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Abstract

Several researchers have developed properties that en-
sure compatibility of a concept similarity or dissimilarity
measure with the formal semantics of Description Log-
ics. While these authors have highlighted the relevance
of the triangle inequality, none of their proposed dissim-
ilarity measures satisfy it. In this work we present a
theoretical framework for dissimilarity measures with
this property. Our approach is based on concept relax-
ations, operators that perform stepwise generalizations
on concepts. We prove that from any relaxation we can
derive a dissimilarity measure that satisfies a number or
properties that are important when comparing concepts.

1 Introduction
By nature description logics are well equipped for represent-
ing precise knowledge in a formal manner. As ontologies
and description logics (DL) reach out to a broader audience
some limitations become evident. In practice, it often oc-
curs that two concepts have similar meanings, but no precise
logical relationship can be established. Similarity measures,
or dually dissimilarity measures, are attempts to quantify
the differences between concepts. They are crucial in areas
such as information retrieval in ontologies, ontology align-
ment, inductive logic programming and for some tasks in
non-monotonic reasoning such as model-based revision or
aggregation.

In a DL setting similarity can be defined between individ-
uals, concepts, or even ontologies. In this work we focus
exclusively on concept similarity. A large number of con-
cept similarity measures has been developed, most of which
are tailored to the specific needs of a particular field, such
as biomedicine (Pesquita et al. 2009), or geospatial reason-
ing (Janowicz and Wilkes 2009). These approaches can be
classified according to various criteria, such as the ones given
in (Borgida, Walsh, and Hirsh 2005). Initially, the quality
of similarity measures has only been measured in terms of
empirical evaluations. Increasingly, researchers are starting
to look at theoretical properties that ensure compatibility of a
similarity measure with the formal semantics of description
logics. Works such as (d’Amato, Staab, and Fanizzi 2008)
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and (Lehmann and Turhan 2012) list amongst others the prop-
erties of a metric, in particular the triangle inequality, as well
as soundness with respect to equivalence and subsumption.

The triangle inequality has been somewhat controversial
and in some applications such as (Janowicz and Wilkes
2009) it is not needed. In other applications such as metric-
based conceptual clustering and distance-based optimization
methods it is crucial (Fayyad et al. 1996). Unfortunately,
even the measures presented in (Lehmann and Turhan 2012)
and (d’Amato, Staab, and Fanizzi 2008) with their otherwise
good theoretical properties do not satisfy the triangle inequal-
ity. Our results aim to provide knowledge engineers from
these fields with an adequate measure.

In this work, we give a general framework that can be
used to construct concept dissimilarity measures with good
theoretical properties, including the triangle inequality. The
framework is based on concept relaxations, operators that
can be used to successively make concepts more general. A
directed distance between two concepts C and D can then
be defined as the number of times D needs to be relaxed
before it subsumes C. We show that the maximum of the
two directed distances yields a good dissimilarity measure.
Finally, we demonstrate ways to instantiate the framework.

2 Preliminaries
2.1 Description Logics
Description logics are a family of knowledge representa-
tion formalisms (Baader 2003). Every description logic L
provides a set of concepts C(L). Concept descriptions are
recursively obtained from a set of concept names NC and
a set of role names NR using concept constructors such as
conjunction u, existential restrictions ∃ or the top concept
>, among others. The description logic that only allows for
these three constructors is called EL. In EL, concepts can be
visualized as EL-Description Trees where node labels repre-
sent concept names and edges represent roles. For example
the tree in Figure 1 represents the concept

Person u ∃c.Male u ∃c.∃c.Female. (1)

Using a model based semantics one can define a generality
relation on concepts. If D is more general than C, in other
words D subsumes C, we write C v D. We say that C and
D are equivalent (denoted by C ≡ D) if both C v D and
D v C hold.
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Figure 2: Consecutive applications
of ρdepth to (1)

In description logics, axioms are typically stored in ontolo-
gies, which can be divided into TBoxes and ABoxes. We
define our framework in the absence of background ontolo-
gies.

2.2 Similarity and Dissimilarity on Concepts
When similarity measures were first investigated within the
DL community, researchers mainly focused on adaptations of
existing measures from other fields (cf. (Borgida, Walsh, and
Hirsh 2005) for a survey). The quality of these measures was
mainly examined in an empirical way, showing that they per-
form well in a given setting, but providing little transferable
insight. It was only in (d’Amato, Staab, and Fanizzi 2008)
that qualitative criteria were developed, based on the ones
given by (Bock and Diday 2000). The following definition is
slightly adapted to dissimilarity between concepts.
Definition 1 (Dissimilarity (Bock and Diday 2000)). Let L
be a DL language. A function d : C(L)×C(L)→ R is called
a dissimilarity measure if it satisfies the following properties
for all C,D ∈ C(L).
• positiveness: d(C,D) ≥ 0

• reflexivity: d(C,C) = 0, and
• symmetry: d(C,D) = d(D,C).

These properties can be expected to hold for any dissim-
ilarity measure. In a description logics context it should
also be compatible with the semantics of the logic. To en-
sure this, (d’Amato, Staab, and Fanizzi 2008) and more re-
cently (Lehmann and Turhan 2012) have introduced an ex-
tended set of properties. These properties are originally stated
for similarity measures, here we present their equivalents for
dissimilarity measures.
Definition 2. A dissimilarity measure d : C(L)×C(L)→ R
is called
• equivalence closed if d(C,D) = 0 =⇒ C ≡ D,
• equivalence sound if D ≡ E =⇒ d(C,D) = d(C,E),
• subsumption preserving if C v D v E =⇒ d(C,D) ≤
d(C,E)

• reverse subsumption preserving if C v D v E =⇒
d(D,E) ≤ d(C,E)

• structurally dependent if for all sequences (Cn)n of atoms
with Ci 6v Cj for all i, j ∈ N, i 6= j the concepts

Dn =
l

i≤n

Ci uD,En =
l

i≤n

Ci u E

satisfy limn→∞ d(Dn, En) = 0 for all C,D,E ∈ C(L).
• We say that d fulfills the triangle inequality if d(C,E) ≤
d(C,D) + d(D,E) for all C,D,E ∈ C(L).
A dissimilarity d is a metric if it satisfies the triangle in-

equality and is additionally strict, i.e. d(x, y) = 0 implies
x = y.

A desirable feature of a good dissimilarity measure is that
concepts with more common features should be less dissim-
ilar than concepts with few common features. Structural
dependence is a formalization of this idea. Another attempt
has been introduced in (d’Amato, Staab, and Fanizzi 2008),
where it is formalized in terms of common subsumers.

Definition 3 ((Strict) Monotonicity). A dissimilarity measure
d : C(L)× C(L)→ R is called (strictly) monotone if for all
C,D,E ∈ C(L) that satisfy

• every common subsumer of C and E also subsumes D,
• there is a common subsumer of C and D that does not

subsume E,

it holds that d(C,D) ≤ d(C,E), respectively d(C,D) <
d(C,E).

3 General Framework
We provide a general framework for defining dissimilarity
measures. All dissimilarity measures obtained within this
framework have all properties from Section 2.2, except mono-
tonicity and structural dependence. The framework is based
on concept relaxation operators, operators that allow a step-
wise generalization of concepts.

Definition 4 (Relaxation). A (concept) relaxation is an op-
erator ρ : C(L) → C(L) that satisfies the following three
properties for all C,D ∈ L.

1. ρ is non-decreasing, i.e. C v D implies ρ(C) v ρ(D),
2. ρ is extensive, i.e. C v ρ(C), and
3. ρ is exhaustive, i.e. ∃k ∈ N0 : > v ρk(C), where ρk

denotes ρ applied k times, and ρ0 is the identity.

Examples for relaxation operators that can be used to in-
stantiate the framework are presented in Section 4.

A dissimilarity measure that is equivalence sound and
closed should have the value d(C,D) = 0 if and only if
C ≡ D, i.e. iff C v D and D v C. Like (Lehmann and
Turhan 2012) and (Suntisrivaraporn 2013) we first introduce
directed measures ddρ that capture how “far” D is from being
a subsumer of C, and vice versa. If both C v D and D v C
hold, then both directed measures will be 0. The directed
measure ddρ(C,D) counts how often we need to successively
relax D to reach a subsumer of C. If we think of concepts in
terms of sets of individuals, then the intuition behind succes-
sive relaxations can be visualized as in Figure 3.

Definition 5 (Directed measure). Let ρ be a relaxation on
C(L). For C,D ∈ C(L) the directed measure ddρ(C,D) is
defined as

ddρ(C,D) = min{k ∈ N0 | C v ρk(D)},

where ρk denotes ρ applied k times, and ρ0 is the identity.
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Figure 3: D needs to be relaxed twice before it subsumes C,
i.e. ddρ(C,D) = 2

The directed measure is always finite because ρ is exhaus-
tive. We can then define the relaxation dissimilarity based
on a relaxation operator simply as the maximum of the two
directed measures.
Definition 6 (Relaxation Dissimilarity). Let ρ : L → L be a
relaxation on C(L). For two conceptsC andD the relaxation
dissimilarity dρ(C,D) is defined as

dρ(C,D) = max{ddρ(C,D), ddρ(D,C)}.

Theorem 1. For every relaxation ρ the operator dρ is a
dissimilarity measure, that is equivalence sound, equivalence
closed, subsumption preserving and reverse subsumption
preserving, and satisfies the triangle inequality.

Proof. Positiveness, reflexivity and symmetry follow trivially
from Definitions 5 and 6, and therefore dρ is a dissimilarity
measure.

We have the following chain of equivalences: C ≡ D, iff
C v D and D v C, iff C v ρ0(D) and D v ρ0(C), iff
ddρ(C,D) = ddρ(D,C) = 0, iff dρ(C,D) = 0. Thus dρ is
both equivalence sound and equivalence closed.

To prove the triangle inequality, let C, D, E be concept
descriptions and let dρ(C,D) = d1, dρ(D,E) = d2. Then
in particular, ddρ(C,D) ≤ d1 and thus C v ρd1(D) by exten-
sivity. Similarly, we obtain D v ρd2(E). Since relaxations
are non-decreasing we obtain from the latter

ρd1(D) v ρd1+d2(E)

and therefore C v ρd1+d2(E), i.e. ddρ(C,E) ≤ d1 + d2.
Analogously, it can be shown that ddρ(E,C) ≤ d1 + d2 and
thus dρ(C,E) ≤ d1 + d2 = dρ(C,D) + dρ(D,E).

To show subsumption preservation let C v D v E with
dρ(C,E) = d. Then in particular, E v ρd(C) and thus also
D v ρd(C). On the other hand, C v ρ0(D) v ρd(D) by
extensivity, which yields dρ(C,D) ≤ k = dρ(C,E), which
proves subsumption preservation.

A comparison of these properties with those of some exist-
ing measures is provided in Table 1.

4 Instantiations
Theorem 1 shows that our framework produces dissimilarity
measures with good theoretical properties. The framework
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Figure 4: Consecutive application of ρleaves to (1)

can be instantiated with any relaxation operator. The be-
haviour of the resulting measures can vary greatly depending
on the relaxation. This is demonstrated by the following
examples. A trivial relaxation in any description logic is the
operator ρ> that maps every concept to >. It results in a very
coarse dissimilarity measure ρ> that is 0 iff the concepts are
equivalent and 1 otherwise.

Relaxations from tree operations For the lightweight
logic EL (Baader, Küsters, and Molitor 1999) have proven
a close connection between EL concepts and description
trees. Due to this connection any operator that maps de-
scription trees to strict subtrees gives rise to a relaxation.
One possibility is the operator ρdepth that reduces the role
depth of each concept by 1, simply by pruning the descrip-
tion tree (cf. Figure 2). The corresponding dissimilarity
ρdepth measures the first depth-level where the concepts dif-
fer in the description tree. It gives higher weight to fea-
tures at a smaller depth. For example, if we compare the
concepts F := Male u ∃hasChild.> and HoJ := Male u
∃marriedTo.(Female u Judge) to the concept ∃hasChild.>
the value will be 2 in both cases, since the change occurs
at the lowest level, in the concept name Male. This is coun-
terintuitive, since F and ∃hasChild.> share more common
features than HoJ and ∃hasChild.>. A slightly better be-
haviour can be achieved by the relaxation ρleaves that removes
all leaves from a description tree (Figure 4).

Relaxations from distances between models As logics
become more expressive, it becomes harder to directly define
a relaxation on the concepts. Since the models remain simple
labeled graphs, even for complex descriptions, one solution
is to identify concepts with the set of their models. Similar
to related work from Section 5 one might start with a simple
distance between models, e.g. an edit distance, and generalize
it to a Hausdorff distance between sets of models. However,
since the model space is infinite the Hausdorff distance can
often not be computed directly.

A workaround is to use the distance on the model space to
define dilations, as used in mathematical morphology (Serra
1982), on sets of models. For some distances, such as a simple
tree edit distance, the dilated sets themselves correspond to
DL concepts. The operator that maps a concept to the concept
corresponding to its dilated set of models can be shown to be
a relaxation. All these instantiations will be further studied
in our future work.



Table 1: Properties of some (dis-)similarity measures
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(Lehmann and Turhan 2012) X – X X X X –
(d’Amato, Staab, and Fanizzi 2008) X X – X X – –
relaxation dissimilarity X – X X X – X

5 Existing Metrics for Other Logics
Outside of description logics several works have proposed
metrics between logical objects. Works such as (Nienhuys-
Cheng 1998; Ramon and Bruynooghe 1998) exploit the fact
that is relatively easy to define a metric on ground expressions
in first order logic. They extend these ground distances to
sets of atoms, or Herbrand interpretations using constructions
such as Hausdorff distances or Manhattan distances.

In some cases it is straightforward to define a distance
between two terms if one is a generalization of the other.
To obtain a distance between two arbitrary terms one can
simply use the sum of the distances to their least general
common generalization. In a general form (Birkhoff 1993)
has presented this idea as the classical distance in graded lat-
tices. It is used to define a distance between first order literals
by (Hutchinson 1997), who then generalizes it to a distance
between clauses using the Hausdorff metric. This idea can
also be extended to cases where there is no unique minimally
general generalization (De Raedt and Ramon 2009).

6 Discussion
In this work, we have presented a framework for dissimilarity
measures whith good theoretical properties (cf. Table 1). Our
measures satisfy at the same time the properties of a metric,
in particular the triangle inequality, and they are compatible
with the semantics of description logics, in particular they
are equivalence sound. Some hints for instantiations of the
proposed framework have been provided, and will be the
focus of future work.

The similarity measures that we have presented here are
defined for concepts without TBoxes. If the background
ontology is an acyclic TBox, they can trivially be adapted by
comparing only unfolded concepts. In principle, it is possible
to generalize relaxations with respect to general TBoxes, but
it is left for future work how to instantiate them.
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