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Abstract. We introduce an extension to Description Logics that allows
us to use prototypes to define concepts. To accomplish this, we introduce
the notion of prototype distance functions (pdfs), which assign to each
element of an interpretation a distance value. Based on this, we define a
new concept constructor of the form P∼n(d) for ∼ ∈ {<,≤, >,≥}, which
is interpreted as the set of all elements with a distance ∼ n according to
the pdf d. We show how weighted alternating parity tree automata (wapta)
over the non-negative integers can be used to define pdfs, and how this
allows us to use both concepts and pointed interpretations as prototypes.
Finally, we investigate the complexity of reasoning in ALCP(wapta),
which extends the Description Logic ALC with the constructors P∼n(d)
for pdfs defined using wapta.

1 Introduction

Description Logics (DLs) [3] can be used to formalize the important notions
of an application domain as concepts, by formulating necessary and sufficient
conditions for an individual to belong to the concept. Basically, such conditions
can be (Boolean combinations of) atomic properties required for the individual
(expressed by concept names) and properties that refer to relationships with other
individuals and their properties (expressed as role restrictions). The expressivity
of a particular DL depends on what kind of properties can be required and how
they can be combined. Given an interpretation of the atomic entities (concept and
role names), the semantics of a DL determines, for each concept expressed in this
DL, its extension, i.e., the set of individuals satisfying all the conditions stated
in the definition of the concept. Knowledge about the application domain is then
represented by stating subconcept-superconcept relationships between concepts
within a terminology (TBox). Given such a TBox, reasoning procedures can
be used to derive implicit knowledge from the explicitly represented knowledge.
For example, the satisfiability tests checks whether a given concept is non-
contradictory w.r.t. the knowledge represented in the TBox.

In many applications, it is quite hard to give exact definitions of certain
concepts. In fact, cognitive psychologists [9] argue that humans recognize cate-
gories by prototypes rather than concepts. For example, assume that we want to
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define the concept of a human from an anatomical point of view. One would be
tempted to require two arms and two legs, five fingers on each hand, a heart on
the left side, etc. However, none of these conditions are necessarily satisfied by
an individual human being, though most of them should probably be satisfied to
be categorized as human being. Thus, an anatomical description talking about
arms and legs etc. describes a prototypical human being rather than necessary
and sufficient conditions for being human. As an other example, taken from
[8], consider the notion of a cup: we can say that cups are small, cylindrical,
concave containers with handles, whose top side is open; they can hold liquids
and are used for drinking; and they are made of plastic or porcelain. But again,
this describes a prototypical cup rather than stating necessary and sufficient
conditions for being a cup: square metal cups are easily imaginable, measuring
cups are not used for drinking and may hold non-liquids such as flour, while sippy
cups for toddlers are not open on the top. One could, of course, try to capture
all such exceptional cups by using a big disjunction of (exactly defined) concepts,
but this would obviously be rather clumsy and with high likelihood one would
overlook some exceptions.

In order to be used within a formal knowledge representation language with
automated reasoning capabilities, prototypes need to be equipped with a formal
semantics. To obtain such a semantics, we use the ideas underlying Gärdenfors’
conceptual spaces [6], where categories are explained in terms of convex regions,
which are defined using the distance from a focal point. To obtain a concrete
representation language, we need to define what are focal points and how to
define the distance of an individual to such a focal point. Instead of employing
prototypical individuals or concepts as focal points, we take a more abstract
approach based on automata, which is inspired by the automata-approach for
reasoning in DLs (see Section 3.2 in [1] for a gentle introduction). Basically,
in this approach, a given concept C and a TBox T are translated into a tree
automaton AC,T that accepts all the tree-shaped models of T whose root belongs
to C. Testing satisfiability of C w.r.t. T then boils down to the emptiness test
for AC,T , i.e., checking whether there is a tree accepted by AC,T . Instead of
using a classical automaton that returns 1 (accepted) or 0 (not accepted) for
an input tree, we propose to use a weighted automaton [5]. Intuitively, this
automaton receives as input a tree-shaped interpretation and returns as output
a non-negative integer, which we interpret as the distance of the individual at
the root of the tree to the prototype (focal point) described by the automaton.
This approach can be applied to non-tree-shaped models by the usual unraveling
operation. In order to integrate such prototypes into a Description Logic, we
propose to use thresholds to derive concepts from prototypes. More precisely,
the threshold concept P∼n(A) for ∼ ∈ {<,≤, >,≥} is interpreted as the set of
all elements with a distance ∼ n according to the weighted automaton A. The
concepts obtained this way can then be used like atomic concepts within a DL.

It might appear to be more intuitive to use concepts or individuals rather
than automata to describe prototypes. However, in these alternative settings, one
then needs to give formal definitions of the distance between two individuals or
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between an individual and a concept, whereas in our approach this comes for
free by the definition of the semantics of weighted automata. We show that these
alternative settings can actually be seen as instances of our weighted automata
approach.

In this paper, we investigate the extension ALCP(wapta) of the DL ALC
by threshold concepts defined using weighted alternating parity tree automata.
In order to obtain inference procedures for the extended DL, the weighted
automata are turned into automata that accept the cut-point language consisting
of the trees whose distance (computed by the weighted automaton) is below a
given threshold. In fact, this cut-point construction yields languages accepted by
unweighted alternating parity tree automata, for which the emptiness problem is
decidable. This allows us to extend the automata-approach for reasoning in ALC
to ALCP(wapta).

Regarding related work, non-monotonic logics are sometimes also used to
formalize prototypes. However, there one usually tries to maximize typicality, i.e.
one assumes that an individual stated to belong to a prototype concept has all
the properties of the prototype, unless one is forced by other knowledge to retract
this assumption. In contrast, our new logic is monotonic and we only conclude
that an individual belongs to a threshold concept P∼n(d) if this follows from
the available knowledge. The work that comes closest to this paper is [2], where
concepts of the lightweight DL EL are used to describe prototypes. To be more
precise, the paper introduces a graded membership function, which for a given
EL-concept C and an individual d of an interpretation returns a membership
degree in the interval [0, 1]. This is then used as “distance” to define threshold
concepts and an extension of EL by such concepts basically in the same way as
sketched above. The difference to the present work is, on the one hand, that
prototypes are given by concepts rather than weighted automata and that the
interval [0, 1] is used in place of the non-negative integers. On the other hand, we
consider a more expressive DL (ALC rather than EL), and we can reason w.r.t.
general TBoxes in the extended language, whereas the results in [2] are restricted
to reasoning without a TBox.

2 Preliminaries

The Description LogicALC ALC-concepts are built from two disjoint setsNC
of concept names and NR of role names using concept constructors. Every concept
name is a basic ALC-concept. Furthermore, one can construct complex ALC-
concepts using conjunction, disjunction, negation, and existential and universal
restrictions as shown in Table 1. As usual, we use > as abbreviation for the concept
At¬A, where A is an arbitrary concept name. The semantics of ALC-concepts is
defined using interpretations I consisting of a non-empty interpretation domain
∆I and an interpretation function ·I , which assigns to all concept names A ∈ NC
a subset AI ⊆ ∆I , and to all role names r ∈ NR a binary relation rI ⊆ ∆I ×∆I
on the domain. The interpretation function is extended to complex concepts as
shown in the last column of Table 1. Note that > is interpreted as ∆I .
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Table 1. Concept constructors for ALC.

Constructor Syntax Semantics

conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
negation ¬C ∆I \ CI
existential restriction ∃r.C {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}
universal restriction ∀r.C {d ∈ ∆I | ∀e.(d, e) ∈ rI ⇒ e ∈ CI}

Terminological knowledge can be expressed using general concept inclusions
(GCIs) of the form C v D, where C and D are ALC-concepts. A GCI C v D is
satisfied by an interpretation I if CI ⊆ DI . A TBox T is a set of GCIs, and we
call an interpretation I a model of T if it satisfies all GCIs in T .

For example, to express that every container that has a handle and is only
used to hold liquids is either a cup or a jug, one could use the GCI

Container u ∃hasPart.Handle u ∀holds.Liquid v Cup t Jug.

DL systems usually come equipped with a range of reasoning services. Stan-
dard inferences provided by most DL systems include concept satisfiability and
subsumption. We say that a concept C is satisfiable w.r.t. a TBox T if there
exists a model I of T with CI 6= ∅; and a concept C is subsumed by a concept
D w.r.t. T (C vT D) if for all models I of T we have CI ⊆ DI . Subsumption
can be reduced to concept satisfiability. Indeed, we have C vT D iff C u ¬D
is unsatisfiable in T . Therefore, an algorithm that decides concept satisfiability
can also be used to decide subsumption. It is well-known [1] that ALC has the
tree model property, i.e., every satisfiable ALC-concept C has a tree-shaped
model in which the root of the tree is an instance of C. Thus, to decide concept
satisfiability, it is enough to consider tree-shaped interpretations. In fact, we
will show that the tree model property still holds for the extended logic with
prototypes, which is important for our approach to work.

Deciding concept satisfiability using alternating parity tree automata
We show how tree automata can be used to decide satisfiability of ALC-concepts
w.r.t. ALC-TBoxes. This result is a simple adaptation of the approach in [10] to
ALC. This approach requires the concept and the TBox to be in negation normal
form. Recall that an ALC-concept C is in negation normal form if negation occurs
only directly in front of concept names. Any concept can be transformed in linear
time into an equivalent concept in negation normal form [1].

We can transform a TBox T into a single concept CT =
d
CvD∈T ¬C tD;

then an interpretation satisfies T iff it satisfies the GCI > v CT . In order to
decide ALC-concept satisfiability using tree automata, we first need to introduce
the relevant notions from automata theory.

A tree domain is a prefix-closed, non-empty set D ⊆ N∗, i.e., for every ui ∈ D
with u ∈ N∗ and i ∈ N we also have u ∈ D. The elements of D are called
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nodes, the node ε is the root of D, and for every u ∈ D, the nodes ui ∈ D are
called children of u. A node is called a leaf, if it has no children. A path π in
D is a subset π ⊆ D such that ε ∈ π and for every u ∈ π, u is either a leaf or
there is a unique i ∈ N with ui ∈ π. Given an alphabet Σ, a Σ-labeled tree
is a pair (domT , T ) consisting of a tree domain domT and a labeling function
T : domT → Σ. Instead of the pair (domT , T ) we often use only T to denote a
labeled tree. With Tree(Σ) we denote the set of all Σ-labeled trees.

The automata type we introduce now is based mainly on the alternating tree
automata defined by Wilke [11], which are working on P(Σ)-Trees, which are
labeled with the power set of some finite alphabet Σ. Given such a Σ and a set
of states Q, a transition condition TC(Σ,Q) is one of the following: true; false; σ
or ¬σ for σ ∈ Σ; q1 ∧ q2 or q1 ∨ q2 for q1, q2 ∈ Q; or �q or ♦q for q ∈ Q.

Definition 1 (alternating parity tree automaton). An alternating parity
tree automaton (apta) A working on P(Σ)-trees is a tuple A = (Σ,Q, q0, δ, Ω),
where 1. Σ is a finite alphabet; 2. Q is a finite set of states and q0 ∈ Q is the
initial state; 3. δ : Q→ TC(Σ,Q) is the transition function; and 4. Ω : Q→ N
is the priority function that specifies the parity acceptance condition.

Given a P(Σ)-labeled tree T , a run is a (domT ×Q)-labeled tree R such that
ε ∈ domR, R(ε) = (ε, q0), and for all u ∈ domR with R(u) = (v, q) we have:

– δ(q) 6= false
– if δ(q) = σ, then σ ∈ T (v); and if δ(q) = ¬σ, then σ 6∈ T (v);
– if δ(q) = q1 ∧ q2, then there exists i1, i2 ∈ N such that R(ui1) = (v, q1) and
R(ui2) = (v, q2);

– if δ(q) = q1 ∨ q2, then there exists i ∈ N such that R(ui) = (v, q1) or
R(ui) = (v, q2);

– if δ(q) = ♦q′, then there exists i, j ∈ N with R(ui) = (vj, q′); and
– if δ(q) = �q′, then for every j ∈ N with vj ∈ domT there exists i ∈ N with
R(ui) = (vj, q′).

A run is accepting, if every infinite path in R satisfies the parity acceptance
condition specified by Ω, i.e., the largest priority occurring infinitely often along
the branch is even. The language accepted by an apta A, L(A), is the set of all
P(Σ)-trees T for which there exists an accepting run R of A on T .

The emptiness problem for apta, i.e., deciding whether L(A) = ∅, is in
ExpTime; the complement automaton which accepts the complement language
Tree(Σ) \ L(A) can be constructed in linear time [11]. Note that, instead of only
the transition conditions mentioned above, one could allow for complex transition
conditions like �(q1∧¬B)∨q2. Automata with complex transition conditions can
be transformed into equivalent automata using only simple transition conditions
by introducing new states for each subformula of the transition condition [11].

Example 2. Let Aex = (Σ,Q, q0, δ, Ω) be an apta with alphabet Σ = {A,B},
with states Q = {q0, . . . , q6}, initial state q0, transition function δ as given in
Figure 1, and priority function Ω with Ω(q) = 1 for all q ∈ Q.
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Transition function δ
δ(q0) = q1 ∨ q2
δ(q1) = B

δ(q2) = q3 ∧ q4 ∧ q5
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Fig. 1. Transition function δ, P(Σ)-tree T , and accepting run R of Aex on T .

This automaton accepts only trees where the root label contains B (state q1),
or it is labeled with A and all of its successors (at least one) are again of this
form. Since the parity function prohibits infinite paths in the run (though not in
the input tree), Aex accepts exactly those trees where all paths start with nodes
labeled with A until eventually a node with a label containing B is encountered.
Figure 1 shows such a tree T and an accepting run R of Aex on T .

We now show how to construct an automaton that decides concept satisfiability
in ALC. Given a TBox T and a concept C, the idea underlying this approach
is that the constructed automaton will accept exactly the tree models of T for
which the root is an instance of C. Note that the trees introduced above do
not have labeled edges, while interpretations do. To overcome this, we push role
names into the labels of the children. Thus, the alphabet Σ consists of all concept
and role names of C and CT (called the signature, sig). The automaton contains
a state for each subconcept of C and T , denoted sub(C) and sub(CT ), which
are used to simulate the semantics of ALC. Cycles in T can enforce infinite tree
models; infinite paths are always accepting if they satisfy the axioms in T .

Definition 3. Let T be an ALC-TBox of the form {> v CT } and C an ALC-
concept with both C and CT in negation normal form. We define the automaton
AC,T = (Σ,Q, q0, δ, Ω) as follows:

– Σ = sig(C) ∪ sig(CT ) and Ω(q) = 0 for all q ∈ Q,
– Q = {qD | D ∈ sub(C)∪sub(CT )}∪{qr, q¬r | r ∈ sig(C)∪sig(CT )}∪{q0, qT },
– the transition function δ is defined as follows (where σ ∈ NC ∪NR):

δ(q0) = qC ∧ qT δ(qT ) = qCT ∧�qT
δ(qσ) = σ δ(q¬σ) = ¬σ

δ(qC1uC2) = qC1 ∧ qC2 δ(qC1tC2) = qC1 ∨ qC2

δ(q∃r.C) = ♦(qr ∧ qC) δ(q∀r.C) = �(q¬r ∨ qC)
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The proof of the following proposition is similar to the one in [7, pp. 59–62].
It relies on the fact that any tree with accepting run can be interpreted as a
model of the TBox with the root being an instance of C, and any model of the
TBox can be unraveled into a tree for which an accepting run can be inductively
constructed.

Proposition 4. Given an ALC-TBox T and an ALC-concept C, the concept C
is satisfiable w.r.t. T iff L(AC,T ) 6= ∅.

Since the automaton AC,T is polynomial in the size of the TBox T and the
concept C, this approach yields an ExpTime algorithm for concept satisfiability,
which is worst-case optimal [3].

3 Prototypes and Weighted Tree Automata

In general, a prototype is some kind of structure that can be compared to elements
of an interpretation, distinguishing elements that are closer (more similar or
related) to the prototype from elements that are further away (dissimilar or
different). More specifically, one may view a prototype as a function that assigns
to each element a distance value from the focal point, where small distances
correspond to similar elements, and large distances to dissimilar elements.

Definition 5. A prototype distance function (pdf) d is a function that assigns to
each element e of an interpretation I a distance value dI(e) ∈ N. The constructor
P∼n(d) for a threshold n ∈ N is interpreted in an interpretation I as the set of
all elements e ∈ ∆I such that dI(e) ∼ n, for ∼ ∈ {<,≤, >,≥}. If D is a set of
pdfs, we use ALCP(D) to denote the Description Logic ALC extended by the
prototype constructor for pdfs from D.

As explained before, we will use weighted alternating tree automata to define
pdfs. These automata can express distance functions from trees (in our case, tree-
shaped pointed interpretations1) to the non-negative integers N. By unraveling
pointed interpretations we can extend this to a function from arbitrary pointed
interpretations to N, i.e., a prototype distance function.

The main idea behind the use of weighted automata to describe pdfs is that
the automaton can punish a pointed interpretation by increasing the distance
value whenever a feature described by the automaton is not as expected. For
example, the automaton can require the current node to be labeled with the
concept name Cup, and increase the distance by some number if this is not the
case. Using this idea, the most natural interpretation of the transition conditions
in the weighted setting is as follows: q1∧ q2 will compute the sum of the distances
for q1 and q2 (both features should be present), ∨ will be interpreted as the
minimum (one of the feature should be present), ∃ will also be interpreted as the
minimum (one of the successors should have the feature, i.e., we choose the best
1 Recall that a pointed interpretation is an interpretation together with an element of
the interpretation domain.



8 F. Baader and A. Ecke

one); and ∀ will be interpreted as the maximum (all successors should have the
feature; if not, we take the distance of the worst).

A weighted alternating parity tree automaton is nearly the same as in the
unweighted case, with the exception that the transition function may also contain
non-negative integers. Given an alphabet Σ and a set of states Q, a weighted
transition condition wTC(Σ,Q) is one of the following: n ∈ N; σ or ¬σ for σ ∈ Σ;
q1 ∧ q2 or q1 ∨ q2 for q1, q2 ∈ Q; or �q or ♦q for q ∈ Q.

Definition 6 (weighted alternating parity tree automaton). A weighted
alternating parity tree automaton (wapta) A working on P(Σ)-trees is a tuple
A = (Σ,Q, q0, δ, Ω), where 1. Σ is a finite alphabet; 2. Q is a finite set of states
and q0 ∈ Q is the initial state; 3. δ : Q→ wTC(Σ,Q) is the transition function;
and 4. Ω : Q→ N is the priority function.

Runs are defined as in the unweighted case, where nodes labeled with a state
for which the transition function yields a number do not need to satisfy any
additional conditions, they can be leafs in the run. In order to define the behavior
of such a weighted automaton on a tree, we need to define the �-fixation of a
run, which basically chooses for a �-operator a single successor node (instead
of all of them). Given a run R, a �-fixation is a tree R′ with domR′ ⊆ domR,
which can be obtained from R as follows: starting with the root, we keep all
the successors for nodes where the transition function does not yield a box; for
nodes u labeled with a state q for which the transition function is of the form
δ(q) = �q′, the �-fixation R′ keeps at most one successor ui ∈ domR. All nodes
u ∈ domR′ have the same label R′(u) = R(u) as in R.

Then, we can define the behavior of the automaton as a function ‖A‖ :
Tree(P(Σ))→ N. The weight of a �-fixation R′ of a run R is defined as

weightA(R′) =
∑

u∈domR′ ,R
′(u)=(d,q),δ(q,T (u))=n∈N

n.

Note that this (possibly infinite) sum is well-defined: If infinitely many values n >
0 occur in R′, the weight of R′ is∞; otherwise it is the finite sum of all weights in
R′. The weight of a run R on T is weightA(R) = supR′ �-fixation of R weightA(R′),
and the behavior of A is ‖A‖(T ) = minR accepting run on T weightA(R).

Constructions of prototype automata In the following we will give a con-
crete example of how a weighted automaton can be constructed from an ALC-
concept. Recall from the introduction that a prototypical cup is a small container
with handles, which can hold liquids and is made of plastic or porcelain. We can
express this as an ALC-concept:

Container u Small u ∃hasPart.Handle u ∀holds.Liquid u ∀material.(Glass t Porcelain)

This concept can directly be translated into a complex transition condition for
an alternating tree automaton:

Container ∧ Small ∧ ♦(hasPart ∧ Handle)

∧�(¬holds ∨ Liquid) ∧�(¬material ∨ (Glass ∨ Porcelain))
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Now, we can add weights in order to punish missing features:
(Container ∨ 3) ∧ (Small ∨ 1) ∧ (♦(hasPart ∧ Handle) ∨ 1)

∧�(¬holds ∨ (Liquid ∨ 2)) ∧�(¬material ∨ ((Glass ∨ 1) ∨ (Porcelain ∨ 1)))

The meaning of this weighted transition condition is as follows: If an element is
not a container, it will be punished with a weight of 3 since there cannot be a
run that uses the option Container at the root. Otherwise, there is such a run,
which does not contribute a weight. Accordingly, the absence of the feature small
is punished with weight 1. If the cup does not have a successor that is labeled
with both hasPart and Handle, then a weight of 1 is added. Finally, if there is a
material-successor that is not labeled with Glass or Porcelain, then this is punished
with weight 1. If the cup does not have any material-successors, or all of them
are glass or porcelain, no weight is added. Similarly for holding only liquids. In
general, choosing the weights appropriately allows us to punish the absence of
different features by different values.

For universal restrictions, the weights of several offending successors are
not added up, but rather the supremum is taken. As a consequence, equivalent
concepts may not yield equivalent wapta using this approach. For example,
∀r.(A u B) ≡ ∀r.A u ∀r.B, but the corresponding transition conditions after
adding weights may lead to different results. However, one can argue that, when
viewed as prototype descriptions, these two concept descriptions do actually
encode different intentions. While in the first case we want to make sure that
all r-successors are instance of A and B simultaneously (and pick the weight of
the worst offender if there is one), in the second case we want to enforce both
features separately, and punish for the worst offenders separately.

From the above example, it should be clear how a translation from ALC-
concepts to wapta works in general. On the other hand, one can also create
prototypes from finite pointed interpretations. For this, one introduces a state
for each element of the interpretation, and as transition condition for each state
one simply conjoins all the concept names the element is instance of, negations
of all concept names it is not instance of, and a ♦-transition for each successor
in the interpretation, labeled with both the role name and the state of the
successor-element. If one also introduces a �-transition with a disjunction of all
possible successor-states and adds positive weights as in the above example, this
weighted automaton will only give distance 0 to pointed interpretations that are
bisimilar to the prototypical interpretation, and otherwise punish each difference
by increasing the distance accordingly.

4 Reasoning with Prototype Automata in ALC

To reason in ALC with prototypes, we have to achieve two things: First, for
each prototype constructor P≤n(A), we have to transform the wapta A into an
unweighted automaton that accept exactly those trees T for which ‖A‖(T ) ≤ n.
Then we need to combine the alternating tree automatonAC,T from Section 2 with
the unweighted automata for the prototypes such that the resulting automaton
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accepts exactly the tree models of C w.r.t. T . An emptiness test can then be
used to decide (un-)satisfiability.

Cut-point automata Given a weighted alternating parity tree automaton A
and a threshold value n ∈ N, we want to construct an unweighted automaton A≤n
that accepts exactly the cut-point language, i.e. L(A≤n) = {T ∈ Tree(P(Σ)) |
‖A‖(T ) ≤ n}. In this cut-point automaton, each state needs to keep track of
both the weight and the current state of the corresponding weighted automaton.
However, instead of tracking the weight that has already been accumulated, it
needs to track the weight that the automaton is still allowed to spend. The reason
for this is that for trees each state can have multiple successors, and thus we
have to budget the allowed weight for each of the successors so that the sum is
not greater than the threshold.

Definition 7. Given a wapta A = (Σ,Q, q0, δ, Ω), the cut-point automaton
A≤n = (Σ,Q′, q′0, δ

′, Ω′) for the threshold n ∈ N is an apta defined as follows:

Q′ = {(q, i) ∈ Q× N | i ≤ n} ∪ {q′0} and Ω′((q, i)) = Ω(q)

δ′(q′0) =
∨

0≤i≤n

(q0, i) δ′((q, i)) = δ(q) if δ(q) = σ,¬σ

δ′((q, i)) = true if δ(q) = j ≤ i δ′((q, i)) = false if δ(q) = j > i

δ′((q, i)) = ♦(q′, i) if δ(q) = ♦q′ δ′((q, i)) = �(q′, i) if δ(q) = �q′

δ′((q, i)) = (q1, i) ∨ (q2, i) if δ(q) = q1 ∨ q2
δ′((q, i)) =

∨
0≤j≤i

(q1, j) ∧ (q2, i− j) if δ(q) = q1 ∧ q2

Proposition 8. Let A be a wapta and A≤n the cut-point automaton derived
from A using the threshold n ∈ N. Then A≤n accepts the cut-point language, i.e.,
L(A≤n) = {T ∈ Tree(P(Σ)) | ‖A‖(T ) ≤ n}.
Proof (sketch). We have to prove both directions. Given a tree T ∈ L(A≤n),
and an accepting run R of A≤n on T , we can construct a run R′ of A on T by
removing all weights from the labels of R. By induction on the weight i, we can
then show that whenever we have R(u) = (v, (q, i)) for some node u ∈ domR, all
�-fixations of R′ starting from u will have a weight at most i. This follows from
the claim that the sum of the weights of the children of a node v is never larger
than the weight of v itself for all �-fixations. Since the first successor of the root
of R is labeled with R(0) = (ε, (q0, n)), this means that weightA(R′) ≤ n.

Similarly, if we have a tree T ∈ Tree(P(Σ)) with ‖A‖(T ) ≤ n, and a run R of
A on T with weightA(R) ≤ n, we can construct a run R′ of A≤n on T by setting
R′(u) = (v, (q, i)) where R(u) = (v, q) and i is the weight assigned by A to the
subtree of R rooted at u, starting in state q. It can then be shown that the run
R′ obtained this way is an accepting run of A≤n on T . ut

The cut-point automaton A≤n has O(n · q) states, where q is the number
of states of the weighted automaton A. Thus, if n is encoded in unary, this
construction is polynomial, otherwise it is exponential.



Reasoning with Prototypes in ALC using Weighted Tree Automata 11

Combined reasoning using alternating automata We want to combine the
cut-point automata constructed from prototype concepts with the automaton from
Definition 3 in order to decide the concept satisfiability problem in ALCP(wapta);
more specifically, we want to construct an automaton A that accepts all those
(tree-shaped) pointed interpretations that are instances of an ALCP(wapta)-
concept w.r.t. an ALCP(wapta)-TBox.

For ALCP(wapta)-concepts, one can again define a normal form. This ex-
tends the negation normal form used in Section 2 by requiring that prototype
constructors occur only in the form P≤n(A), possibly negated. For example, one
can transform P≥n(A) for n ≥ 1 into negation normal form by replacing it with
¬P≤n−1(A); P≥0(A) can be replaced by >. The set of subconcepts now contains
such prototype concepts as well.

In case a prototype constructor occurs negated, the complement automaton
Ā for a cut-point automaton A can be constructed in linear time, by exchanging
true and false, ∨ and ∧, � and ♦, and σ and ¬σ for all σ ∈ Σ in all transition
conditions, as well as adding one to the priority of all states [11].

Definition 9. Let T be an ALCP(wapta)-TBox of the form {> v CT } and C
an ALCP(wapta)-concept, with both C and CT in negation normal form, and let
Ai,≤n be the cut-point automaton of the wapta Ai for each prototype constructor
P≤n(Ai) occurring in C or T .

The apta AP,C,T is the disjoint union of AC,T from Definition 3, all automata
Ai,≤n for prototypes P≤n(Ai) occurring in C or CT , and all automata Āi,≤n
for negated prototypes ¬P≤n(Ai) occurring in C or CT , such that the transition
function additionally is defined for subconcepts of the form P≤n(Ai) and ¬P≤n(Ai)
as follows:

δ(qP≤n(Ai)) = qi where qi is the initial state of Ai,≤n
δ(q¬P≤n(Ai)) = qi where qi is the initial state of Āi,≤n

The following theorem is an easy consequence of Proposition 4 and Proposi-
tion 8.

Theorem 10. Given an ALCP(wapta)-TBox T and an ALCP(wapta)-concept
C, the concept C is satisfiable w.r.t. T iff L(AP,C,T ) 6= ∅.

Because of the size of the cut-point automata and the ExpTime-emptiness
test for alternating tree automata, concept satisfiability can thus be deciding
in ExpTime if the numbers are given in unary. This is worst-case optimal. If
the numbers are given in binary, the complexity of the algorithm increases to
2ExpTime. It is an open problem whether this second exponential blowup can
be avoided.

5 Conclusions

We have introduced an extension to Description Logics that allows to define
prototypes and reason over them. In particular, we have introduced the proto-
type constructors P∼n(d) that are interpreted as the set of all elements of the
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interpretation with distance ∼ n according to the prototype distance functions
d. We have shown that pdfs can be defined using waptas, and that reasoning
in ALCP(wapta) has he same complexity as reasoning in ALC (if the threshold
numbers n are coded in unary).

Of course, this approach has some limitations. As mentioned in Section 3,
the pdfs obtained through a straightforward translation of ALC-concepts into
waptas are not equivalence invariant. This is due to the fact that we use the
supremum rather than the sum to combine the weights obtained from different
�-fixations. However, replacing supremum by sum has the disadvantage that the
cut-point language need no longer be recognizable by an apta. We conjecture that
in that case, the cut-point language can actually be accepted by a graded apta
[4], but the construction to be developed would definitely be considerably more
complex than the one used in this paper. More generally, one could of course also
look at weighted automata using other domains for weights and other operations
combining them.

Finally, we are interested in adding prototypes to other DLs. Since prototypes
can be used to express negation, considering less expressive DLs does not make
sense. But adding nominals and quantified number restrictions would be inter-
esting, as would be considering the instance problem and answering conjunctive
queries.
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