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Abstract

Fuzzy Description Logics (DLs) are are a family of knowledge representation formalisms designed to represent
and reason about vague and imprecise knowledge that is inherent to many application domains. Previous
work has shown that the complexity of reasoning in a fuzzy DL using finitely many truth degrees is usually
not higher than that of the underlying classical DL. We show that this does not hold for fuzzy extensions of
the light-weight DL EL, which is used in many biomedical ontologies, under the finitely valued Łukasiewicz
semantics. More precisely, the complexity of reasoning increases from P to ExpTime, even if only one
additional truth value is introduced. When adding complex role inclusions and inverse roles, the logic even
becomes undecidable. Even more surprisingly, when considering the infinitely valued Łukasiewicz semantics,
reasoning in fuzzy EL is undecidable.
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1. Introduction

Description Logics (DLs) are a family of knowledge representation formalisms that have been successfully
applied in many application domains [1]. In particular, these formalisms provide the logical foundation for
the Direct Semantics of the standard web ontology language OWL2 and its profiles.1 The light-weight DL
EL, underlying the OWL2EL profile, is of particular interest. The expressive power of this DL suffices
for representing many prominent biomedical ontologies like SNOMEDCT2 and the Gene Ontology,3 while
allowing tractable reasoning problems. Knowledge is represented in these logics through a set of general
concept inclusions (GCIs) like

∃hasDisease.Flu v ∃hasSymptom.Headache u ∃hasSymptom.Fever (1)

which formally states that every patient with a flu must also show headache and fever as symptoms. Reason-
ing corresponds to the process of inferring knowledge that is implicitly encoded in the GCIs. It is well-known
that this task is polynomial in EL [2].

An important problem for practical AI applications is to represent and reason with vague or imprecise
knowledge in a formal way. Fuzzy Description Logics (FDLs) [3–5] extend classical DLs with the ideas of
fuzzy logic to try to achieve this goal. The main premise of fuzzy logics is the use of more than two truth
degrees to allow a more fine-grained analysis of dependencies between concepts. Usually, these degrees are
arranged in a total order, or chain, in the interval [0, 1]. For instance, a patient having a body temperature of
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37.5 ◦C can have a degree of fever of 0.5, whereas a temperature of 39.2 ◦C may be interpreted as a fever with
degree of 0.9. Considering the GCI (1), the severity of the symptoms certainly influences the severity of the
disease, and thus truth degrees can be transferred between concepts. Depending on the desired granularity,
one can choose to allow a finite number of truth degrees—e.g. 10 or 100—or even admit the whole (infinite)
interval [0, 1]. Another degree of freedom in FDLs comes from the choice of possible semantics for the logical
constructors. The most general semantics are based on triangular norms (t-norms) that are used to interpret
conjunctions. Among these, the most prominent ones are the Gödel, Łukasiewicz, and product t-norms. All
(continuous) t-norms over chains can be expressed as combinations of these three basic ones. Unfortunately,
reasoning in many infinitely valued FDLs becomes undecidable [6, 7]; for a systematic study on this topic,
see [8]. On the other hand, most of the finitely valued FDLs that have been studied recently have not only
been proved to be decidable, but even to belong to the same complexity class as the corresponding classical
DLs [9–13]. Although FDLs are not a new topic, and several monographies have been devoted to them [5, 14–
16], there are still several open questions that may lead to surprising results, whose significance goes beyond
the immediate application scope and sheds light on the computational behavior of the underlying logical
formalisms and semantics.

A question that naturally arose is whether the finitely valued fuzzy framework always yields the same
computational complexity as the corresponding classical formalisms. A common opinion was that everything
that can be expressed in finitely valued FDLs can be reduced to the corresponding classical DLs without
any serious loss of efficiency. Indeed, although some known translations of finitely valued FDLs into classical
DLs are exponential [17], more efficient reasoning can be achieved through direct algorithms [10], yielding
the same complexity as that of the underlying classical DLs. More recent work has focused on providing
practical optimizations for reasoning [18]. However, these results refer to languages that are quite expressive
already in their classical versions, and hence it is possible that the added complexity of finitely valued fuzzy
semantics is masked by the high complexity of the classical DL reasoning. Hence, it is more fruitful to
look for a complexity gap between classical and finitely valued semantics in less expressive DLs like EL.
This approach has been first pursued in [19], where different constructors that could cause an increase in the
complexity are analyzed, but no specific answer is found. In [20], we have shown that the Łukasiewicz t-norm
is a source of nondeterminism able to cause a significant increase in expressivity in very simple propositional
languages. The work in [21] built on the methods devised in [20] to show even more dramatic increases in
complexity for finitely valued extensions of EL. Hence, the question whether reasoning in finitely valued
FDLs has always the same complexity as in the corresponding classical DLs was finally answered. This
answer was negative.

The question about the computational complexity of EL under infinitely valued semantics has also been
considered previously. In [22], reasoning in EL under semantics including the Łukasiewicz t-norm was proven
to be coNP-hard, but the proof did not apply to the finitely valued case. In contrast, infinitely valued Gödel
semantics do not increase the complexity of reasoning [23]. It is important to notice that more expressive
FDLs under infinitely valued Łukasiewicz semantics have been shown to be undecidable. The results in [8]
suggest the presence of a negation operator as a likely culprit for undecidability. However, the minimum
expressivity necessary to trigger undecidability was still unknown.

In this paper, we extend the preliminary work from [21] and present new results that shed light on the
complexity of finitely and infinitely valued fuzzy extensions of EL. In particular, we add two new undecid-
ability proofs for infinitely valued FDLs, and provide further lower bounds for finitely valued extension of
EL. Our results can be summarized as follows:

• We prove that EL under finitely valued semantics is ExpTime-complete whenever the Łukasiewicz
t-norm is included in the semantics. This proves a dichotomy similar to one that exists for infinitely
valued FDLs [8] since, for all other finitely valued chains of truth values, reasoning in fuzzy EL can be
shown to be in P using the methods from [23].

• We analyze the complexity of adding various means of expressivity that have been considered for
classical EL. We show that complex role inclusions, which yield the extension EL+ of EL, add another
exponential blowup, bringing the complexity of reasoning up to 2-ExpTime (as opposed to P in the
classical case). We also show that most other extensions of EL that increase the complexity under the
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classical semantics have no effect on the baseline complexity of ExpTime for finitely valued fuzzy EL
with the Łukasiewicz t-norm.

• Regarding infinitely valued fuzzy EL, we strengthen previous lower bounds [22] by showing that rea-
soning under the Łukasiewicz t-norm actually becomes undecidable. This is surprising since previous
undecidability results for FDLs [6–8] have relied on some kind of negation present in the logical syntax,
which is not the case in EL. We also show a partial undecidability result regarding the product t-norm,
which extends results from [8]. However, a more complete picture of the complexity of fuzzy EL under
the product t-norm remains open.

2. The Fuzzy EL Family

Fuzzy Description Logics extend classical DLs by allowing more than two truth degrees in the semantics
of concepts and axioms. In this section, we introduce the classes of truth degrees relevant for this paper,
recall the description logic EL and its various extensions, and consider their fuzzy variants.

2.1. Chains of Truth Values
The structures of truth degrees that we consider are called chains. Formally, these are algebras of the

form (L, ∗L,⇒L), where

• L is a subset of the interval [0, 1] of rational numbers, such that L contains the extreme elements 0
and 1. The elements of L are called truth degrees.

• The t-norm ∗L is a binary operator on L that is associative, commutative, monotone in both compo-
nents, and has 1 as unit element [24]. This operator is used as the semantics of logical conjunction.

• The residuum ⇒L of ∗L is a binary operator on L that satisfies the following condition for all x, y, z ∈ L:
(x ∗L y) 6 z iff y 6 (x ⇒L z). This operator expresses logical implication between truth degrees in
the chain.

For ease of presentation, we will often use L to denote the whole structure (L, ∗L,⇒L), and omit the sub-
script L from the operators if the chain we use is clear from the context. An interval in L is a subset of
the form [a, b] := {x ∈ L | a 6 x 6 b} with a, b ∈ L. An idempotent element in L is an element x such that
x ∗L x = x.

We consider in particular the two cases where

(i) L consists of the whole (infinite) interval [0, 1], or

(ii) L is a finite chain.

In the former case, we always assume that the operator ∗L is continuous as a function from [0, 1]× [0, 1] to
[0, 1]. One reason for this assumption is that it guarantees that the residuum is uniquely determined by the
t-norm [24]. In case (ii), we similarly assume that ∗L is smooth, i.e. for every x, y, z ∈ L, whenever x and y
are direct neighbors in L with x < y, then there is no w ∈ L such that x ∗L z < w < y ∗L z [25]. If ∗L is
continuous (smooth), then we call L continuous (smooth).

We emphasize that the restriction of truth values to the interval [0, 1] is not essential, as any finite total
order is order isomorphic to a finite subset of [0, 1] containing 0 and 1, and similarly any dense, countable,
total order with two extrema is order isomorphic to [0, 1] (see [24] for details). The smooth and continuous
chains we use form the basis of the so-called standard semantics of Mathematical Fuzzy Logic [26].

Example 2.1. By restricting the algebra of truth values to two elements, the classical Boolean algebra of
truth and falsity is obtained: B = ({0, 1}, ∗B,⇒B). In this case, ∗B and ⇒B are the classical conjunction
and the material implication, respectively. It is easy to see that material implication is indeed the residuum
of the classical conjunction.
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The most studied chains with continuous or smooth t-norms are the ones defined by the Gödel (G),
Łukasiewicz (Ł), and product (Π) t-norms. The finitely valued versions of the former two, denoted by Łn
and Gn for n > 2, are defined over the standard set of n truth values, {0, 1

n−1 , . . . ,
n−2
n−1 , 1}. These are

formally defined as follows:

• The (finite) Gödel t-norm (or minimum t-norm) x ∗Gn
y := x ∗G y := min{x, y} and its residuum

x⇒Gn y := x⇒G y :=

{
1 if x 6 y,
y otherwise.

• The (finite) Łukasiewicz t-norm x ∗Łn
y := x ∗Ł y := max{0, x+ y − 1} and its residuum

x⇒Łn
y := x⇒Ł y := min{1, 1− x+ y}.

• The product t-norm x ∗Π y := x · y and its residuum

x⇒Π y :=

{
1 if x 6 y,
y
x otherwise.

A finitely valued version of the product t-norm does not exist (except for the trivial case that n = 2) since
the chain L needs to be closed under the t-norm, but for any x ∈ (0, 1), the set {xm | m > 0} is infinite.

The following easy observations about the introduced operators will be useful in the proofs throughout
this paper. For details, we refer the interested reader to [24].

Proposition 2.2. For all x, y ∈ L, it holds that

(a) x ∗L y = 1 iff both x = 1 and y = 1;

(b) if x 6 x′ and y 6 y′, then x ∗ y 6 x′ ∗ y′;

(c) x⇒L y = 1 iff x 6 y;

(d) x⇒L y > y;

(e) 1⇒L y = y;

(f) if L = Ł, then x⇒Ł 0 = 1− x;

(g) if L = Ł and x ∗Ł x 6 x ∗Ł x ∗Ł x, then either x 6 1
2 or x = 1;

(h) if L = Łn and x ∗Łn
y > n−2

n−1 , then x = 1 or y = 1;

(i) if L = Łn and x < 1, then x ∗Łn
m. . . ∗Łn x = 0 for all m > n− 1;

(j) if L = Gn, then x ∗Gn
m. . . ∗Gn

x = x for all m > 1.

The t-norms defined above can be used to build all other continuous or smooth chains via the following
construction.

Definition 2.3. Let L be a chain, (Li)i∈I be a family of chains, and (λi)i∈I be order isomorphisms between
intervals [ai, bi] ⊆ L and Li such that the intersection of any two intervals contains at most one element.
Then, L is the ordinal sum of the family (Li, λi)i∈I if, for all x, y ∈ L,

x ∗L y =

{
λ−1
i

(
λi(x) ∗Li λi(y)

)
if x, y ∈ (ai, bi),

min{x, y} otherwise.
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Every continuous chain over [0, 1] is isomorphic to an ordinal sum of infinitely valued Łukasiewicz and
product chains [26, 27]. Similarly, every smooth finite chain is an ordinal sum of chains of the form Łn with
n > 3 [28]. Moreover, these representations are unique, i.e. there cannot exist two non-isomorphic families
of Łukasiewicz (and product) chains that produce the same chain as their ordinal sum. All elements that
are not contained strictly within one such Łukasiewicz or product component are idempotent and can be
thought of as belonging to a (finite) Gödel chain (see Proposition 2.2(j)). We say that a (finite or infinite)
chain contains the Łukasiewicz t-norm if its ordinal sum representation contains at least one Łukasiewicz
component; similarly, it starts with the Łukasiewicz t-norm if it contains a Łukasiewicz component in an
interval [0, b]. Note that every chain that contains the Łukasiewicz t-norm can be represented as the ordinal
sum of an arbitrary chain L1 and another chain L2 that starts with the Łukasiewicz t-norm.

Another way to view these characterizations is to observe that every smooth finite chain is either a Gödel
chain or contains at least one finite Łukasiewicz component, and every continuous infinite chain is either
a Gödel chain or contains at least one Łukasiewicz or product component. This is a key insight for our
hardness proofs, since reasoning over pure Gödel chains is typically easier than for the other t-norms.

2.2. Fuzzy Description Logics
We now introduce the syntax and semantics of the basic FDL L-EL, and then describe its various

extensions. For this purpose, we fix an arbitrary chain L = (L, ∗,⇒). When L is one of the specific chains
introduced in the previous section, e.g. Łn, we denote the resulting logic by Łn-EL instead of L-EL.

2.2.1. Fuzzy EL
A (DL) signature is a tuple (NC,NR), where NC = {A,B, . . . } is a countable set of atomic concepts (also

called concept names) and NR = {r, s, . . . } is a countable set of atomic roles (or role names). Complex
concepts in L-EL are built inductively from atomic concepts and roles by means of the following concept
constructors, where A ∈ NC and r ∈ NR:

C,D −→ > top
A atomic concept
C uD conjunction
∃r.C existential restriction

We use the abbreviation Cm, m > 1, for the m-ary conjunction; i.e. C1 := C and Cm+1 := Cm u C.
While the syntax of concepts in L-EL is the same as in classical EL, the differences between both logics

begin in their semantics. An L-interpretation is a pair I = (∆I , ·I) consisting of:

• a nonempty set ∆I (called domain), and

• a fuzzy interpretation function ·I that assigns

– to each concept name A ∈ NC a fuzzy set AI : ∆I −→ L, and

– to each role name r ∈ NR a fuzzy relation rI : ∆I ×∆I −→ L.

Similarly, the semantics of a complex concept C is given by a function CI : ∆I −→ L, which is inductively
defined as follows:

>I(x) := 1,

(C uD)I(x) := CI(x) ∗ DI(x),

(∃r.C)I(x) := sup
y∈∆I

rI(x, y) ∗ CI(y).

In infinite chains, L-interpretations are often restricted to be witnessed [4], which means that for every
existential restriction ∃r.C and x ∈ ∆I there is an element y ∈ ∆I that realizes the supremum in the
semantics of ∃r.C at x, i.e. it holds that (∃r.C)I(x) = rI(x, y) ∗ CI(y). This is a manifestation of the
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intuition that an existential restriction actually forces the existence of a single individual that satisfies it,
instead of infinitely many that only satisfy the restriction in the limit. Under finitely valued semantics (and
thus also under classical semantics), this property is always satisfied. We also adopt this restriction in the
following, i.e. whenever we speak of an interpretation we implicitly assume that it is witnessed. Likewise,
all reasoning problems we investigate are restricted to the class of witnessed interpretations.

In DLs, the domain knowledge about concepts and roles is expressed by axioms. In the fuzzy framework,
these axioms are usually assigned a minimum degree of truth to which they must be satisfied. The most
important kind of axioms that we consider are general concept inclusions (GCIs), which are expressions of
the form 〈C v D > `〉, where ` ∈ L. The L-interpretation I satisfies such an axiom if CI(x) ⇒ DI(x) > `
holds for all domain elements x ∈ ∆I . As usual, a TBox is a finite set of GCIs, and an L-interpretation I
satisfies a TBox if it satisfies every axiom in it. A crisp GCI is of the form 〈C v D > 1〉, and we usually
abbreviate such an axiom by 〈C v D〉, which has the semantics that CI(x) 6 DI(x) holds for all x ∈ ∆I

(see Proposition 2.2(c)). We also use 〈C ≡ D〉 as a short-hand for the two axioms 〈C v D〉 and 〈D v C〉.
Our goal in this paper is to analyze the computational complexity of reasoning in L-EL. In particular,

we consider the reasoning problem of deciding whether a concept C is `-subsumed by another concept D
with respect to a TBox T , where ` ∈ L \ {0}; that is, whether every L-interpretation I that satisfies T also
satisfies the GCI 〈C v D > `〉. To solve this problem, it suffices to consider subsumption problems between
concept names since a concept C is `-subsumed by another concept D w.r.t. a TBox T iff the fresh concept
name A is `-subsumed by the fresh concept name B w.r.t. T ∪ {〈A v C〉, 〈D v B〉} (see [2]).

2.2.2. Additional Expressivity
Mimicking the study of classical EL, we also consider several extensions of the basic logic L-EL, which

are defined by including either new concept constructors or other kinds of axioms. The first such extension
is L-EL+ [29], which allows for (complex) role inclusions of the form 〈r1 ◦· · ·◦rn v r > `〉, where r1, . . . , rn, r
are roles and ` ∈ L \ {0}. TBoxes can then contain also this new kind of axioms, with the semantics that
an L-interpretation I satisfies them if (r1 ◦ · · · ◦ rn)I(x, y)⇒ rI(x, y) > ` holds for all x, y ∈ ∆I . Here, the
role composition r ◦ s has the following semantics, which is a more general form of the usual composition of
classical binary relations:

(r ◦ s)I(x, y) := sup
z∈∆I

rI(x, z) ∗ sI(z, y).

Usually, this supremum is also required to be witnessed (like for existential restrictions), i.e. for all x, y ∈ ∆I

there must exist an element z ∈ ∆I such that (r ◦ s)I(x, y) = rI(x, z) ∗ sI(z, y). However, since we use
complex role inclusions only in the context of finitely valued FDLs, where this property always holds, we do
not need this restriction here.

There are various other concept constructors that have been considered in combination with EL before [2].
The names of the extended logics are usually built by appending a designated symbol (e.g., L-EL with bottom
concept and disjunctions is denoted by L-ELU⊥):

• Bottom ⊥ (designated by the subscript ⊥), interpreted as ⊥I(x) = 0.

• Nominals (letter O) of the form {a} for an individual name a, with the semantics that {a}I(x) = 1 if
x is equal to a designated domain element aI ∈ ∆I , and {a}I(x) = 0 for all other x.

• Disjunction C tD (letter U) with the semantics (C tD)I := 1−
(
(1− CI(x)) ∗ (1−DI(x))

)
.

• Inverse roles r− (letter I) with the semantics (r−)I(x, y) := rI(y, x), which can be used in all places
where usually roles would be used, i.e. in existential restrictions or role inclusions.

Hence, the most expressive logic we consider in this paper is L-ELUOI+
⊥. In contrast to [2], we do not

consider number restrictions, nor EL++, which extends ELO+
⊥ with p-admissible concrete domains [2], since

all of our complexity lower bounds already hold without them.
In more expressive logics than EL, sets of role inclusions are usually restricted to be regular in order to

ensure decidability [17, 30, 31]. We recall this property here since it is relevant for our results. Let l be a
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strict partial order on the set of all role names and inverse roles such that r l s iff r− l s. A role inclusion
〈w v r > p〉 is l-regular if

• w is of the form r ◦ r or r−, or

• w is of the form r1 ◦ · · · ◦ rn, r ◦ r1 ◦ · · · ◦ rn, or r1 ◦ · · · ◦ rn ◦ r, and for all 1 6 i 6 n it holds that ril r.

A TBox T is regular if there is a strict partial order l as above such that each role inclusion in T is
l-regular.

2.2.3. Classical Extensions of EL
Even though, as illustrated in Example 2.1, it is enough to restrict the semantics to the two-element

chain B to obtain the classical semantics, we prefer to define both kinds of semantics to aid understanding
(and indeed, writing down) the proofs. The resulting logics are denoted simply by EL and EL+ instead of
B-EL or B-EL+.

In the classical view, an interpretation is a pair I = (∆I , ·I) consisting of:

• a domain ∆I , and

• an interpretation function ·I that assigns:

– to each concept name A ∈ NC a crisp set AI ⊆ ∆I , and

– to each role name r ∈ NR a crisp relation RI ⊆ ∆I ×∆I .

This function is extended to concepts by setting

>I := ∆I ,

⊥I := ∅,
(C uD)I := CI ∩DI ,
(C tD)I := CI ∪DI ,

(∃r.C)I := {x ∈ ∆I | ∃ y ∈ ∆I : (x, y) ∈ rI and y ∈ CI},

and similarly for the other constructors. It is easy to see that, by replacing the sets CI by their characteristic
functions χCI : ∆I → {0, 1}, we obtain the fuzzy semantics over B. To distinguish them from their fuzzy
counterparts, classical GCIs and role inclusions are written without brackets as C v D and r1 ◦ · · · ◦ rn v r,
respectively, and are satisfied by I if CI ⊆ DI and rI1 ◦ · · · ◦ rIn ⊆ rI hold, respectively.

In this setting, we talk simply about subsumption, since for ` = 1 the `-subsumption problem simplifies
to the question whether CI ⊆ DI holds in all interpretations I that satisfy a given TBox T . Again, it
suffices to decide subsumptions between concept names. It is well-known that subsumption in EL can be
decided in polynomial time, and that this upper bound holds also in the more expressive logics EL+ and
EL++ [2, 32]. Although the original algorithm for EL++ presented in [2] is incomplete in the management of
nominals, a complete algorithm for ELO+

⊥ that still runs in polynomial time was presented in [32, 33], and
can easily be combined with the rules for p-admissible concrete domains from [2]. On the other hand, if
either disjunction or inverse roles are added to the logic, then the complexity increases to ExpTime [2, 34].

3. Non-Idempotent Finite Chains Make EL Harder

In this section, we exhibit a surprising reversal of the above-mentioned classical results for the finite
Łukasiewicz t-norm. First, reasoning in Łn-EL, for any n > 3, is already exponentially harder than in EL;
more precisely, it is ExpTime-complete. Moreover, in this setting complex role inclusions actually make it
worse, resulting in 2-ExpTime-completeness for Łn-EL+ and Łn-EL++ with regular role inclusions, and even
undecidability for Łn-ELI+ with unrestricted role inclusions. In contrast, the other constructors identified as
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Figure 1: Illustration of the reductions of Section 3

harmful in the classical setting do not raise the baseline complexity of ExpTime: reasoning in Łn-ELUOI⊥
(without +) is still ExpTime-complete. Moreover, all these results hold for any finite chain containing the
Łukasiewicz t-norm. We focus on showing the lower bounds for these complexity results. Matching upper
bounds have been shown for more expressive fuzzy DLs [10, 17, 35]. Recall that every finite chain that does
not contain a Łukasiewicz component must be a finite Gödel chain, which has only idempotent elements;
for these structures, the complexity of reasoning in EL++ is known to remain the same as in the classical
case; that is, subsumption can be decided in polynomial time [31, 35].

The key insight for the hardness proofs is that the Łukasiewicz t-norm is powerful enough to simulate
the (two-valued) disjunction constructor. Hence, we can reduce concept subsumption in ELU to concept
subsumption in L-EL, which yields ExpTime-hardness [2].4 The structure of our proofs is illustrated in
Figure 1 for the special case of a finite chain L containing an Ł3-component. To obtain the semantics of
ELU , the values 0.5 and 1 in Ł3-EL are used to simulate the classical truth values false and true, respectively.
The chain Ł3 can then be embedded into L as depicted. For a finite chain containing an Łn-component with
n > 3, the only difference is that the value n−2

n−1 is used instead of 0.5.

3.1. Finite Łukasiewicz Chains
We first consider the case of a finite Łukasiewicz chain Łn with n > 3. For ease of presentation, we omit

the subscript Łn from ∗ and⇒ in the following. In our reduction from subsumption in ELU to subsumption
in Łn-EL, we can restrict our considerations to ELU TBoxes that are in normal form; that is, TBoxes
consisting only of axioms of the following forms:

A1 uA2 v B
∃r.A v B
A v ∃r.B
A v B1 tB2

where A,A1, A2, B,B1 and B2 are concept names or >. It is easy to see that every ELU TBox can be
polynomially reduced to an equivalent one in normal form (see [2] for details).

In the reduction, we will simulate a classical concept name in Łn-EL by considering all values below
n−2
n−1 to represent false, and thus only the value 1 can be used to express that a domain element belongs
to the concept name. We can then express a classical disjunction of the form B1 t B2 by restricting the
value of the fuzzy conjunction B1 uB2 to be > n−2

n−1 since the latter implies that B1 or B2 has value 1 (see

4This is closely related to the argument that usually non-convex extensions of classical EL, i.e. those that can express
disjunctions, are ExpTime-hard [2].
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Proposition 2.2(h)). Furthermore, we reformulate classical subsumption between C and D as 1-subsumption
between Cn−1 and Dn−1 since the latter two concepts can take only the values 0 or 1 (see Proposition 2.2(i)).

More formally, let n > 3, T be an ELU TBox in normal form, and C,D be two atomic concepts. We
construct an Łn-EL TBox ρn(T ) such that C is subsumed by D w.r.t. T if and only if Cn−1 is subsumed
by Dn−1 w.r.t. ρn(T ). Since T is in normal form, we can define the reduction ρn individually for each of
the four kinds of axioms listed above:

ρn(A1 uA2 v B) := 〈A1 uA2 v B > 1〉
ρn(∃r.A v B) := 〈∃r.A v B > 1〉
ρn(A v ∃r.B) := 〈A v (∃r.B)n−1 > 1

n−1 〉
ρn(A v B1 tB2) := 〈A v B1 uB2 > n−2

n−1 〉

Finally, we set ρn(T ) := {ρn(α) | α ∈ T }.
Notice that ρn(T ) has as many axioms as T , and the size of each axiom is increased by a factor of at

most n. Hence, the translation ρn(T ) can be performed in polynomial time. We show that this translation
satisfies the properties described above.

3.2. Soundness
In this subsection we prove that if C is subsumed by D with respect to T , then Cn−1 is 1-subsumed

by Dn−1 with respect to the Łn-EL TBox ρn(T ). In order to achieve this result, for any Łn-interpretation
I = (∆I , ·I) we define the crisp interpretation Icr = (∆Icr , ·Icr ), where:

• ∆Icr := ∆I ;

• for every concept name A ∈ NC and x ∈ ∆I , x ∈ AIcr iff AI(x) = 1; and

• for every r ∈ NR and x, y ∈ ∆I , (x, y) ∈ rIcr iff rI(x, y) = 1.

Note that it also holds for all x ∈ ∆I that x ∈ >Icr iff >I(x) = 1. Thus, to increase the readability of the
following proofs we can treat > as an ordinary concept name. Before proving soundness of ρn(·) we prove
that the translation ·cr of interpretations preserves satisfaction of the TBoxes.

Lemma 3.1. Let I be an Łn-interpretation that satisfies ρn(T ). Then Icr satisfies T .

Proof. We make a case distinction on the type of axiom in T .

• Consider an axiom of the form A1 u A2 v B ∈ T and x ∈ AIcr1 ∩ AIcr2 . By the definition of Icr, we
have that AI1 (x) = 1 and AI2 (x) = 1. Hence (A1 u A2)I(x) = 1. Since I satisfies ρn(T ), this implies
that BI(x) = 1 by Proposition 2.2(c). Again by the definition of Icr, we get x ∈ BIcr .

• Consider an axiom of the form ∃r.A v B ∈ T and x ∈ (∃r.A)Icr . Hence there exists an element
y ∈ ∆Icr such that (x, y) ∈ rIcr and y ∈ AIcr . By the definition of Icr, we have that rI(x, y) = 1 and
AI(y) = 1. Hence supz∈∆I r

I(x, z) ∗ AI(z) = rI(x, y) ∗ AI(y) = 1. Since I satisfies ρn(T ), we get
BI(x) = 1. Again by the definition of Icr, we conclude that x ∈ BIcr .

• Consider an axiom of the form A v ∃r.B ∈ T and x ∈ AIcr . By the definition of Icr, we have
AI(x) = 1. Since I satisfies ρn(T ), Proposition 2.2(e) implies that ((∃r.B)n−1)I(x) > 1

n−1 . How-
ever, by Proposition 2.2(i) we have ((∃r.B)n−1)I(x) ∈ {0, 1}, and hence it must be that case that
((∃r.B)n−1)I(x) = 1. Thus,

1 = (∃r.B)I(x) = sup
z∈∆I

rI(x, z) ∗ BI(z).

Since every Łn-interpretation is witnessed, there exists y ∈ ∆I such that rI(x, y) = 1 and BI(y) = 1.
Again by the definition of Icr, we have (x, y) ∈ rIcr and y ∈ BIcr , and hence x ∈ (∃r.B)Icr .
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• Consider an axiom of the form A v B1 tB2 ∈ T and x ∈ AIcr . By the definition of Icr, we have that
AI(x) = 1. Since I satisfies ρn(T ), this implies that (B1 u B2)I(x) > n−2

n−1 . By Proposition 2.2(h),
either BI1 (x) = 1 or BI2 (x) = 1. Again by the definition of Icr, we have that x ∈ BIcr1 or x ∈ BIcr2 .

Now we are ready to prove the following proposition.

Proposition 3.2. If C is subsumed by D w.r.t. T , then Cn−1 is 1-subsumed by Dn−1 w.r.t. ρn(T ).

Proof. Let I be an Łn-interpretation satisfying ρn(T ) and x ∈ ∆I such that (Cn−1)I(x) > 0. Hence
(Cn−1)I(x) = 1 and thus CI(x) = 1. By the definition of Icr, we have x ∈ CIcr . By Lemma 3.1 we
know that Icr satisfies T , and thus we get x ∈ DIcr by assumption. Again by the definition of Icr, we
obtain DI(x) = 1 and therefore (Dn−1)I(x) = 1. Hence (Cn−1)I(x) ⇒ (Dn−1)I(x) = 1, that is, Cn−1 is
1-subsumed by Dn−1 with respect to ρn(T ).

3.3. Completeness
We now prove the converse direction; that is, that the translation does not introduce new subsumption

relations of the specified form. Similarly to before, we define for any classical interpretation I = (∆I , ·I) an
Łn-interpretation In = (∆In , ·In), where:

• ∆In := ∆I ,

• AIn(x) := 1 if x ∈ AI and AIn(x) := n−2
n−1 otherwise, for every A ∈ NC and x ∈ ∆I ,

• rIn(x, y) := 1 if (x, y) ∈ rI and rIn(x, y) := n−2
n−1 otherwise, for every r ∈ NR and x, y ∈ ∆I .

Again, > behaves exactly like the concept names since >In(x) is always 1. Before proving completeness of
ρn(·) we need to prove that the translation ·n preserves satisfaction of all axioms.

Lemma 3.3. If a classical interpretation I satisfies T , then In satisfies ρn(T ).

Proof. We prove case by case that In satisfies ρn(T ).

• Consider an axiom of the form 〈A1 u A2 v B > 1〉 ∈ ρn(T ) and any x ∈ ∆In . If (A1 u A2)In(x) = 1,
then both AIn1 (x) = 1 and AIn2 (x) = 1. By the definition of In, we have that x ∈ AI1 ∩ AI2 . Since
I satisfies T , this yields x ∈ BI . Again by the definition of In, we get BIn(x) = 1, and hence by
Proposition 2.2(c) the axiom is satisfied.
In the case that (A1 uA2)In(x) < 1, we have (A1 uA2)In(x) 6 n−2

n−1 6 BIn(x) by the definition of In,
and thus also (A1 uA2)In(x)⇒ BIn(x) = 1.

• Consider an axiom of the form 〈∃r.A v B > 1〉 ∈ ρn(T ) and any x ∈ ∆In . If (∃r.A)In(x) = 1, then
supz∈∆In r

In(x, z) ∗ AIn(z) = 1. By Proposition 2.2(a), this means that there exists y ∈ ∆In such
that rIn(x, y) = 1 and AIn(y) = 1. By the definition of In, we know that (x, y) ∈ rI and y ∈ AI .
Hence x ∈ (∃r.A)I . Since I satisfies T , we get x ∈ BI . Again by the definition of In, we have that
BIn = 1.
Otherwise, we have (∃r.A)In(x)⇒ BIn(x) = 1 as in the previous case.

• Consider an axiom of the form 〈A v (∃r.B)n−1 > 1
n−1 〉 ∈ ρn(T ) and any x ∈ ∆In . If we have

((∃r.B)n−1)In(x) = 0, then

1 > (∃r.B)In(x) = sup
z∈∆In

rIn(x, z) ∗ BIn(z).

By Proposition 2.2(a), every y ∈ ∆In must satisfy either rIn(x, y) < 1 or BIn(y) < 1. By the
definition of In, for all y ∈ ∆I we have either (x, y) /∈ rI or y /∈ BI , and hence x /∈ (∃r.B)I .
Since I satisfies T , we get x /∈ AI . Again by the definition of In, we have AIn(x) = n−2

n−1 . Hence
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AIn(x)⇒ ((∃r.B)n−1)In(x) = 1
n−1 .

In the case that ((∃r.B)n−1)In(x) > 0, Proposition 2.2(d) yields

AIn(x)⇒ ((∃r.B)n−1)In(x) > ((∃r.B)n−1)In(x) > 1
n−1

since 1
n−1 is the smallest non-zero truth degree.

• Consider an axiom of the form 〈A v B1 u B2 > n−2
n−1 〉 ∈ ρn(T ) and any x ∈ ∆In . In the case that

(B1 u B2)In(x) < n−2
n−1 , we must have BIn1 (x) = BIn2 (x) = n−2

n−1 . By the definition of In, it follows
that x /∈ BI1 ∪BI2 . Since I satisfies T , this implies that x /∈ AI . Again by the definition of In, we get
AIn(x) = n−2

n−1 . Since by the definition of In and supposition we have (B1 u B2)In(x) = n−3
n−1 , we can

conclude that AIn(x)⇒ (B1 uB2)In(x) = n−2
n−1 .

In the case that (B1 uB2)In(x) > n−2
n−1 , Proposition 2.2(d) again yields

AIn(x)⇒ (B1 uB2)In(x) > (B1 uB2)In(x) > n−2
n−1 ,

i.e. the axiom is satisfied by In.

From this lemma, we immediately obtain the desired result.

Proposition 3.4. If C is not subsumed by D w.r.t. T , then Cn−1 is not 1-subsumed by Dn−1 w.r.t. ρn(T ).

Proof. Let I be a crisp interpretation satisfying T and x ∈ ∆I such that x ∈ CI \DI . By Lemma 3.3, we
know that In satisfies ρn(T ). Moreover, by the definition of In, we have CIn(x) = 1 and DIn(x) = n−2

n−1 .
Hence (Cn−1)In(x) = 1 and (Dn−1)In(x) = 0, and therefore (Cn−1)In(x)⇒ (Dn−1)In(x) = 0 < 1.

Taking together the results of Propositions 3.2 and 3.4 and the complexity bounds derived in [2, 10], we
have thus found the precise complexity of subsumption in Łn-EL.

Theorem 3.5. Let n > 3. Deciding `-subsumption with respect to a TBox in Łn-EL is ExpTime-complete.

Proof. The result follows from the above reduction and the fact that the subsumption problem with respect
to a TBox for the language ELU is ExpTime-hard [2]. The ExpTime upper bound was shown in [10] for
the more expressive language Łn-ALC.

3.4. Extensions of EL
The goal of this section is to investigate the complexity of extensions of Łn-EL, following the analysis

of [2]. We start by considering complex role inclusions; that is, Łn-EL+. The following result is not surprising
in the light of the previous reduction, which shows that Łn-EL can simulate classical disjunction, and the
fact that reasoning with complex role inclusions in classical DLs with disjunction is 2-ExpTime-hard [36].

Theorem 3.6. For any n > 3, deciding `-subsumption with respect to a TBox in Łn-EL+ is 2-ExpTime-
hard.

Proof. In [2], a series of polynomial reductions from satisfiability in the classical DL ALC to subsumption
in ELU are provided. It is easy to see that the same reductions can be used in the presence of complex role
inclusions. Since satisfiability in ALC with complex role inclusions is 2-ExpTime-hard [36], it thus suffices
to extend the reduction of the previous section to complex role inclusions.

Using the same notation as before, we extend the translation ρn to complex role inclusions:

ρn(r1 ◦ · · · ◦ rn v r) := 〈r1 ◦ · · · ◦ rn v r > 1〉.

The constructions used to show soundness and completeness remain the same as before; the only thing left
to prove are the missing cases of Lemmas 3.1 and 3.3 for role inclusions:
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• We need to show that, if an Łn-interpretation I satisfies the fuzzy role inclusion above, then Icr
satisfies the original axiom. Hence, assume that (x, y) ∈ rIcr1 ◦ · · · ◦ rIcrn , i.e. there are domain elements
x1, . . . , xn−1 ∈ ∆I with (x, x1) ∈ rIcr1 , . . . , (xn−1, y) ∈ rIcrn . By the definition of Icr, we know that
rI1 (x, x1) = · · · = rIn(xn−1, y) = 1, and hence rI(x, y) since I satisfies the fuzzy axiom. The definition
of Icr thus yields (x, y) ∈ rIcr , which shows that Icr satisfies the classical role inclusion.

• Assume now that a classical interpretation I satisfies r1 ◦ · · · ◦ rn v r. We show that In satisfies its
translation under ρn. If (r1◦· · ·◦rn)In(x, y) = 1, then there must exist elements x1, . . . , xn−1 such that
rIn1 (x, x1) = 1, . . . , rInn (xn−1, y) = 1. By the definition of In, we get (x, x1) ∈ rI1 , . . . , (xn−1, y) ∈ rIn,
and hence (x, y) ∈ rI by our assumption. This shows that rIn(x, y) = 1, as required.
In the case that (r1 ◦ · · · ◦ rn)In(x, y) < 1, we obtain (r1 ◦ · · · ◦ rn)In(x, y) 6 n−2

n−1 6 rIn(x, y) by the
definition of In. Hence, the translated axiom is also satisfied in this case.

For classical DLs with disjunction, a matching upper bound is only known for regular sets of complex
role inclusions. Under this restriction, reasoning in even very expressive DLs, in particular EL extended with
complex role inclusions, disjunction, inverse roles, nominals, and bottom is in 2-ExpTime [37]. This upper
bound can be transferred to the corresponding finitely valued FDLs using generic (polynomial) reductions
from fuzzy to classical TBoxes, such as the one described in [35], which is based on the ideas first presented
in [17]. Since these reductions introduce disjunctions, they cannot be applied to derive a polynomial upper
bound for Łn-EL+ from the known polynomial complexity of classical EL+.

Without the restriction to regular role inclusions, an upper bound is not known; it is still open whether
reasoning in ELU+ is even decidable. If this logic is further extended with inverse roles, i.e. to ELUI+,
then reasoning even becomes undecidable [30].5 Hence, also subsumption in Łn-ELI+ (with non-regular role
inclusions) is undecidable, which can be shown by a similar reduction as above (the presence of inverse roles
does not affect the arguments at all).

Theorem 3.7. For any n > 3, deciding `-subsumption with respect to a regular TBox in Łn-ELUOI+
⊥ is

2-ExpTime-complete. The problem is undecidable in Łn-ELI+ with unrestricted role inclusions.

On the other hand, if we do not allow complex role inclusions, then the other constructors that make
reasoning in classical EL exponentially harder, e.g. disjunction or inverse roles, do not affect the complexity
of Łn-EL. In essence, this is because subsumption in Łn-EL is already ExpTime-hard. These results again
follow from known upper bounds for more expressive FDLs [38].

Theorem 3.8. For any n > 3, deciding `-subsumption with respect to a TBox in Łn-ELUOI⊥ is ExpTime-
complete.

3.5. Arbitrary Finite Chains
The hardness results presented in the previous subsection can in fact be extended to cover almost all

logics of the form L-EL (or L-EL+) where L is a finite chain. The only exceptions are the finite chains using
the minimum as t-norm—this case can be shown to be tractable following the arguments from [23]. As
detailed in Section 2, any chain L that is not of this special form must contain a finite Łukasiewicz chain in
an interval [a, b] with at least three elements. This is the starting point of our reduction to the results from
the previous section (see Figure 1). More formally, we reduce the subsumption problem in Łn-EL (resp.,
Łn-EL+), where n > 3 is the cardinality of [a, b], to the subsumption problem in L-EL (resp., L-EL+).

In the following, let T be a TBox in Łn-EL+, ` ∈ Łn\{0}, and A,B two concept names for which we want
to check whether A is `-subsumed by B w.r.t. T . We consider the inverse λ−1 of the bijection λ : [a, b]→ Łn
that exists due to the ordinal sum representation of L (see Definition 2.3). We define the new L-EL TBox T ′
based on T as follows:

T ′ := {〈> v B > a〉} ∪ {〈α v β > λ−1(p)〉 | 〈α v β > p〉 ∈ T }.

5The proof in [30] also uses functionality restrictions on roles, which are, however, not necessary to show undecidability.
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Recall that B is one of the concept names for which we want to check subsumption in Łn-EL, and a is the
lower bound of the interval [a, b] in L. The full proof of the following lemma is very technical, and can be
found in Appendix A. Here we present only a brief sketch.

Lemma 3.9. A is `-subsumed by B w.r.t. T iff A is λ−1(`)-subsumed by B w.r.t. T ′.

Proof (sketch). The main insight is that the bijections λ and λ−1 are compatible with the t-norm and
residuum of the two chains L and Łn (under suitable restrictions). Based on this, one can show that they are
also compatible with the semantics of all concepts (top, conjunctions, existential restrictions) and axioms
(concept and role inclusions). In this way, λ and λ−1 can be used to show completeness and soundness,
respectively, of our reduction.

We can now generalize Theorems 3.5, 3.7, and 3.8, where the upper bounds again follow from known
results [10, 17, 35, 37, 38]. Observe that, if T is an Łn-EL TBox, then T ′ is an L-EL TBox, i.e. it also does
not contain role inclusions.

Theorem 3.10. Let L be a finite chain that is not of the form Gn. Then deciding `-subsumption with respect
to a TBox in any logic between L-EL and L-ELUOI⊥ is ExpTime-complete. The problem is 2-ExpTime-
complete in any logic between L-EL+ and L-ELUOI+

⊥ with regular role inclusions, and undecidable in L-ELI+

with unrestricted role inclusions.

In contrast, subsumption for fuzzy extensions of EL based on Gn, n > 2, can be shown to be in the same
complexity classes as for the underlying classical DLs, using the polynomial reductions of fuzzy TBoxes to
classical TBoxes described in [31, 35]. In particular, subsumption in Gn-ELO+

⊥ remains polynomial [2, 32, 33],
for Gn-ELU and Gn-ELI it becomes ExpTime-complete [2, 34], and in Gn-ELU+ with regular role inclusions
the complexity increases to 2-ExpTime [36, 37].

4. The Final Nail in the Coffin of the Infinite Łukasiewicz T-norm

In this section we consider the case where L is defined over the interval [0, 1]. We show that in this
case, subsumption in the very inexpressive L-EL becomes undecidable whenever L contains the Łukasiewicz
t-norm. Interestingly, this is the first instance of undecidability for a fuzzy description logic that does not
allow for any negation constructor. Indeed, the required expressivity is a consequence of the properties of
the Łukasiewicz t-norm itself. We emphasize once again that this result covers a large class of cases, as it
holds for any continuous t-norm containing the Łukasiewicz t-norm.

Rather than proving undecidability of this problem directly, we take advantage of the general framework
recently developed for FDLs [8, 39]. This framework, as all previously existing undecidability proofs for
FDLs [6, 7], considers a different but related decision problem; namely, ontology consistency in the presence
of concept assertions. Thus, we prove first that ontology consistency in the logic L-EL= (which extends L-EL
with so-called equality assertions) is undecidable if L starts with the Łukasiewicz t-norm, and even if all
GCIs are restricted to be crisp. Afterwards, we adapt this result to cover also subsumption in L-EL (without
equality assertions, but with non-crisp GCIs), and use a generic result from [22] to remove the restriction
requiring that the Łukasiewicz component has to be the first component of L.

4.1. Undecidability of Consistency in L-EL=

For this section, we consider an arbitrary but fixed infinite chain L that starts with the Łukasiewicz
t-norm. That is, there is an interval of the form [0, b] over which the t-norm is isomorphic to ∗Ł. The logic
L-EL= is an extension of L-EL where an ontology, in addition to a TBox, may also contain finitely many
equality assertions of the form 〈a:C = `〉, where C is a concept, ` ∈ L, and a is an individual name from
a countable set NI disjoint from NC and NR.6 The definition of an L-interpretation I is extended to map

6In general, also assertions about role connections between individual names are allowed (see [5]). We do not consider them
here since they are not necessary to show undecidability.
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each individual name a ∈ NI to a domain element aI ∈ ∆I . Such an L-interpretation satisfies the equality
assertion from above if CI(aI) = `. An ontology (a finite set of GCIs and assertions) is consistent if there
exists an L-interpretation that satisfies all its axioms. In this section, we use only crisp GCIs of the form
〈C v D〉.

We prove that consistency of L-EL= ontologies is undecidable using the framework from [8]. We now
briefly describe the notions of this framework required for the present paper. For the full details, we refer the
reader to the original work [8]. According to this framework, undecidability can be shown by proving that
a given logic satisfies several properties, which together allow for the construction of an ontology simulating
instances of the undecidable Post Correspondence Problem (PCP) [40]. Hence, we consider an arbitrary
but fixed instance P of the PCP, which consists of pairs (v1, w1), . . . , (vn, wn) of words over an alphabet Σ
of the form {1, . . . , s} for a natural number s > 1. The problem is to find a solution of P, which is a finite
sequence of the form i1 . . . ik ∈ {1, . . . , n}∗ such that v1vi1 . . . vik = w1wi1 . . . wik .7 For a candidate solution
ν ∈ {1, . . . , n}∗, we denote these two words by vν and wν , respectively.

The first requirement of the framework is to provide a valid encoding function enc : Σ∗0 → 2[0,1] that
allows us to represent words over Σ0 := Σ∪{0} as (sets of) truth degrees. For L-EL=, recall that L contains
the Łukasiewicz t-norm over the interval [0, b]. We define the encoding function enc as follows:

enc(u) :=

{
[b, 1] if u ∈ {0}∗{
b
(
1− 1

20.←−u
)}

otherwise,

where ←−u is the word u written in reverse and interpreted as a sequence of digits in base s+ 1. In the latter
case—when u /∈ {0}∗—we sometimes treat enc(u) as a single value in [0, 1]. For example, if s = 9, then we
have enc(1) = 0.95b and enc(81) = 0.91b. It is an important property of this function that the encoding of
every word is always strictly greater than b

2 .
For this encoding function to be valid, it must satisfy the following condition: There must exist two

words uε, u+ ∈ Σ∗0 such that for every candidate solution ν ∈ {1, . . . , n}∗ and all encodings p ∈ enc(vν),
q ∈ enc(wν) and m ∈ enc(uε · u|ν|+ ) it holds that uε · u|ν|+ ∈ {ε} ∪ΣΣ∗0 (that is, it is either the empty word or
a sequence not starting with 0), and vν 6= wν iff min{p⇒ q, q ⇒ p} 6 m. That is, we can use an encoding
of uε · uc+ to check the equality of any two words vν , wν belonging to a candidate solution ν of length c.

Lemma 4.1. The function enc is a valid encoding function (according to [8, Definition 11]).

Proof. Given an instance P of the PCP, let k be the maximal length of any word vi, wi appearing in P.
Choose uε := 1 · 0k—that is, the word consisting of the digit 1 followed by k zeros—and u+ := 0k. It can
be verified as in [8] that the two required conditions hold over these words. In particular, if vν 6= wν , then
these words must differ in one of the first K := (|ν|+ 1)k letters. Thus, either enc(vν) > enc(wν), and hence

enc(vν)⇒ enc(wν) = min
{
b, b(1 + 1

20.←−vν − 1
20.←−wν)

}
6 b
(
1− 1

20.
←−−−
1 · 0K

)
= enc

(
uε · u|ν|+

)
,

or else enc(vν) < enc(wν) and enc(wν)⇒ enc(vν) 6 enc
(
uε · u|ν|+

)
.

Based on this encoding function, the following canonical model IP of P is used to encode the search tree
for a solution of P, as illustrated in Figure 2:

• the domain ∆IP := {1, . . . , n}∗ contains all candidate solutions for P;

• we set aIP := ε for a certain individual name a that denotes the root node of the search tree;

• V IP (ν) := enc(vν) and W IP (ν) := wν represent the words vν and wν , respectively, of the candidate
solution at a node ν ∈ {1, . . . , n}∗;

7Without loss of generality we can restrict the search to solutions that start with v1 and w1.
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V : enc(v1), W : enc(w1),
M : enc(uε)

V : enc(v1v1), W : enc(w1w1),
M : enc(uεu+)

...

r1

V : enc(v1v2), W : enc(w1w2),
M : enc(uεu+)

...

V : enc(vν), W : enc(wν),
M : enc(uε · u|ν|+ )

V : enc(vνv1), W : enc(wνw1),
M : enc(uε · u|ν|+1

+ )

r1

V : enc(vνvn), W : enc(wνwn),
M : enc(uε · u|ν|+1

+ )

rn

r2

V : enc(v1vn), W : enc(w1wn),
M : enc(uεu+)

...

rn

a

· · ·

· · ·

Figure 2: The canonical model IP for an instance P of the PCP (taken from [8]).

• V IPi (ν) := enc(vi) and W IPi (ν) := enc(wi) for i ∈ {1, . . . , n} encode the words vi and wi, respectively,
at every node of the search tree;

• MIP (ν) := enc(uε · u|ν|+ ) and MIP+ (ν) := enc(u+) encode the words used to compare vν and wν ;

• rIPi (ν, νi) := 1 and rIPi (ν, ν′) := 0 for ν′ 6= νi are used to distinguish the successors in the search tree;

• HIP (ν) := h is an auxiliary concept name that has a constant value h ∈ [0, 1] everywhere.

Strictly speaking, this construction is slightly different from the one described in [8], since the original
construction does not contain the concept name H. It is easy to show, however, that this change does not
affect the correctness of the approach.

In the following, let p ∼ q denote the fact that both p and q belong to the same set enc(u) for some word
u ∈ Σ∗0. We first want to show that L-EL= is capable of constructing the canonical model, as expressed by
the following property.

The Canonical Model Property :

There is an ontology OP such that every model I of OP admits a mapping g : ∆IP → ∆I that satisfies

AIP (ν) ∼ AI(g(ν)) and HI(g(ν)) = h

for every concept name A ∈ {V,W,M,M+} ∪
⋃n
i=1{Vi,Wi} and ν ∈ {1, . . . , n}∗.

In other words, the ontology OP required by this property enforces that the canonical model can be embedded
into every L-interpretation satisfying it. As shown in [8, Theorem 12], the canonical model property is implied
by the following four simpler properties, which are used, in that order, to initialize the values of the concept
names at the root node, to enforce the existence of the ri-successors, to construct the encodings of the next
candidate solutions (vνi, wνi) by concatenation, and to transfer these encodings along the ri-connections to
the successors.
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The Initialization Property :

Let C be a concept, a ∈ NI, and u ∈ Σ∗0. There is an ontology O such that for every model I of O it
holds that CI(aI) ∈ enc(u).

The Successor Property :

Let r ∈ NR. There is an ontology O such that for every model I of O and every x ∈ ∆I with HI(x) = h
there is a y ∈ ∆I with rI(x, y) > b and HI(y) = h.

The Concatenation Property :

Let u ∈ Σ∗0, and C and Cu be concepts. There is an ontology O and a concept name D such that for
every model I of O and every x ∈ ∆I , if CIu (x) ∈ enc(u) and CI(x) ∈ enc(u′) for some u′ ∈ {ε} ∪ ΣΣ∗0,
then DI(x) ∈ enc(u′u).

The Transfer Property :

Let C,D be concepts and r ∈ NR. There is an ontology O such that for every model I of O and every
x, y ∈ ∆I , if HI(x) = h, rI(x, y) > b, HI(y) = h, and CI(x) ∈ enc(u) for some u ∈ Σ∗0, then also
DI(y) ∈ enc(u).

We show that L-EL= satisfies all these properties.

Lemma 4.2. L-EL= has the initialization, successor, concatenation, and transfer properties, and hence the
canonical model property.

Proof. The initialization property follows trivially from the availability of equality assertions: given u ∈ Σ∗0,
choose any ` ∈ enc(u) and set O := {〈a:C = `〉}.

For successor property, we choose h := b
2 as the constant for the concept name H, and consider

the TBox {〈H ≡ G2〉, 〈G v ∃r.G〉, 〈∃r.H v H〉}. Since we assume that HI(x) = b
2 , the first ax-

iom yields that GI(x) = 3b
4 . Then, by the second axiom and the assumption that our interpretations

are witnessed, we find an element y ∈ ∆I such that 3b
4 6 rI(x, y) ∗Ł GI(y). By the third axiom,

rI(x, y) ∗Ł (G2)I(y) 6 (∃r.H)I(x) 6 HI(x) = b
2 . Since ∗Ł is monotone (Proposition 2.2(b)), we get

rI(x, y) ∗Ł (G2)I(y) 6 b
2 = 3b

4 ∗Ł
3b
4 6 rI(x, y) ∗Ł rI(x, y) ∗Ł (G2)I(y) (2)

This implies that rI(x, y) > b, since otherwise we would have

rI(x, y) ∗Ł
(
rI(x, y) ∗Ł (G2)I(y)

)
6 rI(x, y) ∗Ł b

2 = max{0, rI(x, y)− b
2} <

b
2 ,

in contradiction to (2). From this, we obtain HI(y) = (G2)I(y) = b
2 , as required.

For the concatenation property, consider the TBox {〈C ′(s+1)|u| ≡ C〉, 〈D ≡ C ′ u Cu〉}, where C ′ is a
fresh auxiliary concept name. Let I be a model of these axioms and x ∈ ∆I such that CIu (x) ∈ enc(u) and
CI(x) ∈ enc(u′) for some u′ ∈ {ε} ∪ ΣΣ∗0. Suppose that u′ 6= ε. Then from the first axiom it follows that
both CI(x) and C ′I(x) belong to the interval (0, b), and hence C ′I(x) = b

(
1− (s+1)−|u|

2 0.
←−
u′
)
. If u /∈ {0}∗,

then
DI(x) = b

(
1− 1

20.←−u − (s+1)−|u|

2 0.
←−
u′
)

= enc(u′u).

Otherwise, CIu (x) ∈ [b, 1] and thus DI(x) = C ′I(x) = enc(u′u). In case that u′ = ε, then CI(x) ∈ [b, 1]
which implies that C ′I(x) ∈ [b, 1], and by the second axiom DI(x) ∈ enc(u) = enc(εu).

We now look at the transfer property. Consider concepts C,D and a role name r, and let C be a fresh
concept name. For every model I of 〈H ≡ CuC〉 and every x ∈ ∆I with HI(x) = b

2 and CI(x) < b we have
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CI(x) + CI(x) − b = HI(x) = b
2 > 0, and hence CI(x) = 3b

2 − C
I(x). That is, C simulates an involutive

negation of C over the interval ( b2 , b). In the case that CI(x) = [b, 1], the above axiom implies CI(x) = b
2 .

We can hence summarize the effect of this axiom as CI(x) = 3b
2 −min{b, CI(x)}. Since HI(y) = b

2 , we can
use a similar construction as above to obtain a concept D that simulates a kind of involutive negation of D
at y; as a side effect, the axiom 〈H ≡ D uD〉 already enforces that DI(y) > b

2 .
Consider now the axioms 〈∃r.D v C〉 and 〈∃r.D v C〉. The first axiom implies that DI(y) 6 CI(x).

From the second axiom, we similarly get that
3b
2 −min{b,DI(y)} = DI(y) 6 CI(x) = 3b

2 −min{b, CI(x)}.

If CI(x) = enc(u) < b, then CI(x) 6 DI(y), and hence DI(y) = CI(x) = enc(u). Otherwise, it must
hold that CI(x) ∈ [b, 1] = enc(u), and thus CI(x) = b

2 , which implies that DI(x) = b
2 , and hence also

DI(x) ∈ [b, 1] = enc(u).
Overall, the TBox {〈H ≡ CuC〉, 〈H ≡ DuD〉, 〈∃r.D v C〉, 〈∃r.D v C〉} has the desired properties.

A logic satisfying the canonical model property means that it is possible to create an ontology OP whose
models all embed the search tree for a solution of a PCP instance P. To obtain undecidability, one needs
to further guarantee that the existence of such a solution can be decided. We achieve this through the
following property, which intuitively states that no node of the search tree is a solution; thus, the ontology
is inconsistent if and only if P has a solution.

The Solution Property :

IP can be extended to a model of OP and there is an ontology O such that:

1. For every model I of OP ∪ O and every ν ∈ {1, . . . , n}∗,

min
{
V I(g(ν))⇒W I(g(ν)), W I(g(ν))⇒ V I(g(ν))

}
6MI(g(ν)).

2. If for every ν ∈ {1, . . . , n}∗ we have

min
{
V IP (ν)⇒W IP (ν), W IP (ν)⇒ V IP (ν)

}
6MIP (ν),

then IP can be extended to a model of OP ∪ O.

It is usually easy to show the first part, that IP can be extended to a model of OP : one just has to be
careful that none of the auxiliary concepts introduced in the constructions are unsatisfiable or contradict the
shape of IP in any way (e.g. by restricting the value of V to be below b

2 , which cannot be a valid encoding
of a word). The remaining conditions again require a more intricate proof.

Lemma 4.3. L-EL= has the solution property.

Proof. Consider the ontology

O := {〈X2 v X3〉, 〈H ≡ X uX〉, (3)

〈X2 u V vW uM〉, (4)

〈X2 uW v V uM〉}. (5)

Since HI(g(ν)) = b
2 , the canonical model property implies that for every model I of (3) it holds that

XI(g(ν)) ∈ { b2} ∪ [b, 1] and XI(g(ν)) ∈ { b2} ∪ [b, 1] (see Proposition 2.2(g)). Furthermore, X and X

complement each other in the sense that XI(g(ν)) = b
2 iff XI(g(ν)) ∈ [b, 1].

Let now I be a model of OP ∪ O and ν ∈ {1, . . . , n}∗. If XI(g(ν)) > b, then axiom (4) requires that
V I(g(ν)) 6W I(g(ν)) ∗L MI(g(ν)), while axiom (5) is trivially satisfied. Let K := (|ν|+ 1)k, where k is as
in the proof of Lemma 4.1. If wν 6= ε, then since |wν | 6 K it follows that

W I(g(ν)) ∗L MI(g(ν)) = b(1− 1
20.←−wν − 1

20.
←−−−
1 · 0K) ∈ ( b2 , b).
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In the case that wν = ε, the term 1
20.←−wν disappears, but we still have

W I(g(ν)) ∗L MI(g(ν)) = MI(g(ν)) ∈ ( b2 , b).

Thus, for any z > MI(g(ν)) it holds that W I(g(ν)) ∗L z > W I(g(ν)) ∗L MI(g(ν)) > V I(g(ν)). Hence,

W I(g(ν))⇒ V I(g(ν)) = sup{z ∈ [0, 1] |W I(g(ν)) ∗L z 6 V I(g(ν))}
6 inf{z ∈ [0, 1] | z > MI(g(ν))}
= MI(g(ν)).

Dually, if XI(g(ν)) = b
2 , then V

I(g(ν))⇒W I(g(ν)) 6MI(g(ν)). Thus,

min{V I(g(ν))⇒W I(g(ν)), W I(g(ν))⇒ V I(g(ν))} 6MI(g(ν)).

For the last part of the property, let min{V IP (ν) ⇒ W IP (ν),W IP (ν) ⇒ V IP (ν)} 6 MIP (ν) < 1 and
consider an extension I of IP that satisfies OP . We show that I can be extended to satisfy O. The
only required extension is to provide the adequate interpretation of the concept names X,X on elements
ν ∈ {1, . . . , n}∗. If V IP (ν)⇒W IP (ν) = 1, set XI(ν) := b, which requires XI(ν) := b

2 and trivially satisfies
axiom (5). We must then have W IP (ν)⇒ V IP (ν) 6MIP (ν), which shows that axiom (4) is also satisfied.
Otherwise, XI(ν) := b

2 provides the desired result.

As a consequence of Lemmas 4.2 and 4.3, the undecidability framework guarantees that consistency in
L-EL= is undecidable (see [8, Theorem 13]).

Theorem 4.4. Ontology consistency in L-EL= is undecidable if L starts with the Łukasiewicz t-norm. This
result holds even even if all GCIs are crisp.

We now turn our attention to the problem of subsumption.

4.2. Undecidability of Subsumption in L-EL
We now use the result from Theorem 4.4 to show that subsumption in L-EL is undecidable if L starts

with the Łukasiewicz t-norm. By known results [22], this immediately implies that undecidability holds for
any chain that contains the Łukasiewicz t-norm.

Notice first that in the construction from Section 4.1, the equality assertions are only used to satisfy
the initialization property. In the general proof of undecidability from [8], this property is used to ensure
that a can serve as the root of the search tree for the PCP instance, thus requiring the initialization of the
interpretation of several concept names (V , W , M , etc.) at a (see Figure 2). Using this insight, we show
that undecidability arises already if only one equality assertion is allowed in the ontology. To prove this,
it suffices to show that the initialization property can also be obtained using one fixed equality assertion.
However, in the following we also use a single non-crisp GCI.

Lemma 4.5. Given a concept C and u ∈ Σ∗0, there exists a TBox T such that for every model I of
T ∪ {〈a:Y = b

2 〉} it holds that C
I(aI) ∈ enc(u).

Proof. For any model I of the TBox T0 := {〈Y 2 v Y 3〉, 〈> v H > b
2 〉, 〈H ≡ Y u Y 〉, 〈a:Y = b

2 〉} it holds
that

b
2 6 HI(aI) 6 (Y u Y )I(aI) 6 Y I(aI) = b

2 .

In particular, this already initializes the concept name H as desired. In addition, we have that Y I(aI) > b.
To ensure that CI(aI) ∈ enc(u), let T1 := {〈H ≡ A(s+1)|u|〉, 〈Y 2uC ≡ Y 2uA←−u 〉}, where A is an auxiliary

concept name. The first axiom implies that (s+1)|u|(AI(aI)−b)+b = b
2 , and thus AI(aI) = b

(
1− 1

2(s+1)|u|

)
.

Since (Y 2)I(aI) > b, the second axiom entails that either CI(aI) and (A
←−u )I(aI) are both in the inter-

val [b, 1], or CI(aI) = (A
←−u )I(aI) < b. If u ∈ {0}∗, then A

←−u is equivalent to >, and hence we get
CI(aI) ∈ [b, 1] = enc(u). Otherwise, we obtain CI(aI) = (A

←−u )I(aI) = b(1− 1
20.←−u ) = enc(u).
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Moreover, we can easily extend IP to a model of these axioms by setting Y IP (ν) := 1, Y IP (ν) := b
2 ,

and AIP (ν) := b
(
1 − 1

2(s+1)|u|

)
for all other domain elements ν 6= aIP = ε. We have hence re-proven the

canonical model property and the solution property, and obtain undecidability of consistency in L-EL= even
with only one equality assertion (namely 〈a:Y = b

2 〉).
We now use this result to prove undecidability of subsumption in L-EL, i.e. without equality assertions.

Consider the ontology OP used in the new proof of undecidability of L-EL=, and let TP be the TBox
TP := OP \ {〈a:Y = b

2 〉}, which contains only GCIs. Due to the axioms 〈Y 2 v Y 3〉, 〈H ≡ Y u Y 〉, and
〈> v H > b

2 〉, the interpretation of Y in a model of TP is always in { b2}∪ [b, 1]. Hence, OP is consistent iff >
is not b-subsumed by Y w.r.t. TP (since in the latter case there must be a model I of TP such that Y I(x) = b

2
for some domain element x ∈ ∆I , i.e. x can serve the function of aI). This shows that subsumption in L-EL
is undecidable if L starts with the Łukasiewicz t-norm.

To generalize this result to chains that contain the Łukasiewicz t-norm, we recall a result from [22,
Theorem 13]: If L is the ordinal sum of two continuous chains L1 and L2, then subsumption in L-EL is
at least as hard as subsumption in L2-EL. Since any continuous chain L that contains the Łukasiewicz
t-norm can be represented in the above form such that L2 starts with the Łukasiewicz t-norm, this shows
undecidability of L-EL whenever at least one Łukasiewicz component is present in any subinterval of L.

Theorem 4.6. Deciding `-subsumption with respect to a TBox in L-EL is undecidable if L contains the
Łukasiewicz t-norm.

In particular, from the results presented in [22] we obtain that the following statements are equivalent
(where b is determined as before, λ2 is the order isomorphism between the subinterval of L and L2 given by
Definition 2.3, and λ−1

2 (TP) is obtained from TP by replacing all values according to λ−1
2 ):

(a) > is b-subsumed by Y w.r.t. TP in L2.

(b) > is λ−1
2 (b)-subsumed by Y w.r.t. λ−1

2 (TP) in L.

As above, the axioms 〈Y 2 v Y 3〉, 〈H ≡ Y u Y 〉, and 〈> v H > λ−1
2 ( b2 )〉 in λ−1

2 (TP) ensure that the
value of Y is always in {λ−1

2 ( b2 )} ∪ [λ−1
2 (b), 1]. Hence, the problem (b) is equivalent to the inconsistency

of λ−1
2 (TP) ∪ {〈a:Y = λ−1

2 ( b2 )〉}. Since λ−1
2 (1) = 1 and the axiom 〈> v H > λ−1

2 ( b2 )〉 is needed only for
initializing certain concepts at a, which can equivalently be achieved by using several equality assertions,
we do not even need non-crisp GCIs in the result.

Corollary 4.7. Ontology consistency in L-EL= is undecidable if L contains the Łukasiewicz t-norm. This
result holds even if all GCIs are crisp.

These results further extend the undecidability analysis from [8]. In previous work it was shown that the
extension L-NEL of L-EL with a negation constructor, but only crisp assertions of the form 〈a:C > 1〉, is
undecidable whenever L starts with the Łukasiewicz t-norm (and is decidable otherwise). We have now shown
that the negation constructor can be omitted if we instead allow to state equality in assertions (which one
might argue represents a weak kind of negation). Furthermore, undecidability holds even if the Łukasiewicz
t-norm does not occur in an initial interval [0, b].

It is still unknown whether a similar result holds for the product t-norm (and, more generally, for
continuous t-norms containing several product components). Decidability is known only for the case of
the infinite Gödel t-norm, where subsumption is P-complete [23]. In the following section we provide an
intermediate result by proving that ontology consistency in Π-ELU= is undecidable.

5. A Short Visit to the Product T-norm

For this section we focus on the logic Π-ELU=.
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Remark 5.1. It does not make much sense to consider extensions of ELU over chains containing Π in an
interval other than [0, 1], because in such cases the disjunction constructor has no reasonable semantics.
Since the semantics of disjunction uses the involutive negation 1−x, its behavior in the product component
[a, b] depends on the behavior of the t-norm in [1−b, 1−a], which may be completely arbitrary. In particular,
the disjunction of two values from [a, b] may even lie outside of that interval.

As in Section 4, we use the framework for undecidability from [8]. In this case, we encode any word
u ∈ Σ∗0 as the number 2−(u+1), where again u is viewed as a number represented in base s + 1. It can be
shown, using arguments similar to those in [8] that this is a valid encoding function, if we choose the words
uε := 1 and u+ := ε. Moreover, the presence of equality assertions again makes the initialization property
easy to show. Hence, it remains to show the concatenation, successor, transfer, and solution properties.

Lemma 5.2. L-ELU= has the concatenation, successor, and transfer properties.

Proof. For the concatenation property, consider a model I of the TBox {〈XuH ≡ C〉, 〈D ≡ X(s+1)|u|uCu〉},
and any x ∈ ∆I such thatHI(x) = 1

2 and CI(x) = enc(u′). Then, the first axiom ensures thatXI(x) = 2−u
′
,

and by the second axiom it follows that

DI(x) = 2−(u′(s+1)|u|+u+1) = 2−(u′u+1) = enc(u′u).

We obtain the successor property from the same TBox {〈H ≡ G2〉, 〈G v ∃r.G〉, 〈∃r.H v H〉} and the
same arguments as in Lemma 4.2, except that G now takes the value 1√

2
instead of 3

4 .
For the transfer property, consider the TBox {〈C t C ≡ H〉, 〈D t D ≡ H〉, 〈∃r.D v C〉, 〈∃r.D v C〉},

where C,D are two fresh concept names, and let I be a model of T and x, y ∈ ∆I such that HI(x) = 1
2 ,

rI(x, y) = 1, and HI(y) = 1
2 .

If CI(x) ∈ enc(u) 6 1
2 , the axiom 〈C t C ≡ H〉 ensures that

(
1− CI(x)

)(
1− CI(x)

)
= 1− 1

2 = 1
2 , and

hence CI(x) = 1− 1
2(1−CI(x))

, which is a strictly decreasing function in CI(x). A similar behavior is obtained
for D and D through the second axiom. Therefore, the last two axioms guarantee that DI(y) 6 CI(x) and
DI(y) 6 CI(x), respectively. The latter also implies DI(y) > CI(x), which proves the desired result.

The only remaining step is to prove that this logic also satisfies the solution property. To achieve this,
we follow a similar idea as in the previous section, creating new concept names X and X that will serve as
flags for ensuring that at every element x either V I(x) < W I(x) or V I(x) > W I(x).

Lemma 5.3. L-ELU= has the solution property.

Proof. Consider the ontology

O := {〈X v X2〉, 〈X v X2〉, (6)

〈X uX v H〉, 〈H v X tX〉, (7)
〈X u V vW uH〉, (8)

〈X uW v V uH〉}. (9)

Every model I of the first two axioms is such that both X and X are interpreted in {0, 1} at every element
of the domain. By the canonical model property, we also know that HI(g(ν)) = 1

2 and hence the axioms (7)
entail that XI(g(ν)) = 0 iff X

I
(g(ν)) = 1. Based on these arguments, the rest of the proof follows the same

steps as the proof of Lemma 4.3.

Using the framework of [8], this implies the claimed result.

Theorem 5.4. Ontology consistency in Π-ELU= is undecidable.

This extends the results of [8], where it was shown that consistency is undecidable in Π-ELC with crisp
assertions, and hence also in Π-ELC=. The letter C denotes the involutive negation constructor, which can
be used to simulate concept disjunction. For Π-ELU> (having only assertions of the form 〈a:C > `〉), it is
known that ontology consistency is trivially reducible to classical ELU [8], so Theorem 5.4 is as strong as
possible with respect to the kind of assertions that are allowed.
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6. Related Work

For a broad overview of the field of FDL research, we refer the reader to [5]. We describe in more detail
those publications that are most closely related to the results presented here.

The research on fuzzy extensions of the light-weight DL EL started in [23], where the authors presented
a completion-based reasoning procedure for G-EL++ that is based on the original algorithm for EL [2, 41].
In [32, 33], it was shown that the original algorithm provided for EL++ in [2] is incomplete concerning the
treatment of nominals. Since the procedure for G-EL++ in [23] is based on [2], it is also incomplete for
this case. We conjecture that the correct algorithms from [32, 33] can be adapted to handle G-EL++ and
Gn-EL++ using the techniques in [23], and in particular adopting the restrictions on p-admissible concrete
domains introduced there. Developing such an algorithm is out of the scope of the present paper, as it would
require completely different techniques from the ones we use here. Nevertheless, for the sublogic G-ELO+

⊥ of
G-EL++ without concrete domains, a polynomial-time algorithm can alternatively be obtained from known
polynomial reductions from finitely valued FDLs to classical DLs [31, 35], and the fact that reasoning in
G-ELO⊥ can be restricted to a fixed, finite set of truth values without loss of generality (this property is also
exploited by the algorithm in [23]). For t-norms containing the Łukasiewicz t-norm, intractability was first
shown in [22], where `-subsumption in L-EL was proven to be coNP-hard. This result was subsequently
strengthened to ExpTime-hardness in [21], the precursor to the current paper. There it was also shown
that reasoning in the finitely valued Łn-EL is ExpTime-complete, using results originally developed for more
expressive FDLs.

Regarding finitely valued FDLs in general, the most popular reasoning technique is a reduction of FDL
ontologies to classical ontologies, which was originally proposed in [42]. While it is easy to devise a polynomial
reduction for the finitely valued Gödel t-norm [31], the first such reductions proposed for arbitrary finitely
valued t-norms incurred an exponential blow-up [17]. This problem was solved in [35] by including a
polynomial preprocessing step. However, for finitely valued L-EL these reductions introduce disjunctions
into the classical ontology; that is, the ontology obtained through them requires a higher expressivity than
that provided by EL (unless L is a Gödel chain). Our results show that this cannot be avoided since the
finite Łukasiewicz t-norm can express actual disjunctions. However, the reductions can be used to obtain the
upper bounds for Section 3 from classical complexity results [37, 43]. Other work on finitely valued FDLs
introduced more direct reasoning algorithms, such as adaptations of tableau- or automata-based procedures
for classical DLs [3, 10–12, 38, 44]. In particular, [10, 11, 38] were the first to show the ExpTime-upper
bounds we need for Theorems 3.5, 3.8, and 3.10.

For infinitely valued FDLs, several tableau algorithms have been developed for reasoning with so-called
acyclic TBoxes [45, 46]. In contrast, reasoning with full GCIs was first shown to be undecidable for FDLs
under the product t-norm [6], then for the Łukasiewicz t-norm [7]. This initiated a study of the border
between decidability and undecidability in infinitely valued FDLs, depending on the constructors of the
logics and the precise t-norms used [8, 47]. However, all of the previous undecidability results depend on
some kind of negation constructor for concepts. We show here that the negation can also be provided by
the Łukasiewicz t-norm itself. Complementary decidability results again make use of reductions to classical
DLs [8, 48, 49], or introduce automata- and tableau-based algorithms tailored towards the infinite Gödel
t-norm [50, 51].

7. Conclusions

In this paper, we provide a thorough study of the complexity of reasoning in fuzzy extensions of de-
scription logics from the EL family. Our results show that, for finite chains, the presence of at least one
non-idempotent truth degree damages the tractability of the underlying classical logics. In the infinite case,
the presence of a Łukasiewicz component causes undecidability. These results are summarized in Table 1. In
particular, reasoning in finitely valued extensions of fuzzy EL becomes exponentially harder than in classical
EL. If regular role inclusions are allowed in addition, then the problem becomes 2-ExpTime-hard. We
stress that these hardness results apply to any finitely valued extension of these logics that contains at least
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Table 1: Complexity of subsumption in fuzzy extensions of EL with regular TBoxes. All results also hold for the extensions
with nominals and bottom (O⊥). The precise complexity of ELI+ is unknown even under classical semantics.

chain L EL EL+ ELU / ELI / ELUI ELI+ ELU+ / ELUI+

G or Gn, n > 2 P P ExpTime ? 2-ExpTime
finite, not Gn ExpTime 2-ExpTime ExpTime 2-ExpTime 2-ExpTime
containing Ł undec. undec. undec. undec. undec.

one truth degree that is not idempotent. For the case where all degrees are idempotent—i.e., the under-
lying chain uses the Gödel t-norm—it is already known that tractability is preserved. Interestingly, other
constructors (e.g., disjunctions or inverse roles) that had been highlighted as harmful for the tractability of
classical EL do not cause a further increase in complexity in their non-idempotent fuzzy extensions. In the
case of L-ELI+ with arbitrary (non-regular) role inclusions, we even obtain undecidability if L is not of the
form Gn; the precise complexity of the underlying classical DL ELI+ is still unknown.

Although the complexity lower bounds can be matched by the algorithms developed for expressive finitely
valued DLs [10, 11], which are out of the scope of the present paper, it is still worth to consider algorithms
that exploit the restricted syntax of our logic. To this end, we plan to look at suitable adaptations of
consequence-based algorithms for classical DLs [2, 52].

If infinitely many truth degrees are allowed, then the picture is more extreme. Indeed, we have shown
that for any t-norm that contains a Łukasiewicz component, subsumption in L-EL is undecidable. This
greatly improves the preliminary work [21], where only an ExpTime lower bound was obtained. For t-norms
containing the product t-norm, the question of decidability remains open. However, we show that a related
problem—consistency of Π-ELU= ontologies—is undecidable. Although we still do not provide a full answer
for subsumption in L-EL, our results do fill some gaps previously left open [8].

An obvious direction for future work is to find exact complexity bounds for the continuous t-norms that
have not yet been solved. The precise complexity of reasoning with acyclic TBoxes in infinitely valued
FDLs is also not fully explored yet (although decidability is known [7, 45]). One can also investigate the
complexity of fuzzy extensions of other inexpressive DLs like FL0 [53] or DL-Lite [54]. In the former case,
it is known that the complexity FL0 with cyclic TBoxes does not increase under Gödel semantics [55]. The
effect of the Łukasiewicz and other semantics on these logics remains to be understood.
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Appendix A. Proof of Lemma 3.9

We split the soundness and completeness proofs for the reduction of Section 3.5 into several lemmas. For
the following proofs, we extend the bijection λ : [a, b]→ Łn as follows to the whole chain L:

• λ(x) := 0 if x < a and

24

http://www.aaai.org/Library/KR/2008/kr08-027.php
http://www.aaai.org/Library/KR/2008/kr08-027.php
http://ijcai.org/Proceedings/09/Papers/124.pdf
http://ijcai.org/Proceedings/09/Papers/124.pdf
http://ceur-ws.org/Vol-1193/paper_4.pdf
http://ceur-ws.org/Vol-1193/paper_4.pdf
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4387
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4387
http://dx.doi.org/10.1090/S0002-9904-1946-08555-9
http://dx.doi.org/10.1007/978-3-540-30227-8_33
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1201792812059-19082
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1201792812059-19082
http://dx.doi.org/10.1016/j.fss.2009.03.006
http://ceur-ws.org/Vol-477/paper_5.pdf
http://ceur-ws.org/Vol-477/paper_5.pdf
http://dx.doi.org/10.1007/s13218-016-0459-3
http://dx.doi.org/10.1007/978-3-642-31365-3_9
http://dx.doi.org/10.1007/978-3-319-24246-0_4
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7803
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7803
http://dx.doi.org/10.1016/j.ijar.2016.12.014
http://ijcai.org/papers09/Papers/IJCAI09-336.pdf
http://ijcai.org/papers09/Papers/IJCAI09-336.pdf
http://www.aaai.org/Library/AAAI/1990/aaai90-093.php
http://www.aaai.org/Library/AAAI/1990/aaai90-093.php
http://www.aaai.org/Library/AAAI/2005/aaai05-094.php
http://www.aaai.org/Library/AAAI/2005/aaai05-094.php
http://dx.doi.org/10.1007/978-3-319-11558-0_5


• λ(x) := 1 if x > b.

We also make use of the inverse λ−1 : Łn → 2L of this function, for which we in particular have λ−1(0) = [0, a]
and λ−1(1) = [b, 1] (see Figure 1 for an illustration). When we sometimes treat λ−1(x) as a single value, we
implicitly refer to the original bijection λ−1 : Łn → [a, b]. The two functions λ−1 and λ are used to prove
soundness and completeness, respectively, of the reduction from the L-EL+ TBox T to the Łn-EL+ TBox T ′.

We first prove soundness, i.e. if A is λ−1(`)-subsumed by B w.r.t. T ′, then A is also `-subsumed by B
w.r.t. T . We start with an auxiliary lemma, which states that λ−1 is compatible with all relevant operations
of L (at least in the interval [a, 1]).

Lemma A.1. For all p, q ∈ Łn, p′ ∈ λ−1(p) ∩ [a, 1], and q′ ∈ λ−1(q) ∩ [a, 1], we have

• p′ ∗L q′ ∈ λ−1(p ∗Łn
q) ∩ [a, 1], and

• p′ ⇒L q
′ ∈ λ−1(p⇒Łn

q) ∩ [a, 1].

Proof. If p < 1 or q < 1, then we have p′ = λ−1(p) or q′ = λ−1(q), respectively. Furthermore, we know that
p ∗Łn q < 1 and λ−1(p ∗Łn q)∩ [a, 1] contains a single element. Since L contains Łn in [a, b] and all elements
above b act as neutral elements for the elements in [a, b] w.r.t. ∗L, we have p′ ∗L q′ = λ−1(p ∗Łn q)∩ [a, 1]. In
the case that p = q = 1, we have p′ ∈ [b, 1] and q′ ∈ [b, 1], and hence p′ ∗L q′ ∈ [b, 1] = λ−1(1) = λ−1(p ∗Łn

q).
For the second claim, we make a case analysis on p and q.

• If p = q = 1, then both p′ and q′ are contained in [b, 1]. By the properties of ordinal sums, we also
have p′ ⇒L q

′ ∈ [b, 1] = λ−1(1) = λ−1(p⇒Łn q).

• If p 6 q, but p = q = 1 does not hold, then we know that p < 1, and hence p′ < b. Thus, we get
p′ 6 q′ by the monotonicity of λ−1, which implies that p′ ⇒L q

′ = 1 ∈ λ−1(1) = λ−1(p⇒Łn q).

• If 1 = p > q, then p′ ⇒L q
′ = q′ ∈ λ−1(q) ∩ [a, 1] = λ−1(p⇒Łn

q) ∩ [a, 1].

• Finally, if 1 > p > q, then the claim follows directly from the fact that L contains Łn in [a, b].

For the next step, consider an Łn-interpretation I and define an L-interpretation IL as follows:

• ∆IL := ∆I ,

• AIL(x) := λ−1
(
AI(x)

)
for all A ∈ NC and x ∈ ∆I , and

• rIL(x, y) := λ−1
(
rI(x, y)

)
for all r ∈ NR and x, y ∈ ∆I .

Lemma A.2. If I is an Łn-model of T , then IL is an L-model of T ′.

Proof. The axiom 〈> v B > a〉 is satisfied by the definition of IL. For the remaining claim, we show that
CIL(x) ∈ λ−1

(
CI(x)

)
∩ [a, 1] holds for all concepts C and x ∈ ∆I by induction on the structure of C. For

all concept names, this holds by the definition of IL, and for and conjunctions, this is a consequence of
Lemma A.1. We also have >IL(x) = 1 ∈ λ−1

(
>I(x)

)
∩ [a, 1].

It remains to show the claim for an existential restriction ∃r.C, assuming that it already holds for C.
Again by Lemma A.1 and the definition of IL, we know that for all y ∈ ∆I we have

rIL(x, y) ∗L CIL(y) ∈ λ−1
(
rI(x, y) ∗Łn

CI(y)
)
∩ [a, 1].

Since L is finite and (∃r.C)IL(x) is the supremum of all these values, it is an element of [b, 1] iff one of the
values rI(x, y) ∗Łn C

I(y) is 1, and then

(∃r.C)IL(x) ∈ [b, 1] = λ−1(1) = λ−1
(
(∃r.C)I(x)

)
.

Otherwise, none of these values is 1 and we get

(∃r.C)IL(x) = λ−1
(

sup
y∈∆I

rI(x, y) ∗Łn
CI(y)

)
= λ−1

(
(∃r.C)I(x)

)
∈ [a, b)
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by the monotonicity of λ−1 when restricted to [a, b]. This concludes the proof of the claim.
The claim immediately shows that the axioms of the form 〈> v D > a〉 in T ′ are satisfied by IL. Consider

now an axiom of the form 〈C v D > λ−1(p)〉 in T ′. Since I satisfies T , we have CI(x)⇒Łn
DI(x) > p for

all x ∈ ∆I , and thus we get

CIL(x)⇒L D
IL(x) ∈ λ−1

(
CI(x)⇒Łn

DI(x)
)
⊆ [λ−1(p), 1]

by the above claim, Lemma A.1, and the monotonicity of λ−1. For a role inclusion 〈r1◦· · ·◦rn v r > λ−1(p)〉
in T ′, we similarly know that

sup
x1,...,xn−1∈∆IL

rIL1 (x0, x1) ∗L . . . ∗L rILn (xn−1, xn)⇒L r
IL(x0, xn)

∈ λ−1
(

sup
x1,...,xn−1∈∆I

rI1 (x0, x1) ∗Łn
. . . ∗Łn

rIn(xn−1, xn)⇒Łn
rI(x0, xn)

)
⊆ [λ−1(p), 1]

by Lemma A.1, the monotonicity of λ−1, and the fact that I satisfies 〈r1 ◦ · · · ◦ rn v r > p〉.

This allows us to show soundness of the reduction.

Lemma A.3. If A is λ−1(`)-subsumed by B w.r.t. T ′, then A is `-subsumed by B w.r.t. T .

Proof. Let I be an Łn-model of T and x ∈ ∆I such that AI(x)⇒Łn
BI(x) < `. By Lemma A.2, IL is an

L-model of T ′. By the definition of IL, we know that both AIL(x) and BIL(x) satisfy the preconditions of
Lemma A.1. This yields that

AIL(x)⇒L B
IL(x) ∈ λ−1

(
AI(x)⇒Łn

BI(x)
)
∩ [a, 1].

By assumption, we know that the latter set cannot be [b, 1], and thus it must be a singleton. By the strict
monotonicity of λ−1 when restricted to [a, b], we conclude that

AIL(x)⇒L B
IL(x) = λ−1

(
AI(x)⇒Łn

BI(x)
)
< λ−1(`).

To prove completeness, we first show an auxiliary lemma.

Lemma A.4. For all p, q ∈ L, we have

• λ(p ∗L q) = λ(p) ∗Łn λ(q), and

• if q > a, then λ(p⇒L q) = λ(p)⇒Łn
λ(q).

Proof. If both p > b and q > b, then we have λ(p) = λ(q) = 1 and p ∗L q > b, and thus

λ(p ∗L q) = 1 = 1 ∗Łn
1 = λ(p) ∗Łn

λ(q).

If either p < a or q < a, then λ(p) = 0 or λ(q) = 0, respectively. Since then also p ∗L q < a, we obtain
λ(p ∗L q) = 0 = λ(p) ∗Łn

λ(q). If neither of these two cases applies, then we have p ∗L q ∈ [a, b] and
λ(p ∗L q) = λ(p) ∗Łn

λ(q) since L contains Łn in [a, b].
For the second claim, we consider the following cases.

• If p 6 q, then by the monotonicity of λ we get λ(p) 6 λ(q), and thus

λ(p⇒L q) = λ(1) = 1 = λ(p)⇒Łn
λ(q).

• If b > p > q > a, then the claim follows directly from the fact that L contains Łn in [a, b].
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• If p > b > q > a and p > q, then we have λ(p) = 1 and p⇒L q = q > a, and thus

λ(p⇒L q) = λ(q) = λ(p)⇒Łn
λ(q).

• Finally, if p > q > b, then p⇒L q > q > b, λ(p) = λ(q) = 1, and λ(p⇒L q) = 1 = λ(p)⇒Łn
λ(q).

Starting from an L-interpretation I, we can construct an Łn-interpretation In as follows:

• ∆In := ∆I ,

• AIn(x) := λ
(
AI(x)

)
for all A ∈ NC and x ∈ ∆I , and

• rIn(x, y) := λ
(
rI(x, y)

)
for all r ∈ NR and x, y ∈ ∆I .

Lemma A.5. If I is an L-model of T ′, then In is an Łn-model of T .

Proof. We first show the auxiliary claim that CIn(x) = λ
(
CI(x)

)
holds for all concepts C and x ∈ ∆I by

induction on the structure of C. For all concept names, this holds by the definition of In. For conjunctions,
it follows directly from Lemma A.4. We also know that >In(x) = 1 = λ(1) = λ

(
>I(x)

)
.

Consider now an existential restriction ∃r.C and assume that the claim holds for C. By the definition of
In and Lemma A.4, we know that rIn(x, y) ∗Łn

CIn(y) = λ
(
rI(x, y) ∗L CI(y)

)
holds for all y ∈ ∆I . Since

(∃r.C)In(x) is the supremum of all these values, L is finite, and λ is monotone, we have

(∃r.C)In(x) = λ
(

sup
y∈∆I

rI(x, y) ∗L CI(y)
)

= λ
(
(∃r.C)I(x)

)
,

which concludes the proof of the claim.
Consider now an axiom 〈C v D > p〉 in T . Since I is a model of T ′ and ⇒L is the residuum of ∗L, we

have λ−1(p) ∗L CI(x) 6 DI(x), and thus

p ∗Łn C
In(x) = λ

(
λ−1(p)

)
∗Łn λ

(
CI(x)

)
= λ

(
λ−1(p) ∗L CI(x)

)
6 λ

(
DI(x)

)
= DIn(x),

by Lemma A.4, the above claim, and monotonicity of λ.
Similarly, for a role inclusion 〈r1 ◦ · · · ◦ rn v r > p〉 in T , we obtain

p ∗Łn sup
x1,...,xn∈∆In

rIn1 (x0, x1) ∗Łn . . . ∗Łn r
In
n (xn−1, xn)

= λ
(
λ−1(p) ∗L sup

x1,...,xn∈∆I
rI1 (x0, x1) ∗L . . . ∗L rIn(xn−1, xn)

)
6 λ

(
rI(x0, xn)

)
= rIn(x0, xn),

i.e. it is satisfied by In.

We can now show the completeness of the reduction of Section 3.5.

Lemma A.6. If A is `-subsumed by B w.r.t. T , then A is λ−1(`)-subsumed by B w.r.t. T ′.

Proof. Consider an L-model I of T ′ with AI(x) ⇒L B
I(x) < λ−1(`) for some x ∈ ∆I . By Lemma A.5,

In is a model of T . By the definition of T ′, we know that BI(x) > a. Thus, Lemma A.4 yields
AIn(x)⇒Łn

BIn(x) = λ
(
AI(x)⇒L B

I(x)
)
. Since ` > 0 and λ is strictly monotone in [a, b], this residuum

is strictly smaller than λ
(
λ−1(`)

)
= `.

Together, Lemmas A.3 and A.6 imply Lemma 3.9.

27


	Introduction
	The Fuzzy EL Family
	Chains of Truth Values
	Fuzzy Description Logics
	Fuzzy EL
	Additional Expressivity
	Classical Extensions of EL


	Non-Idempotent Finite Chains Make EL Harder
	Finite Lukasiewicz Chains
	Soundness
	Completeness
	Extensions of EL
	Arbitrary Finite Chains

	The Final Nail in the Coffin of the Infinite Lukasiewicz T-norm
	Undecidability of Consistency in L-EL_=
	Undecidability of Subsumption in L-EL

	A Short Visit to the Product T-norm
	Related Work
	Conclusions
	Proof of Lemma 3.9

