
Approximately Solving Set Equations

Franz Baader1, Pavlos Marantidis1, and Alexander Okhotin2

1 TU Dresden, Germany, firstname.lastname@tu-dresden.de
2 Dept. of Mathematics and Statistics, University of Turku, Finland, alexander.okhotin@utu.fi

Abstract

Unification with constants modulo the theory ACUI of an associative (A), commutative (C) and

idempotent (I) binary function symbol with a unit (U) corresponds to solving a very simple type of set

equations. It is well-known that solvability of systems of such equations can be decided in polynomial

time by reducing it to satisfiability of propositional Horn formulae. Here we introduce a modified

version of this problem by no longer requiring all equations to be completely solved, but allowing for a

certain number of violations of the equations. We introduce three different ways of counting the number

of violations, and investigate the complexity of the respective decision problem, i.e., the problem of

deciding whether there is an assignment that solves the system with at most ` violations for a given

threshold value `.

1 Unification modulo ACUI and set equations

The complexity of testing solvability of unification problems modulo the theory

ACUI := {x+ 0 = x, x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ x = x}

of an associative, commutative and idempotent function symbol “+” with a unit “0” was inves-
tigated in detail by Kapur and Narendran [KN92], who show that elementary ACUI-unification
and ACUI-unification with constants are polynomial whereas general ACUI-unification is NP-
complete. Here we concentrate on ACUI-unification with constants, but formally introduce the
problem in its disguise of testing solvability of set equations.

Given a finite base set B and a set of variables X = {Z1, . . . , ZN} that can assume as values
subsets of B, consider a system Σ of set equations, which consists of finitely many equations of
the following form:

K ∪X1 ∪ . . . ∪Xm = L ∪ Y1 ∪ . . . ∪ Yn, (1)

where K,L are subsets of B and X1, . . . , Xm, Y1, . . . , Yn ∈ X.
A B-assignment is a mapping of subsets of B to the variables, i.e., it is of the form

σ : X → P(B). If there is no confusion, we will omit the prefix B- from B-assignment. Such
an assignment σ is a solution of the system of set equations Σ if

K ∪ σ(X1) ∪ . . . ∪ σ(Xm) = L ∪ σ(Y1) ∪ . . . ∪ σ(Yn)

holds for all equations of the form (1) in Σ.
Solvability of a system of set equations can be reduced in polynomial time (see below) to

satisfiability of propositional Horn formulae [KN92], which can be tested in linear time [DG84].
To introduce this reduction, we define Boolean variables p(a,X) for every a ∈ B and X ∈ X.

The intuitive semantics of these variables is that p(a,X) is true iff a is not in X for the given
assignment.

Now, for each equation of the form (1) and each a ∈ K \ L we generate the Horn clauses

p(a, Y1) ∧ . . . ∧ p(a, Yn)→ ⊥.

1

Approximately Solving Set Equations Baader, Marantidis, and Okhotin

Indeed, whenever an element a ∈ B is in K but not in L, for the equation to hold true, a must
be in some Yj . The symmetric Horn clauses are also produced, i.e., for each a ∈ L \K

p(a,X1) ∧ . . . ∧ p(a,Xm)→ ⊥.

It remains to deal with the elements a 6∈ K ∪ L. First, if a belongs to none of the variables
on the right-hand side, then it should not belong to any of the variables on the left-hand side,
which is expressed by the Horn clauses

p(a, Y1) ∧ . . . ∧ p(a, Yn)→ p(a,Xj) for all j = 1, . . . ,m.

Symmetrically, if a is not on the left-hand side, it cannot be on the right-hand side, which yields

p(a,X1) ∧ . . . ∧ p(a,Xm)→ p(a, Yj) for all j = 1, . . . , n.

The number of derived Horn clauses and their sizes are polynomial in the size of the given
system Σ of set equations, where the size of Σ is the sum of the cardinality of B, the number of
variables in X, and the number of equations in Σ. The size of a Horn clause is just the number
of literals occurring in it.

It is easy to see that the Horn formula obtained by conjoining all the Horn clauses derived
from a system of set equations is satisfiable iff the original system of set equations has a solution
(see [KN92] for details). Consequently, solvability of systems of set equations can be decided
in polynomial time.

2 Minimizing the number of violated equations

We say that the B-assignment σ violates a set equation of the form (1) if

K ∪ σ(X1) ∪ . . . ∪ σ(Xm) 6= L ∪ σ(Y1) ∪ . . . ∪ σ(Yn).

Given a base set B, a set of variables X = {Z1, . . . , ZN}, a system Σ of k set equations of the
form (1), and a nonnegative integer `, we now ask whether there exists a B-assignment σ such
that at most ` of the equations of the system are violated by σ. We call this decision problem
MinVEq-SetEq. For a given `, MinVEq-SetEq(`) consists of all systems of set equations for
which there is a B-assignment that violates at most ` equations of the system.

We will show that MinVEq-SetEq is NP-complete using reductions to and from Max-HSAT.
Given a Horn formula ϕ that is a conjunction of k Horn clauses and a nonnegative integer `,
Max-HSAT asks whether there is a propositional assignment τ that satisfies at least ` of the
Horn clauses of ϕ. For a given `, Max-HSAT(`) consists of those Horn formulae for which there
is a propositional assignment that satisfies at least ` of its Horn clauses. It is well-known that
Max-HSAT is NP-complete [JS87].

Reducing MinVEq-SetEq to Max-HSAT For this purpose, we introduce new Boolean
variables good(i), whose rôle is to determine whether the ith equation is to be satisfied or
not. We conjoin good(i) to the left-hand side of each of the Horn clauses derived from the ith
equation, i.e., if the ith equation is of the form (1), then we generate the following Horn clauses:

• For each a ∈ K \ L: good(i) ∧ p(a, Y1) ∧ . . . ∧ p(a, Yn)→ ⊥;

• For each a ∈ L \K: good(i) ∧ p(a,X1) ∧ . . . ∧ p(a,Xm)→ ⊥;

2

Approximately Solving Set Equations Baader, Marantidis, and Okhotin

• For each a 6∈ K ∪ L:

good(i) ∧ p(a, Y1) ∧ . . . ∧ p(a, Yn)→ p(a,Xj) for all j = 1, . . . ,m;

good(i) ∧ p(a,X1) ∧ . . . ∧ p(a,Xm)→ p(a, Yj) for all j = 1, . . . , n.

• Furthermore, we add the Horn clause > → good(i).

If k′ is the number of clauses generated by the original reduction (see Section 1) and k is the
number of set equations in the system Σ, then we obtain k′ + k Horn clauses in this modified
reduction. Let ϕΣ = C1 ∧ · · · ∧ Ck′+k denote the Horn formula obtained by conjoining these
Horn clauses.

Intuitively, setting the Boolean variable good(i) to false “switches off” the Horn clauses
induced by the ith equation in the original reduction. Consequently, the satisfaction of these
clauses is no longer enforced, which means that the ith equation may be violated. By maxi-
mizing satisfaction of the clauses > → good(i), we thus minimize the number of violated set
equations. More precisely, we can show the following lemma.

Lemma 1. Let Σ be a system of set equations consisting of k equations and generating k′

clauses in the reduction introduced in Section 1. Then we have

Σ ∈ MinVEq-SetEq(`) iff ϕΣ ∈ Max-HSAT((k′ + k)− `).

Since Max-HSAT is in NP, this lemma implies that MinVEq-SetEq also belongs to NP.

Reducing Max-HSAT to MinVEq-SetEq Consider the Horn formula ϕ = C1 ∧ . . . ∧Ck,
where Ci is a Horn clause for i = 1, . . . , k. To construct a corresponding system of set equations,
we use the singleton base setB = {a}. For every Boolean variable p appearing in ϕ, we introduce
a set variable Xp. Intuitively, a belongs to Xp iff p is set to false. Now, each Horn clause in ϕ
yields the following set equations:

• If Ci is of the form p1 ∧ . . . ∧ pn → p, then the corresponding set equation is

Xp1
∪ . . . ∪Xpn

∪Xp = Xp1
∪ . . . ∪Xpn

.

Obviously, this equation enforces that a cannot belong to Xp if it does not belong to any
of the variables Xpi

.

• If Ci is of the form p1 ∧ . . . ∧ pn → ⊥, then the corresponding set equation is

Xp1
∪ . . . ∪Xpn

= {a}.

This equation enforces that a must belong to one of the variables Xpi
.

• If Ci is of the form > → p, then the corresponding set equation is

∅ = Xp.

This equation ensures that a cannot belong to Xp.

Given the intuition underlying the variables Xp (a belongs to Xp iff p is set to false), it is easy
to prove the following lemma.

Lemma 2. Let ϕ = C1 ∧ . . . ∧ Ck be a Horn formula and Σϕ the corresponding system of set
equations. Then ϕ ∈ Max-HSAT(`) iff Σϕ ∈ MinVEq-SetEq(k − `).

Since Max-HSAT is NP-hard, this lemma implies that MinVEq-SetEq is also NP-hard. Put
together, the two lemmas yield the exact complexity of the MinVEq-SetEq problem.

Theorem 1. MinVEq-SetEq is NP-complete. NP-hardness holds even if we restrict the cardi-
nality of the base set B to 1.

3

Approximately Solving Set Equations Baader, Marantidis, and Okhotin

3 Minimizing the number of violating elements

Instead of minimizing the number of violated equations, we can also minimize the number of
violating elements of B.

Given an assignment σ, we say that a ∈ B violates an equation of the form (1) w.r.t. σ if
a ∈ (K ∪ σ(X1) ∪ . . . ∪ σ(Xm)) ∆(L ∪ σ(Y1) ∪ . . . ∪ σ(Yn)), where ∆ denotes the symmetric
difference of two sets. We say that a ∈ B violates the system of set equations Σ w.r.t. σ if it
violates some equation in Σ w.r.t. σ. Given a base set B, a set of variables X = {Z1, . . . , ZN},
a system Σ of k set equations and a nonnegative integer `, we now ask whether there exists
a B-assignment σ such that at most ` of the elements of B violate Σ w.r.t. σ. We call this
decision problem MinVEl-SetEq. For a given `, MinVEl-SetEq(`) consists of all systems of set
equations for which there is a B-assignment σ such that at most ` of the elements of B violate
Σ w.r.t. σ.

In contrast to the problem MinVEq-SetEq considered in the previous section, MinVEl-SetEq
can be solved in polynomial time. In order to show this, we introduce the notion of projection.
Given an element a ∈ B, the projection of an equation of the form (1) to a is the equation

(K ∩ {a}) ∪X1 ∪ . . . ∪Xm = (L ∩ {a}) ∪ Y1 ∪ . . . ∪ Yn. (2)

The projection of a system of set equations Σ to a, Σa, is the system of the projections of all
equations in Σ to a. Note that, for Σa, we use the base set {a}. Finally, the projection of a
B-assignment σ to a is the {a}-assignment σa : X→ P({a}) defined as σa(X) = σ(X) ∩ {a}.

The following facts are easy to show:

1. The element a ∈ B violates Σ w.r.t. σ iff σa does not solve Σa.

2. Given {a}-assignments σa for all a ∈ B, define the B-assignment σ as

σ(X) =
⋃
a∈B

σa(X) for all X ∈ X.

Then we have σa = σa for all a ∈ B.

3. There is a B-assignment σ such that at most ` of the elements of B violate Σ w.r.t. σ iff
at most ` of the systems of set equations Σa (a ∈ B) are not solvable.

Thus, to check whether Σ ∈ MinVEl-SetEq(`), it is sufficient to check which of the systems of
set equations Σa for a ∈ B are solvable. This can obviously be done in polynomial time.

Theorem 2. MinVEl-SetEq is in P.

4 Minimizing the number of violations

A disadvantage of the measure used in the previous section is that it does not distinguish be-
tween elements that violate only one equation and those violating many equations. To overcome
this problem, we count for each violating element how many equations it actually violates. We
say that a ∈ B violates the system of set equations Σ p times w.r.t. σ if it violates p equations
in Σ w.r.t. σ. Further, we say that σ violates Σ q times if q =

∑
a∈B pa where, for each a ∈ B,

the element a violates Σ pa times w.r.t. σ.
Given a base set B, a set of variables X = {Z1, . . . , ZN}, a system Σ of k equations, and

a positive integer `, we now ask whether there is an assignment σ that violates Σ at most `
times. We call this decision problem MinV-SetEq. For a given `, MinV-SetEq(`) consists of all

4

Approximately Solving Set Equations Baader, Marantidis, and Okhotin

systems of set equations for which there is a B-assignment σ such that σ violates Σ at most `
times.

It is easy to adapt the approach used in Section 2 to solve MinVEq-SetEq to this new
problem. Basically, we now introduce Boolean variables good(i, a) (instead of simply good(i))
to characterize whether the element a ∈ B violates the ith equation. We conjoin good(i, a) to
the left-hand side of each of the Horn clauses derived from the ith equation for a. Furthermore,
we add the Horn clauses > → good(i, a).

Following the earlier notation, we obtain k′ + k|B| Horn clauses in this modified reduction,
and again use ϕΣ to denote the obtained Horn formula. The following lemma implies that
MinV-SetEq is in NP.

Lemma 3. Let Σ be a system of set equations over the base set B, consisting of k equations
and generating k′ clauses in the reduction introduced in Section 1. Denote with ϕΣ = C1∧ · · ·∧
Ck′+k|B| the Horn formula derived by the modified reduction. Then we have

Σ ∈ MinV-SetEq(`) iff ϕΣ ∈ Max-HSAT((k′ + k|B|)− `).

For base sets of cardinality 1, MinV-SetEq coincides with MinVEq-SetEq, which we have
shown to be NP-hard even in this restricted setting. This shows that the complexity upper
bound of NP is optimal.

Theorem 3. MinV-SetEq is NP-complete.

5 Conclusion

Our investigation of how to approximately solve set equations was motivated by unification
modulo the equational theory ACUI. The idea is that, even if there is no unifier, there may
be substitutions that almost are unifiers, i.e., that almost solve the unification problem. In
some applications it may be interesting to find such approximate solutions, which violate some
of the equations, but in a minimal way. We have shown that, depending on how we measure
violations, the complexity of the problem may stay in P or increase to NP.

As further work, we have started to look at approximate unification modulo the equational
theory ACUIh, which corresponds to unification in the description logic FL0 [BN01]. This sort
of unification can be used to detect redundancies in ontologies, and approximate unification
may allow to detect more potential cases of redundancy. Since ACUIh-unification can be re-
duced to solving certain language equations [BN01], we thus need to investigate approximately
solving language equations. In this setting, the elements of the sets are words, i.e., structured
objects, and measures for violations should take this structure into account. Our investigation
of unification modulo ACUI can be seen as a warm-up exercise for this more challenging task.

References

[BN01] Franz Baader and Paliath Narendran. Unification of concept terms in description logics. J. of
Symbolic Computation, 31(3):277–305, 2001.

[DG84] W. F. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability of proposi-
tional horn formulae. Journal of Logic Programmming, 1(3):267–284, 1984.

[JS87] Brigitte Jaumard and Bruno Simeone. On the complexity of the maximum satisfiability prob-
lem for Horn formulas. Inf. Process. Lett., 26(1):1–4, 1987.

[KN92] D. Kapur and P. Narendran. Complexity of unification problems with associative-commutative
operators. J. Automated Reasoning, 9:261–288, 1992.

5

	Unification modulo ACUI and set equations
	Minimizing the number of violated equations
	Minimizing the number of violating elements
	Minimizing the number of violations
	Conclusion

