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A probabilistic formal context is a triadic context the third dimension of which is a set
of worlds equipped with a probability measure. After a formal definition of this notion,
this document introduces probability of implications with respect to probabilistic formal
contexts, and provides a construction for a base of implications the probabilities of which
exceed a given lower threshold. A comparison between confidence and probability of impli-
cations is drawn, which yields the fact that both measures do not coincide. Furthermore,
the results are extended towards the light-weight description logic EL⊥ with probabilistic
interpretations, and a method for computing a base of general concept inclusions the
probabilities of which are greater than a pre-defined lower bound is proposed. Additionally,
we consider so-called probabilistic attributes over probabilistic formal contexts, and provide
a method for the axiomatization of implications over probabilistic attributes.
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1. Introduction

Most data sets from real-world applications contain errors and noise. Hence, for mining
them and axiomatize hidden terminological knowledge from them special techniques are
necessary in order to circumvent the expression of the errors. This document focuses on
rule mining, especially we attempt to extract rules that are approximately valid in data sets,
or in families of data sets, respectively. There are at least two measures for the approximate
soundness of rules, namely confidence and probability. While confidence expresses the
number of counterexamples in a single data set, probability expresses the number of data
sets in a data set family that do not contain any counterexample. More specifically, we
consider implications in the Formal Concept Analysis setting (Ganter and Wille 1999), and
general concept inclusions (GCIs) in the Description Logics setting (Baader et al. 2003),
in particular in the light-weight description logic EL⊥.

Firstly, for axiomatizing rules from formal contexts possibly containing wrong incidences
or having missing incidences the notion of a partial implication (also called association rule)
as well as the notion of confidence were defined by Luxenburger (1993). Furthermore, Lux-
enburger introduced a method for the computation of a base of all partial implications the
confidences of which in a given formal context is above a pre-defined threshold. Borchmann
(2014) extended the results to the description logic EL⊥ by adjusting the notion of confidence
to GCIs, and also proposed a method for the construction of a base of confident GCIs for
an interpretation. Balcázar (2008) studies different notions of redundancy in sets of partial
implications, and shows that there are essentially only two different variants of redundancy.
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Furthermore, he presents corresponding constructions for minimal bases of partial impli-
cations. Atserias and Balcázar (2015) consider the problem of entailment between partial
implications, and provide necessary and sufficient conditions for the entailment problem
L |=γ X → Y , i.e., for the question whetherX → Y has a confidence of at least γ in all those
formal contexts in which all implications contained in L possess a confidence of γ or greater.

Secondly, another perspective considers a family of data sets representing different views
of the same domain, e.g., knowledge of different persons, or observations of an experiment
that has been repeated several times, since some effects could not be observed in every run.
In the field of Formal Concept Analysis, Demin, Ponomaryov, and Vityaev (2011) introduced
probabilistic extensions of formal contexts as well as appropriate probabilistic variants of
formal concepts and implications, and also provided some methods for their computation.
Kriegel (2015a) showed some methods for the computation of a base of GCIs in probabilistic
Description Logics where concept and role constructors are available to express probability
directly in the concept descriptions. Here, we want to use another approach, and do not
allow for probabilistic constructors, but define the notion of a probability of general concept
inclusions in the light-weight description logic EL⊥. Furthermore, we provide a method for the
computation of a base of GCIs satisfying a certain lower probability threshold. More specif-
ically, we utilize the description logic EL⊥ with probabilistic interpretations that have been
introduced by Lutz and Schröder (2010). Beforehand, we only consider conjunctions in the
language of Formal Concept Analysis, define the notion of a probabilistic formal context in a
more general form than by Demin, Ponomaryov, and Vityaev (2011), and provide a technique
for the computation of a base of implications satisfying a given lower probability threshold.
At the end of this document, a new approach for the axiomatization of terminological

knowledge from probabilistic formal contexts is proposed in Section 8. More specifically, we
define the notion of a probabilistic attribute as an expression of the form

P

≥ p.B which
is to be interpreted as having all attributes in B with a probability of at least p. This last
section then provides a construction for a base of implications over probabilistic attributes.
The document is structured as follows. Section 2 repeats the basic notions of Formal

Concept Analysis, and Section 3 briefly introduces the light-weight description logic EL⊥.
Then, in Section 4 some notions for probabilistic extensions of Formal Concept Analysis are
defined, and then in Section 5 a method for the computation of a base for all implications
the probabilities of which exceed a given lower threshold in a probabilistic formal context
is developed, and its correctness is proven. At the end of this section, a comparison of the
notions of confidence and probability is drawn. The following sections then extend the results
to the description logic EL⊥. In particular, Section 6 introduces the basic notions for handling
probability in EL⊥. Section 7 shows a technique for the construction of a base of GCIs fulfilling
a lower probability threshold in a probabilistic interpretation. Additionally, Section 8 proposes
a technique for the axiomatization of implications over so-called probabilistic attributes.

2. Formal Concept Analysis

This section briefly introduces the standard notions of Formal Concept Analysis
(abbr.FCA) (Ganter and Wille 1999). A formal context K := (G,M,I) consists of a set
G of objects (Gegenstände in German), a set M of attributes (Merkmale in German),
and an incidence relation I ⊆ G×M . For a pair (g,m) ∈ I, we say that g has m. The
derivation operators of K are the mappings ·I : ℘(G)→ ℘(M) and ·I : ℘(M)→ ℘(G)
such that for each object set A ⊆ G, the set AI contains all attributes that are shared by all
objects in A, and dually for each attribute set B ⊆M , the set BI contains all those objects
that have all attributes from B. Formally, we define the derivation operators as follows.

AI := {m ∈M |

A

g ∈ A : (g,m) ∈ I } for object sets A ⊆ G,

and BI := {g ∈ G |

A

m ∈ B : (g,m) ∈ I } for attribute sets B ⊆M.
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g1 × · · · · · ·
g2 · × · · · · ·
g3 · × · · · × ·
g4 · × · · · · ·
g5 · × · · · × ·
g6 · × · · · × ·
g7 × × × · × × ·
g8 · · · · · · ·
g9 · × · · · × ·
g10 · · · · × · ·
g11 · × × · · · ·
g12 · × × · × × ×
g13 × × × × · · ·

Figure 1. An exemplary formal context K1

For singleton sets, we may also use the abbreviations gI := {g}I for all objects g ∈ G,
as well as mI := {m}I for all attributes m ∈M .
It is well-known (Ganter and Wille 1999) that both derivation operators constitute a

so-called Galois connection between the powersets ℘(G) and ℘(M), i.e., the following
statements hold true for all subsets A,A1,A2 ⊆ G and B,B1,B2 ⊆M .

(1) A ⊆ BI if, and only if, B ⊆ AI if, and only if, A×B ⊆ I
(2) A ⊆ AII
(3) AI = AIII

(4) A1 ⊆ A2 implies AI2 ⊆ AI1

(5) B ⊆ BII
(6) BI = BIII

(7) B1 ⊆ B2 implies BI2 ⊆ BI1

For obvious reasons, formal contexts can be represented as binary tables the rows of
which are labeled with the objects, the columns of which are labeled with the attributes,
and the occurrence of a cross × in the cell at row g and column m indicates that the
object g has the attribute m. As an example, consider the formal context K1 in Figure 1.
An intent of K is an attribute set B ⊆M with B = BII. The set of all intents of K

is denoted by Int(K). An implication over M is an expression X → Y where X,Y ⊆M .
It is valid in K, denoted as K |= X → Y , if XI ⊆ Y I, i.e., if each object of K that
possesses all attributes in X also has all attributes in Y . An implication set L is valid in
K, denoted as K |= L, if all implications in L are valid in K. Furthermore, the relation |=
is lifted to implication sets as follows: an implication set L entails an implication X → Y ,
symbolized as L |= X → Y , if X → Y is valid in all formal contexts in which L is valid.
More specifically, |= is called the semantic entailment relation.
A model of X → Y is an attribute set Z ⊆M such that X ⊆ Z implies Y ⊆ Z, and

we shall then write Z |= X → Y . Of course, then an implication X → Y is valid in K
if, and only if, for each object g ∈ G, the object intent gI is a model of X → Y . It is
furthermore straightforward to verify that the following statements are equivalent.
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(1) X → Y is valid in K.
(2) Each object intent of K is a model of X → Y .
(3) Each intent of K is a model of X → Y .
(4) Y ⊆ XII.

The equivalence between the first and the last statement indicates that XII is the largest
consequence of X in K, i.e., X → XII is valid in K, and for each strict superset Z ) XII ,
the implication X → Z is not valid in K.
Consider an implication set L ∪ {X → Y } ⊆ Imp(M). A model of L is an attribute

set which is a simultaneous model of each implication in L. In particular, each model
Z of L satisfies that for each implication X → Y ∈ L, X ⊆ Z implies Y ⊆ Z, i.e., Z
is a fixed point of the operator

Z 7→ ZL(1) := Z ∪
⋃
{Y |

E

X : X → Y ∈ L and X ⊆ Z }.

The smallest model ZL of L that contains Z is obtained by successive exhaustive application
of the operator ·L(1), i.e., ZL =

⋃
{ZL(n) | n ≥ 1} where ZL(n+1) := (ZL(1))L(n) for all

n ≥ 1. Additionally, the following statements are equivalent.

(1) L entails X → Y .
(2) Each model of L is a model of X → Y .
(3) X → Y is valid in all those formal contexts with attribute set M in which L is valid.
(4) Y ⊆ XL.

We then infer that XL is the largest consequence of X with respect to the implication
set L, i.e., L entails X → XL, and for all supersets Y ) XL, the implication X → Y
does not follow from L.
It was shown that entailment can also be decided syntactically by applying deduction

rules to the implication set L without the requirement to consider all formal contexts
in which L is valid, or all models of L, respectively. Recall that an implication X → Y
is syntactically entailed by an implication set L, denoted as L |− X → Y , if X → Y can
be constructed from L by the application of inference axioms, cf. (Maier 1983, Page 47),
which are described as follows.

(F1) Reflexivity: ∅ |− X → X
(F2) Augmentation: {X → Y } |− X ∪Z → Y
(F3) Additivity: {X → Y,X → Z} |− X → Y ∪Z
(F4) Projectivity: {X → Y ∪Z} |− X → Y
(F5) Transitivity: {X → Y,Y → Z} |− X → Z
(F6) Pseudotransitivity: {X → Y,Y ∪Z →W} |− X ∪Z →W

In the inference axioms above the symbols X, Y , Z, and W , denote arbitrary subsets
of the considered set M of attributes. Formally, we define L |− X → Y if there is a finite
sequence of implications X0 → Y0, . . . ,Xn → Yn such that the following conditions hold.

(1) For each i ∈ {0, ..., n}, there is a subset Li ⊆ L ∪ {X0 → Y0, . . . ,Xi−1 → Yi−1}
such that Li |− Xi → Yi matches one of the Axioms F1–F6.

(2) Xn → Yn = X → Y .

Often, the Axioms F1, F2, and F6, are referred to as Armstrong’s axioms. These three axioms
constitute a complete and independent set of inference axioms for entailment, i.e., from
it the other Axioms F3–F5 can be derived, and none of them is derivable from the others.

The semantic entailment and the syntactic entailment coincide, i.e., an implicationX → Y
is semantically entailed by an implication set L if, and only if, L syntactically entailsX → Y ,
cf. (Maier 1983, Theorem 4.1 on Page 50) as well as (Ganter and Wille 1999, Proposition 21
on Page 81). Consequently, we do not have distinguish between both entailment relations
|= and |− when it is up to decide whether an implication follows from a set of implications.
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Figure 2. A line diagram of the concept lattice B(K1) of the exemplary formal context in Figure 1

The data encoded in a formal context can be visualized as a line diagram of the
corresponding concept lattice, which we shall shortly describe. A formal concept of a formal
context K := (G,M,I) is a pair (A,B) consisting of a set A ⊆ G of objects as well as a set
B ⊆M of attributes such that AI = B and BI = A. We then also refer to A as the extent,
and to B as the intent, respectively, of (A,B). Another characterization of a formal concept
is as follows: (A,B) is a formal concept ofK if, and only if, A ⊆ G, B ⊆M , and both A and
B are maximal with respect to the property A×B ⊆ I, i.e., for each strict superset C ) A,
C×B 6⊆ I, and accordingly for each strict supersetD ) B, A×D 6⊆ I. In the denotation of
K as a cross table, those formal concepts are the maximal rectangles full of crosses (modulo
reordering of rows and columns). Then, the set of all extents ofK is symbolized as Ext(K), and
the set of all formal concepts ofK is denoted asB(K), which is ordered by defining (A,B) ≤
(C,D) if, and only if, A ⊆ C. It was shown that this order always induces a complete lattice
B(K) := (B(K),≤,∧,∨,>,⊥), called the concept lattice of K, cf. (Wille 1982; Ganter and
Wille 1999), in which the infimum and the supremum operation satisfy the equations∧

{ (At,Bt) | t ∈ T } =
(⋂
{At | t ∈ T }, (

⋃
{Bt | t ∈ T })II

)
,

and
∨
{ (At,Bt) | t ∈ T } =

(
(
⋃
{At | t ∈ T })II,

⋂
{Bt | t ∈ T }

)
,
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and where > = (∅I,∅II) is the greatest element, and where ⊥ = (∅II,∅I) is the smallest
element, respectively. The number of formal concepts can be exponential in the size of
the formal context. Kuznetsov shows that determining this number is a #P-complete
problem, cf. (Kuznetsov 2001). Furthermore, the problems of existence of a formal concept
with restrictions on the size of the extent, intent, or both, respectively, are investigated in
(Kuznetsov 2001) – Kuznetsov demonstrates that the existence of a formal concept (A,B)
such that |A| = k, |B| = k, or |A|+ |B| = k, respectively, are NP-complete problems;
the similar problems with ≥ are all in P; and the problems with ≤ are also in P, except
the problem where |A|+ |B| ≤ k is NP-complete.
Furthermore, the concept lattice of K can be nicely represented as a line diagram as

follows: each formal concept is depicted as a vertex. Furthermore, there is an upward
directed edge from each formal concept to its upper neighbors, i.e., to all those formal
concepts which are greater with respect to ≤, but for which there is no other formal concept
in between. The nodes are labeled as follows: an attribute m ∈M is an upper label of the
attribute concept (mI,mII), and an object g ∈ G is a lower label of the object concept
(gII, gI). Then, the extent of the formal concept represented by a vertex consists of all
objects which label vertices reachable by a downward directed path, and dually the intent is
obtained by gathering all attribute labels of vertices reachable by an upward directed path.
The concept lattice of the exemplary formal context from Figure 1 is depicted in Figure 2.

Let K |= L. A pseudo-intent of a formal context K relative to an implication set L
is an attribute set P ⊆ M which is no intent of K, but is a model of L, and satisfies
QII ⊆ P for all pseudo-intents Q ( P . The set of all those pseudo-intents is symbolized
by PsInt(K,L). Then the implication set

Can(K,L) := {P → P II | P ∈ PsInt(K,L)}

constitutes an implication base of K relative to L, i.e., for each implication X → Y over
M , the following equivalence is satisfied.

K |= X → Y if, and only if, Can(K,L)∪L |= X → Y

Can(K,L) is called the canonical base of K relative to L. It can be shown that it is a
minimal implication base of K relative to L, i.e., there is no implication base of K relative
to L with smaller cardinality. Further information is given in (Guigues and Duquenne 1986;
Ganter 1984, 2010; Stumme 1996). For the given example of a formal context in Figure 1,
the canonical base with respect to the empty background knowledge ∅ is shown in Figure 3.
The most prominent algorithm for computing the canonical base is certainly NextClosure
developed by Ganter (Ganter 1984, 2010). Bazhanov and Obiedkov propose an optimized
version of NextClosure in (Bazhanov and Obiedkov 2014) which speeds up the computation
of the lectically next closure, and furthermore they then perform some benchmarks to
compare both versions. Additionally, they also utilize three different algorithms for computing
closures with respect to implication sets, i.e., firstly the already presented and straight-forward
algorithm which computes the (least) fixed point of the operatorX 7→ XL(1), see also (Maier
1983), secondly the LinClosure algorithm (Beeri and Bernstein 1979), which computes
XL in linear time, and thirdly Wild’s Closure algorithm (Wild 1995), which is essentially
an improved version of LinClosure. Please note that LinClosure is not always faster than
computing the least fixed point ofX 7→ XL(1), due to its intialization overhead. Furthermore,
Obiedkov and Duquenne constitute an attribute-incremental algorithm for constructing the
canonical base, cf. (Obiedkov and Duquenne 2007). A parallel algorithm called NextClosures
is also available (Kriegel 2015b; Kriegel and Borchmann 2015), and an implementation is
provided in Concept Explorer FX (Kriegel 2010–2017); its advantage is that its processing
time scales almost inverse linear with respect to the number of available CPU cores.

There are some important complexity problems related to the pseudo-intents and canon-
ical bases. Kuznetsov, and later together with Obiedkov, has proven in (Kuznetsov 2004;
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Can(K1,∅) =



{m1, m2} → {m3},
{m1, m2, m3, m4, m5, m6} → {m7},
{m1, m2, m3, m5, m6, m7} → {m4},

{m1, m5} → {m2, m3, m6},
{m2, m3, m6} → {m5},
{m2, m5} → {m3, m6},
{m3} → {m2},
{m4} → {m1, m2, m3},
{m6} → {m2},
{m7} → {m2, m3, m5, m6}


Figure 3. The canonical base of the exemplary formal context from Figure 1

Kuznetsov and Obiedkov 2006, 2008) that the number of pseudo-intents can be exponential
in |M | as well as in |G| · |M | or in |I|, and determining this number is #P-hard, furthermore
that recognizing a pseudo-intent is in coNP, and that determining the number of non-pseudo-
intents is #P-complete. Sertkaya and Distel demonstrated in (Sertkaya 2009a,b; Distel 2010;
Distel and Sertkaya 2011) that the number of intents can be exponential in the number of
pseudo-intents, i.e., the set of pseudo-intents cannot be enumerated in output-polynomial time
by utilizing one of the existing algorithms, which all enumerate the closure system of both
intents and pseudo-intents, and that the lectically first pseudo-intent can be computed in poly-
nomial time, but recognizing the first n pseudo-intents is coNP-complete. Consequently, the
pseudo-intents of a given formal context cannot be enumerated in the lectic order with poly-
nomial delay, unless P = NP. Enumeration of pseudo-intents (in an arbitrary order) was also
investigated, but concrete complexity results are outstanding. Babin and Kuznetsov showed
in (Babin and Kuznetsov 2010, 2013) that recognizing a pseudo-intent is coNP-complete,
and furthermore that recognizing the lectically largest pseudo-intent is coNP-hard. Hence,
computing pseudo-intents in the dual lectic order is also intractable, i.e., not possible with
polynomial delay, unless P = NP. As a corollary Babin and Kuznetsov conclude that the max-
imal pseudo-intents cannot be enumerated with polynomial delay, unless P = NP. Further
consequences which they found are, for example, that premises of minimal implication bases
cannot be tractably recognized, since this problem is coNP-complete, and that there cannot
be an algorithm that outputs a random pseudo-intent in polynomial time, unless NP = coNP.

Eventually, in case a given formal context is not complete in the sense that it does not
contain enough objects to refute invalid implications, i.e., only contains some observed
objects in the domain of interest, but one aims at exploring all valid implications over
the given attribute set, a technique called Attribute Exploration can be utilized, which
guides the user through the process of axiomatizing an implication base for the underlying
domain in a way the number of questions posed to the user is minimal. For a sophisticated
introduction as well as for theoretical and technical details, the interested reader is
rather referred to (Ganter 1984; Stumme 1996; Ganter 1999, 2010; Kriegel 2016b). A
parallel variant of the Attribute Exploration also exists, cf. (Kriegel 2015b, 2016b), which
is implemented in Concept Explorer FX (Kriegel 2010–2017).

3. The Description Logic EL⊥

This section gives a brief overview on the light-weight description logic EL⊥ (Baader et al.
2003). First, assume that (NC,NR) is a signature, i.e., NC is a set of concept names, and
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NR is a set of role names, respectively. Then EL⊥-concept descriptions C over (NC,NR)
may be constructed according to the following inductive rule (where A ∈ NC and r ∈ NR):

C ::= ⊥ | > | A | C uC |

E

r.C.

We shall denote the set of all EL⊥-concept descriptions over (NC,NR) by EL⊥(NC,NR).
Second, the semantics of EL⊥-concept descriptions is defined by means of interpretations:
An interpretation is a tuple I = (∆I, ·I) that consists of a set ∆I, called domain, and
an extension function ·I : NC ∪NR → ℘(∆I)∪℘(∆I ×∆I) that maps concept names
A ∈ NC to subsets AI ⊆ ∆I and role names r ∈ NR to binary relations rI ⊆ ∆I ×∆I.
The extension function is extended to all EL⊥-concept descriptions as follows:

⊥I := ∅,

>I := ∆I,

(C uD)I := CI ∩DI,

(

E

r.C)I := {d ∈ ∆I |

E

e ∈ ∆I : (d, e) ∈ rI and e ∈ CI }.

A general concept inclusion (GCI) in EL⊥ is of the form C v D where C and D are
EL⊥-concept descriptions. It is valid in an interpretation I if CI ⊆ DI is satisfied, and
we then also write I |= C v D, and say that I is a model of C v D. Furthermore, C is
subsumed by D if C v D is valid in all interpretations, and we shall denote this by C v D,
too. A TBox is a set of GCIs, and a model of a TBox is a model of all its GCIs. A TBox T
entails a GCI C v D, denoted by T |= C v D, if every model of T is a model of C v D.

Similar to the implicational bases in Formal Concept Analysis, so-called bases of GCIs
were defined in Description Logic, more specifically for our considered description logic
EL⊥. The first works in this direction are Baader and Distel (2008); Distel (2011). Later,
the same problem is considered with respect to a bound on the role depths in Borchmann,
Distel, and Kriegel (2016),
A base of GCIs, for an interpretation I relative to a TBox T such that I |= T is a

TBox B that satisfies the following equivalence for all general concept inclusions C v D:

I |= C v D if, and only if, B ∪ T |= C v D.

The canonical base for I relative to T is defined as follows:

Can(I,T ) := {
l
P v

l
P II | P ∈ PsInt(K(I,T ),L)}

where the formal context is defined by K(I,T ) := (∆I,M(I,T ), I) where

M(I,T ) := {⊥} ∪NC ∪ {

E

r.XI(T ) | r ∈ NR and ∅ 6= X ⊆ ∆I }

and (d,C) ∈ I if, and only if, d ∈ CI. For a subset X ⊆ ∆I, a concept description C
is called model-based most specific concept description (mmsc) of X in I relative to T
if it satisfies the following conditions:

(1) X ⊆ CI, and
(2) for each concept description D, X ⊆ DI implies T |= C v D.

It is readily verified that – provided the existence – the mmsc of X in I relative to T
is unique modulo equivalence with respect to T , and thus we shall denote it by XI(T ).
Please note that these relative mmsc-s need not exist for all interpretations I and TBoxes
T , in particular if the interpretation I contains a cycle which is not axiomatized within the
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Figure 4. An exemplary probabilistic formal context K2

TBox T . There are two solutions for guaranteeing the existence of the mmsc-s: On the one
hand, we could equip EL⊥ with greatest fixpoint semantics (gfp-semantics) allowing for
the expression of cycles within the concept description; on the other hand, we could restrict
the role depth of the candidate concept descriptions for the mmsc-s. For the simpler case
without a TBox, the first method was presented in Baader and Distel (2008); Distel (2011),
and the second method was presented in Borchmann, Distel, and Kriegel (2016).

4. Probabilistic Formal Concept Analysis

A probability measure P on a countable set W is a mapping P : ℘(W) → [0,1] such
that P(∅) = 0, P(W) = 1, and P is σ-additive, i.e., for all countable families (Un)n∈N of
pairwise disjoint sets Un ⊆W it holds that P(

⋃
n∈NUn) =

∑
n∈N P(Un). A world w ∈W

is possible if P{w} > 0, and impossible otherwise. The set of all possible worlds is denoted
by Wε, and the set of all impossible worlds is denoted by W0. Obviously, Wε ]W0 is a
partition of W . Of course, such a probability measure can be completely characterized
by the definition of the probabilities of the singleton subsets of W , since it holds true
that P(U) = P(

⋃
w∈U{w}) =

∑
w∈U P({w}).

Definition 1. A probabilistic formal context K is a tuple (G,M,W, I,P) that consists
of a set G of objects, a set M of attributes, a countable set W of worlds, an incidence
relation I ⊆ G×M ×W , and a probability measure P on W . For a triple (g,m,w) ∈ I
we say that object g has attribute m in world w. Furthermore, we define the derivations
in world w as operators ·I(w) : ℘(G)→ ℘(M) and ·I(w) : ℘(M)→ ℘(G) where

AI(w) := {m ∈M |

A

g ∈ A : (g,m,w) ∈ I } for object sets A ⊆ G,

and BI(w) := {g ∈ G |

A

m ∈ B : (g,m,w) ∈ I } for attribute sets B ⊆M,

i.e., AI(w) is the set of all common attributes of all objects in A in the world w, and
BI(w) is the set of all objects that have all attributes in B in w. The formal context
induced by a world w ∈W is defined as K(w) := (G,M,I(w)).

As a running example for the up-coming part on probabilistic formal concept analysis,
we consider the probabilistic formal context presented in Figure 4. It consists of three
objects g1, g2, g3, three attributes m1,m2,m3, and three worlds w1,w2,w3. In K2 it holds
true that the object g1 has the attribute m1 in all three worlds, and the object g3 has
the attribute m3 in all worlds except in w3.

Definition 2. Let K = (G,M,W, I,P) be a probabilistic formal context. The probability
of an implication X → Y over M is defined as the measure of the set of worlds it is

9
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valid in, i.e.,

P(X → Y ) := P{w ∈W | XI(w) ⊆ Y I(w) }.

Furthermore, we define the following properties for an implication X → Y :

(1) X → Y is valid in world w of K if XI(w) ⊆ Y I(w) is satisfied.
(2) X → Y is certain in K if it is valid in all worlds of K.
(3) X → Y is almost certain in K if it is valid in all possible worlds of K.
(4) X → Y is possible in K if it is valid in a possible world of K.
(5) X → Y is impossible in K if it is not valid in any possible world of K.
(6) X → Y is refuted by K if it is not valid in any world of K.

It is readily verified that

P(X → Y ) = P{w ∈Wε | XI(w) ⊆ Y I(w) } =
∑
{P{w} | w ∈Wε and XI(w) ⊆ Y I(w) }.

An implication X → Y is almost certain if P(X → Y ) = 1, is possible if P(X → Y ) > 0,
and is impossible if P(X → Y ) = 0. If X → Y is certain, then it is almost certain, and
if X → Y is refuted, then it is impossible.

Returning back to our running example from Figure 4, we can easily verify that the implica-
tion {m1} → {m3} has a probability of 1 in K2, i.e., is certain. Furthermore, the implication
{m2} → {m3} is possible in K2, and in particular has a probability of P(w1)+P(w3) = 1

2 +
1
6 = 2

3 , since it is valid in worlds w1 and w3. The implication {m1} → {m2} is refuted byK2.

5. Implicational Bases for Probabilistic Formal Contexts

At first we introduce the notion of an implicational base with respect to a probability
threshold. Then we are going to develop and prove a construction of such bases for
probabilistic formal contexts. If the underlying context is finite, then the base is computable.

Definition 3. Let K = (G,M,W, I,P) be a probabilistic formal context, and p ∈ [0,1]
a threshold. An implicational base for K and p is an implication set B over M that
satisfies the following properties:

(1) B is sound for K and p, i.e., P(X → Y ) ≥ p for all implications X → Y ∈ B, and
(2) B is complete for K and p, i.e., if P(X → Y ) ≥ p, then X → Y follows from B.

An implicational base is irredundant if none of its implications follows from the others,
and is minimal if it has minimal cardinality among all bases for K and p.

It is readily verified that the above definition is a straight-forward generalization of
implicational bases (as defined by Ganter and Wille 1999, Definition 37), in particular
formal contexts coincide with probabilistic formal contexts having only one possible world,
and implications valid in the formal context coincide with implications having probability 1.
We now define a transformation from probabilistic formal contexts to formal contexts.

It allows to decide whether an implication is (almost) certain, and furthermore it can be
utilized to construct an implicational base for the (almost) certain implications.

Definition 4. Let K be a probabilistic formal context. The certain scaling of K is the
formal context K× := (G×W,M,I×) where ((g,w),m) ∈ I× if (g,m,w) ∈ I, and the
almost certain scaling of K is the subcontext K×ε := (G×Wε,M, I×ε ) of K×.
Lemma 5. Let K = (G,M,W, I,P) be a probabilistic formal context, and let X → Y
be an implication. Then the following statements are satisfied:

(1) X → Y is certain in K if, and only if, X → Y is valid in K×.

10
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(K2)
× m

1

m
2

m
3

(g1,w1) × · ×
(g2,w1) · × ×
(g3,w1) · · ×
(g1,w2) × · ×
(g2,w2) · × ·
(g3,w2) × · ×
(g1,w3) × · ×
(g2,w3) · × ×
(g3,w3) · × ·

(g3,w1)

m3

(g3,w3), (g2,w2)

m2

(g1,w2), (g1,w3),
(g1,w1), (g3,w2)

m1

(g2,w3), (g2,w1)

Figure 5. The certain scaling of K2 from Figure 4 and its concept lattice

(2) X → Y is almost certain in K if, and only if, X → Y is valid in K×ε .

Proof. The following equivalences can be readily verified:

P(X → Y ) = 1⇔

A

w ∈W : XI(w) ⊆ Y I(w)

⇔ XI× =
⊎

w∈W
XI(w) × {w} ⊆

⊎
w∈W

Y I(w) × {w} = Y I
×

⇔ K× |= X → Y.

The second statement can be proven analogously.

For our running example K2, the certain scaling is displayed in Figure 5. As it can
be read off it essentially consists of the subposition of the three formal contexts K2(w1),
K2(w2), and K2(w3). Due to the non-existence of impossible worlds in K2, i.e., worlds
with a probability of 0, the certain scaling (K2)

× and the almost certain scaling (K2)
×
ε

coincide. We have noted before that the implication {m1} → {m3} is certain in K2 –
hence according to Lemma 5 it must be valid in (K2)

×, which is indeed true.
The next corollary is an immediate consequence of Lemma 5.

Corollary 6. Let K be a probabilistic formal context. Then the following statements hold:

(1) An implicational base for K× is an implicational base for the certain implications
of K, in particular this is true for the following implication set:

B(K) := {P → P I
×I× | P ∈ PsInt(K×)}.

(2) An implicational base for K×ε relative to the background knowledge B(K) is an
implicational base for the almost certain implications of K, in particular this is
true for the following implication set:

B(K,1) := B(K)∪ {P → P I
×
ε I

×
ε | P ∈ PsInt(K×ε ,B(K))}.

For the certain scaling (K2)
× in Figure 5, there is only one pseudo-intent, namely

{m1}. It holds true that {m1}I
×I× = {(g1,w1), (g1,w2), (g3,w2), (g1,w3)}I

×
= {m1,m3}.

11
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Consequently, we derive the following base for the (almost) certain implications of K2:

B(K2) = B(K2,1) = {{m1} → {m3}}.

Lemma 7. Let K = (G,M,W, I,P) be a probabilistic formal context. Then the following
statements are satisfied:

(1) Y ⊆ X implies that X → Y is certain in K.
(2) X1 ⊆ X2 and Y1 ⊇ Y2 imply P(X1 → Y1) ≤ P(X2 → Y2).
(3) X0 ⊆ X1 ⊆ . . . ⊆ Xn implies P(X0 → Xn) ≤

∧n
i=1 P(Xi−1 → Xi).

Proof. (1) If Y ⊆ X, then it follows that XI(w) ⊆ Y I(w) for all worlds w ∈W .
(2) Assume X1 ⊆ X2 and Y2 ⊆ Y1. Then X

I(w)
1 ⊇ X

I(w)
2 and Y I(w)2 ⊇ Y

I(w)
1 for all

worlds w ∈W . Consider a world w ∈W whereXI(w)
1 ⊆ Y I(w)1 . Of course, we may conclude

that XI(w)
2 ⊆ Y I(w)2 . As a consequence we get P(X1 → Y1) ≤ P(X2 → Y2).

(3) We prove the third claim by induction on n. For n = 0 there is nothing to show, and the
case n = 1 is trivial. Hence, consider n = 2 for the induction base, and let X0 ⊆ X1 ⊆ X2.
Then we have that XI(w)

0 ⊇ X
I(w)
1 ⊇ X

I(w)
2 is satisfied in all worlds w ∈ W . Now

consider a world w ∈ W where XI(w)
0 ⊆ X

I(w)
2 is true. Of course, it then follows that

X
I(w)
0 ⊆ X

I(w)
1 ⊆ X

I(w)
2 . Consequently, we conclude P(X0 → X2) ≤ P(X0 → X1) and

P(X0 → X2) ≤ P(X1 → X2).
For the induction step let n > 2. The induction hypothesis yields that

P(X0 → Xn−1) ≤
∧n−1

i=1
P(Xi−1 → Xi).

Of course, it also holds that X0 ⊆ Xn−1 ⊆ Xn, and it follows by induction hypothesis
and the previous inequality that

P(X0 → Xn) ≤ P(X0 → Xn−1)∧ P(Xn−1 → Xn) ≤
∧n

i=1
P(Xi−1 → Xi).

Lemma 8. Let K = (G,M,W, I,P) be a probabilistic formal context. Then for all
implications X → Y , the following equalities are valid:

P(X → Y ) = P(XI×I× → Y I
×I×) = P(XI×ε I

×
ε → Y I

×
ε I

×
ε ).

Proof. Let X → Y be an implication. Then for all worlds w ∈W it holds that

g ∈ XI(w) ⇔

A

m ∈ X : (g,m,w) ∈ I ⇔

A

m ∈ X : ((g,w),m) ∈ I× ⇔ (g,w) ∈ XI×,

and we conclude that XI(w) = π1(X
I× ∩ (G × {w})). Furthermore, we then infer

XI(w) = XI×I×I(w), and thus the following equations hold:

P(X → Y ) = P{w ∈W | XI(w) ⊆ Y I(w) }

= P{w ∈W | XI×I×I(w) ⊆ Y I×I×I(w) } = P(XI×I× → Y I
×I×).

In particular, for all possible worlds w ∈ Wε it holds that g ∈ XI(w) ⇔ (g,w) ∈ XI×ε ,
and thus XI(w) = π1(X

I×ε ∩ (G× {w})) and XI(w) = XI×ε I
×
ε I(w) are satisfied. It may

be concluded that P(X → Y ) = P(XI×ε I
×
ε → Y I

×
ε I

×
ε ).

Lemma 9. Let K be a probabilistic formal context. Then the following statements hold:

12
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(1) If B is an implicational base for the certain implications of K, then the implication
X → Y follows from B ∪ {XI×I× → Y I

×I×}.
(2) If B is an implicational base for the almost certain implications of K, then the

implication X → Y follows from B ∪ {XI×ε I
×
ε → Y I

×
ε I

×
ε }.

Proof. Of course, the implication X → XI×I× is valid in K×, i.e., it is certain in K by
Lemma 5, and hence follows from B. Thus, the implication X → Y I

×I× is entailed by
B ∪ {XI×I× → Y I

×I×}, and because of Y ⊆ Y I×I× the claim follows.
The second statement follows analogously.

Lemma 10. For each probabilistic formal context K, the following statements are true:

(1) P(XI×ε I
×
ε → Y I

×
ε I

×
ε ) = P(XI×ε I

×
ε → (X ∪ Y )I

×
ε I

×
ε ),

(2) (X ∪ Y )I
×
ε I

×
ε → Y I

×
ε I

×
ε is certain in K, and

(3) XI×ε I
×
ε → Y I

×
ε I

×
ε is entailed by {XI×ε I

×
ε → (X ∪ Y )I

×
ε I

×
ε , (X ∪ Y )I

×
ε I

×
ε → Y I

×
ε I

×
ε }.

(X ∪ Y )I
×
ε I

×
ε

XI×ε I
×
ε Y I

×
ε I

×
εp

p 1

Proof. First note thatXI(w) ⊆ Y I(w) if, and only if,XI(w) ⊆ XI(w)∩Y I(w) = (X∪Y )I(w).
Hence, the implication X → Y has the same probability as X → X ∪ Y . Consequently,
we may conclude by means of Lemma 7 that

P(XI×ε I
×
ε → Y I

×
ε I

×
ε ) = P(X → Y ) = P(X → X ∪ Y ) = P(XI×ε I

×
ε → (X ∪ Y )I

×
ε I

×
ε ).

Furthermore, we have that (XI×ε I
×
ε ∪ Y I×ε I×ε )I

×
ε I

×
ε = (X ∪ Y )I

×
ε I

×
ε . As Y I×ε I×ε is a

subset of (XI×ε I
×
ε ∪ Y I×ε I×ε )I

×
ε I

×
ε , the implication (X ∪ Y )I

×
ε I

×
ε → Y I

×
ε I

×
ε is certain in K,

cf. Statement 1 in Lemma 7. Obviously, {XI×ε I
×
ε → (X ∪ Y )I

×
ε I

×
ε , (X ∪ Y )I

×
ε I

×
ε → Y I

×
ε I

×
ε }

entails XI×ε I
×
ε → Y I

×
ε I

×
ε .

Lemma 11. Let K be a probabilistic formal context, and X,Y be intents of K×ε such
that X ⊆ Y and P(X → Y ) ≥ p. Then the following statements hold true:

(1) There is a chain X = X0 ≺ X1 ≺ X2 ≺ . . . ≺ Xn = Y of neighboring intents in
K×ε ,1

(2) P(Xi−1 → Xi) ≥ p for all i ∈ {1, . . . , n}, and
(3) X → Y is entailed by {Xi−1 → Xi | i ∈ {1, . . . , n}}.

Proof. The existence of a chain X = X0 ≺ X1 ≺ X2 ≺ . . . ≺ Xn−1 ≺ Xn = Y of
neighboring intents between X and Y in K×ε follows from X ⊆ Y .
From Statement 3 in Lemma 7 it follows that all implications Xi−1 → Xi have a

probability of at least p in K. It is trivial that they entail X → Y .

Theorem 12. Let K be a probabilistic formal context, and p ∈ [0,1) a probability
threshold. Then the following implication set is an implicational base for K and p:

B(K, p) := B(K,1)∪ {X → Y | X,Y ∈ Int(K×ε ) and X ≺ Y and P(X → Y ) ≥ p}.

1For two intents X and Y , we say that X is a lower intent-neighbor of Y if X ( Y and there is no intent between
X and Y . Furthermore, we denote this as X ≺ Y .

13
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∅

{m3}{m2}

{m1,m3}{m2,m3}

{m1,m2,m3}

{w1}

1
2

∅
0

{w2}

1
3

∅
0

{w1}

1
2

∅
0

{w2}

1
3

Figure 6. Computation of B(K2, p) \ B(K2,1)

Proof. All implications in B(K,1) are almost certain in K, and thus have probability 1.
By construction, all other implications X → Y in the second subset have a probability
≥ p. Hence, Statement 1 in Definition 3 is satisfied.
Now consider an implication X → Y over M such that P(X → Y ) ≥ p. We have to

prove Statement 2 of Definition 3, i.e., that X → Y is entailed by B(K, p).
Lemma 8 yields that both implications X → Y and XI×ε I

×
ε → Y I

×
ε I

×
ε have the same

probability. Lemma 9 states that X → Y follows from B(K,1) ∪ {XI×ε I
×
ε → Y I

×
ε I

×
ε }.

According to Lemma 10, the implication XI×ε I
×
ε → Y I

×
ε I

×
ε follows from

{XI×ε I
×
ε → (X ∪ Y )I

×
ε I

×
ε , (X ∪ Y )I

×
ε I

×
ε → Y I

×
ε I

×
ε }. Furthermore, it holds that

P(XI×ε I
×
ε → (X ∪ Y )I

×
ε I

×
ε ) = P(XI×ε I

×
ε → Y I

×
ε I

×
ε ) = P(X → Y ) ≥ p,

and the second implication (X ∪ Y )I
×
ε I

×
ε → Y I

×
ε I

×
ε is certain, i.e., follows from B(K,1).

Finally, Lemma 11 states that there is a chain of neighboring intents of K×ε starting at
XI×ε I

×
ε and ending at (X ∪ Y )I

×
ε I

×
ε , i.e.,

XI×ε I
×
ε = X

I×ε I
×
ε

0 ≺ XI×ε I
×
ε

1 ≺ XI×ε I
×
ε

2 ≺ . . . ≺ XI×ε I
×
ε

n = (X ∪ Y )I
×
ε I

×
ε

such that all implications XI×ε I
×
ε

i−1 → X
I×ε I

×
ε

i have a probability ≥ p, and are thus contained
in B(K, p). Hence, B(K, p) entails the implication X → Y .

For the running example K2 from Figure 4, we are now going to apply Theorem 12 and
construct a base for the possible but not certain implications. The concept lattice of the
appropriate certain scaling is presented in Figure 5, and the induced implications as well
as their probabilities are shown in Figure 6. The figure visualizes the neighborhood relation
between the intents of the certain scaling, and the edges now represent implications where
the labels below the edges show the worlds in which the corresponding implication is valid,
and where the upper labels indicate the probability in K2. For example, the implication

14
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K3(w1) m
1

m
2

g1 × ×
g2 · ×

K3(w2) m
1

m
2

g1 × ×
g2 × ×

P3(w1) := 1
2 P3(w2) := 1

2

(g1,w1), (g1,w2), (g2,w2)

m1

(g2,w1)

m2

Figure 7. A first counterexample

{m3} → {m1,m3} is valid only in world w2, and hence has a probability of 1
3 . For the

threshold of p := 1
2 we read off the following implicational base for K2 and p:

B(K2,
1
2) = B(K2,1)∪ {∅ → {m3},{m2} → {m2,m3}}

= {{m1} → {m3},∅ → {m3},{m2} → {m2,m3}}.

Corollary 13. Let K be a probabilistic formal context. Then the following set is an
implicational base for the possible implications of K:

B(K, ε) := B(K,1)∪ {X → Y | X,Y ∈ Int(K×ε ) and X ≺ Y and P(X → Y ) > 0}.

According to the previous Corollary 13, a base for the possible implications of our
example K2 consists of the implications in B(K2,

1
2), and additionally contains the

implications {m3} → {m1,m3} and {m2,m3} → {m1,m2,m3}, as those are the
remaining implications in Figure 6 that possess a probability exceeding 0.

5.1. Some Remarks

However, it is not possible to show irredundancy or minimality for the base of probabilistic
implications given above in Theorem 12. Consider the probabilistic formal context
K3 := ({g1, g2},{m1,m2},{w1,w2}, I,{{w1} 7→ 1

2 ,{w2} 7→ 1
2}) the incidence relation I

of which is defined in Figure 7. The only pseudo-intent of (K3)
× is ∅, and the concept

lattice of (K3)
× is shown above. Hence, we have the following implicational base for p := 1

2 :

B(K3,
1
2) = {∅ → {m2},{m2} → {m1,m2}}.

However, the set B := {∅ → {m1,m2}} is also a probabilistic implicational base for K3

and 1
2 , but has less elements.

In order to compute a minimal base for the implications holding in a probabilistic formal
context with a probability ≥ p, one can for example determine the above given base, and
minimize it by means of constructing the Duquenne-Guigues base of it. This either requires
the transformation of the implication set into a formal context that has this implication
set as an implicational base, or directly compute all pseudo-closures of the closure operator
induced by the (probabilistic) implicational base.
Recall that the confidence of an implication X → Y in a formal context (G,M,I) is

defined as

conf(X → Y ) :=

∣∣(X ∪ Y )I
∣∣

|XI|
,

15
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K4(w1) m
1

m
2

g1 × ×
g2 · ·

K4(w2) m
1

m
2

g1 · ×
g2 · ×

P4(w1) := 1
2 P4(w2) := 1

2 (g1,w1)

m1

(g1,w2), (g2,w2)

m2

(g2,w1)

Figure 8. A second counterexample

cf.Luxenburger (1993). In general, there is no correspondence between the probability
of an implication in K and its confidence in K× or K×ε . To prove this we will provide two
counterexamples. As first counterexample we consider the context K3 above. It is readily
verified that P3({m2} → {m1}) = 1

2 and conf({m2} → {m1}) = 3
4 , i.e., the confidence

is greater than the probability.
Furthermore, consider the modification K4 in Figure 8 as second counterexample. Then

we have that P4({m2} → {m1}) = 1
2 and conf({m2} → {m1}) = 1

3 , i.e., the confidence
is smaller than the probability.

6. Probabilistic Interpretations for the Description Logic EL⊥

To introduce probability into the description logic EL⊥, we now present the notion of a
probabilistic interpretation, as introduced by Lutz and Schröder (2010). It is simply a
family of interpretations over the same domain and the same signature, indexed by a set
of worlds that is equipped with a probability measure.

Definition 14. Let (NC,NR) be a signature. A probabilistic interpretation I is a tuple
(∆I, (·I(w))w∈W ,W,P) consisting of a set ∆I, called domain, a countable set W of
worlds, a probability measure P on W , and an extension function ·I(w) for each world
w ∈W , i.e., (∆I, ·I(w)) is an interpretation for each w ∈W .

For a general concept inclusion C v D its probability in I is defined as follows:

P(C v D) := P{w ∈W | CI(w) ⊆ DI(w) }.

Furthermore, for a GCI C v D we define the following properties (as for probabilistic
formal contexts):

(1) C v D is valid in world w if CI(w) ⊆ DI(w).
(2) C v D is certain in I if it is valid in all worlds.
(3) C v D is almost certain in I if it is valid in all possible worlds.
(4) C v D is possible in I if it is valid in a possible world.
(5) C v D is impossible in I if it is not valid in any possible world.
(6) C v D is refuted by I if it is not valid in any world.

It is readily verified that for all GCIs C v D, the following equations are satisfied:

P(C v D) = P{w ∈Wε | CI(w) ⊆ DI(w) } =
∑
{P{w} | w ∈Wε and CI(w) ⊆ DI(w) }.

Figure 9 provides an exemplary probabilistic interpretation over the signature
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I5(w1): d1 {A1,A3}

d2 {A2,A3}

d3 {A3}

r1

I5(w2): d1 {A1,A3}

d2 {A2}

d3 {A1,A3}

r1

r1

I5(w3): d1 {A1,A3}

d2 {A2,A3}

d3 {A2}

r1

r2

P5(w1) := 1
2 P5(w2) := 1

3 P5(w3) := 1
6

Figure 9. An exemplary probabilistic interpretation I5

({A1,A2,A3},{r1, r2}). It essentially consists of the data described by the probabilistic
formal context K2 in Figure 4, but where some of the objects are connected via a role
name. For example, the general concept inclusion A1 v A3 u

E

r1.A2 is certain in I, as
it is valid in all worlds. The GCI A2 uA3 v

E

r2.A2 is neither certain, nor almost certain,
nor impossible, nor refuted in I, but is possible with a probability of 1

3 + 1
6 = 1

2 , since
it is valid in all worlds except in w1.

7. Bases of GCIs for Probabilistic Interpretations

In what follows we construct from a probabilistic interpretation I a base of GCIs that
entails all GCIs the probability in I of which exceeds a pre-defined threshold p ∈ [0,1].

Definition 15. Let I be a probabilistic interpretation, and p ∈ [0,1] a threshold. A base
of GCIs for I and p is a TBox B that satisfies the following conditions:

(1) B is sound for I and p, i.e., P(C v D) ≥ p for all GCIs C v D ∈ B, and
(2) B is complete for I and p, i.e., if P(C v D) ≥ p, then B |= C v D.

A base B is irredundant if none of its GCIs follows from the others, and is minimal if
it has minimal cardinality among all bases of GCIs for I and p.

For a probabilistic interpretation I we define its certain scaling as the disjoint union
of all interpretations I(w) with w ∈ W , i.e., as the interpretation I× := (∆I ×W, ·I×)
the extension mapping of which is given as follows:

AI
×

:= { (d,w) | d ∈ AI(w) } for concept names A ∈ NC,

and rI
×

:= { ((d,w), (e,w)) | (d, e) ∈ rI(w) } for role names r ∈ NR.

Furthermore, the almost certain scaling I×ε of I is the disjoint union of all interpretations
I(w) where w ∈Wε is a possible world. Analogously to Lemma 5, a GCI C v D is certain
in I if, and only if, it is valid in I×, and is almost certain in I if, and only if, it is valid in I×ε .
The certain scaling of our illustrative probabilistic interpretation from Figure 9 is

presented in Figure 10. Please note that due to the non-existence of impossible worlds, i.e.,
worlds the probability of which is 0, the certain and the almost certain scaling are equal.

The so-called model-based most-specific concept descriptions (mmscs) w.r.t. greatest
fixpoint semantics have been defined by Baader and Distel (2008); Distel (2011) as follows:
Let J be an interpretation, and X ⊆ ∆J . Then a concept description C is an mmsc
of X in J , if X ⊆ CJ is satisfied, and ∅ |= C v D for all concept descriptions D with
X ⊆ DJ . It is easy to see that all mmscs of X are unique up to equivalence, and hence we
denote the mmsc of X in J by XJ . Please note that there is also a role-depth bounded
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(d1,w1) {A1,A3}

(d2,w1) {A2,A3}

(d3,w1) {A3}

r1

(d1,w2) {A1,A3}

(d2,w2) {A2}

(d3,w2) {A1,A3}

r1

r1

(d1,w3) {A1,A3}

(d2,w3) {A2,A3}

(d3,w3) {A2}

r1

r2

Figure 10. The (almost) certain scaling of the exemplary probabilistic interpretation from Figure 9

variant w.r.t. descriptive semantics as introduced by Borchmann, Distel, and Kriegel (2016).

Lemma 16. Let I be a probabilistic interpretation. Then the following statements hold:

(1) CI(w)×{w} = CI
×∩(∆I×{w}) for all concept descriptions C and worlds w ∈W .

(2) CI(w) × {w} = CI
×
ε ∩ (∆I × {w}) for all concept descriptions C and possible

worlds w ∈Wε.
(3) P(C v D) = P(CI

×I× v DI×I×) = P(CI
×
ε I×ε v DI×ε I×ε ) for all GCIs C v D.

Proof. (1) We prove the claim by structural induction on C. By definition, the statement
holds for ⊥, >, and all concept names A ∈ NC. Consider a conjunction C uD, then

(C uD)I(w) × {w} = (CI(w) ∩DI(w))× {w}

= CI(w) × {w} ∩DI(w) × {w}
I.H.
= CI

× ∩DI× ∩ (∆I × {w})

= (C uD)I
× ∩ (∆I × {w}).

For an existential restriction

E

r.C the following equalities are satisfied:

(

E

r.C)I(w) × {w}

= {d ∈ ∆I |

E

e ∈ ∆I : (d, e) ∈ rI(w) and e ∈ CI(w) } × {w}

= { (d,w) |

E

(e,w): ((d,w), (e,w)) ∈ rI× and (e,w) ∈ CI(w) × {w}}
I.H.
= { (d,w) |

E

(e,w): ((d,w), (e,w)) ∈ rI× and (e,w) ∈ CI× }

= (

E

r.C)I
× ∩ (∆I × {w}).

(2) analogously.
(3) Using the first statement we may conclude that the following equalities hold:

P(C v D)

= P{w ∈W | CI(w) × {w} ⊆ DI(w) × {w}}

= P{w ∈W | CI× ∩ (∆I × {w}) ⊆ DI× ∩ (∆I × {w})}

= P{w ∈W | CI×I×I× ∩ (∆I × {w}) ⊆ DI×I×I× ∩ (∆I × {w})}

= P{w ∈W | CI×I×I(w) × {w} ⊆ DI×I×I(w) × {w}}

= P(CI
×I× v DI×I×).

The second equality follows analogously.
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For a probabilistic interpretation I = (∆I, ·I,W,P) and a set M of EL⊥-concept
descriptions we define their induced context as the probabilistic formal context
K(I,M) := (∆I,M,W, I,P) where (d,C,w) ∈ I if, and only if, d ∈ CI(w).
Lemma 17. Let I be a probabilistic interpretation, M a set of EL⊥-concept descriptions,
and X,Y ⊆ M. Then the probability of the implication X → Y in the induced context
K(I,M) equals the probability of the GCI

d
X v

d
Y in I, i.e., it holds that

P(X → Y ) = P(
l
X v

l
Y ).

Proof. The following equivalences are satisfied for all Z ⊆M and worlds w ∈W :

d ∈ ZI(w) ⇔

A

C ∈ Z : (d,C,w) ∈ I ⇔

A

C ∈ Z : d ∈ CI(w) ⇔ d ∈ (
l
Z)I(w).

Now consider two subsets X,Y ⊆M , then it holds that

P(X → Y ) = P{w ∈W | XI(w) ⊆ Y I(w) }

= P{w ∈W | (
l
X)I(w) ⊆ (

l
Y )I(w) } = P(

l
X v

l
Y ).

Generalizing the notion of Baader and Distel (2008); Distel (2011), the induced
probabilistic formal concept K(I) of I is defined as K(I,M(I)) with the attribute set

M(I) := {⊥} ∪NC ∪ {

E

r.XI
×
ε | r ∈ NR and ∅ 6= X ⊆ ∆I ×Wε }.

Please note that the model-based most specific concept descriptions XI×ε do not exist with
respect to descriptive semantics in case of a cyclic interpretation I. In order to circumvent
this problem, either the role depth of the mmscs must be restricted, or greatest fixpoint
semantics (gfp-semantics) have to be used instead. More sophisticated explanations are given
in Baader and Distel (2008); Distel (2011) for the case of gfp-semantics, and in Borchmann,
Distel, and Kriegel (2016) for the case of bounds on the role depth in descriptive semantics.

Of course, when axiomatizing probable GCIs in I, it is not necessary to compute trivial
axioms which are valid in arbitrary interpretations. Hence, we use the following set of
background implications during the computation of an implicational base of the induced
probabilistic formal context K(I):

S(I) := {{C} → {D} | C,D ∈M(I) and ∅ |= C v D }.

For an implication set B over a set M of EL⊥-concept descriptions we define its induced
TBox by

d
B := {

d
X v

d
Y | X → Y ∈ B}.

Corollary 18. If B contains an almost certain implicational base for K(I), then
d
B

is complete for the almost certain GCIs of I.

Proof. We know that a GCI is almost certain in I if, and only if, it is valid in I×ε . Let
B′ ⊆ B be an almost certain implicational base for K(I), i.e., an implicational base for
(K(I))×ε = K(I×ε ). Then according to Distel (2011, Theorem 5.12) it follows that the TBoxd
B′ is a base of GCIs for I×ε , i.e., a base for the almost certain GCIs of I. Consequently,d
B is complete for the almost certain GCIs of I.

The induced formal context of our exemplary probabilistic interpretation I5 is shown
in Figure 11, and its concept lattice is visualized in Figure 12. Therein, we use the following
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(K(I5)×)∂ (d
1
,w

2
)

(d
1
,w

3
)

(d
1
,w

1
)

(d
3
,w

1
)

(d
2
,w

3
)

(d
2
,w

2
)

(d
3
,w

3
)

(d
2
,w

1
)

(d
3
,w

2
)

⊥ · · · · · · · · ·
A1 × × × · · · · · ×
A2 · · · · × × × × ·
A3 × × × × × · · × ×

E

r1.> × × × · · · · · ×

E

r1.A2 × × × · · · · · ×

E

r1.A3 · × × · · · · · ·

E

r1.C1 · × × · · · · · ·

E

r1.C2 · · · · · · · · ·

E

r1.C3 · · · · · · · · ·

E

r1.C4 · × · · · · · · ·

E

r2.> · · · · × · · · ·

E

r2.A2 · · · · × · · · ·

E

r2.A3 · · · · · · · · ·

E

r2.C1 · · · · · · · · ·

E
r2.C2 · · · · · · · · ·

E

r2.C3 · · · · · · · · ·

E

r2.C4 · · · · · · · · ·
Figure 11. The induced formal context of the (almost) certain scaling of the exemplary probabilistic interpretation
from Figure 9

abbreviations in order to increase the readability:

C1 := A2 uA3

C2 := A1 uA3 u

E

r1.A2

C3 := A1 uA3 u

E

r1. (A2 uA3)

C4 := A2 uA3 u

E

r2.A2

For the computation of the canonical base of the induced context K(I5), we first
determine the trivial general concept inclusions valid between the concept descriptions
which are attributes of K(I5), and then use the corresponding implications as background
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(d2,w2), (d3,w3)

A2

(d3,w1)

A3

(d2,w1) (d1,w2),(d3,w2)

A1,

E

r1.>,

E

r1.A2

(d2,w3)

E

r2.>,

E

r2.A2

(d1,w1)

E

r1.A3,

E

r1.C1

(d1,w3)

E

r1.C4

⊥,

E

r1.C2,

E

r1.C3,E

r2.A3,

E

r2.C1,E

r2.C2,

E

r2.C4,

E

r2.C3

Figure 12. The concept lattice of the induced formal context in Figure 11

knowledge. This background implications are as follows:

S(I5) =



{⊥}

{A1}

{A2}

{A3}

{

E

ri.C3}

{

E

ri.C4}

{

E

ri.C2}

{

E

ri.C1}

{

E

ri.A3}

{

E

ri.A2}

{

E

ri.>}
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i ∈ {1,2}



.

21



July 19, 2017 International Journal of General Systems cla2015-prob-ijgs

Then, the implicational base of K(I5)× with respect to the above defined background
knowledge S(I5) is constructed as the following set of implications:

Can(K(I5)×,S(I5)) =



{A1} → {A3,

E

r1.A2},
{A1,A2,A3,

E

r1.A2} → {⊥},
{A1,A3,

E

r1.A2,

E

r1.A3} → {

E

r1.C1},
{A1,A3,

E

r1.C2,

E

r1.C1} → {⊥},
{A2,A3,

E

r2.A2,

E

r2.A3} → {⊥},
{

E

r1.>} → {A1,A3,

E

r1.A2},
{

E

r2.>} → {A2,A3,

E

r2.A2}


.

Consequently, the following TBox is sound and complete for the certain GCIs of the
exemplary probabilistic interpretation I5:

B(I5,1) =



A1 v A3 u

E

r1.A2,

A1 uA2 uA3 u

E

r1.A2 v ⊥,
A1 uA3 u

E

r1.A2 u

E

r1.A3 v

E

r1.C1,

A1 uA3 u

E

r1.C2 u

E

r1.C1 v ⊥,
A2 uA3 u

E

r2.A2 u

E

r2.A3 v ⊥,

E

r1.> v A1 uA3 u

E

r1.A2,

E

r2.> v A2 uA3 u

E

r2.A2


Theorem 19. Let I be a probabilistic interpretation, and p ∈ [0,1] a threshold. If B is
an implicational base for K(I) and p that contains an almost certain implicational base
for K(I), then

d
B is a base of GCIs for I and p.

Proof. Consider a GCI
d
X v

d
Y ∈

d
B. Then Lemma 17 yields that the implication

X → Y and the GCI
d
X v

d
Y have the same probability. Since B is a probabilistic

implicational base for K(I) and p, we conclude that P(
d
X v

d
Y ) ≥ p is satisfied.

Assume that C v D is an arbitrary GCI with probability ≥ p. We have to show
that

d
B entails C v D. Let J be an arbitrary model of

d
B. Consider an implication

X → Y ∈ B, then
d
X v

d
Y ∈

d
B, and hence it follows that (

d
X)J ⊆ (

d
Y )J .

Consequently, the implication X → Y is valid in the induced context K(J ,M(I)). (We
here mean the non-probabilistic formal context that is induced by a non-probabilistic
interpretation, cf.Distel (2011); Borchmann (2014); Borchmann, Distel, and Kriegel (2016).)

Furthermore, since all model-based most-specific concept descriptions of I×ε are expressible
in terms of M(I), it follows that E ≡

d
πM(I)(E) for all mmscs E of I×ε , cf.Distel (2011);

Borchmann (2014); Borchmann, Distel, and Kriegel (2016). Hence, we may conclude that

P(C v D) = P(CI
×
ε I×ε v DI×ε I×ε )

= P(
l
πM(I)(C

I×ε I×ε ) v
l
πM(I)(D

I×ε I×ε ))

= P(πM(I)(C
I×ε I×ε )→ πM(I)(D

I×ε I×ε )).

Consequently, B entails the implication πM(I)(C
I×ε I×ε )→ πM(I)(D

I×ε I×ε ), hence it is valid
in K(J ,M(I)), and furthermore the GCI CI×ε I×ε v DI

×
ε I×ε is valid in J . As J is an

arbitrary interpretation,
d
B entails CI×ε I×ε v DI×ε I×ε .
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>

A2 A3

A2 uA3 A1 uA3 u

E

r1.A2

A2 uA3 u

E

r2.A2

A1 uA3 u

E

r1.C1

A1 uA3 u

E

r1.C4

⊥

0

∅

1
2

{w1}

1
2

{w1}
0

∅

1
3

{w2}

1
2 {w2,w3}

2
3 {w1,w3}

1
2 {w2,w3}

5
6

{w1,w2}

5
6

{w1,w2}

Figure 13. The probabilistic implicational base of the induced formal context K(I5) without the certain part

Corollary 18 yields that
d
B is complete for the almost certain GCIs of I. In particular,

the GCI C v CI
×
ε I×ε is almost certain in I, and hence follows from

d
B. We conclude

that
d
B |= C v DI×ε I×ε . Of course, the GCI DI×ε I×ε v D is valid in all interpretations.

Finally, we conclude that
d
B entails C v D.

Returning back to our running example, and applying Theorem 19, we infer that the
following TBox is a probabilistic base of GCIs for I5 and 3

5 :

B(I5, 35) = B(I5,1)∪


A1 uA3 u

E

r1.A2 v

E

r1. (A2 uA3),

A1 uA3 u

E

r1. (A2 uA3 u

E

r2.A2) v ⊥,
A2 uA3 u

E

r2.A2 v ⊥

 .

Corollary 20. Let I be a probabilistic interpretation, and p ∈ [0,1] a threshold. Then
B(I, p) :=

d
B(K(I), p) is a base of GCIs for I and p where B(K(I), p) is defined as in
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Theorem 12.

8. Implications over Probabilistic Attributes

In Section 4, the notion of probability of an implication in a probabilistic formal context has
been defined. However, it was not possible to express implications between probabilistically
quantified attributes, e.g., we could not state that having attribute m with probability
1
3 implies having attribute n with probability 2

3 . In this section we will resolve this issue by
defining the notion of probabilistic attributes, and considering implications over probabilistic
attributes. Furthermore, a technique for the construction of bases of such probabilistic
implications is proposed.

Definition 21. Let K = (G,M,W, I,P) be a probabilistic formal context. For object
sets A ⊆ G and attribute sets B ⊆M, the incidence probability is defined as

P(A,B) := P{w ∈W | A×B × {w} ⊆ I }.

A probabilistic attribute over M is an expression

P

≥ p.B where ∅ 6= B ⊆ M, and
p ∈ (0,1]. The set of all probabilistic attributes over M is denoted as

P

(M). For a subset
X ⊆

P

(M), its extension in K is given by

XI := {g ∈ G |

AP

≥ p.B ∈X : P({g},B) ≥ p}.

Considering our exemplary probabilistic formal context K2 from Figure 4, the set
{

P

≥ 1
2 .{m1}} has the following extension in K2:

{

P

≥ 1
2 .{m1}}I = {g ∈ G | P({g},{m1}) ≥ 1

2 } = {g1},

i.e., only the object g1 has the attribute m1 with a probability of at least 1
2 .

Definition 22. Let K = (G,M,W, I,P) be a probabilistic formal context. A probabilistic
implication over M is an implication over

P

(M), and the set of all probabilistic
implications over M is denoted as

P

Imp(M). A probabilistic implication X→Y is valid
in K if XI ⊆ YI is satisfied, and we shall denote this by K |= X→ Y. A probabilistic
implication set L is a set of probabilistic implications. L is valid in a probabilistic formal
context K if K |= X → Y for all X → Y ∈ L, and we shall denote this as K |= L.
Furthermore, L entails X → Y, symbolized as L |= X → Y, if for each probabilistic
formal context K, K |= L implies K |= X→Y.

An example for a probabilistic implication within the domain of the probabilistic formal
context presented in Figure 4 is {

P

≥ 1
2 .{m1}} → {

P

≥ 2
3 .{m2},

P

≥ 4
5 .{m3}}. However,

it is not valid in K since the premise’s extension {g1} of {

P

≥ 1
2 .{m1}} is not a subset

of the conclusion’s extension

{

P

≥ 2
3 .{m2},

P

≥ 4
5 .{m3}}I = {

P

≥ 2
3 .{m2}}I ∩ {

P

≥ 4
5 .{m3}}I = {g2} ∩ {g1, g3} = ∅.

It can be easily verified that the probabilistic implication {

P

≥ 1
2 .{m1}} → {

P

≥ 4
5 .{m3}}

is valid in K.

Lemma 23. Let K = (G,M,W, I,P) be a probabilistic formal context. Then the
following probabilistic implications are valid in K.

(1) {

P

≥ p.X} → {

P

≥ q. Y } if X ⊇ Y and p ≥ q.
(2) {

P

≥ p.X,

P

≥ q. Y } → {

P

≥ p+ q− 1.X ∪ Y } if p+ q− 1 > 0.
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Proof. Clearly, P({g},X) ≥ p implies that P({g},X) ≥ q. Furthermore, since X ⊇ Y
yields that {g} ×X × {w} ⊇ {g} × Y × {w}, we conclude that P({g}, Y ) ≥ q.

For the second implication, observe that in case p + q − 1 > 0 the intersection of
{w ∈ W |

A

x ∈ X : (g,x,w) ∈ I } and {w ∈ W |

A

y ∈ Y : (g, y,w) ∈ I } must be
non-empty, and in particular must have a P-measure of at least p+ q− 1.

Definition 24. Let K = (G,M,W, I,P) be a probabilistic formal context. The proba-
bilistic scaling of K is defined as the formal context

P

(K) := (G,

P

(M), I) the incidence
relation I of which is defined by

(g,

P

≥ p.B) ∈ I if, and only if, P({g},B) ≥ p,

and by

P×(K) we denote the subcontext of

P

(K) with attribute set

P×(M) := {

P

≥ p.BI×I× | ∅ 6= B ⊆M and p ∈ (0,1]}.

Figure 14 shows the probabilistic scaling

P×(K2) the attribute set of which is given by

P×({m1,m2,m3})

= {

P

≥ p.B | B ∈ Int(K×) and p ∈ (0,1]}

=

{ P

≥ p.{m2},

P

≥ p.{m3},

P

≥ p.{m1,m3},

P

≥ p.{m2,m3},

P

≥ p.{m1,m2,m3}

∣∣∣∣∣ p ∈ (0,1]

}
.

Please note that the dual formal context is displayed, i.e., the incidence table is
transposed. More formally, for a formal context K := (G,M,I) its dual context is
K∂ := (M,G,{ (m,g) | (g,m) ∈ I }). Furthermore, the concept lattice of

P×(K2) is
presented in Figure 15.

Lemma 25. Let K be a probabilistic formal context, and A ⊆ G as well as B ⊆ M.
Then the following equations are satisfied:

P(A,B) = P(A,BI
×I×) = P(A,BI

×
ε I

×
ε ).

Proof. In the proof of Lemma 8 we have shown that BI(w) = BI
×I×I(w) for all B ⊆M .

Hence, we may conclude that

A×B × {w} ⊆ I ⇔ A ⊆ BI(w) ⇔ A ⊆ BI×I×I(w) ⇔ A×BI×I× × {w} ⊆ I,

and so P(A,B) = P(A,BI
×I×). Analogously, P(A,B) = P(A,BI

×
ε I

×
ε ) is satisfied, since

BI(w) = BI
×
ε I

×
ε I(w) for all possible worlds w ∈Wε and attribute sets B ⊆M .

Lemma 26. Let K be a probabilistic formal context. Then for all probabilistic implica-
tions {

P

≥ pt.Xt | t ∈ T } → {

P

≥ q. Y }, the following statements are equivalent:

(1) {

P

≥ pt.Xt | t ∈ T } → {

P

≥ q. Y } is valid in K.
(2) {

P

≥ pt.Xt | t ∈ T } → {

P

≥ q. Y } is valid in

P

(K).
(3) {

P

≥ pt.XI×I×
t | t ∈ T } → {

P

≥ q. Y I×I×} is valid in

P×(K).

Proof. Statements 1 and 2 are equivalent by Definitions 21 and 24. Furthermore, from
Lemma 25 we conclude that {

P

≥ p.X}I = {

P

≥ p.XI×I×}I for all probabilistic attributesP

≥ p.X. The equivalence of Statements 2 and 3 then follows easily.
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(

P×(K2))∂ g 1 g 2 g 3

P

≥ p1.{m2} · × ×

P

≥ p1.{m3} × × ×

P

≥ p1.{m1,m3} × · ×

P

≥ p1.{m2,m3} · × ·

P

≥ p1.{m1,m2,m3} · · ·

P

≥ p2.{m2} · × ·

P

≥ p2.{m3} × × ×

P

≥ p2.{m1,m3} × · ×

P

≥ p2.{m2,m3} · × ·

P

≥ p2.{m1,m2,m3} · · ·

P

≥ p3.{m2} · × ·

P

≥ p3.{m3} × × ×

P

≥ p3.{m1,m3} × · ·

P

≥ p3.{m2,m3} · × ·

P

≥ p3.{m1,m2,m3} · · ·

P

≥ p4.{m2} · × ·

P

≥ p4.{m3} × · ×
P

≥ p4.{m1,m3} × · ·

P

≥ p4.{m2,m3} · · ·

P

≥ p4.{m1,m2,m3} · · ·

P

≥ p5.{m2} · × ·

P

≥ p5.{m3} × · ·

P

≥ p5.{m1,m3} × · ·

P

≥ p5.{m2,m3} · · ·

P

≥ p5.{m1,m2,m3} · · ·

p1 ∈ (0, 16 ]

p2 ∈ (16 ,
1
3 ]

p3 ∈ (13 ,
2
3 ]

p4 ∈ (23 ,
5
6 ]

p5 ∈ (56 ,1]

Figure 14. The probabilistic scaling of the probabilistic formal context given in Figure 4

Definition 27. Let K := (G,M,W, I,P) be a probabilistic formal context, and assume
that L ⊆ Imp(M) is a set of implications and P ⊆

P

Imp(M) is a set of probabilistic
implications. Then (L,P) is valid in K if all implications in L are certain in K and P is
valid in K, and we shall denote this as K |= (L,P). A probabilistic implication X→ Y
is entailed by (L,P) if X→Y is valid in all probabilistic formal contexts in which (L,P)
is valid, and this is symbolized as (L,P) |= X→Y.

Furthermore, we call (L,P) a probabilistic implicational base for K if for all
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P

≥ p1.{m3},P

≥ p2.{m3},P

≥ p3.{m3}

P

≥ p1.{m2}

P

≥ p1.{m1,m3},P

≥ p2.{m1,m3},P

≥ p4.{m3}

g3g1

P

≥ p3.{m1,m3},P

≥ p4.{m1,m3},P

≥ p5.{m3},P

≥ p5.{m1,m3}

g2

L1

L2

where L1 :=

{ P

≥ p1.{m2,m3},

P

≥ p2.{m2},

P

≥ p2.{m2,m3},

P

≥ p3.{m2},

P

≥ p3.{m2,m3},

P

≥ p4.{m2},

P

≥ p5.{m2}

}
,

and L2 :=



P

≥ p1.{m1,m2,m3},

P

≥ p2.{m1,m2,m3},

P

≥ p3.{m1,m2,m3},

P

≥ p4.{m2,m3},

P

≥ p4.{m1,m2,m3},

P

≥ p5.{m2,m3},

P

≥ p5.{m1,m2,m3}


Figure 15. The concept lattice of the probabilistic scaling in Figure 14

probabilistic implications X→Y over M, the following equivalence is satisfied:

K |= X→Y⇔ (L,P) |= X→Y.

Corollary 28. Let K be a probabilistic formal context. Then for each implicational base
P of

P

(K), the pair (∅,P) is a probabilistic implicational base of K.

Lemma 29. Let K := (G,M,W, I,P) be a probabilistic formal context. If an implication
X → Y is certain in K, then the probabilistic implication {

P

≥ p.X} → {

P

≥ p.Y } is
valid in K for all p ∈ [0,1].
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Proof. Assume that X → Y is certain in K. Then Lemma 5 yields that X → Y is valid in
the certain scaling K×ε , i.e. Y ⊆ XI×I× holds true. Consequently, P(A,Y ) ≥ P(A,XI×I×)
for all A ⊆ G, and Lemma 25 implies P(A,Y ) ≥ P(A,X) for all A ⊆ G. In particular then
P({g},X) ≥ p implies P({g}, Y ) ≥ p for all g ∈ G and all p ∈ [0,1], i.e. the probabilistic
implication {

P

≥ p.X} → {

P

≥ p.Y } is valid in K.

Proposition 30. Let K be a probabilistic formal context. Then (B×(K),B

P

(K)) is a
probabilistic implicational base for K where

B×(K) := {P → P I
×I× | P ∈ PsInt(K×)},

and B

P

(K) := {P→ PII | P ∈ PsInt(

P×(K))}.

Proof. We start by proving soundness of B(K). Lemma 26 yields that each implication
from B

P

(K) is valid in K. Furthermore, Lemma 5 justifies that all implications in B×(K)
are certain in K.
We proceed by showing completeness. Assume that K |= {

P

≥ pt.Xt | t ∈ T } →
{

P

≥ q. Y }. Lemma 26 yields that {

P

≥ pt.XI×I×
t | t ∈ T } → {

P

≥ q. Y I×I×} is valid
in

P×(K), and thus is entailed by B

P

(K), since by construction, B

P

(K) is complete for
the implications that are valid in

P×(K).
Since Xt → XI×I×

t is certain in K for each t ∈ T , it is valid in the certain scaling K×
and is thus entailed by B×(K). An application of Lemma 29 yields that for each t ∈ T ,
the probabilistic implication {

P

≥ pt.Xt} → {

P

≥ pt.XI×I×
t } entailed by B×(K).

In summary, then

B×(K)∪B
P

(K) |= {{
P

≥ pt.Xt} → {
P

≥ pt.XI×I×

t } | t ∈ T }

∪ {{

P

≥ pt.XI×I×

t | t ∈ T } → {

P

≥ q. Y I×I×}}

∪ {{

P

≥ q. Y I×I×} → {

P

≥ q. Y }}
|= {

P

≥ pt.Xt | t ∈ T } → {

P

≥ q. Y },

i.e., B(K) is complete for K.

Returning back to our running example K2 from Figure 4, we now construct its
probabilistic implicational base B(K2). The canonical base of the certain scaling (K2)

× was
computed as {{m1} → {m3}}. Consequently, we get that the first part of the probabilistic
implicational base of K2 is

B×(K2) = {{m1} → {m3}}.

For the computation of the second part B

P

(K2), we consider the probabilistic scaling of K2.
In order to avoid the axiomatization of trivial implications, we construct the implicational
base of

P×(K2) relative to the implication set containing all those probabilistic implications
which are described in Lemma 23. This set of background knowledge contains, among
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B

P

(K2) =



∅

→ {

P

≥ 2
3 .{m3}},

{

P

≥ 1.{m1,m3},

P

≥ 1
6 .{m2}}

→ {

P

≥ 1.{m1,m2,m3}},

{

P

≥ 2
3 .{m2,m3},

P

≥ 5
6 .{m3},

P

≥ 1.{m2},

P

≥ 1
3 .{m1,m3}}

→ {

P

≥ 1.{m1,m2,m3}},

{

P

≥ 1.{m3},

P

≥ 1
3 .{m1,m3}}

→ {

P

≥ 1.{m1,m3}},

{

P

≥ 2
3 .{m1,m3},

P

≥ 5
6 .{m3}}

→ {

P

≥ 1.{m1,m3}},

{

P

≥ 2
3 .{m3},

P

≥ 1
6 .{m2,m3}}

→ {

P

≥ 2
3 .{m2,m3},

P

≥ 1.{m2}},

{

P

≥ 2
3 .{m3},

P

≥ 1
3 .{m2}}

→ {

P

≥ 2
3 .{m2,m3},

P

≥ 1.{m2}},

{

P

≥ 5
6 .{m3}}

→ {

P

≥ 1
3 .{m1,m3}},

{
P

≥ 2
3 .{m3},

P

≥ 1
6 .{m1,m3}}

→ {

P

≥ 5
6 .{m3},

P

≥ 1
3 .{m1,m3}}


Figure 16. The implicational base of

P×(K2) with respect to the background implications that are described
in Lemma 23.

others, the following implications:

{

P

≥ 5
6 .{m1,m3}} → {

P

≥ 1
3 .{m1}}

{

P

≥ 5
6 .{m1,m3}} → {

P

≥ 2
3 .{m3}}

...

{

P

≥ 2
3 .{m2},

P

≥ 2
3 .{m3}} → {

P

≥ 1
3 .{m2,m3}}

{

P

≥ 5
6 .{m1,m3},

P

≥ 5
6 .{m2,m3}} → {

P

≥ 2
3 .{m1,m2,m3}}

...

The resulting probabilistic implication set is presented in Figure 16.
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9. Conclusion

We have introduced the notion of a probabilistic formal context as a triadic context the
third dimension of which is a set of worlds equipped with a probability measure. Then
the probability of implications in such probabilistic formal contexts was defined, and a
construction of a base of implications the probabilities of which exceeds a given threshold
was proposed, and its correctness was verified. Furthermore, the results were applied to the
light-weight description logic EL⊥ with probabilistic interpretations, and so we formulated
a method for the computation of a base of general concept inclusions the probabilities
of which satisfies a given lower threshold.
As another approach for combining Formal Concept Analysis and probabilities, we

defined the notion of a probabilistic attribute, and provided a method for the axiomatization
of implications of probabilistic attributes from probabilistic formal contexts. In particular,
this technique allows for a more fine-grained analysis of the probabilistic input data. As a
future step, it is planned to extend or apply the results from the last section on probabilistic
attributes to the field of Description Logics, and at first to the description logic EL⊥ and
its probabilistic variant.

For finite input data sets all of the provided constructions are computable. In particular,
Distel (2011); Borchmann, Distel, and Kriegel (2016) provide methods for the computation
of model-based most-specific concept descriptions, and the algorithms of Ganter (2010);
Kriegel (2015b); Kriegel and Borchmann (2015); Kriegel (2016a) can be utilized to compute
concept lattices and canonical implicational bases (or bases of GCIs, respectively).
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