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Abstract In contrast to qualitative linear temporal logics, which can be
used to state that some property will eventually be satisfied, metric tem-
poral logics allow to formulate constraints on how long it may take until
the property is satisfied. While most of the work on combining Descrip-
tion Logics (DLs) with temporal logics has concentrated on qualitative
temporal logics, there has recently been a growing interest in extending
this work to the quantitative case. In this paper, we complement existing
results on the combination of DLs with metric temporal logics over the
natural numbers by introducing interval-rigid names. This allows to state
that elements in the extension of certain names stay in this extension for
at least some specified amount of time.

1 Introduction

DL-based ontologies are employed in many application areas, but they are partic-
ularly successful in the medical domain (see, e.g., the medical ontologies Galen
and SNOMEDCT1). For example, the concept of a patient with a concussion
can be expressed as Patient u ∃finding.Concussion. This example, taken from [10],
can be used to illustrate a shortcoming of pure DLs. For a doctor, it is important
to know whether the concussed patient has lost consciousness, which is the
reason why SNOMEDCT contains a concept for “concussion with no loss of
consciousness” [19]. However, the temporal pattern inherent in this concept (after
the concussion, the patient remained conscious until the examination) cannot be
modeled in the DL used for SNOMEDCT.

To overcome this problem, a great variety of temporal extensions of DLs have
been investigated.2 In the present paper, we concentrate on ALC and combine it
with a metric variant of linear temporal logic (LTL), a point-based temporal logic
over a linear flow of time. But even if these two logics are fixed, there are several
other design decisions to be made. One can either apply temporal operators only
to axioms [10] (i.e., general concept inclusions (GCIs) and assertions) or also use
them within concepts [15, 20]. With the latter, one can formalize “concussion
? Supported by DFG in the CRC 912 (HAEC), the project BA 1122/19-1 (GoAsQ)
and the Cluster of Excellence “Center for Advancing Electronics Dresden” (cfaed).

1 see http://www.opengalen.org/ and http://www.snomed.org/
2 We refer the reader to [15,17] for an overview of the field of temporal DLs.
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with no loss of consciousness” by the (temporal) concept ∃finding.Concussion u
(Conscious U ∃procedure.Examination), where U is the until-operator of LTL. With
the logic of [10], one cannot formulate temporal concepts, but could express that
a particular patient, e.g., Bob, had a concussion and did not lose consciousness
until he was examined. Another decision to be made is whether to allow for rigid
concepts and roles, whose interpretation does not vary over time. For example,
concepts like Human and roles like hasFather are clearly rigid, whereas Conscious
and finding are flexible, i.e., not rigid. If temporal operators can be used within
concepts, rigid concepts can be expressed using GCIs, but rigid roles cannot. In
fact, they usually render the combined logic undecidable [15, Proposition 3.34]. In
contrast, in the setting considered in [10], rigid roles do not cause undecidability,
but adding rigidity leads to an increase in complexity.

In this paper, we address a shortcoming of the qualitative temporal description
logics mentioned until now. The until-operator in our example does not say any-
thing about how long after the concussion that examination happened. However,
the above definition of “concussion with no loss of consciousness” is only sensible
if the examination took place shortly after the concussion. Otherwise, a loss of
consciousness could also have been due to other causes. As another example, when
formulating eligibility criteria for clinical trials, one needs to express quantitative
temporal patterns [13] like ‘patients that had a treatment causing a reaction
between 45 and 180 days after the treatment, and had no additional treatment
before the reaction’: Treatment u#

(
(¬Treatment)U[45,180]Reaction

)
, where # is

the next-operator. Extensions of LTL by such intervals have been investigated in
detail [1,2,16]. Using the next-operator of LTL as well as disjunction, their effect
can actually be simulated within qualitative LTL, but if the interval boundaries
are encoded in binary, this leads to an exponential blowup. The complexity
results in [1] imply that this blowup can in general not be avoided, but in [16] it
is shown that using intervals of a restricted form (where the lower bound is 0)
does not increase the complexity compared to the qualitative case. In [14], the
combination of the DL ALC with a metric extension of LTL is investigated. The
paper considers both the case where temporal operators are applied only within
concepts and the case where they are applied both within concepts and outside
of GCIs. In Section 2, we basically recall some of the results obtained in [14], but
show that they also hold if additionally temporalized assertions are available.

In Section 3, we extend the logic LTLbin
ALC of Section 2 with interval-rigid

names, a means of expressiveness that has not been considered before. It allows
one to state that elements belonging to a concept belong to that concept for
at least k consecutive time points, and similarly for roles. For example, accord-
ing to the WHO, patients with paucibacillary leprosy should receive MDT as
treatment for 6 consecutive months,3 which can be expressed by making the
role getMDTagainstPB rigid for 6 time points (assuming that each time point
represents one month). In Section 4, we briefly discuss results for extensions of
the logic ALC-LTL of [10] with interval-rigid concepts and roles as well as metric
temporal operators, where temporal operators can only be applied to axioms.

3 see http://www.who.int/lep/mdt/duration/en/.

http://www.who.int/lep/mdt/duration/en/
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Figure 1. Language inclusions, with languages investigated in this paper highlighted.
Dashed arrows indicate same expressivity.

Interestingly, in the presence of rigid roles, interval-rigid concepts actually cause
undecidability. Without rigid roles, the addition of interval-rigid concepts and
roles leaves the logic decidable, but in some cases increases the complexity (see
Table 2). An overview of the logics considered and their relations is shown in
Figure 1. Detailed proofs of all results can be found in [7, 8].

Related Work. Apart from the above references, we want to point out work on
combining DLs with Halpern and Shoham’s interval logic [3, 4]. This setting uses
intervals (rather than time points) as the basic time units. In [6], the authors
combine ALC concepts with the (qualitative) operators ♦ (‘at some time point’)
and 2 (‘at all time points’) on roles, but do not consider quantitative variants.
Recently, a metric temporal extension of Datalog over the reals was proposed,
which however cannot express interval-rigid names nor existential restrictions [12].

2 The Temporal Description Logic LTLbin
ALC

We first introduce the description logic ALC and its metric temporal extension
LTLbin

ALC [14], which augmentsALC by allowing metric temporal logic operators [1]
both within ALC axioms and to combine these axioms. We actually consider a
slight extension of LTLbin

ALC by assertional axioms.

Syntax. Let NC, NR and NI be countably infinite sets of concept names, role
names, and individual names, respectively. An ALC concept is an expression
given by C,D ::= A | > | ¬C | C uD | ∃r.C, where A ∈ NC and r ∈ NR. LTLbin

ALC
concepts extend ALC concepts with the constructors #C and C UID, where I is
an interval of the form [c1, c2] or [c1,∞) with c1, c2 ∈ N, c1 ≤ c2, given in binary.
We may use [c1, c2) to abbreviate [c1, c2 − 1], and similarly for the left endpoint.
For example, AU[2,5)B u ∃r.#A is an LTLbin

ALC concept.
An LTLbin

ALC axiom is either a general concept inclusion (GCI) of the form
C v D, or an assertion of the form C(a) or r(a, b), where C,D are LTLbin

ALC
concepts, r ∈ NR, and a, b ∈ NI. LTLbin

ALC formulae are expressions of the form
φ, ψ ::= α | > | ¬φ | φ ∧ ψ | #φ | φUIψ, where α is an LTLbin

ALC axiom.

Semantics. A DL interpretation I = (∆I , ·I) over a non-empty set ∆I , called
the domain, defines an interpretation function ·I that maps each concept name
A ∈ NC to a subset AI of ∆I , each role name r ∈ NR to a binary relation rI
on ∆I and each individual name a ∈ NI to an element aI of ∆I , such that
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aIi 6= bIi whenever a 6= b, a, b ∈ NI (unique name assumption). As usual, we
extend the mapping ·I from concept names to ALC concepts as follows:

>Ii := ∆I, (¬C)Ii := ∆I \ CIi , (C uD)Ii := CIi ∩DIi ,

(∃r.C)Ii := {d ∈ ∆I | ∃e ∈ CIi : (d, e) ∈ rIi}.

A (temporal DL) interpretation is a structure I = (∆I, (Ii)i∈N), where each
Ii = (∆I, ·Ii), i ∈ N, is a DL interpretation over ∆I (constant domain assump-
tion) and aIi = aIj for all a ∈ NI and i, j ∈ N, i.e., the interpretation of individual
names is fixed. The mappings ·Ii are extended to LTLbin

ALC concepts as follows:

(#C)Ii := {d ∈ ∆I | d ∈ CIi+1},
(C UID)Ii := {d ∈ ∆I | ∃k : k − i ∈ I, d ∈ DIk , and ∀j ∈ [i, k) : d ∈ CIj}.

The concept C UID requires D to be satisfied at some point in the interval I,
and C to hold at all time points before that.

The validity of an LTLbin
ALC formula φ in I at time point i ∈ N (written

I, i |= φ) is inductively defined as follows:

I, i |= C v D iff CIi ⊆ DIi I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= C(a) iff aIi ∈ CIi I, i |= #φ iff I, i+ 1 |= φ
I, i |= r(a, b) iff (aIi , bIi) ∈ rIi I, i |= φUIψ iff ∃k : k − i ∈ I, I, k |= ψ,
I, i |= ¬φ iff not I, i |= φ and ∀j ∈ [i, k) : I, j |= φ.

As usual, we define ⊥ := ¬>, C t D := ¬(¬C u ¬D), ∀r.C := ¬(∃r.¬C),
φ ∨ ψ := ¬(¬φ ∧ ¬ψ), αUβ := αU[0,∞)β, ♦Iα := >UIα, 2Iα := ¬♦I¬α,
♦α := >Uα, and 2α := ¬♦¬α, where α, β are either concepts or formulae [9,15].
Note that, given the semantics of LTLbin

ALC , #α is equivalent to ♦[1,1]α.

Relation to LTLALC. The superscript ·bin denotes that the endpoints of the
intervals are given in binary. This does not increase the expressivity compared
to LTLALC [17], which allows only the qualitative U . In fact, one can expand a
formula φU[c1,c2]ψ to

∨
c1≤i≤c2

(#iψ∧
∧

0≤j<i #jφ), where #i denotes i nested #
operators. Likewise, φU[c1,∞)ψ is equivalent to

(∧
0≤i<c1

#iφ
)
∧#c1φUψ. If this

transformation is recursively applied to subformulae, then the size of the result is
exponential: ignoring the nested # operators, its syntax tree has polynomial depth
and an exponential branching factor; the #i formulae have exponential depth,
but introduce no branching. This blowup cannot be avoided in general [1, 14].

Reasoning. We are interested in the complexity of the satisfiability problem in
LTLbin

ALC , i.e., deciding whether there exists an interpretation I such that I, 0 |= φ
holds for a given LTLbin

ALC formula φ. We also consider a syntactic restriction
from [10]: we say that φ is an LTLbin

ALC formula with global GCIs if it is of the
form 2T ∧ ϕ, where T is a conjunction of GCIs and ϕ is an LTLbin

ALC formula
that does not contain GCIs. By satisfiability w.r.t. global GCIs we refer to the
satisfiability problem restricted to such formulae.
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First results. The papers [14, 17] consider the reasoning problems of concept
satisfiability in LTLbin

ALC w.r.t. TBoxes (corresponding to formulae with global
GCIs and without assertions) and satisfiability of LTLbin

ALC temporal TBoxes
(formulae without assertions). However, these results from [14,17] can be extended
to our setting by incorporating named types into their quasimodel construction
to deal with assertions (see also [20], our Section 3, and [15, Theorem 2.27]).

Theorem 1. Satisfiability in LTLbin
ALC is 2-ExpSpace-complete, and ExpSpace-

complete w.r.t. global GCIs. In LTLALC, this problem is ExpSpace-complete,
and ExpTime-complete w.r.t. global GCIs.

Note that ExpSpace-completeness for LTLALC with assertions has already
been shown in [20]; we only state it here for completeness. In [14], also the
intermediate logic LTL0,∞

ALC was investigated, where only intervals of the form
[0, c] and [c,∞) are allowed. However, in [16], it was shown for a branching
temporal logic that U[0,c] can be simulated by the classical U operator, while
only increasing the size of the formula by a polynomial factor. We extend this
result to intervals of the form [c,∞), and apply it to LTL0,∞

ALC .

Theorem 2. Any LTL0,∞
ALC formula can be translated in polynomial time into an

equisatisfiable LTLALC formula.

This reduction is quite modular; for example, if the formula has only global
GCIs, then this is still the case after the reduction. In fact, the reduction applies
to all sublogics of LTLbin

ALC that we consider in this paper. Hence, in the following
we do not explicitly consider logics with the superscript ·0,∞, knowing that they
have the same complexity as the corresponding temporal DLs using only U .

3 LTLbin
ALC with Interval-Rigid Names

In many temporal DLs, rigid names are considered, whose interpretation does not
change over time. Formally, we fix a finite set NRig ⊆ NC∪NR of rigid concept and
role names, and require interpretations I = (∆I, (Ii)i∈N) to respect these names,
in the sense that XIi = XIj holds for all X ∈ NRig and i, j ∈ N. It turns out that
LTLbin

ALC can already express rigid concepts via the (global) GCIs C v #C and
¬C v #¬C. The same does not hold for rigid roles, which lead to undecidability
even in LTLALC [15, Theorem 11.1]. Hence, it is not fruitful to consider rigid
names in LTLbin

ALC (but they are meaningful for the logics of Section 4).
To augment the expressivity of temporal DLs while avoiding undecidability,

we propose interval-rigid names. In contrast to rigid names, interval-rigid names
only need to remain rigid for a limited period of time. Formally, we take a finite set
NIRig ⊆ (NC∪NR)\NRig of interval-rigid names, and a function iRig : NIRig → N≥2.
An interpretation I = (∆I, (Ii)i∈N) respects the interval-rigid names if the
following holds for all X ∈ NIRig with iRig(X) = k, and i ∈ N:

For each d ∈ XIi , there is a time point j ∈ N such that i ∈ [j, j + k) and
d ∈ XI` for all ` ∈ [j, j + k).
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Table 1. Complexity of satisfiability in LTLbin
ALC w.r.t. interval-rigid names. For (*),

we have 2-ExpTime-completeness for the temporal semantics based on Z (Th. 5).

NIRig ⊆ NC ∪ NR NIRig ⊆ NC

LTLbin
ALC 2-ExpSpace ≤ [Th. 4] 2-ExpSpace ≥ [14]

LTLbin
ALC , global GCIs 2-ExpTime-hard (*) ExpSpace ≥ [2], ≤ [Th. 1]

LTLALC 2-ExpTime-hard ExpSpace ≥ [15], ≤ [20]
LTLALC , global GCIs 2-ExpTime-hard [8] ExpTime ≥ [18], ≤ [Th. 1]

Intuitively, any element (or pair of elements) in the interpretation of an interval-
rigid name must be in that interpretation for at least k consecutive time points.
We call such a name k-rigid. The names in (NC ∪ NR) \ (NRig ∪ NIRig) are called
flexible. For simplicity, we assume that iRig assigns 1 to all flexible names.

We investigate the complexity of satisfiability w.r.t. (interval-)rigid names
(or (interval-)rigid concepts if NIRig ⊆ NC / NRig ⊆ NC), which is defined as
before, but considers only interpretations that respect (interval-)rigid names.
Note that (interval-)rigid roles can be used to simulate (interval-)rigid concepts
via existential restrictions ∃r.> (e.g., see [10]). Hence, it is not necessary to
consider the case where only role names can be (interval-)rigid. The fact that NRig
and NIRig are finite is not a restriction, as formulae can only use finitely many
names. We assume that the values of iRig are given in binary. Table 1 summarizes
our results for LTLbin

ALC. Since interval-rigid concepts A can be simulated by
formulae

(
A v 2[0,k)A

)
∧ 2

(
¬A v #(¬A t 2[0,k)A)

)
, Theorem 1 yields the

complexity results in the right column (for sublogics of LTLbin
ALC this is not always

so easy). The GCI A v 2[0,k)A that applies only to the first time point does not
affect the complexity results, even if we restrict all other GCIs to be global.

The complexity of LTLbin
ALC with interval-rigid roles is harder to establish.

We first show in Section 3.1 that the general upper bound of 2-ExpSpace
still holds, by a novel quasimodel construction. For global GCIs, we show 2-
ExpTime-hardness in [8], by an easy adaption of a reduction from [10]. We show
2-ExpTime-completeness if we modify the temporal semantics to be infinite
in both directions, i.e., replace N by Z in the definition of interpretations (see
Section 3.2). We leave the case for the semantics based on N as future work. To
simplify the proofs of the upper bounds, we usually assume that NIRig ⊆ NR since
interval-rigid concepts can be simulated. Moreover, for this section we assume
that NRig is empty, as rigid concepts do not affect the complexity of LTLbin

ALC,
and rigid roles make satisfiability undecidable.

3.1 Satisfiability is in 2-ExpSpace

For the 2-ExpSpace upper bound, we extend the notion of quasimodels from [14].
In [14], quasimodels are abstractions of interpretations in which each time point
is represented by a quasistate, which contains types. Each type describes the inter-
pretation for a single domain element, while a quasistate collects the information



7

about all domain elements at a single time point. Central for the complexity res-
ults in [14] is that every satisfiable formula has a quasimodel of a certain regular
form, which can be guessed and checked in double exponential space. To handle
interval-rigid roles, we extend this approach so that each quasistate additionally
provides information about the temporal evolution of domain elements over a
window of fixed width, and show that under this extended notion, satisfiability
is still captured by the existence of regular quasimodels.

We now formalize this intuition. Let ϕ be an LTLbin
ALC formula. Denote by

csub(ϕ)/fsub(ϕ)/ind(ϕ)/rol(ϕ) the set of all concepts/formulae/individuals/roles
occurring in ϕ, by clc(ϕ) the closure of csub(ϕ) ∪ {C UD | C U[c,∞)D ∈ csub(ϕ)}
under single negations, and likewise for clf(ϕ) and fsub(φ). A concept type for ϕ
is any subset t of clc(ϕ) ∪ ind(ϕ) such that

T1 ¬C ∈ t iff C 6∈ t, for all ¬C ∈ clc(ϕ);
T2 C uD ∈ t iff C,D ∈ t, for all C uD ∈ clc(ϕ); and
T3 t contains at most one individual name.

Similarly, we define formula types t ⊆ clf(ϕ) by the following conditions:

T1’ ¬α ∈ t iff α 6∈ t, for all ¬α ∈ clf(ϕ); and
T2’ α ∧ β ∈ t iff α, β ∈ t, for all α ∧ β ∈ clf(ϕ).

Intuitively, a concept type describes one domain element at a single time
point, while a formula type expresses constraints on all domain elements. If
a ∈ t ∩ ind(ϕ), then t describes an named element, and we call it a named type.

To put an upper bound on the time window we have to consider, we consider
the largest number occurring in ϕ and iRig, and denote it by `ϕ. Then, a
(concept/formula) run segment for ϕ is a sequence σ = σ(0) . . . σ(`ϕ) composed
exclusively of concept or formula types, respectively, such that

R1 #α ∈ σ(0) iff α ∈ σ(1), for all #α ∈ cl∗(ϕ);
R2 for all a ∈ ind(ϕ) an n ∈ (0, `ϕ], we have a ∈ σ(0) iff a ∈ σ(n);
R3 for all αUIβ ∈ cl∗(ϕ), we have αUIβ ∈ σ(0) iff (a) there is j ∈ I ∩ [0, `ϕ]

such that β ∈ σ(j) and α ∈ σ(i) for all i ∈ [0, j), or (b) I is of the form
[c,∞) and α, αUβ ∈ σ(i) for all i ∈ [0, `ϕ],

where cl∗ is either clc or clf (as appropriate), and R2 does not apply to formula
run segments. A concept run segment captures the evolution of a domain element
over a sequence of `ϕ + 1 time points, and a formula run segment describes
general constraints on the interpretation over a sequence of `ϕ + 1 time points.

The evolution over the complete time line is captured by (concept/formula)
runs for ϕ, which are infinite sequences r = r(0)r(1) . . . such that each sub-
sequence of length `ϕ + 1 is a (concept/formula) run segment, and additionally

R4 αU[c,∞)β ∈ r(n) implies that there is j ≥ n + c such that β ∈ r(j) and
α ∈ r(i) for all i ∈ [n, j).
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A concept run (segment) is named if it contains only (equivalently, any) named
types. We may write ra (σa) to denote a run (segment) that contains an individual
name a. For a run (segment) σ, we write σ>i for the subsequence of σ starting
at i+ 1, σ<i for the one stopping at i− 1, and σ[i,j] for σ(i) . . . σ(j).

As we cannot explicitly represent infinite runs, we use run segments to
construct them step-by-step. For this, it is important that a set of concept runs
(segments) can be composed into a coherent model. In particular, we have to
take care of (interval-rigid) role connections. A role constraint for ϕ is a tuple
(σ, σ′, s, k), with concept run segments σ, σ′, s ∈ rol(ϕ), k ∈ [1, iRig(s)], such that

C1 {¬C | ¬∃s.C ∈ σ(0)} ⊆ σ′(0); and
C2 if σ′ is named, then σ is also named.

We write σ s
k σ
′ as a shorthand for the role constraint (σ, σ′, s, k). Intuitively,

σ s
k σ
′ means that the domain elements described by σ(0), σ′(0) are connected by

the role s at the current time point, and also at the k − 1 previous time points.
In this case, we need to ensure that these elements stay connected for at least
the following iRig(s)− k time points. Condition C1 ensures that, if σ(0) cannot
have any s-successors that satisfy C, then σ′(0) does not satisfy C.

We can now describe the behaviour of a whole interpretation and its elements
at a single time point, together with some bounded information about the future
(up to `ϕ time points). A quasistate for ϕ is a pair Q = (RQ, CQ), where RQ is a
set of run segments and CQ a set of role constraints over RQ such that

Q1 RQ contains exactly one formula run segment σQ;
Q2 RQ contains exactly one named run segment σa for each a ∈ ind(ϕ);
Q3 for all C v D ∈ clf(ϕ), we have C v D ∈ σQ(0) iff C ∈ σ(0) implies D ∈ σ(0)

for all concept run segments σ ∈ RQ;
Q4 for all C(a) ∈ clf(ϕ), we have C(a) ∈ σQ(0) iff C ∈ σa(0);
Q5 for all s(a, b) ∈ clf(ϕ), we have s(a, b) ∈ σQ(0) iff σa

s
k σb ∈ CQ for some

k ∈ [1, iRig(s)]; and
Q6 for all σ ∈ RQ and ∃s.D ∈ σ(0), there is σ s

k σ
′ ∈ CQ with D ∈ σ′(0) and

k ∈ [1, iRig(s)].

We next capture when quasistates can be connected coherently to an infinite
sequence. A pair (Q,Q′) of quasistates is compatible if there is a compatibility
relation π ⊆ RQ ×RQ′ such that

C3 every run segment in RQ and RQ′ occurs at least once in the domain and
range of π, respectively;

C4 each pair (σ, σ′) ∈ π satisfies σ>0 = σ′<`ϕ ;
C5 for all (σ1, σ

′
1) ∈ π and σ1

s
k σ2 ∈ Q with k < iRig(s), there is σ′1

s
k+1 σ

′
2 ∈ Q′

with (σ2, σ
′
2) ∈ π; and

C6 for all (σ1, σ
′
1) ∈ π and σ′1

s
k+1 σ

′
2 ∈ Q′ with k > 1, there is σ1

s
k σ2 ∈ Q with

(σ2, σ
′
2) ∈ π.

Such a relation makes sure that we can combine run segments of consecutive
quasistates such that the interval-rigid roles are respected. Note that the unique
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Q0 Q1 Q2 Q3

(t1 t2 t3 t4)

(t′1 t′2 t′3 t′4)

s
1

(t2 t3 t4 t5)

(t′2 t′3 t′4 t′5)

s
2

π0

π0

(t3 t4 t5 t6)

(t′3 t′4 t′5 t′6)

s
3

π1

π1

(t4 t5 t6 t7)

(t′4 t′5 t′6 t′7)

π2

π2

Figure 2. Illustration of role constraints and compatibility relations.

formula run segments must be matched to each other, and likewise for the
named run segments. Moreover, the set of all compatibility relations for a pair of
quasistates (Q,Q′) is closed under union, which means that compatible quasistates
always have a unique maximal compatibility relation (w.r.t. set inclusion).

To illustrate this, consider Figure 2, showing a sequence of pairwise compatible
quasistates, each containing two run segments. Here, `ϕ = iRig(s) = 3. The
relations π0, π1, and π2 satisfy Conditions C3–C6, which, together with C1
and C2, ensure that a run going through the types t1, t2, t3, and t4 can be
connected to another run via the role s for at least 3 consecutive time points.

Finally, a quasimodel for ϕ is a pair (S,R), where S is an infinite sequence of
compatible quasistates S(0)S(1) . . . and R is a non-empty set of runs, such that

M1 the runs in R are of the form σ0(0)σ1(0)σ2(0) . . . such that, for every i ∈ N,
we have (σi, σi+1) ∈ πi, where πi is the maximal compatibility relation for
the pair (S(i), S(i+ 1));

M2 for every σ ∈ RS(i), there exists a run r ∈ R with r[i,i+`ϕ] = σ;
M3 every role constraint in S(0) is of the form σ1

s
1 σ2; and

M4 ϕ ∈ σS(0)(0).

By M1, the runs σ0(0)σ1(0)σ2(0) . . . always contain the whole run segments
σ0, σ1, σ2, . . . , since we have σ1(0) = σ0(1), σ2(0) = σ0(2), and so on. Moreover, R
always contains exactly one formula run and one named run for each a ∈ ind(ϕ).

We can show that every quasimodel describes a satisfying interpretation for ϕ
and, conversely, that every such interpretation can be abstracted to a quasimodel.
Moreover, one can always find a quasimodel of a regular shape.

Lemma 3. An LTLbin
ALC formula ϕ is satisfiable w.r.t. interval-rigid names iff ϕ

has a quasimodel (S,R) in which S is of the form

S(0) . . . S(n)(S(n+ 1) . . . S(n+m))ω,

where n and m are bounded triple exponentially in the size of ϕ and iRig.

This allows us to devise a non-deterministic 2-ExpSpace algorithm that
decides satisfiability of a given LTLbin

ALC formula. Namely, we first guess n and m,
and then the quasistates S(0), . . . , S(n+m) one after the other. To show that
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this sequence corresponds to a quasimodel as in Lemma 3, note that only three
quasistates have to be kept in memory at any time, the sizes of which are double
exponentially bounded in the size of the input: the current quasistate, the next
quasistate, and the first repeating quasistate S(n+ 1). 2-ExpSpace-hardness
holds already for the case without interval-rigid names or assertions [14].

Theorem 4. Satisfiability in LTLbin
ALC with respect to interval-rigid names is

2-ExpSpace-complete.

3.2 Global GCIs

For LTLbin
ALC formulae with global GCIs, we show a tight (2-ExpTime) complexity

bound only if we consider a modified temporal semantics that uses Z instead
of N. Over Z, every satisfiable formula has a quasimodel in which the unnamed
run segments and role constraints are the same for all quasisates. This is not
the case for N, since then a quasistate at time point 1 can have role constraints
σ s

k σ
′ with k > 1, whereas one at time point 0 cannot (see M3).

Hence, interpretations are now of the form I = (∆I, (Ii)i∈Z), where ∆I is a
constant domain and Ii are classical DL interpretations, as before. Recall that an
LTLbin

ALC formula with global GCIs is of the form 2T ∧φ, where T is a conjunction
of GCIs and φ is an LTLbin

ALC formula that does not contain GCIs. In order to
enforce our GCIs on the whole time line (including the time points before 0), we
replace 2T with 2−+ in that definition, where 2−+T expresses that in all models
I, I, i |= T for all i ∈ Z. We furthermore slightly adapt some of the notions
introduced in Section 3.1. First, to ensure that GCIs hold on the whole time
line, we require (in addition to T1’ and T2’) that all formula types contain all
GCIs from T . Additionally, we adapt the notions of runs . . . r(−1)r(0)r(1) . . . and
sequences . . . S(−1)S(0)S(1) . . . of quasistates to be infinite in both directions.
Hence, we can now drop Condition M3, reflecting the fact that, over Z, role
connections can exist before time point 0. All other definitions remain unchanged.

The proof follows a similar idea as in the last section. We first show that
every formula is satisfiable iff it has a quasimodel of a regular shape, which now
is also constant in its unnamed part, in the sense that, if unnamed run segments
and role constraints occur in S(i), then they also occur in S(j), for all i, j ∈ Z.
This allows us to devise an elimination procedure (in the spirit of [17, Theorem 3]
and [14, Theorem 2]), with the difference that we eliminate run segments and
role constraints instead of types, which gives us a 2-ExpTime upper bound.

Theorem 5. Satisfiability in LTLbin
ALC w.r.t. interval-rigid names and global

GCIs over Z is 2-ExpTime-complete.

4 Metric Extensions of ALC-LTL

We briefly summarize results that we have obtained for the sublogic ALC-LTLbin

of LTLbin
ALC , which does not allow temporal operators within concepts (cf. [10]).

Due to lack of space, we refer the reader to [8] for all details. An ALC-LTLbin
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Table 2. Complexity of satisfiability in ALC-LTLbin w.r.t. (interval-)rigid names.

NIRig ⊆ NC, NIRig ⊆ NC ∪ NR, NIRig ⊆ NC,
NRig ⊆ NC ∪ NR NRig ⊆ NC or NRig = ∅ NRig ⊆ NC or NRig = ∅

ALC-LTLbin undec. 2-ExpTime-hard ExpSpace ≤ [Th. 1]
ALC-LTLbin

|gGCI undec. 2-ExpTime-hard ExpTime-hard
ALC-LTL undec. 2-ExpTime-hard ExpSpace ≥ [8]
ALC-LTL|gGCI undec. [8] 2-ExpTime-hard [8] ExpTime ≥ [18], ≤ [Th. 1]

Table 3. Complexity of satisfiability in ALC-LTLbin without interval-rigid names.

NRig ⊆ NC ∪ NR NRig ⊆ NC NRig = ∅

ALC-LTLbin 2-ExpTime ≤ [8] ExpSpace ≤ [8] ExpSpace
ALC-LTLbin

|gGCI 2-ExpTime ExpSpace ExpSpace ≥ [1]
ALC-LTL 2-ExpTime NExpTime [10] ExpTime ≤ [10]
ALC-LTL|gGCI 2-ExpTime ≥ [10] ExpTime ≤ [10] ExpTime ≥ [18]

formula is an LTLbin
ALC formula in which all concepts are ALC concepts. Recall

that ALC-LTL, which has been investigated in [10] (though not with interval-rigid
names), restricts ALC-LTLbin to intervals of the form [0,∞). As done in [10], for
brevity, we distinguish here the variants with global GCIs by the subscript ·|gGCI .
In contrast to LTLbin

ALC , in ALC-LTL rigid concepts cannot be simulated by GCIs
and rigid roles do not lead to undecidability [10]. Hence, we investigate here also
the settings with rigid concepts and/or roles.

Known and new complexity results are compared in Tables 2 and 3 for ALC-
LTLbin with and without interval-rigid names, respectively. In the presence of
interval-rigid names, we obtain several hardness results already for ALC-LTL,
based on the insight that interval-rigid concepts can express the operator # on
the concept level. In particular, the combination of rigid roles with interval-rigid
concepts already leads to undecidability. If interval-rigid names are disallowed,
the complexity of satisfiability in ALC-LTLbin corresponds to the maximum of
the complexities of satisfiability in ALC-LTL and LTLbin.

5 Conclusions

We investigated a series of extensions of LTLALC and ALC-LTL with interval-
rigid names and metric temporal operators, with complexity results ranging
from ExpTime to 2-ExpSpace. Some cases were left open, such as the precise
complexity of LTLbin

ALC with global GCIs, for which we have a partial result
for the temporal semantics based on Z. Nevertheless, this paper provides a
comprehensive guide to the complexities faced by applications that want to
combine ontological reasoning with quantitative temporal logics. For future work,
it would be interesting to extend temporal DLs based on light-weight logics such
as DL-Lite and EL [5, 11] with interval-rigid roles and metric operators.
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