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Abstract. We introduce an extension of the lightweight Description
Logic EL that allows us to define concepts in an approximate way. For
this purpose, we use a graded membership function, which for each in-
dividual and concept yields a number in the interval [0, 1] expressing
the degree to which the individual belongs to the concept. Threshold
concepts C∼t for ∼ ∈ {<,≤, >,≥} then collect all the individuals that
belong to C with degree ∼ t. We generalize a well-known characterization
of membership in EL concepts to construct a specific graded membership
function deg , and investigate the complexity of reasoning in the Descrip-
tion Logic τEL(deg), which extends EL by threshold concepts defined
using deg . We also compare the instance problem for threshold concepts
of the form C>t in τEL(deg) with the relaxed instance queries of Ecke
et al.

1 Introduction

Description logics (DLs) [3] are a family of logic-based knowledge representation
formalisms, which can be used to represent the conceptual knowledge of an ap-
plication domain in a structured and formally well-understood way. They allow
their users to define the important notions of the domain as concepts by stating
necessary and sufficient conditions for an individual to belong to the concept.
These conditions can be atomic properties required for the individual (expressed
by concept names) or properties that refer to relationships with other individ-
uals and their properties (expressed as role restrictions). The expressivity of a
particular DL is determined by what sort of properties can be required and how
they can be combined.

The DL EL, in which concepts can be built using concept names as well as the
concept constructors conjunction (�), existential restriction (∃r.C), and the top
concept (�), has drawn considerable attention in the last decade since, on the
one hand, important inference problems such as the subsumption problem are
polynomial in EL, even with respect to expressive terminological axioms [7]. On
the other hand, though quite inexpressive, EL can be used to define biomedical
ontologies, such as the large medical ontology SNOMEDCT.1 In EL we can, for
� Supported by DFG Graduiertenkolleg 1763 (QuantLA).
1 see http://www.ihtsdo.org/snomed-ct/
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example, define the concept of a happy man as a male human that is healthy and
handsome, has a rich and intelligent wife, a son and a daughter, and a friend:

Human �Male � Healthy � Handsome �
∃spouse.(Rich � Intelligent � Female) � (1)

∃child.Male � ∃child.Female � ∃friend.�

For an individual to belong to this concept, all the stated properties need to
be satisfied. However, maybe we would still want to call a man happy if most,
though not all, of the properties hold. It might be sufficient to have just a
daughter without a son, or a wife that is only intelligent but not rich, or maybe
an intelligent and rich spouse of a different gender. But still, not too many of
the properties should be violated.

In this paper, we introduce a DL extending EL that allows us to define con-
cepts in such an approximate way. The main idea is to use a graded membership
function, which instead of a Boolean membership value 0 or 1 yields a member-
ship degree from the interval [0, 1]. We can then require a happy man to belong
to the EL concept (1) with degree at least .8. More generally, if C is an EL
concept, then the threshold concept C≥t for t ∈ [0, 1] collects all the individuals
that belong to C with degree at least t. In addition to such upper threshold
concepts, we will also consider lower threshold concepts C≤t and allow the use
of strict inequalities in both. For example, an unhappy man could be required
to belong to the EL concept (1) with a degree less than .2.

The use of membership degree functions with values in the interval [0, 1] may
remind the reader of fuzzy logics. However, there is no strong relationship be-
tween this work and the work on fuzzy DLs [6] for two reasons. First, in fuzzy
DLs the semantics is extended to fuzzy interpretations where concept and role
names are interpreted as fuzzy sets and relations, respectively. The membership
degree of an individual to belong to a complex concept is then computed using
fuzzy interpretations of the concept constructors (e.g., conjunction is interpreted
using an appropriate triangular norm). In our setting, we consider crisp inter-
pretations of concept and role names, and directly define membership degrees
for complex concepts based on them. Second, we use membership degrees to ob-
tain new concept constructors, but the threshold concepts obtained by applying
these constructors are again crisp rather than fuzzy.

In the next section, we will formally introduce the DL EL, and then recall
the well-known characterization of element-hood in EL concepts via existence
of homomorphisms between EL description graphs (which can express both EL
concepts and interpretations in a graphical way). In Section 3, we then extend
EL by new threshold concept constructors, which are based on an arbitrary, but
fixed graded membership function. We will impose some minimal requirements
on such membership functions, and show the consequences that these conditions
have for our threshold logic. In Section 4, we then introduce a specific graded
membership function deg , which satisfies the requirements from the previous sec-
tions. Its definition is a natural extension of the homomorphism characterization
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of crisp membership in EL. Basically, an individual is punished (in the sense that
its membership degree is lowered) for each missing property in a uniform way.
More sophisticated versions of this function, which weigh the absence of different
properties in a different way, may be useful in practice. However, they are easy
to define and considering them would only add clutter, but no new insights, to
our investigation (in Section 5) of the computational properties of the threshold
logic obtained by using this function.

In Section 6 we compare our graded membership function with similarity
measures on EL concepts. In fact, from a technical point of view, the graded
membership function introduced in Section 4 is akin to the similarity measures
for EL concepts introduced in [14,15], though only [15] directly draws its in-
spirations from the homomorphism characterization of subsumption in EL. We
show that a variant of the relaxed instance query approach of [10] can be used
to turn a similarity measure into a graded membership function. It turns out
that, applied to a simple instance ��1 of the framework for constructing simi-
larity measures in [14], this approach actually yields our membership function
deg . In addition, we can show that the relaxed instance queries of [14] can be
expressed as instance queries w.r.t. threshold concepts of the form C>t. How-
ever, the new DL introduced in this paper is considerably more expressive than
just such threshold concepts since we also allow the use of comparison operators
other than > in threshold concepts, and the threshold concepts can be embedded
in complex EL concepts.

This paper is an extended version of [16]. Due to the space constraints, we
cannot provide all technical details and proofs in this paper. They can be found
in the technical report [1].

2 The Description Logic EL
We start by defining syntax and semantics of EL. Starting with finite sets of
concept names NC and role names NR, the set CEL of EL concept descriptions
is obtained by using the concept constructors conjunction (C � D), existential
restriction (∃r.C) and top (�), in the following way:

C ::= � | A | C � C | ∃r.C
where A ∈ NC, r ∈ NR and C ∈ CEL.

An interpretation I = (ΔI , .I) consists of a non-empty domain ΔI and an
interpretation function .I that assigns subsets of ΔI to each concept name and
binary relations over ΔI to each role name. The interpretation function .I is
inductively extended to concept descriptions in the usual way:

�I := ΔI ,
(C �D)I := CI ∩DI ,
(∃r.C)I := {x ∈ ΔI | ∃y. (x, y) ∈ rI ∧ y ∈ CI}.

Given C,D ∈ CEL, we say that C is subsumed by D (denoted as C � D)
iff CI ⊆ DI for every interpretation I. These two concept descriptions are
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equivalent (denoted as C ≡ D) iff C � D and D � C. Finally, C is satisfiable iff
CI �= ∅ for some interpretation I.

Our definition of graded membership will be based on graphical represen-
tations of concepts and interpretations, and on homomorphisms between such
representations. For this reason, we recall these notions together with the perti-
nent results. They are all taken from [4,12,2].

Definition 1 (EL Description Graphs). An EL description graph is of the
form G = (VG, EG, �G) where:

– VG is a set of nodes.
– EG ⊆ VG × NR × VG is a set of edges labelled by role names,
– �G : VG → 2NC is a function that labels nodes with sets of concept names.

An EL description tree T is a description graph that is a tree with a dis-
tinguished element v0 representing its root. In [4], it was shown that every EL
concept description C can be translated into a corresponding description tree TC

and vice versa. Furthermore, every interpretation I = (ΔI , .I) can be translated
into an EL description graph GI = (VI , EI , �I) in the following way [2]:

– VI = ΔI ,
– EI = {(vrw) | (v, w) ∈ rI},
– �I(v) = {A | v ∈ AI} for all v ∈ VI .

Example 1. The EL concept description

C := A � ∃r.(A �B � ∃r.�) � ∃r.A
yields the EL description tree TC depicted on the left-hand side in Figure 1. The
description graph on the right-hand side corresponds to the following interpre-
tation:

– ΔI := {a1, a2, a3},
– AI := {a1, a2} and BI := {a2, a3},
– rI := {(a1, a2), (a2, a3), (a3, a1)}.

TC : v0 : {A}

v1 : {A,B}

v2 : {}
r

r

v3 : {A}
r

GI : a1 : {A}

a2 : {A,B}

a3 : {B}
r

r

r

Fig. 1. EL description graphs.

Next, we generalize homomorphisms between EL description trees [4] to ar-
bitrary graphs.
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Definition 2 (Homomorphisms on EL Description Graphs). Let G =
(VG, EG, �G) and H = (VH , EH , �H) be two EL description graphs. A mapping
ϕ : VG → VH is a homomorphism from G to H iff the following conditions are
satisfied:

1. �G(v) ⊆ �H(ϕ(v)) for all v ∈ VG, and
2. vrw ∈ EG implies ϕ(v)rϕ(w) ∈ EH .

This homomorphism is an isomorphism iff it is bijective, equality instead of just
inclusion holds in 1., and biimplication instead of just implication holds in 2.

In Example 1, the mapping ϕ with ϕ(vi) = ai+1 for i = 0, 1, 2 and ϕ(v3) = a2
is a homomorphism. Homomorphisms between EL description trees can be used
to characterize subsumption in EL.

Theorem 1 ([4]). Let C,D be EL concept descriptions and TC , TD the corre-
sponding EL description trees. Then C � D iff there exists a homomorphism
from TD to TC that maps the root of TD to the root of TC.

The proof of this result can be easily adapted to obtain a similar characteri-
zation of element-hood in EL, i.e., whether d ∈ CI for some d ∈ ΔI .

Theorem 2. Let I be an interpretation, d ∈ ΔI , and C an EL concept descrip-
tion. Then, d ∈ CI iff there exists a homomorphism ϕ from TC to GI such that
ϕ(v0) = d.

In Example 1, the existence of the homomorphism ϕ defined above thus shows
that a1 ∈ CI . Equivalence of EL concept descriptions can be characterized via
the existence of isomorphisms, but for this the concept descriptions first need to
be normalized by removing redundant existential restrictions. To be more precise,
the reduced form of an EL concept description is obtained by applying the rewrite
rule ∃r.C � ∃r.D −→ ∃r.C if C � D as long as possible. This rule is applied
modulo associativity and commutativity of �, and not only on the top-level
conjunction of the description, but also under the scope of existential restrictions.
Since every application of the rule decreases the size of the description, it is easy
to see that the reduced form can be computed in polynomial time. We say that
an EL concept description is reduced iff this rule does not apply to it. In our
Example 1, the reduced form of C is the reduced description A�∃r.(A�B�∃r.�).

Theorem 3 ([12]). Let C,D be EL concept descriptions, Cr, Dr their reduced
forms, and TCr , TDr the corresponding EL description trees. Then C ≡ D iff
there exists an isomorphism between TCr and TDr .

3 The Logic τEL(m)

Our new logic will allow us to take an arbitrary EL concept C and turn it into
a threshold concept. To this end we introduce a family of constructors that are
based on the membership degree of individuals in C. For instance, the threshold
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concept C>.8 represents the individuals that belong to C with degree > .8. The
semantics of the new threshold concepts depends on a (graded) membership
function m. Given an interpretation I, this function takes a domain element
d ∈ ΔI and an EL concept C as input, and returns a value between 0 and 1,
representing the extent to which d belongs to C in I.

The choice of the membership function obviously has a great influence on the
semantics of the threshold concepts. In Section 4 we will propose one specific
such function deg , but we do not claim this is the only reasonable way to define
such a function. Rather, the membership function is a parameter in defining the
logic. To highlight this dependency, we call the logic τEL(m).

Nevertheless, membership functions are not arbitrary. There are two proper-
ties we require such functions to satisfy:

Definition 3. A graded membership function m is a family of functions that
contains for every interpretation I a function mI : ΔI × CEL → [0, 1] satisfying
the following conditions (for C,D ∈ CEL):

M1 : d ∈ CI ⇔ mI(d, C) = 1 for all d ∈ ΔI ,

M2 : C ≡ D ⇔ for all d ∈ ΔI : mI(d, C) = mI(d,D).

Property M1 requires that the value 1 is a distinguished value reserved for
proper containment in a concept. Property M2 requires equivalence invariance.
It expresses the intuition that the membership value should not depend on the
syntactic form of a concept, but only on its semantics. Note that the right to
left implication in M2 already follows from M1.

We now turn to the syntax of τEL(m). Given finite sets of concept names NC

and role names NR, τEL(m) concept descriptions are defined as follows:

̂C ::= � | A | ̂C � ̂C | ∃r. ̂C | E∼q

where A ∈ NC, r ∈ NR, ∼ ∈ {<,≤, >,≥}, q ∈ [0, 1] ∩ Q, E is an EL concept
description and ̂C is a τEL(m) concept description. Concepts of the form E∼q

are called threshold concepts.
The semantics of the new threshold concepts is defined in the following way:

[E∼q]
I := {d ∈ ΔI | mI(d,E) ∼ q}.

The extension of .I to more complex concepts is defined as in EL by additionally
considering the semantics of the newly introduced threshold concepts.

Requiring property M1 has the following consequences for the semantics of
threshold concepts:

Proposition 1. For every EL concept description E we have

E≥1 ≡ E and E<1 ≡ ¬E,

where the semantics of negation is defined as usual, i.e., [¬E]I := ΔI \ EI .
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The second equivalence basically says that τEL(m) can express negation of EL
concept descriptions. This does not imply that τEL(m) is closed under negation
since the threshold constructors can only be applied to EL concept descriptions.
Thus, negation cannot be nested using these constructors. A formal proof that
τEL(deg) for the membership function deg introduced in the next section cannot
express full negation can be found in [1]. However, atomic negation (i.e., negation
applied to concept names) can obviously be expressed. Consequently, unlike
EL concept descriptions, not all τEL(m) concept descriptions are satisfiable.
A simple example is the concept description A≥1 � A<1, which is equivalent to
A � ¬A.

4 The Membership Function deg

To make things more concrete, we now introduce a specific membership function,
denoted deg . Given an interpretation I, an element d ∈ ΔI , and an EL concept
description C, this function is supposed to measure to which degree d satisfies
the conditions for membership expressed by C. To come up with such a measure,
we use the homomorphism characterization of membership (see Theorem 2) as
starting point. Basically, we consider all partial mappings from TC to GI that
map the root of TC to d and respect the edge structure of TC . For each of
these mappings we then calculate to which degree it satisfies the homomorphism
conditions, and take the degree of the best such mapping as the membership
degree degI(d, C). We consider partial mappings rather than total ones since
one of the violations of properties demanded by C could be that a required role
successor does not exist at all.

To formalize this idea, we first define the notion of partial tree-to-graph homo-
morphisms from description trees to description graphs. In this definition, the
node labels are ignored (they will be considered in the next step).

Definition 4. Let T = (Vt, Et, �t, v0) and G = (Vg, Eg, �g) be a description tree
(with root v0) and a description graph, respectively. A partial mapping h : Vt →
Vg is a partial tree-to-graph homomorphism (ptgh) from T to G iff the following
conditions are satisfied:

1. dom(h) is a sub-tree of T with root v0, i.e., v0 ∈ dom(h) and if (v, r, w) ∈ Et

and w ∈ dom(h), then v ∈ dom(h);
2. for all edges (v, r, w) ∈ Et, w ∈ dom(h) implies (h(v), r, h(w)) ∈ Eg.

In order to measure how far away from a homomorphism according to Defini-
tion 2 such a ptgh is, we define the notion of a weighted homomorphism between
a finite EL description tree and an EL description graph.

Definition 5. Let T be a finite EL description tree, G an EL description graph
and h : VT �→ VG a ptgh from T to G. We define the weighted homomorphism
induced by h from T to G as a function hw : dom(h) → [0, 1] as follows. For a
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given v ∈ dom(h), let k∗(v) be the number of successors of v in T , and v1, . . . , vk
the k (0 ≤ k ≤ k∗(v)) children of v in T such that vi ∈ dom(h). Then

hw(v) :=

⎧

⎨

⎩

1 if |�T (v)|+ k∗(v) = 0

|�T (v)∩�G(h(v))|+∑
1≤i≤k hw(vi)

|�T (v)|+k∗(v) otherwise.

It is easy to see that hw is well-defined. In fact, T is a finite tree, which
ensures that the recursive definition of hw is well-founded. In addition, the first
case in the definition ensures that division by zero is avoided. Using value 1
in this case is justified since then no property is required. In the second case,
missing concept names and missing successors decrease the weight of a node
since then the required name or successor contributes to the denominator, but
not to the numerator. Required successors that are there are only counted if
they are successors for the correct role, and then they do not contribute with
value 1 to the numerator, but only with their weight (i.e., the degree to which
they match the requirements for this successor).

When defining the value of the membership function degI(d, C), we do not
use the concept C directly, but rather its reduced form Cr. This will ensure that
deg satisfies property M2 (see Proposition 2 below).

Definition 6. Let I = (ΔI , .I) be an interpretation, d an element of ΔI , and C
an EL concept description with reduced form Cr. In addition, let H(TCr , GI , d)
be the set of all ptghs from TCr to GI with h(v0) = d. The set VI(d, Cr) of all
relevant values is defined as

VI(d, Cr) := {q | hw(v0) = q and h ∈ H(TCr , GI , d)}.
Then we define degI(d, C) := maxVI(d, Cr).

If the interpretation I is infinite, there may exist infinitely many ptghs from
TCr to GI with h(v0) = d. Therefore, it is not immediately clear whether the
maximum in the above definition actually exists, and thus whether degI(d, C) is
well-defined. To prove that the maximum exists also for infinite interpretations,
we show that the set VI(d, Cr) is actually a finite set. For this purpose, we
introduce canonical interpretations induced by ptghs.

Definition 7 (Canonical Interpretation). Let I = (ΔI , .I) be an interpre-
tation, C an EL concept description and h be a ptgh from TCr to GI . The
canonical interpretation Ih induced by h is the one having the description tree
TIh

= (VIh
, EIh

, v0, �Ih
) with

VIh
:= dom(h),

EIh
:= {vrw ∈ ETCr | v, w ∈ dom(h)}

�Ih
(v) := �TCr (v) ∩ �I(h(v)) for all v ∈ dom(h).

Lemma 1. Let I be an interpretation, d ∈ ΔI and C an EL concept description.
Then the following two properties hold:
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1. there are only finitely many different canonical interpretations induced by
ptghs h ∈ H(TCr , GI , d);

2. for every h ∈ H(TCr , GI , d), the identity mapping iIh : dom(h) → VIh

with iIh(v) = v for all v ∈ dom(h) is a ptgh from TC to TIh
that satisfies

hw(v0) = iIh
w (v0).

The first statement is an easy consequence of the fact that the description tree
for a canonical interpretation has nodes from the finite set of nodes of TCr and
labels from the finite set of concept and role names. The second fact is not hard
to show, and it obviously implies that the set VI(d, Cr) is finite. Consequently,
degI(d, C) is well-defined. Moreover, as an easy consequence of the proof of
Lemma 1 we can show that the same value can be obtained by considering the
corresponding canonical interpretation. To be more precise:

Lemma 2. Let I = (ΔI , .I) be an interpretation, d ∈ ΔI and C an EL concept
description. Let h be a ptgh from TCr to GI such that h(v0) = d and degI(d, C) =
hw(v0). In addition, let Ih be the corresponding canonical interpretation. Then,
degIh(v0, C) = degI(d, C).

If the interpretation I is finite, degI(d, C) for d ∈ ΔI and an EL concept
description C can actually be computed in polynomial time. The polynomial
time algorithm described in [1] is inspired by the polynomial time algorithm for
checking the existence of a homomorphism between EL description trees [5,4],
and similar to the algorithm for computing the similarity degree between EL
concept descriptions introduced in [15]. Finally, it remains to show that deg
satisfies the properties required for a membership function.

Proposition 2. The function deg satisfies M1 and M2.

In fact, M1 is easy to show and M2 follows from the fact that we use
the reduced form of a concept description rather than the description itself.
Otherwise, M2 would not hold. For example, consider the concept description
C := ∃r.A�∃r.(A�B), which is equivalent to its reduced form Cr = ∃r.(A�B).
Let d be an individual that has a single r-successor belonging to A, but not to
B. Then using C instead of Cr would yield membership degree 3/4, whereas the
use of Cr yields the degree 1/2.

5 Reasoning in τEL(deg)

We start with investigating the complexity of terminological reasoning (sub-
sumption, satisfiability) in τEL(deg), and then turn to assertional reasoning
(consistency, instance). In the following, we assume that all concept descriptions
E occurring in threshold concepts E∼q are reduced (i.e., Er = E), and thus we
can directly use E when computing membership degrees. This is without loss of
generality since the reduced form of an EL concept description can be computed
in polynomial time.
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Terminological Reasoning. In contrast to EL, where every concept descrip-
tion is satisfiable, we have seen in Section 3 that there are unsatisfiable τEL(deg)
concept descriptions, such as A≥1 � A<1. Thus, the satisfiability problem is
non-trivial in τEL(deg). In fact, by a simple reduction from the well-known
NP-complete problem ALL-POS ONE-IN-THREE 3SAT [11], we can show that
testing τEL(deg) concept descriptions for satisfiability is actually NP-hard. The
main idea underlying this reduction is that, for any three distinct concept names
Ai, Aj , Ak, an individual belongs to (Ai�Aj �Ak)≤1/3� (Ai�Aj �Ak)≥1/3 iff it
belongs to exactly one of these three concepts. This also yields coNP-hardness of
subsumption in τEL(deg) since unsatisfiability can be reduced to subsumption:
̂C is not satisfiable iff ̂C � A≥1 � A<1.

Lemma 3. In τEL(deg), satisfiability is NP-hard and subsumption is coNP-
hard.

Before proving an NP upper bound for satisfiability, we show that the homo-
morphism characterization of membership in an EL concept can be extended to
τEL(deg). For this, we first extend EL description graphs to τEL(deg) descrip-
tion graphs. This is done by allowing the node labelling function to assign, in
addition, threshold concepts as labels.

Definition 8. Let ̂H = (VH , EH , ̂�H) be a τEL(deg) description graph and I
an interpretation with associated EL description graph GI = (VI , EI , �I). The
mapping φ : VH → VI is a τ-homomorphism from ̂H to GI iff

1. φ is a homomorphism from ̂H to GI according to Definition 2, where thresh-
old concepts in labels are ignored,

2. for all v ∈ VH : if E∼q ∈ ̂�H(v), then φ(v) ∈ [E∼q]
I .

If the interpretation I is finite, then the existence of a τ -homomorphism can
be checked in polynomial time. Intuitively, for the first condition one just needs
to check for the existence of a classical homomorphism, and for the second one
needs to compute membership degrees. Both can be done in polynomial time.
Similar to EL, the existence of a τ -homomorphism characterizes membership in
τEL(deg) concept descriptions.

Theorem 4. Let I be an interpretation, d ∈ ΔI, and ̂C a τEL(deg) concept
description. Then, d ∈ ̂CI iff there exists a τ-homomorphism φ from TĈ to GI
such that φ(v0) = d.

This theorem can be used to prove a bounded model property for τEL(deg)
concept descriptions.

Lemma 4. Let ̂C be a τEL(deg) concept description of size s( ̂C). If ̂C is satis-
fiable, then there exists an interpretation J such that ̂CJ �= ∅ and |ΔJ | ≤ s( ̂C).

Proof sketch. Since ̂C is satisfiable, there is an interpretation I and some d ∈ ΔI

such that d ∈ ̂CI . Therefore, there exists a τ -homomorphism φ from TĈ to GI
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with φ(v0) = d. The idea is to use φ and small fragments of I to build J and a
τ -homomorphism from TĈ to GJ , and then apply Theorem 4 to ̂C and J .

The interpretation J is built in two steps. We first use as base interpretation
I0 the interpretation associated to the description tree TĈ , where we ignore la-
bels of the form E∼q. Then the identity mapping φid is a homomorphism from
TĈ to GI0 . However, this interpretation and homomorphism need not satisfy
Condition 2 of Definition 8. To repair this, we extend I0 to J by adding ap-
propriate canonical interpretations. To be more precise, for a given node v in I0
that has E∼q in its label, we know that φ(v) ∈ [E∼q]

I , i.e. degI(φ(v), E) ∼ q.
By Lemma 2, we do not need all of I to obtain the degree degI(φ(v), E). It is
sufficient to use the fragment corresponding to the canonical interpretation. The
interpretation J satisfying ̂C is obtained from I0 by plugging in such canonical
interpretations where ever it is required by threshold concepts in labels of nodes
(see [1] for details).

Since the size of I0 is bounded by the size of ̂C (without counting the threshold
concepts) and since the size of a canonical interpretation added to satisfy a
threshold concept E∼q in ̂C is bounded by the size of E, this yields the required
bound for the size of J . ��
This lemma yields a standard guess-and-check NP-algorithm to decide satisfia-
bility of ̂C: first guess an interpretation J of size at most s( ̂C), and then check
(in polynomial time) whether there exists a τ -homomorphism from TĈ to GJ .

A coNP-upper bound for subsumption cannot directly be obtained from the
fact that satisfiability is in NP. In fact, though we have ̂C � ̂D iff ̂C � ¬ ̂D
is unsatisfiable, this equivalence cannot be used directly since ¬ ̂D need not be
a τEL(deg) concept description. Nevertheless, we can extend the ideas used in
the proof of Lemma 4 to obtain a bounded model property for satisfiability of
concepts of the form ̂C � ¬ ̂D.

Lemma 5. Let ̂C and ̂D be τEL(deg) concept descriptions of respective sizes
s( ̂C) and s( ̂D). If ̂C � ¬ ̂D is satisfiable, then there exists an interpretation J
such that ̂CJ \ ̂DJ �= ∅ and |ΔJ | ≤ s( ̂C)× s( ̂D).

Proof sketch. We first apply the construction used in the proof of Lemma 4
to construct, for a given interpretation I with ̂CI \ ̂DI �= ∅, an interpretation
J0 such that ̂CJ0 �= ∅ and |ΔJ0 | ≤ s( ̂C). This construction is such that GJ0 is
tree-shaped and there is a homomorphism ϕ from GJ0 to GI with ϕ(v0) = d.
We then use ϕ to extend J0 to J such that v0 �∈ ̂DJ holds. Starting with the
root v0, we consider all the nodes in ΔJ0 in a top-down manner.

First, assume that ̂D contains a top-level conjunct of the form E≤q such
that d = ϕ(v0) �∈ [E≤q]

I , but v0 ∈ [E≤q]
J0 . Then we attach to v0 a canonical

interpretation that yields for d the same membership degree as I to ensure that,
in the extended interpretation, v0 no longer belongs to E≤q.

Now, consider the case where ̂D contains a top-level conjunct ̂F = ∃r. ̂F ′ such
that d = ϕ(v0) �∈ ̂F I , but v0 ∈ ̂FJ0 . Then there is an r-successor v of v0 that
satisfies v ∈ [ ̂F ′]J0 , but since ϕ(v) is an r-successor of ϕ(v0) in I, we also have
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ϕ(v) �∈ [ ̂F ′]I . We can now recursively apply the construction to v. Overall, the
construction terminates and considers every node in ΔJ0 only once since GJ0 is
tree-shaped. Since the number of nodes in ΔJ0 is bounded by s( ̂C) and the size
of each of the added canonical interpretations is bounded by s( ̂D), we obtain the
desired bound on the size of J . ��
The lemma yields an obvious guess-and-checkNP-algorithm for non-subsumption,
which shows that subsumption is in co-NP. Overall, we thus have shown:

Theorem 5. In τEL(deg), satisfiability is NP-complete and subsumption coNP-
complete.

Assertional Reasoning. Information about specific individuals can be ex-
pressed in an ABox. An ABox A is a finite set of assertions of the form ̂C(a)

or r(a, b), where ̂C is a τEL(deg) concept description, r ∈ NR, and a, b are indi-
vidual names. In addition to concept and role names, an interpretation I now
assigns domain elements aI to individual names a. The assertion ̂C(a) is satisfied
by I iff aI ∈ ̂CI , and r(a, b) is satisfied by I iff (aI , bI) ∈ rI . The interpretation
I is a model of A iff I satisfies all assertions in A. The ABox A is consistent
iff it has a model, and the individual a is an instance of the concept ̂C in A
(written as A |= ̂C(a)) iff aI ∈ ̂CI holds in all models of A.

Since satisfiability can obviously be reduced to consistency, and subsumption
to the instance problem, the lower bounds shown above also hold for assertional
reasoning. Regarding upper bounds, the consistency problem can be tackled in
a similar way as the satisfiability problem. As shown in [13], EL ABoxes can be
translated into EL description graphs and consistency can be characterized using
homomorphisms between description graphs. Again, this characterization can be
extended to τEL(deg), and can be used to prove an appropriate bounded model
property with a polynomial bound. Similar to our treatment of subsumption,
this can then be used to obtain a bounded model property for non-instance
(A �|= ̂C(a))). However, there the bound on the model has the size of ̂C in
the exponent. For this reason, we obtain a coNP upper bound for the instance
problem only if we consider data complexity [8], where the size of the query
concept ̂C is assumed to be constant.

Theorem 6. In τEL(deg), consistency is NP-complete, and instance checking
is coNP-complete w.r.t. data complexity.

The instance problem becomes simpler if we consider only EL ABoxes and
positive τEL(deg) concept descriptions, i.e., concept descriptions ̂C that only
contain threshold concepts of the form E≥t or E>t. Basically, given an EL ABox,
a positive τEL(deg) concept description ̂C, and an individual a, one considers the
interpretation I corresponding to the description graph of A, and then checks
whether there is a τ -homomorphism φ from TĈ to GI with φ(v0) = a (see [1]
for details).

Proposition 3. For positive τEL(deg) concept descriptions and EL ABoxes,
the instance problem can be decided in polynomial time.
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6 Concept Similarity and Relaxed Instance Queries

In its most general form, a concept similarity measure (CSM) �� is a function
that maps each pair of concepts C,D (of a given DL) to a value C �� D ∈ [0, 1]
such that C �� C = 1. Intuitively, the higher the value of C �� D is, the more
similar the two concepts are supposed to be. Such measures can in principle be
defined for arbitrary DLs, but here we restrict the attention to CSMs between
EL concepts, i.e., a CSM is a mapping �� : CEL × CEL → [0, 1].

Ecke et al. [10,9] use CSMs to relax instance queries, i.e., instead of requiring
that an individual is an instance of the query concept, they only require that it
is an instance of a concept that is “similar enough” to the query concept.

Definition 9 ([10,9]). Let �� be a CSM, A an EL ABox, and t ∈ [0, 1). The
individual a ∈ NI is a relaxed instance of the EL query concept Q w.r.t. A,
��, and the threshold t iff there exists an EL concept description X such that
Q �� X > t and A |= X(a). The set of all individuals occurring in A that are
relaxed instances of Q w.r.t. A, ��, and t is denoted by Relax��t (Q,A).

We apply the same idea on the semantic level of an interpretation rather than
the ABox level to obtain graded membership functions from similarity measures.

Definition 10. Let �� be a CSM. Then, for each interpretation I, we define the
function mI

�� : ΔI × CEL → [0, 1] as

mI
��(d, C) := max{C �� D | D ∈ CEL and d ∈ DI}.

For an arbitrary CSM ��, the maximum in this definition need not exist since
D ranges over infinitely many concept descriptions. However, two properties
that are satisfied by many similarity measures considered in the literature are
sufficient to obtain well-definedness for m��. The first is equivalence invariance:

– The CSM �� is equivalence invariant iff C ≡ C′ and D ≡ D′ implies
C �� D = C′ �� D′ for all C,C′, D,D′ ∈ CEL.

To formulate the second property, we need to recall that the role depth of an
EL concept description C is the maximal nesting of existential restrictions in C;
equivalently, it is the height of the description tree TC . The restriction Ck of
C to role depth k is the concept description whose description tree is obtained
from TC by removing all the nodes (and edges leading to them) whose distance
from the root is larger than k.

– The CSM �� is role-depth bounded iff C �� D = Ck �� Dk for all C,D ∈ CEL
and any k that is larger than the minimal role depth of C,D.

Role-depth boundedness implies that, in Definition 10, we can restrict the maxi-
mum computation to concepts D whose role depth is at most d+1, where d is the
role depth of C. Since it is well-known that, up to equivalence, CEL contains only
finitely many concept descriptions of any fixed role depth, these two properties
yield well-definedness for m��. For m�� to be a graded membership function, it
also needs to satisfy the properties M1 and M2. To obtain these two properties
for m��, we must require that �� satisfies the following additional property:
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– The CSM �� is equivalence closed iff the following equivalence holds:
C ≡ D iff C �� D = 1.

Proposition 4. Let �� be an equivalence invariant, role-depth bounded, and
equivalence closed CSM. Then m�� is a well-defined graded membership func-
tion.

Consequently, an equivalence invariant, role-depth bounded, and equivalence
closed CSM �� induces a DL τEL(m��). Computing instances of threshold con-
cepts of the form Q>t in this logic corresponds to answering relaxed instance
queries w.r.t. ��.

Proposition 5. Let �� be an equivalence invariant, role-depth bounded, and
equivalence closed CSM, A an EL ABox, and t ∈ [0, 1). Then

Relax��t (Q,A) = {a | A |= Q>t(a) and a occurs in A},

where the semantics of the threshold concept Q>t is defined as in τEL(m��).

Lehman and Turhan [14] introduce a framework (called simi framework) that
can be used to define a variety of similarity measures between EL concepts satis-
fying the properties required by our Propositions 4 and 5. Here, we consider only
one instance of this framework and show that the similarity measure obtained
this way induces our graded membership function deg .

Lehman and Turhan first define a directional measure and then combine the
values obtained by comparing the concepts in both directions with this direc-
tional measure.

Definition 11 ([14]). Let C,D be two EL concept descriptions. If one of these
two concepts is equivalent to �, then we define simid(�, D) := 1 for all D and
simid(D,�) := 0 for D �≡ �. Otherwise, let top(C), top(D) respectively be the
set of concept names and existential restrictions in the top-level conjunction of
C,D. We define

simid(C,D) :=

∑

C′∈top(C)

max{simia(C
′, D′) | D′ ∈ top(D)}

|top(C)| , where

simia(A,A) := 1, simia(A,B) := 0 for A,B ∈ NC, A �= B,

simia(∃r.E,A) := simia(A, ∃r.E) := 0 for A ∈ NC,

simia(∃r.E, ∃r.F ) := simid(E,F ), simia(∃r.E, ∃s.F ) := 0 for r, s ∈ NR, r �= s.

The bidirectional similarity measure ��1 is then defined as

C ��1 D := min{simid(C
r, Dr), simid(D

r, Cr)}.
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It is easy to show that ��1 is equivalence invariant, role-depth bounded, and
equivalence closed. Note that equivalence invariance depends on the fact that
we apply simid to the reduced forms of C,D. Since ��1 satisfies the properties
required by Propositions 4, it induces a graded membership function m��1 . We
can show that this function coincides with the graded membership function
introduced in Section 4 (see [1] for the proof).

Theorem 7. For all interpretations I, d ∈ ΔI , and EL concept descriptions Q
we have mI

��1(d,Q) = degI(d,Q).

Proposition 5 thus implies that answering of relaxed instance queries w.r.t.
��1 is the same as computing instances for threshold concepts of the form Q>t
in τEL(deg). Since such concepts are positive, Proposition 3 yields the following
corollary.

Corollary 1. Let A be an EL ABox, Q an EL query concept, a an individual
name, and t ∈ [0, 1). Then it can be decided in polynomial time whether a ∈
Relax��

1

t (Q,A) or not.

Note that Ecke et al. [10,9] show only an NP upper bound w.r.t. data complexity
for this problem, albeit for a larger class of instances of the simi framework.

7 Conclusion

We have introduced a family of DLs τEL(m) parameterized with a graded mem-
bership function m, which extends the popular lightweight DL EL by threshold
concepts that can be used to approximate classical concepts. Inspired by the
homomorphism characterization of membership in EL concepts, we have defined
a particular membership function deg and have investigated the complexity of
reasoning in τEL(deg). It turns out that the higher expressiveness takes its toll:
whereas reasoning in EL can be done in polynomial time, it is NP- or coNP-
complete in τEL(deg), depending on which inference problem is considered. We
have also shown that concept similarity measures satisfying certain properties
can be used to define graded membership functions. In particular, the function
deg can be constructed in this way from a particular instance of the simi frame-
work of Lehmann and Turhan [14]. Nevertheless, our direct definition of deg
based on homomorphisms is important since the partial tree-to-graph homo-
morphisms used there are the main technical tool for showing our decidability
and complexity results.

While introduced as formalism for defining concepts by approximation, a pos-
sible use-case for τEL(deg) is relaxation of instance queries, as motivated and in-
vestigated in [10,9]. Compared to the setting considered in [10,9], τEL(deg) yields
a considerably more expressive query language since we can combine threshold
concepts using the constructors of EL and can also forbid that thresholds are
reached. Restricted to the setting of relaxed instance queries, our approach ac-
tually allows relaxed instance checking in polynomial time. On the other hand,
[10,9] can also deal with other instances of the simi framework.
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An important topic for future research is to consider graded membership
functions m�� that are induced by other instances of simi. We conjecture that
these instances can also be defined directly by an appropriate adaptation of our
homomorphism-based definition. The hope is then that our decidability and com-
plexity results can be generalized to these functions. Another important topic for
future research is to add TBoxes. While acyclic TBoxes can already be handled
by our approach through unfolding, we would like to treat them directly by an
adaptation of the homomorphism-based approach to avoid a possible exponen-
tial blowup due to unfolding. For cyclic and general TBoxes, homomorphisms
probably need to be replaced by simulations [2,9].
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