
Open-World Probabilistic Databases

İsmail İlkan Ceylan and Adnan Darwiche and Guy Van den Broeck
Computer Science Department

University of California, Los Angeles
ceylan@tcs.inf.tu-dresden.de,{darwiche,guyvdb}@cs.ucla.edu

Abstract

Large-scale probabilistic knowledge bases are becoming in-
creasingly important in academia and industry alike. They
are constantly extended with new data, powered by modern
information extraction tools that associate probabilities with
database tuples. In this paper, we revisit the semantics under-
lying such systems. In particular, the closed-world assump-
tion of probabilistic databases, that facts not in the database
have probability zero, clearly conflicts with their everyday
use. To address this discrepancy, we propose an open-world
probabilistic database semantics, which relaxes the probabili-
ties of open facts to intervals. While still assuming a finite do-
main, this semantics can provide meaningful answers when
some probabilities are not precisely known. For this open-
world setting, we propose an efficient evaluation algorithm
for unions of conjunctive queries. Our open-world algorithm
incurs no overhead compared to closed-world reasoning and
runs in time linear in the size of the database for tractable
queries. All other queries are #P-hard, implying a data com-
plexity dichotomy between linear time and #P. For queries
involving negation, however, open-world reasoning can be-
come NP-, or even NPPP-hard. Finally, we discuss additional
knowledge-representation layers that can further strengthen
open-world reasoning about big uncertain data.

1 Introduction
Driven by the need to learn from vast amounts of text
data, efforts throughout natural language processing, infor-
mation extraction, databases and AI are coming together to
build large-scale knowledge bases. Academic systems such
as NELL (Mitchell et al. 2015), Reverb (Fader, Soderland,
and Etzioni 2011), Yago (Hoffart et al. 2013), and Deep-
Dive (Shin et al. 2015) continuously crawl the web to ex-
tract relational information. Industry projects such as Mi-
crosoft’s Probase (Wu et al. 2012) or Google’s Knowledge
Vault (Dong et al. 2014) similarly learn structured data from
text to improve search products. These systems have already
populated their databases with millions of entities and bil-
lions of tuples.

Such knowledge bases are inherently probabilistic. To go
from the raw text to structured data, information extraction
systems employ a sequence of statistical machine learning

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

techniques, from part-of-speech tagging until relation ex-
traction (Mintz et al. 2009). For knowledge-base comple-
tion – the task of deriving new facts from existing knowl-
edge – statistical relational learning algorithms make use
of embeddings (Bordes et al. 2011; Socher et al. 2013)
or probabilistic rules (Wang, Mazaitis, and Cohen 2013;
De Raedt et al. 2015). In both settings, the output is a pre-
dicted fact with its probability. It is therefore required to de-
fine probabilistic semantics for knowledge bases. The classi-
cal and most-basic model is that of tuple-independent prob-
abilistic databases (PDBs) (Suciu et al. 2011), which in-
deed underlies many of these systems (Dong et al. 2014;
Shin et al. 2015). According to the PDB semantics, each
database tuple is an independent Bernoulli random vari-
able, and all other tuples have probability zero, enforcing
a closed-world assumption (CWA) (Reiter 1978).

This paper revisits the choice for the CWA in probabilis-
tic knowledge bases. We observe that the CWA is violated
in their deployment, which makes it problematic to rea-
son, learn, or mine on top of these databases. We will ar-
gue the following salient points in detail. First, knowledge
bases are part of a larger machine learning loop that contin-
uously updates beliefs about facts based on new textual evi-
dence. From a Bayesian learning perspective (Bishop 2006),
this loop can only be principled when learned facts have
an a priori non-zero probability. Hence, the CWA does not
accurately represent this mode of operation and puts it on
weak footing. Second, these issues are not temporary: it will
never be possible to complete probabilistic knowledge bases
of even the most trivial relations, as the memory require-
ments quickly become excessive. This already manifests to-
day: statistical classifiers output facts at a high rate, but only
the most probable ones make it into the knowledge base, and
the rest is truncated, losing much of the statistical informa-
tion. For example, 99% of the tuples in NELL have a prob-
ability larger than 0.91. Third, query answering under the
CWA does not take into account the effect the open world
can have on the query probability. This makes it impossible
to distinguish queries whose probability should intuitively
differ. Finally, these issues stand in the way of some princi-
pled approaches to knowledge base completion and mining.

We propose an alternative semantics for probabilistic
knowledge bases to address these problems, based on the
open-world assumption (OWA). OWA does not presume that



the knowledge of a domain is complete. Hence, anything
that is not in the DB remains possible. Our proposal for
open-world probabilistic databases (OpenPDBs) builds on
the theory of imprecise probabilities, and credal sets in par-
ticular (Levi 1980), to allow interval-based probabilities for
open tuples. In the most-basic setting, OpenPDBs make ex-
plicit the probability threshold that decides which facts make
it into the knowledge base. All facts in the open world must
have a lower probability, which bounds their contribution
to the probability of possible worlds. This framework pro-
vides more meaningful answers, in terms of upper and lower
bounds on the query probability. Throughout this paper, we
assume a fixed and finite domain. Probabilistic reasoning
with an unknown number of objects is an important prob-
lem that comes with its own challenges (Milch et al. 2007),
which we leave for future work.

Our open-world semantics is supported by a query eval-
uation algorithm for unions of conjunctive queries (UCQs).
This class of queries, corresponding to monotone DNF, is
particularly well-behaved and the focal point of database re-
search. Perhaps the largest appeal of PDBs comes from a
breakthrough dichotomy result by Dalvi and Suciu (2012),
perfectly delineating which UCQs can be answered effi-
ciently in the size of the PDB. Their algorithm runs in poly-
nomial time for all efficient queries, called safe queries, and
recognizes all others to be #P-hard. Our OpenPDB algorithm
extends the PDB algorithm of Dalvi and Suciu (2012) and
inherits its elegant properties: all safe queries run in polyno-
mial time. When our algorithm fails, the query is #P-hard.
Moreover, a careful analysis shows that both algorithms run
in linear time in the number of (closed-world) tuples. Even
though OpenPDBs model a polynomially larger set of ran-
dom variables, these can be reasoned about as a whole, and
there is no computational blow-up for open-world reason-
ing. Hence, both OpenPDBs and PDBs admit the same data
complexity dichotomy between linear time and #P.1

For queries with negation, only a partial classification of
PDB data complexity is known (Gribkoff, Van den Broeck,
and Suciu 2014; Fink and Olteanu 2015). We show that
the complexity of open-world reasoning can go up signifi-
cantly with negation. We identify a linear-time PDB query
that becomes NP-complete on OpenPDBs. Moreover, there
exists a PP-complete2 query on PDBs that becomes NPPP-
complete on OpenPDBs. Clearly, negation leads to a much
richer data complexity landscape. We also consider query
evaluation complexity in terms of the domain size, or equiv-
alently, the size of the open world, keeping both the query
and the database fixed. Here, complexities range from poly-
nomial time to the unary alphabet class #P1. Finally, we pin-
point limitations of OpenPDBs in their basic form and look
at promising directions for this framework. For the proofs of
theorems and lemmas, we refer to the extended version of

1The fact that safe PDB queries have linear-time data complex-
ity, and that the dichotomy of Dalvi and Suciu (2012) is between
linear time (not PTime) and #P is perhaps not technically surpris-
ing. However, this has not been observed in the literature as far as
we know. This observation is quite important practically though,
particularly in the context of open-world probabilistic databases.

2PP is the decision version of the counting class #P.

Inmovie

w smith ali
arquette scream
pitt mr ms smith
jolie mr ms smith

Couple

arquette cox
pitt jolie
pitt aniston
kunis kutcher

Figure 1: Database tables. Each row is interpreted as an
atom. For example, the first row in the left table is inter-
preted as atom Inmovie(w smith, ali).

this paper.3

2 Closed-World Databases
Before introducing OpenPDBs we review classical and
probabilistic databases, and discuss the implications of the
closed-world assumption for these representations.

2.1 Relational Logic
Throughout this paper, we will work with the function-free
finite-domain fragment of first-order logic (FOL). An atom
P(t1, . . . , tn) consists of predicate P/n of arity n followed
by n arguments, which are either constants from a finite
domain D = {a,b, . . .} or logical variables {x, y, . . .}. A
ground atom does not contain logical variables. A literal is
an atom or its negation. A formula combines atoms with log-
ical connectives and quantifiers ∃ and ∀. A logical variable
x is quantified if it is enclosed by a ∀x or ∃x. A free variable
is one that is not quantified. We write φ(x, y) to denote that
x, y are free in φ. A clause is a disjunction of literals and
a CNF is a conjunction of clauses. A term is a conjunction
of literals and a DNF is a disjunction of terms. A formula
is monotone if it contains no negations. A substitution [x/t]
replaces all occurrences of x by t in some formula Q, de-
noted Q[x/t].

A relational vocabulary σ consists of a set of predicates
R and a domain D. We will make use of Herbrand seman-
tics (Hinrichs and Genesereth 2006), as is customary. The
Herbrand base of σ is the set of all ground atoms that can
be constructed fromR andD. An σ-interpretation is a truth-
value assignment to all the atoms in the Herbrand base of σ,
called σ-atoms. An interpretation ω is a model of formula Q
when it satisfies Q, defined in the usual way. Satisfaction is
denoted by ω ⊧σ Q. We omit σ from notation when it is
clear from context.

2.2 Databases and Queries
Following the standard model-theoretic view (Abiteboul,
Hull, and Vianu 1995), a relational database for vocabu-
lary σ is a σ-interpretation ω. Figure 1 depicts a classical
representation of a relational database in terms of tables.
Each table corresponds to a predicate and its rows corre-
spond to ground atoms of that predicate, which are also
called records or facts. These atoms are mapped to true,
while ones not listed in these tables are mapped to false,
according to the closed-world assumption (CWA) (Reiter

3Available at http://web.cs.ucla.edu/˜guyvdb/



Inmovie P

w smith ali 0.9
w smith sharktale 0.8
j smith ali 0.6
arquette scream 0.7
pitt mr ms smith 0.5
jolie mr ms smith 0.7
jolie sharktale 0.9

Couple P

arquette cox 0.6
pitt jolie 0.8
thornton jolie 0.6
pitt aniston 0.9
kunis kutcher 0.7

Figure 2: Probabilistic database tables. Each row is inter-
preted as a tuple ⟨t ∶ p⟩, where t is an atom and p is a prob-
ability. For example, the first row in the left table is inter-
preted as the tuple ⟨Inmovie(w smith, ali) ∶ 0.9⟩.

1978). A σ-interpretation ω is also sometimes represented
as a set that contains all ground atoms mapped to true. The
database in Figure 1 will then be represented by the set
{Inmovie(w smith, ali), . . . ,Couple(kunis, kutcher)}. We
will adopt this set notation in the following definitions.

The fundamental task in databases is query an-
swering. Given a formula Q(x, y, . . . ), the task is to
find all substitutions (answers) [x/s, y/t, . . . ] such that
ω ⊧ Q[x/s, y/t, . . . ]. That is, find assignments to the free
variables to satisfy the query. Consider for example the
query Q1(x, y) for spouses that starred in the same movie:

∃z, Inmovie(x, z) ∧ Inmovie(y, z) ∧ Couple(x, y).

The database in Figure 1 yields [x/pitt, y/jolie] as the only
answer. This formula is an existentially quantified conjunc-
tion of atoms (i.e., no negation), called a conjunctive query
(CQ). A common notation for this query is

Q1(x, y) = Inmovie(x, z),Inmovie(y, z),Couple(x, y).

We concentrate on Boolean conjunctive queries (BCQs),
which have no free variables. Answers to BCQs are either
true or false. For example, the BCQ

Q2 = Inmovie(x, z),Inmovie(y, z),Couple(x, y),

where all variables are existentially quantified, returns true
on the database in Figure 1. A Boolean union of conjunctive
queries (UCQ) is a disjunction of BCQs. From a logical per-
spective UCQs are motonone (∃-)DNF sentences. While it is
common to restrict queries to monotone fragments, it can be
useful to allow negation in database queries. We will denote
the class of UCQs with negation on atoms by UCQ̃, cor-
responding to non-monotone existentially-quantified DNF.
BCQs with negation are denoted by BCQ̃.

2.3 Probabilistic Databases
The simplest probabilistic database model is the one based
on the tuple-independence assumption. We adopt this model
in this paper and refer to Suciu et al. (2011) for details on
this model and other alternatives.

Definition 1. A probabilistic database (PDB) P for a vo-
cabulary σ is a finite set of tuples of the form ⟨t ∶ p⟩ , where
t is a σ-atom and p ∈ [0,1]. Moreover, if ⟨t ∶ p⟩ ∈ P and
⟨t ∶ q⟩ ∈ P , then p = q.

Figure 3: Box plot of probabilistic knowledge base probabil-
ities with 2nd to 3rd quartile in gray. YAGO only provides
an estimate of the mean probability per relation.

Figure 2 shows an example PDB. The following seman-
tics is based on the tuple-independence assumption men-
tioned earlier (Suciu et al. 2011).

Definition 2. A PDB P for vocabulary σ induces a unique
probability distribution over σ-interpretations ω:

PP(ω) = ∏
t∈ω

PP(t)∏
t∉ω

(1 −PP(t)),

where

PP(t) = { p if ⟨t ∶ p⟩ ∈ P
0 otherwise.

The choice of setting PP(t) = 0 for tuples missing from
PDB P is a probabilistic version of the CWA.

Consider now the PDB P given in Figure 2,
and the σ-interpretation ω given in Figure 1,
{Inmovie(w smith, ali), . . . ,Couple(kunis, kutcher)}. We
then have P(ω) = 0.9 ⋅ (1 − 0.8)⋯(1 − 0.6) ⋅ 0.9 ⋅ 0.7. Note,
however, that if we add the fact Couple(w smith, j smith)
to ω, then P(ω) = 0 because the additional fact has no
corresponding tuple in the PDB P .

Query languages remain the same in PDBs, except that
we can now compute their probabilities.

Definition 3. The probability of a BCQ Q w.r.t. a PDB P is

PP(Q) = ∑
ω⊧Q

PP(ω).

For example, considering the PDB in Figure 2 and the
query Q2 defined earlier, PP(Q2) = 0.28.

2.4 The Closed-World Assumption in Practice
Reiter (1978) notes that the CWA presumes a complete
knowledge about the domain being represented, and that this
assumption is warranted in many cases. For example, when
a flight does not appear in an airline database, we can be sure
that it never took place. Next, we assess the adequacy of the
CWA for probabilistic knowledge bases.

Truncating and Space Blow-up Figure 3 shows the dis-
tribution of the probabilities in popular knowledge bases.
These automatically constructed PDBs seem hardly prob-
abilistic. Most tuples have a very high probability, placing



PDBs into an almost crisp setting in practice. The under-
lying reason is that these systems retain only a small frac-
tion of the discovered facts. Facts with a probability below
a threshold are discarded, violating the CWA. In fact, Paleo-
DeepDive contains a wider range of probabilities because it
was obtained from the authors before truncation. This mode
of operation is not an oversight, but a necessity. It is simply
not possible to retain all facts in the Herbrand base. Con-
sider, for instance the Sibling relation over a domain of 7
billion people. Storing a single-precision probability for all
Sibling facts would require 196 exabytes of memory; two
orders of magnitude more than the estimated capacity avail-
able to Google (Munroe 2015).

Distinguishing Queries Since the CWA is violated in
most PDBs, several query answering issues become appar-
ent. Consider for example the queries Q1(pitt, jolie) and
Q2. The former query entails the latter, leading us to ex-
pect that P(Q2) > P(Q1(pitt, jolie)) in an open-word set-
ting (there exist a large number of couples that could satisfy
query Q2). Yet, P(Q2) = P(Q1(pitt, jolie)) = 0.28 in the
PDB of Figure 2. For another example, consider the queries
Q1(w smith, j smith) and Q1(thornton, aniston). The for-
mer is supported by two facts in the PDB of Figure 2,
while the latter is supported by none, which should make
it less likely. However, P(Q1(thornton, aniston)) = 0 and
P(Q1(w smith, j smith)) = 0. Taking these observations to
the extreme, the query Inmovie(x, y) ∧ ¬Inmovie(x, y) is
unsatisfiable, yet it evaluates to the same probability as the
satisfiable query Q1(thornton, aniston). These counterintu-
itive results are observed in real-world data as well, as we
will illustrate after introducing OpenPDBs.

Knowledge-Base Completion and Mining The CWA
permeates higher-level tasks that one is usually interested
in performing on probabilistic databases. For example, a
natural approach to knowledge-base completion learns a
probabilistic model from training data. Consider for exam-
ple a probabilistic rule (Wang, Mazaitis, and Cohen 2013;
De Raedt et al. 2015) of the form

Costars(x, y) 0.8←Ð Inmovie(x, z),Inmovie(y, z),
Couple(x, y).

To evaluate the quality of this rule for predicting the
Costars relation, the standard approach would be to quan-
tify the conditional likelihood of the rule based on training
data (Sutton and McCallum 2011):

D = {Costars(w smith, j smith),Costars(pitt, jolie)}

The rule predicts P(Costars(w smith, j smith)) = 0, due
to the CWA, since one fact is missing from the knowledge
base. Hence, the rule gets the likelihood score of zero, re-
gardless of its performance on other tuples in the training
data. Another high-level task is to mine frequent patterns in
the knowledge base; for example to find the pattern Q1(x, y)
and report it to the data miner. Again, due to the CWA,
the expected frequencies of these patterns will be underesti-
mated (Galárraga et al. 2013).

3 Open-World Probabilistic Databases
Our proposal for open-world probabilistic databases is based
on assuming that facts not appearing in a probabilistic
database have probabilities in the interval [0, λ], for some
threshold probability λ. The proposal is formalized using the
notion of a credal set (Levi 1980), which is a set of proba-
bility distributions.

3.1 Syntax, Semantics, and Queries
We start by defining open-world probabilistic databases.

Definition 4. An open probabilistic database is a pair
G = (P, λ), where P is a probabilistic database and λ ∈
[0,1].

The semantics of an open probabilistic database (Open-
PDB) is based on completing probabilistic databases.

Definition 5. A λ-completion of probabilistic database P is
another probabilistic database obtained as follows. For each
atom t that does not appear in P , we add tuple ⟨t ∶ p⟩ to P
for some p ∈ [0, λ].

While a closed probabilistic database induces a unique
probability distribution, an open probabilistic database in-
duces a set of probability distributions.

Definition 6. An open probabilistic database G = (P, λ) in-
duces a set of probability distributions KG such that distribu-
tion P belongs to KG iff P is induced by some λ-completion
of probabilistic database P .

Note that the set of distributions KG is credal and repre-
sents the semantics of OpenPDB G. Intuitively, an OpenPDB
represents all possible ways to extend a PDB with new tuples
from the open world, with the restriction that the probability
of these unknown tuples can never be larger than λ.

Query languages for OpenPDB remain the same as for
PDBs, except that queries yield interval-based answers.

Definition 7. The probability interval of a Boolean query Q
in OpenPDB G is KG(Q) = [PG(Q),PG(Q)], where

PG(Q) = min
P∈KG

P(Q) and PG(Q) = max
P∈KG

P(Q).

Suppose now that atom t does not appear in OpenPDB G.
We then have PG(t) = 0 and PG(t) = λ. Moreover, if tuple
⟨t ∶ p⟩ appears in G, then PG(t) = PG(t) = p. These ob-
servations highlight some of the intended semantics of open
probabilistic databases.

Reiter (1978) introduced the open-world assumption
(OWA) as the opposite of the CWA. Under the OWA, a set
of tuples no longer corresponds to a single interpretation.
Instead, a database corresponds to the set of interpretations
that extend it. A similar effect is achieved by OpenPDBs: a
set of probabilistic tuples no longer corresponds to a single
distribution. Instead, a probabilistic database corresponds
to the set of distributions that extend it. In restricting the
probabilities of open tuples to lie in [0, λ], OpenPDBs fol-
low a rich literature on interval-based probabilities (Halpern
2003), credal networks (Cozman 2000) and default reason-
ing (Reiter 1980).



3.2 The Open-World Assumption in Practice
We now discuss some implications of the open-world set-
ting before moving to a detailed technical analysis. Con-
sider the queries Q1 and Q2 again. We have already noted
that Q1(pitt, jolie) entails Q2, leading us to expect that
P(Q2) > P(Q1(pitt, jolie)) assuming our knowledge is not
complete. This is indeed the case for OpenPDBs (for up-
per probabilities) since there are many worlds with non-zero
probability that entail Q2 but not Q1(pitt, jolie).

We have also observed that an unsatisfiable query is in
some cases as likely as a satisfiable one in the closed world.
In the open-world setting, the upper probability of a satisfi-
able query will be greater than the upper probability of an
unsatisfiable query. In fact, any unsatisfiable query will still
have a zero upper probability in OpenPDBs.

For some further examples, consider the following queries
constructed on a portion of the NELL database:
Q3 =Ac(patt),Workedfor(patt,hwicke),Di(hwicke).
Q4 =Ac(x),Inmovie(x, trainsp),Mov(trainsp),¬Di(x).
Q5 =Ac(patt),Workedfor(patt, x),Di(x).

Here, Ac stands for actor, patt for Pattinson, Di for direc-
tor, hwicke for Hardwicke, Mov for movie, and trainsp for
Trainspotting.

All of the above queries have probability zero on the
NELL database, yet we know they correspond to factu-
ally true statements. These queries, however, can be distin-
guished in an open-world setting, as they have varying lev-
els of support. For example, we observe that Q3 entails Q5,
and posing these queries in the open-world setting, we in-
deed obtain P(Q5) > P(Q3) for any non-zero threshold λ.
For instance, P(Q5) = 0.82 and P(Q3) = 0.51 for λ = 0.3.
Query Q4 finds actors that starred in the movie Trainspotting
and did not direct a movie. Interestingly, there is no world
satisfying this query in the NELL database. Evaluating Q4

in OpenPDBs yields P(Q4) = 0.98 and P(Q4) = 0.78 with
thresholds 0.7 and 0.3, respectively. These answers are
clearly more in line with what one would expect.

The Bayesian learning paradigm is a popular view on ma-
chine learning, where the learner maintains beliefs about the
world as a probability distribution, and updates these beliefs
based on data, to obtain a posterior distribution. In the con-
text of knowledge base completion systems, we observe the
following. Given a PDB at time t, such systems gather data
D t to obtain a new model Pt+1P (.) = PtP(. ∣Dt). Systems
continuously add facts f , that is, set Pt+1P (f) > 0, whereas
previously PtP(f) = 0; an impossible induction for Bayesian
learning. This problem is resolved by the open database se-
mantics. Now, facts are not a priori impossible, and adding
them does not conflict with the prior beliefs.

4 OpenPDB Query Evaluation
Because OpenPDBs model an infinite set of PDBs, it may
seem like an unsurmountable task to efficiently compute in-
tervals KG(Q). Fortunately, the problem is simplified by a
strong property of credal sets as we employ them here: prob-
ability bounds always come from extreme points (Cozman
2000). For OpenPDBs, this means the following.

Definition 8. An extreme distribution P ∈ KG is a distribu-
tion where P(t) = PG(t) or P(t) = PG(t) for all tuples t.
Proposition 9. For any OpenPDB G and a query Q, there
exist extreme distributions PL,PU ∈ KG such that PL(Q) =
PG(Q), and PU(Q) = PG(Q).

Hence, for OpenPDB query answering, we only need to
consider a finite set of distributions, which can be repre-
sented by λ-completions where the open-world tuples have
an extreme probability.

As for PDBs, general query answering in OpenPDBs is
computationally challenging. We discuss two approaches for
the case of UCQs.

4.1 Naive Reduction to PDBs
Proposition 9 suggests a naive query answering algorithm:
generate all extreme distributions P, compute P(Q), and re-
port the minimum and maximum. This procedure will termi-
nate, but be exponential in the number of open-world tuples.

For UCQs, however, the monotonicity of the queries al-
lows us to further simplify query evaluation. We can sim-
ply choose the minimal (resp. maximal) bound for every tu-
ple. The resulting probability for the UCQ will be minimum
(resp. maximum). Thus, the lower probabilities of UCQs
w.r.t. OpenPDBs can be computed using a PDB algorithm,
by providing it with the set of probabilistic tuples, and ig-
noring λ. To compute the upper bounds, we can construct
a new PDB from the OpenPDB by adding all the open tu-
ples with default upper probabilities λ and simply reuse a
standard algorithm developed for PDBs.
Theorem 10. Given OpenPDB G = (P, λ) and UCQ Q,
consider λ-completion P ′ = P ∪ {⟨t ∶ λ⟩ ∣ t ∉ P}. Then,

KG(Q) = [PP(Q),PP ′(Q)].
Notice that the construction in Theorem 10 is efficient.

It adds all tuples the PDB, which grows polynomially in
the domain size. Unfortunately, this is impractical for PDBs
with a large domain. Indeed, on the Sibling example from
Section 2.4, the upper bound would have to be computed on
a 196 exabyte closed-world PDB. Thus, an important ques-
tion is whether this grounding can be avoided. We investi-
gate this in the next section.

4.2 Specialized OpenPDB Algorithm: LiftRO
We present Algorithm 1 to compute upper bounds of mono-
tone CNF queries on OpenPDBs (lower bounds can be com-
puted with any closed-world PDB algorithm). Monotone
CNFs are the dual of UCQ. Hence, this algorithm also com-
putes the probability of UCQ queries.4 Algorithm 1 is an
adaptation of the LiftR algorithm presented in Gribkoff,
Van den Broeck, and Suciu (2014), which goes back to the
algorithm of Dalvi and Suciu (2012). We call our algorithm
LiftRO where O stands for open. Next, we introduce con-
cepts and notions that are essential to understanding the al-
gorithm. We refer to Gribkoff, Van den Broeck, and Su-
ciu (2014; 2014) for a more detailed description and addi-
tional intuitive examples.

4Practically, this is achieved by taking the negation of the query
and all literals, and returning the complement probability in Step 0.



Algorithm 1 LiftRO(Q,P, λ,D), abbreviated by L(Q,P)
Input: CNF Q , prob. tuples P , threshold λ, and domainD.
Output: The upper probability P(P,λ)(Q) over domain D.

1: Step 0 Base of Recursion
2: if Q is a single ground atom t then
3: if ⟨t ∶ p⟩ ∈ P then return p else return λ
4: Step 1 Rewriting of Query
5: Convert Q to union of CNFs: QUCNF = Q1 ∨ ...∨Qm
6: Step 2 Decomposable Disjunction
7: if m > 1 and QUCNF = Q1 ∨Q2 where Q1 ⊥ Q2 then
8: q1 ← L(Q1,P∣Q1) and q2 ← L(Q2,P∣Q2)
9: return 1 − (1 − q1) ⋅ (1 − q2)

10: Step 3 Inclusion-Exclusion
11: if m > 1 but QUCNF has no independent Qi then
12: return ∑s⊆m(−1)∣s∣+1 ⋅L(∧i∈sQi,P∣∧i∈sQi)
13: Step 4 Decomposable Conjunction
14: if Q = Q1 ∧Q2 where Q1 ⊥ Q2 then
15: return L(Q1,P∣Q1) ⋅L(Q2,P∣Q2)
16: Step 5 Decomposable Universal Quantifier
17: if Q has a separator variable x then
18: let T be all constants as x-argument in P
19: qc ←∏t∈T L(Q[x/t],P∣x=t)
20: qo ← L(Q[x/t],∅) for some t ∈ D ∖ T
21: return qc ⋅ q∣D∖T ∣o

22: Step 6 Fail

LiftRO assumes that any input query is preprocessed such
that (i) it does not contain any constant symbols and (ii) all
variables appear in the same order in each predicate occur-
rence in Q. This preprocessing is efficient.

Steps 1–4 LiftRO starts with a base case where the query
is trivial to evaluate: it is either a probability in P , or
the upper bound λ. The first step attempts to rewrite
Q into a union (disjunction) of CNF sentences. For ex-
ample, CNF (R(x) ∨ S(y, z)) ∧ (S(x, y) ∨ T (x)) can be
rewritten into the union of (R(x)) ∧ (S(x, y) ∨ T (x)) and
(S(y, z)) ∧ (S(x, y) ∨ T (x)). The second and third step
apply when the union CNF has multiple disjuncts. They
recurse on simplified queries, using standard simplification
rules of probability. The second step applies when two sets
of CNFs in the union are independent (i.e., share no pred-
icates, denoted ⊥). Otherwise the third step recurses using
the inclusion-exclusion principle. The fourth step checks for
independent sets of clauses in the CNF and recurses. In the
various recursions, the algorithm shrinks the set of tuples P .
Specifically, P∣Q denotes the subset of P that talks about the
predicates that appear in Q.

Step 5 The fifth step is the workhorse of LiftRO, and
the key difference with the LiftR algorithm of Gribkoff,
Van den Broeck, and Suciu (2014). It searches for a spe-
cial variable, called a separator. A separator is a variable

that appears in every atom in Q. This means that for any
two distinct instantiations t1, t2 of the separator, the queries
Q[x/t1] and Q[x/t2] are independent. Hence, by multiply-
ing P(Q[x/t]) for all t in the domain D, we obtain P(Q).

The implementation of step five in LiftRO performs one
key optimization over this simple multiplication. First, note
that x appears in exactly one argument position in Q for
every predicate. We call these arguments the x-arguments.
Step five partitions the constants in the domain into two sets:
(i) the constants T that appear as x-arguments in the tuples
in P , and (ii) all other constants, denoted by D ∖ T . For (i),
LiftRO still enumerates all instantiations of x and computes
their probability separately. For (ii), it suffices to compute
the probability of a single instantiation of x. All instantia-
tions with constants fromD∖T will have the same probabil-
ity, as they do not depend on the tuples in P . The probability
of their conjunction is computed by exponentiation. More-
over, in the recursive calls for [x/t], we can pass along the
subset of tuples P∣x=t where all x-arguments are constant t.

Finally, LiftRO can fail in step six, yielding no answer. We
will discuss the meaning of this step in the next section.

5 Data Complexities
Data complexity refers to the complexity of query answering
for a fixed query Q, as a function of the set of tuples P . We
will study the data complexity for UCQs and UCQ̃s. First,
we introduce basic computational complexity notions.

Background Many probabilistic reasoning problems re-
late to the class PP (Gill 1977); that is the class of lan-
guages recognized by a polynomial-time bounded non-
deterministic Turing machine that accepts an input iff more
than half of the computation paths are accepting. A canon-
ical problem for PP is the majority satisfiability prob-
lem (Littman, Majercik, and Pitassi 2001); that is, given a
propositional formula ψ, decide whether a majority of the
assignments satisfy ψ. PP can be seen as a decision ver-
sion of the counting class #P (Valiant 1979), for which the
canonical problem is #SAT, that is, counting satisfying as-
signments for a given propositional formula. Beyond PP, the
class NPPP is relevant to probabilistic reasoning problems
that combine optimization and counting (Park and Darwiche
2004; De Campos and Cozman 2005). These classes relate
to standard complexity classes in the following way:
Linear ⊆ P ⊆ NP ⊆ PP ⊆ PPP ⊆ NPPP ⊆ PSpace ⊆ ExpTime

5.1 Overview
To compare complexities, it will be useful to study decision
problems stemming from the computation of KG(Q).
Definition 11. Given an OPDB G, query Q and probabil-
ity p, the upper probabilistic query evaluation problem is to
decide whether PG(Q) > p.

Our key complexity results are illustrated in Figure 4.
Briefly, the decision problem of UCQ query evaluation ei-
ther has linear time data complexity or is PP-complete, de-
pending on the query. This implies a dichotomy, as we will
discuss in the next section. Moreover, these complexities are
the same for PDBs and OpenPDBs.



UCQs

PDBs
Linear

P

PP

L
if
t
R O

T
he

or
em

13

Theorem 10

Corollary 14

(S
uc

iu
et

al
.2

01
1)

●

●

● ●

OpenPDBs
●

●

UCQ̃s

PDBs
●

●

OpenPDBs
Linear

P

NP

PP

NPPP

●

●

●

●

●
QMS

AT

Q
P
S
A
T

Figure 4: Complexity map for OpenPDBs

For queries with negation, some linear-time PDBs queries
can remain linear, and some can become NP-complete on
OpenPDBs. Some UCQ̃s that are PP-complete on PDBs can
remain PP-complete, and some can become NPPP-complete.

5.2 Monotone Queries: UCQ
The data complexity of query evaluation depends heavily on
the structure of the query. In a remarkable result, Dalvi and
Suciu (2012) proved a dichotomy: the probability of a UCQ
on a PDB can be computed either in PTime or it is #P-hard.
As a consequence, the corresponding decision problem is
either in PTime or it is PP-complete. The queries that are in
PTime are called safe. The PP-complete queries are unsafe.

The dichotomy of Dalvi and Suciu (2012) is supported
by an algorithm similar to LiftRO. When this algorithm fails,
Dalvi and Suciu (2012) prove that the query is PP-complete.
When it does not fail, it runs in PTime. This dichotomy-
supporting algorithm has one major difference compared
to LiftRO, aside from our support for open-world infer-
ence. When it applies the inclusion/exclusion step, it per-
forms cancellations to avoid computing some of the recur-
sive steps. This is a key aspect of the algorithm that ensures
efficiency for all PTime queries. We refer to Gribkoff, Van
den Broeck, and Suciu (2014) for an in-depth discussion and
examples.

For OpenPDBs, it follows from Theorem 10 that the di-
chotomy for UCQs in PDBs transfers directly.

Corollary 12. UCQ query evaluation on OpenPDBs is ei-
ther in PTime, or it is PP-complete. A UCQ is safe in Open-
PDBs iff it is safe in PDBs.

The LiftRO algorithm, extended with cancellations in the
inclusion-exclusion step, lets us make a stronger statement.

Theorem 13. Given a UCQ Q and OpenPDB G, LiftRO
computes PG(Q) in time linear in the size of G.

Moreover, since LiftRO fails on all unsafe queries, we obtain
a stronger dichotomy.

Corollary 14. UCQ query evaluation on PDBs or Open-
PDBs is either in linear time, or it is PP-complete.

The linear-time complexity of LiftRO is enabled by the
shrinking of the database in step five. Briefly, the full proof
proceeds as follows. Counting the number of calls in the re-
cursion tree of Algorithm 1, there is a constant number (in
the size of G) of calls below each invocation of Line 20, as
these calls no longer depend on the data. For the remaining
calls to LiftRO, we prove that there is a constant number per
tuple in P . Steps 0–4 depend only on the query, and not the
data. Otherwise, each tuple goes down one path in Step 5.
With a constant number of calls per tuple, the entire algo-
rithm can be shown to run in linear time.

Corollary 14 expands the dichotomy of Dalvi and Su-
ciu (2012) from PTime to linear time. Surprisingly, this ob-
servation appears to be novel in the PDB literature. Ex-
isting linear-time probabilistic query evaluation complexity
results, such as the work by Fink and Olteanu (2014), do
not apply to the full class of UCQs, nor to the dichotomy-
supporting algorithm of Dalvi and Suciu (2012).

5.3 Queries with Negation: UCQ̃s
This section investigates the data complexity of UCQ̃s. As
before, we start by showing how probabilistic query evalua-
tion for UCQ̃s w.r.t. OpenPDBs can be decided. Notice that
the problem does not trivially reduce to PDBs anymore. The
subtlety is that we additionally need to solve an optimization
problem. Intuitively, an OpenPDB describes a set of PDBs,
each of which differ according to the bounds chosen for the
open tuples (cf. Proposition 9). Each choice of bounds yields
another PDB, and we are interested in PDBs that yield lower
and upper bounds for the query under consideration.

Unsafe Queries We have shown that we can compute the
probability of a UCQ in OpenPDBs with a linear operation
on the size of the database provided that the corresponding
problem in PDBs is linear in the size of the database. This
raises a natural question, namely, whether the same holds for
UCQ̃s. Unfortunately, very little is known for the computa-
tional complexity of UCQ̃s. Consider for instance the UCQ̃
(as its dual CNF) QMSAT ∶= qt1 ∧ qt2 ∧ qt3 ∧ qt4 where:

qt1 ∶= L(x) ∨ L(y) ∨ L(z) ∨ Rt1(x, y, z),
qt2 ∶= L(x) ∨ L(y) ∨ ¬L(z) ∨ Rt2(x, y, z),
qt3 ∶= L(x) ∨ ¬L(y) ∨ ¬L(z) ∨ Rt3(x, y, z),
qt4 ∶= ¬L(x) ∨ ¬L(y) ∨ ¬L(z) ∨ Rt4(x, y, z).

QMSAT is unsafe in PDBs, and is PP-complete. QMSAT is
clearly in NPPP in OpenPDBs, by guessing a P ∈ KG and
computing P(QMSAT). We show that this is in fact a match-
ing lower bound in OpenPDBs. We do so by providing a
reduction from EMAJSAT.

Definition 15 (EMAJSAT). Let ψ be a propositional formula
in CNF defined over a (finite) set of propositional variables
V = {v1, ..., vn} and m ∈ [1, n] an integer. Given the pair
(ψ,m), EMAJSAT is the problem of deciding whether there
exists an assignment γ of the variables v1, ..., vm such that
the majority of assignments that extend γ satisfy ψ.

EMAJSAT is NPPP-complete even if we assume that ψ is
given in 3-CNF. We construct an OpenPDB G that encodes



ψ. Setting various Rti tuple probabilities to 0 or 1, we en-
code the clauses in ψ. Moreover, setting some L-tuple prob-
abilities to 0.5, and leaving others open with λ = 1, we en-
code which variables are to be maximized over, and which
to compute an expectation over.

Using this construction; namely the OpenPDB G and the
query QMSAT, the full proof shows that it is possible to encode
any instance of EMAJSAT. We obtain the following result.

Lemma 16. EMAJSAT(ψ,m) holds iff PG(QMSAT) > 1/2.

As a consequence of Lemma 16 and the polynomial con-
struction presented we assert that evaluating QMSAT in Open-
PDBs is strictly harder than in PDBs, unless PP =NPPP.

Theorem 17. Upper probabilistic query evaluation for
QMSAT is NPPP-complete w.r.t. OpenPDBs.

Safe Queries We have shown that unsafe queries can be-
come even harder in OpenPDBs. Does this also apply to safe
queries, or do safe queries have certain properties that avoid
this hardness? We start inspecting the complexity of safe
PDB queries in the context of OpenPDBs. Consider the fol-
lowing UCQ̃ Q = (T (x) ∨ ¬F (x, y)) ∧ (F (x, y) ∨ ¬L(y)),
represented as CNF. The probability of Q can be computed
in PTime w.r.t. a given PDB as shown by Gribkoff, Van den
Broeck, and Suciu (2014). This result is non-trivial and it is
useful to inspect this query in OpenPDBs. Suppose that we
are interested in computing PG(Q) for some OpenPDB G.
First, observe that we cannot immediately reduce the prob-
lem to PDBs as before since Q is non-monotonic. In other
words, setting all open tuple probabilities to λ might not
yield the maximum probability. On the other hand, we can
set the probability of tuples of T to λ and, the tuples of L
to 0, in order to maximize the probability of the query. This
is sound because the query is monotone in these atoms. As
for F (x, y) we have a non-determinism, which can be a po-
tential cause for hardness. Yet, it turns out that this can be
avoided too. Simply add the tuple ⟨F (a, b) ∶ λ⟩ to the PDB
if PG(T (a)) > PG(L(y)) and add ⟨F (a, b) ∶ 0⟩ otherwise.

Intuitively, the structure of this query allows us to locally
optimize the choices over the bounds; and hence to avoid
non-determinism. What are the characteristics that enabled
this local optimization and do these characteristics general-
ize to all tractable queries?

The answer is, unfortunately, negative. There are queries
that are safe for PDBs, but turn out to be NP-complete for
OpenPDBs. To show this, we construct a special query QPSAT

and prove Theorem 18.

Theorem 18. Probabilistic query evaluation for QPSAT is in
PTime in PDBs. Upper probabilistic query evaluation for
QPSAT is NP-complete in OpenPDBs.

Theorem 18 is shown using several intermediate re-
sults, by reduction from the 3-satisfiability (3SAT) problem.
Briefly, given a propositional formula ψ, SAT is to decide
whether ψ is satisfiable. 3SAT is a special case, where ψ
is in CNF and every clause contains at most three literals.
3SAT is NP-complete.

The full proof performs the following reduction. First, we
encode 3SAT for ψ into the query evaluation problem for

x̃ ỹ

RC D

(a)

x̃

ỹ

ZC

(b)

Figure 5: Venn Diag. for q before and after decomposition

query QMSAT, which is defined earlier, on a carefully con-
structed OpenPDB.

Second, we obtain the following Lemma
Lemma 19. For any BCQ̃ q, there exists an equisatisfiable
UCQ̃ Q = ⋀1≤i≤n qi such that every qi is individually safe.

Briefly, Lemma 19 states that any BCQ̃ can be rewrit-
ten into an equisatisfiable UCQ̃ that is a conjunction of safe
queries, only. We transform the query QMSAT into an equisat-
isfiable query QDSAT = ⋀1≤i≤n qi, where every qi is safe.

Our next result establishes a connection between safe and
unsafe query evaluation.
Lemma 20. For any OpenPDB G and UCQ̃ Q = ⋀1≤i≤n qi
where every qi is a safe query, there exists an OpenPDB G′
and UCQ̃ Q′ such that (i) PG(Q) > 0 iff PG′(Q′) > C for
some constant C, and (ii) Q′ is a safe query.

We use this Lemma to transform QDSAT into a safe query
QPSAT. By deciding PG(QPSAT) > C on the appropriate,
transformed OpenPDB G, we can decide 3SAT for ψ. That
completes the proof of Theorem 18, whose details are in
the long version of this paper. Next, we give an overview
of some technical details for these intermediate results.

Equisatisfiable Rewriting of Queries We introduce some
basic notions required for the rewriting procedure, which is
in turn used to prove Lemma 19.
Definition 21. Let q be a BCQ̃. For any variable x ∈ Var(q)
the set {R ∣ x occurs in R} is the x-cover (x̃) of q. Two cov-
ers x̃ and ỹ are pairwise hierarchical iff x̃ ∩ ỹ ≠ ∅ implies
x̃ ⊆ ỹ or ỹ ⊆ x̃. A query q is hierarchical iff every cover x̃, ỹ
is pairwise hierarchical. A query is of degree n, denoted
deg(q)=n, iff the number of pairs (x̃, ỹ) in Var(q) that are
not pairwise hierachical is n.

Consider now the query q = C(x) ∨D(y) ∨R(x, y),
which is not hierarchical as depicted in Figure 5a using a
Venn diagram. In fact, it has the degree 1. It is well-known
that hierarchical queries are safe, whereas non-hierarchical
ones are unsafe on PDBs (Dalvi and Suciu 2012).

Based on these notions, the long version of this paper de-
fines an algorithm to decompose any BCQ̃ into a conjunc-
tion of queries, each of which is individually safe and com-
putable in PTime. Briefly, the algorithm initializes a set S
with the given query. Then, it does the decomposition of a
query in q ∈ S with deg(q) > 0 until all queries are safe,
i.e. deg(S) = 0. The decomposition splits the query into two
parts s and q/s and replaces the part with higher degree (s),



with a fresh relation that has the variables in s as arguments.
To preserve satisfiability, it adds the logical equivalence
s ⇔ Z(x1, ..., xn) into S, after transforming it into a set
of clauses. Finally, it returns S as the UCQ̃. Figure 5b shows
the effect of adding the formula Z(x, y) ⇔ R(x, y)∧D(y),
making all CQs safe.

Creating a Safe Query Evaluating QDSAT is already PP-
hard in PDBs, as is QMSAT. We are, on the other hand, inter-
ested in finding queries that are safe in PDBs, but potentially
hard for OpenPDBs. To this purpose, we employ yet another
transformation on QDSAT = ⋀1≤i≤n qi, using Lemma 20. We
define n2 + n + 1 clauses as given below:

ri = ¬Hi ∨ qi , r(i×n)+j = ¬Hi ∨ ¬Hj

rn2+n+1 =H1 ∨ ... ∨Hn.

where 1 ≤ i, j ≤ n and the query QPSAT = ⋀1≤i≤n2+n+1 ri and
prove that QPSAT is NP-complete.

5.4 Domain Complexity
The domain complexity of OpenPDB query evaluation is the
complexity for a fixed query and database, as a function of
the size of the domain D. Beame et al. (2015) study this
complexity (confusingly called data complexity there) in the
context of a task called weighted first-order model counting.
This task is reducible to OpenPDB query evaluation when
the database is empty. We refer to Beame et al. (2015) for
full details, but note the following.

Corollary 22. There exists an FO3 query and set of prob-
abilistic tuples with #P1-complete domain complexity on
OpenPDBs. There exists a BCQ and set of probabilistic tu-
ples with #P1-hard domain complexity on OpenPDBs.

Often, however, queries have a PTime domain complex-
ity, in particular queries over two logical variables (Van den
Broeck 2013). Some unsafe queries even have PTime do-
main complexity, for example ∃x,∃y,R(x)∧S(x, y)∧T (y).

6 Discussion
Next, we discuss improvements to the OpenPDB semantics
and related work.

Restricting the Openness A key challenge is to restrict
the open world the provide tighter bounds. We propose spe-
cific approaches to exclude spurious possible worlds, and
limit the probability mass of open tuples.

One way of restricting the models is to pose constraints on
the probability distributions. Such constraints could limit the
probability mass of the open world, by for example encoding
the average probability of open-world tuples. Notice that if
constraints are linear, they can be included into our credal
semantics without trouble. Yet, a more fine grained view can
be achieved by entropy based approaches. See for instance
Lukasiewicz (2000) for an entropy based computation for
selecting distributions from a credal set.

Another significant approach is to use an explicit formal-
ism for restricting the models. In fact, it is known that the
CWA already causes many subtleties in classical DBs and
to address these, ontology based data access (OBDA) has

been introduced (Bienvenu et al. 2014). Briefly, OBDA is a
means of querying incomplete data sources with the help of
a background knowledge provided by an ontology. The most
extensively studied formalisms in OBDA are based on De-
scription Logics (Baader et al. 2007). Investigating the com-
putational properties of OBDA in combination with Open-
PDBs is left as future work.

Related Work As a credal representation (Levi 1980),
OpenPDBs are closely related to credal networks (Cozman
2000). Complexity results for credal networks also show an
increase from PTime to NP and PP to NPPP (De Campos and
Cozman 2005).

Open-worldness is an important problem in non-
probabilistic databases as well (Libkin 2014), and lower or
upper bounds on probabilities can be seen as a form of cer-
tain answers in databases. OWA is common for determin-
istic knowledge bases, and description logics in particular.
OWA is a driving force for these technologies over classi-
cal databases in the crisp setting (Patel-Schneider and Hor-
rocks 2006). Analogously, OBDA has been investigated in
the probabilistic setting, for both DLs and Datalog (Jung and
Lutz 2012; Ceylan and Peñaloza 2015; Gottlob et al. 2013).
In Jung and Lutz (2012), authors show how the existing di-
chotomy in PDBs can be lifted to probabilistic OBDA. How-
ever, these formalisms concentrate on computing the mini-
mal probability of an entailment, which corresponds to com-
puting the lower bounds of probabilities, only.

Open information extraction builds knowledge bases with
an open-world relational vocabulary (Banko et al. 2007).
Moreover, SRL representations do often leave the world
open, but there is no tractability, and grounding becomes in-
feasible at the scale of probabilistic knowledge bases. Mod-
eling the open-world correlations as, for example, a Markov
logic network, is a problem in its own right. Such models are
not typically part of probabilistic knowledge bases.

To avoid explicitly reasoning about all tuples individually
is the topic of lifted inference (Poole 2003; Kersting 2012;
Van den Broeck 2013). Our work brings together the high-
level reasoning of lifted inference and the data-centric rea-
soning of probabilistic databases.

7 Conclusions
We introduced OpenPDBs, an open-world extension of
PDBs. Motivated by probabilistic knowledge bases such as
NELL, we provide an efficient algorithm and study the data
complexity. For future work, we want to study algorithms
for arbitrary queries, based on integer or multi-linear pro-
gramming (de Campos and Cozman 2007), and strengthen
the representation by limiting the effect of the open world.

Acknowledgements We thank Lakshay Rastogi for his
help. İ. İlkan Ceylan is supported by the German Research
Foundation (DFG) within RoSI (GRK 1907). This research
was conducted when he was a visiting student at UCLA.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
databases, volume 8. Addison-Wesley Reading.



Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; and Patel-
Schneider, P. F., eds. 2007. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University
Press, 2nd edition.
Banko, M.; Cafarella, M. J.; Soderland, S.; Broadhead, M.; and
Etzioni, O. 2007. Open information extraction for the web. In
Proc. of IJCAI’07, volume 7, 2670–2676.
Beame, P.; Van den Broeck, G.; Suciu, D.; and Gribkoff, E. 2015.
Symmetric Weighted First-Order Model Counting. In Proc. of
PODS’15, 313–328. ACM Press.
Bienvenu, M.; Cate, B. T.; Lutz, C.; and Wolter, F. 2014. Ontology-
based data access: A study through disjunctive datalog, csp, and
mmsnp. ACM Trans. Database Syst. 39(4):33:1–33:44.
Bishop, C. M. 2006. Pattern recognition and machine learning.
Springer.
Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011. Learn-
ing structured embeddings of knowledge bases. In AAAI’11.
Ceylan, İ. İ., and Peñaloza, R. 2015. Probabilistic Query Answer-
ing in the Bayesian Description Logic BEL. In Proc. of SUM’15,
volume 9310 of LNAI, 21–35. Springer.
Cozman, F. G. 2000. Credal networks. AIJ 120(2):199–233.
Dalvi, N., and Suciu, D. 2012. The dichotomy of probabilistic
inference for unions of conjunctive queries. JACM 59(6):1–87.
De Campos, C. P., and Cozman, F. G. 2005. The inferential com-
plexity of bayesian and credal networks. In Proc. of IJCAI’05,
AAAI Press, 1313–1318.
de Campos, C. P., and Cozman, F. G. 2007. Inference in credal
networks through integer programming. In Proc. of SIPTA.
De Raedt, L.; Dries, A.; Thon, I.; Van den Broeck, G.; and Verbeke,
M. 2015. Inducing probabilistic relational rules from probabilistic
examples. In Proc. of IJCAI’15.
Dong, X. L.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.; Mur-
phy, K.; Strohmann, T.; Sun, S.; and Zhang, W. 2014. Knowledge
Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion.
In Proc. of ACM SIGKDD’14, KDD’14, 601–610. ACM.
Fader, A.; Soderland, S.; and Etzioni, O. 2011. Identifying relations
for open information extraction. In Proceedings of EMNLP, 1535–
1545. Ass. for Computational Linguistics.
Fink, R., and Olteanu, D. 2014. A dichotomy for non-repeating
queries with negation in probabilistic databases. In Proc. of PODS,
144–155. ACM.
Fink, R., and Olteanu, D. 2015. Dichotomies for Queries
with Negation in Probabilistic Databases. ACM Transactions on
Database Systems (TODS).
Galárraga, L. A.; Teflioudi, C.; Hose, K.; and Suchanek, F. 2013.
Amie: association rule mining under incomplete evidence in onto-
logical knowledge bases. In Proc. of WWW’2013, 413–422.
Gill, J. 1977. Computational complexity of probabilistic turing
machines. SIAM Journal on Computing 6(4):675–695.
Gottlob, G.; Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I.
2013. Query answering under Probabilistic Uncertainty in Datalog
+/- Ontologies. Ann. Math. AI 69(1):37–72.
Gribkoff, E.; Suciu, D.; and Van den Broeck, G. 2014. Lifted prob-
abilistic inference: A guide for the database researcher. Bulletin of
the Technical Committee on Data Engineering 37(3):6–17.
Gribkoff, E.; Van den Broeck, G.; and Suciu, D. 2014. Understand-
ing the Complexity of Lifted Inference and Asymmetric Weighted
Model Counting. In Proc. of UAI’14, 280–289. AUAI Press.
Halpern, J. Y. 2003. Reasoning about uncertainty. MIT Press.

Hinrichs, T., and Genesereth, M. 2006. Herbrand logic. Technical
Report LG-2006-02, Stanford University.
Hoffart, J.; Suchanek, F. M.; Berberich, K.; and Weikum, G. 2013.
Yago2: A spatially and temporally enhanced knowledge base from
wikipedia. In Proc. of IJCAI’2013, 3161–3165. AAAI Press.
Jung, J. C., and Lutz, C. 2012. Ontology-Based Access to Proba-
bilistic Data with OWL QL. In Proc. of ISWC’12, volume 7649 of
LNCS, 182–197. Springer Verlag.
Kersting, K. 2012. Lifted probabilistic inference. In Proc. of
ECAI’12, 33–38. IOS Press.
Levi, I. 1980. The Enterprise of Knowledge. MIT Press.
Libkin, L. 2014. Certain answers as objects and knowledge. In
Proc. of KR’14. AAAI Press.
Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001. Stochastic
Boolean Satisability. J. of Automated Reasoning 27(3):251–296.
Lukasiewicz, T. 2000. Credal networks under maximum entropy.
In Proc. of UAI’00, 363–370.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.; and
Kolobov, A. 2007. Blog: Probabilistic models with unknown ob-
jects. Statistical relational learning 373.
Mintz, M.; Bills, S.; Snow, R.; and Jurafsky, D. 2009. Distant
supervision for relation extraction without labeled data. In Proc. of
ACL-IJCNLP, 1003–1011.
Mitchell, T.; Cohen, W.; Hruschka, E.; Talukdar, P.; Betteridge,
J.; Carlson, A.; Dalvi, B.; and Gardner, M. 2015. Never-Ending
Learning. In Proc. of AAAI’15. AAAI Press.
Munroe, R. 2015. Google’s datacenters on punch cards.
Park, J. D., and Darwiche, A. 2004. Complexity Results and Ap-
proximation Strategies for MAP Explanations. JAIR 21(1):101–
133.
Patel-Schneider, P. F., and Horrocks, I. 2006. Position paper: a
comparison of two modelling paradigms in the semantic web. In
Proc. of WWW’06, 3–12. ACM.
Poole, D. 2003. First-order probabilistic inference. In Proc. IJ-
CAI’03, volume 3, 985–991.
Reiter, R. 1978. On closed world data bases. Logic and Data Bases
55–76.
Reiter, R. 1980. A logic for default reasoning. Artificial intelli-
gence 13(1):81–132.
Shin, J.; Wu, S.; Wang, F.; De Sa, C.; Zhang, C.; and Ré, C. 2015.
Incremental knowledge base construction using deepdive. Proc. of
VLDB 8(11):1310–1321.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013. Reasoning
with neural tensor networks for knowledge base completion. In
Proc. of NIPS’13, 926–934.
Suciu, D.; Olteanu, D.; Ré, C.; and Koch, C. 2011. Probabilistic
Databases.
Sutton, C., and McCallum, A. 2011. An introduction to conditional
random fields. Machine Learning 4(4):267–373.
Valiant, L. G. 1979. The complexity of computing the permanent.
Theor. Comput. Sci. 8:189–201.
Van den Broeck, G. 2013. Lifted Inference and Learning in Statis-
tical Relational Models. Ph.D. Dissertation, KU Leuven.
Wang, W. Y.; Mazaitis, K.; and Cohen, W. W. 2013. Program-
ming with personalized pagerank: a locally groundable first-order
probabilistic logic. In Proc. of CIKM, 2129–2138. ACM.
Wu, W.; Li, H.; Wang, H.; and Zhu, K. Q. 2012. Probase: A prob-
abilistic taxonomy for text understanding. In Proc. of SIGMOD,
481–492. ACM.


