
Faceted Answer-Set Navigation

Christian Alrabbaa1, Sebastian Rudolph2, and Lukas Schweizer2(B)

1 Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
christian.alrabbaa@tu-dresden.de

2 Institute of Artificial Intelligence, TU Dresden, Dresden, Germany
{sebastian.rudolph,lukas.schweizer}@tu-dresden.de

Abstract. Even for small logic programs, the number of resulting
answer-sets can be tremendous. In such cases, users might be incapable
of comprehending the space of answer-sets as a whole nor being able to
identify a specific answer-set according to their needs. To overcome this
difficulty, we propose a general formal framework that takes an arbitrary
logic program as input, and allows for navigating the space of answer-
sets in a systematic interactive way analogous to faceted browsing. The
navigation is carried out stepwise, where each step narrows down the
remaining solutions, eventually arriving at a single one. We formulate
two navigation modes, one stringent conflict avoiding, and a “free” mode,
where conflicting selections of facets might occur. For the latter mode,
we provide efficient algorithms for resolving the conflicts. We provide an
implementation of our approach and demonstrate that our framework
is able to handle logic programs for which it is currently infeasible to
retrieve all answer sets.

1 Introduction

Answer-set programming (ASP) is a well-known declarative rule-based program-
ming paradigm, developed for knowledge-representation and problem solving
[4,7,13]. It originates from the field of logic programming (thus its syntactic
relationship with Prolog) and the field of non-monotonic reasoning. ASP has
become popular as generic language for computationally hard problems; that is,
problems are encoded as logic programs (rules) and evaluated under the answer-
set semantics, such that each answer-set (logical model) yields a solution of the
problem. For solvers, such as Clingo [8,9] and DLV [5], the logic programming
community is actively improving usability and interoperability. For example,
IDEs have been developed that support users in the same way as it is known for
other programming languages [6], or tools able to visualize answer-sets [12]. More
recently, both tools were enriched with APIs for a more seamless integration in
other programming languages.

We would like to thank the anonymous reviewers for their valuable feedback. This
work is partially supported by the German Research Foundation (DFG) within
the Research Training Group QuantLA (GRK 1763) and within the Collaborative
Research Center SFB 912 – HAEC.

c© Springer Nature Switzerland AG 2018
C. Benzmüller et al. (Eds.): RuleML+RR 2018, LNCS 11092, pp. 211–225, 2018.
https://doi.org/10.1007/978-3-319-99906-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99906-7_14&domain=pdf

212 C. Alrabbaa et al.

However, even if the developed answer-set program behaves in the desired
way, i.e. gives rise to all solutions (and only those), it might yield by design a
large number of answer-sets, which a user might simply not be able to handle
and overview. Even worse, it might even not be possible to compute all solutions
in reasonable time. For example, consider the simple encoding of the N-Queens
problem in Example 1; it already has 92 solutions for n = 8, 724 for n = 10, and
14200 solutions for n = 12, all computed in just a few seconds; however, n = 27
is the largest N-Queens instance for which the number of solutions is known [16].
Answer-sets of a program might be of course parsed, inspected, and visualized
individually in some specific way, but this is apparently limited to a small set of
answer-sets only and always specific for some application domain.

Certainly, one can (to some extent) formulate a problem in such a way that
it becomes an optimization problem, thereby only optimal models are returned.
This might suffice in some cases to obtain a limited number of answer-sets, but
even then, there might be more optimal models than any user is able to consume.

Our motivation in this paper therefore is to provide a formal framework for
exploring the space of answer-sets of a logic program in a systematic way by
means of a navigation method similar to faceted browsing. A facet can be seen as
a partial solution that, if activated, is enforced to be present in any answer-set.
Intuitively, a successive selection of facets narrows down the remaining answer-
sets as well as available facets, thus leading to a manageable amount, or ulti-
mately to one single remaining answer-set. In Example 1, any answer-set consists
exactly of those n atoms q(X,Y), where a queen is placed at row X and column
Y. Now any of these atoms can act as facet; e.g. under an active facet q(1,1), 4
answer-sets out of 92 are left, and selecting any other facet then yields a unique
solution. In contrast to this goal-oriented navigation, we also define free navi-
gation where facets can be in conflict with each other. Considering Example 1,
the facet q(1,4) would not be available anymore, though enforcing it would
require to retract the previous activation of facet q(1,1). We call this retrac-
tion of facets corrections and provide an efficient approach to compute them,
enabling an even more powerful answer-set navigation.

Example 1. Consider the following program Π1, that is a concise and efficient
encoding of the well-known N-Queens problem, taken from [7].

(1) #const n = 8.
(2) { q(I,1..n) } == 1 :- I = 1..n.
(3) { q(1..n,J) } == 1 :- J = 1..n.
(4) :- { q(D-J,J) } >= 2, D = 2..2*n.
(5) :- { q(D+J,J) } >= 2, D = 1-n..n-1.

While the first line fixes the value of constant n, each remaining line corresponds
to constraints ensuring exactly one queen per column (2), row (3) and diagonals
(4–5).

Faceted Answer-Set Navigation 213

1.1 Related Work

Our framework can be seen as additional layer on top of an ASP solver and is
defined purely on the resulting answer-sets of a given program, thus the logic
program itself may remain syntactically unknown. In contrast to our motivation,
other existing approaches are designed to debug an answer-set program in case
it does not behave as expected [15]; i.e. one would like to get an answer to
the question why a given interpretation is actually not an answer-set of the
presumably faulty program, or why some ground atom is not present in any of
the answer-sets. In the stepwise approach of Oetsch et al. [15], one starts with a
partial interpretation and debugs the program step by step, where a step is an
application of a rule acquired from the original program. This is different from
our notion of a navigation step, which narrows down remaining answer-sets by
adding a constraint rule. In other words, in the suggested navigation scenario,
the user’s task is to steer the exploration of the answer-set space towards the
desired answer-set, which is an answer-set from the beginning, unlike in the
debugging setting where the desired answer-set is most likely not an answer-set
of the initial program.

Moreover, in databases several approaches have been developed to compute
so-called repairs [1,11]. In short, a repair denotes the set of tuples that need to
be added or retracted from a database instance in order to make it consistent
w.r.t. to a set of constraints. Thus, again the initial situation is an inconsis-
tent artifact (here the database) that needs to be repaired somehow in order
to regain consistency. This is again in contrast to our approach, since from the
beginning we constantly retain consistency; i.e. the initial program is never in
an inconsistent state.

We want to emphasize, that our approach is not dedicated to a specific appli-
cation domain, and generally applicable to arbitrary answer-set programs of any
application domain. For example, the framework can also be seen as an engine
for product configuration; i.e. the underlying program resembles a specification
of a product, where answer-sets then represent configurations of that product.
Our contributions in this paper are:

1. A formalization of faceted navigation in the space of answer-sets, based on
the notion of brave and cautious consequences.

2. An extended navigational concept, allowing for arbitrary navigation direc-
tions and resolving resulting conflicts.

3. An implementation that demonstrates feasibility of the framework even for
programs where the total number of answer-sets remains unknown.

2 Answer-Set Programming

We review the basic notions of answer-set programming [14], for further details
we refer to [2,7,10].

214 C. Alrabbaa et al.

We fix a countable set U of (domain) elements, also called constants; and
suppose a total order < over the domain elements. An atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and each ti is either a variable
or an element from U . An atom is ground if it is free of variables. BU denotes
the set of all ground atoms over U . A (disjunctive) rule ρ is of the form

a1, . . . , an ← b1, . . . , bk, not bk+1, . . . , not bm.

with m ≥ k ≥ 0, where a1, . . . , an, b1, . . . , bm are atoms, and “not ” denotes
default negation. The head of ρ is the set H(ρ) = {a1, . . . , an} and the body of ρ
is B(ρ) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore, B+(ρ) = {b1, . . . , bk}
and B−(ρ) = {bk+1, . . . , bm}. A rule ρ is safe if each variable in ρ occurs in
B+(r). A rule ρ is ground if no variable occurs in ρ. A fact is a ground rule with
empty body. An (input) database is a set of facts. A (disjunctive) program is
a finite set of disjunctive rules. For a program Π and an input database D, we
often write Π(D) instead of D ∪ Π. For any program Π, let UΠ be the set of all
constants appearing in Π. Gr(Π) is the set of rules ρσ obtained by applying, to
each rule ρ ∈ Π, all possible substitutions σ from the variables in ρ to elements
of UΠ.

An interpretation I ⊆ BU satisfies a ground rule ρ iff H(ρ)∩ I �= ∅ whenever
B+(ρ) ⊆ I, B−(ρ) ∩ I = ∅. I satisfies a ground program Π, if each ρ ∈ Π
is satisfied by I. A non-ground rule ρ (resp., a program Π) is satisfied by an
interpretation I iff I satisfies all groundings of ρ (resp., Gr(Π)). I ⊆ BU is an
answer set (also called stable model) of Π iff it is a subset-minimal set satisfying
the Gelfond-Lifschitz reduct ΠI = {H(ρ) ← B+(ρ) | I ∩B−(ρ) = ∅, ρ ∈ Gr(Π)}.
For a program Π, we denote the set of its answer sets by AS(Π).

We make use of further syntactic extensions, namely integrity constraints and
count expressions, which both can be recast to ordinary normal rules as described
in [7]. An integrity constraint is a rule ρ where H(ρ) = ∅, intuitively representing
an undesirable situation; i.e. it has to be avoided that B(ρ) evaluates positively.
Count expressions are of the form #count{l : l1, . . . , li} �� u, where l is an atom
and lj = pj or lj = not pj , for pj an atom, 1 ≤ j ≤ i, u a non-negative integer, and
�� ∈ {≤, <,=, >,≥}. The expression {l : l1, . . . , ln} denotes the set of all ground
instantiations of l, governed through {l1, . . . , ln}. We restrict the occurrence
of count expressions in a rule ρ to B+(ρ) only. Intuitively, an interpretation
satisfies a count expression, if N �� u holds, where N is the cardinality of the
set of ground instantiations of l, N = |{l | l1, . . . , ln}|, for �� ∈ {≤, <,=, >,≥}
and u a non-negative integer.

Consequences We rely on two notions of consequence, given a program Π and an
atom α, we say that Π cautiously entails α, written Π |=∀ α, if for every answer-
set S ∈ AS(Π), α ∈ S. Likewise, we say that Π bravely entails α, written
Π |=∃ α, if there exists and answer-set S ∈ AS(Π), such that α ∈ S. The
set of all cautious consequences of Π is denoted CC(Π) and the set of its brave
consequences BC(Π).

Faceted Answer-Set Navigation 215

3 Faceted Navigation

We distinguish two different modes of faceted navigation for a logic program. In
the first one, the facets that can be applied are the ones that are compatible with
those previously selected; this is what we call restricted navigation. Conversely, in
the free navigation mode, we drop this restriction and describe a technique that
resolves conflicts that can occur due to the unrestricted application of facets.

3.1 Facets and Navigation Step

We first start by defining facets of a program, before we introduce the notion
navigation step as basic navigational building block. If not mentioned otherwise,
we use the term program to refer to disjunctive programs as introduced in Sect. 2.

Definition 1 (Facet). Let Π be a disjunctive logic program. Then we denote
with F+(Π) = BC(Π) \ CC(Π), the set of inclusive facets, and with F−(Π) =
{p(t̄) | p(t̄) ∈ F+(Π)}, the set of exclusive facets. With F(Π) = F+(Π)∪F−(Π),
we denote the set of all facets applicable to Π. We say an answer-set S of Π
satisfies an inclusive facet p(t̄) ∈ F+(Π) if p(t̄) ∈ S. It satisfies an exclusive
facet p(t̄) ∈ F−(Π) if p(t̄) �∈ S.

Fig. 1. The interplay of an initial program Π0, its answer-sets AS(Π0) and its corre-
sponding facets F(Π0), for n navigation steps.

With the notion of a facet at hand, we can now start to define the navigation as
a sequence of single navigation steps, defined in the following.

Definition 2. Given a set of facets F , we define the function ic that rewrites
every f ∈ F into a corresponding integrity constraint. Formally, ic(f) = ←
neg(f), with

neg(f) =

{
not p(t̄) if f = p(t̄).

p(t̄) if f = p(t̄).

We let ic(F) := {ic(f) | f ∈ F}.

216 C. Alrabbaa et al.

Definition 3 (Navigation Step). A navigation step, written Π
f

=⇒ Π′, is a
transition from one program Π to another program Π′, where Π′ is obtained by
adding the integrity constraint ic(f) to Π, where f ∈ F(Π).

Faceted navigation of Π is possible as long as BC(Π) \ CC(Π) �= ∅.

Example 2. Consider the following program Π2:

b, a ← d, e ← c ← a

Which has the following answer-sets AS(Π2) = {{b, e}, {b, d}, {a, e, c},
{a, d, c}}, and consequently the facets F(Π2) = {a, b, e, d, c, ā, b̄, ē, d̄, c̄}. Let
f = a ∈ F+(Π), then applying Π2

a=⇒ Π′
2 yields the answer-sets AS(Π′

2) =
{{a, e, c}, {a, d, c}} and facets F(Π′

2) = {e, d, ē, d̄}. Continuing, we apply Π′
2

ē=⇒
Π′′

2 , resulting AS(Π′′
2) = {{a, d, c}}, and F(Π′′

2) = ∅, thus not allowing any
further navigation step.

The following theorem establishes that performing one navigation step by apply-
ing a facet has exactly the desired consequence of including or excluding the
respective atom from the space of considered answer-sets.

Theorem 1. Let Π′ be the program obtained from Π by applying one navigation
step using some facet f ∈ F(Π), i.e. Π

f
=⇒ Π′. Then AS(Π′) = {S ∈ AS(Π) |

S satisfies f}.
Proof. For the ⊇ direction, let S ∈ AS(Π) and S satisfy f . Then ΠS = Π′S

(since ic(f) is entirely removed from the Gelfond-Lifschitz reduct of Π′ wrt. S).
Therefore, by assumption, S is a subset-minimal set satisfying Π′S and hence
S ∈ AS(Π′).

For the ⊆ direction, let S ∈ AS(Π′). If S would not satisfy f , the Gelfond-
Lifschitz reduct Π′S would contain the rule “←” due to ic(f), and therefore be
unsatisfiable, resulting in S �∈ AS(Π′), contradicting our assumption. Hence S
must satisfy f , resulting in ΠS = Π′S as above, therefore S ∈ AS(Π′) implies
S ∈ AS(Π).
�
Note that this theorem also entails AS(Π′) � AS(Π) due to the definition of
F(Π).

Lemma 1. Given a logic program Π, applying a navigation step (Π
f

=⇒ Π′) will
never cause the generation of an unsatisfiable logic program Π′.

Proof. By definition, f ∈ F(Π) means that there is some p(t̄) ∈ BC(Π) \ CC(Π).
From p(t̄) ∈ BC(Π) immediately follows that there is some S ∈ AS(Π) with
p(t̄) ∈ S. On the other hand, from p(t̄) �∈ CC(Π) follows that there is some
S′ ∈ AS(Π) with p(t̄) �∈ S. Therefore, applying Theorem 1, either S ∈ AS(Π′)
(if f is inclusive) or S′ ∈ AS(Π′) (if f is exclusive). Hence, Π′ is satisfiable in
any case.
�
Figure 1 sketches a sequence of navigation steps, and depicts the correlation of
the resulting programs, answer-sets and facets.

Faceted Answer-Set Navigation 217

3.2 Free Navigation Mode

In the previous setting, the assumption was that only facets of the current pro-
gram are available to be applied in the next step. This ensures a conflict free nav-
igation eventually resulting in a single answer-set. This might be convenient in
some situations, however, we intend to relax this stringent process and extend the
faceted navigation approach and allow the application of arbitrary facets from
the initial program in any step. This inherently leads to conflicts; i.e. would cause
an unsatisfiable program if two or more facets in combination enforce solutions
that do not exist.

Therefore, when applying a facet that would lead to an unsatisfiable pro-
gram, we aim to pick facets applied in previous steps that necessarily need to be
retracted, in order to apply the desired facet. We start by identifying all facets
that have already been applied.

Definition 4 (Active Facets). For a program Πn, obtained after an applica-

tion of n navigation steps, i.e. Π0 f0=⇒ . . .
fn−1=⇒ Πn, we denote with Fa(Πn) the

set of facets active in Πn, i.e. Fa(Πn) = {f0, ..., fn−1}.
Amongst these active facets, some might be incompatible with some facet f
from the initial program. We now aim to identify those facets that need to be
retracted in order to be able to apply f– and call such a set correction set.

Definition 5 (Correction Set). Let f ∈ F(Π0) be the facet chosen to be
applied next to a program Πn, but f �∈ F(Πn). A set K ⊆ Fa(Πn), is a cor-
rection set of Πn w.r.t. f , if Πn \ ic(K) ∪ {ic(f)} is satisfiable. We denote by
K(Πn) the set of all correction sets of Πn w.r.t. f .

Example 3. Continuing with Π2
a=⇒ Π′

2
ē=⇒ Π′′

2 from Example 2, where F(Π2) =
{a, b, e, d, c, ā, b̄, ē, d̄, c̄} and Fa(Π′′

2) = {a, ē}. For b ∈ F(Π2) we therefore have
the correction sets {a} and {a, ē} for Π′′

2 .

It is now of interest to highlight how correction sets can be computed. As it turns
out, this can be done by a program obtained from the original one by adding
some extra rules.

Definition 6. Given a navigation path of length n, Π0 f0=⇒ . . .
fn−1=⇒ Πn, a facet

f ∈ F(Π0) \ F(Πn). Then the program ΠK is defined as:

ΠK := Π0 ∪ {ic(f)} ∪ {remove(i) ← neg(fi) | fi ∈ Fa(Πn) for all 0 ≤ i < n}

where “remove” is a new predicate name.

Lemma 2. For each S ∈ AS(ΠK) there exists a correction set K such that

K = {fi ∈ Fa(Πn) | remove(i) ∈ S, 0 ≤ i < n}.

218 C. Alrabbaa et al.

Proof. Let S ∈ AS(ΠK). First observe, that S certainly contains at least one
(ground) atom remove(i). Since Fa(Πn) �= ∅, we construct a non-empty set E,
s.t. for all 0 ≤ i < n

E := {fi ∈ Fa(Πn) | fi �∈ S, remove(i) ∈ S} ∪
{f̄i ∈ Fa(Πn) | fi ∈ S, remove(i) ∈ S},

and find E ⊆ Fa(Πn). It remains to show that, Π� :=
(
Πn \ ic(E) ∪ {ic(f)})

is satisfiable. Because of the definition of E and ΠK, every fi ∈ E corresponds
to some remove(i) in some S ∈ AS(ΠK) where for every S we have f ∈ S.
Which means that for every fi ∈ E, the body of the corresponding rule in ΠK,
namely remove(i) ← neg(fi), must evaluate to true, hence fi (whether inclusive
or exclusive) to false. This is equivalent to the removal of ic(fi) from Πn for all
fi ∈ E. Knowing that ΠK is satisfiable, moreover Π0 ∪{ic(f)} is satisfiable, then
Π� must be satisfiable as well.
�

Lemma 3. Given a navigation path Π0 f0=⇒ . . .
fn−1=⇒ Πn, a facet f ∈ F(Π0),

but f �∈ F(Πn), and the program ΠK. Then for every correction set K ∈ K(Πn)
w.r.t. f , there exists an answer-set S ∈ AS(ΠK) induced by K.

Proof. For arbitrary K ∈ K(Πn), let K̄ := Fa(Πn)\K be of those facets that can
safely remain in Πn; i.e. Π′ = Π0 ∪ {ic(f)} ∪ ic(K̄) is satisfiable. Consequently,
the program

Π′′ := Π′ ∪ {remove(i) ← neg(fi) | fi ∈ K}
is also satisfiable, thus let S ∈ AS(Π′′). In particular, {remove(i) | fi ∈ K} ⊂ S.
Notice that Π′′ is similar to ΠK, except that ΠK does not contain the integrity
constraints ic(K̄), but instead the corresponding rules with a “remove(i)” atom
in the head. Due to the construction of Π′′ and the restrictions imposed by
the integrity constraints ic(K̄), we find that AS(Π′′) ⊆ AS(ΠK) and thus S ∈
AS(ΠK).
�

3.3 Preferred Correction Sets

Inherently, there are potentially many correction sets, though it is natural to
prefer correction sets for which most of the active facets can be retained; in
other words, we would like to obtain correction sets that contain only facets
that necessarily need to be retracted. We therefore introduce two preference
notions.

Definition 7 (Minimal Correction Set). A correction set K for some pro-
gram Π w.r.t. to some facet f is minimal, if there exist no other correction set
K ′, s.t. K ′ ⊂ K. Then K⊆(Π) = {K | K is minimal}, is the set of all minimal
correction sets for some program Π w.r.t. to some facet f .

Amongst all minimal correction sets, which might vary in size, we now further
restrict the preference to those that are also cardinality minimal.

Faceted Answer-Set Navigation 219

Definition 8 (Small Correction Set). A correction set K for some program
Π w.r.t. to some facet f is small, if there exist no other correction set K ′,
s.t. |K ′| < |K|. Then K|<|(Π) = {K | K is small}, is the set of the smallest
correction sets for some program Π w.r.t. to some facet f .

Amongst the correction sets from Example 3, only {a} is minimal as well as
the smallest. In order to find all correction sets for some program Πn w.r.t.
some facet f ∈ F(Π0) \ F(Πn), the program ΠK needs to be constructed, from
which then the correction sets are extracted from the answer-sets. In general,
|AS(ΠK)| is quite large which hinders the computation of all correction sets; and
is another practical reason for preferences over correction sets. However, since
finding minimal correction sets is also computationally expensive, we propose
an incremental computation of K⊆(Πn), starting from K|<|(Πn). The advantage
that small correction sets have over the minimal ones is that once we find the
size of a small correction set we do not need to investigate further. This does not
apply for the minimal correction sets which they might differ in size. In order to
have a feasible way of computing K⊆(Πn), we can not simply use ΠK as defined
earlier (without modification), to generate all correction sets and then filter out
the minimal ones, because we would run into problems when it comes to ΠKs
with a large number of answer-sets. Therefore, it is shown next how to generate
K|<|(Πn), from which K⊆(Πn) can be computed.

Small Correction Sets. Given Π0 and Πn where Π0 f0=⇒ ...
fn−1=⇒ Πn and a

facet f ∈ F(Π0) \ F(Πn); K|<|(Πn) w.r.t. f can be computed via the program
ΠK as mentioned earlier, then extending it with the following rule, �i = ←
not#count {Y : remove(Y)} i, where 0 < i ≤ n. Basically, �i enforce to have
at most i remove atoms present in an answer-set. Since f ∈ (F(Π0) \ F(Πn)

)
,

it is guaranteed that there exists no answer-set S ∈ AS(ΠK) where S does not
contain any atom with “remove” as predicate name, and thus it can not be the
case that i = 0. Therefore, the solver would be called at most (worst case) n
times and the answer-sets of the first satisfiable ΠK will contain the answer-sets
that provide all small correction sets of Πn w.r.t. f . The refinement of this rule
plus the creation of ΠK is shown in the first algorithm in the next section.

Minimal Correction Sets. Based on K|<|(Πn) w.r.t. some f , K⊆(Πn) w.r.t.
f can be computed. But first, we need to introduce a variation of the function
ic(F), namely cic(F), where F is a set of sets of facets, defined as:

cic(F) =
⋃

F∈F

{ ← neg(f0), . . . , neg(fn) | F = {f0, . . . , fn}}
.

Initially, we describe the computation of K⊆(Πn) informally. Let |K| = d where
K ∈ K|<|(Πn) w.r.t. some f ∈ F(Π0) but f �∈ F(Πn). For every small K, we
add an integrity constraint of the form ”cic

(
K

)
” to ΠK (thus obtaining ΠK′

),
then for all S ∈ AS(ΠK) that lead to the generation of some small correction set

220 C. Alrabbaa et al.

K ∈ K|<|(Πn), we have S �∈ AS(ΠK′
). If AS(ΠK′

) �= ∅, then there must exist
some answer-set S′ ∈ AS(ΠK′

) s.t. K ′ = {fi ∈ Fa(Πn) | remove(i) ∈ S′, 0 ≤ i <
n}. For the small correction sets K ′ we know that K ′ �⊆ K for any K ∈ K|<|(Πn)
and since AS(ΠK′

) ⊂ AS(ΠK) – follows from Theorem 1 – we conclude that
K ′ ∈ K⊆(Πn). In the following lemma, we adjust the notation of a correction
set of a program Πn w.r.t. some f by adding a superscript, namely Kd+j , where
d + j is the size of K, d is the size of the small correction sets and 0 ≤ j < n.

Lemma 4. Let d be the size of a small correction set of some Πn w.r.t. some f ;
let Kd+j be a correction set of Πn w.r.t. the same f and obtained from some S ∈
AS(ΠK) such that Kd+j ∈ K⊆(Πn). We define ΠK′

=
⋃

0≤l<d+j

cic
(Kl

⊆(Πn)
) ∪

ΠK ∪ {�d+j}; if AS(ΠK′
) �= ∅, then the following holds: For every Kd+j ∈

K⊆(Πn), there must exist some S′ ∈ AS(ΠK′
) that induces some K ′ s.t. K ′ =

Kd+j.

Proof. By the definition of ΠK′
, we can conclude that for every S′ ∈ AS(ΠK′

)
and every set of ”remove()” atoms that correspond to some Kl we have that

{remove(i) | fi ∈ Kl} �⊆ S′

We also know that AS(ΠK′
) ⊂ AS(ΠK) – which follows from Theorem 1 but we

do not prove it – then for all S′ ∈ AS(ΠK′
) we have S′ ∈ AS(ΠK) and for every

K ′ obtained from some S′ we have S′ = S ∈ AS(ΠK) and |K ′| = d+ j (Because
of the rule �d+j). Which means that K ′ = Kd+j .
�

Therefore, in order to compute the set K⊆(Πn), we first compute K|<|(Πn),
create the program ΠK′

= cic
(K|<|(Πn)

)∪ΠK. If AS(ΠK′
) �= ∅, then we update

ΠK′
by adding the rule �i that enforces a restriction on the size of the correction

sets obtained from S′ ∈ AS(ΠK′
), i.e. ΠK′

= ΠK′ ∪ {�d+j} where j = 1. If the
updated ΠK′

is satisfiable, then we can extract all minimal correction sets of Πn

with the size d + 1. If it is not the case, we increase the value of j by one, and
we keep on increasing the value of j until we reach the first satisfiable version of
the updated ΠK′

. Since the initial condition is AS(ΠK′
) �= ∅ (ΠK′

before adding
�i), then we know that there must exist a value j where ΠK′ ∪{�d+j} is actually
satisfiable. We keep on repeating the whole process until we reach a program
ΠK∗

s.t. AS(ΠK∗
) = ∅, hence computing K⊆(Πn). In the worst case scenario,

the solver would be called less than 2 × n times. The following example depict a
case where the free navigation mode is applied.

Example 4. Let Π be a logic program defined as follows.

{a; b; c; d} e ← b

← e, d, a e ← c

Since F(Π) = {a, b, c, d, ā, b̄, c̄, d̄}, we apply Π a=⇒ Π1. Thus Π1 = Π ∪
{ic(a)}, and we obtain F(Π1) = {b, c, d, b̄, c̄, d̄}. Applying Π1 b=⇒ Π2 yields

Faceted Answer-Set Navigation 221

Π2 = Π1 ∪ {ic(b)}. With F(Π2) = {c, d, c̄, d̄}, we apply Π2 c=⇒ Π3, and obtain
Π3 = Π2 ∪ {ic(c)}. At this stage of the faceted navigation, F(Π3) = ∅; for
d ∈ F(Π), which is an inactive facet, we have d �∈ F(Π3) and therefore Π3 d=⇒ Π4

can not be applied. We compute K⊆(Π3) w.r.t. d as follows.

1. Generate ΠK = Π ∪
R︷ ︸︸ ︷

{r(1) ← not a, r(2) ← not b, r(3) ← not c}∪ {ic(d)}.
2. Extend ΠK with �1, i.e. ΠK = ΠK ∪ { ← not#count {Y : r(Y)} 1

}
.

3. AS(ΠK) =
{{b, c, d, e, r(1)}}; moreover K|<|(Π3) =

{{a}}
.

4. Compute ΠK′
= Π ∪ R ∪ {ic(d)} ∪ cic(

{{a}}
).

5. Since AS(ΠK′
) �= ∅, there must exist some S′ ∈ AS(ΠK′

) that leads to some
correction sets of Π3 w.r.t. d.

6. Extend ΠK′
with �2, i.e. ΠK′

= ΠK′ ∪ { ← not#count {Y : r(Y)} 2
}
.

7. AS(ΠK′
) =

{{a, d, r(2), r(3)}}; moreover K⊆(Π3) = K|<|(Π3) ∪ {{b, c}}.
8. At this stage, we can terminate the search for more minimal correction sets

of Πn w.r.t. d because ΠK′′
= Π ∪ R ∪ {ic(d)} ∪ cic(

{{a}}
) ∪ cic(

{{b, c}}) is
unsatisfiable; which means all minimal correction sets have been computed.

4 Implementation and Evaluation

The following algorithm describes the computation of the set of all minimal cor-

rection sets of some program Πn where Π0 f0=⇒ ...
fn−1=⇒ Πn.

Algorithm 1. ASP-Based Minimal Correction Sets Generator
Data: Fa(Πn), f , Π0

Seq := list
(Fa(Πn)

)
;K⊆(Πn) := ∅; j := 1;

ΠK := Π0 + ic(f);
counter := ”:- not #count {Y : remove(Y)}” + str(j) + ”.”;

for
(
i in 0 . . . n

)
do

ΠK+= ”remove(” + str(i) + ”)” + ic(Seq[i]);
ΠK+= counter;

while (j ≤ n) do
Corrections = solve(ΠK);
K⊆(Πn).addAll(Corrections);
j++ ;
if (Corrections �= ∅) then

ΠK+= cic(Corrections);
updateP i(counter, n); // replace in counter: j -> n

if
(
!sat(ΠK)

)
then

break;
updateP i(counter, j);

return K⊆(Πn)

222 C. Alrabbaa et al.

As mentioned in the previous section, the size of the correction sets varies, and
usually it is not clear what would the effect of applying a correction set be
(In particular, what implicit consequential facets would be lost when a certain
correction set is applied); therefore, our framework provides an additional func-
tionality that computes the consequences of removing a certain set of facets
F ⊆ Fa(Πn) from Πn. This computation is described in the following algorithm.

Algorithm 2. Facets Removal Consequences
Data: Πn, F
Constraints = ∅;
for f in F do

Constraints.add
(
ic(f)

)
;

Πtmp = Πn \ Constraints;
return CC(Πn) \ (CC(Πtmp) ∪ F

)
Based on what has been introduced in this paper, we implemented a tool called
INCA (Interactive General Configuration using Facets) that takes a logic pro-
gram as an input and interactively applies the faceted navigation technique in
both its restricted and free modes. INCA is programmed in Python 2.7 and uses
Clingo 5.2, as the backbone reasoner and it is publicly available on Github1.
It must be pointed out that the brave and cautious consequences of the input
program are acquired via one of the built-in features of Clingo, which computes
these consequences in an efficient reliable manner.

As already indicated in the introduction, the number of all solutions for the
n-queens problem with n > 27 is still unknown [16]; therefore in the following
table we display some performance results of INCA where different instances of
the n-queens problem are plugged-in as an input (Tables 1 and 2).

Table 1. INCA performance for 8/30 – Queens.

8-queens 30-queens

F(Π0) 0.011 s 1.054 s

Π0 f0=⇒ Π1 0.016 s 6.935 s

K⊆(Πn) (n = 4) 1 set in 0.028 s (n = 17) 1 set in 0.091 s

(n = 4) 3 sets in 0.017 s (n = 17) 16 sets in 0.211 s

(n = 4) 4 sets in 0.021 s (n = 17) 18 sets in 0.185 s

The first row shows the time spent on calculating all facets of the program,
the second indicates the time needed to perform the first navigation step, whereas
every entry in the third row displays the total number of correction sets of some
program Πn w.r.t different facets f (mostly the exclusive version of some conse-
quential facets) where f ∈ F(Π0) and f �∈ F(Πn). Another problem, where the
1 https://github.com/lukeswissman/inca.

https://github.com/lukeswissman/inca

Faceted Answer-Set Navigation 223

Table 2. INCA performance for 40/50 – Queens.

40-queens 50-queens

F(Π0) 2.651 s 5.229 s

Π0 f0=⇒ Π1 35.462 s 2:13.356 min

K⊆(Πn) (n = 26) 145 sets in 1.188 s (n = 33) 60 sets in 1.760 s

(n = 26) 214 sets in 1.510 s (n = 33) 92 sets in 2.121 s

(n = 26) 284 sets in 2.040 s (n = 33) 114 sets in 3.695 s

calculation of all possible answer-sets is computationally expensive, is Sudoku.
INCA takes approximately 0.186 s to compute all facets of an empty 9×9 Sudoku.
The time needed to apply the first navigation step is approximately 2.930 s.
The following shows the time spent to calculate different instances of the set
K⊆(Π40) with distinctive sizes depending on different facets f where f ∈ F(Π0)
and f �∈ F(Π40) (Table 3).

Table 3. Computation of all minimal correction sets of 9 × 9 Sudoku for different
facets.

|K⊆(Π40)| = 497 |K⊆(Π40)| = 713 |K⊆(Π40)| = 2499 |K⊆(Π40)| = 4013

3.559 s 4.650 s 47.122 s 2:10.874 min

5 Conclusion

We provide a general formal way to overcome the situation of answer-set pro-
grams with an unmanageable amount of answer-sets, where users might either be
incapable of comprehending the space of answer-sets as a whole, or being able to
identify a specific answer-set according to their needs. Our approach is therefore
based on faceted navigation, wherein a facet can be seen as a partial solution
that, if activated, is enforced to be present in any answer-set. This can be real-
ized as stringent sequential process succeeding in a single answer-set, but also
as navigation mode allowing unrestricted application of facets, potentially caus-
ing conflicts; i.e. conflicting facets. We provide a pure answer-set programming
encoding to resolve conflicts, which besides giving a certain degree of freedom in
navigation also contributes to the overall experience of answer-set exploration.

224 C. Alrabbaa et al.

Regarding future work, we would like to extend the approach to support
aggregate facets supporting to restrict the remaining answer-sets in terms of
some numerical value. The same idea can be applied to preferences, which could
be enriched with a cost value, depending on the underlying application scenario.

It also remains imperative to explore the possibilities of enriching the user
interface, e.g. by an aggregated presentation of atoms; unary ground atoms can
be represented as (drop-down) lists. We see huge potential to explore answer-
sets visually, where methods for visualizing large data-sets, established by other
disciplines, could be reused. On the other hand our implementation can be used
as backend to realize domain specific user interfaces. For example, product con-
figurators, where users interactively can configure parts and properties of some
product, being assisted in case of conflicting selections.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Specifying and querying database repairs
using logic programs with exceptions. In: Larsen, H.L., Andreasen, T., Chris-
tiansen, H., Kacprzyk, J., Zadrozny, S. (eds.) FQAS 2000. Advances in Soft Com-
puting, vol. 7, pp. 27–41. Physica, Heidelberg (2000). https://doi.org/10.1007/978-
3-7908-1834-5 3

2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

3. Delgrande, J.P., Faber, W. (eds.): LPNMR 2011. LNCS (LNAI), vol. 6645.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9

4. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tes-
saris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 2

5. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The KR system dlv:
progress report, comparisons and benchmarks. In: Cohn, A.G., Schubert, L.K.,
Shapiro, S.C. (eds.) Proceedings of the Sixth International Conference on Principles
of Knowledge Representation and Reasoning (KR 1998), Trento, Italy, 2–5 June
1998, pp. 406–417. Morgan Kaufmann (1998)

6. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: integrated development environment
for answer set programming. In: Delgrande and Faber [3], pp. 317–330

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 6, pp.
1–238. Morgan and Claypool Publishers (2012)

8. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. CoRR abs/1405.3694 (2014)

9. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In:
Delgrande and Faber [3], pp. 345–351

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

11. Gertz, M.: Diagnosis and repair of constraint violations in database systems. Daten-
bank Rundbrief 19, 96 (1997)

12. Kloimüllner, C., Oetsch, J., Pührer, J., Tompits, H.: Kara: a system for visualising
and visual editing of interpretations for answer-set programs. In: Tompits, H.,
et al. (eds.) INAP/WLP -2011. LNCS (LNAI), vol. 7773, pp. 325–344. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41524-1 20

https://doi.org/10.1007/978-3-7908-1834-5_3
https://doi.org/10.1007/978-3-7908-1834-5_3
https://doi.org/10.1007/978-3-642-20895-9
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-642-41524-1_20

Faceted Answer-Set Navigation 225

13. Lifschitz, V.: What is answer set programming? In: Fox, D., Gomes, C.P. (eds.)
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, 13–17 July 2008, pp. 1594–1597. AAAI Press (2008)

14. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

15. Oetsch, J., Pührer, J., Tompits, H.: Stepwise debugging of answer-set programs.
TPLP 18(1), 30–80 (2018)

16. Preußer, T.B., Engelhardt, M.R.: Putting queens in carry chains, No27. Signal
Process. Syst. 88(2), 185–201 (2017)

	Faceted Answer-Set Navigation
	1 Introduction
	1.1 Related Work

	2 Answer-Set Programming
	3 Faceted Navigation
	3.1 Facets and Navigation Step
	3.2 Free Navigation Mode
	3.3 Preferred Correction Sets

	4 Implementation and Evaluation
	5 Conclusion
	References

