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ABSTRACT

Finding suitable candidates for clinical trials is a labor-intensive
task that requires expert medical knowledge. Our goal is to design
(semi-)automated techniques that can support clinical researchers
in this task. We investigate the issues involved in designing formal
query languages for selecting patients that are eligible for a given
clinical trial, leveraging existing ontology-based query answering
techniques. In particular, we propose to use a temporal extension of
existing approaches for accessing data through ontologies written
in Description Logics. We sketch how such a query answering
system could work and show that eligibility criteria and patient
data can be adequately modeled in our formalism.
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1 INTRODUCTION

Clinical trials play an important role in the evaluation of new med-
ications and treatments. After designing the study, the first main
task is to find patients that are eligible for a given study, i.e., that
satisfy all inclusion criteria and do not satisfy any exclusion criteria.
Unfortunately, in practice it is often a resource-intensive task to
recruit enough patients to get statistically meaningful results. How-
ever, the increased usage of Electronic Health Records (EHRs) in
hospitals offers a promising opportunity to improve the recruitment
process by automating parts of it.

Even though data are recorded more and more in semi-structured
ways, most of them are not sufficiently structured to be processed
directly using a logic-based formalism. This means that all the
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complications of natural language processing (NLP) apply when
the computer is supposed to find semantically matching patients.

Apart from the NLP nature of the task, many other challenges
need to be overcome to automate patient selection. As already em-
phasized in [23], a major challenge lies in the the fact that criteria
are described on different levels of granularity, which range from
quite specific to very general. This can often be bridged by using
medical background knowledge that links broad categories (“lung
cancer”) to more specific ones (“adenocarcinoma”) or even to more
detailed descriptions (“malignant neoplasm was found in the left
lower lobe”). Fortunately, a large amount of medical knowledge is
nowadays readily available in a machine-processable form in medi-
cal ontologies such as SNOMED CT,! which is easily convertible
into a Description Logic representation.

There exist many different approaches to the problem of au-
tomatic patient matching. Most are based on classic information
retrieval techniques [13, 21], while others are logic-based [12, 23].
In this paper we consider the problems encountered when design-
ing an ontology-based query formalism that automatically maps
eligible patients to clinical trials. We put a special emphasis on
analyzing which are the conditions that the query formalism must
be able to express. For the moment, we mostly ignore the problems
caused by the fact that natural language descriptions of eligibility
criteria need to be translated automatically into our formalism. This
will, however, be an important topic for future research.

2 BACKGROUND

Our observations are based on real world datasets which we will
briefly introduce in the following. The data consist of three main
parts: the patient data containing the EHRs, the clinical trials, and
the medical ontologies that can provide the necessary background
knowledge to the computer.

2.1 Patient Data

Our observations about patient data are based on the real-world
MIMIC-III? dataset. It is a de-identified dataset of hospital admis-
sions collected in two different hospitals in the US. In total it in-
cludes data associated with over 40.000 patients who stayed in
intensive care units (ICUs). Each admission is associated with a
number of diagnoses and procedures specified in the ICD-9 coding
system.3 Additionally, reports, care notes, and discharge summaries
collected during the admission are available in unstructured text
form. In contrast to the diagnosis codes, each note has an exact
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time stamp, which allows more fine granular insights into the order
of events occurring during a patient’s stay in the hospital.

Since MIMIC-III contains EHRs of patients that stayed in ICUs,
the patients mostly suffer from severe diseases like cancer, or need
an acute surgery or treatment, e.g., due to a stroke or a serious
accident. Because of this it is much easier to find information about,
e.g., cancer patients in MIMIC-III, than it is to find information
about a patient with e.g., chronic lower back pain.

2.2 Clinical Trial Specifications

A clinical trial specifies a collection of eligibility criteria, each of
which is either an inclusion criterion, which needs to be satisfied
by an eligible patient, or an exclusion criterion, which must not be
satisfied by the patient. More than 250.000 specifications of real-
world trials can be found at ClinicalTrials.gov.* Criteria are given
in text form and range from very specific ones (“Serum creatinine
< 2.5% ) to very general ones (“Uncontrolled chronic disease™).
Building a system that can deal with such a broad range of granu-
larities is one of the challenges in automatic patient recruitment.

2.3 Medical Ontologies

The classification systems offered by medical ontologies have a
great potential to bridge the gap between broad selection criteria
and very fine granular patient data [23]. In recent years, numerous
medical ontologies have been constructed and enjoy a growth in
popularity. The modeling paradigms range from relatively high-
level hierarchical codings like ICD-9 to very detailed formal ontolo-
gies modeled in Description Logics, like SNOMED CT. Mapping
concepts from one system to another can be problematic, but is
facilitated by the UMLS Metathesaurus,” which provides mappings
between equivalent concepts in different ontologies.

We will present our examples mainly from the point of view
of ICD-9 and SNOMED CT, the latter of which can be formulated
in the Description Logic EL. We translate all ICD-9 codes from
the patient database into SNOMED CT, which allows a more fine-
grained classification of diagnoses. Since SNOMED CT and ICD-9
have been developed for different purposes, it is often not possible to
find an exact match for each code and concept. For example the ICD-
9 code 174.9 “Malignant neoplasm of breast (female), unspecified” is
mapped to 41 possible concepts in SNOMED CT.

Originally, most ontologies were designed to provide a refer-
ence for doctors and other domain experts about the relations of
symptoms and diseases. Modeling patient data in such ontologies
can be problematic, since they provide only limited support to rep-
resenting a patient’s history. Especially the support for temporal
sequences, which play an important role when modeling patient
records [13], is not included in a directly applicable way [12].

2.4 Description Logic

Previous work [16, 25] has proposed custom ontologies that define
temporal concepts, which can be used to model clinical narratives.
Unfortunately, this approach is not easily amenable to reasoning
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over these temporal representations, i.e., checking whether a pa-
tient’s history actually matches a temporal criterion. In this paper,
we base our approach on temporal ontology and query languages
that include a dedicated temporal semantics [2]. Since existing med-
ical ontologies are non-temporal and should ideally be used without
modifications, we in particular focus on temporal query languages
to express inclusion and exclusion criteria. Our query language is
similar to the one proposed in [14], but we extend it in several ways
to accommodate the needs of clinical trial criteria.

The Description Logic EL [4, 9] is a popular formalism for rea-
soning over medical ontologies, such as SNOMED CT, the Gene
Ontology,® and the NCI Thesaurus.’ It is based on the notions of
concepts (“cancer” or “liver”) and roles (“found in”), which express
relations between concepts ( “liver cancer” is “found in” the “liver”)
as well as concrete patient data (patient 143 is “diagnosed with”
the disease “liver cancer”'?). As the most basic queries that can
be stated over patient data and &L ontologies, we consider con-
Jjunctive queries (CQs), which form a subset of the database query
language SQL; for example, the CQ

Jy.diagnosed_with(x, y) A Cancer(y) (1)

asks for all patients x that are diagnosed with a disease y that is
classified as a cancer. Note that “diagnosed with” is not a relation
from SNOMED CT, but a relation that is available in the patient
database. The variable y is existentially quantified since we are
not interested in the precise cancer diagnosis for each patient, but
only need to ensure that there exists such a diagnosis. In the pres-
ence of the background knowledge (e.g., from SNOMED CT) that
“liver cancer” is a subconcept of “cancer”, the answers to (1) include
patient 143 from above.

3 CASE ANALYSIS

In the following, we highlight specific issues involved when trying
to model clinical trials and patient data. Throughout this section,
we use CQs, and later temporal CQs [6], as query language. For
each example, we discuss how this query language needs to be
extended in order to handle patient data and eligibility criteria.

In many cases, the exact set of patients that match the trial
criteria can only be approximated, and the final decision needs to
be taken by the doctor in charge. Since the goal is to reduce the
workload as much as possible, the list of candidates returned by
our querying approach should not contain too many false positives.
It is even more important, however, to eliminate the presence of
false negatives, i.e., not to discard any eligible patients; otherwise,
the system would be nearly worthless for the doctors since in the
end they still have to look at all patient records themselves. When
designing the queries, we should thus determine whether they over-
or under-approximate the actual set of eligible patients. Under-
approximating the answers to an inclusion criterion may generate
false negatives, and the same can happen when over-approximating
the answers to an exclusion criterion.

8http://www.geneontology.org/
“https://ncit.ncinih.gov/
10Patient 143 from MIMIC-III
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3.1 Ambiguity

Apart from ambiguity in natural language, which is exacerbated
by the extensive use of abbreviations in clinical texts (for example,
“TBI” could mean either “total body irradiation” or “traumatic brain
injury”), ambiguity also appears in the structured data. For exam-
ple, patient 6470 from the MIMIC-III database has two recorded
admissions; the first admission lists the ICD-9 diagnosis code 250.61
“Diabetes with neurological manifestations, type I, not stated as uncon-
trolled”, while in the second admission another doctor used 250.01
“Diabetes mellitus without mention of complications, type I, not stated
as uncontrolled”. This may have been intended, i.e., the “neurological
manifestations” disappeared in the meantime, or they were simply
not relevant for the second admission.

Now imagine that we are searching for patients that are diag-
nosed with the SNOMED CT concept “Diabetes mellitus type 17,
using the CQ

Jy.diagnosed_with(x, y) A Diabetes_mellitus_type_1(y)  (2)

This query would only find the second admission, leading to an un-
derestimation of the duration of the diabetes in the example patient.
The reason is that, while the ICD-9 code 250.01 is correctly matched
by the UMLS Metathesaurus to subconcepts of “Diabetes mellitus
type 1”7 in SNOMED CT, this is not the case for 250.61. Rather, 250.61
is matched to “Neurological disorder associated with type I diabetes
mellitus (disorder)”, which is defined as a “Neurological disorder” that
is “associated with” “Diabetes mellitus type 1” (where “associated
with” is a role in SNOMED CT). Reasoning over SNOMED CT does
not allow us to draw the conclusion that the patient had “Diabetes
mellitus type 1” at the time of the first admission.

One possibility to resolve this is to add an ontological axiom to
SNOMED CT to state that every patient “diagnosed with” a disease
that is “associated with” a second disease is automatically “diag-
nosed with” the second disease as well. However, it is not clear
how to practically answer CQs in the presence of such axioms,
although theoretically optimal algorithms are known [22]. Another
way would be to under-approximate the effect of this axiom by
supplementing the query (2) with the additional CQ

Jy, z.diagnosed_with(x, y) A associated_with(y, z) A
Diabetes_mellitus_type_1(z) (3)

and taking the union of the results. This is a sound and nearly com-
plete approximation of the proposed axiom, because SNOMED CT
contains only chains of “associated with” relations of length at
most 2. That is, by adding one more intermediate variable to this
query, we can actually capture all associated diseases that may
occur in SNOMED CT.

3.2 Negation

To obtain the candidates for a single clinical trial, we need to query
the database for all patients that satisfy all inclusion criteria, while
not satisfying any exclusion criteria of that trial. Formally, we can
express this as

L(x) A ATy(x) A=E{(x) A+ A=En(x), (4)

where we combine the CQs I; (x) for the inclusion criteria and Ej(x)
for the exclusion criteria using the logical connectives and (A) and
not (—).

This can lead to problems, since sometimes a diagnosis is not
stated in a patient’s admission simply because it is irrelevant for
the primary reason of the admission. For example, consider looking
for patients with “Post-traumatic stress disorder (PTSD)”. In con-
trast to cancer or diabetes, PTSD is not relevant for many hospital
admissions and is therefore likely to be omitted in most cases. In-
deed, patient 9248 (among many others) from MIMIC-III has five
recorded admissions over a period of three years, and PTSD is listed
as diagnosis only in the 2nd and 4th admissions, but not in the 1st,
3rd or 5th. This is problematic when evaluating exclusion criteria,
since we can never be certain about the absence of a disease. From
a formal point of view, there is a similar problem: SNOMED CT
is modeled in the DL & L, which does not support negative state-
ments. In other words, the query (4) will in general not yield any
results over the (incomplete) patient data, even when augmented
with SNOMED CT.

An obvious solution is to ask only for patients for which the data
actually indicates that they satisfy an exclusion criterion (which is
an under-approximation), and then remove these patients from the
query results (which yields an over-approximation). This can be
modeled by adding the so-called epistemic operator K (for “knowl-
edge”), as investigated in [15, 19], to our query language. We can
then ask for patients that satisfy all inclusion criteria, and for which
we do not know for certain that they satisfy any exclusion criteria:

Li(x) A= A (x) A =KE1(x) A -+ A =KEp (x) ®)

In addition, negation also appears inside single criteria, for exam-
ple in “cancer other than skin cancer,”'! which can only be expressed
as a combination of positive and negative statements that refer to
the same existentially quantified variable:

Jy.diagnosed_with(x, y) A Cancer(y) A —=Skin_Cancer(y) (6)

However, this is not a CQ anymore, and adding negation inside of
CQs quickly leads to undecidability [18]. It should be possible to
extend CQs by epistemic negation —K similar to (5) while staying
decidable (but this particular combination of CQs and epistemic
negation has not been investigated so far). In this way, we can
obtain all patients that have a diagnosis y that is a cancer diagnosis,
for which it is not explicitly stated in the EHR that this cancer is a
skin cancer.

3.3 Time

To access temporal patient data, where all diagnoses are annotated
with time stamps, we propose to use temporal conjunctive queries
(TCQs) [6, 14], in which CQs are combined with linear-temporal op-
erators. As a simple example, with a TCQ we can ask for all patients
that have a “history of cancer,”1? i.e., those that were diagnosed with

cancer at some point in the past, using the temporal operator ¢:
O(=0,0] (Hy.diagnosed_with(x, y) A Cancer(y)), (7)

where the time interval (—oo, 0] refers to the whole history (relative
to the current time point 0). More complex queries include “type 1
diabetes with duration at least 12 months,”'3 utilizing the temporal

1INCT02873052
12NCT00064766
13NCT02280564
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always operator O:
O(=c0,010[=12,0] (Hy.diagnosed_with(x, y) A Diabetes(y)). 8)

In this case, we are looking for some time point ¢ in the past (¢(_ o))
for which during the whole time interval [-12,0] relative to ¢
(that is, [t — 12, t]) the patient had a diagnosis of diabetes (such
specific time intervals are not supported by TCQs yet, but have
been investigated in other settings [1, 5]). Here, we used months as
the basic time unit; in practice, statements with a different temporal
granularity like days or years have to be converted into a common
time unit before combining them into a logical query.

In general we can distinguish two different kinds of temporal
queries: (7) asks whether there exists a single point in time at which
something is true, while (8) asks whether something was true for
the whole duration of a given interval. Since the data is restricted
to the times where the patient was in the hospital, for the latter
kind of queries we need to make additional assumptions about
what happens in between admissions. Did the patient still suffer
from diabetes? Maybe the disease was healed and after some time
reappeared? In the specific case of (8), medical knowledge tells us
that diabetes cannot (yet) be cured, which means that it suffices
to find patients diagnosed with diabetes at least 12 months ago. In
principle, such knowledge can be encoded in the setting proposed
in [5, 6, 14]. Unfortunately, currently there does not exist a formal-
ized ontology containing information on the usual duration and the
curability of diseases, which means that for now such information
would have to be hand-coded for each clinical trial.

Similar to (8), consider the following criterion: “Temperature
> 38.5°C for seven consecutive days within the 14 days prior to first
study dose:"14

O[=7,019[=7,0] (Hy.measuredﬁtemperature(x, YA (y > 38.5°C)).
©
The statement y > 38.5°C is discussed in more detail in the next sec-
tion. For now, we focus on the problem of finding valid continuous
intervals when given only single measurements. The availability
of body temperature measurements varies from patient to patient:
When a patient stays in an ICU, the temperature is measured fre-
quently, whereas outside the ICU it may not be measured at all.

One strategy to interpolate the values in between measurements
could be to assume them to be constant until the next measurement.
This might be a good approach if the measurements are a few hours
apart, but certainly not if they are years apart. It is difficult to
define intervals in which values stay the same, since it strongly
depends on the context. Moreover, this would again require medical
background knowledge that is currently not available in a logical
form.

An approximation that does not require background knowledge
is based on the assumption that abnormal values, such as a raised
temperature or decreased red blood cell count, will be measured
more frequently. Therefore, we can over-approximate (9) by looking
for an interval of 7 days during which

e at least one supporting measurement was taken and
e 1o contradicting measurement exists:

14NCT02355184

O[-7,0] (Hy.measured_temperature(x,y) Ay > 38.5°C)) A

D[_770]—|K(Hy.measured_temperature(x,y) Ay < 38.5°C)).

A similar idea can be used to approximate queries like (8).

3.4 Measurements

EHRs include a lot of numerical data, like age, doses of medications,
or blood pressure. In addition, eligibility criteria often require a
value to be smaller or greater than some threshold, e.g., “serum
creatinine <=2.5 mg/dL.”"> A high serum creatinine value indicates
that the kidney is not working properly. The measurement can be
obtained by analyzing a small blood sample. A system for patient
selection should therefore be able to deal with values and value
comparisons to some extent. DLs and CQs can be extended by so
called concrete domains to support reasoning with numbers [3, 7, 8,
11, 24]. A query could look similar to the following:

dy.measured_serum_creatinine(x,y) A (y < 2.5mg/dL)  (10)

Here, the temporal component is also important: We do not consider
an arbitrary measurement, but rather we want to find the most
recent one that can still be considered valid (see the discussion in
the previous section).

Sometimes value comparisons are explicitly combined with tem-
poral expressions, e.g., when talking about aggregated values over
a given interval. As an example, consider “any previous treatment
with sodium fluoride at daily doses > 5 mg/day for a period exceeding
1 month.”1® To answer the query, it is necessary to find a prescrip-
tion of sodium fluoride with a daily sum greater or equal to 5 mg,
which also includes taking 2.5 mg sodium fluoride twice a day.
Unfortunately, adding arithmetic expressions beyond simple value
comparisons to a DL quickly results in high computational com-
plexity or even undecidability of the logic. To work around this
limitation, we need to employ a preprocessor that normalizes all
numbers in the patient data.

3.5 Limits of Automated Systems

There are a number of criteria that simply cannot be answered from
the available patient data. Among other factors, this can be because
the data do not include certain kinds of information (“Positive preg-
nancy test”),!” the criteria ask for subjective things (“Willingness
to replace the missing tooth/teeth with dental implants”),'® or refer
to time points that potentially lie in the future (“Vaccination with
a live vaccine within 28 days prior to randomization”).!® For such
criteria, we cannot hope to find answers automatically. Instead, we
should detect and ignore them, because in the best case they do
not contribute anything to the query, while in the worst case they
could introduce errors. In a working system, these criteria should
be marked to indicate to the doctor that they are still open and need
to be checked manually.

I5NCT01064557
16NCT00171704
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4 RELATED WORK

Previous work has already considered using ontologies for patient
selection for clinical trials before. Patel et al. [23] worked with
patient records from Columbia University Medical Center that
were recorded using the MED ontology. They mapped MED to
SNOMED CT using a semi-automated approach that was guided by
domain experts. The patient records were then integrated using a
pattern matching rule-based approach. They showed impressively
that it is actually possible to find patient matches using an ontology,
and were able to scale their approach to one year of patient data.

Besana et al. [12] focused on 200 trials about prostate cancer and
annotated them manually with UMLS concepts. As formal basis,
they use OWL (which is based on DLs) together with SWRL rules,
which allows them to add rules for temporal relations. They then
load one patient at a time into the ontology and query the studies
that the patient is eligible for. Their approach allows traceability of
the results, which is a very desirable property. While they demon-
strate that patients can be selected using their formal framework,
they assume that the data are already formalized.

Tao et al. [25] further analyzed and modeled the temporal pat-
terns that occur in patient data. To represent them they introduce
the OWL-based CNTRO 2.0 ontology for clinical narratives. Later,
Crowe and Tao [16] classified most temporal statements occurring
in descriptions of clinical trials and clinical guidelines into 16 basic
temporal patterns that are expressible in CNTRO 2.0. Unfortunately,
CNTRO 2.0 is not suitable for temporal query answering, since it
can express temporal statements, but does not provide a temporal
semantics and allows only rudimentary temporal inferences.

Other approaches to model temporal medical data use graph- or
constraint-based formalisms to representing and reasoning with
temporal statements [13, 20].

For a survey regarding also non-temporal, non-logical proposals
for automated processing of EHRs and other medical data, see [21].

5 CONCLUSION

Automated patient recruitment is an important and at the same
time challenging task. In this paper we have presented the issues
involved when representing EHRs and eligibility criteria for clinical
trials in a formal knowledge representation system that supports
effective reasoning. We have seen that the support for temporal
operators plays a crucial role in representing the data and the
criteria in a concise way. In addition, epistemic negation, bounded
temporal intervals like [0, 12], and concrete domains are desirable
means of expressiveness in this setting, but also in many other
real-world scenarios with incomplete data.

In the future, we aim to develop effective procedures that enable
automated reasoning over knowledge expressed in this way. While
answering TCQs has been addressed in our previous work (e.g.,
[6, 14]), query answering for extensions of TCQs that support epis-
temic negation, bounded temporal intervals, and concrete domains
have not been investigated until now. On the theoretical side, we
intend to investigate the decidability and complexity of the corre-
sponding decision problems. On the practical side, our aim is to
build a prototype system that demonstrates the applicability of this
kind of temporal reasoning for selecting patients for clinical tri-
als. Additional important features of such a system include, firstly,

perspicuity of the automatically computed results: for each patient
that is marked as eligible or not eligible, the system should be able
to explain why this is the case. Secondly, in cases with no exact
matches, we suggested to return patients that only partially satisfy
the criteria. To support the recruiters, the returned list of possibly
eligible patients should then be ranked by its degree of certainty
or significance [10, 17]. In addition, the properties missing for an
exact match should be explicated.

Another important topic for future research is tackling the prob-
lem of (semi-)automatically translating natural language descrip-
tions of eligibility criteria into formal queries w.r.t. a given medical
ontology.
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