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Description Logics (DLs) are a well-established family of knowledge representation
formalisms. One of its members, the DL ELOR has been successfully used for representing
knowledge from the bio-medical sciences, and is the basis for the OWL 2 EL profile of the
standard ontology language for the Semantic Web. Reasoning in this DL can be performed
in polynomial time through a completion-based algorithm.
In this paper we study the logic Prob-ELOR, that extends ELOR with subjective
probabilities, and present a completion-based algorithm for polynomial time reasoning
in a restricted version, Prob-ELOR01

c , of Prob-ELOR. We extend this algorithm to
computation algorithms for approximations of (i) the most specific concept, which
generalizes a given individual into a concept description, and (ii) the least common
subsumer, which generalizes several concept descriptions into one. Thus, we also obtain
methods for these inferences for the OWL 2 EL profile. These two generalization inferences
are fundamental for building ontologies automatically from examples. The feasibility of our
approach is demonstrated empirically by our prototype system Gel.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Broadly speaking Description Logics (DLs) are a family of logical formalisms that allow to characterize categories from
an application domain by so-called concept descriptions. These concept descriptions are the main building blocks for DL
knowledge bases. When it comes to building or maintaining large knowledge bases the task of generalizing a collection
of concept descriptions into a single one is a central task. For most real-world applications it is not enough to represent
only crisp knowledge, instead probabilistic knowledge needs to be represented as well. Recently, a probabilistic variant of
DLs that is based on subjective probabilities was introduced and classical reasoning services have been investigated for it
in [1]. The main contribution of this paper is to lift our approach to compute generalizations [2] to the case of DLs with
probabilities.
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Description Logics are a family of knowledge representation formalisms with unambiguous semantics. They can be used
to represent a knowledge domain by formalizing its vocabulary as concept descriptions, which are built from concept and
role names using the constructors provided by the chosen DL [3]. One well-known DL is EL, which offers the constructors
conjunction (C � D), existential restrictions (∃r.C ) and the top concept (�) and knowledge is represented through a set of
axioms. For instance, using the concept names Person, Female and Mother and a role name has-child, one can describe in
EL that mothers are female persons having at least one child using the axiom:

Mother ≡ Person � Female � ∃has-child.�.

All axioms that define the terminology of the domain are collected in the so-called TBox. Besides describing terminolog-
ical knowledge, DLs also allow for the representation of instances of concepts, so-called individuals. With the individual
names mary and peter, we can describe that Mary is a woman and Peter is her son using three assertions: Woman(mary),
Male(peter) and has-child(mary,peter). Assertions are collected in an ABox. Together, TBox and ABox form a knowledge base
(KB).

DL reasoner systems offer a variety of reasoning services, that allow to deduce implicit knowledge from the axioms and
assertions stated in a KB. Commonly provided standard reasoning services include concept subsumption, which determines
subconcept relationships of two given concepts, and instance checking, which determines whether a given individual is an
instance of a given concept. Indeed, using the axioms and assertions from above and the additional fact that women are
exactly female persons (Woman ≡ Person � Female), one can infer that mary is an instance of the concept Mother and that
Mother is a subconcept of Woman. The process of computing all subsumption relationships of named concepts of a TBox is
called classification.

Besides EL, there is a variety of other Description Logics [3] for which reasoning services have been investigated. While
most of these are more expressive than EL, the additional constructors offered by these DLs (such as disjunction, negation
and universal quantification in the DL ALC) cause the important inference problems to become intractable. In EL and its
extension EL++ subsumption, instance checking and many other reasoning tasks can be decided in polynomial time [4].
This can be done by completion algorithms, which compute the canonical model for a given KB, from which all subsumption
relationships between named concepts and instance relationship between individuals and named concepts can be directly
read off. The computation of the canonical models via completion serves as a foundation on which our algorithms for
computing generalizations are built. Despite their relatively low expressive power, the EL-family of DLs are used to define
concepts in a number of large-scale bio-medical ontologies, such as SNOMED CT [5,6] and the Gene Ontology [7].

EL++ is a maximal subset of the most commonly used DL-features, for which standard inference problems still have
polynomial complexity, which is the main reason that it has been standardized as OWL 2 EL profile of the Web Ontology
Language [8] by the W3C. This in turn led to an increased use of EL++ in practical applications. Leaving the concept
constructor of data-types and the bottom concept ⊥ in EL++ aside, the resulting DL is called ELOR. ELOR offers role
inclusions (indicated by R in the name), which allows among others to express role hierarchies and transitive roles. Another
tractable extension offers nominals as a concept constructor (indicated by O in the name). Nominals are always interpreted
as singleton sets. For example

SpanishFlu � Flu � ∃origin.{france}
expresses that the Spanish flu was a flu that originated in France. In this case, the treatment of {france} as a nominal is
preferred over a named concept France, since it is clearly an instance of a country and not a general concept with many
instances, and thus captures the intention that there is only one country France. The completion-based approach to compute
generalizations has recently been extended to ELOR in [9].

Classical DLs like those mentioned above only allow to define crisp and definite knowledge. However, many application
domains require to model uncertain knowledge. In the previous example, one might want to express that the case fatality
rate of Spanish flu was >2.5%, i.e., a person infected with Spanish flu would die with a probability of more than 0.025,
given no other knowledge about this patient. In the last years several approaches have been devised to capture uncertain
information in DL knowledge bases (see, for example, [10–12]). In this paper we consider extensions of the probabilistic
DLs introduced by Lutz and Schröder [1]. This family of DLs allows the modeling of uncertain knowledge by introducing
probabilistic constructors. Prob-EL uses subjective (or Type-2 [13]) probabilities, which correspond to degrees of belief and
are interpreted using a multiple-world semantics. For example, in Prob-EL one can express that obese people are likely to
have high pressure, without requiring every obese person to be hypertense, using the axiom

Obese � P�0.9∃hasCondition.HighPressure.

While most DLs studied in [1] are intractable or even undecidable for unrestricted probabilistic roles, a fragment Prob-EL01
c

extending EL was identified to still admit polynomial time reasoning. In this fragment, probabilistic concepts can be con-
structed using only the probabilities >0 and =1. A completion algorithm for classifying TBoxes in the language Prob-EL01

c
was described in [1]. However, the algorithm described by the authors is not complete—the corrected version is given in
this paper, since it is needed in our algorithms for computing generalizations.

Beyond the standard reasoning services, there also exist a number of non-standard inferences like the generalization of
different entities from DL knowledge bases. The least common subsumer (lcs) inference introduced in [14] generalizes a set
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of concept descriptions into a single new concept description that subsumes all the input concepts and that is least w.r.t.
subsumption. Intuitively, the lcs captures all commonalities of the input concept descriptions. A second inference, the most
specific concept (msc) [15], generalizes an individual into the most precise concept description that describes this individual.

Given the previous axioms that describes obese persons and mothers, assume that we have the additional knowledge
that Mary is obese: Obese(mary). Then the msc of mary is the concept

Obese � P�0.9∃hasCondition.HighPressure � Mother

� Female � Person � Woman � ∃has-child.Male,

which is incidentally equivalent to simply Obese � Mother � ∃has-child.Male. The lcs of this concept and Person �
P�0.6∃has-condition.RadiusFracture (which might occur if an x-ray only shows a vague line) is Person� P�0.6∃has-condition.�.

These generalization inferences have a variety of applications. In the bottom-up construction of knowledge bases new
concept descriptions can be generated in an example-driven way from a set of individuals that a user selects [15,16]. Each of
the selected individuals is first generalized into a concept description by the msc and then all of these concept descriptions
are generalized into a single one by the lcs. This approach enables users of DL knowledge bases with little KR expertise to
augment their ontologies with new concepts. Another application of generalization inferences are concept similarity mea-
sures [17,18]. These measures assess the similarity of two concepts and are the core of many ontology matching algorithms.
Furthermore, in ontology-based information retrieval the msc and lcs are used to relax search concepts, which encode the
information to be searched [19–21]. For more application of these generalization inferences see [16,2].

Neither the lcs nor the msc need to exist in EL, if computed w.r.t. general or cyclic TBoxes [22] or cyclic ABoxes [23].
The reason is that the cyclic structure cannot be captured by a finite EL-concept description. In [24] an extension of EL
with greatest fixpoints was introduced, where the generalization concepts always exist. Earlier in [25] it was shown that
under greatest fixed point semantics the lcs does exist. However, for both approaches the resulting DL may not be as easy
to comprehend for a DL system user. Thus, we pursue a different approach here. Computation algorithms for approximative
solutions for the lcs were devised in [2] and for the msc in [26]. These methods simply compute a generalization concept
up to a certain size k, which is interpreted as a bound on the role-depth, i.e., the maximal nestings of quantifiers.

One way to compute the approximative generalizations k-lcs and k-msc is to use the canonical model constructed by the
completion algorithm for EL. This approach has been studied intensively and extended to ELR and EL with inverse roles
[2,27,28]. Furthermore, completion-based classification algorithms become more widely used, both from a practical point of
view in terms of reasoner implementations [29–31] as well as on the theoretical side with the recent extensions of EL with
nominals [32], subjective probabilities [1] or even Horn variants of expressive DLs [33].

In cases where the lcs or msc exists and a large enough bound k was given, the methods for computing the role-depth
bounded lcs and the role-depth bounded msc yield the exact solutions. However, to obtain the least common subsumer and
the most specific concept by these methods in practice, a decision procedure for the existence of the lcs or msc, respectively,
and a method for computing a sufficient k are needed. These have recently been supplied for EL in [34] and for EL extended
by complex role inclusions in [35].

Although being a rather pragmatic approach, the role-depth bounded lcs and the role-depth bounded msc may yield
approximations that are sufficient for most practical applications named above. Other applications require the notion of
role-depth bounded generalizations. For example, [21] solves the problem of instance queries for concepts relaxed by sim-
ilarity measures by computing a so-called mimic of the query concept w.r.t. a candidate individual a, which can be found
by considering subconcepts of the role-depth bounded msc of a. Curé et al. [36] describe an application that evaluates
user traces by making use of the probabilistic DLs as defined by Lutz and Schröder [1]. Interestingly, the authors need to
compute the msc (and afterwards the lcs) for k = 1 in their application. They give an ad-hoc procedure to compute these
inferences. Now, since their method for the 1-msc does not take the TBox information into account, their algorithm is not
correct. In this paper we devise algorithms for computing the role-depth bounded generalization for Prob-EL01

c and some
of its extensions and we prove their correctness. In detail, the contributions of this paper are the following:

Classification algorithms. We give a uniform description of the completion-based classification procedures for the DLs
ELOR and Prob-ELO01

c , i.e., Prob-EL01
c extended by nominals. We also amend an error in the completion algorithm for

Prob-EL01
c presented in [1]. We show correctness of the extension of the amended algorithm to handle nominals.

Computation algorithms for the role-depth bounded lcs. The completion algorithms for classification are the basis, on which
we develop algorithms to compute the role-depth bounded lcs in ELOR and Prob-ELO01

c . We also show correctness of
our methods.

Computation algorithms for the role-depth bounded msc. Since the msc in the presence of nominals is trivial (msc(a) = {a}),
another target DL should be considered in order to yield an informative version of the msc. Thus we consider EL and later
Prob-EL01

c as the target DL for the msc. Based on the completion algorithms for classification in ELOR and Prob-ELO01
c ,

we develop algorithms to compute the role-depth bounded msc w.r.t. KBs written in ELOR and Prob-ELO01
c and show

correctness of these methods.
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Table 1
Concept constructors and TBox axioms for ELOR.

Syntax Semantics

Named concept A AI ⊆ �I

Top concept � �I

Nominal {a} {aI}
Conjunction C � D CI ∩ DI

Existential restriction ∃r.C {d ∈ �I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}
GCI C � D CI ⊆ DI

RIA r1 ◦ · · · ◦ rn � s (r1 ◦ · · · ◦ rn)I ⊆ sI

Implementation and optimizations for the classical DLs. To show that the obtained generalization algorithms can be practically
utilized, we implemented those for ELOR in our system Gel. We describe several optimizations for the generalization
inferences and evaluate our system on some bio-medical ontologies.

The paper is structured as follows: after introducing the basic notions of DLs and generalizations in Section 2, we discuss
the completion algorithm and introduce the role-depth bounded lcs and msc algorithms for the classical DL ELOR in
Section 3. Using this work as a prerequisite, Section 4 introduces the DL Prob-ELO01

c with subjective probabilities and
gives a correct completion algorithm. This completion algorithm then serves as a basis for algorithms to compute the
role-depth bounded lcs and msc w.r.t. KBs formulated in this DL. All of the proofs can be found in Appendices A–B. Section 5
gives an overview of some optimizations for the generalization algorithms for ELOR and Prob-ELO01

c and presents our
implementation of the classical case Gel, which is implemented on top of the standard reasoner jCel [37]. This system is
used in an evaluation to show the practicability of our algorithms and optimizations in the context of knowledge bases
from practical applications. Since our computation algorithms for the generalization inferences require a standard reasoner
to compute the completion of the TBox and there is neither a reasoner for the probabilistic variants nor knowledge bases
using this probabilistic DL available, we need to resort to an evaluation for ELOR; this provides an approximate indicative
of the performance of the generalization algorithms for the probabilistic case. We conclude the paper with an outline of
possible future work.

2. Preliminaries

In this section we introduce the basic notions of classical Description Logics that will later be generalized to handle
subjective probabilities. We start by defining concept descriptions for members of the EL-family. Let NC , NR and NI be
mutually disjoint sets. NC contains concept names, NR contains role names and NI contains individual names. From these sets
concept descriptions (or concepts for short) are constructed inductively as follows. Let A ∈ NC be a concept name, r ∈ NR be
a role name, and a ∈ NI be an individual name. ELO-concept descriptions are built using the syntax rule

C, D ::= � | A | {a} | C � D | ∃r.C .

EL-concept descriptions are ELO-concept descriptions that do not contain nominals; i.e., concepts of the form {a}.
The semantics of ELO is defined by means of interpretations I = (�I , ·I) consisting of a non-empty domain �I and

an interpretation function ·I that assigns binary relations on �I to role names, subsets of �I to concept descriptions and
elements of �I to individual names. For a more detailed description of the semantics, see [3]. The concept constructors,
along with their syntax and semantics are displayed in the upper part of Table 1.

Let L be a Description Logic, (e.g., the DL EL). General concept inclusion axioms (GCIs) are expressions of the form C � D ,
where C and D are L-concept descriptions. Role inclusion axioms (RIAs) are statements of the form r1 ◦ · · · ◦ rn � s for 1 � n,
where {r1, . . . , rn, s} ⊆ NR . The interpretation of a role chain r1 ◦ · · · ◦ rn is

(r1 ◦ · · · ◦ rn)
I = {

(d0,dn)
∣∣ ∃d1, . . . ,dn−1. ∀1 � i � n. (di−1,di) ∈ ri

I}
.

An interpretation I satisfies a GCI C � D , denoted as I |� C � D , if CI ⊆ DI ; it satisfies a RIA r1 ◦ · · · ◦ rn � s, denoted as
I |� r1 ◦ · · · ◦ rn � s, if (r1 ◦ · · · ◦ rn)I ⊆ sI . These axioms are summarized in the lower part of Table 1. For the rest of this
paper, we use C ≡ D as an abbreviation for the two GCIs C � D and D � C . RIAs allow to express sub-role relationships of
the form r � s and thus a set of RIAs can be used to define role hierarchies. Additionally, RIAs can also express transitivity of
roles by stating r ◦ r � r.

A TBox T is a finite set of axioms. An ELO-TBox is a finite set of GCIs built from ELO-concept descriptions. In addition,
an ELOR-TBox may also contain finitely many RIAs. An interpretation I is a model of a TBox T if it satisfies all the axioms
contained in the TBox T .

Concept assertions are statements of the form C(a), where C is a concept description and a is an individual name, while
role assertions are statements of the form r(a,b), where r is a role name, and a and b are individual names. We say that the
interpretation I satisfies a concept assertion C(a), denoted as I |� C(a), if aI ∈ CI and it satisfies a role assertion r(a,b),
denoted as I |� r(a,b), if (aI ,bI) ∈ rI . An ABox A is a set of concept or role assertions. An L-ABox is a set of concept or
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role assertions, where only L-concept descriptions are used in the concept assertions. An interpretation I is a model of an
ABox A if it satisfies all concept and role assertions in A.

A knowledge base (KB) K = (T ,A) consists of a TBox T and an ABox A. We call a KB K = (T ,A) an L-knowledge base,
if T is an L-TBox and A an L-ABox. An interpretation I is a model of a knowledge base K = (T ,A) if it is a model both, T
and A.

The formal semantics of the concept descriptions and the components of a knowledge base are used to define reasoning
services. Since none of the DLs from Table 1 can express contradictory information, satisfiability (i.e., deciding whether a
KB has a model) is trivial in these DLs. A concept description C is subsumed by D w.r.t. a TBox T (written C �T D) iff for
every model I of T it holds that I |� C � D . The concepts C and D are equivalent w.r.t. T (written C ≡T D), if C �T D
and D �T C hold. Classification of a TBox T is the computation of all subsumption relationships between concept names
mentioned in T .

An individual a ∈ NI is an instance of a concept C w.r.t. a KB K (denoted by K |� C(a)) if I |� C(a) for all models I of K.
The ABox realization problem is to compute for each individual a in a given ABox A the set of those concept names from K
that have a as an instance and that are least w.r.t. �T .

Subsumption testing, instance checking, and even the more general problems of TBox classification and ABox realization
can be done in polynomial time by a completion algorithm for EL [4] and the other DLs introduced above [38,32]. While
the completion algorithm for extensions of EL by nominals introduced by Baader et al. [38] turned out to be incomplete,
the method from Kazakov et al. [32] fixes this issue, yielding a sound and complete algorithm. We use this correct method
as a basis for computing generalization inferences from a knowledge base, as described next.

When computing generalizations of either concept descriptions or individuals described in a KB, these concept descrip-
tions and the knowledge base are written in a particular DL. On the other hand, the concept descriptions that capture the
generalizations do not need to be written in the same DL; for instance, one may be interested in using less expressive con-
structors in the description of the generalizations. Thus, we distinguish between a source DL Ls for the input and a target DL
Lt in which the generalization is formulated.

Definition 1 (lcs, msc). Let Ls and Lt be two DLs and K = (T ,A) be an Ls-knowledge base. The least common subsumer of
Ls-concept descriptions C1, . . . , Cn w.r.t. T (written: lcsT (C1, . . . , Cn)) is the Lt -concept description D such that

1. Ci �T D , for all 1 � i � n and
2. for each Lt -concept description E holds: Ci �T E for all 1 � i � n implies D �T E .

The most specific concept of an individual a from K (written: (mscK(a))) is the Lt -concept description D such that

1. K |� D(a), and
2. for each Lt -concept description E holds: K |� E(a) implies D �T E .

If the target DL Lt is not clear from the context, we write Lt -lcs or Lt -msc throughout this paper. Typically, Ls = Lt

is considered; however, for DLs with disjunction the lcs is simply the disjunction of the input concept descriptions and
thus not very informative. A more informative version can be obtained if the target language does not allow for disjunction
[39,40]. For the EL-family of DLs, the lcs and also the msc are, if they exist, unique up to equivalence (w.r.t. the underlying
TBox or KB). Thus it is justified to speak of the lcs or the msc, respectively. Similarly, for target DLs Lt that offer nominals
the msc is always trivial, since

msc(a) = {a}.
In order to obtain an informative msc for KBs written in a DL with nominals, we select a target DL that does not offer this
kind of constructor.

In [22] it was shown that the EL-lcs w.r.t. general EL-TBoxes does not need to exist, when using the descriptive seman-
tics, which is the standard semantics for DLs.4 Likewise the msc in EL does not need to exist for cyclic ABoxes, as shown
by Küsters and Molitor [26]. The reason for the non-existence is in both cases that cycles cannot be expressed by a finite
EL-concept description. In [24] EL was extended by fixed-points that can capture such cycles. Since we want to obtain a
concept description for the lcs that is expressed in that DL in which the TBox is written (or a sublogic of it), we follow the
idea from [2] and compute an approximative solution by limiting the maximal nesting of quantifiers in the generalizations.
The role depth (rd()) of an ELOR-concept description5 is defined inductively as follows: Let A ∈ NC and a ∈ NI , then

rd(A) := rd(�) := rd
({a}) := 0,

4 For greatest fixed point semantics, however, the lcs written in EL does always exist, see [22,25].
5 Strictly speaking there are no ELOR-concept descriptions. When referring to an ELO-concept description that is defined w.r.t. an ELOR-TBox we

speak of an ELOR-concept description in slight abuse of notation.
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rd(C � D) := max
{

rd(C), rd(D)
}
,

rd(∃r.C) := 1 + rd(C).

This leads to the following definition of a role-depth bounded lcs and a role-depth bounded msc, which is the most specific
generalization up to the given role-depth bound.

Definition 2 (Role-depth bounded lcs, role-depth bounded msc). Let Ls,Lt be DLs, K = (T ,A) be an Ls-knowledge base
and k ∈ N. The role-depth bounded least common subsumer of Ls-concept descriptions C1, . . . , Cn w.r.t. T and k (written
k-lcsT (C1, . . . , Cn)) is the Lt -concept description D such that

1. rd(D) � k,
2. Ci �T D , for all 1 � i � n, and
3. for each Lt -concept description E holds: Ci �T E for all 1 � i � n and rd(E) � k imply D �T E .

The role-depth bounded most specific concept of an individual a w.r.t. K and k (written k-mscK(a)) is the Lt -concept descrip-
tion D such that

1. rd(D) � k,
2. K |� D(a), and
3. for each Lt -concept description E holds: K |� E(a) and rd(E) � k imply D �T E .

Similarly to the lcs and msc, the k-lcs and k-msc are unique up to equivalence for a given k, thus we speak of the k-lcs
and the k-msc. The reason for this uniqueness of the k-lcs is that there are only finitely many role-depth bounded, common
subsumers of C and D modulo equivalence (and similarly, for the k-msc only finitely many role-depth bounded concepts
with a as instance). Thus, the k-lcs and k-msc can always be written as the conjunction of all these subsumers. Again, we
may write Lt -k-lcs or Lt -k-msc to specify the target DL explicitly.

If the exact lcs L = lcsT (C, D) of two concepts C and D exists and has role-depth rd(L) = k, then the k-lcs of C and D
will be equivalent to L, as they both subsume each other by Definitions 1 and 2. The same is true for the msc: If it exists,
it will be found for a sufficiently high role-depth bound k. This implies the uniqueness also for the general lcs and msc.
Also note that both the k-lcs and the k-msc can have exponential size in the role-depth bound k. This is easy to see for the
TBox

T = {A � ∃r.A � ∃s.A, B � ∃r.B � ∃s.B},
where the k-lcs of A and B takes the form of a full binary tree of depth k.

3. Completion-based Inferences in ELOR

To understand how the completion-based inferences for DLs with subjective probabilities work, a basic understanding
of these algorithms for the classic description logics is very helpful. In this section we present and discuss the algorithms
to compute classifications and generalizations in the DL ELOR. These methods are all based on the completion method,
which allows to classify TBoxes written in EL and several of its extensions in polynomial time [4,38,32]. All the missing
proofs can be found in Appendix A.

We start by briefly describing the completion algorithm for classifying classical ELOR-TBoxes, which is based on
the consequence-based algorithm for ELO recently presented in [32]. Following the approach from [2] and [27], this
completion-based classification method is the foundation for computing the role-depth bounded lcs in ELOR [9].

3.1. Classification in ELOR

Completion algorithms for TBox classification and ABox realization in EL and its extensions typically proceed in three
phases:

1. Normalize the knowledge base or TBox,
2. initialize the so-called completion sets and saturate them by applying completion rules, and
3. read-off the subsumption or instance relationships form the saturated sets.

The saturated completion sets represent canonical models of the TBox or KB.
For the description logic EL, different algorithms are needed for TBox classification and ABox realization. However, this

distinction disappears as soon as the DL is extended by nominals. Recall that a nominal is a concept whose interpretation
is a singleton set (see Table 1). In other words, nominals are concepts that represent specific individuals of the knowledge
domain. We have previously divided knowledge bases in two parts: the TBox, that represents the conceptual knowledge of
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NF1 C � D̂ � E −→ D̂ � A, C � A � E

NF2 ∃r.Ĉ � D −→ Ĉ � A, ∃r.A � D

NF3 Ĉ � D̂ −→ Ĉ � A, A � D̂

NF4 B � ∃r.Ĉ −→ B � ∃r.A, A � Ĉ

NF5 B � C � D −→ B � C, B � D

NF6 r1 ◦ r2 ◦ r3 � s −→ r1 ◦ r2 � t, t ◦ r3 � s

where Ĉ, D̂ /∈ BCT , A is a new concept name and t is a new role name.

Fig. 1. ELOR normalization rules (from Baader et al. [4]).

the domain, and the ABox that states information about some named individuals. Using nominals, it is possible to simulate
ABox assertions using GCIs as described by the following proposition.

Proposition 3. Given the knowledge base K = (T ,A). Let the TBox T ′ be as follows:

T ′ = T ∪ {{a} � C
∣∣ C(a) ∈ A

} ∪ {{a} � ∃r.{b} ∣∣ r(a,b) ∈ A
}
.

Then K and T ′ are equivalent, i.e., the models of K are exactly the models of T ′ .

Proof. Let I be an interpretation. Then I satisfies the concept assertion C(a) iff aI ∈ CI iff {a}I ⊆ CI iff I satisfies the
GCI {a} � C . Similarly, I satisfies the assertion r(a,b) iff (aI ,bI) ∈ rI iff aI ∈ {d ∈ �I | (d,bI) ∈ rI} iff {a}I ⊆ {d ∈ �I |
∃e ∈ �I .(d, e) ∈ rI ∧ e ∈ {b}I} iff I satisfies the GCI {a} � ∃r.{b}. Thus, any model of K must be a model of T ′ and vice
versa. �

This proposition shows that it suffices to consider TBox classification to obtain results for the ABox reasoning services
for ELOR. Whenever one wants to know whether an individual a is an instance of a concept C for a knowledge base
K = (T ,A), one can simply check if {a} �T ′ C follows from the TBox T ′ as given in Proposition 3. For the rest of this
section we therefore restrict our attention to reasoning w.r.t. TBoxes only.

We first present a completion-based classification algorithm for ELOR, and then show how to use the computed com-
pletion sets for generalization inferences in this logic. Kazakov et al. [32] gave a complete reasoning algorithm for nominals,
building upon the algorithms developed in [4], as the latter turned out to be incomplete in the presence of nominals. The
completion algorithm presented next adapts the ideas of this consequence based classifier.

The first phase of the classification algorithm transforms the TBox into normal form. This normal form is based on the
following auxiliary sets. Given an ELOR-TBox T , we use:

• Sig(T ) to denote the set of concept names, role names, and individual names occurring in T , and
• BCT to denote the set of basic concepts for T , which contains �, all concept names A ∈ Sig(T ) ∩ NC , and all nominals

{a} for a ∈ Sig(T ) ∩ NI .

Definition 4 (ELOR-normal form). An ELOR-TBox T is in normal form, if all GCIs in T are of the form

A � B, A1 � A2 � B, A � ∃r.B, or ∃r.A � B;
and all role inclusion axioms are of the form

s � r, or s ◦ t � r,

where A, A1, A2, B ∈ BCT and {r, s, t} ⊆ NR .

All ELOR-TBoxes can be transformed into normal form by applying a set of normalization rules given in [4] and depicted
in Fig. 1. The main idea is to introduce new concept names for complex subconcepts and new role names to denote
role chains as pairs of roles. The normalized TBox T ′ of an ELOR-TBox T is then a conservative extension of T w.r.t.
subsumption, that is, for all concepts C, D containing only names from Sig(T ), we have C �T D iff C �T ′ D [4,2].

Before we describe the completion algorithm in detail, we introduce the reachability relation �R , which plays a funda-
mental role in the correct treatment of nominals [4,32].

Definition 5 (�R ). Let T be an ELOR-TBox in normal form, G ∈ NC ∪ {�}, and D ∈ BCT . G�R D iff there exist roles
r1, . . . , rn ∈ NR and basic concepts A0, . . . , An, B0, . . . , Bn ∈ BCT , n � 0, such that Ai �T Bi for all 0 � i � n, Bi−1 � ∃ri .Ai ∈
T for all 1 � i � n, A0 is either G or a nominal, and Bn = D .
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OR1 If A1 ∈ SG (A), A1 � B ∈ T and B /∈ SG (A),

then SG (A) := SG (A) ∪ {B}
OR2 If A1, A2 ∈ SG (A), A1 � A2 � B ∈ T and B /∈ SG (A),

then SG (A) := SG (A) ∪ {B}
OR3 If A1 ∈ SG (A), A1 � ∃r.B ∈ T and B /∈ SG (A, r),

then SG (A, r) := SG (A, r) ∪ {B}
OR4 If B ∈ SG (A, r), B1 ∈ SG (B), ∃r.B1 � C ∈ T and C /∈ SG (A),

then SG (A) := SG (A) ∪ {C}
OR5 If B ∈ SG (A, r), r � s ∈ T and B /∈ SG (A, s),

then SG (A, s) := SG (A, s) ∪ {B}
OR6 If B ∈ SG (A, r1), C ∈ SG (B, r2), r1 ◦ r2 � s ∈ T and C /∈ SG (A, s),

then SG (A, s) := SG (A, s) ∪ {C}
OR7 If {a} ∈ SG (A1) ∩ SG (A2), G�R A2, and A2 /∈ SG (A1),

then SG (A1) := SG (A1) ∪ {A2}

Fig. 2. Completion rules for ELOR.

Informally, the concept name D is reachable from G if there is a chain of existential restrictions leading to D that starts
either with G or with a nominal. Notice that if an interpretation I satisfying the axiom A � ∃r.B is such that AI �= ∅, then
there must be an element of �I that belongs to A, and hence must have an r-successor that belongs to the concept B . In
particular, this implies that BI �= ∅. Thus, the reachability relation G�R D intuitively states that, under the assumption that
G is not empty, D cannot be empty either. This information will be used to identify concept names that must be interpreted
as a given nominal, as described next.

The completion algorithm for ELOR keeps a set of completion sets of the form SG(A) and SG(A, r) for every
G ∈ (Sig(T ) ∩ NC ) ∪ {�}, every basic concept A and every role name r. Intuitively, these sets are used to make implicit
subsumption relationships explicit; for instance, B ∈ S A(A) expresses that A is subsumed by B in any model of the TBox,
and B ∈ S A(A, r) expresses that A is subsumed by ∃r.B . However, notice that this subsumption would still hold if A was
interpreted as the empty set. Nominals, on the other hand, are a special kind of concept that can never have an empty
interpretation, since they are always interpreted as singleton sets. This also implies that no subsumer of a nominal may
obtain an empty interpretation, as it must contain at least the nominal individual. Since the non-emptiness of concepts may
influence the subsumption relations, we need to be able to express it in some way. Thus, e.g. the completion set SG(A)

stores all the subsumers of A under the assumption that the interpretation of G is non-empty. We use G : A � B to denote
the conditional subsumption A � B , given that G is not empty.

The completion sets are initialized for every G ∈ (Sig(T ) ∩ NC ) ∪ {�}, every basic concept A, and every role name r as
follows:

SG(A) = {A,�},
SG(A, r) = ∅.

These completion sets are then extended using the completion rules depicted in Fig. 2 exhaustively. It can be shown that
the algorithm terminates after polynomial time, and is sound and complete for classifying the TBox; that is, for deciding
subsumptions between concept names appearing in T [32]. In particular, once the completion sets are saturated, i.e., no
completion rule is applicable, the completion sets have the following properties.

Proposition 6. Let T be an ELOR-TBox in normal form, A, B ∈ BCT be two basic concepts, r ∈ Sig(T ) ∩ NR , and G = A or G�R A
if A ∈ NC , and G ∈ NC ∪ {�} otherwise. Then, the following properties hold:

A �T B iff B ∈ SG(A), and
A �T ∃r.B iff there exists E ∈ BCT with E ∈ SG(A, r) and B ∈ SG(E).

A consequence of this proposition is that if we want to decide whether the TBox T entails the subsumption C � D ,
where C ∈ Sig(T ) ∩ NC and D is a basic concept appearing in T , it suffices to test only whether D ∈ SC (C). Analogously, if
C is either � or a nominal, is suffices to test whether D ∈ S�(C). To reduce the overhead introduced by the use of nominals,
i.e. the saturation of a separate set of completion sets for each concept name occurring in the TBox and �, it is possible
to implement a two-phase approach that first applies the rules OR1 to OR6, propagating this information to all completion
sets, and only afterwards the derivations that depend on the presence of nominals (starting from rule OR7) are computed.
For details on the benefits of this strategy and how to implement it see [32].

We now show how to use these completion sets for computing generalization inferences in ELOR. First we describe
the computation of the role-depth bounded ELOR-lcs. Afterwards, we describe the computation of the corresponding msc.
As described before, in the presence of nominals, the computation of the most specific concept describing an individual is a
trivial task and the result may not be informative. Hence, we describe its approximation in the less expressive target DL EL.
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Procedure k-lcs(C, D,T ,k)

Input: C, D: ELOR-concept descriptions; T : ELOR-TBox; k ∈N

Output: role-depth bounded ELOR-lcs of C, D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C, B ≡ D})
2: ST := apply-completion-rules(T ′)
3: return k-lcs-r(A, B,ST ,k,Sig(T ))

Procedure k-lcs-r(X, Y ,ST ,k,Sig(T ))

Input: X, Y ∈ BCT ; k ∈ N;
ST : set of saturated completion sets; signature of original TBox T

Output: role-depth bounded ELOR-lcs of X, Y w.r.t. T and k

1: common-names := S X (X) ∩ SY (Y ) ∩ BCT
2: if k = 0 then
3: return �

P∈common-names

P

4: else
5: return �

P∈common-names

P �

�
r∈Sig(T )∩NR

�
E∈S X (X,r),
F∈SY (Y ,r)

∃r.k-lcs-r(E, F ,ST ,k − 1,Sig(T ))

Fig. 3. Computation algorithm for role-depth bounded ELOR-lcs.

3.2. Computing the role-depth bounded ELOR-lcs

In order to compute the role-depth bounded lcs of two ELOR-concepts, we take advantage of the properties of the
completion sets computed by the completion algorithm, as described by Proposition 6. Essentially, we first accumulate the
direct subsumers, stored in the completion sets, and then recursively improve the approximation by adding role successors
until the exact lcs is found or the role-depth bound is reached. In the presence of nominals, special care needs to be taken
in choosing the right completion sets since the non-emptiness of some of the concepts may produce new subsumption
relations, but not all of these sets are relevant.

An algorithm that computes the role-depth bounded ELOR-lcs using the completion sets can be found in Fig. 3. In the
first step, two new concept names A and B are introduced as abbreviations for the concepts C and D , and the TBox is
normalized. The completion algorithm from Fig. 2 is then applied on the extended and normalized TBox to obtain all the
completion sets.

In the recursive procedure k-lcs-r, we first obtain all the basic concepts that subsume both A and B by intersecting the
sets S A(A) and S B(B). Clearly, the conjunction of all these basic concepts is still a subsumer for A and B w.r.t. T ′ , and
hence also for the two input concepts. Next, for every role name r and every basic concept C in S A(A, r), we know that
∃r.C is a subsumer of A, and similarly for D ∈ S B(B, r). Thus, we can recursively compute the least common subsumer, for
a role-depth of k − 1, for all pairs (C, D) in S A(A, r) × S B(B, r).

The concept computed in this way may be highly redundant. For instance, consider the example TBox from Section 2
again, this time with role inclusions:

T = {A � ∃r.A � ∃s.A, B � ∃r.B � ∃s.B, r � t, s � u}.
Now, a naive implementation of the above algorithm would return a concept description corresponding to the full 4-ary
tree of depth k as the k-lcs of A and B w.r.t. T , where the four edges of each node are labelled with r, s, t and u. This
problem can be solved using the optimization techniques introduced in Section 5.

Proposition 7. Let T be an ELOR-TBox, C and D be ELOR-concept description and k be a natural number. Then L =
k-lcs(C, D,T ,k) is the ELOR-lcs of C and D w.r.t. T and the role-depth bound k.

3.3. Computing the role-depth bounded EL-msc w.r.t. ELOR-KBs

We now turn our attention to the other generalization inference: the computation of the most specific concept repre-
senting a given individual. Recall that, since ELOR allows the use of nominals, computing the (exact) ELOR msc for a
given individual is a trivial task: the most specific ELOR-concept describing an individual a ∈ NI is always the nominal {a}.
However, it may be of interest to compute the msc w.r.t. a less expressive target language that does not allow for nominals.
Therefore, we now describe how to compute the role-depth bounded EL-msc of an individual w.r.t. an ELOR-KB.

An algorithm for computing the EL-k-msc w.r.t. an ELOR-KB is described in Fig. 4. Once again, its correctness is a
consequence of the invariants described by Proposition 6. The set S�({a}) contains all the basic concepts that subsume
the nominal {a}; that is, all concepts whose interpretation must contain the individual aI . Likewise, S�({a}, r) contains all
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Procedure k-msc(a,K,k)

Input: a: individual from K; K = (T ,A) an ELOR-KB; k ∈N

Output: role-depth bounded EL-msc of a w.r.t. K and k.
1: T := absorb-ABox(K)

2: T ′ := normalize(T )

3: SK := apply-completion-rules(T ′)
4: return traversal-concept({a},SK,k,Sig(K))

Procedure traversal-concept(A,SK,k,Sig(K))

Input: A: basic concept from T ′; SK: set of completion sets; k ∈N;
signature of original KB K

Output: role-depth bounded traversal concept of A w.r.t. K and k.
1: if k = 0 then
2: return �

B∈S A (A)∩(Sig(K)∩NC ∪{�})
B � �

3: else
4: return �

B∈S A (A)∩(Sig(K)∩NC ∪{�})
B �

�
r∈Sig(K)∩NR

�
B∈S A (A,r)

∃r.traversal-concept(B,SK,k − 1,Sig(K))

Fig. 4. Computation algorithm for the role-depth bounded EL-msc w.r.t. ELOR-KBs.

the existential restrictions subsuming {a}. Thus, a recursive conjunction of all these subsumers provides the most specific
representation of the individual a.

Since the target language is EL, all nominals are removed from the output. However, the recursion includes also the
EL-msc of the removed nominals, hence indeed providing the most specific EL representation of the input individual.

Proposition 8. Let K be an ELOR-KB, a be an individual occurring in K and k be a natural number. Then M = k-msc(a,K,k) is the
ELR-msc of a w.r.t. K and the role-depth bound k.

In this section we have shown how to compute generalization inferences with a bounded role-depth w.r.t. KBs written
in the DL ELOR. With the exception of datatypes and the bottom concept, this covers all major features of the OWL 2 EL
profile of the standard ontology language OWL 2 [8]. Given its status as W3C standard, it is likely that more and bigger
ontologies are built using this profile, thus the generalization inferences investigated in this paper and their computation
algorithms for approximation will become more useful to ontology engineers. In fact, there already exist ontologies that use
nominals in their representation. For example, the FMA ontology currently contains 85 nominals.

While many large ontologies have been built using the expressivity of languages from the EL-family, and several tools
have been developed for reasoning in them, the study of these logics and their inferences is usually restricted to the classical
setting, where knowledge is certain and assertable. Unfortunately, in many domains it is unavoidable to deal with uncertain
knowledge. For that reason, we are interested in studying the probabilistic variants of these logics and their inferences. In
the following section we take a look at the probabilistic DL Prob-ELOR.

4. Completion-based inferences in Prob-ELOR

So far, we have focused our attention on representing and reasoning with knowledge that is certain. For example, the
concept Father speaks of all those individuals that are known to be fathers. Likewise, we can use the assertion Father(bob)

and the GCI Father � Parent to express the fact that Bob is a father, and every father is also a parent, respectively. However,
when trying to represent knowledge it is not uncommon to encounter situations where a degree of uncertainty is unavoid-
able. This is often the case in the medical and biological domains, where knowledge is obtained through clinical testing,
and there might exist hidden, or not completely understood, factors affecting the outcome. For instance, we would like to
be able to express that obese people are likely to have high pressure, without asserting that every obese person must have
high pressure.

A common method for dealing with uncertainty is through the use of probabilities, which associates every event to a
degree, or weight, measuring the likelihood that the event will take place. Thus, a natural approach to represent uncertain
knowledge is to try to extend description logics to handle probabilistic semantics. Several approaches for probabilistic exten-
sions of description logics have been proposed over the years. We describe here one that deals with subjective, as opposed
to statistical, probabilities.

The probabilistic logic Prob-EL was introduced by Lutz and Schröder [1] as an extension of EL that allows for proba-
bilistic concepts and roles. Here, we extend these ideas to cover also the additional constructors found in ELOR. Formally,
Prob-ELOR-concepts are built through the following syntactic rule

C, D ::= � | A | C � D | ∃r.C | {o} | P�qC | ∃P�qr.C,
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where A ∈ NC , r ∈ NR , o ∈ NI , � ∈ {>,<,�,�,=}, and q ∈ [0,1]. Intuitively, a concept of the form P�qC denotes the class
of all objects that belong to C with a probability �q. For example, we can use the concept P�0.9∃hasCondition.HighPressure
to represent the class of all individuals that are likely to have high pressure.

The semantics of this logic generalizes the semantics of classical ELOR by considering a set of possible worlds, corre-
sponding to a formalization of subjective (or Type 2) probabilities [13]. Formally, the semantics of Prob-ELOR are based
on probabilistic interpretations.

Definition 9 (Probabilistic interpretation). A probabilistic interpretation is a tuple of the form I = (�I , W , (Iw)w∈W ,μ), where
�I is a (non-empty) domain, W is a non-empty set of (possible) worlds, μ is a discrete probability distribution over W ,
and for every w ∈ W , Iw is a classical ELOR interpretation with domain �I . Additionally, for every a ∈ NI and every two
worlds w, w ′ ∈ W , it holds that aIw = aIw′ .

From a probabilistic interpretation, we can compute the probability that a given element of the domain d ∈ �I belongs
to the interpretation of a concept name A, and respectively, the probability that a pair of individuals is related via a role r
as follows:

pI
d (A) := μ

({
w ∈ W

∣∣ d ∈ AIw
})

,

pI
d,e(r) := μ

({
w ∈ W

∣∣ (d, e) ∈ rIw
})

.

The functions Iw and pId are extended to complex concept descriptions through the following mutual recursion.

�Iw = �I ,

(C � D)Iw = CIw ∩ DIw ,

(∃r.C)Iw = {
d ∈ �I ∣∣ ∃e ∈ CIw .(d, e) ∈ rIw

}
,

({o})Iw = {
oIw

}
,

(P�qC)Iw = {
d ∈ �I ∣∣ pI

d (C) � q
}
,

(∃P�qr.C)Iw = {
d ∈ �I ∣∣ ∃e ∈ CIw .pI

d,e(r) � q
}
,

pI
d (C) = μ

({
w ∈ W

∣∣ d ∈ CIw
})

.

It should be noted that the semantics of the probabilistic concepts P�qC does not depend on any specific world. In-
deed, (P�qC)Iw = (P�qC)Iw′ holds for every w, w ′ ∈ W . The intuition behind this fact is that the probabilistic constructor
accumulates the information across all possible worlds.

A Prob-ELOR TBox is a finite set of GCIs of the form C � D , where C, D are Prob-ELOR-concepts, and role inclusions
of the form r1 ◦ · · · ◦ rn � s, where r1, . . . , rn, s ∈ NR . We say that the probabilistic interpretation I satisfies the GCI C � D if
for every world w ∈ W it holds that CIw ⊆ DIw . I satisfies the role inclusion r1 ◦ · · · ◦ rn � s if (r1 ◦ · · · ◦ rn)Iw ⊆ sIw holds
for every w ∈ W . I is a model of the TBox T if I satisfies all the GCIs and all the role inclusions in T .

Note that GCIs in Prob-ELOR are always crisp: In any model the elements must satisfy all GCIs in all possible worlds,
but elements may be instances of the left-hand and right-hand sides of the GCI with a certain probability. This is different
to the usual modelling of statistical probabilities (e.g. in [12]), where the given GCI must be satisfied to a certain degree
over the whole domain, but any element of the domain either satisfies the GCI or not. One can simulate a probabilistic GCI
of the form C ��p D in Prob-ELOR using C � P�p D . In this case, any instance of C is always also an instance of P�p D ,
which again is an instance of D in worlds with combined probability �p.

A Prob-ELOR ABox is a finite set of assertions of the form C(a), r(a,b), and P�qr(a,b), where C is a Prob-ELOR-con-
cept, r is a role name and a,b are individual names. We say that the probabilistic interpretation I satisfies the assertion C(a),
denoted as I |� C(a), if for every world w ∈ W it holds that aIw ∈ CIw ; similarly, we have I |� r(a,b) if (aIw ,bIw ) ∈ rIw

for all w ∈ W , and I |� P�qr(a,b) if pI
aI ,bI

(r) � q. I is a model of the ABox A if I satisfies all the assertions in A.
Returning to our example, we can express that obese people are likely to have high pressure by including the GCI

Obese � P�0.9∃hasCondition.HighPressure

into the TBox.
As for classical ELOR, an important decision problem in Prob-ELOR is the subsumption between concepts w.r.t.

a given TBox. In this paper, we are mainly interested in studying the cases where this problem can be solved in polynomial
time. Unfortunately, the probabilistic constructors increase the complexity of reasoning, and deciding subsumption becomes
intractable in general. In fact, as shown in [41], the problem is ExpTime-complete, even if only one constructor of the form
P�q with q ∈ (0,1) is allowed. Moreover, the problem becomes PSpace-hard when probabilistic existential restrictions of the
form ∃P>0r or ∃P=1r are used.
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To regain tractability, we restrict to the logic Prob-ELOR01
c , in which probabilistic concepts can only be of the form

P>0C or P=1C . This is without doubt a fairly inexpressive logic. However, it strictly increases the expressivity of ELOR.
For example, in this logic it is possible to express that obese people are almost certainly, but not necessarily, cardiovascular
patients using the axiom Obese � P=1CardiovascularPatient. This extended expressivity provides the possibility of reasoning
under a limited notion of uncertainty in Description Logics.

Intuitively, the concept P>0C expresses the class of individuals that could possibly belong to C , while P=1C contains
the individuals that almost certainly belong to C . It is important to notice that the constructor P=1 does add expressivity to
the logic. Indeed, for an axiom C � D to be satisfied, an interpretation must interpret C as a subset of D in every world,
independent to their likelihood provided by the probability distribution μ. On the other hand, a model I of C � P=1 D
may have worlds w where CIw � DIw , as long as these worlds are almost impossible, i.e. have an associated probability
μ(w) = 0.

Using probabilistic concepts of the form P>0 D allows to explicitly reason over possible implications. If the TBox contains
GCIs that expresses that certain gene defects can possibly lead to obesity, and obesity can possible cause ischemic heart
diseases, then one consequence is that these gene defects can possibly cause ischemic heart diseases. This reasoning would
not be possible or meaningful in crisp ELOR.

The concept constructor P=1C however seems less useful in practice. By the exact semantics, one could for example
express that primes are odd with a probability of 1 (Prime � P=1Odd). However, we argue that in practice one can use
this constructor to express almost certain or high probabilities in general, even though it may not conform to the exact
semantics. For example, one can read the GCI Influenza � P=1∃causes.HighFever as follows: influenza causes high fever
most of the time, though there are exceptions to this. But influenza does not logically imply a fever. Then, Prob-ELOR01

c
allows practical reasoning about both possible and almost certain subsumers (and of course logical implications), which can
be quite helpful in domains that need such a distinction.

It was previously shown that for the sublogic Prob-EL01
c of Prob-ELOR01

c that does neither allow nominals nor role
inclusion axioms, subsumption can be decided in polynomial time using a completion-based algorithm [1]. We extend this
result by showing that the polynomial upper bound still holds in the presence of nominals and role inclusions. To this aim,
we extend the completion algorithm following the ideas presented by Kazakov et al. [32]. The completion algorithm we
obtain this way will then be used to compute the role-depth bounded lcs and msc, in a way akin to the method presented
in the previous section.

Notice that there is no probabilistic constructor applied to roles. Thus, we do not need to modify any of the rules that
deal with role inclusion axioms in the algorithm, as role inclusions and subjective probabilities are completely orthogonal.
For this reason, we restrict the description of our algorithm and its applications to generalization inferences to the sublogic
Prob-ELO01

c of Prob-ELOR01
c . This restriction should avoid unnecessary overhead of notation and rules, while increas-

ing readability. The missing rules to deal with role inclusion axioms are shown in Appendix B; they are straightforward
adaptations of the rules OR5 and OR6 to the probabilistic setting.

The completion rules for Prob-ELO01
c are based on the completion algorithm for Prob-EL01

c presented in [1]. The basic
idea of this completion algorithm is the same as in the classical case: to construct a canonical model of the given knowledge
base. However, since probabilistic interpretations contain a set of worlds, the completion algorithm has to work on sets of
completion sets: one for each probabilistic concept. Basically, the completion algorithm uses a world with positive probabil-
ity for each probabilistic concept P>0 A occurring the TBox T ; this way, for each GCI B � P>0 A ∈ T the world v = P>0 A
serves as witness for this subsumption.

Before introducing the completion algorithm for Prob-ELO01
c , we show that, similar to the non-probabilistic case, any

knowledge base K = (T ,A) can be reduced to an equivalent TBox T ′ by introducing new concept inclusions for all asser-
tions in A. For concept assertions and classical role assertions, this can be done the same way as for classical ELOR. For
probabilistic role assertions P>0r(a,b) (and P=1r(a,b)), we cannot use the translation to {a} � ∃P>0r.{b}, since Prob-ELO01

c
does not allow probabilistic roles in the TBox; however, we can move the probability constructor from the role to the front
of the existential restriction to get {a} � P>0∃r.{b} (and analogously for P=1r(a,b)). While this is not possible in general,
since probabilistic roles have a different semantics that probabilistic existential restrictions, it works for our case, as indi-
viduals, and hence nominals, have the same interpretation in each world.

Lemma 10. Let K = (T ,A) be a knowledge base. Then K can be reduced to a single, equivalent TBox T ′:

T ′ = T ∪ {{a} � C
∣∣ C(a) ∈ A

} ∪
{{a} � ∃r.{b} ∣∣ r(a,b) ∈ A

} ∪
{{a} � P>0∃r.{b} ∣∣ P>0r(a,b) ∈ A

} ∪
{{a} � P=1∃r.{b} ∣∣ P=1r(a,b) ∈ A

}

In particular, instance checks K |� C(a) can be reduced to subsumption checks T ′ |� {a} � C.
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Proof. We show that K and T ′ have the same models:

• I, w |� C(a) ∈A iff aI ∈ CI,w iff {a}I ⊆ CI,w iff I, w |� {a} � C ,
• I, w |� r(a,b) ∈A iff (aI ,bI) ∈ rI,w iff aI ∈ {d | (d,bI) ∈ rI,w} iff I, w |� {a} � ∃r.{b},
• I, w |� P>0r(a,b) ∈ A iff ∃v ∈ W : μ(v) > 0 ∧ (aI ,bI) ∈ rI,v iff aI ∈ {d | ∃v ∈ W : μ(v) > 0 ∧ (d,bI) ∈ rI,v} iff
I, w |� {a} � P>0∃r.{b},

• I, w |� P=1r(a,b) ∈ A iff ∀v ∈ W : μ(v) > 0 ⇒ (aI ,bI) ∈ rI,v iff aI ∈ {d | ∀v ∈ W : μ(v) > 0 ⇒ (d,bI) ∈ rI,v} iff
I, w |� {a} � P=1∃r.{b}. �

In the following, we will therefore only consider Prob-ELO01
c -TBoxes instead of Prob-ELO01

c -knowledge bases.

4.1. Classification algorithm for Prob-ELO01
c

As in the non-probabilistic case, the completion algorithm for classifying a Prob-ELO01
c -TBox T works in three steps:

1. normalize the TBox T ,
2. construct the completion sets from the concept names in the normalized TBox, and
3. saturate the completion sets by exhaustively applying completion rules.

The normal form for Prob-ELO01
c -TBoxes is the same as for ELOR (excluding role inclusion axioms), i.e., a

Prob-ELO01
c -TBox T is in normal form, if it contains only axioms of the form

C � D, C1 � C2 � D, C � ∃r.A, and ∃r.A � D,

where C, C1, C2, D ∈ BCT and A ∈ Sig(T )∩ NC . However, for Prob-ELO01
c the set of basic concepts is different: probabilistic

concepts are considered basic concepts as well. The set BCT of Prob-ELO01
c basic concepts contains �, all nominals {a} ∈ T ,

all concept names Sig(T ) ∩ NC , and for each concept name A in Sig(T ) ∩ NC the concepts P>0 A and P=1 A.
To transform a Prob-ELO01

c -TBox T into normal form, the same rules can be used as in the non-probabilistic case. These
rules are shown in Fig. 1. Clearly, since Prob-ELO01

c does not contain role inclusion axioms, rule NF6 will not be applicable.
The set of worlds on which the completion algorithm works, is defined as V := {0,1, ε} ∪ PT

0 , where PT
0 is the set

of concepts of the form P>0 A that occur in T . The probability distribution μ for V assigns probability 0 to the world
0 and uniform probability 1

|V \{0}| to all other worlds. In the following, we will use P v as an abbreviation for P0 X = X ,
P1 X = P=1 X and P v X = P>0 X for all v ∈ V \ {0,1}.

To classify Prob-ELO01
c -TBoxes, we essentially combine the completion algorithm for ELOR (excluding the rules for role

inclusions) with the completion algorithm for Prob-EL01
c given in [1]. On the one hand the presence of nominals causes

conditional subsumption relationships, i.e., the non-emptiness of a concept can yield subsumptions that would not be true
if the concept were empty. On the other hand Prob-EL01

c introduces a set of different worlds on which we have to infer
subsumptions. To account for both of this in Prob-ELO01

c , we need a separate set of completion sets for each of the different
worlds and for each concept name G . The completion sets hence now have the following form: SG∗ (X, v) and SG∗ (X, r, v)

where X is a concept name, �, or a nominal; v ∈ V is a world; G is a concept name or �; ∗ ∈ {0, ε} and r is a role name.
The completion sets contain again basic concepts. The intuition behind them is similar to the crisp case: Whenever we have
B ∈ SG

0 (A, v), then this means that A �T P v B and whenever B ∈ SG
ε (A, v), then P>0 A �T P v B , both under the condition

that G has a non-empty interpretation. The completion sets SG∗ (X, r, v) are interpreted analogously.
The reachability relation for Prob-ELO01

c -concepts is similar to the one for ELOR, but it must distinguish between
concept names A and probabilistic concepts P>0 A. For example, non-emptiness of G does not imply non-emptiness of
P>0 A, even if G�R A, e.g. in worlds with probability 0. Similarly, non-emptiness of G does not imply non-emptiness of A

for G�R P>0 A. Therefore we introduce two kinds of reachability relation, G
0�R A for G�R A and G

ε�R A for G�R P>0 A:

Definition 11. Let T be a Prob-ELO01
c -TBox in normal form, G be a concept name or � and D be a concept name or a

nominal. Then G
0�R D iff there are roles r1, . . . , rn and concept names A0, . . . , An with Ai ∈ SG

0 (Ai−1, ri,0) for all 1 � i � n
such that An = D and A0 is either G or a nominal. Similarly G

ε�R D iff G
0�R X , P>0Y ∈ SG

0 (X,0) and there are roles
r1, . . . , rn and concept names A0, . . . , An with Ai ∈ SG

ε (Ai−1, ri, ε) for all 1 � i � n such that An = D and A0 = Y .

Nominals interact with the set of possible worlds in a different way than normal concepts. In particular, the concepts
P>0{a} and P=1{a} are actually equivalent to {a}, since {a} is interpreted as the singleton domain element aI in each
world. This means that also X � P>0{a}, X � P=1{a} and X � {a} are equivalent, or in terms of completion sets: Whenever
{a} ∈ S∗(X, v), then {a} must be in S∗(X, w) for all w ∈ V .
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PR1 If C ′ ∈ SG∗ (X, v) and C ′ � D ∈ T then SG∗ (X, v) := SG∗ (X, v) ∪ {D}
PR2 If C1, C2 ∈ SG∗ (X, v) and C1 � C2 � D ∈ T

then SG∗ (X, v) := SG∗ (X, v) ∪ {D}
PR3 If C ′ ∈ SG∗ (X, v) and C ′ � ∃r.D ∈ T

then SG∗ (X, r, v) := SG∗ (X, r, v) ∪ {D}
PR4 If D ∈ SG∗ (X, r, v), D ′ ∈ SG

γ (v)
(D, γ (v)) and ∃r.D ′ � E ∈ T

then SG∗ (X, v) := SG∗ (X, v) ∪ {E},
where γ (0) = 0 and γ (v) = ε for all v ∈ V \ {0}

PR5 If {a} ∈ SG∗1
(X,∗1) ∩ SG∗2

(D,∗2) and G
∗2�R D

then SG∗1
(X,∗1) := SG∗1

(X,∗1) ∪ {P∗2 D}

PR6 If P>0 A ∈ SG∗ (X, v) then SG∗ (X, P>0 A) := SG∗ (X, P>0 A) ∪ {A}
PR7 If P=1 A ∈ SG∗ (X,0) then SG∗ (X,1) := SG∗ (X,1) ∪ {A}
PR8 If P=1 A ∈ SG∗ (X, v) and v �= 0 then SG∗ (X, v) := SG∗ (X, v) ∪ {A}
PR9 If A ∈ SG∗ (X, v) and v �= 0, P>0 A ∈ PT

0
then SG∗ (X, v ′) := SG∗ (X, v ′) ∪ {P>0 A}

PR10 If A ∈ SG∗ (X,1) and P=1 A ∈ PT
1 then SG∗ (X, v) := SG∗ (X, v) ∪ {P=1 A}

PR11 If {a} ∈ SG∗ (X, v) then SG∗ (X, v ′) := SG∗ (X, v ′) ∪ {{a}}

Fig. 5. Completion rules for Prob-ELO01
c .

The completion sets SG∗ (X, v) and SG∗ (X, r, v) are initialized as follows:

• SG
0 (X,0) = {�, X} and SG

0 (X, v) = {�} for all v ∈ V \ {0},

• SG
ε (X, ε) = {�, X} and SG

ε (X, v) = {�} for all v ∈ V \ {ε},

• SG
0 (X, r, v) = SG

ε (X, r, v) = ∅ for all v ∈ V .

These completion sets are then extended by applying the completion rules in Fig. 5 exhaustively to compute all sub-
sumption relations. The completion rules can be divided into three groups: the first group of completion rules PR1 to PR5
are basically the same as rules OR1 to OR4 and OR7 for ELOR; they compute the subsumption between basic concepts
inside each world. The rule PR4 differs, depending on whether the world v is 0 or any other world in V ; i.e., whether the
world has positive probability or not. To describe this, we use a function γ : V → {0, ε}, where γ (0) = 0 and γ (v) = ε for
all v ∈ V \ {0}. The next five rules PR6 to PR10 handle probabilistic concepts and therefore link the different worlds. For
example, whenever we have P>0 A in the subsumer set of B , then rule PR6 will push A into the subsumer set of B for the
world v = P>0 A, i.e., the world v is a witness of the subsumption. Similarly, whenever P=1 A is in the subsumer set of B
for some world v , then rules PR7 and PR10 will push P=1 A into the subsumer sets of B for all other worlds w and rule
PR8 will finally put A into the subsumer sets of B for all worlds with non-zero probability (i.e. all worlds except world 0).
Lastly, rule PR11 also links the different worlds by distributing nominals in subsumer sets between all the worlds.

Consider as an example the subsumption P=1(C � D) � P>0C . This subsumption follows from the empty TBox since
P=1(C � D) � P=1C holds as does P=1C � P>0C , i.e., each element that is an instance of C in all worlds with non-zero
probability is also an instance of C in at least one world with non-zero probability, as there is always at least one such
world. As far as the completion algorithm is concerned, any concept that is subsumed by P=1(C � D) will have C and D
as subsumers in all worlds with non-zero probability, i.e., in all worlds except world 0 (by rules PR7, PR10 and PR8). But
then, this concept will also be subsumed by P>0C in all worlds by rule PR9, especially in world 0.

Compared to the completion rules for Prob-EL01
c in [1], there are a few differences: Besides the notation in terms of

completion sets S , the rules in this paper do not handle ABox assertions, as these can now simply be absorbed into the
TBox. The rules PR5 and PR11 which handle nominals inside a world (similar to rule OR7 for ELOR) and distribute them
between the worlds are of course new, as the original algorithm did not handle nominals. Finally, we have introduced
the additional rule PR7, which is actually necessary to achieve completeness of the completion algorithm even for basic
Prob-EL01

c and was missing in [1]. To see this, consider the following TBox:

Tex = {A � P=1 B, B � C, P=1C � D}
Clearly, we have A �Tex D , however, without rule PR7, the completion algorithm is stuck with P=1 B ∈ S A

0 (A,0) and
will never derive B ∈ S A

0 (A,1), C ∈ S A
0 (A,1), P=1C ∈ S A

0 (A,0) and finally D ∈ S A
0 (A,0). The completion algorithm for

Prob-ELO01
c is again sound and complete:

Proposition 12. The completion algorithm is sound:

C ∈ SG∗ (X, v) implies G: P∗ X �T P v C,

C ∈ SG(X, r, v) implies G: P X � P ∃r.C .
∗ ∗ T v
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Procedure k-lcs(C, D,T ,k)

Input: C, D: Prob-ELO01
c -concepts; T : Prob-ELO01

c -TBox; k ∈N

Output: k-lcs(C, D): Prob-ELO01
c -k-lcs of C, D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C, B ≡ D})
2: ST := apply-completion-rules(T ′)
3: L := k-lcs-r(A, B,ST ,k,Sig(T ))

4: return L

Procedure k-lcs-r(X, Y ,S,k,Sig(T ))

Input: X, Y : basic concepts; S: set of saturated completion sets;
k ∈ N; signature of original TBox T

Output: k-lcs(A, B): Prob-ELO01
c -k-lcs of X, Y w.r.t. T and k

1: CN :=�E∈S X
0 (X,0)∩SY

0 (Y ,0)∩BCT
E

2: if k = 0 then
3: return CN
4: else
5: return CN � �

r∈Sig(T )∩NR

(

�
(E,F )∈S X

0 (X,r,0)×SY
0 (Y ,r,0)

∃r.k-lcs-r(E, F ,S,k − 1,Sig(T )) �

�
(E,F )∈S X

0 (X,r,1)×SY
0 (Y ,r,1)

P=1
(∃r.k-lcs-r(E, F ,S,k − 1,Sig(T ))

) �

�
(E,F )∈PRX (X,r)×PRY (Y ,r)

P>0
(∃r.k-lcs-r(E, F ,S,k − 1,Sig(T ))

))
,

where PRG (X, r) = ⋃
v∈V \{0}

SG
0 (X, r, v)

Fig. 6. Computation algorithm for role-depth bounded Prob-ELO01
c -lcs.

The completion algorithm is complete, i.e., for a normalized TBox T , a concept name G, a basic concept B that occurs in T , and a role
name r we have:

G �T B implies B ∈ SG
0 (G,0)

G �T ∃r.B implies ∃A with A ∈ SG
0 (G, r,0) and B ∈ SG

0 (A,0)

Note that, since ∗ only ranges over {0, ε} for the completion sets S∗ , we cannot directly query the completion sets
for subsumers of concepts of the form P=1 A. However, in practice this does not matter: when one wants to know the
subsumers of a concept P=1 A, one can simply introduce a new concept name X ≡ P=1 A in the TBox and look up the
subsumers of X . This is enough to compute the generalizations, since we introduce new concept names for all input concepts
in the k-lcs algorithm anyway, and start from a nominal in the k-msc algorithm, but never directly from a probabilistic
concept.

The completion algorithm for Prob-ELO01
c still runs in polynomial time, since |BCT |, |Sig(T )∩ NC |, |V |, and the number

of nominals are all linear in the size of |T | = n. Hence we have O(n3) completion sets of the form SG∗ (X, v) and O(n4)

completion sets of the form SG∗ (X, r, v), each of which contains at most O(n) many basic concepts. Therefore the number
of rule applications that add concepts to the completion sets is bounded by O(n5).

Like the previous completion algorithms, it has a ‘pay as you go’ behavior. For example, the number of worlds that are
used in the completion is bounded by the number of occurrences of probabilistic constructors in the knowledge base. If no
probabilistic concepts occur, then the algorithm will not introduce additional worlds (except from the three worlds {0,1, ε}).

4.2. Computing the role-depth bounded Prob-ELO01
c -lcs

The computation of the role-depth bounded Prob-ELO01
c -lcs is similar to the classical case, where we intersect the

direct subsumers stored in the completion sets and add the cross product of the direct existential restrictions of both
concepts. However, in the presence of probabilistic concepts, we need to compute also probabilistic direct subsumers and
existential restrictions. Therefore, this algorithm computes the intersections and the cross product three times: Once for the
non-probabilistic concepts, once for those concepts with probability one and once for concepts with non-zero probability.
The algorithm to compute the role-depth bounded lcs in Prob-ELO01

c is displayed in Fig. 6.
In this algorithm the TBox is first extended, as before, with fresh concept names A and B , which are used in concept

equivalences for the concept descriptions that are the input to the k-lcs. This extended TBox is then normalized and the
completion sets are constructed and saturated by the completion rules in Fig. 5. Then, the recursive procedure is called for
the concept names A and B and computes the k-lcs.

The recursive procedure k-lcs-r computes the role-depth bounded least common subsumer of two basic concepts X and
Y by first taking all concepts that occur in the completions sets of both X and Y for world 0. Note that we do not have
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Procedure k-msc(a,K,k)

Input: a: individual from K; K a Prob-ELO01
c -TBox; k ∈N

Output: role-depth bounded Prob-EL01
c -msc of a w.r.t. K and k.

1: T ′ := normalize(absorb-ABox(K))

2: SK := apply-completion-rules(T ′)
3: return traversal-concept({a},SK,k,Sig(K))

Procedure traversal-concept(A,S,k)

Input: A: basic concept from T ′; S: set of completion sets; k ∈N

Output: role-depth bounded traversal concept.
1: BC :=�E∈S A

0 (A,0)∩BCK
E

2: if k = 0 then
3: return BC
4: else
5: return BC � �

r∈Sig(K)∩NR

(

�
E∈S A

0 (A,r,0)

∃r.traversal-concept(E,S,k − 1,Sig(K)) �

�
E∈S A

0 (A,r,1)

P=1
(∃r.traversal-concept(E,S,k − 1,Sig(K))

) �

�
E∈ ⋃

v∈V \{0}
S A

0 (A,r,v)

P>0
(∃r.traversal-concept(E,S,k − 1,Sig(K))

))

Fig. 7. Algorithm for the role-depth bounded Prob-EL01
c -msc w.r.t. a Prob-ELO01

c -KB.

to check the completion sets for all other worlds, since whenever X ∈ S A
0 (A, v) with v �= 0, then by completion rule PR9

we have also that P>0 X ∈ S A
0 (A,0) and similarly, whenever X ∈ S A

0 (A,1) then we likewise have that P=1 X ∈ S A
0 (A,0) by

completion rule PR10. If the role-depth bound k is 0, then the conjunction of these concepts is returned.
If k is greater than 0, then the algorithm additionally computes the cross product of all existential restrictions of X and

Y for all role names, and recursively calls the k-lcs-r procedure for these existential restrictions. This time, the completion
sets have to be traversed for all worlds: concepts in the completion set of world 0 yield existential restrictions ∃r . . . , world
1 yields P=1∃r . . . and all worlds except 0 yield restrictions P>0∃r . . . .

Similar to the non-probabilistic case, one has to make sure that the resulting k-lcs does not contain names introduced
by normalization. This is achieved by taking only concept and role names from the original TBox during the construction of
the k-lcs. All auxiliary names that were introduced during the normalization can simply be discarded.

Correctness of the role-depth bounded Prob-ELO01
c -lcs follows directly from soundness and completeness of the com-

pletion rules which are used to generate the underlying completion sets.

Theorem 13. Let T be a Prob-ELO01
c -TBox, C and D be Prob-ELO01

c -concept names and k be a natural number. Then
k-lcs(C, D,T ,k) is the role-depth bounded Prob-ELO01

c -lcs of C and D w.r.t. T and the role-depth k.

As in the classical case, the resulting k-lcs can have a size exponential in k, but it is still polynomial in the size of the
input TBox T for a fixed k.

4.3. Computing role-depth bounded Prob-EL01
c -msc w.r.t. Prob-ELO01

c -KBs

As before, our role-depth bounded msc w.r.t. a Prob-ELO01
c -KB does not contain nominals (i.e., is a Prob-EL01

c -concept),
since the msc becomes trivial otherwise. As a first step, the ABox is absorbed into the TBox, so that the completion algorithm
as defined in Subsection 4.1 can be applied. To look up those concepts of which an individual a is an instance in the original
knowledge base, we can then simply look for subsumers of the nominal {a}. This way, we can build the traversal concept
for an individual by traversing the completion sets up to a certain role-depth, which gives exactly the role-depth bounded
Prob-EL01

c -msc of an individual from the Prob-ELO01
c -KB.

Clearly, the msc needs to include probabilistic concepts. This is done in the same way as for the role-depth bounded
lcs, by traversing the subsumer sets for existential restriction for all worlds V . The algorithm to compute the role-depth
bounded Prob-EL01

c -msc w.r.t. a Prob-ELO01
c -KB is depicted in Fig. 7.

The algorithm first absorbs the ABox into the TBox, normalizes the resulting TBox and then constructs the completion
sets. These sets are traversed in the procedure traversal-concept, starting from the nominal {a} of the given individual a. The
traversal first gathers all basic concepts that are direct subsumers of the current node. For these, the algorithm only needs
to traverse the world 0, since whenever X ∈ S A

0 (A, v) with v �= 0, then by completion rule PR9 we have P>0 X ∈ S A
0 (A,0)

and similarly, whenever X ∈ S A(A,1) then we also have P=1 X ∈ S A(A,0) by completion rule PR10. For traversing the roles
0 0
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however, the algorithm has to look at the completion sets for all worlds and recursively traverse all concepts from these
completion sets.

Correctness of the computation of the role-depth bounded Prob-EL01
c -msc w.r.t. Prob-ELO01

c -KBs follows directly from
soundness and completeness of the completion rules which are used to generate the underlying completion sets. The size
of the Prob-EL01

c -k-msc is again exponential in k, but polynomial in the size of K.

Theorem 14. Let K be a Prob-ELO01
c -KB, a be an individual and k be a natural number. Then k-msc(a,K,k) is the role-depth bounded

Prob-EL01
c -msc of a w.r.t. K and the role-depth k.

5. Optimization and evaluation

As previously pointed out, the concept descriptions returned by the algorithms from the generalization algorithms de-
scribed in the previous sections can grow exponentially large in the role-depth bound k in the worst case. On top of that,
the returned concept descriptions are often highly redundant, which might be acceptable if used as an input for a similarity
measure, but surely not if presented to a human reader. This high redundancy can be formalized using the following notion:

A concept description C is called fully expanded up to the role-depth k w.r.t. a TBox T , if

1. for all A ∈ BCT with C �T A we have that A is a conjunct of C and
2. if k > 0 then for all concepts F with C �T ∃r.F we have an F ′ with F ′ �T F such that ∃r.F ′ is a conjunct of C and F ′

is fully expanded up to role-depth k − 1.

Both the k-lcs and k-msc procedures construct concept descriptions that are fully expanded. This can be illustrated by the
introductory example, where we described a knowledge base similar to the following:

T = {Mother ≡ Woman � ∃has − child.�,

Obese � P=1∃hasCondition.HighPressure },
A = {

Woman(mary),

has-child(mary,peter),

Obese(mary)
}
.

For this KB, the k-msc algorithm would compute the fully expanded concept Obese � P=1∃hasCondition.HighPressure �
Mother � Woman � ∃has-child.�, which, even for this small KB, already contains quite some redundancies; in particular, the
condition of high pressure is already implied by the concept Obese, while being a woman and having a child is implied by
the concept Mother.

In this section, we introduce simplification and optimization procedures that are implemented in our system Gel [42],
that allow us to output shorter and thus easier to understand—but still equivalent—concepts. In particular, these sim-
plifications aid in speeding-up the generalization inferences. We then evaluate both our algorithms and the presented
optimizations. Note that Gel only implements the generalization algorithms for ELOR, since there is no implementation
of the classification algorithm for probabilistic variants of EL available. Therefore, we introduce here some of the improve-
ments for ELOR alone, rather than for full Prob-ELOR. However, all of these improvements are easily applicable to the
Prob-ELO01

c -variants of the generalization algorithms as well.
We now present two types of improvements for the algorithms: to obtain succinct rewritings of ELOR-concept descrip-

tions and to speed-up the k-lcs computation.

5.1. Simplifying ELOR-concept descriptions

The fully expanded ELOR-concept descriptions obtained from the k-lcs and k-msc algorithms need to be simplified, in
order to make the resulting concept description readable to humans. The general idea for the simplification is to remove
those subtrees from the syntax tree of the concept description which are subsumers of any of their sibling subtrees. For a
conjunction of concept names, this results in removing all concept names except the minimal ones (w.r.t. �T )—yielding the
smallest equivalent ELOR-concept.

The algorithm shown in Fig. 8 computes such simplifications for ELOR-concept descriptions. For the correctness of
the simplification procedure simplify, it is only necessary to ensure that the procedure subsumes-H is sound. However, for
our purpose this procedure does not need to be complete, in the sense that the simplification can yield concepts that are
equivalent to the input concept description but contain still some redundancies. The heuristic used in Gel is displayed in
Fig. 9; it tries to find a syntactic argument for the subsumption by traversing both concepts structurally and using the
computed subsumptions between concept names from the completion sets.

It is easy to see that the procedure subsumes-H is sound by an inspection of the different cases according to the structure
of C and D . For instance, if C = F1 � F2 is a conjunction (line 9), the procedure only returns true if D is a subsumer of both
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Procedure simplify(C,ST ,T )

Input: C : ELOR-concept; ST : saturated completion sets; T : ELOR-TBox
Output: simplify(C): a succinct ELOR-concept equivalent to C w.r.t. T .
1: Let C = A1 � · · · � An � ∃r1.D1 � · · · � ∃rm.Dm with Ai ∈ BCT (1 � i � n)
2: Conjuncts := {Ai | 1 � i � n} ∪ {∃r j .D j | 1 � j � m}
3: for all X ∈ Conjuncts do
4: for all Y ∈ Conjuncts do
5: if X �= Y ∧ subsumes-H(X, Y ,ST ,T ) then
6: Conjuncts := Conjuncts \ {X}
7: break
8: for all X ∈ Conjuncts do
9: if X = ∃r j .D j then

10: Conjuncts := (Conjuncts \ {∃r j .D j}) ∪ {∃r j .simplify(D j ,ST ,T )}
11: return �

X∈Conjuncts

X

Fig. 8. Simplification algorithm for ELOR-concept descriptions w.r.t. an ELOR-TBox.

Procedure subsumes-H(C, D,S,T )

Input: C, D: ELOR-concepts; S: completion sets; T : ELOR-TBox
Output: Boolean value indicating whether D �T C

1: if C ∈ BCT then
2: if C = � then
3: return true
4: else if D ∈ BCT then
5: return C ∈ S(D)

6: else if D = F1 � F2 then
7: return subsumes-H(C, F1,S,T ) ∨ subsumes-H(C, F2,S,T )

8: return false
9: else if C = F1 � F2 then

10: return subsumes-H(F1, D,S,T ) ∧ subsumes-H(F2, D,S,T )

11: else if C = ∃r.F then
12: if D ∈ BCT then
13: return ∃E ∈ S(D, r) with F ∈ S(E)

14: else if D = F1 � F1 then
15: return subsumes-H(C, F1,S,T ) ∨ subsumes-H(C, F2,S,T )

16: else if D = ∃s.G then
17: if s �T r and subsumes-H(F , G,S,T ) then
18: return true
19: else if ∃t ∈ NR such that s ◦ t �T r, G = · · · � ∃t.H � . . . and

subsumes-H(F , H,S,T ) then
20: return true
21: return false

Fig. 9. Subsumption heuristic for ELOR-concept descriptions based on completion sets.

conjuncts F1 and F2. If both C = ∃r.F and D = ∃s.G are existential restrictions (line 16), then the procedure returns true
if s �T r and F is a subsumer of G , or if there is a role t with s ◦ t �T r and G contains a top-level conjunct of the form
∃t.H such that F is a subsumer of H . In both cases we clearly have D �T C . Soundness for all other cases can be shown
similarly.

Note that this simplification procedure can reduce the size of concepts massively. For example, for the TBox T = {A �
∃r.A � ∃s.A, B � A}, the fully expanded k-lcs of A and B has size 2k , while the simplified k-lcs is always of size 1: it is
simply A. However, in case of the empty TBox, the fully expanded generalizations can usually not be simplified any further.
Thus the effectiveness of simplification largely depends on the structure of the TBox.

5.2. Speeding-up the k-lcs algorithm

As explained before, the k-lcs always returns fully expanded concept descriptions. Even though most redundancy can be
removed by the simplification procedure, this seems counter-intuitive: Why generate the fully expanded concept in the first
place, if most of it gets removed afterwards anyway? Especially for large ontologies with a deep role hierarchy the fully
expanded result may grow very large, which causes in turn long runtimes of the generalization algorithm. Therefore, the
general idea for optimizations is to avoid generating this redundancy and apply some of the simplifications already during
the construction of the result.

Optimization 1 (Avoid unnecessary role-depth). This simple optimization applies if one of the input concepts of the
k-lcs-r procedure already subsumes the other one, in which case it is the lcs of both. Therefore in the procedure
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k-lcs-r(A, B,ST ,k,Sig(T )), if A ∈ S B(B) we can simply return A and if B ∈ S A(A) we can return B . However, if in the
first case A or in the second case B are normalization names, we still have to traverse the completion sets instead of simply
returning �. This subsumption check is a well-known optimization for the computation of the lcs for concept descriptions
without reference to a TBox [43,44].

Optimization 2 (Avoid unnecessary branching). As motivation for this optimization consider the TBox

Tn = {A � D � ∃r.Ci, B � E � ∃r.Ci | 1 � i � n} ∪ {C1 � Ci | 2 � i � n}
In this case, the lcs of A and B is simply ∃r.C1. However, the naive k-lcs algorithm would generate the complete product set

{Ci | 1 � i � n} × {C j | 1 � j � n}
and recursively call k-lcs-r for each pair, just to eliminate all ∃r.Ci for i > 1 and all ∃r.� afterwards in the simplification step.
Even for this simple example, the algorithm would require time quadratic in the size of the input TBox. Clearly, evaluating
the Ci s for i > 1 is not necessary, as they all subsume C1. The same is true for role hierarchies, where for example

T ′
n = {A � D � ∃r.C1, B � E � ∃r.C1} ∪ {

r � ri | i ∈ {2 . . .n}}

would lead to the same unnecessary blow-up of the concept description, and thus also needlessly increase the runtime of
the k-lcs algorithm.

The idea to avoid this kind of branching, is at each step of the traversal to explicitly create the sets SA and SB of all
role-successors C ∈ S X (X, r) and D ∈ SY (Y , s) for the current basic concepts X and Y and to remove all role-successors
which are subsumers of other role-successors in the same set (see Fig. 10). Recursive calls to k-lcs-r-o can then be made
with one successor from each set SA and SB. However, we have to be careful with role-successors with different role-names.
For example, for a role-successor (r, C) ∈ SA and a role-successor (s, D) ∈ SB, a recursive call has to be made for all minimal
(w.r.t. �T ) role names t with r �T t and s �T t (see Fig. 10).

Optimization 3 (Avoid computing unnecessary completion sets). When traversing the completion graphs using the generaliza-
tion algorithms from Section 3, one has to compute the completion sets S A(X) for all concept names A being traversed.
However, it is often the case that most of these sets are very similar, or even the same. For example, whenever A�R B for
concept names A, B ∈ Sig(T ) ∩ NC , then the completion sets S A(X) always contain all (conditional) subsumptions that also
S B(X) contains, i.e., S B(X) ⊆ S A(X) and S B(X, r) ⊆ S A(X, r) for all basic concepts X and role names r. The reason is that,
whenever A�R B , then non-emptiness of A also implies non-emptiness of B and thus, whenever a conditional subsumption
B : X �T Y holds if B is non-empty, then it also holds if A is non-empty: A : X �T Y .

For the k-lcs algorithm, this observation means that computing the completion sets S X (Z) and SY (Z) for all traversed
concepts X and Y is unnecessary, since all traversed concepts are always reachable from the initial concept names A and B .
That is, if k-lcs-r is applied to the concept pair (C, D), then it holds that A�R C and B�R D and thus all subsumers of C and
D can also be found in the completion sets for A and B . Therefore, it suffices to use the completion sets S A(X) and S B(X)

for the initial concept names A and B only, thus also decreasing the complexity of the completion algorithm compared to
full classification.

The case is similar for the k-msc algorithm. However, since this algorithm always starts with a nominal, and nominals are
reachable from every concept by definition, it suffices to compute the completion sets S�(X) and look up all subsumption
relations in these completion sets.

Optimization 4 (Avoid redundant probabilistic concepts). Optimization 2 can be generalized to probabilistic existential restric-
tions. While restrictions of the form ∃r.C and P>0∃r.C or P=1∃r.C are completely independent from each other, this is
not true for P>0∃r.C and P=1∃r.C . Indeed P=1∃r.C �T P>0∃r.C always holds and whenever the k-lcs-r function finds a
subsumer P=1∃r.C for a concept X , it also finds a subsumer P>0∃r.C by the method in which the completion sets are
traversed. This again leads to unwanted redundancies.

The idea to avoid this kind of blow-up in the k-lcs-r algorithm is to traverse probabilistic existential restrictions
of the form P>0∃r.k-lcs-r(E, F ,S,k,Sig(T )) only if E ∈ S A

0 (X, r, v) and F ∈ S B
0 (Y , r, v ′) for v, v ′ �= 0 and not both

E ∈ S A
0 (X, r,1) and F ∈ S B

0 (Y , r,1). Similarly, we can avoid this redundancy in the k-msc algorithm by traversing
P>0∃r.traversal-concept(E,S,k,Sig(K)) only if E ∈ S�

0 (X, r, v) for v �= 0 and E /∈ S�
0 (X, r,1).

Fig. 10 shows the optimized k-lcs algorithm for ELOR implementing optimizations 1, 2 and 3. We show that these
optimizations are correct.

Lemma 15. The results of the k-lcs-r procedure for ELOR-TBoxes given in Fig. 3 and the k-lcs-r-o procedure in Fig. 10 are equivalent.

Proof. Let T be a TBox, T ′ be its normalized version, ST be the completion sets, A, B ∈ Sig(T ) ∩ NC , X, Y ∈ BCT ′ such
that A�R X, B�R Y and k ∈ N. Let L = k-lcs-r(X, Y ,ST ,k,Sig(T )) and Lo = k-lcs-r-o(X, Y ,ST ,k, A, B,Sig(T )). We have to
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Procedure k-lcs-o(C, D,T ,k)

Input: C, D: ELOR-concept descriptions; T : ELOR-TBox; k ∈N

Output: role-depth bounded ELOR-lcs of C, D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C, B ≡ D})
2: ST := apply-completion-rules(T ′)
3: L := k-lcs-r-o(A, B,ST ,k, A, B,Sig(T ) ∪ {A, B})
4: if L = A then
5: return C
6: else if L = B then
7: return D
8: else
9: return L

Procedure k-lcs-r-o(X, Y ,ST ,k, A, B,Sig(T ))

Input: A, B ∈ NC ; X, Y : basic concepts with A�R X, B�R Y ; k ∈N

ST : set of saturated completion sets; signature of original TBox T
Output: role-depth bounded ELOR-lcs of A, B w.r.t. T and k

1: if X ∈ S B (Y ) and X ∈ BCT then
2: return X
3: else if Y ∈ S A(X) and Y ∈ BCT then
4: return Y
5: common-names := S A(X) ∩ S B (Y ) ∩ BCT
6: if k = 0 then
7: return �

P∈common-names

P

8: else
9: SA := remove-redundant({(r, C) | C ∈ S A(X, r)})

10: SB := remove-redundant({(s, D) | D ∈ S B (Y , s)})
11: return �

P∈common-names

P �

�
(r,C)∈SA, (s,D)∈SB,

t∈Sig(T )∩NR minimal with r�T t∧s�T t

∃t.k-lcs-r-o(C, D,ST ,k − 1, A, B,Sig(T ))

Procedure remove-redundant(S,ST )

Input: S: set of role-successors; ST : set of saturated completion sets
Output: simplified set

1: for all (r, C) ∈ S do
2: for all (s, D) ∈ S do
3: if (r, C) �= (s, D) and r �T s and D ∈ S(C) then
4: S := S \ {(s, D)}
5: return S

Fig. 10. Computation of role-depth bounded ELOR-lcs.

show that L ≡T Lo . Note that if Optimization 1 is applicable, then X ∈ S(Y ) or Y ∈ S(X) and hence X (resp. Y ) is the lcs
and thus equivalent to L. Otherwise, we show that L ≡T Lo by induction on the role-depth bound k.

For k = 0 both procedures return the same concept description, i.e., L = Lo .
For k > 0, we first show that for each r ∈ Sig(T ) ∩ NR and all C ∈ S X (X, r), D ∈ SY (Y , r), we have Lo �T

∃r.k-lcs-r(C, D,ST ,k − 1,Sig(T )). For every C ∈ S X (X, r) there exists (s1, C ′) ∈ SA with s1 �T r and C ∈ S(C ′). Similarly,
there exists (s2, D ′) ∈ SB with s2 �T r and D ∈ S(D ′). Therefore, we know that ∃t.k-lcs-r-o(C ′, D ′,ST ,k − 1, A, B,Sig(T ))

is a conjunct of Lo for all minimal t ∈ NR,T with s1 �T t and s2 �T t . Since s1 �T r and s2 �T r, there is at least one
minimal t0 ∈ Sig(T ) ∩ NR with t0 � r for which ∃t0.k-lcs-r-o(C ′, D ′,ST ,k − 1, A, B,Sig(T )) is conjunct of Lo .

The induction hypothesis yields

k-lcs-r-o
(
C ′, D ′,ST ,k − 1, A, B,Sig(T )

) ≡T k-lcs-r
(
C ′, D ′,ST ,k − 1,Sig(T )

)

and we know by definition of the k-lcs that

k-lcs-r
(
C ′, D ′,ST ,k − 1,Sig(T )

) �T k-lcs-r
(
C, D,ST ,k − 1,Sig(T )

)

for C ′ �T C and D ′ �T D . Thus,

∃t0.k-lcs-r-o
(
C ′, D ′,ST ,k − 1, A, B,Sig(T )

) �T ∃r.k-lcs-r
(
C, D,ST ,k − 1,Sig(T )

)
,

i.e. Lo �T ∃r.E for all conjuncts ∃r.E in L. Since it also holds that Lo �T C for C ∈ common-names, we have Lo �T L.
Obviously, k-lcs-r computes all of the recursive concept descriptions (and possibly more) that k-lcs-r-o computes and hence
L �T Lo . This finally yields L ≡T Lo . �
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Fig. 11. Screen-shot of the Protégé plug-in of Gel.

Note that, while we presented the first three optimizations for the k-lcs algorithm in terms of ELOR, they can easily
be lifted to Prob-ELO01

c . Additionally, Optimization 3 is easy to include in the k-msc algorithm, by simply replacing all
completion sets S A(X) in k-msc-r by S�(X). As described before, all four optimizations perform some of the simplification
steps during the construction of the lcs. However, they are not exhaustive; thus the resulting generalizations still contain
some redundancies that can be removed by subsequently applying the simplification procedure.

5.3. Evaluation

The completion algorithm for classifying crisp EL-TBoxes was first implemented in the Cel reasoner [45]. We used
its successor system jCel [37] as a starting point for our implementation of the role-depth bounded lcs and msc. Our
system Gel, first introduced in [37], allows for the computation of both k-lcs and k-msc in the classical description logic
ELOR. Note that, while Gel handles nominals adequately in most cases, its implementation is based on the completion
algorithm published in [4] which is sound but not complete for TBoxes containing nominals, as shown in Kazakov et al. [32].
However, if applied to ontologies from applications, the algorithm employed in jCel usually behaves well, yielding the same
result as the complete classification algorithm. In particular, this is true for our test ontologies. We did not implement the
generalization algorithms for the probabilistic variants, since currently no completion-based reasoner for Prob-EL or its
extensions is available and neither are test knowledge bases. Gel is implemented in Java and provides a simple GUI for the
ontology editor Protégé, shown in the screen-shot in Fig. 11.

We tested our system Gel extensively with constructed and real-world knowledge bases. The real-world ontologies used
in our tests were the Gene Ontology [46] and Not-Galen, a version of the Galen ontology [47] pruned to the expressivity
of the DL ELR. Since most random tuples of concepts in these ontologies have no commonalities, their k-lcs would trivially
be �. To exclude such uninteresting cases, we selected approximately 50 tuples of named concepts by hand, selecting con-
cepts classified as sibling concepts that had similar existential restrictions. We computed the k-lcs for these input concepts
with various role-depth bounds—both with and without the first two optimizations. The third optimization was always
enabled, but note that none of the real-world ontologies we found for testing contained enough nominals.

In the worst case the role-depth bounded lcs can have a size that is exponential in the role-depth bound k. However, it
largely depends on the ontology whether such worst-case behavior occurs. For the Gene Ontology, the role-depth bounded
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Fig. 12. Average k-lcs-r-construction time for concept descriptions from Not-Galen.

Fig. 13. Average factor of the reduction of concept sizes by the simplification procedure for the k-lcs computed w.r.t. Not-Galen.

lcs was always constructed and simplified almost instantly. The runtime was totally dominated by the classification time
used by jCel.

For Not-Galen on the other hand, a few input concept pairs resulted in long runtimes, most of this time was spent
in the k-lcs-r-procedure and not in the classification step. Fig. 12 shows the average k-lcs-r-construction runtime of Gel on
various input pairs for different values of k. Please note the use of a logarithmic scale. The figure also shows the effect
of the optimizations on the construction time. Optimization 1, which returns one of the input concepts if it subsumes the
other, is able to cut-off the k-lcs-r-o recursion before the maximum role-depth is reached. This improves the runtime by a
factor of about 2 compared to the basic k-lcs-r procedure with no optimizations. Optimization 2, which removes redundant
successor nodes before product construction, reduces the branching factor of the recursion. In our tests, it yielded even
better runtime improvements than Optimization 1—on average by factor 30. Each optimization yields a larger speed-up for
increasing role-depth bounds. Combining the optimizations yielded the best runtime for most cases, which indicates that
the optimizations are independent.

In practice, the runtime with only Optimization 1 (or no optimization at all) was sometimes too long to be useful. For
some input concepts, like PepticUlcer and AreaOfAtrophicGastritis, it did not return any result within an hour for a role-depth
bound as low as 4. However, with both optimizations enabled, the result for a role-depth bound of 4 was computed in 1.9 s
(with a classification time of 330 ms). The reason that Optimization 2 is so effective on Not-Galen is that this ontology
contains a deep role hierarchy. Without the optimization for each role also all subsuming roles would generate a recursive
k-lcs-r call, which yields large branching factors.

The runtime for the simplification method which rewrites the resulting concepts into shorter ones is proportional in the
size of the concept description before simplification. However, as illustrated by Fig. 13, simplification reduces the concept
sizes dramatically—even with both optimizations enabled the size of the result is still reduced by a factor of 16 on average.
Of course, since both optimizations apply simplification steps during the construction of the k-lcs, the size-reduction for
results computed without optimizations is even larger.
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All in all, the results from Gel with the first two optimizations and the simplification method active were computed
generally quite fast and were small enough to be inspected manually, thus we believe it is practical enough for many
applications.

We were not able to test the performance of the generalization algorithms for Prob-ELO01
c , but we assume that it scales

with the amount of probabilistic constructors used in the knowledge base: If the Prob-ELO01
c -KB contains no probabilities

at all, the generalization algorithms will not introduce any existential restrictions of the form P>0∃r.C or P=1∃r.C and thus
behave exactly the same as the algorithms for ELOR. We conjecture that when applying Optimization 4, which reduces
the number of redundant probabilistic concepts, the overall performance of the k-lcs or k-msc construction in Prob-ELO01

c
is only slightly worse compared to the respective algorithms for ELOR.

6. Conclusions

In this paper we have studied extensions of the light-weight description logic EL that are capable of handling un-
certainty. The full-blown logic Prob-ELOR extends the classical DL ELOR with probabilistic concept constructors and
probabilistic assertions. The former can be used to describe the class of individuals that belong to a concept within some
probabilistic bounds, while the latter provides a range of probabilities for an individual to satisfy a given concept. For-
mally, Prob-ELOR augments classical concepts with subjective (or Type 2) probabilities, which are interpreted through
multiple-world semantics.

One of the characterizing features of EL and ELOR is that they allow for polynomial time reasoning. This feature, which
is necessary for the feasibility of reasoning with huge knowledge bases, such as Snomed CT, is unfortunately lost in Prob-EL
and Prob-ELOR. Thus, we restrict our attention to the sublogic Prob-ELOR01

c , in which probabilities can only be used in
expressions of the form “the probability is 1” or “the probability is greater than 0.” Despite its seemingly low expressivity,
this logic extends the language currently used for the representation of large biomedical knowledge bases, and is capable of
expressing relevant probabilistic concepts.

The contribution of the paper is manifold. First, we have shown that standard reasoning remains tractable in the logic
Prob-ELOR01

c . We provide a completion algorithm that generalizes the previously known algorithm for Prob-EL01
c , with

correct rules for handling nominals. As a side benefit, we obtain a completion algorithm for classical ELOR that exhibits a
pay-as-you-go behavior, and cover, with a few exceptions like datatypes, the whole OWL 2 EL profile.

Second, we describe how the completion sets obtained from the completion algorithm can be combined to compute
(approximations of) the most specific concept and the least common subsumer. The most specific concept of a given indi-
vidual is the smallest (w.r.t. subsumption) concept description that contains a given individual. Since Prob-ELOR01

c allows
for nominals, which are concepts that only contain a named individual, this task is trivial in that logic. Thus, we restricted
our attention to the use of the target language Prob-EL01

c : finding the most specific Prob-EL01
c -concept of which a given

individual must be an instance of. The least common subsumer, on the other hand, is the most specific concept that gen-
eralizes two given concepts. Both, the msc and the lcs do not exist in general, even for the classical logic EL. However, we
approximate them up to a role-depth that can be specified by the user. Our approximation has the characteristic that, the
larger the allowed role-depth is, the better the approximation we obtain. Moreover, if the msc (respectively, the lcs) exists,
then it will be found after some role-depth, thus in those cases our generalization algorithms yield the exact solution if
k is guessed correctly. Therefore, our algorithm can be used as an ‘any-time’ approximation method that converges to the
optimal solution.

Third, we present an empirical evaluation of our prototypical system Gel for computing the generalization inferences
role-depth bounded msc and lcs. Despite our implementation being still in a very early stage, the experimental results
on well-known bio-medical knowledge bases show promising performance of our algorithms. The extension of Gel to
handle also probabilistic concepts presents some challenges, high among them is the reduction of the space used. As
described in this paper, the completion algorithm for Prob-ELOR01

c needs to store a set of completion sets for each prob-
abilistic concept appearing in the knowledge base. While this does not affect the theoretical complexity of the algorithm
(remains polynomial), it does make its application infeasible for knowledge bases having hundreds of thousands of con-
cepts, even if only a handful of them are probabilistic. A direction of future research is to optimize the algorithm in a
way that only a limited amount of the completion sets is generated, taking advantage of its pay-as-you-go behavior. The
generalization algorithms itself on the other hand are conjectured to perform well even for DLs with subjective probabil-
ity.

There exist several other non-standard inferences that have been studied for classical description logics and would be of
interest in the context of subjective probabilities. One of them is the discovery of the precise axioms from a knowledge base
that are responsible for a consequence to follow. This task is usually known as axiom pinpointing in the literature [48–50].
The generalization inferences msc and lcs are usually employed for the bottom-up creation of a knowledge base. Axiom
pinpointing is useful then for debugging possible errors introduced during this modeling phase. Once the axioms responsible
for this error have been identified, it is necessary to correct them in an adequate manner. The use of probabilities introduces
a new challenge as seemingly innocuous axioms may interact to produce unexpected (and possibly unwanted) consequences.
A further study of this problem will be a matter of future work.
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Appendix A. Omitted proofs for Section 3

A.1. Proof for Proposition 6

To proof the correctness of the completion algorithm for ELOR as given in Proposition 6, we split it in two parts:
soundness and completeness.

Lemma 16 (Soundness of the ELOR completion algorithm). Let T be an ELOR-TBox in normal form, A, B ∈ BCT , r ∈ Sig(T )∩ NR .
Then, the following properties hold:

B ∈ SG(A) �⇒ G : A �T B (A.1)

B ∈ SG(A, r) �⇒ G : A �T ∃r.B (A.2)

Proof. We proof soundness by induction on the number of rule applications. More precisely, we show that the properties
(A.1) and (A.2) hold for the initial subsumer sets and are preserved by any rule application.

• Initially, SG(A) = {A,�} and SG(A, r) = ∅. Since G : A �T A and G : A �T � always holds, (A.1) and (A.2) are satisfied.
• Assume that rule OR1 has been applied to A1 ∈ SG(A) and A1 � B ∈ T . By induction, A1 ∈ SG(A) implies G : A �T A1,

which then yields G : A �T B . Thus, after adding B to SG(A), (A.1) and (A.2) are still satisfied.
• Suppose that rule OR2 has been applied to A1, A2 ∈ SG(A) and that A1 � A2 � B ∈ T . By induction, A1 ∈ SG(A) implies

G : A �T A1 and similarly, A2 ∈ SG(A) implies G : A �T A2. This yields G : A �T B . Thus, after adding B to SG(A), (A.1)
and (A.2) are still satisfied.

• Assume that rule OR3 has been applied to A1 ∈ SG(A) and A1 � ∃r.B ∈ T . By induction, A1 ∈ SG(A) implies G : A �T
A1, which then yields G : A �T ∃r.B . Thus, after adding B to SG(A, r), (A.1) and (A.2) are still satisfied.

• Assume that rule OR4 has been applied to B ∈ SG(A, r), B1 ∈ SG(B), and ∃r.B1 � C ∈ T . By induction, B ∈ SG(A, r)
implies G : A �T ∃r.B and similarly, B1 ∈ SG(B) implies G : B �T B1. Hence G : A �T ∃r.B1 �T C . Thus, after adding C
to SG(A), (A.1) and (A.2) are still satisfied.

• Assume that rule OR5 has been applied to B ∈ SG(A, r) and r � s ∈ T . By induction, B ∈ SG(A, r) implies G : A �T ∃r.B ,
which then yields G : A �T ∃s.B . Thus, after adding B to SG(A, s), (A.1) and (A.2) are still satisfied.

• Assume that rule OR6 has been applied to B ∈ SG(A, r1), C ∈ SG(B, r2) and r1 ◦ r2 � s ∈ T . By induction, B ∈ SG(A, r1)

implies G : A �T ∃r1.B and similarly, C ∈ SG(B, r2) implies G : B �T ∃r2.C , which then yield G : A �T ∃r1.∃r2.C �T
∃s.C . Thus, after adding C to SG(A, s), (A.1) and (A.2) are still satisfied.

• Assume that rule OR7 has been applied to {a} ∈ SG(A1) ∩ SG(A2) and G�R A2. By induction, {a} ∈ SG(Ai) implies
G : A1 �T {a} for i = 1,2. If A2 has a nonempty interpretation, then A2 : A2 ≡T {a} and this A2 is reachable from G ,
also G : A2 ≡T {a}. This yields G : A1 ≡T A2. Thus, after adding A1 to SG(A1), (A.1) and (A.2) are still satisfied. �

Lemma 17 (Completeness of the ELOR completion algorithm). Let T be an ELOR-TBox in normal form, A, B ∈ BCT , r ∈ Sig(T ) ∩
NR , and G = A or G�R A if A ∈ NC and G ∈ BCT otherwise. Then, the following properties hold:

• If A �T B, then B ∈ SG(A), and
• if A �T ∃r.B, there exists E ∈ BCT s.t. E ∈ SG(A, r) and B ∈ SG(E).

Proof. To show completeness, we assume that B /∈ SG(A) (that there is no E ∈ BCT s.t. E ∈ SG(A, r) and B ∈ SG(E)) and
then construct a model IG of T that shows A ��T B (A ��T ∃r.B , respectively).

To construct the interpretation IG , we need to map each individual name to a single element of the domain. However,
since do not make the unique name assumption, different individuals may be interpreted as the same element of the
domain. We thus need to consider equivalence classes of (equivalent) individuals: [a] = {b ∈ Sig(T ) ∩ NI | {a} ∈ SG({b})}.
By rule OR7 and the fact that nominals are always reachable from any G , these equivalence classes are well-defined: If
{a} ∈ SG({b}), then SG({a}) = SG({b}). The domain of IG will then contain all nominals modulo this equivalence and all
concepts that are not subsumed by a nominal and can be reached from G or a nominal using the relation �R . Thus, we
can define IG as follows:

�IG = {[a] ∣∣ a ∈ Sig(T ) ∩ NI
} ∪ {

A ∈ Sig(T ) ∩ NC | G�R A, {a} /∈ SG(A)
}

aIG = [a], for all a ∈ NI [T ]
AIG = {

x
∣∣ A ∈ SG(x)

}

rIG = {(
x, [a]) ∈ �IG × �IG

∣∣ ∃A: A ∈ SG(x, r) ∧ {a} ∈ SG(A)
} ∪{

(x, A) ∈ �IG × �IG
∣∣ A ∈ SG(x, r)

}

where x is either a nominal or a concept name from the domain �IG .
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This interpretation IG is indeed a model of T , i.e., it satisfies all axioms in T :

• Let A � B ∈ T and x ∈ AIG . By definition of IG , this implies A ∈ SG(x) and by rule OR1 also B ∈ SG(x). But then we
have x ∈ BIG .

• Let A1 � A2 � B ∈ T and x ∈ (A1 � A2)
IG , i.e., x ∈ AIG

1 and x ∈ AIG
2 . By definition of IG , this implies A1, A2 ∈ SG(x) and

by rule OR1 also B ∈ SG(x). But then we have x ∈ BIG .
• Let A � ∃r.B ∈ T and x ∈ AIG . By definition of IG , this implies A ∈ SG(x) and by rule OR3 also B ∈ SG(x, r). Since

B ∈ SG(B), we then have B ∈ BIG and (x, B) ∈ rIG and thus x ∈ (∃r.B)IG .
• Let ∃r.A � B ∈ T and x ∈ (∃r.A)IG , i.e., there exists x1 ∈ �IG such that (x, x1) ∈ rIG and x1 ∈ AIG , thus A ∈ SG(x1) by

definition of IG . There are two cases: If x1 ∈ Sig(T ) ∩ NC with G�R x1, {a} /∈ SG(x1), this implies that x1 ∈ SG(x, r), and
thus by rule OR4 we have B ∈ SG(x) and finally x ∈ BIG . If x1 = [a] for an individual name a ∈ Sig(T ) ∩ NI , then we
have that there is y ∈ �IG with y ∈ SG(x, r) and {a} ∈ SG(y) by the definition of IG . Then the completion algorithm
will deduce A ∈ SG(y) the same way as it did for A ∈ SG(x1), and thus OR4 yields B ∈ SG(x) and hence x ∈ BIG .

• Let r � s ∈ T and (x1, x2) ∈ rIG . There are two cases: If x1 ∈ Sig(T ) ∩ NC with G�R x1, {a} /∈ SG(x1), then from the
definition of IG it follows that x2 ∈ SG(x1, r) and by rule OR5 we have x2 ∈ SG(x1, s). But then (x1, x2) ∈ sIG . If x2 = [a]
for an individual name a ∈ Sig(T ) ∩ NI , then we have that there is y ∈ �IG with y ∈ SG(x1, r) and {a} ∈ SG(y) by the
definition of IG . Then OR5 yields y ∈ SG(x1, s) by together with {a} ∈ SG(y) we have (x1, x2) ∈ sIG .

• Let r1 ◦ r2 � s ∈ T and (x1, x3) ∈ (r1 ◦ r2)
IG , i.e., there exists x2 ∈ �IG with (x1, x2) ∈ rIG

1 and (x2, x3) ∈ rIG
2 . Again, there

are two cases:
If x2 ∈ Sig(T ) ∩ NC with G�R x2, {a} /∈ SG(x2), then the definition of IG implies that x2 ∈ SG(x1, r1). Then we know
that, similar to the above case, there is a y with y ∈ SG(x2, r2) with x3 ∈ SG(y) if x3 = [b] for an individual b or y = x3
otherwise.
If x2 = [a] for an individual name a ∈ Sig(T ) ∩ NI , then there exists a y2 ∈ �IG with y1 ∈ SG(x1, r1) and {a} ∈ SG(y1).
Again, similar to above, there is a y with y ∈ SG(x2, r2) with x3 ∈ SG(y) if x3 = [b] for an individual b or y = x3
otherwise. The completion algorithm will deduce y ∈ SG(y1, r2) the same way as it did for y ∈ SG(x2, r2).
In both cases, rule OR6 will yield y ∈ SG(x1, s), and by definition of IG we finally have (x1, x3) ∈ sIG .

Since we assume that B /∈ SG(A) (that there is no E ∈ BCT such that E ∈ SG(A, r) and B ∈ SG(E)), it follows from
the definition of IG that A /∈ BIG (A /∈ (∃r.B)IG ). Since we always have A ∈ AIG , IG shows that A ��T B (respectively,
A ��T ∃r.B), and thus completeness of the completion algorithm. �

Proposition 6 then follows directly from Lemmas 16 and 17.

A.2. Proof for Proposition 7

Again, we split the proof for the correctness of the k-lcs algorithm in two parts: first we show that k-lcs computes indeed
a common subsumer of the input concepts, then we show that this common subsumer is the least one w.r.t. subsumption.

Lemma 18. Let T be an ELOR-TBox, T ′ be the TBox obtained from T by applying the normalization rules, S be the set of com-
pletion sets obtained from T ′ , A, B be concept names, X, Y be basic concepts with A�R X, B�R Y , k be a natural number and
L = k-lcs-r(X, Y ,S,k, A, B). Then X �T ′ L and Y �T ′ L.

Proof. This lemma can be shown by induction on k for the recursive procedure k-lcs-r. For the case k = 0, the result

L = �
E∈S A(X)∩S B (Y )∩BCT

E

of k-lcs-r is a conjunction of basic concepts, but no existential restrictions. By soundness of the completion rules, we know
that E ∈ S A(X) ∩ S B(Y ) implies X �T ′ E and Y �T ′ E . Since L contains exactly those conjuncts, we also have X �T ′ L and
Y �T ′ L.

For k > 0, L is a conjunction of concept names and existential restrictions ∃r.E . For the concept names, the same
argument used for the case where k = 0 applies. For existential restrictions of the form ∃r.k-lcs-r(E, F ,S,k − 1, A, B)

with (E, F ) ∈ S A(X, r) × S B(Y , r), E ∈ S A(X, r) implies X �T ′ ∃r.E by soundness of the completion algorithm, and simi-
lar Y �T ′ ∃r.F . Then the induction hypothesis yields that for L′ = k-lcs-r(E, F ,S,k − 1, A, B) we have E �T ′ L′ and F �T ′ L′
and thus also X �T ′ ∃r.L′ and Y �T ′ ∃r.L′ . All together, this means X �T ′ L and Y �T ′ L is analog. �
Lemma 19. Let T be an ELOR-TBox, T ′ be the TBox obtained from T by applying the normalization rules, S be the set of com-
pletion sets obtained from T ′ , A, B be concept names, X, Y be basic concepts with A�R X, B�R Y , k be a natural number and
L = k-lcs-r(X, Y ,S,k, A, B). Then for each ELOR-concept F with Sig(F) ⊆ Sig(T ) and rd(F ) � k, X �T ′ F and Y �T ′ F imply
L �T ′ F .
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Proof. By induction on the role-depth rd(F ). Let rd(F ) = 0, i.e. F =�i∈I Ei contains no existential restrictions but only basic
concepts Ei . Since X �T ′ F and Y �T ′ F , we also have X �T ′ Ei and Y �T ′ Ei for all conjuncts Ei of F . Then, completeness
of the completion algorithm yields that Ei ∈ S X (X) and since A�R X also E ∈ S A(X). Similarly, we have Ei ∈ S B(Y ) for all
conjuncts Ei of F and thus

L = �
E∈S A(X)∩S B (Y )∩BCT

E �T ′ F .

If rd(F ) > 0, F may contain two kinds of conjuncts: basic concepts and existential restrictions. The basic concepts in F must
appear in L as well by an argument analog to the case rd(F ) = 0. Let ∃r.F ′ be a top-level conjunct of F . Since X �T ′ F and
Y �T ′ F , completeness yields that there exists an E ∈ S A(X, r) such that F ′ ∈ S A(E) (i.e. E �T ′ F ′), and an E ′ ∈ S B(Y , r)
such that F ′ ∈ S B(E ′) (i.e. E ′ �T ′ F ′). By induction hypothesis, it follows that k-lcs-r(E, E ′,S,k − 1, A, B) �T ′ F ′ , and thus it
also holds that L �T ′ ∃r.k-lcs-r(E, E ′,S,k − 1, A, B) �T ′ ∃r.F ′ . All together, we get L �T ′ F . �

Proposition 7 follows directly from Lemmas 18 and 19.

A.3. Proof for Proposition 8

As for the k-lcs, we split the proof for the correctness of the k-msc algorithm in two parts: first we show that k-msc
computes indeed a concept that has the given individual as instance, then we show that this concept is the least one w.r.t.
subsumption.

Lemma 20. Let K = (T ,A) be an ELOR-KB, T ′ be the TBox obtained from T by absorbing A and applying the normaliza-
tion rules, S be the set of completion sets obtained from T ′ , X be a basic concept with ��R X, k be a natural number and
L = traversal-concept(X,S,k). Then X �T ′ L.

Proof. By induction on k. For the case k = 0, the result L =�i∈I Ei of traversal-concept is a conjunction of concepts names
Ei ∈ S�(X) ∩ BCK , but no existential restrictions. By soundness of the completion rules, we know that Ei ∈ S�(X) implies
X �T ′ E . Since L contains exactly those conjuncts, we also have X �T ′ L.

For the case k > 0, L is a conjunction of concept names and existential restrictions ∃r.E . For the concept names, the
same argument as for the case k = 0 applies. For existential restrictions of the form ∃r.traversal-concept(E,S,k − 1) with
E ∈ S�(X, r), soundness yields X �T ′ ∃r.E . Then the induction hypothesis yields that for L′ = traversal-concept(E,S,k − 1)

we have E �T ′ L′ and thus also X �T ′ ∃r.L′ . All together, this means X �T ′ L. �
Lemma 21. Let K = (T ,A) be an ELOR-KB, T ′ be the TBox obtained from T by absorbing A and applying the normaliza-
tion rules, S be the set of completion sets obtained from T ′ , X be a basic concept with ��R X, k be a natural number and
L = traversal-concept(X,S,k). Then, for every ELR-concept F with Sig(F) ⊆ Sig(K) and rd(F ) � k, X �T ′ F implies L �T ′ F .

Proof. By induction on the role-depth rd(F ). Let rd(F ) = 0, i.e. F =�i∈I Ei contains no existential restrictions. Since X �T ′
F , we also have X �T ′ Ei for all conjuncts Ei of F . Then, completeness of the completion algorithm yields that Ei ∈ S X (X)

and since ��R X also Ei ∈ S�(X). Therefore

L = �
E∈S�(X)∩(Sig(K)∩NC ∪{�})

E �T ′ F .

If rd(F ) > 0, F may contain two kinds of conjuncts: concepts names and existential restrictions. The concepts names in F
must appear in L as well by the same argument as in case rd(F ) = 0. Let ∃r.F ′ be a top-level conjunct of F . Since X �T ′
F �T ′ ∃r.F ′ , completeness yields that there exists an E ∈ S�(X, r) such that F ′ ∈ S�(E), i.e. E �T ′ F ′ . Since rd(F ′) < rd(F ),
the induction hypothesis yields traversal-concept(E,S,k − 1) �T ′ F ′ , and thus also L �T ′ ∃r.traversal-concept(E,S,k − 1) �T ′
∃r.F ′ . Everything together we get L �T ′ F . �
Remark. In the previous lemmas, if X is a nominal {a}, then {a} �T ′ L is equivalent to T ′ |� L(a).

Proposition 8 follows directly from Lemmas 20 and 21.

Appendix B. Omitted proofs for Section 4

B.1. Missing rules for Prob-ELOR01
c

The following rules can to be added to the set of completion rules described for Prob-ELO01
c in Fig. 5 on page 14 to

handle the additional constructors of Prob-ELOR01
c :
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PR12 If B ∈ SG∗ (X, r, v), r � s ∈ T and B /∈ SG∗ (X, s, v),
then SG∗ (X, s, v) := SG∗ (X, s, v) ∪ {B}

PR13 If B ∈ SG∗ (X, r1, v), C ∈ SG
γ (v)(B, r2, γ (v)), r1 ◦ r2 � s ∈ T

and C /∈ SG∗ (X, s, v), then SG∗ (X, s, v) := SG∗ (X, s, v) ∪ {C}

These rules are simple adaptations of the rules OR5 and OR6 from the classification algorithm for crisp ELOR to the
probabilistic variant.

B.2. Proof for Proposition 12

Lemma 22. The completion algorithm is sound, i.e.

C ∈ SG∗ (X, v) implies G : P∗ X �T P v C, (B.1)

C ∈ SG∗ (X, r, v) implies G : P∗ X �T P v∃r.C . (B.2)

Proof. We show this by induction on the number of rule applications. It is easy to see that the initial subsumer sets satisfy
(B.1) and (B.2). Also, after each rule application (B.1) and (B.2) will still be satisfied. This proof is similar to the soundness
proof in [1]: even though the completion rules there look very different from ours, there is a direct correspondence. Thus,
we will only show (B.1) for those completion rules, that are not in the original completion algorithm in [1]. For property
(B.2), note that none of these new rules changes the subsumer sets SG∗ (X, r, v).

PR7 If P=1 A ∈ SG∗ (X,0), then by induction hypothesis G : P∗ X �T P=1 A. Then the implication A ∈ SG∗ (X,1) �⇒
G : P∗ X �T P=1 A is obviously correct, and we can add A to SG∗ (X,1).

PR11 If {a} ∈ SG∗ (X, v), then by induction hypothesis G : P∗ X �T P v{a}, i.e. for all models I of T and all worlds w ∈ W
we have: if G is not empty, then (P∗ X)I,w ⊆ (P v{a})I,w . Together with

(
P>0{a})I,w = {

d | ∃v ∈ W : μ(v) > 0 ∧ d ∈ {a}I,v}

= {
d | ∃v ∈ W : μ(v) > 0 ∧ d = aI

} = {
aI

} = {a}I,w

and similarly (P=1{a})I,w = {a}I,w , this yields: if G is not empty, then (P∗ X)I,w ⊆ {a}I,w = {aI} = {a}I,v ′
for all

v ′ ∈ W , and hence it holds that G : P∗ X �T P v ′ {a}. This means that the addition of {a} to SG∗ (X, v ′) still satisfies
(B.1).

PR5 If {a} ∈ SG∗1
(X,∗1) ∩ SG∗2

(D,∗2), then by induction hypothesis we have that G : P∗1 X �T {a} and G : P∗2 D �T {a}.
Additionally, by definition of �R , G

∗2�R D implies that if G is not empty, then P∗2 D must be not empty as well.
Thus we have G : P∗2 D ≡T {a}. This implies that G : P∗1 X � P∗2 D and hence the addition of P∗2 D to SG∗1

(X,∗1) still
satisfies (B.1). �

Lemma 23. The completion algorithm is complete, i.e. for a normalized TBox T , a concept name G, a basic concept B that occurs in T ,
and a role name r we have

G �T B implies B ∈ SG
0 (G,0)

G �T ∃r.B implies ∃A with A ∈ SG
0 (G, r,0) and B ∈ SG

0 (A,0)

Proof. We assume that B /∈ SG
0 (G,0) (resp. there is no A with A ∈ SG

0 (G, r,0) and B ∈ SG
0 (A,0)) and construct a model

IG of T which shows that G ��T B (resp. G ��T ∃r.B). To construct this model, we need equivalence classes of nominals:
[a] = {b ∈ NI [T ] | {a} ∈ SG

0 ({b},0)}. By rules PR5 and PR11 and the fact that nominals are always reachable from any G ,
these equivalence classes are well-defined: If {a} ∈ SG

0 ({b},0), then SG
0 ({a}, v) = SG

0 ({b}, w) for all v, w ∈ V . The domain
of the interpretation will contain all nominals (modulo equivalence) and for each world w ∈ V all concepts that are not
subsumed by a nominal and can be reached from G or a nominal using the relation �R :

Let IG = (�IG , W , (IG,w)w∈W ,μ) be the following interpretation:

�IG := {[a] | a ∈ NI [T ]} ∪
{
(A, v) ∈ NC [T ] × V | G

γ (v)�R A, {a} /∈ SG
γ (v)

(
A, γ (v)

)}

W := V

μ(0) := 0

μ(w) := 1

|W \ {0}| for all w ∈ W \ {0}
aIG = [a] for all a ∈ NI [T ]
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To interpret concept and role names, we need a bijection πv(w) : W → W for each v ∈ W \ {0} with πv(v) = ε and
πv(0) = 0. Moreover, π0 is the identity mapping on W .

Then

AIG ,w = {[a] ∣∣ A ∈ SG
0 ({a}, w)

} ∪
{
(B, v) ∈ �IG

∣∣ A ∈ SG
γ (v)

(
B,πv(w)

)}

rIG ,w = {([a], [b]) ∈ �IG ×�IG
∣∣ ∃A: A ∈ SG

0 ({a}, r, w), {b} ∈ SG
γ (w)

(
A, γ (w)

)} ∪
{([a], (A, w)

) ∈ �IG ×�IG
∣∣ A ∈ SG

0

({a}, r, w
)} ∪

{(
(B, v), [b]) ∈ �IG ×�IG

∣∣ ∃A: A ∈ SG
γ (v)

(
B, r,πv(w)

)
, {b} ∈ SG

γ (w)

(
A, γ (w)

)} ∪
{(

(B, v), (A, w)
) ∈ �IG ×�IG

∣∣ A ∈ SG
γ (v)

(
B, r,πv(w)

)}

Before proving that IG is indeed a model of T , we generalize the definition of AIG ,w to probabilistic concepts:

X ∈ SG
γ (v)

(
B,πv(w)

)
iff (B, v) ∈ XIG ,w for X ∈ BCT , (B, v) ∈ �IG (B.3)

X ∈ SG
0

({a},0
)

iff [a] ∈ XIG ,w for X ∈ BCT , [a] ∈ �IG (B.4)

To show this, we make a case distinction on the forms of X . First notice that in (B.3) X cannot be a nominal, since otherwise
B would be subsumed by one and hence not be in the domain �IG as we assumed.

• If X = �, then (B.3) and (B.4) are true by definition of �IG ,w = �IG and the fact that � is in each subsumer set.
• If X = A ∈ NC , then (B.3) and (B.4) are true by definition of AIG ,w .
• If X = P>0 A. For the “⇒” direction, let P>0 A ∈ SG

γ (v)(B,πv (w)). By rule PR6, we have A ∈ SG
γ (v)(B, P>0 A) and by

definition of IG (B, v) ∈ AIG ,u with πv(u) = P>0 A. By definition of πv and IG , μ(u) > 0 and thus (B, v) ∈ (P>0 A)IG ,w .
For the “⇐” direction, let (B, v) ∈ (P>0 A)IG ,w , i.e. there is u ∈ W \ {0} with (B, v) ∈ AIG ,u . The definition of IG yields
A ∈ SG

γ (v)(B,πv (u)) with πv (u) �= 0 by definition of πv . Then by rule PR9 P>0 A ∈ SG
γ (v)(B,πv(w)).

• If X = P=1 A. For the “⇒” direction, let P=1 A ∈ SG
γ (v)(B,πv (w)). By rules PR7 and PR10 we have P=1 A ∈ SG

γ (v)(B, u)

for all u ∈ W and by rule PR8 A ∈ SG
γ (v)(B, u) for all u ∈ W \ {0}. Since πv is a bijection on W with πv (0) = 0,

this also means A ∈ SG
γ (v)(B,πv (u′)) for all u′ ∈ W \ {0} and hence by definition of IG , (B, v) ∈ AIG ,u′

for all u′ ∈
W \ {0}. Finally, the definition of μ then yields (B, v) ∈ (P=1 A)IG ,w . For the “⇐” direction, let (B, v) ∈ (P=1 A)IG ,w ,
i.e. for all u ∈ W \ {0} we have (B, v) ∈ AIG ,u , especially for u′ with πv(u′) = 1. Then, the definition of IG yields
A ∈ SG

γ (v)(B,πv (u′) = 1) and by rule PR10 P=1 A ∈ SG
γ (v)(B, w ′) for all w ′ ∈ W , especially P=1 A ∈ SG

γ (v)(B,πv(w)).

This interpretation IG is indeed a model of T , which we will show using a case distinction on the types of GCIs in T .

• C � D ∈ T . Let (B, v) ∈ CIG ,w , then (B.3) yields C ∈ SG
γ (v)(B,πv (w)) and by rule PR1 also D ∈ SG

γ (v)(B,πv (w)). (B.3)

yields (B, v) ∈ DIG ,w .
Let [a] ∈ CIG ,w , then C ∈ SG

0 ({a},0) by (B.4) and by rule PR1 also D ∈ SG
0 ({a},0). (B.4) then yields [a] ∈ DIG ,w .

• C1 � C2 � D ∈ T . Let (B, v) ∈ (C1 � C2)
IG ,w , i.e. by the semantics of conjunction (B, v) ∈ CIG ,w

1 and (B, v) ∈ CIG ,w
2 . Then

(B.3) yields that C1, C2 ∈ SG
γ (v)(B,πv (w)), and by rule PR2 D ∈ SG

γ (v)(B,πv (w)). (B.3) then yields (B, v) ∈ DIG ,w .

Let [a] ∈ (C1 � C2)
IG ,w , i.e. [a] ∈ CIG ,w

1 and [a] ∈ CIG ,w
2 . Then we have C1, C2 ∈ SG

0 ({a},0) by (B.4) and by rule PR2 also
D ∈ SG

0 ({a},0). (B.4) then yields [a] ∈ DIG ,w .
• C � ∃r.A. Let (B, v) ∈ CIG ,w , then (B.3) yields C ∈ SG

γ (v)(B,πv (w)) and by rule PR3 A ∈ SG
γ (v)(B, r,πv(w)). Then,

there are two cases: If (A, w) ∈ �IG , i.e. there is no nominal {b} ∈ SG
γ (w)(A, γ (w)), then the definition of rIG ,w

yields ((B, v), (A, w)) ∈ rIG ,w . By the initialization of the completion sets we also have A ∈ SG
γ (w)(A,πw(w)) as

γ (w) = πw(w) by definition, and thus (A, w) ∈ AIG ,w . Since ((B, v), (A, w)) ∈ rIG ,w , this yields (B, v) ∈ (∃r.A)IG ,w .
If (A, w) /∈ �IG , then there is a nominal {b} ∈ SG

γ (w)(A, γ (w)) and the definition of rIG ,w yields ((B, v), [b]) ∈ rIG ,w .

On the other hand, rule PR11 with {b} ∈ SG
γ (w)(A, γ (w)) yields also {b} ∈ SG

γ (w)(A,0) and then rule PR5 with {b} ∈
SG

0 ({b},0) ∩ SG
γ (w)(A,0) and G

γ (w)�R A also implies Pγ (w) A ∈ SG
0 ({b},0) and thus A ∈ SG

0 ({b}, w), i.e. [b] ∈ AIG ,w .

Similarly, let [a] ∈ CIG ,w , then (B.4) yields C ∈ SG
0 ({a},0). By rule PR3 A ∈ SG

0 ({a}, r,0). Again, we have the two cases as
before, which can be shown analogously.

• ∃r.A � D . Let (B, v) ∈ (∃r.A)IG ,w , i.e. there is an α ∈ �IG ,w with ((B, v),α) ∈ rIG ,w and α ∈ AIG ,w . By definition of IG ,
there are two cases: If α = (C, w) ∈ �IG , then the definitions of AIG ,w and rIG ,w yield A ∈ SG (C,πw(w)) and C ∈
γ (w)
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SG
γ (v)(B, r,πv (w)). Since πw(w) = γ (w), and γ (πv (w)) = γ (w) for all v ∈ V , by rule PR4 we get D ∈ SG

γ (v)(B,πv(w))

and thus by (B.3) (B, v) ∈ DIG ,w .
If α = [b] ∈ �IG , then by the definitions of AIG ,w and rIG ,w we have A ∈ SG

0 ({b}, w) and there exists C such that C ∈
SG
γ (v)(B, r,πv (w)) and {b} ∈ SG

γ (w)(C, γ (w)). Because of {b} ∈ SG
γ (w)(C, γ (w)), we have SG

γ (w)(C, γ (w)) ⊇ SG
0 ({b}, w)

(which can be shown by induction on the number of rule applications to the latter), and hence A ∈ SG
γ (w)(C, γ (w)).

Together with C ∈ SG
γ (v)(B, r,πv (w)) and the facts πw(w) = γ (w), and γ (πv (w)) = γ (w) for all v ∈ V , rule PR4 finally

yields D ∈ SG
γ (v)(B,πv(w)) and thus by (B.3) (B, v) ∈ DIG ,w .

Similarly, let [a] ∈ (∃r.A)IG ,w , i.e. there is an α ∈ �IG ,w such that ([a],α) ∈ rIG ,w and α ∈ AIG ,w . Again, we have the
two cases as before, which can be shown analogously.

Finally, by the assumption B /∈ SG
0 (G,0) and the definition of IG we have (G,0) /∈ BIG ,0, whereas G ∈ SG

0 (G,0) yields
(G,0) ∈ GIG ,0. Since IG is a model of T , this proves G ��T B .

The second case is similar. Assume that there is no A with A ∈ SG
0 (G, r,0) and B ∈ SG

0 (A,0), then by definition of the
interpretation IG , there is no element α ∈ �IG with ((G,0),α) ∈ rIG ,0 and α ∈ BIG ,0. Since IG is a model of T , this shows
that G ��T ∃r.B . �
B.3. Proof for Theorem 13

Again, we divide the proof for the correctness of the k-lcs algorithm for Prob-ELO01
c in two parts: first we show that

k-lcs computes indeed a common subsumer of the input concepts, then we show that this common subsumer is the least
one w.r.t. subsumption.

Lemma 24. Let T be a Prob-ELO01
c -TBox, T ′ be the TBox obtained from T by applying the normalization rules, S be the set of

completion sets obtained from T ′ , A, B be concept names, X, Y be basic concepts with A�R X, B�R Y , k be a natural number and
L = k-lcs-r(X, Y ,S,k, A, B). Then X �T ′ L and Y �T ′ L.

Proof. Similar to the crisp case, this lemma can be shown by induction on k for the recursive procedure k-lcs-r. For the case
k = 0, the result

L = �
E∈S A

0 (X,0)∩S B
0 (Y ,0)∩BCT

E

of k-lcs-r is a conjunction of (possibly probabilistic) concept names, but no existential restrictions. By soundness of the
completion rules, we know that E ∈ S A

0 (X,0) ∩ S B
0 (Y ,0) implies X �T ′ E and Y �T ′ E . Since L contains exactly those

conjuncts, we also have X �T ′ L and Y �T ′ L.
For the case k > 0, L is a conjunction of concept names (possibly probabilistic) and existential restrictions ∃r.E ,

P=1∃r.E , and P>0∃r.E . For concept names, the same argument as for the case k = 0 applies. For existential restrictions
∃r.k-lcs-r(E, F ,S,k − 1, A, B) with (E, F ) ∈ S A

0 (X, r,0) × S B
0 (Y , r,0), E ∈ S A

0 (X, r,0) implies X �T ′ ∃r.E by soundness of the
completion algorithm, and similar Y �T ′ ∃r.F . Then the induction hypothesis yields that for L′ = k-lcs-r(E, F ,S,k − 1, A, B)

we have E �T ′ L′ and F �T ′ L′ and thus also X �T ′ ∃r.L′ and Y �T ′ ∃r.L′ .
Similarly, by soundness E ∈ S A

0 (X, r,1) implies X �T ′ P=1∃r.E and also E ∈ PRA(X, r) implies X �T ′ P>0∃r.E , re-
spectively. By induction hypothesis E �T ′ k-lcs-r(E, F ,S,k − 1, A, B), thus X �T ′ P=1∃r.k-lcs-r(E, F ,S,k − 1, A, B) and
X �T ′ P>0∃r.k-lcs-r(E, F ,S,k−1, A, B), respectively. All together, this means X �T ′ L. The case for Y �T ′ L is analogous. �
Lemma 25. Let T be a Prob-ELO01

c -TBox, T ′ be the TBox obtained from T by applying the normalization rules, S be the set of
completion sets obtained from T ′ , A, B be concept names, X, Y be basic concepts with A�R X, B�R Y , k be a natural number and
L = k-lcs-r(X, Y ,S,k, A, B). Then for each Prob-ELO01

c -concept F with Sig(F) ⊆ Sig(T ) and rd(F ) � k, X �T ′ F and Y �T ′ F
imply L �T ′ F .

Proof. By induction on the role-depth rd(F ). Let rd(F ) = 0, i.e. F =�E contains no existential restrictions. Since X �T ′ F
and Y �T ′ F , we also have X �T ′ E and Y �T ′ E for all conjuncts E of F . Then, completeness of the completion algorithm
yields that E ∈ S X

0 (X,0) and since A�R X also E ∈ S A
0 (X,0). Similarly, we have E ∈ S B

0 (Y ,0) for all conjuncts E of F and
thus

L = �
E∈S A

0 (X,0)∩S B
0 (Y ,0)∩BCT

E �T ′ F .

If rd(F ) > 0, F may contain two kinds of conjuncts: basic concepts and (possibly probabilistic) existential restrictions. The
basic concepts in F must appear in L as well by an argument analog to the case rd(F ) = 0. Let ∃r.F ′ be a top-level
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conjunct of F . Since X �T ′ F and Y �T ′ F , completeness yields that there exists an E ∈ S A
0 (X, r,0) such that F ′ ∈ S A

0 (E,0)

(i.e. E �T ′ F ′), and an E ′ ∈ S B
0 (Y , r,0) such that F ′ ∈ S B

0 (E ′,0) (i.e. E ′ �T ′ F ′). By induction hypothesis, it follows that
k-lcs-r(E, E ′,S,k − 1, A, B) �T ′ F ′ , and thus also L �T ′ ∃r.k-lcs-r(E, E ′,S,k − 1, A, B) �T ′ ∃r.F ′ . The other two cases of
probabilistic existential conjuncts P=1∃r.F ′ and P>0∃r.F ′ of F are similar, so together we get L �T ′ F . �

Together, Lemmata 24 and 25 fulfill all requirements of the definition of role-depth bounded least common subsumer.
Thus, Theorem 13 is a direct consequence of both lemmas and the fact that the k-lcs procedure introduces new concept
names A and B for the concepts C and D and then calls the procedure k-lcs-r for these new concept names A and B , using
the completion sets of the extended and normalized TBox.

B.4. Proof for Theorem 14

As for the k-lcs, we split the proof for the correctness of the k-msc algorithm for Prob-ELO01
c in two parts: first we

show that k-msc computes indeed a concept that has the given individual as instance, then we show that this concept is
the least one w.r.t. subsumption.

Lemma 26. Let K = (T ,A) be a Prob-ELO01
c -KB, T ′ be the TBox obtained from T by absorbing A and applying the normal-

ization rules, S be the set of completion sets obtained from T ′ , X be a basic concept with ��R X, k be a natural number and
L = traversal-concept(X,S,k). Then X �T ′ L.

Proof. By induction on k. For k = 0, the result L =�E of traversal-concept is a conjunction of (possibly probabilistic) concept
names E ∈ S�

0 (X,0)∩BCK , but no existential restrictions. By soundness of the completion rules, we know that E ∈ S�
0 (X,0)

implies X �T ′ E . Since L contains exactly those conjuncts, we also have X �T ′ L.
For the case k > 0, L is a conjunction of concept names (possibly probabilistic) and existential restrictions ∃r.E , P=1∃r.E ,

and P>0∃r.E . For the concept names, the same argument as for the case k = 0 applies. For existential restrictions of the form
∃r.traversal-concept(E,S,k − 1) with E ∈ S�

0 (X, r,0), soundness yields X �T ′ ∃r.E . Then the induction hypothesis yields that
for L′ = traversal-concept(E,S,k − 1) we have E �T ′ L′ and thus also X �T ′ ∃r.L′ .

Similarly, by soundness we get that E ∈ S�
0 (X, r,1) implies X �T ′ P=1∃r.E and E ′ ∈ S�

0 (X, r, v) for v ∈ V \ {0} implies
X �T ′ P>0∃r.E ′ . By induction hypothesis we have that E �T ′ traversal-concept(E,S,k − 1) and thus it follows that X �T ′
P=1∃r.traversal-concept(E,S,k − 1) and analogously we get that X �T ′ P>0∃r.traversal-concept(E ′,S,k − 1). Together, this
means X �T ′ L. �
Lemma 27. Let K = (T ,A) be a Prob-ELO01

c -KB, T ′ be the TBox obtained from T by absorbing A and applying the normal-
ization rules, S be the set of completion sets obtained from T ′ , X be a basic concept with ��R X, k be a natural number and
L = traversal-concept(X,S,k). Then for each Prob-ELO01

c -concept F with Sig(F) ⊆ Sig(K) and rd(F ) � k, X �T ′ F implies L �T ′ F .

Proof. By induction on the role-depth rd(F ). Let rd(F ) = 0, i.e. F =�Ei contains no existential restrictions. Since X �T ′ F ,
we also have X �T ′ Ei for all conjuncts Ei of F . Then, completeness of the completion algorithm yields that Ei ∈ S X

0 (X,0)

and since ��R X also Ei ∈ S�
0 (X,0). Therefore

L = �
E∈S�

0 (X,0)∩BCT

E �T ′ F .

If rd(F ) > 0, F may contain two kinds of conjuncts: basic concepts and (possibly probabilistic) existential restrictions. The
basic concepts in F must appear in L as well by the same argument as in case rd(F ) = 0. Let ∃r.F ′ be a top-level con-
junct of F . Since X �T ′ F �T ′ ∃r.F ′ , completeness yields that there exists an E ∈ S�

0 (X, r,0) such that F ′ ∈ S�
0 (E,0),

i.e. E �T ′ F ′ . Since rdF ′ < rdF , the induction hypothesis yields traversal-concept(E,S,k − 1) �T ′ F ′ , and thus also L �T ′
∃r.traversal-concept(E,S,k − 1) �T ′ ∃r.F ′ . The other two cases of probabilistic existential conjuncts P=1∃r.F ′ and P>0∃r.F ′
of F are similar, so together we get L �T ′ F . �

Since K |� C(a) and T ′ |� {a} � C are equivalent if T ′ arises from K by absorbing the ABox (see Lemma 10), the
previous two lemmata imply the correctness of Theorem 14, as k-msc algorithm absorbs the ABox into the TBox T ′ and
then computes the traversal-concept of the nominal {a}. Then Lemma 26 implies {a} �T ′ C , i.e. K |� C(a), and Lemma 27
implies that for any concept F with rd(F ) � k, K |� F (a) implies K |� C(a).
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