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ABSTRACT
In a recent research paper, we have proposed an extension of
the lightweight Description Logic (DL) EL in which concepts
can be defined in an approximate way. To this purpose, the
notion of a graded membership function m, which instead
of a Boolean membership value 0 or 1 yields a membership
degree from the interval [0, 1], was introduced. Threshold
concepts can then, for example, require that an individ-
ual belongs to a concept C with degree at least 0.8. Rea-
soning in the threshold DL τEL(m) obtained this way of
course depends on the employed graded membership func-
tion m. The paper defines a specific such function, called
deg , and determines the exact complexity of reasoning in
τEL(deg). In addition, it shows how concept similarity mea-
sures (CSMs) ∼ satisfying certain properties can be used to
define graded membership functions m∼, but it does not in-
vestigate the complexity of reasoning in the induced thresh-
old DLs τEL(m∼). In the present paper, we start filling this
gap. In particular, we show that computability of ∼ implies
decidability of τEL(m∼), and we introduce a class of CSMs
for which reasoning in the induced threshold DLs has the
same complexity as in τEL(deg).

CCS Concepts
•Theory of computation → Description logics;
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1. INTRODUCTION
DLs are a well-investigated family of logic-based knowl-

edge representation languages, which are frequently used to
formalize ontologies for application domains such as biology
and medicine. To define the important notions of such an
application domain as formal concepts, DLs state necessary
and sufficient conditions for an individual to belong to a
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concept. Once the relevant concepts of an application do-
main are formalized this way, they can be used in queries
in order to retrieve new information from data. The DL
EL, in which concepts can be built using concept names as
well as the concept constructors conjunction (u), existen-
tial restriction (∃r.C), and the top concept (>), has drawn
considerable attention in the last decade since, on the one
hand, important inference problems such as the subsump-
tion problem are polynomial in EL [5, 1, 7]. On the other
hand, though quite inexpressive, EL underlies the OWL 2
EL profile1 and can be used to define biomedical ontologies,
such as the large medical ontology SNOMED CT.2

Like all traditional DLs, EL is based on classical first-
order logic, and thus its semantics is strict in the sense that
all the stated properties need to be satisfied for an indi-
vidual to belong to a concept. In applications where exact
definitions are hard to come by, it would be useful to re-
lax this strict requirement and allow for approximate defi-
nitions of concepts, where most, but not all, of the stated
properties are required to hold. For example, in clinical di-
agnosis, diseases are often linked to a long list of medical
signs and symptoms, but patients that have a certain dis-
ease rarely show all these signs and symptoms. Instead, one
looks for the occurrence of sufficiently many of them. Sim-
ilarly, people looking for a flat to rent or a bicycle to buy
may have a long list of desired properties, but will also be
satisfied if many, but not all, of them are met. In order to
support defining concepts in such an approximate way, in
[2] we have introduced a DL extending EL with threshold
concept constructors of the form C./ t, where C is an EL
concept, ./ ∈ {<,≤, >,≥}, and t is a rational number in
[0, 1]. The semantics of these new concept constructors is
defined using a graded membership function m that, given
a (possibly complex) EL concept C and an individual d of
an interpretation I, returns a value from the interval [0,1],
rather than a Boolean value from {0, 1}. The concept C./ t

then collects all the individuals that belong to C with de-
gree ./ t, where this degree is computed using the function
m. The DL τEL(m) is obtained from EL by adding these
new constructors. There are, of course, different possibilities
for how to define a graded membership function m, and the
semantics of the obtained new logic τEL(m) depends on m.

In addition to introducing the family of DLs τEL(m), we
have also defined a concrete graded membership function
deg , which is obtained as a natural extension of the well-
known homomorphism characterization of crisp membership

1see http://www.w3.org/TR/owl2-profiles/
2see http://www.ihtsdo.org/snomed-ct/



and subsumption in EL [5]. It is proved in [2] that con-
cept satisfiability and ABox consistency are NP-complete in
τEL(deg), whereas the subsumption and the instance check-
ing problem are co-NP complete (the latter w.r.t. data com-
plexity). In addition, it is shown how a CSM ∼ that is
equivalence invariant, role-depth bounded and equivalence
closed3 (see [10]) can be used to define a graded member-
ship function m∼. In particular, the graded membership
function deg can be obtained in this way, i.e., there is a
standard CSM ∼∗ such that m∼∗ = deg . However, the
complexity of reasoning in the DLs τEL(m∼) for ∼ 6= ∼∗
has not been investigated in [2].

The goal of the present paper is to start filling this gap.
Firstly, we will show that, for computable standard CSMs ∼,
reasoning in τEL(m∼) can effectively be reduced to reason-
ing in the DL ALC. Though the complexity of reasoning in
ALC is known to be “only ” PSpace [11], the complexity of
the decision procedures for reasoning in τEL(m∼) obtained
this way is non-elementary, due to the high complexity of the
reduction function. Secondly, in order to obtain threshold
DLs of lower complexity, we determine a class of standard
CSMs definable using the simi framework of [10] such that
reasoning in τEL(m∼) for a member ∼ of this class has the
same complexity as reasoning in τEL(deg). Thirdly, we con-
sider the problem of answering relaxed instance queries [8]
using CSMs from this class. For the CSM ∼∗ corresponding
to deg , it was shown in [2] that relaxed instance queries w.r.t.
this CSM can be answered in polynomial time. We extend
this result to all members of our class. This improves on
the complexity upper bounds for answering relaxed instance
queries in [8].

Due to the space constraints, we cannot include full proofs
of all our results. They can be found in the technical report
[3].

2. THE FAMILY OF DLs τEL(m∼)
First, we introduce the DL EL and show how, up to equiv-

alence, all EL concept descriptions over a finite vocabulary
and with a bounded role depth can be effectively computed.
This will be used later to show the decidability result men-
tioned in the introduction. Second, we recall the definition
of graded membership functions and the induced threshold
DLs as well as some additional definitions and results from
[2]. Third, we recall how concept similarity measures can be
used to define graded membership functions.

The Description Logic EL
Let NC and NR be finite sets of concept and role names,
respectively. The set CEL(NC,NR) of EL concept descrip-
tions over NC and NR is inductively built from NC using
the concept constructors conjunction (C u D), existential
restriction (∃r.C), and top (>). The semantics of EL con-
cept descriptions is defined using standard first-order logic
interpretations. An interpretation I = (∆I , .I) consists of
a non-empty domain ∆I and an interpretation function .I

that interprets concept names in NC as subsets of ∆I and
assigns binary relations over ∆I to role names in NR. This
function is inductively extended to complex concept descrip-

3In the following we will call a CSM satisfying these three
properties a standard CSM.

tions as follows.

>I := ∆I , (C uD)I := CI ∩DI ,
(∃r.C)I := {x ∈ ∆I | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}.

Given two EL concept descriptions C and D, we say that
C is subsumed by D (in symbols C v D) iff CI ⊆ DI for
all interpretations I. These two concepts are equivalent (in
symbols C ≡ D) iff C v D and D v C. In addition, C is
satisfiable iff CI 6= ∅ for some interpretation I.4

Information about specific individuals (represented by a
set of individual names NI) can be stated in an ABox, which
is a finite set of assertions of the form C(a) or r(a, b), where
C ∈CEL(NC,NR), r ∈NR, and a, b∈NI. An interpretation I
is then extended to assign domain elements aI to individual
names a. We say that I satisfies an assertion C(a) iff aI ∈
CI , and r(a, b) iff (aI , bI) ∈ rI . Furthermore, I is a model
of the ABox A (denoted as I |= A) iff it satisfies all the
assertions of A. The ABox A is consistent iff I |=A for some
interpretation I. Finally, an individual a is an instance of
C in A iff aI ∈CI for all models I of A.

As shown in [9], EL concept descriptions C can be trans-
formed into an equivalent reduced form Cr by applying the
rewrite rule CuD −→ C if C v D modulo associativity and
commutativity of u as long as possible, not only on the top-
level conjunction of the description, but also under the scope
of existential restrictions. Up to associativity and commu-
tativity of u, equivalent EL concept descriptions have the
same reduced form.

We denote the size of an EL concept description C with
s(C). The role depth rd(C) of C is the maximal nesting
of existential restrictions in C. As shown in [6], for finite
sets NC and NR and a fixed bound k on the role depth,
CEL(NC,NR) contains only finitely many equivalence classes
of concept descriptions of role depth ≤ k. The following
lemma shows that finitely many representatives of these
equivalence classes can be computed.

Lemma 1. For all k ≥ 0 there exists a finite set Rk ⊆
CEL(NC,NR) consisting of EL concept descriptions in reduced
form and of role depth ≤ k such that Cr ∈ Rk holds for all
C ∈ CEL(NC,NR) with rd(C) ≤ k, and this set can effectively
be computed.

Proof (Sketch). The lemma can be shown by induc-
tion on k. Concept descriptions of role depth k = 0 are
conjunctions of concept names, where the empty conjunc-
tion corresponds to >. The requirement to be reduced cor-
responds to the fact that each concept name occurs at most
once in the conjunction. Thus,

R0 =
{ l

A∈S

A | S ⊆ NC

}
,

which is obviously finite and, given NC, can easily be com-
puted.

Up to equivalence, concept descriptions of role depth ≤ k
for k > 0 are conjunctions of concept names A ∈ NC and
existential restrictions ∃r.C for r ∈ NR and C ∈ Rk−1. The
requirement to be reduced imposes the constraint that two
different conjuncts ∃r.C and ∃r.D occurring in this conjunc-
tion satisfy that C,D are reduced and C 6v D (and thus

4In EL, all concept descriptions are satisfiable, but this is
no longer the case for its extensions by threshold concepts
introduced below.



also C 6≡ D). Thus, for every role r ∈ NR there are at most
|Rk−1| conjuncts that are existential restrictions for r. Since
by induction we know that Rk−1 is finite, this implies that
Rk is finite as well. In addition, since subsumption in EL
is decidable and by induction Rk−1 is computable, this also
implies that Rk can effectively be computed.

Extending EL with threshold concepts
In [2], EL is extended with threshold concepts C./ t, where
C is an EL concept description, ./ ∈ {<,≤, >,≥}, and t is a
rational number in [0, 1]. These threshold concepts can then
be used like concept names when building complex concept
descriptions such as (∃r.A)<1 u ∃r.(A u B)≥.8 u B. Note
that the concept C occurring within the threshold opera-
tor must be an EL concept description, and thus nesting of
these operators is not allowed. The semantics of the thresh-
old operators is defined using a graded membership function,
which is defined as follows.5

Definition 1. A graded membership function m is a fam-
ily of functions that contains for every interpretation I a
function mI : ∆I × CEL(NC,NR) → [0, 1] satisfying the fol-
lowing conditions (for C,D ∈ CEL(NC,NR)):

M1: ∀I ∀d ∈ ∆I : d∈CI ⇔ mI(d,C)=1,

M2: C≡D ⇔ ∀I ∀d ∈ ∆I : mI(d,C)=mI(d,D).

Intuitively, given an interpretation I and d ∈ ∆I , mI(d,C) ∈
[0, 1] represents the degree to which d belongs to C in I. The
concept C./ t then collects all the elements of ∆I that be-
long to C with degree ./ t, as measured by m. To be more
precise, the formal semantics of threshold concepts is then
defined as follows: (C./ t)

I := {d ∈ ∆I | mI(d,C) ./ t}.
This way, a new family of DLs called τEL(m) is obtained,

where m is a parameter indicating which function is used to
obtain the semantics of threshold concepts.

In addition to this family of DLs, [2] introduces a con-
crete membership function deg , and investigates the compu-
tational properties of its corresponding DL τEL(deg). We
show that satisfiability and consistency are NP-complete,
whereas subsumption and instance checking (w.r.t. data com-
plexity) are coNP-complete in τEL(deg) (Th. 5 and 6 in [2]).
An important step towards obtaining these results was to
characterize when an individual is an instance of a τEL(deg)
concept description in an interpretation. This characteriza-
tion generalizes the corresponding one for crisp membership
in EL, which is based on the representation of concepts and
interpretations as graphs, and the existence of homomor-
phisms between these graphs. Since it is needed in Section 3,
we briefly describe the general ideas behind it. In fact, it
turns out that this characterization works for τEL(m) re-
gardless of which graded membership function m is used.
EL description graphs are graphs where the nodes are la-

beled with sets of concept names and the edges are labeled
with role names. As shown in [1, 5], interpretations can
be represented as (arbitrary) EL description graphs and EL
concept descriptions as EL description trees, i.e., as descrip-
tion graphs that are trees (whose root we will always denote
as v0). Description trees can be extended to τEL(m) by al-
lowing the node labels also to contain elements of the form
C./ t. For instance, the left-hand side of Figure 1 depicts

5Note that this definition corrects a typo in Def. 3 of [2].

TC : v0 : {A}

v1 : {B}

r

v2 : {A}

s

TĈ : v0 : {A,C>.8}

v1 : {B,D≤.5}

r

v2 : {A}

s

Figure 1: EL and τEL(m) description trees

the EL description tree corresponding to the EL concept de-
scription Au∃r.Bu∃s.A, whereas the right-hand side shows
the τEL(m) description tree corresponding to the τEL(m)
concept description A u C>.8 u ∃r.(B uD≤.5) u ∃s.A.

Based on the definition of homomorphisms between EL
description trees in [5], the notion of a τ -homomorphism φ

from a τEL(m) description tree Ĥ into an EL description
graph GI representing an interpretation I is defined in [2]

to be a mapping from the nodes of Ĥ to the nodes of GI
such that

1. the concept names occurring in the label set of a node

v of Ĥ are contained in the label set of its image φ(v);

2. if (v, w) is an edge with label r in Ĥ, then there is an
edge (φ(v), φ(w)) with label r in GI ;

3. if the label set of a node v of Ĥ contains C./ t, then
mI(φ(v), C) ./ t.

Conditions 1 and 2 correspond to the classical definition
of homomorphisms between EL description graphs. Using
τ -homomorphisms, membership in τEL(m) concept descrip-
tions can be characterized as follows.

Theorem 1. Let I be an interpretation with associated

EL description graph GI , d ∈ ∆I , and Ĉ a τEL(m) con-
cept description with associated τEL(m) description tree TĈ .

Then, d ∈ ĈI iff there exists a τ -homomorphism φ from TĈ

to GI such that φ(v0) = d.

If the interpretation I is finite and m is computable in poly-
nomial time, then the existence of a τ -homomorphism can
be checked in polynomial time. For the case m = deg this
fact as well as Theorem 1 were already shown in [2].

CSMs and graded membership functions
A concept similarity measure (CSM) is a function that maps
pairs of concept descriptions to values in [0, 1]. Intuitively,
the larger this value is the more similar the concept de-
scriptions are. More formally, a CSM for EL concept de-
scriptions over NC and NR is a mapping ∼ : CEL(NC,NR) ×
CEL(NC,NR)→ [0, 1]. Examples of such measures as well as
properties these measures should satisfy can, e.g., be found
in [12, 8, 10].

Definition 10 in [2] shows how a CSM ∼ can be used to
define an associated graded membership function m∼:

mI∼(d,C) := max{C ∼ D | D ∈ CEL(NC,NR) and d ∈ DI}.

To ensure that this definition yields a well-defined graded
membership function, ∼ is required to be a standard CSM,
which means that it needs to satisfy the following three prop-
erties:

• ∼ must be equivalence invariant, i.e., C≡C′ and D≡
D′ implies C∼D=C′∼D′;



• ∼ must be role-depth bounded, i.e., C ∼D=Ck ∼Dk

where k > min{rd(C), rd(D)} and Ck, Dk are the re-
strictions of C,D to role depth k, which are obtained
from C,D by removing all existential restrictions oc-
curring at role depth k;

• ∼ must be equivalence closed, i.e., the equivalence C ≡
D iff C ∼ D = 1 holds.

The first two conditions ensure thatmI∼(d,C) is well-defined,
i.e., the maximum in the definition of this value really ex-
ists. In fact, these conditions imply that one can restrict the
search for an appropriate D ∈ CEL(NC,NR) to finitely many
concept descriptions.

Lemma 2. Let C ∈ CEL(NC,NR) with rd(C) = k. Then
mI∼(d,C) = max{C ∼ D | D ∈ Rk+1 and d ∈ DI}.

Equivalence closedness is additionally needed to ensure that
m satisfies the properties required in Definition 1.

3. REASONING IN τEL(m∼)
There is a great variety of standard CSMs and not all

of them are well-behaved from a computational point of
view. In particular, there are standard CSMs that are not
computable. While non-computability of ∼ does not auto-
matically imply that reasoning problems in τEL(m∼) are
undecidable, we were able to show [3] that there is a non-
computable CSM ∼ such that the standard reasoning prob-
lems satisfiability, subsumption, consistency, and instance
are undecidable in τEL(m∼). Next, we will show that com-
putability of ∼ implies decidability of these reasoning prob-
lems in τEL(m∼).

Decidability
Let ∼ be a computable standard CSM. We show decidabil-
ity of reasoning in τEL(m∼) using an equivalence preserving
and computable translation of τEL(m∼) concept descrip-
tions into ALC concept descriptions. Since the standard
reasoning problems are decidable in ALC such an effective
translation obviously yields their decidability in τEL(m∼).

Recall that ALC [11] is obtained from EL by adding nega-
tion ¬C, whose semantics is defined in the usual way, i.e.,
(¬C)I := ∆I \ CI . Obviously, negation together with con-
junction also yields disjunction C t D. Since EL is a frag-
ment of ALC, it suffices to show how to translate threshold
concepts C./ t into ALC concept descriptions. In addition,
we can concentrate on the case where ./ ∈ {≥, >} since
C<t≡¬C≥t and C≤t≡¬C>t.

Lemma 3. Let ./ ∈ {≥, >}, t ∈ [0, 1] ∩ Q, and C ∈
CEL(NC,NR) with rd(C) = k. Then

C./ t ≡
⊔
{D | D ∈ Rk+1 and C ∼ D ./ t}.

Proof. Let I be an interpretation and d ∈ ∆I . By the
semantics of threshold concepts and Lemma 2, we know that
d ∈ (C./ t)

I iff

mI∼(d,C) = max{C ∼ D | D ∈ Rk+1 and d ∈ DI} ./ t.

Since ./ ∈ {≥, >}, this is equivalent to saying that there is a
D ∈ Rk+1 such that C ∼ D ./ t and d ∈ DI . This is in turn
equivalent to d ∈

⋃
{DI | D ∈ Rk+1 and C ∼ D ./ t}.

Since Rk+1 is finite, the disjunction on the right-hand side
of the equivalence in the formulation of the lemma is finite,
and thus this right-hand side is an admissible ALC concept
description. This description can effectively be computed
since Rk+1 is computable by Lemma 1 and ∼ is computable
by assumption.

Theorem 2. If ∼ is a computable standard CSM, then
satisfiability, subsumption, consistency and instance check-
ing are decidable in τEL(m∼).

Since the cardinality of Rk increases by one exponent with
each increase of k, this approach provides only a non-elemen-
tary bound on the complexity of reasoning in τEL(m∼). We
will now show that, for a restricted class of CSMs, one can
obtain better complexity upper bounds.

Complexity
As shown in [2], there is a computable standard CSM ∼∗
such that deg = m∼∗ , and the complexity of reasoning in
τEL(deg) is NP/coNP-complete for the standard reasoning
problems. We will now identify a class of standard CSMs ∼
such that the complexity of reasoning in the induced thresh-
old DLs τEL(m∼) is the same as in τEL(deg).

The CSM∼∗ inducing deg is an instance of the simi frame-
work introduced in [10]. This framework can be used to
define a variety of similarity measures between EL concepts
satisfying certain desirable properties. Here, we introduce a
fragment of simi that is sufficient for our purposes.

To construct a CSM ∼ using simi, one first defines a di-
rectional measure ∼d, and then uses a fuzzy connector ⊗
to combine the values obtained by comparing the reduced
concepts in both directions with ∼d:

C ∼ D := (Cr ∼d D
r)⊗ (Dr ∼d C

r),

where the fuzzy connector ⊗ is a commutative binary oper-
ator ⊗ : [0, 1] × [0, 1] → [0, 1] satisfying certain additional
properties (see [10]). The definition of C ∼d D (see Def. 3
in [10]) depends on several parameters:

• a function g that assigns to every EL atom (i.e., con-
cept name or existential restriction) a weight in R>0;

• a discounting factor w ∈ [0, 1);

• a primitive measure between concept names and be-
tween role names: pm : (NC×NC)∪ (NR×NR)→ [0, 1].

Once these parameters are fixed, the induced directional
measure ∼d is defined as follows: if C ≡ >, then C ∼d D :=
1; if C 6≡> and D≡>, then C ∼d D := 0; otherwise, we use
top(C) and top(D) to denote the set of EL atoms occurring
in the top-level conjunction of C and D, and define

C ∼d D :=

∑
C′∈top(C)

[
g(C′) × max

D′∈top(D)

(
simia(C′, D′)

)]
∑

C′∈top(C)

g(C′)
,

where simia(A,B) := pm(A,B) for all A,B ∈ NC,

simia(∃r.E,∃s.F ) := pm(r, s)[w+(1−w)(E ∼d F )], and

simia(C
′, D′) := 0 in any other case.

If ⊗, g and pm can be computed in polynomial time, then
the induced CSM ∼ can also be computed in polynomial
time (see [10], Lemma 2). Moreover, all the CSMs obtained
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Figure 2: Computation of the directional measure

as instances of simi where g assigns 1 to atoms of the form
∃r.C are standard CSMs (see [3]). One such instance of simi
is ∼∗, where ⊗= min, w= 0, g assigns 1 to all atoms, and
pm is the default primitive measure pmd assigning value 1
when A = B (r = s), and 0 otherwise. We now define a
class of instances of simi containing ∼∗.

Definition 2. The class simi-mon is obtained from simi
by restricting the admissible parameters as follows:

• ⊗ is computable in polynomial time and monotonic
w.r.t. ≥;6

• g is computable in polynomial time and assigns 1 to
all atoms of the form ∃r.C;

• pm = pmd and w is arbitrary.

In the following we will show that, for all ∼ ∈ simi-mon, rea-
soning in τEL(m∼) is not harder than reasoning in τEL(deg).
We start with illustrating some useful properties satisfied by
CSMs in simi-mon.

Example 1. We consider a CSM ∼ whose definition de-
viates from the one of ∼∗ only in one place: we use w= .5.
Consider

C := A uB1 u ∃r.(A u ∃r.B u ∃s.A),

D := A uB2 u ∃r.(A u ∃r.A u ∃s.B) u ∃r.∃s.A.

Figure 2 basically shows the atoms in D chosen by max when
computing C∼dD. The superscripts are used to denote the
corresponding pairings for which the value is > 0. For in-
stance, at the top level of C, A1 means that A is paired with
the top-level atom of D having the same superscript. The
symbol ◦ on the left-hand side tells us that no match yield-
ing a value > 0 exists. Now, removing the atoms without
superscript in D yields the concept Y :=Au∃r.(∃r.>u∃s.>).
One can easily verify that C∼dD=C∼d Y = 5/9, and it is
clear that C and D are both subsumed by Y .

These properties can be generalized to all pair of concepts
and measures in simi-mon (see [3] for complete proofs).

Lemma 4. Let ∼ ∈ simi-mon. For all EL concept de-
scriptions C and D, there exists an EL concept description
Y such that:

1. D v Y and s(Y ) ≤ s(C),

2. C ∼d D = C ∼d Y ,

3. C v Y .

6Examples are average and all polynomially computable
bounded t-norms.

TĈ : v0 :{E<t0
}

vx :{C≥tx}

v0

vx
I0

d0

dx

φ(v0)

φ(vx)

IJ
.
.
.

Figure 3: Polynomial bounded model construction

We use these properties to show that, like τEL(deg) (see
Lemma 4 in [2]), τEL(m∼) enjoys a polynomial model prop-
erty if ∼ ∈ simi-mon.

Lemma 5. Let ∼ ∈ simi-mon and Ĉ a τEL(m∼) concept

description. If Ĉ is satisfiable, then there is a tree-shaped

interpretation J such that ĈJ 6=∅ and |∆J |≤s(Ĉ).

Proof (Sketch). Figure 3 outlines the description tree

TĈ of a τEL(m∼) concept Ĉ, an interpretation I such that

d0 ∈ ĈI , and a corresponding τ -homomorphism φ obtained
by applying Theorem 1. The tree in the middle represents
the finite interpretation J we want to build. The construc-
tion of J starts with a base interpretation I0 that corre-
sponds to TĈ (first ignoring labels of the form C./ t). Con-
sequently, the identity mapping φid from TĈ to GI0 satisfies
Conditions 1 and 2 required for τ -homomorphisms. How-
ever, the third condition need not be satisfied since, for in-
stance, mI0∼ (vx, C) could well be smaller than tx. To fix
this, I0 is extended into J by attaching to it a tree-shaped
interpretation (the gray triangle in the figure) such that
mJ∼(vx, C)≥ tx. This interpretation can be extracted from
I using the fact that φ(vx)=dx implies that mI∼(dx, C)≥ tx
(because φ is a τ -homomorphism). To be more precise, con-
sider an EL concept description D such that

dx∈DI and mI∼(dx, C) = C ∼ D.

In principle, we could use the interpretation ID having the
description tree TD as the one to be attached to vx. How-
ever, we do not know anything about the size of D. This is
where Lemma 4 comes into play. Instead of D it allows us to
use the concept Y . Statement 1. of the lemma tells us that
s(Y ) ≤ s(C) and that dx also belongs to Y I . Statement 2.
shows that Y yields the same value as D in the directional
measure, and Statement 3. can be used to show that this is
also the case for ∼.

This approach can be applied to all threshold concepts of

the form C′>t or C′≥t occurring in Ĉ. For each such con-
cept, the number of domain elements added to satisfy it is
bounded by the size of C′. It remains to see why threshold
concepts using < or ≤, like E<t0 in the figure, are not vi-
olated. The reason is basically that they are satisfied in I,
and that everything occurring in TY also occurs in I (since
dx∈Y I) (see [3] for a detailed proof).

Lemma 4 can also be used to show that, for a finite inter-
pretation I, the functionmI∼ can be computed in polynomial
time. Basically, the reason is that the lemma restricts the
search for an appropriate concept D yielding the maximum
to small concepts Y that have a strong resemblance to C.

Proposition 1. Let ∼ ∈ simi-mon. For every finite in-
terpretation I, d ∈ ∆I , and EL concept description C,



mI∼(d,C) can be computed in time polynomial in the size
of I and C.

Together with this proposition, Lemma 5 yields a standard
guess-and-check NP-procedure for satisfiability in τEL(m∼).
Regarding the other reasoning tasks, the constructions in-
troduced in [2] for τEL(deg) to provide appropriate bounded
model properties for them can also be applied for τEL(m∼).

Theorem 3. Let ∼ ∈ simi-mon. In τEL(m∼), satisfia-
bility and consistency are in NP, whereas subsumption and
instance checking (w.r.t. data complexity) are in coNP.

In [2], satisfiability in τEL(deg) is shown to be NP-hard
by reducing an NP-complete variant V of propositional sat-
isfiability to it. However, the reduction introduces a fresh
concept name for each propositional variable occurring in an
instance of V. Since in the present paper we assume that
concept descriptions in τEL(m∼) are defined over a fixed
finite vocabulary NC ∪ NR, it is thus not possible to use the
same reduction. In [3] we introduce a new reduction that
shows that satisfiability in τEL(m∼) is NP-hard, even if only
one concept name and one role name is available. However,
for this result to hold we need additional restrictions on ∼.
Let simi-smon be the subset of simi-mon whose measures are
defined using a fuzzy connector that is strictly monotonic or
has 1 as a unit. Since satisfiability can be reduced to the
consistency, non-subsumption and non-instance problem, we
thus obtain the following hardness results.

Proposition 2. Let ∼ ∈ simi-smon. In τEL(m∼), satis-
fiability and consistency are NP-hard, whereas subsumption
and instance checking are coNP-hard.

In [2], it was shown for τEL(deg) that instance checking
becomes polynomial if instead of arbitrary τEL(deg) concept
descriptions one considers only threshold concepts of the
form C>t. We can show that this result holds not just for
deg , but for all CSMs in our class simi-mon.

Proposition 3. Let ∼ ∈ simi-mon. In τEL(m∼), the
instance checking problem for threshold concepts of the form
C>t can be decided in polynomial time.

Since it was shown in [2] (Proposition 5) that comput-
ing instances of threshold concepts of the form C>t in a
logic τEL(m∼) corresponds to answering so-called relaxed
instance queries w.r.t. ∼ (see [8]), this also yields a polyno-
miality result for answering relaxed instance queries w.r.t.
CSMs in simi-mon.

4. CONCLUSIONS
We have shown that the complexity results for reason-

ing in the threshold logic τEL(deg) of [2] can be extended
to a large class of logics τEL(m∼) that are induced by ap-
propriate concept similarity measures. Like in [2], we do
not consider terminological axioms (TBoxes) in the present
paper. In [4], reasoning w.r.t. acyclic TBoxes in τEL(deg)
was considered. It would be interesting to see whether the
results of [4], which surprisingly show that acyclic TBoxes
increase the complexity, can also be extended to our logics
τEL(m∼) for ∼ ∈ simi-mon.
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