
u

u
i<k

(t
j<i
¬A′j

)
⇒
(
(A′i ⇒ Ai) u (¬A′i ⇒ ¬Ai)

)
The concept (CA = CA′ + 2 mod 2k), which expresses the condition that the value
of the A-counter is equal to the value of the A′-counter plus 2 (modulo 2k), can be
defined similarly, using an auxiliary set A′′0 , . . . , A

′′
k−1 of flexible concept names.

We are now ready to describe the final parts of the reduction. All remaining
conditions require us to propagate information (states, tape contents) between some
tape cell and the same cell at the successor configurations, which is done as follows.
Assume we are in the i-th tape cell and want to ensure, say, that the symbol σ
stored in that cell is also stored in the i-th cell of the successor configuration. We
then switch to the world where the A′-counter has value i, i.e., the values of the
A-counter and of the A′-counter have the same value at the current node in that
world. There, we make the flexible concept name σ′ true to memorize σ. We then
follow the role r for 2k steps (still in that world), as this brings us to the i-th
tape cell of the successor configurations. We ensure that we do not ‘forget’ the
memorized information σ′ on the way, i.e., we make σ′ true at each node along
the traveled path. To know when we have reached our destination, we reuse the
A-counter: it suffices to look for the first node along the path where the A-counter
and the A′-counter have the same value again (namely i). At the destination node,
we can then enforce that the rigid concept name σ holds (no need to switch worlds
again since σ is rigid), which is what we wanted to achieve.

More formally, this is implemented using the following formulae:

—symbols not under the head do not change; note that the ‘switching of worlds’ is
not done explicitly; instead, it is implicit in the first GCI:

2

(
σ uu

q∈Q
¬q u (CA = CA′) v ∀r.σ′

)
for all σ ∈ Γ

2 (σ′ u ¬(CA = CA′) v ∀r.σ′) for all σ ∈ Γ

2 (σ′ u (CA = CA′) v σ) for all σ ∈ Γ

—Transitions are implemented in a similar way. It is here where we finally enforce
the branching of the tree. Since there are many possible transitions that an ATM
can make in a given configuration, we explicitly store the chosen one using the
concept names Tp,ν,M . More precisely, this concept name is true at the successor
node of the node where the head is currently located. For an existential state, one
of the possible transitions is chosen; since we cannot enforce the condition that
a node in the tree has only one successor, we ensure instead that all successors
satisfy the same concept name Tp,ν,M . For a universal state, we enforce the
condition that every possible transition is realized in some successor. Since the
concept names Tp,ν,M are true at the successor nodes and since the head may
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move during a transition, we sometimes have to travel 2k − 1 or 2k + 1 steps
instead of 2k steps to reach the intended destination. This is the reason why we
sometimes have to manipulate the counter value when comparing the A-counter
with the A′-counter:

2

(
q u σ v t

(p,ν,M)∈Θ(q,σ)
∀r.Tp,ν,M

)
for all q ∈ Q∃, σ ∈ Σ

2

(
q u σ v u

(p,ν,M)∈Θ(q,σ)
∃r.Tp,ν,M

)
for all q ∈ Q∀, σ ∈ Σ

2
(
Tq,σ,M u (CA = CA′ + 1 mod 2k) v ∀r.σ′

)
for all σ ∈ Γ, q ∈ Q,
M ∈ {L,R}

2 (Tq,σ,R u (CA = CA′) v ∀r.q′) for all σ ∈ Γ, q ∈ Q

2
(
Tq,σ,L u (CA = CA′ + 2 mod 2k) v ∀r.q′

)
for all σ ∈ Γ, q ∈ Q

2 (q′ u ¬(CA = CA′) v ∀r.q′) for all q ∈ Q

2 (q′ u (CA = CA′) v q) for all q ∈ Q

It remains to encode the fact that the input w = σ0 . . . σk−1 is accepted. Since any
computation of M is terminating, and halting configurations (i.e., configurations
with state qa or qr) are the only ones without successor configurations, this can be
done as follows:

—We can express the fact that the initial configuration for input w is accepting by
disallowing the state qr to occur:

2 (> v ¬qr)

This finishes the definition of φM,w, which is the conjunction of the formulae intro-
duced above. It is easy to see that the size of φM,w is polynomial in k. Moreover,
given the intuition provided above, it is a routine task to prove that φM,w is satis-
fiable w.r.t. rigid names iff w ∈ L(M). o

4.2 The complexity upper bound

Here, we show that the complexity lower bound provided by the above lemma is
tight. To be more precise, we prove a 2-ExpTime upper bound for ALC-LTL.
Obviously, this also establishes the same upper bound for the restricted case of
ALC-LTL|gGCI.

Lemma 4.3. Satisfiability in ALC-LTL w.r.t. rigid names is in 2-ExpTime.

Proof. Let φ be an ALC-LTL formula. We build its propositional abstraction φ̂ by
replacing each ALC-axiom by a propositional variable such that there is a 1–1 rela-
tionship between the ALC-axioms α1, . . . , αn occurring in φ and the propositional
variables p1, . . . , pn used for the abstraction. We assume in the following that pi
was used to replace αi (i = 1, . . . , n).
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Consider a set S ⊆ P({p1, . . . , pn}), i.e., a set of subsets of {p1, . . . , pn}. Such a
set induces the following (propositional) LTL formula:

φ̂S := φ̂ ∧2

 ∨
X∈S

∧
p∈X

p ∧
∧
p 6∈X

¬p


If φ is satisfiable in an ALC-LTL structure I = (Ii)i=0,1,..., then there is an S ⊆
P({p1, . . . , pn}) such that φ̂S is satisfiable in a propositional LTL structure. In fact,
for each ALC-interpretation Ii of I, we define the set

Xi := {pj | 1 ≤ j ≤ n and Ii satisfies αj},

and then take S = {Xi | i = 0, 1, . . .}. We say that S is induced by the ALC-LTL
structure I = (Ii)i=0,1,.... The fact that I satisfies φ implies that its propositional

abstraction satisfies φ̂S , where the propositional abstraction Î = (wi)i=0,1,... of I
is defined such that world wi makes variable pj true iff Ii satisfies αj . However,
guessing such a set S ⊆ P({p1, . . . , pn}) and then testing whether the induced

propositional LTL formula φ̂S is satisfiable is not sufficient for checking satisfiability
w.r.t. rigid names of the ALC-LTL formula φ. We must also check whether the
guessed set S can indeed be induced by some ALC-LTL structure that respects the
rigid concept and role names.

To this end, assume that a set S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) is given.
For every i, 1 ≤ i ≤ k, and every flexible concept name A (flexible role name r)
occurring in α1, . . . , αn, we introduce a copy A(i) (r(i)). We call A(i) (r(i)) the

ith copy of A (r). The ALC-axiom α
(i)
j is obtained from αj by replacing every

occurrence of a flexible name by its ith copy. The sets Xi (1 ≤ i ≤ k) induce the
following Boolean ALC-knowledge bases:

Bi :=
∧

pj∈Xi

α
(i)
j ∧

∧
pj 6∈Xi

¬α(i)
j

Claim. The ALC-LTL formula φ is satisfiable w.r.t. rigid names iff there is a set
S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) such that the propositional LTL formula φ̂S
is satisfiable and the Boolean ALC-knowledge base B :=

∧
1≤i≤k Bi is consistent.

For the “only if” direction, recall that we have already seen how an ALC-LTL struc-
ture I = (Iι)ι=0,1,... satisfying φ can be used to define a set S ⊆ P({p1, . . . , pn})
such that φ̂S is satisfiable. Let S = {X1, . . . , Xk}. For each ι = 0, 1, . . . there is an
index iι ∈ {1, . . . , k} such that Iι induces the set Xiι , i.e.,

Xiι = {pj | 1 ≤ j ≤ n and Iι satisfies αj},

and, conversely, for each i ∈ {1, . . . , k} there is an index ι ∈ {0, 1, 2, . . .} such that
i = iι. Let ι1, . . . , ιk ∈ {0, 1, 2, . . .} be such that iι1 = 1, . . . , iιk = k. The ALC-
interpretation Ji is obtained from Iιi by interpreting the ith copy of each flexible
(concept or role) name in Ji like the original flexible name in Iιi , and interpreting
all rigid names in Ji exactly as in Iιi . By our construction of Ji and our definition
of the Boolean ALC-knowledge base Bi, we have that Ji is a model of Bi. Recall
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that the interpretations Iι1 , . . . , Iιk (and thus also J1, . . . ,Jk) all have the same
domain. In addition, the interpretations of the rigid names coincide in Iι1 , . . . , Iιk
(and thus also in J1, . . . ,Jk) and the flexible symbols have been renamed. Thus,
the union J of J1, . . . ,Jk is a well-defined ALC-interpretation, and it is easy to
see that it is a model of B =

∧
1≤i≤k Bi.

To show the “if” direction, assume that there is a set S = {X1, . . . , Xk} ⊆
P({p1, . . . , pn}) such that φ̂S is satisfiable and B :=

∧
1≤i≤k Bi is consistent. Let

Î = (wι)ι=0,1,... be a propositional LTL structure satisfying φ̂S , and let J be an

ALC-interpretation satisfying B. By the definition of φ̂S , for every world wι there
is exactly one index iι ∈ {1, . . . , k} such that wι satisfies∧

p∈Xiι

p ∧
∧

p 6∈Xiι

¬p.

For i ∈ {1, . . . , k}, we use the ALC-interpretation J satisfying B to define an ALC-
interpretation Ji as follows: Ji interprets the rigid names like J , and it interprets
the flexible names just as J interprets the ith copies of them. Note that the
interpretations Ji are over the same domain and respect the rigid symbols, i.e., they
interpret them identically. We can now define an ALC-LTL structure respecting
rigid symbols and satisfying φ as follows: I := (Iι)ι=0,1,... where Iι := Jiι .

This completes the proof of the claim. It remains to show that the claim provides
us with a decision procedure for satisfiability in ALC-LTL w.r.t. rigid names that
runs in deterministic double-exponential time.

First, note that there are 22n many subsets S of P({p1, . . . , pn}) to be tested,
where n is of course linearly bounded by the size of φ. For each of these subsets S =
{X1, . . . , Xk}, whose cardinality k is bounded by 2n, we need to check satisfiability

of φ̂S and consistency of B =
∧

1≤i≤k Bi.
The size of φ̂S is at most exponential in the size of φ, and the complexity of the

satisfiability problem in propositional LTL is in PSpace, and thus in particular in
ExpTime. Consequently, satisfiability of φ̂S can be tested in double-exponential
time in the size of φ.

The Boolean ALC-knowledge base B is a conjunction of k ≤ 2n Boolean ALC-
knowledge bases Bi, where the size of each Bi is polynomial in the size of φ. The
consistency problem for Boolean ALC-knowledge bases is ExpTime-complete (see,
e.g., Theorem 2.27 in [Gabbay et al. 2003] or Lemma 6.4 below). Consequently,
consistency of B can also be tested in double-exponential time in the size of the
input formula φ.

Overall, we thus have double-exponentially many tests, where each test takes
double-exponential time. This provides us with a double-exponential bound for
testing satisfiability in ALC-LTL w.r.t. rigid names based on the above claim. o

The hardness proof given in Section 4.1 shows that the double-exponential upper
bound that we have just shown is indeed optimal. However, to get an intuition for
what actually makes the problem so hard, let us analyze in more detail where the
algorithm sketched above needs to spend double-exponential time. The algorithm
needs
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(1) to consider 22n many subsets S = {X1, . . . , Xk} of P({p1, . . . , pn});
(2) for each such subset test φ̂S for satisfiability;

(3) test B =
∧

1≤i≤k Bi for consistency.

The main culprit is 3. Intuitively, the presence of rigid roles ensures that the consis-
tency test for the conjunction

∧
1≤i≤k Bi needs to be done for the whole conjunction,

and cannot be reduced to separate test for the conjuncts (or some enriched ver-
sions of the conjuncts). Thus, the Boolean ALC-knowledge base to be tested for
consistency is exponentially large. Since the consistency problem for Boolean ALC-
knowledge bases is ExpTime-complete, testing this knowledge base for consistency
requires in the worst-case double-exponential time. In contrast, 2. is actually harm-
less. According to what we have said above, it needs exponential space, but we will
see in the next section that this can even be reduced to exponential time. Finally,
1. also does not really require double-exponential time since one could guess an
appropriate set S within NExpTime.

5. REASONING WITHOUT RIGID NAMES

In this section, we consider the case where we have no rigid names at all. As
mentioned in the introduction, this case is also treated in [Gabbay et al. 2003],
where it is shown that an ExpTime upper bound for the satisfiability problem
follows from more general results proved in Chapter 11 of [Gabbay et al. 2003] (see
the remark following Theorem 14.15 on page 605 of [Gabbay et al. 2003]). For the
sake of completeness, and as a warmup for Section 6, we give a direct proof of this
upper bound below. To this end, we show that, in this simple case, the claim shown
in the proof of Lemma 4.3 implies that satisfiability can be decided in deterministic
exponential time.

Since we now consider satisfiability without rigid names, all role and concept
names are flexible. Consequently, the Boolean ALC-knowledge bases Bi defined in
the proof of Lemma 4.3 do not share concept or role names, and can thus be tested
for consistency separately.

Lemma 5.1. Let B1, . . . ,Bk be Boolean ALC-knowledge bases over disjoint sets
of names. Then B1∧ . . .∧Bk is consistent iff, for each i = 1, . . . , k, Bi is consistent.

Proof. Obviously, consistency of B1 ∧ . . . ∧ Bk implies consistency of Bi for all
i, 1 ≤ i ≤ k. Conversely, if all the knowledge bases Bi (i = 1, . . . , k) are consistent,
then each of them has a model with a countably infinite domain. This means that we
can assume without loss of generality that these models have the same domain. In
addition, since these models obey the UNA, we can also assume that they interpret
the individual names in the same way. Putting together the interpretations of all
concept and role names from the separate models yields an interpretation that is a
model of all the knowledge bases B1, . . . ,Bk, and thus a model of B1 ∧ . . .∧Bk. o

Looking back at the proof of Lemma 4.3, we see that k is exponential in the size
of the input formula φ, and that each Boolean ALC-knowledge bases Bi has a size
that is polynomial in the size of φ. Thus, the consistency test for each Bi takes
time exponential in the size of φ. Consequently, testing all the knowledge bases
B1, . . . ,Bk for consistency can be achieved in exponential time.
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However, if we simply apply the decision procedure suggested by the claim from
the proof of Lemma 4.3, we do not obtain an ExpTime-procedure. In fact, guess-
ing a subset S ⊆ P({p1, . . . , pn}) would require non-deterministic exponential time
(since we have exponentially many sets to choose from), and testing the proposi-

tional LTL formula φ̂S for satisfiability would require exponential space (since the

size of φ̂S can be exponential in the size of φ, and satisfiability in propositional LTL
is PSpace-complete).

The first problem can easily be avoided. Instead of guessing an appropriate set
S, we compute the maximal one: let Ŝ consist of all sets X ⊆ {p1, . . . , pn} such
that the Boolean ALC-knowledge base

BX :=
∧
pj∈X

αj ∧
∧
pj 6∈X

¬αj

is consistent. Note that we need not rename flexible names here since the knowledge
bases BX are considered separately.

Lemma 5.2. The ALC-LTL formula φ is satisfiable iff the propositional LTL
formula φ̂Ŝ is satisfiable.

Proof. The “if” direction is an immediate consequence of Lemma 5.1, the claim
shown in the proof of Lemma 4.3, and the definition of Ŝ.

For the “only if” direction, assume that φ is satisfiable. By the claim shown
in the proof of Lemma 4.3, this implies that there is a set S = {X1, . . . , Xk} ⊆
P({p1, . . . , pn}) such that φ̂S is satisfiable and

∧
1≤i≤k Bi is consistent. Consistency

of
∧

1≤i≤k Bi implies that the knowledge bases BXi (i = 1, . . . , k) are consistent,

and thus we have S ⊆ Ŝ. Consequently, satisfiability of φ̂S implies satisfiability of
φ̂Ŝ . o

The set Ŝ can be computed in time exponential in the size of φ. In fact, there are
exponentially many sets X ⊆ {p1, . . . , pn} to be considered, and testing consistency
of BX for each of these sets can be done in exponential time.

This leaves us with the problem of testing satisfiability of the propositional LTL
formula

φ̂Ŝ = φ̂ ∧2

 ∨
X∈Ŝ

∧
p∈X

p ∧
∧
p 6∈X

¬p


in time exponential in the size of φ. Since the size of φ̂ is bounded by the size of
φ, it is sufficient to give an exponential upper bound in the size of φ̂. To this end,
note that the only effect of the box-formula in φ̂Ŝ is to restrict the worlds w in a

propositional LTL structure satisfying φ̂ to being induced by one of the elements
of Ŝ. Given a world w in a propositional LTL structure, we say that it is induced
by a set X ⊆ {p1, . . . , pn} (written w = wX) iff we have pi ∈ X iff w makes pi true
(i = 1, . . . , n).

Lemma 5.3. The propositional LTL structure Î = (wι)ι=0,1,... satisfies φ̂Ŝ iff it

satisfies φ̂ and for every world wι of Î there is a set X ∈ Ŝ such that wι = wX .
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One way of deciding satisfiability of a propositional LTL formula φ̂ is to construct
a Büchi automaton Aφ̂ that accepts the propositional LTL structures satisfying φ̂

[Wolper et al. 1983]. To be more precise, let Σ := P({p1, . . . , pn}). Then the

propositional LTL structure Î = (wι)ι=0,1,... can be represented by an infinite word
X0X1 . . . over Σ, where Xι is such that wι = wXι . The Büchi automaton Aφ̂ is built
such that it accepts exactly those infinite words over Σ that represent propositional
LTL structures satisfying φ̂. Consequently, φ̂ is satisfiable iff the language accepted
byAφ̂ is non-empty. The size ofAφ̂ is exponential in the size of φ̂, and the emptiness
test for Büchi automata is polynomial in the size of the automaton.

Given such an automaton Aφ̂ for φ̂ we can easily modify it into one accepting

exactly the words representing propositional LTL structures satisfying φ̂Ŝ . In fact,

we just need to remove all transitions that use a letter from Σ \ Ŝ. Obviously,
this modification can be done in time polynomial in the size of Aφ̂, and thus in

time exponential in the size of φ̂. The size of the resulting automaton is obviously
still only exponential in the size of φ̂, and thus its emptiness can be tested in
time exponential in the size of φ̂. This yields the desired procedure that can check
satisfiability of φ̂Ŝ in time exponential in the size of φ̂. Overall, we have thus proved
an ExpTime upper bound for satisfiability in ALC-LTL without rigid names.

Theorem 5.4. Satisfiability without rigid names is ExpTime-complete both in
ALC-LTL and in ALC-LTL|gGCI.

Proof. We have just shown that satisfiability inALC-LTL without rigid names in
ExpTime. Obviously, this also yields an ExpTime upper bound for the restricted
case of ALC-LTL|gGCI.

For the hardness part of the theorem, it is obviously sufficient to show ExpTime-
hardness for ALC-LTL|gGCI. This follows from the well-known fact that, in ALC,
satisfiability of a concept C w.r.t. a single GCI C1 v C2 is ExpTime-complete
[Schild 1991]. In fact, C is satisfiable w.r.t. C1 v C2 iff the ALC-LTL|gGCI formula
2(C1 v C2) ∧ a : C is satisfiable. o

6. REASONING WITH RIGID CONCEPTS

In this section, we consider the case where rigid concept names are available, but
not rigid role names. First, note that, in contrast to temporal DLs where temporal
operators may occur inside concept descriptions, rigid concept names cannot easily
be expressed within the logic without rigid concept names. In fact, the GCIs
A v 2A and ¬A v 2¬A express the condition that A must be interpreted in a
rigid way. However, they are not allowed by the syntax of ALC-LTL since the box
is applied directly to a concept, and not to an axiom.

We will show below that, for ALC-LTL, the presence of rigid concept names
indeed increases the complexity of the satisfiability problem, unless GCIs are re-
stricted to being global. First, we treat the case of arbitrary GCIs, and then the
special case of global GCIs.

Theorem 6.1. Satisfiability in ALC-LTL w.r.t. rigid concepts is NExpTime-
complete.
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6.1 The complexity lower bound

We show NExpTime-hardness of satisfiability in ALC-LTL w.r.t. rigid concepts
by a reduction from the 2n+1-bounded domino problem [Lewis 1978; Börger et al.
1997].

Lemma 6.2. Satisfiability in ALC-LTL w.r.t. rigid concepts is NExpTime-hard.

Proof. First, we introduce the bounded version of the domino problem used
in the reduction. A domino system is a triple D = (D,H, V ), where D is a
finite set of domino types and H,V ⊆ D × D are the horizontal and vertical
matching conditions. Let D be a domino system and I = d0, . . . , dn−1 ∈ D∗

an initial condition, i.e. a sequence of domino types of length n > 0. A mapping
τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → D is a 2n+1-bounded solution of D
respecting the initial condition I iff, for all x, y < 2n+1, the following holds:

—if τ(x, y) = d and τ(x⊕2n+1 1, y) = d′, then (d, d′) ∈ H;

—if τ(x, y) = d and τ(x, y ⊕2n+1 1) = d′, then (d, d′) ∈ V ;

—τ(i, 0) = di for i < n;

where ⊕2n+1 denotes addition modulo 2n+1.
It is well-known (see [Lewis 1978] and [Börger et al. 1997], Theorem 6.1.2)

that there is a domino system D = (D,H, V ) such that the following problem
is NExpTime-hard: given an initial condition I = d0, . . . , dn−1 ∈ D∗, does D have
a 2n+1-bounded solution respecting I or not?

We show that this problem can be reduced in polynomial time to satisfiability in
ALC-LTL w.r.t. rigid concepts. Interestingly, in our reduction we do not use any
role names. All we need are the following concept and individual names:

—a single individual name a;

—the elements of D as rigid concept names, and a primed version of them as flexible
concept names;

—rigid concept names X0, . . . , Xn and Y0, . . . , Yn that are used to realize two binary
counters modulo 2n+1, where the X-counter describes the horizontal and the Y -
counter the vertical position of a domino;

—flexible concept names Z0, . . . , Z2n+1 that are used to realize a binary counter
modulo 22n+2, whose function will be explained below;

—an auxiliary flexible concept name N .

Intuitively, the first n+1 bits of the Z-counter are used to represent 2n+1 horizontal
components 0 ≤ x < 2n+1, and the second n+1 bits of the Z-counter are used to
represent 2n+1 vertical components 0 ≤ y < 2n+1. By counting with the Z-counter
up to 22n+2 in the temporal dimension, we ensure that every position (x, y) ∈
{0, . . . , 2n+1− 1}×{0, . . . , 2n+1− 1} is represented in some world. The counting is
done using the individual name a, i.e., we enforce that, for every possible value of the
Z-counter, there is a world where a belongs to the concepts from the corresponding
subset of {Z0, . . . , Z2n+1}. The rigid concept names X0, . . . , Xn and Y0, . . . , Yn are
then used to ensure that, in every world, there are individuals belonging to subsets
of these concepts such that every position (x, y) ∈ {0, . . . , 2n+1−1}×{0, . . . , 2n+1−
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1} is realized in this world. Appropriate GCIs are used to ensure that (i) every
position represented this way carries exactly one domino type; (ii) the horizontal
and vertical matching conditions are respected; and (iii) the initial condition is
satisfied.

Recall that we use φ→ ψ as an abbreviation for ¬φ∨ψ, C ⇒ D as an abbreviation
for ¬C tD, and C ⇔ D as an abbreviation for (C ⇒ D) u (D ⇒ C).

The reduction formula φD,I is the conjunction of the following formulae:

—for every possible value of the Z-counter, there is a world where a belongs to the
concepts from the corresponding subset of {Z0, . . . , Z2n+1}:

2
(∧

i≤2n+1

(∧
j<i a : Zj

)
→
(
(a : Zi → X(a : ¬Zi)) ∧ (a : ¬Zi → X(a : Zi))

)
∧∧

i≤2n+1

(∨
j<i a : ¬Zj

)
→
(
(a : Zi → X(a : Zi)) ∧ (a : ¬Zi → X(a : ¬Zi))

) )
—the value of the Z-counter is shared by all individuals belonging to the current

world: for all i ≤ 2n+ 1

2 ((> v Zi) ∨ (> v ¬Zi))

—in every world, there is at least one individual for which the combined value of
the X- and the Y -counter corresponds to the value of the Z-counter for a (and
thus every individual) in this world:

2
(
¬(> v ¬N) ∧∧

0≤i≤n(N u Zi v Xi) ∧
∧
n+1≤i≤2n+1(N u Zi v Yi−(n+1)) ∧∧

0≤i≤n(N u ¬Zi v ¬Xi) ∧
∧
n+1≤i≤2n+1(N u ¬Zi v ¬Yi−(n+1))

)
Since the concept names Xi, Yi are rigid, this actually ensures that in every world
every possible combination of values of the X- and Y -counters is realized by some
individual. For a given such combination, the corresponding individual obviously
must represent the same value combination in every world. Thus, for every position
from {0, . . . , 2n+1− 1}×{0, . . . , 2n+1− 1} we have a world representing it with the
help of the Z-counter, but we also have an individual representing it globally (i.e.,
in every world) with the help of the X- and Y -counters.

Having represented all positions from {0, . . . , 2n+1−1}×{0, . . . , 2n+1−1} in this
way, we can now start to enforce an admissible tiling of these positions with domino
types (i.e., a solution of the domino problem). As with the positions, we again have
two copies of the tiling. One of them uses the primed concept names d′ for d ∈ D
to tile the positions represented by the worlds with the help of the Z-counter. The
other one uses the unprimed concept names d ∈ D to tile the positions represented
by the individuals with the help of the X- and Y -counters.

—every world gets exactly one domino type, expressed using the primed (and thus
flexible) variant of the corresponding concept names:

2

∨
d∈D

(> v d′) ∧
∧

d,e∈D,d6=e

(> v ¬(d′ u e′))
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—the domino type of a given world is transferred globally to the individuals repre-
senting the same position as the world:

2

( u
0≤i≤n

(Zi ⇔ Xi) u u
n+1≤i≤2n+1

(Zi ⇔ Yi−(n+1)) v u
d∈D

(d⇔ d′)

)
Since the concept names d for d ∈ D are rigid, this type is then associated with
the individual in every world. Since every world has exactly one “primed” domino
type (which is shared by all its individuals), every individual also has exactly one
“unprimed” domino type: the one of the world representing the same position.

The two versions of the tiling can now be used to enforce the horizontal and
vertical matching conditions. For example, the fact that the individual representing
position (x, y + 1) is present in the world representing position (x, y) can be used
to formulate the vertical matching condition.

We use the notation CX = ChZ (CY = CvZ) to say that the value of the X-counter
agrees with the value represented by the first n+ 1 bits of the Z-counter (the value
of the Y -counter agrees with the value represented by the second n+ 1 bits of the
Z-counter). Accordingly, (CX = ChZ + 1 mod 2n+1) says that the value of the X-
counter is equal to the value represented by the first n+1 bits of the Z-counter plus
1 (modulo 2n+1). The intended meaning of the notation (CY = CvZ + 1 mod 2n+1)
should now be obvious. Details on how this can actually be expressed using concept
descriptions are given in the proof of Lemma 4.2.

—the horizontal and vertical matching conditions are enforced as follows:

2
(
(CX = ChZ) u (CY = CvZ + 1 mod 2n+1) v t

(d,e)∈V
(d′ u e)

)
2
(
(CY = CvZ) u (CX = ChZ + 1 mod 2n+1) v t

(d,e)∈H
(d′ u e)

)
For example, the first line looks at an individual that represents position (x, y+ 1)
in a world that represents position (x, y), and ensures that the domino type e
associated with the individual (expressed by the rigid concept name e) is vertically
compatible with the domino type d associated with the world (expressed by the
flexible concept name d′).

It remains to represent the initial condition I = d0, . . . , dn−1. For this end, we
employ the notation CvZ = 0 and ChZ = i for 0 = 1, . . . , n − 1, with the obvious
meaning and the obvious representation by concept descriptions.

—for all i = 0, . . . , n− 1:

2
(
(CvZ = 0) u (ChZ = i) v d′i

)
This finishes the definition of the ALC-LTL formula φD,I , which is the conjunction
of the formulae introduced above. It is easy to see that the size of φD,I is polynomial
in n. Moreover, it is a routing task to prove in detail that φD,I is satisfiable w.r.t.
rigid concepts iff D has a 2n+1-bounded solution respecting I. o

6.2 The complexity upper bound

Here, we show that the complexity lower bound provided by the above lemma is
tight.
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Lemma 6.3. Satisfiability in ALC-LTL w.r.t. rigid concepts is in NExpTime.

Proof. We want to reuse the claim shown in the proof of Lemma 4.3:

Fact. The ALC-LTL formula φ is satisfiable w.r.t. rigid names iff there is a set
S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) such that the propositional LTL formula φ̂S
is satisfiable and the Boolean ALC-knowledge base B :=

∧
1≤i≤k Bi is consistent.

If we apply this claim in the case where only concept names can be rigid, then
we know that the Boolean ALC-knowledge bases Bi are built over disjoint sets
of role names. The only shared names are the rigid concept names. Assume we
have guessed a set S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}), which can clearly be done

within NExpTime. The formula φ̂S is itself of size exponential in the size of φ.
However, we can use the same approach as in the proof of Theorem 5.4 to show
that its satisfiability can actually be tested in time exponential in the size of φ.

Instead of testing the consistency of B =
∧

1≤i≤k Bi directly (which would pro-
vide us with a double-exponential time bound), we try to reduce this test to k
separate consistency tests, each requiring time exponential in the size of φ. Be-
fore we can do this, we need another guessing step. Assume that A1, . . . , Ar are
all the rigid concept names occurring in φ, and that a1, . . . , as are all the individ-
ual names occurring in φ. We guess a set T ⊆ P({A1, . . . , Ar}) and a mapping
t : {a1, . . . , as} → T . Again, this guess can clearly be done within NExpTime.

Given T and t, we extend the knowledge bases Bi to knowledge bases B̂i(T , t) as

follows. For Y ⊆ {A1, . . . , Ar}, let CY be the concept description CY := u
A∈Y

A u

u
A6∈Y
¬A. We define

B̂i(T , t) := Bi ∧
∧

t(a)=Y

a : CY ∧ > v t
Y ∈T

CY ∧
∧
Y ∈T
¬(> v ¬CY )

Claim. The Boolean ALC-knowledge base B :=
∧

1≤i≤k Bi is consistent iff there
is a set T ⊆ P({A1, . . . , Ar}) and a mapping t : {a1, . . . , as} → T such that the

Boolean knowledge bases B̂i(T , t) for i = 1, . . . , k are separately consistent.

For the “only if” direction, assume that B =
∧

1≤i≤k Bi has a model I = (∆, ·I).
Let T consist of those sets Y ⊆ {A1, . . . , Ar} such that there is a d ∈ ∆ with
d ∈ (CY )I , and let t be the mapping satisfying t(a) = Y iff aI ∈ (CY )I . It is

easy to see that, with this choice of T and t, all the knowledge bases B̂i(T , t) for
i = 1, . . . , k have I as model.

To show the “if” direction, let T ⊆ P({A1, . . . , Ar}) be a set and t : {a1, . . . , as} →
T a mapping such that the Boolean knowledge bases B̂i(T , t) for i = 1, . . . , k have
models Ii = (∆i, ·Ii). We can assume without loss of generality7 that

7This is an easy consequence of the fact that Boolean ALC-knowledge bases always have a finite
model and the fact that the countably infinite disjoint union of a model of a Boolean ALC-

knowledge base is again a model of this knowledge base.
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—the domains ∆i are countably infinite, and

—in each model Ii, the sets Y ∈ T are realized by countably infinitely many
individuals, i.e., there are countably infinitely many elements d ∈ ∆i such that
d ∈ (CY )I .

Consequently, the domains ∆i are partitioned into the countably infinite sets ∆i(Y )
(for Y ∈ T ), which are defined as follows:

∆i(Y ) := {d ∈ ∆i | d ∈ (CY )Ii}

In addition, for each individual name a ∈ {a1, . . . , as} we have

aIi ∈ ∆i(t(a))

We are now ready to define the model I = (∆, ·I) of B. As the domain of I we
take the domain of I1, i.e., ∆ := ∆1. Accordingly, we define ∆(Y ) := ∆1(Y ) for all
Y ∈ T . Because of the properties stated above, there exist bijections πi : ∆i → ∆
such that

—the restriction of πi to ∆i(Y ) is a bijection between ∆i(Y ) and ∆(Y );

—πi respects individual names, i.e., πi(a
Ii) = aI1 holds for all a ∈ {a1, . . . , as}.

(Note that we have the unique name assumption for individual names.)

We use these bijections to define the interpretation function ·I of I as follows:

—If A is a flexible concept name, then B contains its copies A(i) for i = 1, . . . , k.
Their interpretation is defined as follows:

(A(i))I := {πi(d) | d ∈ (A(i))Ii}.

—All role names r are flexible, and B contains their copies r(i) for i = 1, . . . , k.
Their interpretation is defined as follows:

(r(i))I := {(πi(d), πi(e)) | (d, e) ∈ (r(i))Ii}.

—If A is a rigid concept names, then we define

AI := AI1

—If a is an individual name, then we define

aI := aI1

To prove the claim, it remains to show that I is a model of all the knowledge
bases Bi (i = 1, . . . , k). This is an immediate consequence of the fact that πi is
an isomorphism between Ii and I w.r.t. the concept and role names occurring in
Bi. The isomorphism condition is satisfied for flexible concepts and roles by our
definition of ·I , and for individual names by our assumptions on πi. Now, let A
be a rigid concept name. We must show that d ∈ AIi iff πi(d) ∈ AI holds for
all d ∈ ∆i. Since ∆i is partitioned into the sets ∆i(Y ) for Y ∈ T , we know that
there is a Y ∈ T such that d ∈ ∆i(Y ), i.e., d ∈ (CY )Ii . In addition, we know that
πi(d) ∈ ∆(Y ), i.e., πi(d) ∈ (CY )I1 = (CY )I . This implies that d ∈ AIi iff A ∈ Y
iff d ∈ AI , which finishes the proof that πi is an isomorphism between Ii and I.
Consequently, I is a model of B =

∧
1≤i≤k Bi, which in turn finishes the proof of

the claim.
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To finish the proof of the lemma, we show that consistency of the knowledge
bases

B̂i(T , t) = Bi ∧
∧

t(a)=Y

a : CY ∧ > v t
Y ∈T

CY ∧
∧
Y ∈T
¬(> v ¬CY )

can be decided in time exponential in the size of the input formula φ. Note that
this is not trivial. In fact, while the size of Bi ∧

∧
t(a)=Y a : CY is polynomial in

the size of φ, the cardinality of T , and thus the size of

> v t
Y ∈T

CY ∧
∧
Y ∈T
¬(> v ¬CY )

can be exponential in the size of φ. Decidability of the consistency of B̂i(T , t) in
time exponential in the size of φ is, however, an immediate consequence of the next
lemma.

Overall, this completes the proof of the current lemma. In fact, after two NEx-
pTime guesses, all we have to do are k (i.e., exponentially many) ExpTime con-
sistency tests. o

Let B̂ be a Boolean ALC-knowledge base of size n, A1, . . . , Ar concept names oc-
curring in B̂, and T ⊆ P({A1, . . . , Ar}). Note that this implies that the cardinality
of T is at most exponential in n, and the size of each Y ∈ T is linear in n. We say
that an interpretation I = (∆, ·I) is a model of B̂ w.r.t. T if it is a model of B̂ that
additionally satisfies

T = {Y ⊆ {A1, . . . , Ar} | there is d ∈ ∆ such that d ∈ (CY )I}

Accordingly, we say that B̂ is consistent w.r.t. T if B̂ has a model w.r.t. T . Obvi-
ously, B̂ is consistent w.r.t. T iff the knowledge base

B̂ ∧ > v t
Y ∈T

CY ∧
∧
Y ∈T
¬(> v ¬CY )

is consistent.

Lemma 6.4. Let B̂ be a Boolean ALC-knowledge base of size n, A1, . . . , Ar con-
cept names occurring in B̂, and T ⊆ P({A1, . . . , Ar}). Then, consistency of B̂
w.r.t. T can be decided in time exponential in n.

Proof. The proof is an adaptation of the proof of Theorem 2.27 in [Gabbay
et al. 2003], which shows that the consistency problem for Boolean ALC-knowledge
bases is in ExpTime.

In [Gabbay et al. 2003] it is assumed (without loss of generality) that ALC-
concept descriptions contain only the constructors u, ¬, and ∃, that all GCIs are of
the form > v C, and that Boolean knowledge bases are built from such GCIs and
concept and role assertions using only the connectives ∧ and ¬. In the following,
we assume that B̂ satisfies these restrictions.

Let ind(B̂) be the set of all individual names occurring in B̂, and let con(B̂) and

sub(B̂) respectively denote the closure under negation of the set of all concept de-

scriptions (including subdescriptions) occurring in B̂ and the set of all subformulae
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of B̂. As usual, we identify ¬¬E with E. Thus, the cardinalities of the three sets
introduced above are polynomial in n.

A concept type for B̂ is a set c ⊆ con(B̂) such that

—C uD ∈ c iff C,D ∈ c, for all C uD ∈ con(B̂);

—¬C ∈ c iff C 6∈ c, for all C ∈ con(B̂).

A formula type for B̂ is a set f ⊆ sub(B̂) such that

—ψ ∧ χ ∈ f iff ψ, χ ∈ f , for all ψ ∧ χ ∈ con(B̂);

—¬ψ ∈ f iff ψ 6∈ f , for all ψ ∈ con(B̂).

Obviously, the number of concept and formula types is exponential in n.
A model candidate for B̂ is a triple (S, ι, f) such that S is a set of concept types

for B̂, ι : ind(B̂)→ S is a function, and f is a formula type for B̂ such that

(a) B̂ ∈ f ;

(b) a : C ∈ f implies C ∈ ι(a);

(c) (a, b) : r ∈ f implies {¬C | ¬∃r.C ∈ ι(a)} ⊆ ι(b).

The model candidate (S, ι, f) for B̂ is called a quasimodel for B̂ if it additionally
satisfies

(d) for every c ∈ S and every ∃r.C ∈ c, there is d ∈ S such that
{¬D | ¬∃r.D ∈ c} ∪ {C} ⊆ d;

(e) for every c ∈ S and every concept C, if ¬C ∈ c, then > v C 6∈ f ;

(f) for every concept C, if ¬(> v C) ∈ f , then there is a c ∈ S such that C ∈ c;

(g) S is not empty.

In [Gabbay et al. 2003] it is shown that B̂ is consistent iff there is a quasimodel for

B̂. In order to characterize consistency of B̂ w.r.t. T , we need to add two additional
conditions. The quasimodel (S, ι, f) for B̂ respects T if it additionally satisfies

(h) for every concept type c ∈ S, there is a set Y ∈ T such that Y = c ∩
{A1, . . . , Ar};

(k) for every set Y ∈ T , there is a concept type c ∈ S such that Y = c ∩
{A1, . . . , Ar}.

A simple adaptation of the proof in [Gabbay et al. 2003] can be used to show that

B̂ is consistent w.r.t. T iff there is a quasimodel for B̂ that respects T .
Next, we show that the ExpTime-algorithm for checking the existence of a quasi-

model described in [Gabbay et al. 2003] can be adapted to check for the existence
of a quasimodel that respects T . The adapted algorithm works as follows. Given
B̂ and T , it enumerates all model candidates (S, ι, f) for B̂ where S is the set of

all concept types for B̂. Let C1, . . . ,CN be these candidates. As shown in [Gabbay
et al. 2003], there are at most exponentially many of these candidates and they can
be enumerated in exponential time.

Set i = 1 and consider Ci = (S, ι, f).
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Step 1. Go through all concept types in S. We call a concept type c ∈ S
defective if one of the following three conditions holds:

—(d) is violated for some concept ∃r.C ∈ c;

—(e) is violated for some concept C with ¬C ∈ c;

—(h) is violated.

If we have found a defective concept type c, and this concept type is not in the
range of ι, then we set S := S \{c} and continue with Step 1 (i.e., again go through
all concept types in S and check whether one of them is defective). If we have
found a defective concept type c that is in the range of ι, then we stop considering
Ci and go to Step 3. If in some iteration of Step 1 we find that none of the concept
types in S is defective, then we go to Step 2.

Step 2. Check whether the triple (S ′, ι, f) obtained through the application of
Step 1 satisfies (f), (g), and (k). If it does, then stop with output “quasimodel
respecting T exists.” Otherwise, go to Step 3.

Step 3. Set i := i+ 1. If i ≤ N , then go to Step 1. Otherwise, stop with output
“no quasimodel respecting T .”

It is easy to see that this algorithm yields the output “quasimodel respecting T
exists” iff B̂ indeed has a quasimodel respecting T .

It is also not hard to see that the algorithm runs in time exponential in n. The
index i goes from 1 to N , where N is at most exponential in n. The cardinality
of the set of all concept types is exponential in n, and in each iteration of Step 1
for a fixed index i ∈ {1, . . . , N}, one defective concept type is removed (or Step 1
is terminated for this index i). Thus, for a fixed i, the number of iterations of
Step 1 is at most exponential in n. Finally, every single iteration of Step 1 needs
only exponential time. There are at most exponentially many concept types to be
considered, and checking for a violation of (d), (e), or (h) can be done in exponential
time. Note in particular that this is also true for (h): one just needs to go through
the (exponentially many) elements of T . Similarly, checking for a violation of (f),
(g), or (k) in Step 2 can be done in exponential time. o

This completes the proof of Theorem 6.1, which states that satisfiability in ALC-
LTL w.r.t. rigid concepts is NExpTime-complete.

6.3 Satisfiability in ALC-LTL|gGCI w.r.t. rigid concepts

Here, we show that restricting GCIs to global ones decreases the complexity of the
satisfiability problem.

Theorem 6.5. The satisfiability problem in ALC-LTL|gGCI w.r.t. rigid concepts
is ExpTime-complete.

ExpTime-hardness is an immediate consequence of Theorem 5.4, which states
that the problem is already ExpTime-hard without rigid concepts. Before proving
the ExpTime upper bound, we introduce an additional piece of notation. The
conjunction of ALC-axioms B is said to be φ-exhaustive if, for every individual
name a and every rigid concept name A occurring in φ, either a : A or a : ¬A
occurs as a conjunct in B.
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Lemma 6.6. Satisfiability in ALC-LTL|gGCI w.r.t. rigid concepts is in Exp-
Time.

Proof. Consider an ALC-LTL|gGCI formula φ = 2B∧ξ, where B is a conjunction
of ALC-axioms and ξ is an ALC-LTL formula that does not contain GCIs. We can
assume without loss of generality that B is φ-exhaustive. In fact, given an arbitrary
Boolean ALC-knowledge base B, we can build all the φ-exhaustive knowledge bases
B′ that are obtained from B by conjoining to it, for every individual name a and
every rigid concept name A occurring in φ, either a : A or a : ¬A. Obviously,
φ = 2B ∧ ξ is satisfiable w.r.t. rigid concepts iff 2B′ ∧ ξ is satisfiable w.r.t. rigid
concepts for one of the extension B′ of B obtained this way. Since the size of
each such an extension is polynomial and there are only exponentially many such
extensions, it is sufficient to show that testing satisfiability of 2B′ ∧ ξ w.r.t. rigid
concepts for φ-exhaustive knowledge bases B′ is in ExpTime.

Thus, we assume in the following that B is φ-exhaustive. The proof that sat-
isfiability of φ = 2B ∧ ξ can be tested in ExpTime combines ideas used in the
proofs of Lemma 4.3 and Theorem 5.4. Following the approach used in the proof of
Lemma 4.3, we abstract every ABox assertion αi occurring in ξ by a propositional
variable pi, thus building the propositional LTL-formula ξ̂. As with the proof of
Theorem 5.4, we compute the set Ŝ, which consists of those X ⊆ {p1, . . . , pn} for
which the Boolean ALC-knowledge base

BX := B ∧
∧
pj∈X

αj ∧
∧
pj 6∈X

¬αj

is consistent. This computation can be done in exponential time since it requires
exponentially many ExpTime consistency tests.

Claim. Let φ = 2B ∧ ξ be such that B is a φ-exhaustive conjunction of ALC-
axioms and ξ is an ALC-LTL formula not containing GCIs. Then φ is satisfiable
w.r.t. rigid concepts iff the propositional LTL formula

ξ̂Ŝ := ξ̂ ∧2(
∨
X∈Ŝ

(
∧
pj∈X

pj ∧
∧
pj 6∈X

¬pj))

is satisfiable.

Note that proving this claim actually completes the proof of our lemma. In
fact, as shown in the proof of Theorem 5.4, satisfiability of ξ̂Ŝ can be decided in
exponential time.

The proof of the “only if” direction of the claim is a simple combination of the
arguments used in the proofs of (i) the “only if” direction of Lemma 5.2, and (ii) the
“only if” direction of the claim shown in the proof of Lemma 4.3.

To show the “if” direction, assume that ξ̂Ŝ is satisfiable. Let Î = (wι)ι=0,1,... be

a propositional LTL structure satisfying ξ̂Ŝ . By construction, for every ι there is a
set Xι ⊆ {p1, . . . , pn} such that

—wι = wXι , i.e., Xι = {pj | j ∈ {1, . . . , n} and wι makes pj true}.
—the BooleanALC-knowledge base BXι = B∧

∧
pj∈Xι αj∧

∧
pj 6∈Xι ¬αj is consistent.
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Let Iι = (∆Iι , ·Iι) be a model of BXι (ι = 0, 1, . . .). To complete the proof of
the claim, we use the models Iι to construct models Jι = (∆, ·Jι) of BXι that
(i) have a common domain ∆, (ii) interpret the individual names in a rigid way, and

(iii) respect rigid concept names. This, together with the fact that Î = (wι)ι=0,1,...

satisfies ξ̂Ŝ , then implies that the ALC-LTL structure (Jι)ι=0,1,... satisfies φ and
respects rigid concept names.

To simplify this construction, we assume that the models Iι have a certain re-
stricted shape. In a DL interpretation I = (∆I , ·I), we call an element x ∈ ∆I

named if there is an individual name a such that x = aI ; all other elements of ∆I

are called anonymous. The following is easy to see:

Fact. Any consistent Boolean ALC-knowledge base has a model I = (∆I , ·I) that
satisfies the following property for every role name r: if (x, y) ∈ rI and x is anony-
mous, then y is also anonymous.

For example, a standard tableau-based algorithm that test consistency of Boolean
ALC-knowledge bases generates models that satisfy the property stated in the fact.

In the following, we assume that the models Iι satisfy this property. We can also
assume without loss of generality that the domains ∆Iι of these models are almost
disjoint, except for the named individuals. To be more precises, let {a1, . . . , a`}
be the individual names occurring in φ, and and let Θ := {x1, . . . , x`} be a set of
cardinality `. We assume that ∆Iι ∩ ∆Iι′ = Θ for ι 6= ι′ and that aIιi = xi for
i = 1, . . . , `.

Let us now build the new models Jι based on the models Iι satisfying these
properties. The constant domain ∆ is the union of the domains Iι, i.e., ∆ is
obtained as the following disjoint union:

∆ := Θ ∪
⋃
ι

(∆Iι \Θ).

The interpretation function ·Jι of Jι is defined as follows:

—We define aJιi := xi for i = 1, . . . , `.

—If A is a concept name and x ∈ ∆Jκ , we distinguish two cases, depending on
whether x is named or anonymous:
(1) If x is named, then we define x ∈ AJι iff x ∈ AIι .
(2) If x is anonymous, then we define x ∈ AJι iff x ∈ AIκ .

—If r is a role name, x ∈ ∆Jκ and y ∈ ∆Jλ , then we distinguish four cases:
(1) If x and y are named, then we define (x, y) ∈ rJι iff (x, y) ∈ rIι .
(2) If x is named and y is anonymous, then we define (x, y) ∈ rJι iff ι = λ and

(x, y) ∈ rIι .
(3) If x and y are anonymous, then we define (x, y) ∈ rJι iff κ = λ and (x, y) ∈

rIκ .
(4) If x is anonymous and y is named, then (x, y) 6∈ rJι .

By construction, the interpretations Jι have a common domain and they interpret
the individual names in a rigid way. Next, we show that they respect rigid concept
names, i.e., we have AJι1 = AJι2 for all rigid concept names A and all ι1, ι2 ≥ 0.
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Thus, assume that x ∈ ∆Jκ is given. We must show that x ∈ AJι1 iff x ∈ AJι2 . If x
is named, then we have x = aIι1 = aIι2 for some individual name a ∈ {a1, . . . , a`}.
Since B was assumed to be φ-exhaustive, either a : A or a : ¬A occurs as a conjunct
in B. This, together with the fact that Iι1 and Iι2 are models of B, implies that
x ∈ AIι1 iff x ∈ AIι2 , and thus x ∈ AJι1 iff x ∈ AJι2 . If x is anonymous, then
x ∈ AIι1 iff x ∈ AIκ iff x ∈ AIι2 .

It remains to show that, for every ι ≥ 0, the interpretation Jι is a model of BXι .
The proof of this is based on the following two observations, in which C is assumed
to be an arbitrary ALC-concept description:

(1) If x is named, then x ∈ CJι iff x ∈ CIι .
(2) If x ∈ ∆Iκ is anonymous, then x ∈ CJι iff x ∈ CIκ .

Before proving these observations by induction on the structure of C, we show that
they can indeed be used to prove that Jι is a model of BXι .

First, assume that C v D is a GCI that occurs as a conjunct in B. Consider
an element x ∈ CJι . We must show that x ∈ DJι . If x is named, then x ∈ CJι
implies x ∈ CIι by the above Observation 1. Since Iι is a model of B, x ∈ CIι
implies x ∈ DIι , and thus x ∈ DJι , again by Observation 1. Now, assume that x
is anonymous, and that it belongs to ∆Iκ for some κ ≥ 0. Then x ∈ CJι implies
x ∈ CIκ by the above Observation 2. Since Iκ is a model of B, x ∈ CIκ implies
x ∈ DIκ , and thus x ∈ DJι , again by Observation 2.

Second, assume that a : C is a concept assertion that occurs as a conjunct in B
or in

∧
pj∈Xι αj ∧

∧
pj 6∈Xι ¬αj . (Note that negated concept assertions are also just

assertions since ¬(a : D) is equivalent to a : ¬D.) We know that Iι is a model
of BXι , and thus of a : C, i.e., aIι ∈ CIι . In addition, we have aIι = aJι , and
since aIι is named, aIι ∈ CIι iff aIι ∈ CJι . This shows that Jι is a model of the
assertion a : C.

Third, assume that (a, b) : r is a role assertion that occurs as a conjunct in B or in∧
pj∈Xι αj . We know that Iι is a model of BXι , and thus of (a, b) : r, i.e., (aIι , bIι) ∈

rIι . In addition, we have aIι = aJι and bIι = bJι . Since aIι , bIι are named,
(aIι , bIι) ∈ rIι implies (aJι , bJι) ∈ rJι , by the definition of rJι . Consequently, Jι
is a model of (a, b) : r.

Finally, assume that ¬((a, b) : r) is a negated role assertion that occurs as a
conjunct in

∧
pj 6∈Xι ¬αj . We know that Iι is a model of BXι , and thus of ¬((a, b) :

r), i.e., (aIι , bIι) 6∈ rIι . In addition, we have aIι = aJι and bIι = bJι . Since
aIι , bIι are named, (aIι , bIι) 6∈ rIι implies (aJι , bJι) 6∈ rJι , by the definition of rJι .
Consequently, Jι is a model of ¬((a, b) : r). This finishes our proof that Jι is a
model of BXι .

It remains to show that the above observations are in fact correct. We prove this
by induction on the structure of C. The base case (C is a concept name) is trivial
by the definition of the interpretations Jι. For the induction step, it is sufficient to
consider conjunction, negation, and existential restrictions. Both conjunction and
negation are trivial. Thus, the only interesting case is where C is of the form ∃r.D.

First, assume that x is named. If x ∈ (∃r.D)Iι , then we know that there is an
element y ∈ ∆Iι such that (x, y) ∈ rIι and y ∈ DIι . If y is named, then this
implies (x, y) ∈ rJι and y ∈ DJι , where the first statement holds by the definition
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of rJι and the second by the induction hypothesis. This shows x ∈ (∃r.D)Jι .
Now, assume that y is anonymous. By our assumption that, except for the named
individuals, the domains of the models Iκ are disjoint, we know that (x, y) ∈ rIι
implies y ∈ ∆Iι . As before, we obtain (x, y) ∈ rJι and y ∈ DJι by the definition
of rJι and the induction hypothesis, respectively. This shows x ∈ (∃r.D)Jι also in
this case.

Conversely, assume that x is named and x ∈ (∃r.D)Jι . Then we know that there
is an element y ∈ ∆ such that (x, y) ∈ rJι and y ∈ DJι . If y is named, then
this implies (x, y) ∈ rIι and y ∈ DIι , by the definition of rJι and the induction
hypothesis, respectively. If y is anonymous, then the definition of rJι yields y ∈ ∆Iι

and (x, y) ∈ rIι . Since y ∈ ∆Iι , y ∈ DJι implies y ∈ DIι , by the induction
hypothesis. Thus, we have x ∈ (∃r.D)Iι in both cases.

Second, assume that x ∈ ∆Iκ is anonymous. If x ∈ (∃r.D)Iκ , then we know that
there is an element y ∈ ∆Iκ such that (x, y) ∈ rIκ and y ∈ DIκ . By our assumption
on the models Iκ, we know that y is also anonymous. The definition of rJκ thus
yields (x, y) ∈ rJι , and the induction hypothesis yields y ∈ ∆Jι . Thus, we have
x ∈ (∃r.D)Jι .

Conversely, assume that x ∈ ∆Iκ is anonymous, and x ∈ (∃r.D)Jι . Then we know
that there is an element y ∈ ∆ such that (x, y) ∈ rJι and y ∈ DJι . The definition
of rJι implies that y is also anonymous, and that y ∈ ∆Iκ and (x, y) ∈ rIκ . The
induction hypothesis thus yields y ∈ DIκ . This shows x ∈ (∃r.D)Iκ . o

When defining the notion of an ALC-LTL formula with global GCIs, we have
restricted these formulae to being of the form φ = 2B ∧ ξ where B is a conjunction
of ALC-axioms and ξ is an ALC-LTL formula that does not contain GCIs. Allowing
also for negated ALC-axioms as conjuncts in B would only add syntactic sugar,
but would not increase the expressiveness of ALC-LTL|gGCI. In fact, a negated
assertion ¬α occurring as a conjunct in B can be moved as a conjunct 2¬α to ξ,
and a negated GCI ¬(C v D) can be replaced by an assertion a : C u ¬D in B,
where a is a new individual name.

One might think that it is even possible to relax the condition such that B is
an arbitrary Boolean ALC-knowledge base. This is, however, not the case since it
would increase the complexity of the satisfiability problem to NExpTime.

Definition 6.7. We say that φ is an ALC-LTL formula with global Boolean
knowledge base iff it is of the form φ = 2B∧ξ where B is a Boolean ALC-knowledge
base and ξ is an ALC-LTL formula that does not contain GCIs.

A careful analysis of the proof of Lemma 6.2 shows that the ALC-LTL formula
constructed in the reduction is actually an ALC-LTL formula with global Boolean
knowledge base.

Corollary 6.8. Satisfiability of ALC-LTL w.r.t. rigid concepts and with global
Boolean knowledge bases is NExpTime-complete.

7. RESTRICTING THE TEMPORAL COMPONENT

In this section, we consider the fragment ALC-LTL|3 of ALC-LTL, in which 3 is
the only temporal operator. Our aim is to prove that satisfiability in ALC-LTL|3
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w.r.t. rigid names is in ExpTime. The main reason for this is that we can restrict
the attention to ALC-LTL structures respecting rigid concept and role names that
consist of only polynomially many distinct ALC-interpretations. Before we can
formulate this fact more formally in the next lemma,8 we need to introduce some
more notations. The weight of the ALC-LTL structure I = (Ii)i=0,1,... is defined to
be the cardinality of the set {Ii | i = 0, 1, . . .}.9 The set of subformulae sub(φ) of
the ALC-LTL|3 formula φ is defined in the obvious way, i.e., sub(φ) = {φ} if φ is
an ALC-axiom, sub(3φ) = {3φ} ∪ sub(φ), sub(φ∧ψ) = {φ∧ψ} ∪ sub(φ)∪ sub(ψ),
etc. The size of the ALC-LTL|3 formula φ is denoted by |φ|.

Lemma 7.1. If the ALC-LTL|3 formula φ is satisfiable w.r.t. rigid names, then
there is an ALC-LTL structure K respecting rigid concept and role names of weight
at most |φ|+ 2 such that K, 0 |= φ.

Proof. Let I be an ALC-LTL structure respecting rigid concept and role names
such that I, 0 |= φ. For each ψ ∈ sub(φ) we use P (ψ) to denote the set of time
points at which I makes ψ true, i.e.,

P (ψ) := {i | i ≥ 0 and I, i |= ψ}.

We claim that there is an ` > 0 such that, for all i ≥ `, we have that I, i |= ψ
implies that P (ψ) is infinite. In fact, since sub(φ) is finite, the set

Pfin :=
⋃

ψ∈sub(φ)

P (ψ) finite

P (ψ)

is also finite. Thus, we can choose ` to be the least positive integer not belonging
to Pfin.

For every ψ ∈ sub(φ), we choose a time point p(ψ) ≥ 0 as follows:

—If P (ψ) is finite, then p(ψ) is the maximal element of P (ψ), i.e., p(ψ) is the
maximal j with I, j |= ψ. Note that, in this case, we have p(ψ) < ` and I, p(ψ) |=
ψ.

—If P (ψ) is infinite, then p(ψ) is an arbitrary time point j ≥ ` such that I, j |= ψ.
Note that, in this case, we have p(ψ) ≥ ` and I, p(ψ) |= ψ.

Let ran(p) denote the range of the function p : sub(φ) → {0, 1, 2, . . .}, and let
k0, . . . , km−1, km, . . . , kn−1 be an enumeration of ran(p) ∪ {0, `} such that

—k0 < . . . < km−1 < km < . . . < kn−1 and

—m ∈ {1, . . . , n− 1} is chosen such that ki < ` iff i < m.

We define the ALC-LTL structure K as the sequence of ALC-interpretations

Ik0 · · · Ikm−1(Ikm · · · Ikn−1)ω,

8Note that this lemma is a generalization to ALC-LTL|3 of a very similar lemma for LTL|3, the
restriction of propositional LTL to its diamond fragment (see, e.g., Lemma 6.40 in [Blackburn
et al. 2001]).
9Recall that all the ALC-interpretations within one ALC-LTL structure have the same domain.
For this reason, we can use exact equality of interpretations rather than equality up to isomorphism

when defining the weight of an ALC-LTL structure.
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i.e., K = (Ji)i=0,1,... with Ji = If(i), where

—f(i) = ki for i < m;

—f(i) = km+((i−m) mod (n−m)) for i ≥ m.

Clearly, the fact that I respects rigid concept names and role names implies that
K does the same. In addition, since the number of subformulae of φ is bounded by
the size |φ| of φ, we have n ≤ |φ|+2, and the weight of K is bounded by n. Thus, it
remains to show that K, 0 |= φ. This is an immediate consequence of the following
claim and the fact that f(0) = k0 = 0 and φ ∈ sub(φ).

Claim. For all ψ ∈ sub(φ) and all i ≥ 0, we have K, i |= ψ iff I, f(i) |= ψ.

The proof of the claim is by induction on the structure of ψ. We concentrate on
the only non-trivial case, i.e., the case where ψ is of the form 3χ.

To show the “if” direction, assume that I, f(i) |= 3χ. First assume that P (χ)
is finite. Let s ≥ 0 be maximal such that I, s |= χ. Since I, f(i) |= 3χ, we have
s ≥ f(i). By the definition of the function p, we also have p(χ) = s. In addition,
by the definition of the function f , and since s ≥ f(i), there is a j ≥ i with
f(j) = s. The induction hypothesis yields K, j |= χ, and thus, by the semantics of
the diamond operator, K, i |= 3χ.

Now assume that P (χ) is infinite. By the definition of the function p, we have
p(χ) ≥ `. In addition, by the definition of the function f , there thus is a j > i with
f(j) = p(χ). Since I, p(χ) |= χ, the induction hypothesis yields K, j |= χ, and thus
K, i |= 3χ. This completes the proof of the “if” direction.

To show the “only if” direction, assume that K, i |= 3χ. First, assume that P (χ)
is finite. We know that there is a j ≥ i with K, j |= χ. The induction hypothesis
yields I, f(j) |= χ. Since P (χ) is finite, we have f(j) < `, and the definition of f
together with j ≥ i yields f(j) ≥ f(i). By the semantics of the diamond operator,
this implies I, f(i) |= 3χ.

If P (χ) is infinite, then we have I, s |= 3χ for every s ≥ 0, and thus I, f(i) |= 3χ
is trivially satisfied. This completes the proof of the claim, and thus of the lemma.
o

Given this lemma, we can now prove that satisfiability of ALC-LTL|3 formulae
w.r.t. rigid names can be decided within deterministic exponential time.

Lemma 7.2. Satisfiability in ALC-LTL|3 w.r.t. rigid names is in ExpTime.

Proof. The proof of this lemma is very similar to the one of Lemma 4.3. We
use the same notation as in that proof. The first step is to establish the following
claim, where the set of propositional LTL|3 formulae is defined in the obvious way,
and where we use n to denote the number of ALC-axioms occurring in φ.

Claim. The ALC-LTL|3 formula φ is satisfiable w.r.t. rigid names iff there is a
set S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) of cardinality k ≤ |φ| + 2 such that the

propositional LTL|3 formula φ̂S is satisfiable and the Boolean ALC-knowledge base
B :=

∧
1≤i≤k Bi is consistent.
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The “if” direction of this claim is an immediate consequence of the corresponding
claim shown in the proof of Lemma 4.3. For the “only if” direction, we can use
the proof of the “only if” direction of the corresponding claim shown in the proof
of Lemma 4.3. The only difference is that we start with an ALC-LTL structure I
respecting rigid concept and role names of weight at most |φ|+2 such that K, 0 |= φ.
The existence of such a structure is guaranteed by Lemma 7.1. It is easy to see
that then the set S = {X1, . . . , Xk} defined in the proof of Lemma 4.3 indeed is of
cardinality k ≤ |φ|+ 2.

This completes the proof of the claim. It remains to show that the claim provides
us with a decision procedure for satisfiability in ALC-LTL|3 w.r.t. rigid names that
runs in deterministic exponential time. Let m := |φ|. There are ≤ (2n)m+2 ≤
2m(m+2) subsets S ⊆ P({p1, . . . , pn}) of cardinality ≤ m+ 2 to be considered. The
size of each such subset S = {X1, . . . , Xk} of cardinality k ≤ m + 2 is polynomial

in m, and thus, the size of both φ̂S and B =
∧

1≤i≤k Bi is polynomial in m. Since
satisfiability in propositional LTL is in PSpace and the consistency problems for
Boolean ALC-knowledge bases is in ExpTime, this completes the proof of the
lemma. o

ExpTime-hardness of satisfiability in ALC-LTL|3 can be shown as in the proof
of Theorem 5.4 by a reduction of the well-known ExpTime-hard problem of satis-
fiability of an ALC-concept C w.r.t. a single GCI C1 v C2. In fact, C is satisfiable
w.r.t. C1 v C2 iff the ALC-LTL|3 formula a : C ∧ ¬3¬(C1 v C2) is satisfiable
w.r.t. rigid names.

Theorem 7.3. Satisfiability in ALC-LTL|3 w.r.t. rigid names is an ExpTime-
complete problem.

Obviously, the above reduction does not depend on the availability of rigid names,
and the ExpTime decision procedure described in the proof of Lemma 7.2 also
works in case there are only rigid concepts or no rigid names at all.

Corollary 7.4. Satisfiability in ALC-LTL|3 w.r.t. rigid concepts (without rigid
names) is an ExpTime-complete problem.

8. CONCLUSION

We have analyzed the complexity of combinations of ALC with LTL where tempo-
ral operators can only be applied to TBox axioms and ABox assertions, but not
to concepts. One main result is that, under this syntactic restriction, reasoning
remains decidable (in elementary time) even in the presence of rigid roles. The
2-ExpTime complexity can be reduced to NExpTime by disallowing rigid roles,
or alternatively to ExpTime by disallowing the use of temporal (and Boolean!)
operators on TBox axioms, i.e., switching to global TBoxes. Further reductions in
complexity are possible by disallowing rigid concept and restricting the temporal
component to the operators 3 and 2. We once more refer to Table II for full details.

An interesting direction for future research is to consider weakenings of the tem-
poralized DLs studied in this paper that are obtained by replacing ALC with more
lightweight description logics such as EL and DL-Lite. For the EL case, we suspect
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that the lower bounds presented in this paper can be modified to go through, which
would imply that the complexity of reasoning does not decrease.10 On the other
hand, it seems reasonable to expect that a replacement of ALC with DL-Lite does
result in a significant decrease of complexity.

Another topic of interest is to replace constant domains with expanding domains,
decreasing domains, or varying domains. In traditional temporalized DLs, this
choice usually has no considerable impact on the complexity of reasoning. Due to
the absence of temporal operators on concepts, though, it is not clear that this is
also the case for the temporalized DLs studied in this paper. In contrast, it is quite
conceivable that adopting, say, varying domains leads to a decrease of complexity
for some of the DLs defined here.
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