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Abstract. We consider the task of acquisition of terminological knowl-
edge from given assertional data. However, when evaluating data of real-
world applications we often encounter situations where it is impractical
to deduce only crisp knowledge, due to the presence of exceptions or er-
rors. It is rather appropriate to allow for degrees of uncertainty within
the derived knowledge. Consequently, suitable methods for knowledge
acquisition in a probabilistic framework should be developed.
In particular, we consider data which is given as a probabilistic formal
context, i.e., as a triadic incidence relation between objects, attributes,
and worlds, which is furthermore equipped with a probability measure
on the set of worlds. We define the notion of a probabilistic attribute
as a probabilistically quantified set of attributes, and define the notion
of validity of implications over probabilistic attributes in a probabilistic
formal context. Finally, a technique for the axiomatization of such im-
plications from probabilistic formal contexts is developed. This is done
is a sound and complete manner, i.e., all derived implications are valid,
and all valid implications are deducible from the derived implications.
In case of finiteness of the input data to be analyzed, the constructed
axiomatization is finite, too, and can be computed in finite time.

Keywords: Knowledge Acquisition · Probabilistic Formal Context ·
Probabilistic Attribute · Probabilistic Implication · Knowledge Base

1 Introduction

We consider data which is given as a probabilistic formal context, i.e., as a triadic
incidence relation between objects, attributes, and worlds, which is furthermore
equipped with a probability measure on the set of worlds. We define the notion
of a probabilistic attribute as a probabilistically quantified set of attributes, and
define the notion of validity of implications over probabilistic attributes in a
probabilistic formal context. Finally, a technique for the axiomatization of such
implications from probabilistic formal contexts is developed. This is done is a
sound and complete manner, i.e., all derived implications are valid, and all valid
implications are deducible from the derived implications. In case of finiteness of
the input data to be analyzed, the constructed axiomatization is finite, too, and
can be computed in finite time.
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This document is structured as follows. A brief introduction on Formal Con-
cept Analysis is given in Section 2, and then the subsequent Section 3 presents
basics on Probabilistic Formal Concept Analysis. Then, in Section 4 we define
the notion of implications over probabilistic attributes, and infer some character-
izing statements. The most important part of this document is the Section 5, in
which we constructively develop a method for the axiomatization of probabilistic
implications from probabilistic formal contexts; the section closes with a proof
of soundness and completeness of the proposed knowledge base. Eventually, in
Section 6 some closing remarks as well as future steps for extending and applying
the results are given. In order to explain and motivate the definitions and the
theoretical results, Sections 3 – 5 contain a running example.

2 Formal Concept Analysis

This section briefly introduces the standard notions of Formal Concept Anal-
ysis (abbr.FCA) [5]. A formal context K := (G,M, I) consists of a set G of
objects, a set M of attributes, and an incidence relation I ⊆ G×M . For a pair
(g,m) ∈ I, we say that g has m. The derivation operators of K are the mappings
·I : ℘(G)→ ℘(M) and ·I : ℘(M)→ ℘(G) that are defined by

AI := {m ∈M |

A

g ∈ A : (g,m) ∈ I } for object sets A ⊆ G,
and BI := { g ∈ G |

A

m ∈ B : (g,m) ∈ I } for attribute sets B ⊆M.

It is well-known [5] that both derivation operators constitute a so-called
Galois connection between the powersets ℘(G) and ℘(M), i.e., the following
statements hold true for all subsets A,A1, A2 ⊆ G and B,B1, B2 ⊆M :

1. A ⊆ BI ⇔ B ⊆ AI ⇔ A×B ⊆ I
2. A ⊆ AII

3. AI = AIII

4. A1 ⊆ A2 ⇒ AI
2 ⊆ AI

1

5. B ⊆ BII

6. BI = BIII

7. B1 ⊆ B2 ⇒ BI
2 ⊆ BI

1

For obvious reasons, formal contexts can be represented as binary tables the
rows of which are labeled with the objects, the columns of which are labeled
with the attributes, and the occurrence of a cross × in the cell at row g and
column m indicates that the object g has the attribute m.

An intent ofK is an attribute set B ⊆M with B = BII . The set of all intents
ofK is denoted by Int(K). An implication overM is an expression X → Y where
X,Y ⊆ M . It is valid in K, denoted as K |= X → Y , if XI ⊆ Y I , i.e., if each
object of K that possesses all attributes in X also has all attributes in Y . An
implication set L is valid in K, denoted as K |= L, if all implications in L are
valid in K. Furthermore, the relation |= is lifted to implication sets as follows:
an implication set L entails an implication X → Y , symbolized as L |= X → Y ,
if X → Y is valid in all formal contexts in which L is valid. More specifically, |=
is called the semantic entailment relation.



It was shown that entailment can also be decided syntactically by applying
deduction rules to the implication set L without the requirement to consider
all formal contexts in which L is valid. Recall that an implication X → Y
is syntactically entailed by an implication set L, denoted as L |− X → Y , if
X → Y can be constructed from L by the application of inference axioms, cf.
[12, Page 47], that are described as follows:

(F1) Reflexivity: ∅ |− X → X
(F2) Augmentation: {X → Y } |− X ∪ Z → Y
(F3) Additivity: {X → Y,X → Z} |− X → Y ∪ Z
(F4) Projectivity: {X → Y ∪ Z} |− X → Y
(F5) Transitivity: {X → Y, Y → Z} |− X → Z
(F6) Pseudotransitivity: {X → Y, Y ∪ Z →W} |− X ∪ Z →W

In the inference axioms above the symbols X, Y , Z, and W , denote arbitrary
subsets of the considered set M of attributes. Formally, we define L |− X → Y
if there is a sequence of implications X0 → Y0, . . . , Xn → Yn such that the
following conditions hold:

1. For each i ∈ {0, ..., n}, there is a subset Li ⊆ L ∪ {X0 → Y0, . . . , Xi−1 →
Yi−1} such that Li |− Xi → Yi matches one of the Axioms F1 –F6.

2. Xn → Yn = X → Y .

Often, the Axioms F1, F2, and F6, are referred to as Armstrong’s axioms. These
three axioms constitute a complete and independent set of inference axioms for
implicational entailment, i.e., from it the other Axioms F3 –F5 can be derived,
and none of them is derivable from the others.

The semantic entailment and the syntactic entailment coincide, i.e., an im-
plication X → Y is semantically entailed by an implication set L if, and only
if, L syntactically entails X → Y , cf. [12, Theorem 4.1 on Page 50] as well as
[5, Proposition 21 on Page 81]. Consequently, we do not have distinguish be-
tween both entailment relations |= and |−, when it is up to decide whether an
implication follows from a set of implications.

A model of an implication set L is an attribute set Z ⊆M such that X ⊆ Z
implies Y ⊆ Z for all X → Y ∈ L. By XL we denote the smallest superset of X
that is a model of L.

The data encoded in a formal context can be visualized as a line diagram
of the corresponding concept lattice, which we shall shortly describe. A formal
concept of a formal context K := (G,M, I) is a pair (A,B) consisting of a set
A ⊆ G of objects as well as a set B ⊆ M of attributes such that AI = B
and BI = A. We then also refer to A as the extent, and to B as the intent,
respectively, of (A,B). In the denotation of K as a cross table, those formal
concepts are the maximal rectangles full of crosses (modulo reordering of rows
and columns). Then, the set of all formal concepts of K is denoted as B(K), and
it is ordered by defining (A,B) ≤ (C,D) if, and only if, A ⊆ C. It was shown
that this order always induces a complete lattice B(K) := (B(K),≤,∧,∨,>,⊥),



called the concept lattice ofK, cf. [5, 14], in which the infimum and the supremum
operation satisfy the equations∧

t∈T
(At, Bt) =

( ⋂
t∈T

At, (
⋃
t∈T

Bt)
II
)
,

and
∨
t∈T

(At, Bt) =
(
(
⋃
t∈T

At)
II ,
⋂
t∈T

Bt

)
,

and where > = (∅I , ∅II) is the greatest element, and where ⊥ = (∅II , ∅I) is
the smallest element, respectively. Furthermore, the concept lattice of K can be
nicely represented as a line diagram as follows: Each formal concept is depicted
as a vertex. Furthermore, there is an upward directed edge from each formal
concept to its upper neighbors, i.e., to all those formal concepts which are greater
with respect to ≤, but for which there is no other formal concept in between.
The nodes are labeled as follows: an attribute m ∈ M is an upper label of the
attribute concept ({m}I , {m}II), and an object g ∈ G is a lower label of the
object concept ({g}II , {g}I). Then, the extent of the formal concept represented
by a vertex consists of all objects which label vertices reachable by a downward
directed path, and dually the intent is obtained by gathering all attribute labels
of vertices reachable by an upward directed path.

Let K |= L. A pseudo-intent of a formal context K relative to an implication
set L is an attribute set P ⊆ M which is no intent of K, but is a model of
L, and satisfies QII ⊆ P for all pseudo-intents Q ( P . The set of all those
pseudo-intents is symbolized by PsInt(K,L). Then the implication set

Can(K,L) := {P → P II | P ∈ PsInt(K,L) }

constitutes an implicational base of K relative to L, i.e., for each implication
X → Y over M , the following equivalence is satisfied:

K |= X → Y ⇔ Can(K,L) ∪ L |= X → Y.

Can(K,L) is called the canonical base of K relative to L. It can be shown that it
is a minimal implicational base of K relative to L, i.e., there is no implicational
base of K relative to L with smaller cardinality. Further information is given by
[3, 4, 6, 13]. The most prominent algorithm for computing the canonical base is
certainly NextClosure developed by Bernhard Ganter [3, 4]. A parallel algorithm
called NextClosures is also available [8, 11], and an implementation is provided in
Concept Explorer FX [7]; its advantage is that its processing time scales almost
inverse linear with respect to the number of available CPU cores.

Eventually, in case a given formal context is not complete in the sense that
it does not contain enough objects to refute invalid implications, i.e., only con-
tains some observed objects in the domain of interest, but one aims at exploring
all valid implications over the given attribute set, a technique called Attribute
Exploration can be utilized, which guides the user through the process of axiom-
atizing an implicational base for the underlying domain in a way the number of
questions posed to the user is minimal. For a sophisticated introduction as well



as for theoretical and technical details, the interested reader is rather referred
to [2–4, 9, 13]. A parallel variant of the Attribute Exploration also exists, cf. [8,
9], which is implemented in Concept Explorer FX [7].

3 Probabilistic Formal Concept Analysis

This section presents probabilistic extensions of the common notions of Formal
Concept Analysis, which were first introduced in [10]. A probability measure
P on a countable set W is a mapping P : ℘(W ) → [0, 1] such that P(∅) = 0,
P(W ) = 1, and P is σ-additive, i.e., for all countable families (Un)n∈N of pairwise
disjoint sets Un ⊆W it holds that P(

⋃
n∈N Un) =

∑
n∈NP(Un). A world w ∈W

is possible if P{w} > 0, and impossible otherwise. The set of all possible worlds is
denoted byWε, and the set of all impossible worlds is denoted byW0. Obviously,
Wε ] W0 is a partition of W . Of course, such a probability measure can be
completely characterized by the definition of the probabilities of the singleton
subsets of W , since it holds true that P(U) = P(

⋃
w∈U{w}) =

∑
w∈U P({w}).

Definition 1. A probabilistic formal context K is a tuple (G,M,W, I,P) that
consists of a set G of objects, a set M of attributes, a countable set W of
worlds, an incidence relation I ⊆ G×M ×W , and a probability measure P on
W . For a triple (g,m,w) ∈ I we say that object g has attribute m in world w.
Furthermore, we define the derivations in world w as operators ·I(w) : ℘(G) →
℘(M) and ·I(w) : ℘(M)→ ℘(G) where

AI(w) := {m ∈M |
A

g ∈ A : (g,m,w) ∈ I } for object sets A ⊆ G,
and BI(w) := { g ∈ G |

A

m ∈ B : (g,m,w) ∈ I } for attribute sets B ⊆M,

i.e., AI(w) is the set of all common attributes of all objects in A in the world w,
and BI(w) is the set of all objects that have all attributes in B in w. The formal
context induced by a world w ∈W is defined as K(w) := (G,M, I(w)).

Kex(w1) m
1

m
2

m
3

g1 × · ×
g2 · × ×
g3 · · ×

Kex(w2) m
1

m
2

m
3

g1 × · ×
g2 · × ·
g3 × · ×

Kex(w3) m
1

m
2

m
3

g1 × · ×
g2 · × ×
g3 · × ·

Pex(w1) :=
1
2

Pex(w2) :=
1
3

Pex(w3) :=
1
6

Fig. 1. An exemplary probabilistic formal context Kex

As a running example for the current and the up-coming sections, we consider
the probabilistic formal context Kex presented in Figure 1. It consists of three



objects g1, g2, g3, three attributes m1,m2,m3, and three worlds w1, w2, w3. In
Kex it holds true that the object g1 has the attribute m1 in all three worlds, and
the object g3 has the attribute m3 in all worlds except in w3.

Definition 2. Let K be a probabilistic formal context. The almost certain scal-
ing of K is the formal context K×ε := (G×Wε,M, I×ε ) where ((g, w),m) ∈ I× if
(g,m,w) ∈ I.

(Kex)
×
ε m

1

m
2

m
3

(g1, w1) × · ×
(g2, w1) · × ×
(g3, w1) · · ×
(g1, w2) × · ×
(g2, w2) · × ·
(g3, w2) × · ×
(g1, w3) × · ×
(g2, w3) · × ×
(g3, w3) · × ·

(g3, w1)

m3

(g3, w3), (g2, w2)

m2

(g1, w2), (g1, w3),
(g1, w1), (g3, w2)

m1

(g2, w3), (g2, w1)

Fig. 2. The certain scaling of Kex from Figure 1 and its concept lattice

For our running example Kex, the almost certain scaling is displayed in Fig-
ure 2. As it can be read off it essentially consists of the subposition of the three
formal contexts Kex(w1), Kex(w2), and Kex(w3).

Lemma 3. Let K := (G,M,W, I,P) be a probabilistic formal context. Then
for all subsets B ⊆ M and for all possible worlds w ∈ Wε, it holds true that
BI(w) = BI×ε I×ε I(w).

Proof. Let X ⊆M . Then for all possible worlds w ∈Wε it holds that

g ∈ XI(w) ⇔

A

m ∈ X : (g,m,w) ∈ I
⇔

A

m ∈ X : ((g, w),m) ∈ I×ε ⇔ (g, w) ∈ XI×ε ,

and we conclude that XI(w) = π1(X
I×ε ∩ (G×{w})). Furthermore, we then infer

XI(w) = XI×ε I×ε I(w). ut



4 Implications over Probabilistic Attributes

In [10], the notion of probability of an implication in a probabilistic formal
context has been defined. However, it was not possible to express implications
between probabilistically quantified attributes, e.g., we could not state that hav-
ing attribute m with probability 1

3 implies having attribute n with probability
2
3 . In this section we will resolve this issue by defining the notion of probabilistic
attributes, and considering implications over probabilistic attributes. Further-
more, a technique for the construction of bases of such probabilistic implications
is proposed in the next Section 5.

Definition 4. Let K := (G,M,W, I,P) be a probabilistic formal context. For
object sets A ⊆ G and attribute sets B ⊆M , the incidence probability is defined
as

P(A,B) := P{w ∈W | A×B × {w} ⊆ I }.

A probabilistic attribute over M is an expression

P

≥ p.B where B ⊆ M , and
p ∈ [0, 1]. The set of all probabilistic attributes over M is denoted as

P

(M). For
a subset X ⊆

P

(M), its extension in K is given by

XI := { g ∈ G |

A P

≥ p.B ∈ X : P({g}, B) ≥ p }.

Considering our exemplary probabilistic formal context Kex from Figure 1,
the set {

P

≥ 1
2 .{m1}} has the following extension in Kex:

{

P

≥ 1
2 .{m1}}I = { g ∈ G | P({g}, {m1}) ≥ 1

2 } = {g1},

i.e., only the object g1 has the attribute m1 with a probability of at least 1
2 .

Lemma 5. Let K be a probabilistic formal context, and A ⊆ G as well as B ⊆
M . Then it holds true that P(A,B) = P(A,BI×ε I×ε ).

Proof. In Lemma 3 we have shown that BI(w) = BI×ε I×ε I(w) for all B ⊆ M and
all possible worlds w ∈Wε. Hence, we may conclude that

A×B × {w} ⊆ I ⇔ A ⊆ BI(w) ⇔ A ⊆ BI×ε I×ε I(w) ⇔ A×BI×ε I×ε × {w} ⊆ I,

and so P(A,B) = P(A,BI×ε I×ε ). ut

Definition 6. Let K := (G,M,W, I,P) be a probabilistic formal context.

1. A probabilistic implication over M is an implication over

P

(M), and the
set of all probabilistic implications over M is denoted as

P

Imp(M). A prob-
abilistic implication X → Y is valid in K if XI ⊆ YI is satisfied, and we
shall denote this by K |= X→ Y.

2. An implication P → Q over [0, 1] is valid in K, denoted as K |= P → Q, if
for all objects g ∈ G and all attribute sets B ⊆ M , the following condition
is satisfied:

P({g}, B) ∈ P implies P({g}, B) ∈ Q.



3. An implication X → Y over M is valid in K, and we symbolize this by
K |= X → Y , if for all objects g ∈ G and all probability values p ∈ [0, 1], the
following condition is satisfied:

P({g}, X) ≥ p implies P({g}, Y ) ≥ p.

An example for a probabilistic implication within the domain of the proba-
bilistic formal context presented in Figure 1 is

{

P

≥ 1
2 .{m1}} → {

P

≥ 2
3 .{m2},

P

≥ 4
5 .{m3}}.

However, it is not valid in K since the premise’s extension {g1} of {

P

≥ 1
2 .{m1}}

is not a subset of the conclusion’s extension

{

P

≥ 2
3 .{m2},

P

≥ 4
5 .{m3}}I = {

P

≥ 2
3 .{m2}}I ∩ {

P

≥ 4
5 .{m3}}I

= {g2} ∩ {g1, g3} = ∅.

It can be easily verified that the probabilistic implication {

P

≥ 1
2 .{m1}} →

{

P

≥ 4
5 .{m3}} is valid in K.

Lemma 7. Let K := (G,M,W, I,P) be a probabilistic formal context in which
the implication (p, q]→ {q} over [0, 1] is valid. Then, for each attribute set X ⊆
M and each probability value r ∈ (p, q], the probabilistic implication {

P

≥ r.X} →
{

P

≥ q.X} is valid in K, too.

Proof. Assume thatK |= (p, q]→ {q}. It easily follows from Definition 6 that for
each object g ∈ G, P({g}, X) ∈ (p, q] implies P({g}, X) = q, and furthermore
it is trivial that P({g}, X) > q implies P({g}, X) ≥ q. Hence, the probabilistic
implication {

P

≥ r.X} → {

P

≥ q.X} is valid in K for each value r ∈ (p, q]. ut

Lemma 8. Let K be a probabilistic formal context, and assume that the impli-
cation X → Y ∈ Imp(M) is valid in the almost certain scaling K×ε . Then X → Y
is valid in K, too, and in particular for each probability value p ∈ [0, 1], it holds
true that K |= {

P

≥ p.X} → {

P

≥ p. Y }.

Proof. Since X → Y is valid in K×ε , we conclude that XI×ε ⊆ Y I×ε , or equiva-
lently Y ⊆ XI×ε I×ε . By Lemma 5 we have that P({g}, X) = P({g}, XI×ε I×ε ). As
a consequence we get that P({g}, X) = P({g}, XI×ε I×ε ) ≤ P({g}, Y ), and thus
P({g}, X) ≥ p implies P({g}, Y ) ≥ p. As an immediate corollary it then follows
that the probabilistic implication {

P

≥ p.X} → {

P

≥ p. Y } is valid in K. ut

5 Probabilistic Implicational Knowledge Bases

In this main section, we define the notion of a probabilistic implicational knowl-
edge base, and develop a method for the construction of a sound and complete
knowledge base for a given probabilistic formal context. Furthermore, in case of
finiteness of the input probabilistic formal context, the construction will yield a
knowledge base which is finite as well.



Definition 9. A probabilistic implicational knowledge base over an attribute
set M is a triple (V,L,P) where V ⊆ Imp([0, 1]), L ⊆ Imp(M), and P ⊆

P

Imp(M). It is valid in a probabilistic formal context K := (G,M,W, I,P)
if each implication in V ∪ L ∪ P is valid in K. Then we shall denote this as
K |= (V,L,P). The relation |= is lifted as usual, i.e., for two probabilistic impli-
cational knowledge bases K1 and K2, we say that K1 entails K2, symbolized as
K1 |= K2, if K2 is valid in all probabilistic formal contexts in which K1 is valid,
i.e., if for all probabilistic formal contexts K, it holds true that K |= K1 implies
K |= K2.

Furthermore, a probabilistic implicational knowledge base for a probabilistic
formal context K is a probabilistic implicational knowledge base K that satisfies
the following condition for all probabilistic implications X→ Y over M :

K |= X→ Y if, and only if, K |= X→ Y.

5.1 Trivial Background Knowledge

Lemma 10. Let K := (G,M,W, I,P) be a probabilistic formal context. Then
the following probabilistic implications are valid in K.

1. {

P

≥ p.X} → {

P

≥ q. Y } if X ⊇ Y and p ≥ q.
2. {

P

≥ p.X,

P

≥ q. Y } → {

P

≥ p+ q − 1. X ∪ Y } if p+ q − 1 > 0.

Proof. Clearly, P({g}, X) ≥ p implies that P({g}, X) ≥ q. Furthermore, since
X ⊇ Y yields that {g}×X×{w} ⊇ {g}×Y ×{w}, we conclude that P({g}, Y ) ≥
q. For the second implication, observe that in case p+q−1 > 0 the intersection of
{w ∈ W |

A

x ∈ X : (g, x, w) ∈ I } and {w ∈ W |

A

y ∈ Y : (g, y, w) ∈ I } must
be non-empty, and in particular must have a P-measure of at least p+ q−1. ut

Define the background knowledge T (M) to consist of all trivial probabilistic
implications over M , i.e.,

T (M) := {X→ Y | X→ Y ∈

P

Imp(M) and ∅ |= X→ Y }.

In particular, T (M) contains all implications from Lemma 10. Since our aim is
to construct a knowledge base for a given probabilistic formal context, we do not
have to explicitly compute these trivial implications, and we will hence utilize
them as background knowledge, which is already present and known.

Lemma 11. Let P∪{X→ Y} ⊆

P

Imp(M) be a set of probabilistic implications
over M . If P ∪ T (M) |= X → Y with respect to non-probabilistic entailment,
then P |= X→ Y with respect to probabilistic entailment.

Proof. Consider a probabilistic formal context K with K |= P. Then Lemma 14
implies that

P

(K) |= P. Furthermore, it is trivial that

P

(K) |= T (M). Con-
sequently, the probabilistic implication X → Y is valid in

P

(K), and another
application of Lemma 14 yields that K |= X→ Y. ut



5.2 Approximations of Probabilities

Assume that K := (G,M,W, I,P) is a probabilistic context. Then the set

V (K) := {P({g}, B) | g ∈ G and B ⊆M }

contains all values that can occur when evaluating the validity of implications
over probabilistic attributes in K. Note that according to Lemma 5 it holds true
that

V (K) = {P({g}, B) | g ∈ G and B ∈ Int(K×ε ) }.

Furthermore, we define an upper approximation of probability values as follows:
For an arbitrary p ∈ [0, 1], let dpeK be the smallest value above p which can
occur when evaluating a probabilistic attribute in K, i.e., we define

dpeK := 1 ∧
∧
{ q | p ≤ q and q ∈ V (K) }.

Dually, we define the lower approximation of p ∈ [0, 1] in K as

bpcK := 0 ∨
∨
{ q | q ≤ p and q ∈ V (K) }.

It is easy to verify that for all attribute sets B ⊆ M and all probability values
p ∈ [0, 1], the following entailment is valid:

K |= {{

P

≥ p.B} → {

P

≥ dpeK. B}, {

P

≥ dpeK. B} → {

P

≥ p.B}}.

The second implication is in fact valid in arbitrary probabilistic contexts, since
we can apply Lemma 10 with p ≤ dpeK. For the first implication, observe that
for all objects g ∈ G and all attribute set B ⊆M , it holds true that

bP({g}, B)cK = P({g}, B) = dP({g}, B)eK,

and thus in particular P({g}, B) ≥ p if, and only if, P({g}, B) ≥ dpeK. Analo-
gously, P({g}, B) ≤ p is equivalent to P({g}, B) ≤ bpcK.

Lemma 12. Let K be a probabilistic formal context, and assume that p ∈ (0, 1)
is a probability value. Then the implication (bpcK, dpeK] → {dpeK} is valid in
K. Furthermore, the implications [0, d0eK] → {d0eK} and (b1cK, 1] → {1} are
valid in K.

Proof. Consider an arbitrary object g ∈ G as well as an arbitrary attribute set
B ⊆ M , and assume that bpcK < P({g}, B) ≤ dpeK. Of course, it holds true
that (bpcK, dpeK] ∩ V (K) = {dpeK}, and consequently P({g}, B) = dpeK.

Now consider the implication [0, d0eK]→ {d0eK}. In case 0 ∈ V (K) we have
that d0eK = 0, and then the implication is trivial. Otherwise, it follows that
[0, d0eK] ∩ V (K) = {d0eK}, and consequently 0 ≤ P({g}, B) ≤ d0eK implies
P({g}, B) = d0eK.

Eventually, we prove the validity of the implication (b1cK, 1] → {1}. If
1 ∈ V (K), then b1cK = 1, and hence the premise interval (1, 1] is empty, i.e.,
the implication trivially holds in K. Otherwise, (b1cK, 1] ∩ V (K) = ∅, and the
implication is again trivial. ut



5.3 The Probabilistic Scaling

Definition 13. Let K := (G,M,W, I,P) be a probabilistic formal context. The
probabilistic scaling of K is defined as the formal context

P

(K) := (G,

P

(M), I)
the incidence relation I of which is defined by

(g,

P

≥ p.B) ∈ I if P({g}, B) ≥ p,

and by

P∗(K) we denote the subcontext of

P

(K) with the attribute set

P∗(M) := {

P

≥ dpeK. BI×ε I×ε | p ∈ [0, 1], dpeK 6= 0, and B ⊆M, BI×ε I×ε 6= ∅ }.

Figure 3 shows the probabilistic scaling

P∗(Kex) the attribute set of which is
given by

P∗({m1,m2,m3}) = {

P

≥ p.B | B ∈ Int((Kex)
×
ε ) \ {∅} and p ∈ V (Kex) \ {0} }

=

{ P

≥ p.{m2},

P

≥ p.{m3},

P

≥ p.{m1,m3},

P

≥ p.{m2,m3},

P

≥ p.{m1,m2,m3}

∣∣∣∣∣ p ∈ { 16 , 13 , 23 , 56 , 1}
}
.

Please note that the dual formal context is displayed, i.e., the incidence table is
transposed. More formally, for a formal context K := (G,M, I) its dual context
is K∂ := (M,G, { (m, g) | (g,m) ∈ I }).

Lemma 14. Let K be a probabilistic formal context. Then for all probabilistic
implications {

P

≥ pt. Xt | t ∈ T } → {
P

≥ q. Y }, the following statements are
equivalent:

1. K |= {

P

≥ pt. Xt | t ∈ T } → {

P

≥ q. Y }
2.

P

(K) |= {

P

≥ pt. Xt | t ∈ T } → {

P

≥ q. Y }
3.

P∗(K) |= {

P

≥ dpteK. XI×ε I×ε
t | t ∈ T } → {

P

≥ dqeK. Y I×ε I×ε }

Proof. Statements 1 and 2 are equivalent by Definition 4. Furthermore, from
Lemma 5 we conclude that (

P

≥ p.X)I = (

P

≥ p.XI×ε I×ε )I for all probabilistic
attributes

P

≥ p.X. From this and the fact that P({g}, B) ≥ p is equivalent to
P({g}, B) ≥ dpeK, the equivalence of Statements 2 and 3 then follows easily. ut

5.4 Construction of the Probabilistic Implicational Knowledge Base

Theorem 15. LetK := (G,M,W, I,P) be a probabilistic context. Then K(K) :=
(V(K),Can(K×ε ),Can(

P∗(K), T (M))) is a probabilistic implicational base for K,
where

V(K) := { [0, d0eK]→ {d0eK} | 0 6= d0eK } ∪ { (b1cK, 1]→ {1} | b1cK 6= 1 }
∪ { (bpcK, dpeK]→ {dpeK} | p ∈ (d0eK, b1cK) \ V (K) }.

If K is finite, then K(K) is finite, too. Furthermore, finiteness of K(K) is also
ensured in case of finiteness of both M and V (K).



(

P∗(Kex))∂ g 1 g 2 g 3

P

≥ 1
6
.{m2} · × ×

P

≥ 1
6
.{m3} × × ×

P

≥ 1
6
.{m1,m3} × · ×

P

≥ 1
6
.{m2,m3} · × ·

P

≥ 1
6
.{m1,m2,m3} · · ·

P

≥ 1
3
.{m2} · × ·

P

≥ 1
3
.{m3} × × ×

P

≥ 1
3
.{m1,m3} × · ×

P

≥ 1
3
.{m2,m3} · × ·

P

≥ 1
3
.{m1,m2,m3} · · ·

P

≥ 2
3
.{m2} · × ·

P

≥ 2
3
.{m3} × × ×

P

≥ 2
3
.{m1,m3} × · ·

P

≥ 2
3
.{m2,m3} · × ·

P

≥ 2
3
.{m1,m2,m3} · · ·

P

≥ 5
6
.{m2} · × ·

P

≥ 5
6
.{m3} × · ×

P

≥ 5
6
.{m1,m3} × · ·

P

≥ 5
6
.{m2,m3} · · ·

P

≥ 5
6
.{m1,m2,m3} · · ·

P

≥ 1.{m2} · × ·

P

≥ 1.{m3} × · ·

P

≥ 1.{m1,m3} × · ·

P

≥ 1.{m2,m3} · · ·

P

≥ 1.{m1,m2,m3} · · ·
Fig. 3. The probabilistic scaling of the probabilistic formal context given in Figure 1



Proof. We first prove soundness. Lemma 12 yields that V(K) is valid in K,
Lemma 8 proves that Can(K×ε ) is valid in K, and Lemma 14 shows the validity
of Can(

P∗(K), T (M)) in K.
We proceed with proving completeness. Assume that

K |= {

P

≥ pt. Xt | t ∈ T } → {

P

≥ q. Y }.

Then by Lemma 14 the implication

{

P

≥ dpteK. XI×ε I×ε
t | t ∈ T } → {

P

≥ dqeK. Y I×ε I×ε }

is valid in

P∗(K), and must hence be entailed by Can(

P∗(K), T (M)) ∪ T (M)
with respect to non-probabilistic entailment. Lemma 11 then yields that it must
also be entailed by Can(

P∗(K), T (M)) with respect to probabilistic entailment.
Furthermore, the implications

(bpcK, dpeK]→ {dpeK}

for p ∈ ({ pt | t ∈ T } ∪ {q}) \ V (K) are contained in V(K), and the implications
X → XI×ε I×ε for X ∈ {Xt | t ∈ T } ∪ {Y } are entailed by Can(K×ε ). Utilizing
Lemmas 7 and 8 and summing up, it holds true that

K(K) |= { {

P

≥ pt. Xt} → {

P

≥ dpteK. Xt} | t ∈ T }
∪ { {

P

≥ dpteK. Xt} → {

P

≥ dpteK. XI×ε I×ε
t } | t ∈ T }

∪ {{
P

≥ dpteK. XI×ε I×ε
t | t ∈ T } → {

P
≥ dqeK. Y I×ε I×ε }},

and so K(K) also entails {

P

≥ pt. Xt | t ∈ T } → {

P

≥ dqeK. Y I×ε I×ε }. Of course,
the implications

{

P

≥ dqeK. Y I×ε I×ε } → {

P

≥ q. Y I×ε I×ε } and {

P

≥ q. Y I×ε I×ε } → {

P

≥ q. Y }

are trivial, i.e., are valid in all probabilistic formal contexts. Eventually, we have
thus just shown that the considered probabilistic implication {

P

≥ pt. Xt | t ∈
T } → {

P

≥ q. Y } follows from K(K).
As last step, we prove the claim on finiteness of K(K) if bothM and V (K) are

finite. Clearly, then V(K) is finite. The almost certain scaling K×ε then possess a
finite attribute set, and thus its canonical base must be finite. It also follows that
the attribute set

P∗(M) of the probabilistic scaling

P∗(K) is finite, and hence
the canonical base of

P∗(K) is finite as well. ut

Returning back to our running example Kex from Figure 1, we now construct
its probabilistic implicational knowledge base K(Kex). The first component is the
following set of implications between probability values:

{(0, 16 ]→ {
1
6}, (

1
6 ,

1
3 ]→ {

1
3}, (

1
3 ,

2
3 ]→ {

2
3}, (

2
3 ,

5
6 ]→ {

5
6}, (

5
6 , 1]→ {1}}.

Note that we left out the trivial implication {0} → {0}. The canonical base
of the certain scaling (Kex)

×
ε was computed as {{m1} → {m3}}, which con-

sequently is the second component K(Kex). For the computation of the third



C
an

(

P ∗ (
K

ex
),
T
′ (
{m

1
,m

2
,m

3
})
)

=



∅
→ {

P

≥ 2
3
.{m3}},

{

P

≥ 1.{m1,m3},

P

≥ 1
6
.{m2}}

→ {

P

≥ 1.{m1,m2,m3}},

{

P

≥ 2
3
.{m2,m3},

P

≥ 5
6
.{m3},

P

≥ 1.{m2},

P

≥ 1
3
.{m1,m3}}

→ {

P

≥ 1.{m1,m2,m3}},

{

P

≥ 1.{m3},

P

≥ 1
3
.{m1,m3}}

→ {

P

≥ 1.{m1,m3}},

{

P

≥ 2
3
.{m1,m3},

P

≥ 5
6
.{m3}}

→ {

P

≥ 1.{m1,m3}},

{

P

≥ 2
3
.{m3},

P

≥ 1
6
.{m2,m3}}

→ {

P

≥ 2
3
.{m2,m3},

P

≥ 1.{m2}},

{

P

≥ 2
3
.{m3},

P

≥ 1
3
.{m2}}

→ {

P

≥ 2
3
.{m2,m3},

P

≥ 1.{m2}},

{

P

≥ 5
6
.{m3}}

→ {

P

≥ 1
3
.{m1,m3}},

{
P

≥ 2
3
.{m3},

P
≥ 1

6
.{m1,m3}}

→ {

P

≥ 5
6
.{m3},

P

≥ 1
3
.{m1,m3}}


Fig. 4. The implicational base of

P∗(Kex) with respect to the background implications
that are described in Lemma 10.

component of K(Kex), we consider the probabilistic scaling of Kex. In order to
avoid the axiomatization of trivial implications, we construct the implicational
base of

P∗(Kex) relative to the implication set containing all those probabilistic
implications which are described in Lemma 10. This set T ′({m1,m2,m3}) of
background knowledge contains, among others, the following implications:

{

P

≥ 5
6 .{m1,m3}} → {

P

≥ 1
3 .{m1}}

{

P

≥ 5
6 .{m1,m3}} → {

P

≥ 2
3 .{m3}}...

{

P

≥ 2
3 .{m2},

P

≥ 2
3 .{m3}} → {

P

≥ 1
3 .{m2,m3}}

{

P

≥ 5
6 .{m1,m3},

P

≥ 5
6 .{m2,m3}} → {

P

≥ 2
3 .{m1,m2,m3}}...

The resulting probabilistic implication set is presented in Figure 4. Please note
that we possibly did not include all trivial probabilistic implications in the back-
ground knowledge, as we do not yet know an appropriate reasoning procedure.



6 Conclusion

In this document we have investigated a method for the axiomatization of rules
that are valid in a given probabilistic data set, which is represented as a multi-
world view over the same set of entities and vocabulary to describe the entities,
and which is furthermore equipped with a probability measure on the set of
worlds. We have developed such a method in the field of Formal Concept Anal-
ysis, where it is possible to assign properties to single objects. We have achieved
the description of a technique for a sound and complete axiomatization of ter-
minological knowledge which is valid in the input data set and expressible in
the chosen description language. It is only natural to extend the results to a
probabilistic version of the light-weight description logic EL⊥, which not only
allows for assigning properties (concept names) to entities, but also allows for
connecting pairs of entities by binary relations (role names). This will be subject
of an upcoming publication.

It remains to apply the proposed method to concrete real-world data sets,
e.g., in the medical domain, where worlds are represented by patients, or in natu-
ral sciences, where worlds are represented by repetitions of the same experiment,
etc. From a theoretical perspective, it is interesting to investigate whether the
constructed probabilistic implicational knowledge base is of a minimal size – as
it holds true for the canonical base in the non-probabilistic case. Furthermore,
so far we have only considered a model-theoretic semantics, and the induced se-
mantic entailment between implication sets. For practical purposes, a syntactic
entailment in the favor of the Armstrong rules in FCA is currently missing.
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