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ABSTRACT
Selecting patients for clinical trials is very labor-intensive. Our goal
is to design (semi-)automated techniques that can support clinical
researchers in this task. In this paper we summarize our recent
advances towards such a system: First, we present the challenges
involved when representing electronic health records and eligibility
criteria for clinical trials in a formal language. Second, we introduce
temporal conjunctive queries with negation as a formal language
suitable to represent clinical trials. Third, we describe our methodol-
ogy for automatic translation of clinical trial eligibility criteria from
natural language into our query language. The evaluation of our
prototypical implementation shows promising results. Finally, we
talk about the parts we are currently working on and the challenges
involved.

CCS CONCEPTS
• Computing methodologies → Temporal reasoning; Descrip-
tion logics; • Applied computing → Health care information
systems;
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1 INTRODUCTION
Ontology-mediated query answering (OMQA) allows using back-
ground knowledge for answering user queries, supporting data-
focused applications offering search, analytics, or data integration
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functionality. An ontology is a logical theory formulated in a de-
cidable fragment of first-order logic, with a trade-off between the
expressivity of the ontology and the efficiency of query answer-
ing. Rewritability is a popular topic of research, the idea being to
reformulate ontological queries into database queries that can be
answered by traditional database management systems [9, 15, 20,
24, 31].

The biomedical domain is a fruitful area for OMQA, due to the
availability of large ontologies1 and the demand for managing large
amounts of patient data, in the form of electronic health records
(EHRs) [17]. For example, for the preparation of clinical trials2 a
large number of patients need to be screened for eligibility, and an
important area of current research is how to automate this process
[8, 25, 32, 33].3 Last year, we proposed [5] a research program
to (i) translate the eligibility criteria of clinical trials into logical
queries, (ii) extract structured data from semi-structured EHRs, and
(iii) answer the queries over the data with the help of an ontology
(SNOMEDCT4) to select the patients for the trials. In this paper,
we report on progress made on aspects (i) and (iii), whereas (ii) and
an integration of the different parts into a whole system remain
future work.

Regarding (iii), we have formalized the expressivity requirements
of clinical trials into the query language of metric temporal conjunc-
tive queries with negation (MTNCQs) [12, 13], which includes all
features proposed in [5] except for concrete domains, which allow
to talk about measurements and dosages. However, we believe it
is feasible to extend our language with concrete domains, as de-
scribed in [6, 16]. We have also developed a practical algorithm
based on query rewriting techniques. Towards (i), we have devel-
oped a prototype implementation based on state-of-the art natural
language tools that can translate a selection of criteria from the
clinicaltrials.gov website into MTNCQs.

2 BACKGROUND
Our work is grounded in real-world datasets which we will briefly
introduce in the following: the patient data containing the EHRs,
the clinical trials, and the medical ontologies that can provide the
necessary background knowledge to the computer.

1https://bioportal.bioontology.org
2https://clinicaltrials.gov
3https://n2c2.dbmi.hms.harvard.edu
4https://www.snomed.org/
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2.1 Patient Data
Our observations about patient data are based on the real-world
MIMIC-III5 dataset. It is a de-identified dataset of hospital admis-
sions collected in two different hospitals in the US. In total it in-
cludes data associated with over 40.000 patients who stayed in
intensive care units (ICUs). Each admission is associated with a
number of diagnoses and procedures specified in the ICD-9 coding
system.6 Additionally, reports, care notes, and discharge summaries
collected during the admission are available in unstructured text
form. In contrast to the diagnosis codes, each note has an exact
time stamp, which allows more fine granular insights into the order
of events occurring during a patient’s stay in the hospital.

Since MIMIC-III contains EHRs of patients that stayed in ICUs,
the patients mostly suffer from severe diseases like cancer, or need
an acute surgery or treatment, e.g., due to a stroke or a serious
accident. Because of this it is much easier to find information about,
e.g., cancer patients in MIMIC-III, than it is to find information
about a patient with e.g., chronic lower back pain.

2.2 Clinical Trial Specifications
A clinical trial specifies a collection of eligibility criteria, each of
which is either an inclusion criterion, which needs to be satisfied
by an eligible patient, or an exclusion criterion, which must not be
satisfied by the patient. More than 250.000 specifications of real-
world trials can be found at ClinicalTrials.gov.7 Criteria are given
in text form and range from very specific ones (“Serum creatinine
≤ 2.5𝑚𝑔

𝑑𝐿
”8) to very general ones (“Uncontrolled chronic disease”9).

Building a system that can deal with such a broad range of granu-
larities is one of the challenges in automatic patient recruitment.

2.3 Medical Ontologies
The classification systems offered by medical ontologies have a
great potential to bridge the gap between broad selection criteria
and very fine granular patient data [33]. In recent years, numerous
medical ontologies have been constructed and enjoy a growth in
popularity. The modeling paradigms range from relatively high-
level hierarchical codings like ICD-9 to very detailed formal ontolo-
gies modeled in Description Logics, like SNOMEDCT. Mapping
concepts from one system to another can be problematic, but is
facilitated by the UMLSMetathesaurus,10 which provides mappings
between equivalent concepts in different ontologies.

We will present our examples mainly from the point of view
of ICD-9 and SNOMEDCT, the latter of which can be formulated
in the Description Logic EL. We translate all ICD-9 codes from
the patient database into SNOMEDCT, which allows a more fine-
grained classification of diagnoses. Since SNOMEDCT and ICD-9
have been developed for different purposes, it is often not possible to
find an exact match for each code and concept. For example the ICD-
9 code 174.9 “Malignant neoplasm of breast (female), unspecified” is
mapped to 41 possible concepts in SNOMEDCT.

5https://mimic.physionet.org
6http://www.who.int/classifications/icd/en/
7https://clinicaltrials.gov/
8From study NCT01064557; see https://clinicaltrials.gov/ct2/show/NCT01064557
9https://clinicaltrials.gov/ct2/show/NCT01693861
10https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/

Originally, most ontologies were designed to provide a refer-
ence for doctors and other domain experts about the relations of
symptoms and diseases. Modeling patient data in such ontologies
can be problematic, since they provide only limited support to rep-
resenting a patient’s history. Especially the support for temporal
sequences, which play an important role when modeling patient
records [11], is not included in a directly applicable way [8].

2.4 Description Logic
Previous work [18, 34] has proposed custom ontologies that define
temporal concepts, which can be used to model clinical narratives.
Unfortunately, this approach is not easily amenable to reasoning
over these temporal representations, i.e., checking whether a pa-
tient’s history actually matches a temporal criterion. In this paper,
we base our approach on temporal ontology and query languages
that include a dedicated temporal semantics [3]. Since existing med-
ical ontologies are non-temporal and should ideally be used without
modifications, we in particular focus on temporal query languages
to express inclusion and exclusion criteria. Our query language is
similar to the one proposed in [14], but we extend it in several ways
to accommodate the needs of clinical trial criteria.

The Description Logic EL [4, 7] is a popular formalism for rea-
soning over medical ontologies, such as SNOMEDCT, the Gene
Ontology,11 and the NCI Thesaurus.12 It is based on the notions
of concepts (“cancer” or “liver” ) and roles (“found in” ), which ex-
press relations between concepts (“liver cancer” is “found in” the
“liver” ) as well as concrete patient data (patient 143 is “diagnosed
with” the disease “liver cancer”13). As the most basic queries that
can be stated over patient data and EL ontologies, we consider
conjunctive queries (CQs), which form a subset of the database query
language SQL; for example, the CQ

∃𝑦.diagnosedWith(𝑥,𝑦) ∧ Cancer(𝑦) (1)

asks for all patients 𝑥 that are diagnosed with a disease 𝑦 that is
classified as a cancer. Note that “diagnosed with” is not a relation
from SNOMEDCT, but a relation that is available in the patient
database. The variable 𝑦 is existentially quantified since we are
not interested in the precise cancer diagnosis for each patient, but
only need to ensure that there exists such a diagnosis. In the pres-
ence of the background knowledge (e.g., from SNOMEDCT) that
“liver cancer” is a subconcept of “cancer”, the answers to (1) include
patient 143 from above.

3 METRIC TEMPORAL CONJUNCTIVE
QUERIES WITH NEGATION

As argued in [5], evaluating clinical trial criteria over patient records
requires both negated and temporal queries. For example, the el-
igibility criterion “history of migraine of at least 1 year prior to
enrollment [...], but not a history of chronic migraine”14 contains
both temporal and negated requirements. In order to represent
the temporal dimension and adequately treat negative knowledge,
the query language in [13] extends conjunctive queries by metric
temporal operators and negation. Metric temporal logic (MTL) was
11http://www.geneontology.org/
12https://ncit.nci.nih.gov/
13Patient 143 from MIMIC-III
14https://clinicaltrials.gov/ct2/show/NCT01625988
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originally designed for modelling and reasoning about real-time
systems [1].

Unfortunately, ontologies and EHRs mostly contain positive
information, and moreover employ open-world semantics, which
means that a “history of chronic migraine” cannot be ruled out
unless it is explicitly stated in the patient record that “the patient
does not have a history of chronic migraine”. As a countermeasure
for this behavior, we developed a minimal-world semantics [12]
that allows for interpreting patient information as the most specific
description. In other words, if a patient has not been diagnosed
explicitly with a history of chronic migraine, she is eligible for the
trial.

The temporal elements of clinical trial criteria are represented
by operators of metric temporal logic. For example, the diamond
operator ♢[𝑎,𝑏 ] can express that some event happened at some
point between times 𝑎 and 𝑏 (relative to the current time). Thus,
♢(−∞,1 year] means “at least 1 year prior”. In total, the criterion from
above could be written as the metric temporal conjunctive query
with negation (MTNCQ)

♢(−∞,1 year]
(
∃𝑦.diagnosedWith(𝑥,𝑦) ∧Migraine(𝑦)

)
∧

¬♢(−∞,0]
(
∃𝑦.diagnosedWith(𝑥,𝑦) ∧ ChronicMigraine(𝑦)

)
,

where ¬ denotes negation.
A problem with EHRs is that they are usually sparse, i.e., data is

only available for individual time points, since patients usually visit
the doctor only sporadically. It is known that highly sparse medical
datasets due to missing data are problematic statistical analysis [36].
Therefore, in [13] for handling missing data we proposed adding
statements of the form

cc♢1 yearChronicMigraine ⊑ ChronicMigraine (2)

to express that two diagnoses of chronic migraine that are one
year apart mean that the patient suffered from migraine during
the whole year. This can be used to bridge temporal gaps, thus
alleviating the problem of sparse data.

Finally, we developed an algorithm to answer MTNCQs over
sparse datasets via a rewriting technique, in which the query is re-
formulated into a database query that can be executed efficiently [12,
13].

4 TRANSLATING CLINICAL TRIAL
CRITERIA INTO MTNCQS

In [37], we developed a methodology to translate clinical trial crite-
ria into MTNCQs. Instead of a direct translation, we first annotate
each part of a criterion with a semantic type, and then construct a
formal query from this annotation.

We analyzed the criteria from clinicaltrials.gov to find the most
important semantic types, which include clinical findings, products,
procedures etc. from SNOMEDCT, and additionally the types age,
time, number, comparison sign, negation, and conjunction. For ex-
ample, consider the criterion “history of lung disease other than
asthma”.15 Its semantic annotation is shown in Figure 1. The con-
cepts from SNOMEDCT are annotated with the help of MetaMap
tagger [2], a tool for recognizing concepts from the UMLS Metathe-
saurus, which subsumes SNOMEDCT. Given a phrase or sentence,
15https://clinicaltrials.gov/ct2/show/NCT02548598

Sub-phrase

Start and
end position

Type

Data

Concept ID

history of

(0,11)

time

♢(−∞,0]

lung disease

(12,24)

clinical finding

disorder of lung

19829001

other than

(25, 35)

negation

∧¬

asthma

(36,42)

clinical finding

asthma

195967001

Figure 1: The semantic annotation for our example.

it returns the most likely phrase-concept matches. After refining
these matches with the help of syntactic and semantic analysis
using the Stanford NLP tools [27] and Word2Vec [28], the remain-
ing parts are annotated using dedicated regular expressions for
each semantic type, e.g. “history of” is recognized as a temporal
expression that can be expressed as a diamond operator of MTL.

In the second step, the semantic annotations are used to recur-
sively generate an MTNCQ. The SNOMEDCT concepts are trans-
lated into basic CQs like

∃𝑦.diagnosedWith(𝑥,𝑦) ∧ DisorderOfLung(𝑦),
which are then combined (when compatible) with conjunctions
and negation into larger queries. Finally, temporal expressions are
added. In our example, we obtain the MTNCQ

♢(−∞,0]
(
∃𝑦.diagnosedWith(𝑥,𝑦) ∧

DisorderOfLung(𝑦) ∧ ¬Asthma(𝑦)
)
.

We have evaluated this approach on a random selection of 401
natural language criteria from clinicaltrials.gov. In a manual evalu-
ation, about 237–308 of them were found to be unanswerable by
an automated system (according to the opinions of different evalu-
ators). Such criteria include ones that refer to the future (“during
study phase”) or ask for subjective information (“in the opinion of
the investigator”, “willingness to”). The 93 criteria that were con-
sidered answerable by all evaluators were then translated by our
system, and 58–70% of the translations were manually evaluated
to be “good”, and about 11% were wrong, the remainder providing
only a partial translation.

This means that much of the patient screening still has to be
done by doctors, but an automated system can at least take into
account basic criteria for pre-selecting eligible patients.

5 RELATEDWORK
Previous work has considered using ontologies for patient selection
for clinical trials before. Patel et al. [33] worked with patient records
from Columbia University Medical Center that were recorded using
the MED ontology. They mapped MED to SNOMEDCT using a
semi-automated approach that was guided by domain experts. The
patient records were then integrated using a pattern matching
rule-based approach. They showed impressively that it is actually
possible to find patient matches using an ontology, and were able
to scale their approach to one year of patient data.

https://clinicaltrials.gov/ct2/show/NCT02548598


Besana et al. [8] focused on 200 trials about prostate cancer and
annotated them manually with UMLS concepts. As formal basis,
they use OWL (which is based on DLs) together with SWRL rules,
which allows them to add rules for temporal relations. They then
load one patient at a time into the ontology and query the studies
that the patient is eligible for. Their approach allows traceability of
the results, which is a very desirable property. While they demon-
strate that patients can be selected using their formal framework,
they assume that the data are already formalized.

Tao et al. [34] further analyzed and modeled the temporal pat-
terns that occur in patient data. To represent them they introduce
the OWL-based CNTRO 2.0 ontology for clinical narratives. Later,
Crowe and Tao [18] classified most temporal statements occurring
in descriptions of clinical trials and clinical guidelines into 16 basic
temporal patterns that are expressible in CNTRO 2.0. Unfortunately,
CNTRO 2.0 is not suitable for temporal query answering, since it
can express temporal statements, but does not provide a temporal
semantics and allows only rudimentary temporal inferences.

Other approaches to model temporal medical data use graph- or
constraint-based formalisms to representing and reasoning with
temporal statements [11, 22].

For a survey regarding also non-temporal, non-logical proposals
for automated processing of EHRs and other medical data, see [25].

Regarding the automatic translation of eligibility criteria, Tu et
al. [35] proposed a practical translation method based on the ERGO
annotation, which is an intermediate representation for criteria.
However, ERGO annotation can only be done manually or semi-
automatically. Milian et al. [29, 30] focused on breast-cancer trials
and summarized 165 patterns, and used these patterns and concept
recognition tools to structure criteria. After that, they generated a
formal representation by projecting the concepts in criteria to the
predefined query template. There is also some work about extrac-
tion and representation of partial knowledge in eligibility criteria.
Zhou et al. [38], Luo et al. [26] and Boland et al. [10] focused on the
recognition and representation of temporal knowledge. Huang et
al. [23] and Enger et al. [21] proposed several methods for detecting
negated expressions.

In the field of natural language processing, automatic translation
from natural language into formal language, e.g., first-order logic
formulas, is also known as automatic semantic parsing. Dong et
al. [19] proposed an automatic semantic parsing method based on
machine learning, different from traditional rule-based or template-
based methods.

6 CONCLUSION
Automated patient recruitment is an important and at the same time
challenging task. In this paper we have reported on recent progress
regarding an approach based on logic-based query answering. Our
proposal supports (metric) temporal as well as negated queries,
which is crucial to express as many eligibility criteria as possible. To
support information aboutmeasurements and dosages, an extension
with concrete domains [6, 16] remains as future work, as well as an
automatic extraction of EHRs into description logic ABoxes. The
latter presents a different set of challenges than the translation of
clinical trial criteria, since EHRs often consist of long texts instead
of only single sentences, and while they do not contain complicated

temporal constructions, resolving different mentions of the same
entity among different sentences is a major challenge.
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