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Abstract

In the area of Description Logics the least common
subsumer (lcs) and the most specific concept (msc)
are inferences that generalize a set of concepts or
an individual, respectively, into a single concept. If
computed w.r.t. a general EL-TBox neither the lcs
nor the msc need to exist. So far in this setting no
exact conditions for the existence of lcs- or msc-
concepts are known. This paper provides necessary
and sufficient conditions for the existence of these
two kinds of concepts. For the lcs of a fixed number
of concepts and the msc we show decidability of the
existence in PTime and polynomial bounds on the
maximal role-depth of the lcs- and msc-concepts.
This bound allows to compute the lcs and the msc,
respectively.

1 Introduction
Description Logics (DL) allow to model application domains
in a structured and well-understood way. Due to their formal
semantics, DLs can offer powerful reasoning services.

In recent years the lightweight DL EL became popular as
an ontology language for large-scale ontologies. EL provides
the logical underpinning of the OWL 2 EL profile of the W3C
web ontology language [W3C OWL Working Group, 2009],
which is used in important life science ontologies, as for in-
stance, SNOMED CT [Spackman, 2000] and the thesaurus of
the US national cancer institute (NCI) [Sioutos et al., 2007],
which contain ten thousands of concepts. The reason for the
success of EL is that it offers limited, but sufficient expres-
sive power, while reasoning can still be done in polynomial
time [Baader et al., 2005].

In DLs basic categories from an application domain can be
captured by concepts and binary relations by roles. Implica-
tions between concepts can be specified in the so-called TBox.
A general TBox allows complex concepts on both sides of im-
plications. Facts from the application domain can be captured
by individuals and their relations in the ABox.
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Classical inferences for DLs are subsumption, which com-
putes the sub- and super-concept relationships of named con-
cepts and instance checking, which determines for a given
individual whether it belongs to a given concept. Reasoning
support for the design and maintenance of large ontologies
can be provided by the bottom-up approach, which allows to
derive a new concept from a set of example individuals, see
[Baader et al., 1999]. For this kind of task the generaliza-
tion inferences least common subsumer (lcs) and most spe-
cific concept (msc) are investigated for lightweight DLs like
EL. The lcs of a collection of concepts is a complex concept
that captures all commonalities of these concepts. The msc
generalizes an individual into a complex concept, that is the
most specific one (w.r.t. subsumption) of which the individual
is an instance of.

Unfortunately, neither the lcs nor the msc need to exist, if
computed w.r.t. general EL-TBoxes [Baader, 2003] or cyclic
ABoxes written in EL [Küsters and Molitor, 2002]. Let’s
consider the TBox statements:

Penicillin v Antibiotic u ∃kills.S-aureus,

Carbapenem v Antibiotic u ∃kills.E-coli,

S-aureus v Bacterium u ∃resistantMutant.Penicillin,

E-coli v Bacterium u ∃resistantMutant.Carbapenem

We want to compute the lcs of Penicillin and Carbapenem.
Now, both concepts are defined by the type of bacterium they
kill. These, in turn, are defined by the substance a mutant
of theirs is resistant to. This leads to a cyclic definition and
thus the common subsumer cannot be captured by a finite EL-
concept, since this would need to express the cycle. If com-
puted w.r.t. a TBox that extends the above one by the axioms:

Antibiotic v ∃kills.Bacterium,

Bacterium v ∃resistantMutant.Antibiotic,

then the lcs of Penicillin and Carbapenem is just Antibiotic.
We can observe that the existence of the lcs does not merely
depend on whether the TBox is cyclic. In fact, for cyclic EL-
TBoxes exact conditions for the existence of the lcs have been
devised [Baader, 2004]. However, for the case of general EL-
TBoxes such conditions are unknown.

There are several approaches to compute generalizations
even in this setting. In [Lutz et al., 2010] an extension of



EL with greatest fixpoints was introduced, where the gener-
alization concepts always exist. Computation algorithms for
approximative solutions for the lcs were devised in [Baader
et al., 2007; Peñaloza and Turhan, 2011b] and for the msc in
[Küsters and Molitor, 2002]. The last two methods simply
compute the generalization concept up to a given k, a bound
on the maximal nestings of quantifiers. If the lcs or msc ex-
ists and a large enough k was given, then these methods yield
the exact solutions. However, to obtain the least common
subsumer and the most specific concept by these methods in
practice, a decision procedure for the existence of the lcs or
msc, resp., and a method for computing a sufficient k are still
needed. This paper provides these methods for the lcs and the
msc.

In this paper we first introduce basic notions for the DL EL
and its canonical models, which serve as a basis for the char-
acterization of the lcs introduced in the subsequent section.
There we show that the characterization can be used to verify
whether a given generalization is the most specific one and
that the size of the lcs, if it exists, is polynomially bounded in
the size of the input, which yields a decision procedure for the
existence problem. In Section 4 we show the corresponding
results for the msc. We end with some conclusions.

2 Preliminaries
2.1 The Description Logic EL
Let NC , NR and NI be disjoint sets of concept, role and in-
dividual names. Let A ∈ NC and r ∈ NR. EL-concepts are
built according to the syntax rule

C ::= > | A | C uD | ∃r.C

An interpretation I = (∆I , ·I) consists of a non-empty
domain ∆I and a function ·I that assigns subsets of ∆I to
concept names, binary relations on ∆I to role names and ele-
ments of ∆I to individual names. The function is extended to
complex concepts in the usual way. For a detailed description
of the semantic of DLs see [Baader et al., 2003].

Let C, D denote EL-concepts. A general concept inclu-
sion (GCI) is an expression of the form C v D. A (general)
TBox T is a finite set of GCIs. A GCI C v D is satisfied
in an interpretation I if CI ⊆ DI . An interpretation I is a
model of a TBox T if it satisfies all GCIs in T .

Let a, b ∈ NI , r ∈ NR and C a concept, then C(a) is a
concept assertion and r(a, b) a role assertion. An interpreta-
tion I satisfies an assertion C(a) if aI ∈ CI and r(a, b) if
(aI , bI) ∈ rI holds. An ABox A is a finite set of assertions.
An interpretation I is a model of an ABox A if it satisfies
all assertions in A. A knowledge base (KB) K consists of
a TBox and an ABox (K = (T ,A)). An interpretation is a
model of K = (T ,A) if it is a model of T and A.1

Important reasoning tasks considered for DLs are sub-
sumption and instance checking. A conceptC is subsumed by
a concept D w.r.t. a TBox T (denoted C vT D) if CI ⊆ DI
holds in all models I of T . A concept C is equivalent to a

1Since we only use the DL EL, we write ‘concept’ instead of
‘EL-concept’ and assume all TBoxes, ABoxes and KBs to be written
in EL in the following.

concept D w.r.t. a TBox T (denoted C ≡T D) if C vT D
and D vT C hold. A reasoning service dealing with a KB is
instance checking. An individual a is instance of the concept
C w.r.t. K (denoted K |= C(a)) if aI ∈ CI holds in all mod-
els I of K. These two reasoning problems can be decided for
EL in polynomial time [Baader et al., 2005].

Based on subsumption and instance checking our two in-
ferences of interest least common subsumer (lcs) and most
specific concept (msc) are defined.

Definition 1. Let C,D be concepts and T a TBox. The con-
cept E is the lcs of C, D w.r.t. T (lcsT (C,D)) if the proper-
ties

1. C vT E and D vT E, and

2. C vT F and D vT F implies E vT F .

are satisfied. If a conceptE satisfies Property 1 it is a common
subsumer of C and D w.r.t. T .

The lcs is unique up to equivalence, while common sub-
sumers are not unique, thus we write G ∈ csT (C,D).

The role depth rd(C) of a concept C denotes the maximal
nesting depth of ∃ inC. If, in Definition 1 the conceptsE and
F have a role-depth up to k, thenE is the role-depth bounded
lcs (k-lcsT (C,D)) of C and D w.r.t. T .
NI,A is the set of individual names used in an ABox A.

Definition 2. Let a ∈ NI,A and K = (T ,A) a KB. A con-
cept C is the most specific concept of a w.r.t. K (mscK(a)) if
it satisfies:

1. K |= C(a), and 2. K |= D(a) implies C vT D.

If in the last definition the concepts C and D have a role-
depth limited to k, then C is the role depth bounded msc of a
w.r.t. K (k-mscK(a)). The msc and the k-msc are unique up
to equivalence in EL.

2.2 Canonical Models and Simulation Relations
The correctness proof of the computation algorithms for the
lcs and msc depends on the characterization of subsumption
and instance checking, respectively. In case of an empty
TBox, homomorphisms between syntax trees of concepts
[Baader et al., 1999] were used. A characterization w.r.t.
general TBoxes using canonical models and simulations was
given in [Lutz and Wolter, 2010], which we want to use in the
following.

Let X be a concept, TBox, ABox or KB, then NC,X
(NR,X ) denotes the set of concept names (role names) oc-
curring in X and sub(X) denotes the subconcepts in X .

Definition 3. Let C be a concept and T a TBox.
The canonical model IC,T of C and T is defined as follows:

∆IC,T := {dC} ∪ {dD | ∃r.D ∈ sub(C) ∪ sub(T )};
AIC,T := {dD | D vT A}, for all A ∈ NC,T
rIC,T := {(dD, dE) | D vT ∃r.E for ∃r.E ∈ sub(T )

or ∃r.E is conjunct in D}, for all r ∈ NR,T .

The notion of a canonical model can be extended to a KB.



Definition 4. LetK = (T ,A) be a KB. The canonical model
IK w.r.t. K is defined as follows:

∆IK := {da | a ∈ NI,A} ∪ {dC | ∃r.C ∈ sub(K)}
AIK := {da | K |= A(a)} ∪ {dC | C vT A},

for all A ∈ NC,K;

rIK := {(dC , dD) | C vT ∃r.D,∃r.D ∈ sub(T )}
∪{(da, db) | r(a, b) ∈ A}, for all r ∈ NR,K;

aIK := da, for all a ∈ NI,A.

To identify some properties of canonical models we use
simulation relations between interpretations.
Definition 5. Let I1, I2 be interpretations. S ⊆ ∆I1 ×∆I2

is a simulation between I1 and I2 if the following conditions
are satisfied for all A ∈ NC and for all r ∈ NR:
(S1) If (e1, e2) ∈ S and e1 ∈ AI1 , then e2 ∈ AI2 .
(S2) If (e1, e2) ∈ S and (e1, e

′
1) ∈ rI1 , then there exists

e′2 ∈ ∆I2 s.t. (e2, e
′
2) ∈ rI2 and (e′1, e

′
2) ∈ S.

The tuple (I, d) denotes an interpretation I with d ∈ ∆I .
If there exists a simulation S ⊆ ∆I × ∆J with (d, e) ∈ S,
we write (I, d) . (J , e) and say (J , e) simulates (I, d). We
write (I, d) ' (J , e) if (I, d) . (J , e) and (J , e) . (I, d)
holds. We summarize some important properties of canonical
models.
Lemma 6. [Lutz and Wolter, 2010] Let C be a concept and
T a TBox.

1. IC,T is a model of T .

2. For all models I of T and all d ∈ ∆I holds:
d ∈ CI iff (IC,T , dC) . (I, d).

3. C vT D iff dC ∈ DIC,T iff (ID,T , dD) . (IC,T , dC).
This Lemma gives us a characterization of subsumption. A

similar Lemma was shown for the instance relationship.
Lemma 7. [Lutz and Wolter, 2010] Let K be a KB. IK satis-
fies: 1. IK is a model of K. 2. K |= C(a) iff da ∈ CIK .

Next, we recall some known operations on interpretations.
Taking an element d of the domain of an interpretation as
the root, the interpretation can be unraveled into a possibly
infinite tree. The nodes of the tree are words that correspond
to paths starting in d. We have that π = dr1d1r2d2r3... is
a path in an interpretation I, if the domain elements di and
di+1 are connected via rIi+1 for all i.

Definition 8. Let I be an interpretation with d ∈ ∆I . The
tree unraveling Id of I in d is defined as follows:
∆Id := {dr1d1r2...rndn | (di, di+1) ∈ rIi+1, i ≥ 0, d0 = d}
AId := {σd′ | σd′ ∈ ∆Id ∧ d′ ∈ AI}
rId := {(σ, σrd′) | (σ, σrd′) ∈ ∆Id ×∆Id}.
The length of an element σ ∈ ∆Id , denoted by |σ|, is the

number of role names occurring in σ. If σ is of the form
dr1d1r2...rmdm, then dm is the tail of σ denoted by tail(σ) =
dm. The interpretation I`d denotes the finite subtree of the tree
unraveling Id up to depth `. Such a tree can be translated into
an `-characteristic concept of an interpretation (I, d).

Definition 9. Let (I, d) be an interpretation. The `-
characteristic concept X`(I, d) is defined as follows:

• X0(I, d) :=
d
{A ∈ NC | d ∈ AI}

• X`(I, d) :=

X0(I, d) u
l

r∈NR

l
{∃r.X`−1(I, d′) | (d, d′) ∈ rI}

3 Existence of Least Common Subsumers
In this section we develop a decision procedure for the prob-
lem whether for two given concepts and a given TBox the
least common subsumer of these two concepts exists w.r.t. the
given TBox. If not stated otherwise, the two input concepts
are denoted by C and D and the TBox by T .

Similar to the approach used in [Baader, 2004] we proceed
by the following steps:

1. Devise a method to identify lcs-candidates for the lcs.
The set of lcs-candidates is a possibly infinite set of common
subsumers of C and D w.r.t. T , such that if the lcs exists then
one of these lcs-candidates actually is the lcs.

2. Characterize the existence of the lcs. Find a condition
such that the problem whether a given common subsumer of
C andD w.r.t. T is least (w.r.t.vT ), can be decided by testing
this condition.

3. Establish an upper bound on the role-depth of the lcs.
We give a bound ` such that if the lcs exists, then it has a role-
depth less or equal `. By such an upper bound one needs to
check only for finitely many of the lcs-candidates if they are
least (w.r.t. vT ).

The next subsection addresses the first two problems, af-
terwards we show that such a desired upper bound exists.

3.1 Characterizing the Existence of the lcs
The characterization presented here is based on the product
of canonical models. This product construction is adopted
from [Baader, 2003; Lutz et al., 2010] where it was used to
compute the lcs in ELwith gfp-semantics and in the DL ELν ,
respectively.

To obtain the k-lcsT (C,D) we build the product of the
canonical models (IC,T , dC) and (ID,T , dD) and then take
the k-characteristic concept of this product model.

Lemma 10. Let k ∈ N.

1. Xk(IC,T × ID,T , (dC , dD)) ∈ csT (C,D).

2. Let E ∈ csT (C,D) with rd(E) ≤ k. It holds that
Xk(IC,T × ID,T , (dC , dD)) vT E.

This and all the proofs omitted in this paper due to space
constraints can be found in [Zarrieß and Turhan, 2013].

In the following we take Xk(IC,T × ID,T , (dC , dD)) as a
representation of the k-lcsT (C,D). It is implied by Lemma
10 that the set of k-characteristic concepts of the product
model (IC,T × ID,T , (dC , dD)) for all k is the set of lcs-
candidates for the lcsT (C,D), which can be stated as follows.

Corollary 11. The lcsT (C,D) exists iff there exists a k ∈ N
such that for all ` ∈ N: k-lcsT (C,D) vT `-lcsT (C,D).
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IAu∃kills.(Bu∃resistantMutant.A),T1

Figure 1: Product of canonical models of T1 and T2

Obviously, this doesn’t yield a decision procedure for the
problem whether the k-lcsT (C,D) is the lcs, since subsump-
tion cannot be checked for infinitely many ` in finite time.

Next, we address step 2 and show a condition on the com-
mon subsumers that decides whether a common subsumer is
least or not. The main idea is that the product model captures
all commonalities of the input concepts by means of canon-
ical models. Thus we compare the canonical models of the
common subsumers and the product model using simulation-
equivalence '.

Lemma 12. Let E be a concept. E ≡T lcsT (C,D) iff
(IC,T × ID,T , (dC , dD)) ' (IE,T , dE).

Proof sketch. For any F ∈ csT (C,D) it holds by Lemma 6,
Claim 3 that (IF,T , dF ) is simulated by (IC,T , dC) and
(ID,T , dD) and therefore also by (IC,T × ID,T , (dC , dD)).

Assume (IE,T , dE) is simulation-equivalent to the product
model. We need to show that E ≡T lcsT (C,D). By transi-
tivity of . it is implied that (IF,T , dF ) . (IE,T , dE) and
E vT F by Lemma 6. Therefore E ≡T lcsT (C,D).

For the other direction assume E ≡T lcsT (C,D). It has
to be shown that (IE,T , dE) simulates the product model.
Let J(dC ,dD) be the tree unraveling of the product model.
Since E is more specific than the k-characteristic concepts
of the product model for all k (by Corollary 11), (IE,T , dE)
simulates the subtree J k(dC ,dD) of J(dC ,dD) limited to ele-
ments up to depth k, for all k. For each k we consider the
maximal simulation from J k(dC ,dD) to (IE,T , dE). Note that
((dC , dD), dE) is contained in any of these simulations. Let
σ be an element of ∆J(dC,dD) at an arbitrary depth `. We
show how to determine the elements of ∆IE,T , that simu-
late this fixed element σ. Let Sn(σ) be the maximal set of
elements from ∆IE,T that simulate σ in each of the trees
J n(dC ,dD) with n ≥ `. We can observe that the infinite se-
quence (S`+i(σ))i=0,1,2,... is decreasing (w.r.t.⊇). Therefore
at a certain depth we reach a fixpoint set. This fixpoint set
exists for any σ. It can be shown that the union of all these
fixpoint sets yields a simulation from the product model to
(IE,T , dE).

By the use of this Lemma it can be verified whether a given
common subsumer is the least one or not, which we illustrate
by an example.

Example 13. Consider again the TBox from the introduction
(now displayed with abbreviated concept names)

T1 = {P v A u ∃kills.S, S v B u ∃resistantMutant.P,

C v A u ∃kills.E, E v B u ∃resistantMutant.C}
and the following extended TBox

T2 = T1 ∪ {A v ∃kills.B, B v ∃resistantMutant.A}.
In Figure 1 we can see that

A u ∃kills.(B u ∃resistantMutant.A) ∈ csT1(P,C),

but it is not the lcs, because its canonical model cannot sim-
ulate the product model (IP,T1 × IC,T1 , (dP, dC)). The con-
cept A, however, is the lcs of P and C w.r.t. T2. We have
(IP,T2 × IC,T2 , (dP, dC)) . (IA,T2 , dA) since any element
from ∆IP,T2

×IC,T2 in AIP,T2
×IC,T2 or BIP,T2

×IC,T2 is simu-
lated by A or B , respectively.

The characterization of the existence of the lcs given in
Corollary 11 can be reformulated using Lemma 12.
Corollary 14. The lcsT (C,D) exists iff there exists a k such
that the canonical model ofXk(IC,T ×ID,T , (dC , dD)) w.r.t.
T simulates (IC,T × ID,T , (dC , dD)).

This corollary still doesn’t yield a decision procedure for
the existence problem, since the depth k is still unrestricted.
Such a restriction will be developed in the next section.

3.2 A Polynomial Upper Bound on the Role-depth
of the lcs

In this section we show that, if the lcs exists, its role-depth
is bounded by the size of the product model. First, con-
sider again the TBox T2 from Example 13, where A vT2
∃kills.(B u ∃resistantMutant.A) holds, which results in a loop
in the product model through the elements A,A and B,B .
Furthermore, the cycles in the product model involving the
roles kills and resistantMutant are captured by the canonical
model IA,T2 . Therefore A ≡T2 lcsT2(P,C). On this observa-
tion we build our general method.

We call elements (dF , dF ′) ∈ ∆IC,T ×ID,T synchronous
if F = F ′ and asynchronous otherwise. The structure of
(IC,T ×ID,T , (dC , dD)) can now be simplified by consider-
ing only synchronous successors of synchronous elements.

In order to find a number k, such that the prod-
uct model is simulated by the canonical model of



K = Xk(IC,T × ID,T , (dC , dD)), we first represent the
model (IK,T , dK) as a subtree of the tree unraveling of the
product model J(dC ,dD) with root (dC , dD). We construct
this representation by extending the subtree J k(dC ,dD) by new
tree models at depth k. We need to ensure that the result-
ing interpretation, denoted by Ĵ k(dC ,dD), is a model of T ,
that is simulation-equivalent to (IK,T , dK). The elements

σ ∈ ∆J
k
(dC,dD) with |σ| = k that we extend and the corre-

sponding trees we append to them are selected as follows: Let
M be a conjunction of concept names and ∃r.F ∈ sub(T ).
If σ ∈ MJ

k
(dC,dD) and M vT ∃r.F , then we append the

tree unraveling of the canonical model I∃r.F,T . Further-
more, we consider elements that have a tail that is a syn-
chronous element. If tail(σ) = (dF , dF ), then F is called
tail concept of σ. To select the elements with a synchronous
tail, that we extend by the canonical model of their tail con-
cept, we use embeddings of J k(dC ,dD) into (IK,T , dK). Let
H = {Z1, ..., Zn} be the set of all functional simulations
Zi from J k(dC ,dD) to (IK,T , dK) with Zi((dC , dD)) = dK .
We say that σ with tail concept F is matched by Zi if
Zi(σ) ∈ F IK,T . The set of elements σ ∈ ∆J

k
(dC,dD) with

|σ| = k, that are matched by a functional simulation Zi is
called matching set, denoted by M(Zi). Now consider the
setM(H) := {M(Z1), ...,M(Zn)}. If σ is contained in all
maximal matching sets fromM(H), then we extend σ by the
tree unraveling of the canonical model of its tail concept w.r.t.
T .

We can show that the resulting interpretation Ĵ k(dC ,dD) has
the desired properties.

Lemma 15. LetK = Xk(IC,T ×ID,T , (dC , dD)). Ĵ k(dC ,dD)

is a model of T and Ĵ k(dC ,dD) ' (IK,T , dK).

Having this representation of the canonical model of the
k-lcsT (C,D) we first show a sufficient condition for the ex-
istence of the lcs.

Corollary 16. If all cycles in (IC,T × ID,T , (dC , dD)), that
are reachable from (dC , dD) consist of synchronous elements,
then the lcsT (C,D) exists.

Proof sketch. There exists an ` ∈ N such that all paths in the
tree unraveling J(dC ,dD) of (IC,T ×ID,T , (dC , dD)) starting
in (dC , dD) have a maximal asynchronous prefix up to length
`, i.e., if there exists an element at depth ≥ ` + 1, then it is a
synchronous element. Consider the number

m := max({rd(F ) | F ∈ sub(T ) ∪ {C,D}}).

We unravel (IC,T × ID,T , (dC , dD)) up to depth `+m+ 1

such that we get J `+m+1
(dC ,dD). Now it is ensured that the cor-

responding model Ĵ `+m+1
(dC ,dD) contains all paths with a maxi-

mal asynchronous prefix up to length `. It is implied that
Ĵ `+m+1
(dC ,dD) = J(dC ,dD). From Lemma 15 and Corollary 14 it

follows that X`+m+1(IC,T ×ID,T , (dC , dD)) is the lcs.

As seen in Example 13 for T2, this is not a necessary con-
dition for the existence of the lcs.

d0p =

σ0p` =

d1

σ1

d2

σ2

d3

σ3

· · ·

· · ·

r1

r1

r2

r2

r3

r3

r4

r4

S S S S

Figure 2: simulation chain of p and p`

Another consequence of Lemma 15 is, that if the product
model (IC,T × ID,T , (dC , dD)) has only asynchronous cy-
cles reachable from (dC , dD), then the lcsT (C,D) does not
exist. Since in this case J(dC ,dD) is infinite but Ĵ k(dC ,dD) is fi-
nite for all k ∈ N, a simulation from (IC,T ×ID,T , (dC , dD))

to Ĵ k(dC ,dD) never exists for all k. For instance, this case ap-
plies to Example 13 w.r.t. to T1.

The interesting case is where we have both asynchronous
and synchronous cycles reachable from (dC , dD) in the
product model. In this case we choose a k that is large
enough and then check whether the canonical model of
Xk(IC,T × ID,T , (dC , dD)) w.r.t. T simulates the product
model.

We show in the next Lemma that the role-depth of the
lcsT (C,D), if it exists, can be bounded by a polynomial, that
is quadratic in the size of the product model.

Lemma 17. Let n := |∆IC,T ×ID,T | and
m := max({rd(F ) | F ∈ sub(T )∪{C,D}}). If lcsT (C,D)

exists then (IC,T × ID,T , (dC , dD)) . Ĵ n
2+m+1

(dC ,dD) .

Proof sketch. Assume lcsT (C,D) exists. From Corollary 14
and Lemma 15 it follows that there exists a number ` such
that

(IC,T × ID,T , (dC , dD)) . Ĵ `(dC ,dD). (1)

Every path in Ĵ `(dC ,dD) has a maximal asynchronous prefix of
length ≤ `. From depth ` + 1 on there are only synchronous
elements in the tree Ĵ `(dC ,dD). From (1) it follows that every
path p in (IC,T × ID,T , (dC , dD)) starting in (dC , dD), is
simulated by a corresponding path p` in Ĵ `(dC ,dD) also starting
in (dC , dD). The simulation chain of p and p` is depicted in
Figure 2. The idea is to use the simulating path p` to construct
a simulating path in Ĵ `(dC ,dD) (also starting in (dC , dD)) with
a maximal asynchronous prefix of length ≤ n2, where n2
is the number of pairs of elements from ∆IC,T ×ID,T . Intu-
itively, if p` has a maximal asynchronous prefix that is longer
than n2, then there are pairs in the simulation chain that occur
more than once. This is used to construct a simulating path
with a shorter maximal asynchronous prefix step-wise. After
a finite number of steps the result is a simulating path, such
that all pairs consisting of asynchronous elements in the cor-
responding simulation chain are pairwise distinct. Therefore
we need only asynchronous elements from Ĵ `(dC ,dD) up to
depth n2 to simulate the product model. Then we addm+1 to
n2 to ensure that Ĵ n

2+m+1
(dC ,dD) contains all paths from J(dC ,dD)

starting in (dC , dD), that have a maximal asynchronous pre-



fix of length ≤ n2. As argued above Ĵ n
2+m+1

(dC ,dD) simulates
(IC,T × ID,T , (dC , dD)).

Using Lemma 12 and Lemma 17 we can now show the
main result of this paper.
Theorem 18. Let C,D be concepts and T a general TBox.
It is decidable in polynomial time whether the lcsT (C,D) ex-
ists. If the lcsT (C,D) exists it can be computed in polynomial
time.

Proof. First we compute the bound k as given in Lemma
17 and then the k-characteristic concept K of (IC,T ×
ID,T , (dC , dD)). The canonical model of K can be build
according to Definition 3 in polynomial time [Baader et al.,
2005]. Next we check whether (IC,T × ID,T , (dC , dD)) .
(IK,T , dK) holds, which can be done in polynomial time. If
yes, K is the lcs by Lemma 12 and if no, the lcs doesn’t exist
by Lemma 17.

The results from this section can be easily generalized to
the lcs of an arbitrary set of concepts M = {C1, ..., Cm}
w.r.t. a TBox T . But in this case the size of the lcs is already
exponential w.r.t. an empty TBox [Baader et al., 1999]. In
this general case we have to take the product model

(IC1,T × · · · × ICm,T , (dC1
, · · · , dCm

)),

whose size is exponential in the size of M and T , as input for
the methods introduced in this section. Then the same steps
as for the binary version can be applied.

4 Existence of Most Specific Concepts
We show now that the results obtained for the lcs, can be
easily applied to the existence problem of the msc.
Example 19 (From [Küsters and Molitor, 2002]). The msc
of the individual a w.r.t. the following KB

K1 = (∅,A1), with A1 = {r(a, a)}

doesn’t exist, whereas w.r.t. the modified KB

K2 = ({C v ∃r.C},A2), with A2 = A1 ∪ {C(a)}

C is the msc of a.
To decide existence of the msc of an individual a w.r.t. a

KB K = (T ,A), we again start with defining the set of msc-
candidates for the msc by taking the k-characteristic concept
of the canonical model (IK, da) of K.
Lemma 20. Let k ∈ N. It holds that K |= Xk(IK, da)(a)
and for a concept E with rd(E) ≤ k, K |= E(a) implies
Xk(IK, da) vT E.

Therefore Xk(IK, da) ≡T k-mscK(a). Now we use the
canonical model of Xk(IK, da) w.r.t. the TBox component
T ofK and the model (IK, da) to check whetherXk(IK, da)
is the most specific concept.
Lemma 21. For a concept C it holds that C ≡T mscK(a) iff
(IK, da) ' (IC,T , dC).

By this Lemma the existence of the msc can be character-
ized as follows.

Corollary 22. The mscK(a) exists iff there exists a k such
that the canonical model of Xk(IK, da) w.r.t. T simulates
(IK, da).

To decide whether an appropriate k exists such that
Xk(IK, da) simulates (IK, da), we further examine the
structure of (IK, da). In Example 19 da has a self-loop in the
model (IK1

, da), but the canonical models of Xk(IK1
, da)

are finite for all k ∈ N, because the TBox is empty. Therefore
a simulation never exists. In comparison, the model (IK2 , da)
has additionally a self-loop at dC and the canonical models of
Xk(IK2 , da) w.r.t. T2 also contain this loop.

Intuitively, in the general case, the elements in ∆IK , that
are elements in bIK (for b ∈ NI,A), correspond to the
asynchronous elements of the product of canonical models
and the elements dC ∈ ∆IK for some concept C, corre-
spond to the synchronous elements. The model (IK, da) also
has an analogous structure compared to the product model
(IC,T × ID,T , (dC , dD)) in the sense that elements in ∆IK ,
that belong to concepts only have successor elements that be-
long to concepts. Therefore similar arguments as presented in
Section 3.2 can be used to show, that a representation of the
canonical model of Xk(IK, da) as a subtree of the tree un-
raveling of (IK, da) can be obtained. This representation is
denoted by Ĵ kda . This model is used to show an upper bound
on the role-depth k of the msc.
Lemma 23. Let m := max({rd(F ) | F ∈ sub(K)})
and n := |NI,A|. If the mscK(a) exists, then
(IK, da) . Ĵ n

2+m+1
da

.
The results of this section can be summarized in the fol-

lowing theorem.
Theorem 24. Let K = (T ,A) be a KB and a ∈ NI,A. It is
decidable in polynomial time whether the mscK(a) exists. If
the mscK(a) exists, it can be computed in polynomial time.

Proof sketch. First we compute the bound k as given in
Lemma 23 and then the k-characteristic conceptXk(IK, da).
The canonical model of K can be build according to Defi-
nition 4 in polynomial time [Baader et al., 2005]. Then we
check whether (IK, da) . (IC,T , dC) holds, which can be
done in polynomial time. If yes, C is the msc and if no, the
msc doesn’t exist by Corollary 22.

All the proofs omitted here due to space constraints are
given in [Zarrieß and Turhan, 2013].

5 Conclusions
In this paper we have studied the conditions for the existence
of the lcs and of the msc, if computed w.r.t. general TBoxes
or cyclic ABoxes, respectively, written in the DL EL. In this
setting neither the lcs nor the msc need to exist. It was an
open problem to give necessary and sufficient conditions for
their existence. We showed that the existence problem of the
msc and the lcs of two concepts is decidable in polynomial
time. Furthermore, we showed that the role-depth of these
most specific generalizations can be bounded by a polyno-
mial. This upper bound k can be used to compute the msc
or lcs, if it exists. Otherwise the computed concept can still
serve as an approximation [Peñaloza and Turhan, 2011b].
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