On the Expressive Power of
Description Logics with Cardinality Constraints
on Finite and Infinite Sets*

Franz Baader and Filippo De Bortoli

Theoretical Computer Science, TU Dresden, Dresden, Germany
franz.baader@tu-dresden.de, filippo.de_bortoli@tu-dresden.de

Abstract. In recent work we have extended the description logic (DL)
ALCQ by means of more expressive number restrictions using numerical
and set constraints stated in the quantifier-free fragment of Boolean Al-
gebra with Presburger Arithmetic (QFBAPA). It has been shown that
reasoning in the resulting DL, called ALCSCC, is PSpace-complete with-
out a TBox and ExpTime-complete w.r.t. a general TBox. The seman-
tics of ALCSCC is defined in terms of finitely branching interpretations,
that is, interpretations where every element has only finitely many role
successors. This condition was needed since QFBAPA considers only fi-
nite sets. In this paper, we first introduce a variant of ALCSCC, called
ALCSCC?, in which we lift this requirement (inexpressible in first-order
logic) and show that the complexity results for ALCSCC mentioned above
are preserved. Nevertheless, like ALCSCC, ALCSCC™ is not a fragment
of first-order logic. The main contribution of this paper is to give a char-
acterization of the first-order fragment of ALCSCC>. The most impor-
tant tool used in the proof of this result is a notion of bisimulation that
characterizes this fragment.

1 Introduction

Description Logics (DLs) [4] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for application domains such as biology and medicine [8]. To define the impor-
tant notions of such an application domain as formal concepts, DLs state nec-
essary and sufficient conditions for an individual to belong to a concept. These
conditions can be Boolean combinations of atomic properties required for the
individual (expressed by concept names) or properties that refer to relationships
with other individuals and their properties (expressed as role restrictions). For
example, the concept of a man that has a son and a daughter can be formalized
in the DL ALC [17] as Male M Human M 3child. Male N Jchild. Female. Number
restrictions allow us to formulate numerical constraints on the role successors
of the elements of a concept. For example, in the DL ALCQ [9], the concept

* Partially supported by the German Research Foundation (DFG) within the Research
Unit 1513 (Hybris) and the Research Training Group 1763 (QuantLA).

Female M Human M (> 5 child . Female) M (< 1 child . Male) describes women that
have at least five daughters and at most one son.

In recent work [2], we have extended the DL ALCQ by means of more ex-
pressive number restrictions using numerical and set constraints stated in the
quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (QF-
BAPA) [11]. For example, in the resulting DL ALCSCC, one can describe in-
dividuals that have twice as many sons as daughter using the role successor
constraint succ(|child N Male| = 2 - |child N Femalel|). It has been shown in [2]
that reasoning in ALCSCC has the same complexity as reasoning in its sub-logic
ALCQ [18,19], i.e., PSpace-complete without a TBox and ExpTime-complete in
the presence of a TBox.

The semantics of ALCSCC is defined in terms of finitely branching inter-
pretations, i.e., interpretations where every element has only finitely many role
successors. This condition was needed since QFBAPA considers only finite sets.
The disadvantage of this meta-condition is that it is not expressible in first-order
logic, and thus makes the comparison of the expressive power of ALCSCC with
that of other DLs, which are usually fragments of first-order logic, problematic.
Strictly speaking, no ALCSCC concept is expressible in first-order logic due to
this implicit constraint. To overcome this problem, we introduce a variant of
ALCSCC, called ALCSCC™, in which we lift the “finite branching” requirement.
This is achieved by introducing a variant of QFBAPA, called QFBAPA®, in
which not just finite, but also infinite sets are considered. We prove that satisfi-
ability in QFBAPA® has the same complexity (NP-complete) as satisfiability in
QFBAPA. Based on this, we can show that the complexity results for ALCSCC
mentioned above also hold for ALCSCC™. Alternatively, we could have also used
the variant QFBAPA ., of QFBAPA with possibly infinite sets introduced in [10],
whose satisfiability problem is also NP-complete.

Despite the removal of the “finite branching” requirement — a constraint
that destroys expressibility in first-order logic of ALCSCC— ALCSCC™ is still
not a fragment of first-order logic. The main contribution of this paper is to give
a characterization of the first-order fragment of ALCSCC™. For this purpose,
we introduce the fragment ALCCOU of ALCSCC®, which uses constraints of
the logic CQU (counting quantifiers over unary predicates) [7] in place of QF-
BAPA constraints, and show that ALCCOU concepts are first-order definable.
Basically, in ALCCOU we can compare the cardinality of successors sets with
a constant, but not with the cardinality of another successor set. For example,
the ALCCAU role successor constraint succ(|friend N livesWith N Female| > 2)
describes individuals that live together with at least two female friends. To get a
handle on the expressive power of ALCCOU, we define a notion of bisimulation
that characterizes ALCCOU, in the sense that a first-order formula is invariant
under this kind of bisimulation iff it is equivalent to an ALCCOU concept. This
notion of bisimulation is very similar to the counting bisimulation introduced
in [13] for ALCQ. Surprisingly, all ALCSCC™ concepts are also invariant under
ALCCOU-bisimulation, which allows us to conclude that ALCCOU consists of
exactly the first-order definable concepts of ALCSCC™.

When formulating complexity results for logics that use numbers in their
syntax (such as QFBAPA, CQU, ALCCOU, and ALCSCC™), it is important
to make clear how the input size of the numbers is defined. In this paper, we
assume binary coding of numbers (e.g., the number 1024 has size 10 rather than
size 1024), which makes the complexity upper bounds stronger.

2 The logics QFBAPA® and CQU

In this section, we first introduce the logic QFBAPA°, whose main difference to
the well-known logic QFBAPA [11] is that it allows for solutions involving not
just finite, but also infinite sets. Then, we demonstrate that two important results
shown in [11] for QFBAPA also hold for QFBAPA®. Finally, we define the
fragment CQU of QFBAPA®°, for which a decision procedure based on column
generation was described in [7].

The logic QFBAPA® In this logic one can build set terms by applying
Boolean operations (intersection N, union U, and complement -¢) to set variables
as well as the constants () and U/. Set terms s, ¢ can then be used to state inclusion
and equality constraints (s = ¢, s C t) between sets. Presburger Arithmetic (PA)
expressions are built from non-negative integer constants, PA variables, and
set cardinalities |s| using addition as well as multiplication with a non-negative
integer constant. They can be used to form numerical constraints of the form
k = ¢ and k < ¢, where k,{ are PA expressions. A QFBAPA® formula is a
Boolean combination of set and numerical constraints.

The semantics of set terms and set constraints is defined using substitutions
o that assign a set o (i) to U and subsets of o (i) to set variables. The evaluation
of set terms and set constraints by such a substitution is defined in the obvious
way, using the standard notions of intersection, union, complement,' inclusion,
and equality for sets. PA expressions are evaluated over N*° = NU {o0}, i.e., the
non-negative integers extended with a symbol for infinity. Thus, substitutions
additionally assign elements of N*° to PA variables. The cardinality expression
|s| is evaluated under o as the cardinality of o(s) if this set is finite, and as oo if
o(s) is not finite.? When evaluating PA expressions w.r.t. a substitution o, we
employ the usual way of adding, multiplying, and comparing integers, extended
to N*° by the following rules ranging over N € N:

1. 04+ N=N+00=00=00+ 0,
2. if N#0then N-co=0co=00-N,else 0-00=0=00-0,
3. N <o and oo £ N, as well as co = oo and oo £ 0.

A solution o of a QFBAPA® formula ¢ is a substitution that evaluates ¢ to
true, using the above rules for evaluating set and numerical constraints and the

! The complement is defined w.r.t. o(U), i.e., o(s°) = a(U) \ o(s).
2 Note that we do not distinguish between different infinite cardinalities, such as count-
ably infinite, uncountably infinite, etc.

usual interpretation of the Boolean operators occurring in ¢. The formula ¢ is
satisfiable if it has a solution.

Note that, in QFBAPA>, we can enforce infinity of a set although we do
not allow the use of co as a constant. For instance, |s| = oo is not an admissible
numerical constraint, but it is easy to see that the constraint |s| + 1 = |s| can
only be satisfied by a substitution that assigns an infinite set to the set term s.

Comparison with QFBAPA and QFBAPA_, The logic QFBAPA, as in-
troduced in [11], differs from QFBAPA® as defined above, both syntactically
and semantically. From the syntactic point of view, the main difference is that,
in QFBAPA®, we disallow negative integer constants as well as divisibility by a
fixed integer constant. Dispensing with negative constants is not really a restric-
tion since we can always write the numerical constraints of QFBAPA in a way
that does not use negative integer constants (by bringing negative summands to
the other side of a constraint). Disallowing divisibility may be a real restriction,
but in the presence of oo it is not clear how to interpret divisibility constraints
(Is oo even or odd?). In addition, in the context of using the logic within a DL,
there does not appear to be an urgent need for such constraints. From a syntac-
tic point of view, the logic QFBAPA , [10] has more general atomic constraints
than our logic QFBAPA® (e.g., it allows for the use of rational constants and the
explicit statement that a set is infinite), but these constraints can be expressed
also in QFBAPA®°.

From the semantic point of view, the main difference of QFBAPA*> and
QFBAPA, to QFBAPA is, of course, that the semantics of QFBAPA requires us
to interpret U, and thus all set variables, as finite sets. In addition, PA variables
are interpreted in QFBAPA® as non-negative integers, but this was already
the case for the variant of QFBAPA used in the definition of ALCSCC in [2]
since in that context only set cardinalities (which are non-negative) are used. In
QFBAPA ., PA variables can also be interpreted as real numbers, but there is
a constraint available that allow to state that a PA term must be interpreted
by an integer. Since PA variables are not used in the context of ALCSCC and
ALCSCC™, this difference is not relevant here.

Satisfiability in QFBAPA, QFBAPA®, and QFBAPA,, In [11] it is
shown that the satisfiability problem for QFBAPA formulae is NP-complete.
Since NP-hardness is clear due to the use of Boolean operations on the formula
level, the main task in [11] was to show the “in NP” result. The main tool used in
[11] is a “sparse solution” lemma (see Fact 1 in [11] and Lemma 3 in [2]), which
was also important for showing the complexity upper bounds for reasoning in
ALCSCC in [2]. We show below that this “sparse solution” lemma also holds for
QFBAPA® which implies that satisfiability of QFBAPA® formulae is also in
NP.

The “sparse solution” lemma is based on the notion of a Venn region. Assume
that ¢ is a QFBAPA formula containing the set variables Xi,..., X;. A Venn

region for ¢ is of the form
XN NXk,

where ¢; is either empty or ¢ for ¢ = 1,..., k. Venn regions are interesting since
every set term s occurring in ¢ can be expressed as the disjoint union of Venn
regions, and thus its cardinality is the sum of the cardinalities of these Venn
regions. The problem is that there may be exponentially many Venn regions in
the size of ¢. The “sparse solution” lemma basically says that it is possible to
restrict the attention to a polynomial number of Venn regions.

To be more precise, it is shown in [11] that a given QFBAPA formula ¢
can be transformed in polynomial time into an equisatisfiable QFBAPA formula
G N F where G is a Boolean combination of numerical constraints not containing
sets, and F' is a conjunction of linearly many expressions |b;| = k; (i = 1,...,m),
where b; is a set term and k; is a PA variable (standing for the cardinality of the
set b;). Using the fact that each b; is a disjoint union of Venn regions, F' can be
expressed as a system of linear equations

A-x =k, (1)

which must be solved over the non-negative integers. Here the ith row of the
matrix A is a 0/1 vector that expresses which Venn regions participate in gener-
ating the set b;. The vector x contains a variable x, for every Venn region v at
the position corresponding to the occurrence of this region in A. Intuitively, the
value of z, in a solution of the equation stands for the cardinality of the Venn
region. Finally, k is the vector of the variables k;, and thus the value of k; stands
for the cardinality of the set b;.
For example, consider the QFBAPA formula

¢ =1X1UXo| > [Xy| + | X2

In this case, G is k1 > ko+kz and F is | X1 UXs| = k1 A|X1| = k2 A| Xa| = k3, and
thus m = 3 is the number of rows in the matrix A. There are four Venn regions
in this example: v; = X1 N Xy, vo = X1 N XS, v3 = XTNXg, vg = X7 NXS. The
system (1) thus has four variables in the vector z, and looks as follows:

xvl
1110 k1
:171,2
1100 |- = | ko (2)
I’U3
1010 ks
.%‘M

The first row of A in (2) is explained by the fact that X; U X5 = v1 U vg U vs,
and similarly for the other rows. If we take the solution k1 = 3,ks = 1,k3 =1
of G, then the linear system obtained from (2) by applying this replacement is
actually not solvable. In contrast, if we take k1 = 2,ky = 1,k3 = 1, then setting
Xy, =0, Ty, = 1, 2, = 1, 2, = 5 is a solution of the resulting system (where
the value for x,, is actually irrelevant). Note that x,, = 0 means that the Venn

region v; = X7 N X5 is empty, which corresponds to the fact that we can only
have | X; U X5| > | X;| + |X2| if X7 and X5 are interpreted by disjoint sets.

The problem with the system (1) is that it contains exponentially many
variables. Using a result by Eisenbrand and Shmonin [6] (called Fact 1 in [11]),
it is shown in [11] that there is a bound N = 2mlog(4m) such that, for any
solution of G, the system obtained from (1) by applying this solution to the
variables k; has a solution in which at most N of the variables z, in (1) are non-
zero, if it has a solution at all. Note that the value of N is clearly polynomial in
the size of ¢ since m is bounded by the number of set terms occurring in ¢.

On the one hand, this implies that, by guessing (in non-deterministic poly-
nomial time) N Venn regions v whose associated variables in (1) are supposed to
be non-zero, we obtain a polynomial-sized system A’ -z’ = k, in which only the
variables z,, for the guessed Venn regions and their associated columns remain.
The formula G is a Boolean combination of linear (in)equations. After guessing
which of them are to be true and which not, we overall obtain a polynomially
large system of linear (in)equations, whose solvability in the non-negative inte-
gers N can then be tested by an NP procedure [14]. Note that this NP procedure
is not used as an NP oracle, but rather as an extension of the search tree for a
solution that has already been built by the guessing done before.

Proposition 1 ([11]). Satisfiability of QFBAPA formulae is in NP.

On the other hand, since z, = 0 means that the Venn region v is empty,
the above argument also shows that a solvable QFBAPA formula always has a
solution in which at most N Venn regions are non-empty. In [2| this result was
actually strengthened as follows.

Lemma 1 (|2]). For every QFBAPA formula ¢, one can compute in polyno-
mial time a number N whose value is polynomial in the size of ¢ such that the
following holds for every solution o of ¢: there is a solution o’ of ¢ such that

(i) |[{v Venn region |o’(v) # 0} <N, and
(i1) {v Venn region | o'(v) # 0} C {v Venn region |o(v) # 0}.

In the corresponding result shown in [11], the property (ii) is missing. The
main idea underlying the proof of our stronger result is that, for a given solution
o of ¢, one applies the “sparse solution” lemma of [6] not to (1) directly, but to
the system obtained from it by removing the variables x, and the corresponding
columns in A for those Venn regions v that satisfy o(v) = 0.

Our goal is now to show that Proposition 1 and Lemma 1 also hold if we
replace QFBAPA with QFBAPA®. For this purpose, let us assume that o is a
solution of G in N*°, and consider the system

A-x=o0(k), (3)

where the variables k; are replaced by o(k;) € N°°. Then the following lemma is
an easy consequence of the way we defined operations involving co.

Lemma 2. The following holds for any solution 6 of (3): if o(k;) = oo, then
there is a Venn region v such that (x,) = co and

1. the column in A corresponding to v contains 1 at position position i, and
2. for all j with o(kj) < oo, the column in A corresponding to v contains 0 at
position j.

Based on this lemma, we can now extend the “sparse solution” lemma of [6]
to the setting where oo may occur on the right-hand side of the system and in
the solution.

Lemma 3. If the linear system (3) has a solution in N then it has a solution
in N where at most M = 2mlog(4m) + m of the variables in the vector x are
non-zero.

Proof. Assume that (3) has a solution 6 in N°°. Then the system B -z = b
obtained from (3) by removing the rows ¢ for which o(k;) = oo also has a
solution in N*°. In addition, since the vector b does not contain oo, it is easy to
see that B -z = b also has a solution in N. The “sparse solution” lemma of [6]
then yields a solution 7 of B - x = b such that at most N = 2mlog(4m) of the
variables z, in x are such that v(x,) # 0.

We modify v to obtain a solution ' of (3) using Lemma 2. Since (3) has the
solution 6, we know the following: for every 4 such that o(k;) = oo, there is a Venn
region v such that 1. and 2. stated in that lemma are satisfied. We now select for
each such ¢ one Venn region v with these properties, and set v'(x,) := co. For
Venn regions u not selected in this way, we set v/'(z,,) := v(x,). In the worst-
case, this modification changes m zeros to oo, and thus +' satisfies the bound
M on the number of non-zero variables. It remains to show that +' solves (3).
Thus, consider the ith equation in this system. If o(k;) = oo, then there is a
v such that 7/(x,) = oo and 1. in Lemma 2 is satisfied. This implies that ~'
solves the ith equation. If o(k;) = b; < oo, then 2. in Lemma 2 implies that the
modifications made to obtain + from ~ have no effect on this equation since the
modified values are multiplied with 0, and thus removed. Hence, we have shown
that 4/ solves (3) and it satisfies the required bound on the number of non-zero
variables. O

This lemma allows us to extend Proposition 1 and Lemma 1 to QFBAPA®°.

Theorem 1. Satisfiability of QFBAPA® formulae is in NP. Moreover, for ev-
ery QFBAPA®> formula ¢, one can compute in polynomial time a number N
whose value is polynomial in the size of ¢ such that the following holds for every
solution o of ¢: there is a solution o' of ¢ such that

(i) |{v Venn region |o'(v) # 0} <N, and
(ii) {v Venn region | o'(v) # 0} C {v Venn region | o(v) # 0}.

Proof. Using Lemma 3, the proof of Lemma 1 can easily be adapted to QFBAPA°.
Regarding decidability in NP, Lemma 3 shows that it is sufficient to prove
that solvability in N*° of G together with a polynomially large system A’-z' =k

can be decided by an NP procedure. In a first step, we guess which of the PA
variables in G and k are to be replaced by co. For the linear (in)equations in
G containing at least one such variable, the truth value is determined by this
choice. For example, if we have x1 + 2z5 > x3, and x; is guessed to be oo, then
this inequation becomes true if x3 is not guessed to be oo, and false otherwise. By
replacing such (in)equations by the respective truth values, G' can be modified to
G’, which now needs to be solved in N. Regarding the system A’-2’ = k, we check
whether, for each i such that k; was guessed to be oo, there is a Venn region v
such that 1. and 2 of Lemma 2 are satisfied, where “o(k;) < 00” is replaced with
“k; is not guessed to be co.” If this is not the case, than we return the answer
“unsolvable.” Otherwise, we modify A’ - 2’ = k to the system A" -z’ = k' by
removing the rows ¢ for which k; was guessed to be co. We then check whether
G’ together with this new system is solvable in N. Using Lemma 2 and the
construction employed in the proof of Lemma 3, it is not hard to show that this
yields a correct NP procedure. a

In [10], similar results are shown for QFBAPA.,, but again without the
property (ii). From a technical point of view, the proof in [10] is quite different
from ours, though it is based on similar ideas.

The logic CQU This logic is obtained from QFBAPA® by restricting numer-
ical constraints to be of the form £k = N and k < N, i.e., a CQU formula is
a Boolean combination of set constraints and numerical constraints of this re-
stricted form. Since CQU is a fragment of QFBAPA°, its satisfiability problem
is clearly also in NP, and NP hardness is, on the one hand, due to the Boolean
operations on the formula level. Other reasons for NP-hardness are the Boolean
operations on the set level, and the fact that numerical constraints can be used
to express the knapsack problem [14].

It should be noted that the logic CQU as introduced here is actually the
Boolean closure of the logic called CQU in [7]. In fact, in 7] only conjunctions of
set constraints and numerical constraints of the form £k < N and k£ > N for set
cardinalities k are allowed. When using CQU to define our extension ALCCOU
of ALCQ, this difference is irrelevant since the Boolean operations are available
anyway on the DL level. In addition, sums in the PA expressions k in k = N
and k < N can be reduced away using disjunction (see the next section). It
is actually not hard to see that the logic CQU as defined here has the same
expressivity as C!, the one-variable fragment of first-order logic with counting
(see, e.g., [15]).

3 The DLs ALCSCC™, ALCCOU, and ALCOL

In this section, we define the variant ALCSCC™ of the logic ALCSCC introduced
in [2], and its fragments ALCCOU and ALCOt. First, we argue why the complex-
ity results for ALCSCC proved in [2] also hold for ALCSCC™. Then, we show
that ALCCOU has the same expressivity as its fragment ALCQOt, and that both
are expressible in first-order logic.

The DL ALCSCC® Basically, ALCSCC™ provides us with Boolean oper-
ations on concepts and constraints on role successors, which are expressed in
QFBAPA®. In these constraints, role names and concept descriptions can be

used as set variables, and there are no PA variables allowed. The syntax of
ALCSCC™ is identical to the one of ALCSCC.

Definition 1 (Syntax of ALCSCC™). Given finite, disjoint sets N¢ of concept
names and Ng of role names, the set of ALCSCC concept descriptions over the
signature (N¢o, Ng) is inductively defined as follows:

— every concept name in N¢ is an ALCSCC concept description over (No, Ng);

— if C, D are ALCSCC concept descriptions over (N¢, Nr), then so are CT1D,
CuD, and -C;

— if Con is a set or numerical constraint of QFBAPA™> using role names
and already defined ALCSCC concept descriptions over (N¢, Ng) as (set)
variables, then succ(Con) is an ALCSCC concept description over (N¢, Ng).

An ALCSCC TBox over (N¢,Ng) is a finite set of concept inclusions of the
form C € D, where C,D are ALCSCC concept descriptions over (N¢, Ng).

For example, the ALCSCC™ concept description FemaleMsucce(|childNFemale| =
|child N Male|) describes all female individuals that have exactly as many sons
as daughters. Of course, successor constraints can also be nested, as in the
ALCSCC™ concept description succ(|child N suce(child C Female)| = |child N
succ(child C Male)|), which describes all individuals having as many children
that have only daughters as they have children having only sons. As usual in DL,
the semantics of ALCSCC™ is defined using the notion of an interpretation.?

Definition 2 (Semantics of ALCSCC™). Given finite, disjoint sets No and
Ng of concept and role names, respectively, an interpretation of No and Ng
consists of a non-empty set AT and a mapping T that maps every concept name
A € N¢ to a subset AT of AT and every role name r € Ny to a binary relation
rT over AT. Given an individual d € AT and a role name r € Ng, we define
rZ(d) == {e € AT | (d,e) € rT} (r-successors) and ars*(d) = Urenn rZ(d) (all
role successors).

The interpretation function L is inductively extended to ALCSCC™ concept
descriptions over (N¢, Ng) by interpreting M, U, and — respectively as intersec-
tion, union and complement. Successor constraints are evaluated according to
the semantics of QFBAPA™: to determine whether d € succ(Con)* or not, U is
evaluated as ars(d) (i.e., the set of all role successors of d), | as the empty set,
roles v occurring in Con as r%(d) (i.e., the set of r-successors of d) and concept
descriptions D as DT N ars®(d) (i.e., the set of role successors of d that belong
to D).* Then d € succ(Con)T iff the substitution obtained this way is a solution
of the QFBAPA® formula Con.

3 A more detailed definition of the semantics can be found in [5].
4 Note that, by induction, the sets D are well-defined.

The interpretation T is a model of the TBox T if CT C DT holds for all
CCDeT. The ALCSCC™ concept description C is satisfiable if there is an
interpretation T such that CT # (), and it is satisfiable w.r.t. the TBox T if there
is a model T of T such that CT # (). The ALCSCC™ concept descriptions C, D
are equivalent (written C = D) if CT = DT for all interpretations T.

This semantics differs from the one given in [2]| for ALCSCC as follows. In [2],
interpretations are restricted to being finitely branching in the sense that, for
any d € A%, the set ars®(d) of all role successors of d must be finite. This ensures
that, in the evaluation of successor constraints, only finite sets are considered,
and thus this evaluation can be done using QFBAPA. Here, we do not make
this assumption, and thus QFBAPA® needs to be used to evaluate successor
constraints. Note that in ALCSCC™ we can actually force the existence of ele-
ments with infinitely many role successors. For example, the successor constraint
succ(|r| +1 = |r|) is unsatisfiable in ALCSCC, but satisfiable in ALCSCC™ in
an interpretation that contains an element that has infinitely many r-successors.

The main results shown in [2] are that the satisfiability problem in ALCSCC
is PSpace-complete for the case without a TBox and ExpTime-complete in the
presence of a TBox. The hardness results trivially follow from well-known hard-
ness results for ALC [17,16]. The main tools used in the proof of the complexity
upper bounds are Lemma 1 (and in particular property (ii)) and Proposition 1.
Since, by Theorem 1, these two results also hold for QFBAPA®, we can basi-
cally reuse the proofs from [2]. The only places where explicit adaptations are
required are the proofs of soundness of the algorithms, where one now must
consider infinite sets. Since these adaptations are quite easy, we dispense with
spelling them out here.

Theorem 2. Satisfiability in ALCSCC™ is PSpace-complete without a TBox
and ExpTime-complete in the presence of a TBoz.

The DLs ALCCOU and ALCOt Fragments of ALCSCC™ can be obtained by
restricting the constraints that can be used in successor constraints to fragments
of QFBAPA>.

Definition 3 (ALCCQU). The DL ALCCOU is defined like ALCSCC™, but in
successor constraints only constraints of CQU can be used.

Thus, the concept description
succ(|child N livesWith® N Female| = 1), (4)

which describes individuals that have exactly one daughter that does not live
with them, is an ALCCOU concept description, but succ(|child N lives With® N
Female| = |child N livesWith® N Male|) is not. In the definition of CQU given in
the previous section, we have introduced as atomic constraints only constraints of
the form k = N and & < N. In ALCCOU, we can also allow the use of constraints

of the form k < N, k> N, k> N, and k # N since successor constraints using
them can be expressed. For example, succ(k > N) = —succ(k < N).

Before we can introduce the fragment ALCOt of ALCCOU we must define the
notion of a safe role type. A role literal is a role name r or its complement r°¢.
Given a finite set of role names Ng, a role type for Ng is an intersection 7 of role
literals such that every role name in N occurs exactly once in this conjunction.
The role type 7 is safe if at least one role occurs non-negated. For example, if
Ng ={r,s,t}, then rNsNt® and r¢ N s° Nt are role types, but the latter is not
safe. The intersections N's and r N s Nt N r¢ are not role types.

Definition 4 (ALCQOt). The DL ALCQL is defined like ALCSCC™, but in suc-
cessor constraints occurring in ALCQt concept descriptions over (N¢, Ng), no
set constraints can be used, and numerical constraints are restricted to the form
|[TNC| < N, where T is a safe role type for Ng, C is an ALCOt concept descrip-
tion over (Nc, NR), and < € {<, <, >, >, =,#}.

The ALCCOU concept description (4) is actually an ALCOt concept description
over (N¢, Ng) if N contains only the two roles used in this description.

Adopting the syntax usually employed to denote qualified number restric-
tions in DLs [1], we can write ALCQt successor constraints succ(|T N C| > N)
as (N 7.C) with 7 a safe role type. The semantics given by Definition 2 to
the successor constraint succ(|7 N C| < N) indeed coincides with the usual se-
mantics for qualified number restrictions if intersection and complement in 7
are respectively interpreted as role intersection and role complement. It should
be noted, however, that this is only true since 7 is assumed to be safe. In fact,
in Definition 2, complement is performed w.r.t. the role successors of the indi-
vidual under consideration, whereas general role negation is performed w.r.t. all
elements of the interpretation domain. But safety of 7 ensures that only role suc-
cessors of the given individual can be 7-successors of this individual. A similar
safety requirement for role expressions has been employed by Tobies (see [19],
Chapter 4.4), but he considers arbitrary Boolean combinations of roles, and not
just role types, and also allows for inverse roles.

Obviously, ALCQt is a sub-logic of ALCCOU since the successor constraints
available in ALCOt can clearly be expressed in ALCCOU. From a syntactic point
of view, ALCCQU has successor constraints that are not available in ALCOt.
However, we can show that nevertheless all of them can be expressed in ALCOL.

Theorem 3. The DLs ALCCOU and ALCOt have the same expressivity.

Proof. We need to show that the successor constraints of ALCCOU can be ex-
pressed in ALCQt. Because of space restrictions, we refer the reader to [5] for a
detailed proof, and only give a sketch here.

First note that set constraints, which can be used in ALCCOU, but not in
ALCQOt, can be expressed as numerical constraints. Indeed, we have succ(s C t) =
succ(]s N t¢| = 0). Second, numerical constraints in ALCCOU may contain linear
combinations of set cardinalities, whereas addition and multiplication with a
constant are not allowed to be used in numerical constraints of ALCQt. However,

they can be eliminated using Boolean operations. In fact, multiplication with a
non-negative integer constant can be expressed by iterated addition, and addition
can be eliminated as follows: succ(|s1]| + ... + |s¢| >t N) for a1 € {<,=,>} is
equivalent to the disjunction

|_| suce(|s1| > N1) M ... M suce(|se] bt Ny),
Ni+..ANe=N

where Ny,..., Ny range over the non-negative integers. Since NNV is a fixed non-
negative integer, this disjunction is clearly finite. For 1 € {<, >}, this equiv-
alence would not hold, but we can clearly express > and < using the other
comparison operators. For example, succ(k > N) = —succ(k < N).

Finally, consider successor constraints of the form succ(|s| > N) where
s is a set term built using role names and concept descriptions, and 1 €
{<,=,>}. The semantics of ALCSCC™ ensures that succ(|s| > N) is equiv-
alent to succ(|s N (ry U...Ur,)| > N) where Ng = {rq,...,r,}. Using dis-
tributivity of set intersection over set union, we can now transform the set term
sN(ryU...Ury,) into “disjunctive normal form,” which yields an equivalent set
term of the form (s;1 N Ci) U ... U (s, N Cyp), where each s; is a conjunction of
role literals containing at least one role positively, and the C; are concept de-
scriptions. Obviously, each s; can then be expressed as a union of safe role types.
Using the fact that (7 N Cy) U (7 N Cy) is equivalent to (7 N (Cy U Cs)), we thus
obtain that sN (ry U...Ur,) can be expressed in the form

(TlﬂDl)U...U(TqﬁDq),

where 7, ..., 7, are distinct safe role types and D,..., D, are concept descrip-
tions. Since distinct role types are interpreted as disjoint sets, we thus have
suce(|s| > N) = suce(|(r1 N D1)| 4+ ...+ [(T, N Dy)| > N)

|_| succ(|m1 N Dy| > N1) M. Msuce(|7q N Dy| > Ny).
Ni+..+Ng=N

Since the last expression is clearly an ALCQOt concept description, this completes
the proof of the theorem. ad

It should be noted that the constructions employed in the above proof can lead
to an exponential blow-up for several reasons. One example is building the dis-
junctive normal form in the third part of the proof, and another is expressing
addition using disjunction. Thus, it would not be a good idea to use these con-
structions for the purpose of reducing reasoning in ALCCOU to reasoning in
ALCQt. At the moment, it is not clear to us whether the exponential blow-up
can be avoided, but we conjecture that ALCCOU is exponentially more succinct
than ALCOt.

By using the standard translation of ALCQ and of Boolean operations on
roles into first-order logic [4], it can easily be shown that ALCQOt, and thus also
ALCCOU, can be expressed in first-order logic.

Corollary 1. The DL ALCCOU can be expressed in first-order logic, i.e., for
every ALCCOU concept description C' there is an equivalent first-order formula,
i.e, a first-order formula ¢c(x) with one free variable x such that CT = {d €
AT | T = ¢o(d)} holds for every interpretation T.

4 Expressive power

To prove that the concepts of one DL can be expressed in another DL, one usually
shows how to construct, for a given concept of the former DL, an equivalent
one of the latter, as we have, e.g., done in the proof of Theorem 3. Showing
inexpressibility results is usually more involved. An important tool often used
in this context is the notion of a bisimulation [12,13], inherited from modal
logics [20]. In the following, we first recall the definition of a bisimulation relation
tailored towards the DL ALCQ [13], and use this to show that ALCCOU is
strictly more expressive than ALCQ. Then, we adapt this definition to obtain a
bisimulation relation tailored towards ALCQt. Surprisingly, this relation cannot
be used to separate ALCQt, and thus ALCCOU, from ALCSCC™. In fact, we
can show that not only all ALCCOU concepts are invariant under this notion of
bisimulation, but also all ALCSCC™ concepts. As a consequence, we obtain that
ALCCOU is exactly the first-order fragment of ALCSCC™. Finally, we show that
ALCSCC™ indeed contains concepts that are not expressible in first-order logic.

ALCQ bisimulation In the context of the present paper, ALCQ can be de-
fined as the fragment of ALCCOU where only successor constraints of the form
succ(|rNC| > N) can be used, where r € Ny, C'is an ALCQ concept description,
<€ {<,<,>,>,=,#}, and N is a non-negative integer.

Definition 5 ([13]). Let Z; and I, be interpretations. The relation p C ATt x
A2 is an ALCQ bisimulation between I, and Iy if

1. dy p do implies di € AT iff dy € AT2, for all dy € AT, dy € A2, A € N¢;

2. if dy p dy and Dy C rTi(dy) is finite for r € Ng, then there is a set Dy C
r%2(dy) such that p contains a bijection between Dy and Dso;

3. if dy p do and Dy C r*2(dy) is finite for r € Ng, then there is a set Dy C
rZ1(dy) such that p contains a bijection between Dy and Ds.

The individuals d; € AT, dy € A2 are ALCQ bisimilar (written (Zy,d1) ~arco
(Zy,d2)) if there is an ALCQ bisimulation p between Ty and Iy such that dy p da,
and ALCQ-equivalent (written (Z1,d1) =acco (T2, d2)) if for all ALCQ concept
descriptions C we have d; € CT iff dy € CT2.

The following theorem shows that ALCQ is exactly the fragment of first-
order logic that is invariant under this notion of bisimulation. We say that a
first-order formula ¢(x) with one free variable x is invariant under ~grco if

(Z1,d1) ~acco (Iz,ds) implies 7, |= ¢(dy) iff 7 = ¢(dz).

R r@
T A N . A
(@)
p

Fig. 1. Two interpretations Z; and Z, and an ALCQ bisimulation p.

Theorem 4 ([13]). Let ¢(x) be a first-order formula with one free variable x.
Then the following are equivalent:

1. there is an ALCQ concept description C such that C is equivalent to ¢(x);
2. ¢(x) is invariant under ~Arco.

Since ALCQ is expressible in first-order logic, this theorem in particular implies
that ALCQ bisimilar elements of interpretations are also ALCQ-equivalent. We
can use this fact to show that ALCCQU is strictly more expressive than ALCQ.

Corollary 2. There is no ALCQ concept description C' such that C is equivalent
to the ALCCQOU concept description succ(|r N s| > 0).

Proof. Assume that C is an ALCQ concept description such that C' = suce(|r N
s| > 0), and consider the interpretations Z;,Z, and the ALCQ bisimulation p
depicted in Fig. 1. Then we have d; € succ(|r Ns| > 0)21 = CT1, and thus
(Z1,dy) ~arco (T2, ds) implies dy € CT2. This contradicts our assumption that
C = suce(|r N's| > 0) since dy & succ(|r N s| > 0). O

ALCOt bisimulation The definition of a bisimulation can be adapted to
ALCOt by replacing role names r with safe role types 7. To be more precise,
let T be a safe role type, 71, ..., 7, the role names occurring positively in 7, and
51,...,5¢ the role names occurring negatively, i.e., 7 =r1N...NryNs{N...Ns5.
For a given interpretation Z and element d € AZ we then define

2(d) = (PF(d)n...0rE(d) \ (sT(d)U...Usl(d)).

Since 7 is safe, we have k > 1, and thus 72(d) C 7¥(d) C ars*(d).

ALCOt bisimulation, ALCQt bisimilar, ALCQt equivalent, and invariance un-
der ALCQOt bisimulation are now defined as for ALCQ (Definition 5), but with
ALCOt replacing ALCQ and safe role types 7 for N replacing role names r € N
(see [5] for a more detailed definition).

Theorem 5. Let ¢p(x) be a first-order formula with one free variable x. Then
the following are equivalent:

1. there is an ALCQt concept description C' such that C is equivalent to ¢(x);

2. ¢(x) is invariant under ~arcot.

Since the proof of this theorem is very similar to the proof of Theorem 4 given
in [13], we omit it here. An explicit proof for the case of ALCQt, which is more
detailed than the one in [13], can be found in [5].

The expressivity of ALCSCC™ relative to ALCCOU Our original ex-
pectation was that we could use Theorem 5 to show that ALCSCC™ is strictly
more expressive than ALCQt, and thus also ALCCOU. The following proposition
implies that this is not possible.

PI‘OpOSitiOIl 2. [f (Il,dl) ~ ALCOt (Ig,dg) then (Il, dl) = ALCSCC>™ (Ig, dg)

A detailed proof of this proposition can be found in [5]. Here, we only explain
the main ideas underlying this proof. Basically, we must show that, given a PA
expression k occurring in an ALCSCC™ concept description, the assumption
that (Z1,d1) ~accot (Z2,ds) implies that evaluating k on the role successors
of dy yields the same result (i.e., element of N*°) as evaluating k on the role
successors of dy. To this purpose, we first observe that k& can be written as

14
k:ZNi'|TimCi|,

i=1

where (for i = 1,...,¢) we have that N; is a non-negative integer, 7; is a safe role
type, and C; is an ALCSCC™ concept description. This can be shown by a simple
adaptation of the arguments used in the proof of Theorem 3. Consequently, it is
sufficient to show the claim for the summands |7; N C;|. First, assume that, on
the role successors of dq, this expression evaluates to the non-negative integer
N. Then we have dy € suce(|r; N C;| = N)*1, and since suce(|r; N Cy| = N) is
an ALCOt concept description, Theorem 5 yields dy € succ(|r; N C;| = N)%2.
Consequently, |7; NC;| also evaluates to N on the role successors of ds. If |7;NC;|
evaluates to oo on the role successors of dy, then we have dy € suce(|r; N C;| >
N)Tt for all non-negative integers N, and we can conclude that dy € succ(|m; N
C;| > N)Z2 for all non-negative integers N. This shows that |7;NC;| also evaluates
to oo on the role successors of ds, which concludes our proof sketch.
Together with Theorem 5, this proposition yields a characterization of ALCCOU

as the first-order fragment of ALCSCC™.

Theorem 6. Let C be an ALCSCC™ concept description. Then the following
are equivalent:

1. there is a first-order formula ¢(x) with one free variable x such that C is
equivalent to ¢(x);
2. C is equivalent to an ALCCOU concept description.

Proof. (2 = 1) is an immediate consequence of Corollary 1. Now, assume that
1. holds. Since ¢(x) is equivalent to an ALCSCC™ concept description, it is

invariant under ALCQt bisimulation by Proposition 2, and thus equivalent to
an ALCOt concept description by Theorem 5. Since ALCOt is a sub-logic of
ALCCOU, this yields 2. O

It remains to show that ALCSCC™ itself is not a fragment of first-order logic.

Theorem 7. The ALCSCC™ concept description succ(|rNA| = |[rN—A|) cannot
be expressed in first-order logic.

To prove this theorem, it is sufficient to show that the above concept description
cannot be expressed in ALCCQU. The proof of this fact is similar to the one
given in [2] to show that ALCSCC is more expressive than ALCQ, but more
involved since ALCCOU is more expressive that ALCQ.

5 Conclusion

In this paper, we have introduced the variant ALCSCC™ of the DL ALCSCC
investigated in [2], in which the restriction to finitely branching interpretations is
lifted. We have shown that this modification does not change the complexity of
reasoning. As an auxiliary result we have shown that reasoning in QFBAPA>,
a variant of QFBAPA in which also infinite sets are allowed, has the same com-
plexity as in QFBAPA. The main result of this paper is the proof that the DL
ALCCOU is exactly the first-order fragment of ALCSCC™.

Regarding future work, it should be noted that we have only investigated the
expressive power of the concept descriptions of ALCSCC™ and ALCCOU. In [13],
the expressivity of TBozes is considered as well. It would be interesting to see
whether we can extend our results to TBoxes (or even cardinality constraints
on concepts [3]) of ALCSCC™ and ALCCOU. In [5] we have shown how the
satisfiability procedure for CQU presented in [7], which is based on column
generation, can be extended to a satisfiability procedure for ALCCOU, but it
remains to implement and test this procedure. In addition, it would be interesting
to see whether this approach can be extended to ALCSCC and ALCSCC™. It
would also be interesting to see what impact the addition of inverse roles to
ALCSCC ALCSCC™ has on the complexity of reasoning.

Acknowledgment The authors would like to thank Ulrike Baumann for helpful
discussions regarding QFBAPA>. We should also like to point out that we have
learned about the results regarding QFBAPA, in [10] only a couple of days
before the submission of the final version of this paper.

References

1. Franz Baader. Description logic terminology. In [4/, pp. 485-495. 2003.

2. Franz Baader. A new description logic with set constraints and cardinality con-
straints on role successors. In Proc. of the 11th Int. Symp. on Frontiers of Com-
bining Systems (FroCoS’17), Springer LNCS 10483, 2017.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Franz Baader. Expressive cardinality constraints on ALCSCC concepts. In Proc.
of the 84th Annual ACM Symposium on Applied Computing (SAC’19), pp. 1123~
1131. ACM, 2019.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

Filippo De Bortoli. Integrating reasoning services for description logics with car-
dinality constraints with numerical optimization techniques. EMCL Master’s The-
sis, Chair for Automata Theory, Faculty of Computer Science, TU Dresden, 2019.
Available online at https://tu-dresden.de/inf/lat/theses#DeBo-Mas-19.

Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer
cones. Oper. Res. Lett., 34(5):564-568, 2006.

Marcelo Finger and Glauber De Bona. Algorithms for deciding counting quantifiers
over unary predicates. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (AAAI’17), pp. 3878-3884. AAAI Press, 2017.

Robert Hoehndorf, Paul N. Schofield, and Georgios V. Gkoutos. The role of on-
tologies in biological and biomedical research: A functional perspective. Brief.
Bioinform., 16(6):1069-1080, 2015.

Bernhard Hollunder and Franz Baader. Qualifying number restrictions in con-
cept languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR’91), pp. 335-346, 1991.

Viktor Kuncak, Ruzica Piskac, and Philippe Suter. Ordered sets in the calculus
of data structures. In Computer Science Logic, Springer LNCS 6427, pp. 34-48.
2010.

Viktor Kuncak and Martin C. Rinard. Towards efficient satisfiability checking for
Boolean algebra with Presburger arithmetic. In Proc. of the 21st Int. Conf. on
Automated Deduction (CADE-07), Springer LNCS 4603, pp. 215-230. 2007.
Natasha Kurtonina and Maarten de Rijke. Expressiveness of concept expressions
in first-order description logics. Artificial Intelligence, 107(2):303-333, 1999.
Carsten Lutz, Robert Piro, and Frank Wolter. Description logic TBoxes: Model-
theoretic characterizations and rewritability. In Proc. of the 22nd Int. Joint Conf.
on Artificial Intelligence (IJCAI’11), pp. 983-988. IJCAI/AAAI, 2011.

Christos H. Papadimitriou. On the complexity of integer programming. J. of the
ACM, 28(4):765-768, 1981.

Tan Pratt-Hartmann. On the computational complexity of the numerically definite
syllogistic and related logics. Bulletin of Symbolic Logic, 14(1):1-28, 2008.

Klaus Schild. A correspondence theory for terminological logics: Preliminary re-
port. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91),
pp. 466-471, 1991.

Manfred Schmidt-Schauft and Gert Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1-26, 1991.

Stephan Tobies. A PSPACE algorithm for graded modal logic. In Proc. of the 16th
Int. Conf. on Automated Deduction (CADE’99), Springer LNAI 1632, pp. 52-66.
1999.

Stephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowl-
edge Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany, 2001. http://tu-dresden.de/inf/lat/theses/#Tobies-PhD-2001.
Johan van Benthem. Modal Logic and Classical Logic. Bibliopolis, Napoli, 1983.

