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Abstract. Entropy is a measure for the uninformativeness or randomness of a
data set, i.e., the higher the entropy is, the lower is the amount of information. In
the field of propositional logic it has proven to constitute a suitable measure to
be maximized when dealing with models of probabilistic propositional theories.
More specifically, it was shown that the model of a probabilistic propositional
theory with maximal entropy allows for the deduction of other formulae which
are somehow expected by humans, i.e., allows for some kind of common sense
reasoning.
In order to pull the technique of maximum entropy entailment to the field of For-
mal Concept Analysis, we define the notion of entropy of a formal context with re-
spect to the frequency of its object intents, and then define maximum entropy en-
tailment for quantified implication sets, i.e., for sets of partial implications where
each implication has an assigned degree of confidence. Furthermore, then this en-
tailment technique is utilized to define so-called maximum entropy implicational
bases (ME-bases), and a first general example of such a ME-base is provided.

Keywords: Maximum Entropy · Formal Context · Partial Implication ·
Formal Concept Analysis · Implicational Base · Uncertain Knowledge

1 Introduction

Entropy is a measure for describing the amount of randomness or uninformativeness of
a particular system, and has variants in different fields, e.g., in thermodynamics (where
it was defined first), in statistical mechanics, but also in probability theory (where it
describes a lack of predicatability), and in information theory as well (where it is also
called Shannon entropy, and describes the amount of information contained in a message
sent through a channel). In particular, one of the first works on entropy in information
theory was published by Shannon and Weaver in 1949, cf. [10]. Later, there were several
researchers who adapted the notion of entropy to probabilistic logic. For example, a
motivating and wide introduction can be found in the book The Uncertain Reasoner’s
Companion - a Mathematical Perspective [9] written by Paris. A thorough justification
for reasoning under maximum entropy semantics can be found therein on pages 76 ff.
Furthermore, there is ongoing and active research on maximum entropy semantics,
in particular for the case of probabilistic first-order-logic, which is e.g. driven by Kern-
Isberner, cf. [3]. Both Paris and Kern-Isberner show that reasoning under maximum
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entropy semantics somehow implements common sense reasoning, and yield conclusions
which are expected by humans when dealing with probabilistic theories or data sets.

This paper shall give a short overview and some first notes on utilizing the measure of
entropy in the field of Formal Concept Analysis, and on a possibility for defining maxi-
mum entropy semantics for sets of partial implications equipped with probabilities (which
are called quantified implication sets herein). Additionally, this paper presents a defini-
tion of an implicational base under such a maximum entropy semantics (ME-base), and
provides a first general example of such a base which is induced by Luxenburger’s base,
cf. [8]. However, there is a specific example of a data set showing that this first ME-base
is neither non-redundant nor minimal, and thus leaves possibilities for future research.

2 Formal Concept Analysis

The field of Formal Concept Analysis was invented for at least two reasons: Firstly,
it should formalize the philosophical notion of a concept – which is characterized by
its extent, i.e., the objects it describes, and its intent, i.e., the properties it satisfies
– in a formal and mathematical way, cf. [5, Page 58]. Secondly, it was meant to be a new
approach to the field of lattice theory, and in particular each complete lattice is isomorphic
to a concept lattice (the lattice that is induced by the set of all formal concepts of a formal
context). In this section, all necessary definitions for understanding of the subsequent
sections are presented. For a more sophisticated overview on Formal Context Analysis,
the interested reader is rather referred to the standard book [5] by Ganter and Wille.

Definition 1 (Formal Context). A formal context is a triple K := (G,M,I) which
consists of a set G of objects, a set M of attributes, and an incidence relation
I ⊆ G×M. In case (g,m) ∈ I, we say that the object g has the attribute m in K,
and we may also denote this infix as g I m. Furthermore, K induces two derivation
operators ·I : ℘(G)→ ℘(M) and ·I : ℘(M)→ ℘(G), respectively, as follows:

AI := {m ∈M |

A

g ∈ A : g I m},
and BI := {g ∈ G |

A

m ∈ B : g I m}.

It is well-known [5] that both derivation operators form a so-called Galois connection
between the powersets ℘(G) and ℘(M), i.e., the following statements hold true for
all subsets A,A1,A2 ⊆ G and B,B1,B2 ⊆M :

1. A ⊆ BI ⇔ B ⊆ AI ⇔ A×B ⊆ I
2. A ⊆ AII

3. AI = AIII

4. A1 ⊆ A2 ⇒ AI
2 ⊆ AI

1

5. B ⊆ BII

6. BI = BIII

7. B1 ⊆ B2 ⇒ BI
2 ⊆ BI

1

An attribute set B ⊆M with B = BII is called an intent of K, and we shall denote
the set of all intents of K as Int(K).
Let K = (G,M,I) be a finite formal context. For an attribute set X ⊆ M , its

frequency in K is defined as

freq
K
(X) :=

|{g ∈ G | {g}I = X }|
|G|

,



and its support is given by

supp
K
(X) :=

|XI|
|G|

.

It is easy to verify that freq
K

is a discrete probability measure on ℘(M), i.e.,∑
X⊆M freq

K
(X) = 1.

Definition 2 (Implication). An implication over M is of the form X → Y where
X,Y ⊆ M, and we call X the premise, and Y the conclusion.1 It is valid in a
formal context K := (G,M,I), denoted as K |= X → Y , if each object that possesses
all attributes in X also has all attributes in Y , i.e., if XI ⊆ Y I. Furthermore, the
confidence of X → Y in K is defined as

confK(X → Y ) :=
|(X ∪ Y )I|
|XI|

,

i.e., as the fraction of the number of objects satisfying both premise and conclusion
compared to the number of objects satisfying only the premise.

An implication set L is a set of implications. Then, L is valid in K if all implications
in L are valid in K, and we symbolize this by K |= L. If an implication X → Y is
valid in all formal contexts in which L is valid, then we say that L entails X → Y and
denote this as L |= X → Y .

The confidence of an implication measures the degree of validity in a given formal con-
text. It is readily verified that an implicationX → Y is valid in a formal contextK if, and
only if, its confidence inK equals 1. (ThenXI∩Y I = (X∪Y )I = XI , and soXI ⊆ Y I .)

In [6], the canonical base of a formal context K was introduced as the implication set

Can(K) := {P → P II | P ∈ PsInt(K)},

where PsInt(K) consists of all pseudo-intents of K, i.e., those sets P ⊆ M that are
no intents (P 6= P II), but contain all intents QII for pseudo-intents Q ( P . In
particular, the above mentioned canonical base is an implicational base for K, i.e., for
all implications X → Y , it holds true that X → Y is valid in K if, and only if, Can(K)
entails X → Y . Furthermore, it is in fact a minimal implicational base, i.e., there is
no implicational base of K containing fewer implications.
We continue by defining three different notions of equivalence of formal contexts,

one for each of the measures freq, supp, and conf, that are introduced above. As a not
very surprising result, it is afterwards shown that these three kinds of equivalence are
indeed the same, i.e., two formal contexts are equivalent with respect to one of the
measures if, and only if, they are equivalent with respect to all of the three measures.

Definition 3 (Equivalence of Formal Contexts). Let K1 and K2 be two formal
contexts with a common attribute set M.

1. K1 and K2 are frequency-equivalent if freq
K1

(X) = freq
K2

(X) for all X ⊆M.

1 In the field of machine learning, an implication is also called association rule, a premise
is called antedecent, and a conclusion is called consequent.



2. K1 and K2 are support-equivalent if supp
K1

(X) = supp
K2

(X) for all X ⊆M.
3. K1 and K2 are confidence-equivalent if confK1

(X → Y ) = confK2
(X → Y ) for

all X,Y ⊆M.

Lemma 4. Let K1 and K2 be two formal contexts with a common attribute set M.
Then the following statements are equivalent:

1. K1 and K2 are frequency-equivalent.
2. K1 and K2 are support-equivalent.
3. K1 and K2 are confidence-equivalent.

Proof. 1.⇒2. We may express supp
K

in terms of freq
K

as follows:

supp
K
(X) =

∑
X⊆Y

freq
K
(Y ).

It follows that frequency-equivalence implies support-equivalence.
2.⇒3. Obviously, confK can be expressed by means of supp

K
by

confK(X → Y ) =
supp

K
(X ∪ Y )

supp
K
(X)

.

Thus, support-equivalence implies confidence-equivalence.
3.⇒1. Note that for arbitrary formal contexts K := (G,M,I),

confK(X → Y ) =
|(X ∪ Y )I|
|XI|

=
|{g ∈ G | X ∪ Y ⊆ {g}I }|
|{g ∈ G | X ⊆ {g}I }|

=

∑
X∪Y⊆Z |{g ∈ G | Z = {g}I }|∑
X⊆Z |{g ∈ G | Z = {g}I }|

=

∑
X∪Y⊆Z freq

K
(Z)∑

X⊆Z freq
K
(Z)

.

Thus, it follows that

confK(∅ → X) =
∑
X⊆Z

freq
K
(Z),

and hence

freq
K
(X) = confK(∅ → X)−

∑
X(Z

freq
K
(Z)

yields a recursion with freq
K
(M) = confK(∅ → M). Consequently, confidence-

equivalence implies frequency-equivalence. ut



3 Quantified Implication Sets

In [8], Luxenburger introduced the notion of a stochastic context as a means to capture
statistical knowledge between classes (of objects) and attributes. Formally, a stochastic
context is a triple (G,M, i) consisting of a set G of classes, a set M of attributes, and
an incidence function i : G×M → [0,1]. Then, the value p = i(g,m) indicates that
the (statistical) probability of an object in the class g having the attribute m is p. For
introducing semantics, the notion of a realizer was defined: A formal context (H,G∪
M,J) realizes a stochastic context (G,M, i) if, for all classes g ∈ G and all attributes
m ∈ M , the implication g → m has a confidence i(g,m). Then, an implication is
certainly valid (possibly valid) in (G,M, i) if it is valid in all (some) realizers of (G,M, i).

It turns out that this type of knowledge representation is too restricted. On the one
hand, it is not possible to denote unknown incidence values,2 and on the other hand,
we may not express dependencies between attributes or sets of attributes. As a solution,
we could consider i as a partial function with type G×℘(M)→ [0,1], but then we
would not be able to express relations between the different classes, e.g., when it is
known that two classes are disjoint, or overlap to a certain degree. Generalizing further,
we could utilize an incidence function i : ℘(G∪M)×℘(G∪M)→ [0,1], which leads
us directly to sets of implications that are annotated with a value between [0,1]. Then,
we do not have to distinguish between the classes and attributes, and simply say that
a (generalized) stochastic context over M is a partial function L : Imp(M)→ [0,1].

Definition 5 (Quantified Implication). A quantified implication over M is of
the form

P

./ p.X → Y where ./ ∈ {<,≤,=, 6=,≥,>}, p ∈ [0,1], and X,Y ⊆ M.
It is valid in a formal context K := (G,M,I), symbolized as K |=

P
./ p.X → Y ,

if confK(X → Y ) ./ p. The set of all quantified implications over M is denoted asP

Imp(M).
A quantified implication set is a set of quantified implications. A formal context

K := (G,M,I) is a realizer of a quantified implication set L, and we shall denote this
as K |= L, if all implications in L are valid in K.

In the following text, we will only consider quantified implications of the formP

= p.X → Y . Consequently, a quantified implication set L may also be viewed
as a partial mapping L : Imp(M) → [0,1] where L(X → Y ) := p if, and only if,P

= p.X → Y ∈ L. Of course, this requires that there are no two different quantified
implications

P

= p.X → Y and

P

= q.X → Y where p 6= q. We will not distinguish
between both notational variants, and use that one which is better readable. Furthermore,
by dom(L) we denote the domain of a quantified implication set L : Imp(M)→ [0,1],
i.e., the set of all implications to which L assigns a probability.

Clearly, quantified implication sets generalize the stochastic contexts of Luxenburger,
since if (G,M, i) is a stochastic context, then L : (g → m) 7→ i(g,m) is a quantified
implication set over G∪M , and both have the same realizers.

As an alternative approach to defining semantics for the quantified implications, it is
also possible to use probabilistic formal contexts which were introduced in [7]. In partic-
ular, we could define that a probabilistic formal context K := (G,M,W, I,P) realizes
a quantified implication

P

./ p.X → Y if in K it holds true that P(X → Y ) ./ p.
However, we do not want to follow this approach here.
2 Of course, this may be easily solved by regarding i as a partial function



As a next step, we define the notion of entailment for quantified implication sets.
For this purpose, let L ∪ {

P

= p.X → Y } ⊆

P

Imp(M). Then L certainly entailsP

= p.X → Y if each realizer of L is a realizer of

P

= p.X → Y , too, and we shall
denote this by L |= A

P

= p.X → Y . Dually, L possibly entails

P

= p.X → Y if there
is a common realizer of L and

P

= p.X → Y , or if L is inconsistent, i.e., if L has no
realizers at all, and this is symbolized as L |= E

P

= p.X → Y . The certain entailment
|= Awas investigated by Borchmann in [4], where a suitable system of linear equations
must be solved in order to decide an entailment question L |= A

P

= p.X → Y . Fur-
thermore, Borchmann showed that this entailment can be solved in polynomial space.
In the next section, we will define the notion of maximum entropy entailment |=ME,
which is stronger than |= E, but weaker than |= A.

4 Maximum Entropy Entailment

In [9], Paris motivates and introduces an inference process called maximum entropy
reasoning for probabilistic propositional logic. Of course, there is a strong correspondence
between propositional logic and Formal Concept Analysis, and we want to use this
fact to apply the maximum entropy reasoning to Formal Concept Analysis.

Definition 6 (Entropy). Let K := (G,M,I) be a formal context. Then, the entropy
of K is defined as3

H(K) := −
∑
X⊆M

freq
K
(X) · log(freq

K
(X)).

For a quantified implication set L, a maximum entropy realizer (ME-realizer) of L
is a realizer of L that has maximal entropy among all realizers of L. It can be shown
that modulo frequency-equivalence, maximum entropy realizers are unique, and hence
we shall denote the maximum entropy realizer of L by L∗. The maximum entropy
confidence (ME-confidence) of an implication X → Y with respect to L is defined as the
confidence of X → Y in the ME-realizer L∗, i.e., confL(X → Y ) := confL∗(X → Y ).

Furthermore, for a quantified implication set L∪ {

P

./ p.X → Y }, we say that L
entails

P

./ p.X → Y with respect to maximum entropy reasoning (or abbreviated:
ME-entails) if

P

./ p.X → Y is valid in the ME-realizer L∗, or if L is inconsistent,
i.e., if L has no realizers at all. We shall denote this as L |=ME

P

./ p.X → Y .

For the case of one event and its converse, Figure 1 shows a plot of the corresponding
entropy function, while for the case of two events, Figure 2 presents a suitable plot.

It is easy to see that L |= A
P

./ p.X → Y implies L |=ME

P

./ p.X → Y , and the
latter implies L |= E

P

./ p.X → Y , i.e., ME-entailment |=ME is weaker than certain
entailment |= A, but stronger than possible entailment |= E. A number of reasons that
support the claim of ME-entailment being more natural than the other entailment
types are presented by Paris in [9], where it is shown that reasoning under maximum
entropy semantics somehow captures human expectation and common sense reasoning.
3 We use the logarithm with base 2 here, since we are dealing with data sets or informations,

respectively, which are encoded as bits. However, using another base would not cause any
problem, since this would only distort the entropy by a multiplicative factor.
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In the remaining part of this section, the problem of deciding entailment under
maximum entropy reasoning is considered. We hence assume that a quantified impli-
cation set L is given, and its ME-realizer is to be computed. For this purpose, we show
how L induces a system of linear equations, for which the entropy function has to be
maximized, i.e., we define an optimization problem the solution of which describes the
ME-realizer L∗ (modulo frequency-equivalence).

For each quantified implication

P

= p.X → Y of L, a realizer K of L must satisfy
confK(X → Y ) = p, i.e.,

p =
supp

K
(X ∪ Y )

supp
K
(X)

=

∑
X∪Y⊆Z

|{g∈G | {g}I=Z }|
|G|∑

X⊆Z
|{g∈G | {g}I=Z }|

|G|

=

∑
X∪Y⊆Z freq

K
(Z)∑

X⊆Z freq
K
(Z)

.

This is equivalent to the condition
∑

X∪Y⊆Z freq
K
(Z)− p ·

∑
X⊆Z freq

K
(Z) = 0.

Hence, we formulate a matrix equation

A · x = b,

where A : dom(L)∪{∗}×℘(M)→ [0,1], x : ℘(M)→ [0,1], and b : dom(L)∪{∗} →
[0,1], such that

A(X → Y,Z) :=


1− p if X ∪ Y ⊆ Z,

−p else if X ⊆ Z, and
0 otherwise.

A(∗,Z) := 1

and b(X → Y ) := 0 for allX → Y ∈ dom(L), and b(∗) := 1. Then a solution x induces
a class of formal contexts K such that for all Z ⊆M , freq

K
(Z) = x(Z) – we just have

to determine the solution x, for which the entropy H(x) := −
∑

X⊆M x(X) · log(x(X))
is maximal.

5 Maximum Entropy Bases

For the axiomatization of data sets containing assertional knowledge, implicational bases
were intensively used to describe the deducible implications in a sound and complete
manner. If only valid implications are of interest, then the canonical base of Guigues and
Duquenne in [6] describes a minimal implicational base, i.e., it is of smallest size among
all sound and complete implication sets for the input formal context. There are also some
investigations on direct bases, for which entailment can be checked in one pass, i.e., each
implication in a direct base must only be considered once when deciding entailment, cf.,
Adaricheva, Nation, and Rand [1]. Furthermore, several different bases for partial implica-
tions, i.e., for the implications in a formal context with a confidence less than 1, were in-
troduced, and an overview as well as a comparison on different types are presented by Bal-
cázar in [2], among which the most popular base is of course Luxenburger’s base [8]. How-
ever, in this section a new notion of a base of partial implications of a formal context shall
be defined, which utilizes the maximum entropy entailment from the preceeding sections.



Definition 7 (Maximum Entropy Implicational Base). Let K be a formal
context with attribute set M. Then, a quantified implication set L over M is a maximum
entropy implicational base (ME-base) of K if for all X → Y ∈ Imp(M),

confK(X → Y ) = confL(X → Y ).

A ME-base L is non-redundant, if none of its values can be removed, i.e., for all
X → Y ∈ dom(L) it holds that L(X → Y ) 6= confL\{X→Y }(X → Y ). Furthermore,
a ME-base L of K is minimal if there is no ME-base with a smaller domain, i.e., if
|dom(L)| ≤ |dom(L′)| for all ME-bases L′ of K.4

Lemma 8. Let K be a formal context, and L be a quantified implication set. Then
the following statements are equivalent:

1. L is a maximum entropy implicational base of K.
2. L∗ and K are confidence-equivalent.
3. L∗ and K are support-equivalent.
4. L∗ and K are frequency-equivalent.

Proof. By the definition of realizers of quantified implication sets, we have L(X →
Y ) = confL∗(X → Y ) for all implications X → Y ∈ dom(L). Hence, L is a maximum
entropy implicational base of K if, and only if, L∗ and K are confidence-equivalent.
The remaining equivalences are immediate consequences of Lemma 4 ut

As a corollary we infer that, since all realizers of the quantified implication set confK
are frequency-equivalent to K, confK is a maximal entropy base of K. Furthermore,
it follows that L with L(∅ → X) := confK(∅ → X) is a maximum entropy base of K.

For an implicationX → Y ∈ Imp(M), it holds that confK(X → Y ) = confK(X
II →

Y II).

Proposition 9. Let K be a formal context, and define the quantified implication set
K
∗ : Imp(M)→ [0,1] where

K
∗(P → P II) := 1 for all P ∈ PsInt(K), and
K
∗(X → Y ) := confK(X → Y ) for all X,Y ∈ Int(K) with X ( Y

where no Z ∈ Int(K) with X ( Z ( Y exists.

Then K∗ is a maximum entropy implicational base for K.

Proof. We utilize Lemma 8, i.e., we prove that K and K∗∗ are confidence-equivalent.
Thus, consider an arbitrary implication X → Y ∈ Imp(M) – we need to show that
the confidences of X → Y in K and K∗∗ are equal. Beforehand, it is useful to give
a characterization or construction of the ME-realizer K∗∗.

Consider an implication X → Y that is valid in K, i.e., has a confidence of 1. Then
it follows from the canonical base. Furthermore, all implications P → P II where P is a
pseudo-intent of K are valid in K∗∗. Consequently, also X → Y must be valid in K∗∗,
i.e., has a confidence of 1 in K∗∗. Consequently, K and K∗∗ are confidence-equivalent
for all valid implications of K.
Now assume that confK(X → Y ) = p < 1. We consider the following four cases:

4 We denote by L \ {X → Y } the quantified implication set which assigns no probability
to X → Y , but otherwise coincides with L.



1. {X,Y } ⊆ Int(K) with X ⊆ Y , and there is no Z ∈ Int(K) such that X ( Z ( Y .
2. {X,Y } ⊆ Int(K) with X ⊆ Y , and there is a non-empty subset {Z1, . . . ,Zn} ⊆

Int(K) such that X ( Z1 ( . . . ( Zn ( Y , and for all i ∈ {0, . . . , n}, there is no
Z ∈ Int(K) with Zi ( Z ( Zi+1 where Z0 := X and Zn+1 := Y .

3. {X,Y } ⊆ Int(K) with X 6⊆ Y .
4. {X,Y } 6⊆ Int(K).

We continue by proving the claim for each of the cases above.

1. is true by definition of K∗.
2. Note that for sets X ⊆ Y ⊆ Z ⊆M , and arbitrary formal contexts (G,M,I), it

holds true that conf(G,M,I)(X → Y )·conf(G,M,I)(Y → Z) = conf(G,M,I)(X → Z).
Then, by Case 1, each of the implications Zi → Zi+1 where i ∈ {0, . . . , n} has
the same confidence in K and K∗∗. Consequently, we know that the following
equations are valid:

confK(X → Y ) = confK(Z0 → Zn+1)

= confK(Z0 → Z1) · . . . · confK(Zn → Zn+1)

= confK∗∗(Z0 → Z1) · . . . · confK∗∗(Zn → Zn+1)

= confK∗∗(Z0 → Zn+1)

= confK∗∗(X → Y ).

3. The following equations are valid.

confK(X → Y ) = confK(X → X ∪ Y )

= confK(X → (X ∪ Y )II)

= confK∗∗(X → (X ∪ Y )II)

= confK∗∗(X → X ∪ Y )

= confK∗∗(X → Y ).

4. We know that both implicationsX → Y andXII → Y II have the same confidence
in K. Furthermore, X → Y is entailed by {X → XII,XII → Y II, Y II → Y },
where X → XII and Y II → Y both have confidence 1 in K, and hence also in
K
∗∗. We prove that both implications X → Y and XII → Y II also have the

same confidence in the ME-realizer K∗∗.
Assume X ⊆ Y . Then we have that

confK∗∗(X → Y ) = confK∗∗(X → Y ) · confK∗∗(Y → Y II)

= confK∗∗(X → Y II)

= confK∗∗(X → XII) · confK∗∗(XII → Y II)

= confK∗∗(XII → Y II).

Furthermore, let X 6⊆ Y . The implication (X ∪ Y )II → XII ∪ Y II is valid in K,
i.e., has confidence 1 both in K and in the maximum entropy realizer K∗∗. We



proceed as follows:

confK∗∗(X → Y ) = confK∗∗(X → X ∪ Y )

= confK∗∗(XII → (X ∪ Y )II)

= confK∗∗(XII → (X ∪ Y )II) · confK∗∗((X ∪ Y )II → XII ∪ Y II)

= confK∗∗(XII → XII ∪ Y II)

= confK∗∗(XII → Y II).

We have shown that K and K∗∗ are confidence-equivalent. Consequently, both are
also frequency-equivalent, and thus must have the same intents. (The set of object
intents consists of all those attribute sets with a frequency > 0, hence both K and
K
∗∗ have the same object intents.) ut

It should be emphasized that the ME-base from the preceding Proposition 9 is not
a minimal ME-base – which is based on the example of a Boolean formal context
(M,M,⊆) for some M := ℘(N): its Luxenburger base is

{X → X ∪ {m} | X ⊆M, m /∈ X }

where all contained implications possess a confidence of 1
2 . Of course, it can be easily

verified that the empty implication set ∅ ⊆

P

Imp(M) also constitutes a ME-base of
(M,M,⊆), since then freq∅∗ is uniform in order to maximize the entropy, and hence
each formal context being a ME-realizer of ∅ must be isomorphic to (M,M,⊆) – in
particular, it must be a subposition of some copies of the Boolean formal context
(M,M,⊆), modulo reordering of rows.

6 Conclusion

In this paper, the widely used measure of entropy is defined for the basic structure
of a formal context in the field of Formal Concept Analysis. It is then utilized to define
entailment for quantified implications under maximum entropy semantics, yielding a
reasoning procedure which is more common for human thinking than the existing certain
semantics and the possible semantics. Then some first steps towards implicational bases
under maximum entropy semantics are presented. However, there is large room for
future research. For example, possibilities of smaller ME-bases shall be investigated,
and particularly and most importantly searching for a (canonical) minimal ME-base
is a major goal. Of course, this would require a more sophisticated study of this idea.
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