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Abstract. The probabilistic Description Logic ALCME is an extension
of the Description Logic ALC that allows for uncertain conditional state-
ments of the form “if C holds, then D holds with probability p,” together
with probabilistic assertions about individuals. In ALCME, probabilities
are understood as an agent’s degree of belief. Probabilistic conditionals
are formally interpreted based on the so-called aggregating semantics,
which combines a statistical interpretation of probabilities with a sub-
jective one. Knowledge bases of ALCME are interpreted over a fixed finite
domain and based on their maximum entropy (ME) model. We prove that
checking consistency of such knowledge bases can be done in time poly-
nomial in the cardinality of the domain, and in exponential time in the
size of a binary encoding of this cardinality. If the size of the knowl-
edge base is also taken into account, the combined complexity of the
consistency problem is NP-complete for unary encoding of the domain
cardinality and NExpTime-complete for binary encoding.

1 Introduction

Description Logics (DLs) [2] are a well-investigated family of logic-based knowl-
edge representation languages, which can be used to represent terminological
knowledge about concepts as well as assertional knowledge about individuals.
DLs constitute the formal foundation of the Web Ontology Language OWL,3

and they are frequently used for defining biomedical ontologies [9]. DLs are
(usually decidable) fragments of first-order logic, and thus inherit the restric-
tions of classical logic: they cannot be used to represent uncertain knowledge.
In many application domains (e.g., medicine), however, knowledge is not neces-
sarily certain. For example, a doctor may not know definitely that a patient has
influenza, but only believe that this is the case with a certain probability. This is
an example for a so-called subjective probability. From a technical point of view,
subjective probabilities are often formalized using probability distributions over
possible worlds (i.e., interpretations). To obtain the probability of an assertion
like “John has influenza,” one then sums up the probabilities of the worlds that
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satisfy the assertion. Another type of probability, called statistical, is needed to
treat general statements like “humans have their heart on the left with probabil-
ity p.” In this setting, one wants to compare the number of individuals that are
human and have their heart on the left with the number of all humans within
one world, rather than summing up the probabilities of the worlds where all hu-
mans have their heart on the left. Thus, when defining a probabilistic DL, there
is a need for treating assertional knowledge using subjective probabilities, and
terminological knowledge using a statistical approach. More information on the
distinction between statistical and subjective probabilities can be found in [8].
Most probabilistic extensions of DLs handle either subjective probabilities [12]
or statistical ones [15], or are essentially classical terminologies over probabilistic
databases [4].

The probabilistic DL ALCME [23] was designed such that it can accommodate
both points of view. In ALCME, the terminological part of the knowledge base
consists of probabilistic conditionals, which are statements of the form (D|C)[p],
which can be read as “if C holds for an individual, thenD holds for this individual
with probability p.” Such a probability should be understood as an agent’s de-
gree of belief. Formally, the meaning of probabilistic conditionals is defined using
the so-called aggregating semantics [11]. This semantics generalizes the statis-
tical interpretation of conditional probabilities by combining it with subjective
probabilities based on probability distributions over possible worlds. Basically,
in a fixed possible world, the conditional (D|C) can be evaluated statistically
by the relative fraction of those individuals that belong to both C and D mea-
sured against the individuals that belong to C. In the aggregating semantics,
this fraction is not built independently for every possible world, but the single
numerators and denominators of the fractions are respectively weighted with
the probability of the respective possible world, and are summed up thereafter.
Hence, the aggregating semantics mimics statistical probabilities from a subjec-
tive point of view. Assertions can then be interpreted in a purely subjective way
by summing up the probabilities of the worlds in which the respective assertion
holds. Due to this combination of statistical and subjective probabilities, the
models of ALCME-knowledge bases are probability distributions over a set of
interpretations that serve as possible worlds. These worlds are built over a fixed
finite domain, which guarantees that this set of interpretations is also finite and
constitutes a well-defined probability space.

The aggregating semantics defines what the models of an ALCME knowledge
base are. However, reasoning w.r.t. all these models is usually not productive
due to the vast number of probabilistic models. For this reason, we choose as a
single model of a knowledge base its maximum entropy (ME) distribution [14].
From a commonsense point of view, the maximum entropy distribution is a good
choice as it fulfills a number of commonsense principles that can be subsumed
under the main idea that “essentially similar problems should have essentially
similar solutions” [13]. Moreover, the maximum entropy distribution is known to
process conditional relationships particularly well according to conditional logic
standards [10]. If the knowledge base is consistent in the sense that it has an
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aggregating semantics model, then it also has a unique maximum entropy model
[10,14]. Hence, deciding whether an ALCME knowledge base has a maximum
entropy model is the same as deciding whether it has a model according to the
aggregating semantics. For this reason, we restrict our attention to deciding the
latter inference problems. This is relevant also if one wants to use the aggregating
semantics without its combination with maximum entropy.

It should be noted that the general approach of using the aggregating se-
mantics in combination with maximum entropy to define the semantics of prob-
abilistic conditionals has been introduced and discussed before [20,11], and is
not particular to probabilistic DLs. A detailed discussions of the aggregating se-
mantics (plus ME) and comparisons with related approaches, in particular with
approaches by Halpern and colleagues (see, e.g., [8,7]), can be found in [20].
The instantiation of this approach with the DL ALC was first considered in our
previous work [23], and the investigation of the computational properties of the
resulting logic ALCME is continued in the present paper. To be more precise,
we first show that checking consistency of an ALCME knowledge base is possible
in time polynomial in the cardinality of the finite domain used to construct the
possible worlds, and in time exponential in the size of the binary encoding of this
cardinality. The first of these two complexity results was already shown in [23]
for ALCME knowledge bases without assertions. An important tool for proving
this result was the use of so-called types, which have also been employed to show
complexity results for classical DLs and other logics [17,16]. In order to extend
this result to ALCME knowledge bases with probabilistic assertions, we need to
modify the notion of types such that it can also accommodate individuals. The
second contribution of the present paper is to determine the combined complex-
ity of checking consistency in ALCME, i.e., the complexity measured w.r.t. the
domain size and the size of the knowledge base. For unary encoding of the do-
main cardinality, we show that this problem is in NP, and for binary encoding
that it is in NExpTime. Since fixed domain reasoning in classical ALC is already
NP-complete in the unary case [18] and NExpTime-complete in the binary case
[6] these complexity bounds are tight. These results show that the complexity
of fixed-domain reasoning in ALC does not increase if probabilistic conditionals
and probabilistic assertions with aggregating semantics are added.

The rest of the paper is organized as follows. First, we start with a brief rep-
etition of the classical DL ALC. We extend ALC with probabilistic conditionals
and assertions and introduce the aggregating semantics as a probabilistic inter-
pretation of knowledge bases within the resulting probabilistic DL ALCME. Since
the consistency problem for ALCME knowledge bases does not depend on the ME
distribution, we do not define this distribution formally in the present paper (see
[23] for the exact definition), but illustrate its usefulness by an example. After
that, we introduce our notion of types, and use it to give an alternative proof
of the known ExpTime upper bound for consistency of classical ALC knowledge
bases. Based on the approach used in this proof, we then show our complexity
results for consistency in ALCME using a translation into a system of linear equa-
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tions over the real numbers, whose variables basically correspond to multisets
types.

2 The Description Logics ALC and ALCME

We start with a brief introduction of the classical DL ALC, and then introduce
its probabilistic variant ALCME.

Classical ALC The basic building blocks of most DLs are the pairwise disjoint
sets of concept names NC , role names NR, and individual names NI . From these,
the set of ALC concepts is defined inductively as follows:

– every concept name A ∈ NC is an ALC concept;

– > (top concept) and ⊥ (bottom concept) are ALC concepts;

– if C,D are ALC concepts and r ∈ NR is a role name, then ¬C (negation),
C uD (conjunction), C tD (disjunction), ∃r.C (existential restriction), and
∀r.C (value restriction) are also ALC concepts.

An ALC concept inclusion (GCI) is of the form C v D, where C and D are ALC
concepts. A classical ALC TBox is a finite set of ALC concept inclusions. An
ALC assertion is of the form C(a) where C is an ALC concept and a ∈ NI , or
r(a, b) with r ∈ NR and a, b ∈ NI . A classical ALC ABox is a finite set of ALC
assertions. Together, TBox and ABox form an ALC knowledge base (KB).

The semantics of ALC is based on interpretations. An interpretation I =
(∆I , ·I) consists of a non-empty set of elements ∆I , the domain, and an inter-
pretation function that assigns to each concept name A ∈ NC a subset AI ⊆ ∆I ,
to each role name r ∈ NR a binary relation rI ⊆ ∆I×∆I , and to each individual
name a ∈ NI an element aI ∈ ∆I . The interpretation function is extended to
ALC concepts as follows:

>I = ∆I , ⊥I = ∅, (¬C)I = ∆I \ CI ,
(C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,

(∃r.C)I = {d ∈ ∆I | ∃e ∈ ∆I .(d, e) ∈ rI ∧ e ∈ CI},
(∀r.C)I = {d ∈ ∆I | ∀e ∈ ∆I .(d, e) ∈ rI =⇒ e ∈ CI}.

An interpretation I satisfies a concept inclusion C v D (I |= C v D) if CI ⊆
DI . It is a model of a TBox T if it satisfies all concept inclusions occurring in
T . I satisfies an assertion C(a) (I |= C(a)) if aI ∈ CI , and r(a, b) (I |= r(a, b))
if (aI , bI) ∈ rI . It is a model of an ABox A if it satisfies all assertions in A. A
KB K = (T ,A) is consistent if there exists a model that satisfies both T and A.

Note that we do not employ the unique name assumption (UNA), i.e., we do
not assume that different individual names are interpreted by different elements
of the interpretation domain.
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Probabilistic ALCME In our probabilistic extension ALCME of ALC, we use
probabilistic conditionals instead of concept inclusions. A probabilistic ALC con-
ditional is of the form (D|C)[p], where C and D are ALC concepts and p ∈ [0, 1].
We call a finite set of probabilistic conditionals a CBox. A probabilistic ABox
(or pABox) contains assertions labeled with probabilities, i.e., probabilistic as-
sertions of the form C(a)[p] or r(a, b)[p], where again p ∈ [0, 1]. A probabilistic
knowledge base (pKB) consists of both a CBox and a pABox.4

Example 1. Using probabilistic ALCME, we can express that every person has at
least one friend, on average one in two people are unhappy, and that people with
only happy friends are much more likely to be happy themselves in the following
CBox:

C = {(∃friend.Person | Person)[1], (¬Happy | Person)[0.5],

(Happy | Person u ∀friend.Happy)[0.9]}.

Additionally, let us introduce the persons Emma and Peter, for whom we state
that Emma considers Peter a friend, and Peter is quite happy:

A = {Person(peter)[1], Person(emma)[1],

Happy(peter)[0.8], friend(emma, peter)[0.9]}.

The semantics of probabilistic conditionals and assertions is defined via prob-
abilistic interpretations, which are probability distributions over classical inter-
pretations. For this definition to be well-behaved, we consider a fixed, finite
domain ∆ and assume that the signature (i.e., the set of concept, role, and indi-
vidual names) is finite. For the signature, we can simply restrict to those names
that actually occur in a given pKB K, i.e., to concept names sigC(K) = {A ∈
NC | A occurs in K}, role names sigR(K) = {r ∈ NR | r occurs in K} and indi-
vidual names sigI(K) = {a ∈ NI | a occurs in K}. Then, we denote the set of all
interpretations I = (∆, sigC(K) → P(∆), sigR(K) → P(∆ × ∆), sigI(K) → ∆)
as IK,∆. Since ∆ and all sig?(K) are finite, IK,∆ is also finite. Then, a prob-
abilistic interpretation is a probability distribution over IK,∆, i.e., a function
µ : IK,∆ → [0, 1] such that

∑
I∈IK,∆ µ(I) = 1.

The semantics of probabilistic assertions is defined as one would expect:
a probabilistic interpretation µ satisfies a probabilistic assertion of the form
C(a)[p] or the form r(a, b)[p] if∑

I∈IK,∆
s.t. aI∈CI

µ(I) = p or
∑
I∈IK,∆

s.t. (aI ,bI)∈rI

µ(I) = p.

Defining the semantics of probabilistic conditionals is more involved since
here we need to consider not only all possible worlds, but also all elements of

4 We will see later (proof of Corollary 14) that setting all probabilities to 1 in a pKB
basically yields a classical KB, and thus ALCME indeed is an extension of ALC.
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the domain. There are multiple possibilities for how to combine these two di-
mensions. In this work, we use the aggregating semantics to define the semantics
of our probabilistic extension of ALC. Under the aggregating semantics [11], a
probabilistic interpretation µ satisfies a probabilistic conditional (D|C)[p], de-
noted µ |= (D|C)[p], if ∑

I∈IK,∆ |C
I ∩DI | · µ(I)∑

I∈IK,∆ |C
I | · µ(I)

= p. (1)

A probabilistic interpretation µ is a model of a CBox C (µ |= C) if it satisfies all
probabilistic conditionals in C, and a model of a pABox A (µ |= A) if it satisfies
all probabilistic assertions in A. It is a model of a pKB K if it is a model of both
its CBox and pABox.

Equation (1) formalizes the intuition underlying conditional probabilities by
weighting the probabilities µ(I) with the number of individuals for which the
conditional (D|C)[p] is applicable (|CI |) or verified (|CI ∩DI |) in I. Hence, the
aggregating semantics mimics statistical probabilities from a subjective point
of view, and probabilities can be understood as an agent’s degrees of belief.
If, on the one hand, µ is the distribution that assigns the probability 1 to a
single interpretation I, which means that the agent is certain that I is the real
world, then the aggregating semantics boils down to counting relative frequencies
in this world. On the other hand, if µ is the uniform distribution on those
interpretations that do not contradict facts (conditionals or assertions with 0/1-
probability), which means that the agent is minimally confident in her beliefs,
then the aggregating semantics means counting relative frequencies spread over
all interpretations.

Consistency is the question whether a given pKB has a model (for a given
domain size). In previous work [23], we were concerned with the model of a pKB
with maximal entropy, as this ME-model has several nice properties. In particu-
lar, reasoning with respect to all probabilistic models instead of solely the ME-
model leads to monotonic and often uninformative inferences, as demonstrated
in the next example.

Example 2. Consider the CBox C = {(Happy|Wealthy)[0.7], (Happy|Parent)[0.9]}.
Then C has a model in which wealthy parents are happy with probability 0, as
well as a model in which wealthy parents are happy with probability 1. This is the
case since the marginal probabilities of wealthy persons and of parents, respec-
tively, as stated in C, do not limit the probabilities of wealthy parents. Hence,
when reasoning over all probabilistic models of C, it is impossible to make a state-
ment about the happiness of wealthy parents although it is obviously reasonable
to assume that wealthy parents are happy with at least probability 0.7.

In the ME-approach, instead, it holds that the maximum entropy probability
of wealthy parents being happy is PME(Happy|Wealthy u Parent) ≈ 0.908. Note
that this holds independently of the domain size |∆| > 0 (see [22] for details).

However, as mentioned before, if we are only interested in consistency, then
this distinction is irrelevant: A pKB has an ME-model iff it has a model at all. For
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this reason, it is not necessary to introduce the principle of maximum entropy
and the definition of the ME-model here.

Example 3. We can now reconsider the pKB in Example 1, and see how its in-
terpretation under aggregation semantics differs from the one under other prob-
abilistic formalisms. For instance, the assertion Happy(peter)[0.8] does not con-
tradict the conditional (Happy | Person)[0.5]. Indeed, the aggregating semantics
implies that, on average, people are happy with a probability of 0.5, not that
every person needs to have a subjective probability of exactly 0.5 of being happy.
Thus, Peter being happy with an above-average probability only means that, for
other people, the average probability to be happy will be slightly below 0.5, so
that the total average can be 0.5.

Similarly, this pKB is consistent with Emma being unhappy, even if all her
friends, like Peter, are happy. Again, the conditional probability of people being
happy if all their friends are happy quantifies over all people, so one outlier will
not necessarily lead to a contradiction.

3 Checking Consistency Using Types

Types classify individuals into equivalence classes depending on the concepts
they satisfy. In this paper, we extend the notion of types for ALC found in the DL
literature (see, e.g., [3,17]) such that named individuals and their relationships
with other named individuals, as stated in an ABox, are taken into account. After
introducing our notion of types, we will first use it to reprove the ExpTime
upper bound for consistency in classical ALC. The constructions and results
used for this purpose are important for our treatment of consistency in ALCME.
Type notions that can deal with individuals have been considered before in
the DL literature, but usually in the more complicated setting of DLs that are
considerably more expressive than ALC (see, e.g., [1], where such types are
considered in the context of temporal extensions of DLs). Our results for the
probabilistic case crucially depend on the exact notion of types introduced in
the present paper, and in particular on the model construction employed in the
proof of Theorem 7 below.

Types For the sake of simplicity, we will only consider concepts using the con-
structors negation, conjunction, and existential restriction. Due to the equiva-
lences C tD ≡ ¬(¬C u ¬D), ∀r.C ≡ ¬(∃r.¬C), > ≡ A t ¬A, and ⊥ ≡ A u ¬A,
any concept can be transformed into an equivalent concept in this restricted
form. We also assume that all double negations have been eliminated. For such
a concept C, we define the set of its subconcepts as

sub(C) = {C} ∪

{
sub(C ′) if C = ¬C ′ or C = ∃r.C ′

sub(C ′) ∪ sub(D′) if C = C ′ uD′

Similarly, for a pKB K consisting of a CBox C and pABox A, the set of all
subconcepts is sub(K) =

⋃
(D|C)[p]∈C sub(D) ∪ sub(C) ∪

⋃
C(a)[p]∈A sub(C). The

set of subconcepts is defined in an analogous way for a classical ALC KB K.
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For convenience, we also want to include the negation of each concept. Thus,
we define the closure of the set of subconcepts under negation as

sub¬(K) = sub(K) ∪ {¬C | C ∈ sub(K)},

where we again assume that double negation is eliminated. In the presence of
assertions, types also need to keep track of individual names and their connec-
tions. Basically, we achieve this by employing individuals names from the ABox
as nominals [21] within existential restrictions. To be more precises, we use the
set of existential restrictions to an individual:

EIK = {∃r.a,¬∃r.a | a ∈ sigI(K), r ∈ sigR(K)}

Then, we can define a type as a set of concepts, existential restrictions to named
individuals, and individual names:

Definition 4 (Type). Given a KB K, a type t for K is a subset t ⊆ sub¬(K)∪
sigI(K) ∪ EIK such that

1. for every ¬X ∈ sub¬(K) ∪ EIK, either X or ¬X belongs to t;

2. for every C uD ∈ sub¬(K), we have C uD ∈ t iff C ∈ t and D ∈ t.

We use types to characterize elements of an interpretation. In particular, we
want to identify domain elements d of an interpretation I with the type that
contains exactly those concepts the element is an instance of. In addition, we
also need to keep track which individual name is interpreted as d, and to which
individuals d is related to via a role. This motivates the following definition:

τ(I, d) :=
{
C ∈ sub¬(K)

∣∣ d ∈ CI} ∪ {a ∈ sigI(K)
∣∣ aI = d

}
∪
{
∃r.a

∣∣ (d, aI) ∈ rI
}
∪
{
¬∃r.a

∣∣ (d, aI) 6∈ rI
}

It is easy to see that the type of an individual is indeed a type in the sense of
Definition 4. Due to Definition 4, each type is compatible with the semantics
of conjunction and negation. However, the satisfaction of existential restrictions
depends on the presence of other types. Given a type t, an existential restriction
∃r.X ∈ t with X being an individual name or concept, and the set of all negated
existential restrictions {¬∃r.X1, . . . ,¬∃r.Xk} ⊆ t for role r, we say that a type
t′ satisfies ∃r.X in t if X ∈ t′ and Xi 6∈ t′ for i = 1, . . . , k.

Definition 5 (Consistency of a set of types). A set of types T is consistent
if (i) T 6= ∅, (ii) for every t ∈ T and every ∃r.X ∈ t there is a type t′ ∈ T that
satisfies ∃r.X in t, and (iii) every a ∈ sigI(K) occurs in exactly one t ∈ T .

Condition (iii) says that, for every individual, there is exactly one type. Note
that we do not require that a type contains at most one individual since we do
not impose the UNA.
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Consistency in classical ALC Before we prove complexity bounds for consis-
tency in ALCME, we recall how to use types for classical ALC. First, we show that
consistent sets of types correspond to ALC interpretations. On the one hand,
for every interpretation I we can construct a consistent set of types τ(I) as set
of types of its domain elements: τ(I) =

{
τ(I, d)

∣∣ d ∈ ∆I}. On the other hand,
given a consistent set of types T , we can build an interpretation IT = (∆IT , ·IT ):

∆IT := T,

AIT := {t ∈ T |A ∈ t},
rIT := {(t, t′) | ∃X ∈ sub¬(K) ∪ sigI(K) : t′ satisfies ∃r.X in t},
aIT is the unique type t ∈ T with a ∈ t.

Lemma 6. Let K = (T ,A) be a classical ALC knowledge base consisting of
TBox T and ABox A and T be a consistent set of types. Then, for every t ∈ T
and C ∈ sub¬(K) we have C ∈ t iff t ∈ CIT .

Proof. This can be proved by a simple induction on the structure of C. Here
we consider only the most interesting case, which is the case where C is an
existential restriction. If C = ∃r.D, then ∃r.D ∈ t implies that there is t′ ∈ T
such that t′ satisfies ∃r.D in t. This implies that D ∈ t′, and thus by induction
t′ ∈ DIT . By construction of IT we also have (t, t′) ∈ rIT , and thus t ∈ (∃r.D)IT .

Conversely, if ∃r.D 6∈ t, then ¬∃r.D ∈ t. We need to show that t 6∈ (∃r.D)IT ,
i.e., if (t, t′) ∈ rIT , then t′ 6∈ DIT . However, (t, t′) ∈ rIT implies that t′ satisfies
∃r.X in t for some X. Since ¬∃r.D ∈ t, this can only be the case if D 6∈ t′.
Induction now yields t′ 6∈ DIT as required.

There is a known correspondence that states that an ALC TBox T is con-
sistent iff there exists a consistent set of types T that satisfies all GCIs, i.e., for
each C v D ∈ T and each t ∈ T we have C ∈ t implies D ∈ t [3]. We can extend
this result to KB consistency as follows:

Theorem 7. Let K = (T ,A) be a classical ALC KB. Then K is consistent if,
and only if, there exists a consistent set of types T such that

– for all GCIs C v D ∈ T and types t ∈ T we have C ∈ t implies D ∈ t;
– for all assertions C(a) ∈ A and types t ∈ T with a ∈ t we have C ∈ t; and
– for all assertions r(a, b) ∈ A and types t ∈ T with a ∈ t we have ∃r.b ∈ t.

Proof. If I is a model of K, then τ(I) is a consistent set of types, and it is easy
to see that this set satisfies the three conditions of the theorem.

For the other direction, assume that T be a consistent set of types that
satisfies the three conditions from above. We show that IT is a model of K:

– Let C v D ∈ T and assume that t ∈ CIT . Then Lemma 6 yields C ∈ t,
which implies D ∈ t by the first condition. Lemma 6 thus yields t ∈ DIT ,
which shows that IT |= C v D.
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– For every C(a) ∈ A, we have C ∈ t for the unique type t that contains a.
By the definition of IT and Lemma 6, this implies aIT = t ∈ CIT , and thus
IT |= C(a).

– For every r(a, b) ∈ A, we have ∃r.b ∈ t for the unique type t that contains
a. Since T is consistent, there is a type t′ ∈ T that satisfies ∃r.b in t. Con-
sequently, b ∈ t′ and (t, t′) ∈ rIT . Since t = aIT and t′ = bIT , this shows
IT |= r(a, b).

This completes the proof of the theorem.

Based on this theorem, consistency of a classical ALC KB K = (T ,A) can
be decided using type elimination as follows:

1. Construct the set T of all types t ⊆ sub¬(K)∪EIK for K that do not contain
individual names, and for which C ∈ t implies D ∈ t for all C v D ∈ T .

2. Consider all extensions T ′ of T with types t ∪ I with t ∈ T and I ⊆ sigI(K)
such that

– each individual name a ∈ sigI(K) occurs in exactly one type t′ ∈ T ′;
– for all C(a) ∈ A and t′ ∈ T ′, a ∈ t′ implies C ∈ t′; and

– for all r(a, b) ∈ A and t′ ∈ T ′, a ∈ t′ implies ∃r.b ∈ t′.
3. For each such set T ′, successively remove all types from T ′ with unsatisfied

existential restrictions until no more such types remain.

4. Return “consistent” if at least one of the sets T ′ obtained this way is non-
empty and contains for each a ∈ sigI(K) a type t with a ∈ t.

Corollary 8. Consistency of ALC KBs can be decided in ExpTime.

Proof. We need to show that the above algorithm is sound and complete, and
runs in exponential time. We sketch how to show each claim:

Soundness follows directly from Theorem 7 since it is easy to see that a set
T ′ that leads the algorithm to answer “consistent” is a consistent set of types
that satisfies the three conditions of the theorem.

For completeness, assume that K is consistent, and thus by Theorem 7 a
consistent set S of types with the stated properties exists. This consistent set of
types S must be a subset of the set T ′ constructed by the algorithm after step 2
for some guess of the types for each individual name. However, then step 3 will
never remove any type of S from T ′, and thus step 4 of the algorithm will return
that K is indeed consistent.

Regarding runtime, note that the set T constructed in the first step contains
at most exponentially many types. In the second step, at most exponentially
many extensions T ′ of T are constructed since this step basically amounts to
looking at all possible ways of choosing exactly one type for each of the (linearly
many) individuals, and then removing choices that do not satisfy the stated con-
ditions. Since each of the sets T ′ constructed this way is of at most exponential
size, type elimination applied to T ′ takes at most exponential time.
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Consistency in ALCME For probabilistic ALC, we need to consider multiple
worlds, each corresponding to a classical interpretation. Additionally, the ag-
gregating semantics takes into account how many individuals verify or falsify a
conditional, even if those individuals are indistinguishable (i.e., have the same
type). Thus, instead of sets of types, we need to consider multisets of types.

Formally, a multiset on a domain X is a function M : X → N. We denote
multisets as mappings, such as M = {|x1 7→ 3, x2 7→ 1|}. We say that an element
x ∈ X occurs M(x) times in M , and that it occurs in M if M(x) > 0. The
cardinality of the multiset M is given by the sum of the number of occurrences
of each element, i.e. |M | =

∑
x∈XM(x).

As said above, we are interested in multisets of types, and in particular
multisets of types with a given cardinality k = |∆|. These correspond to ALC
interpretations with a domain of size k. We define the (multiset-)type τM (I) of
an interpretation I as follows:

τM (I)(t) := |{d ∈ ∆ | τ(I, d) = t}|.

It is easy to see that |τM (I)| = |∆|.
Consistency of multisets of types is defined analogously to the set case: every

existential restriction in every type occurring in the multiset M must be satisfied
by some other type occurring in M , and every individual name must occur
in exactly one type that occurs exactly once in M . We denote the set of all
consistent multisets of types with cardinality k with MK,k.

Similarly to the classical case, we build an interpretation IM = (∆IM , ·IM )
from a multiset M of types, except now we take M(t) copies for each element
in M , to ensure that the interpretation domain has the same cardinality as M :

∆IM := {(t, i) | 1 ≤ i ≤M(t)}
AIM := {(t, i) ∈ ∆IM |A ∈ t},
rIM := {((t, i), (t′, j)) ∈ ∆IM ×∆IM |
∃X ∈ sub¬(K) ∪ sigI(K) : t′ satisfies ∃r.X in t},

aIM := (t, 1) where t is the unique type occurring in M with a ∈ t.

(2)

It is easy to show that this construction achieves the same as in the classical
case (see Lemma 6):

Lemma 9. Let K = (C,A) be a pKB consisting of a CBox C and a pABox A,
and let M ∈ MK,k be a consistent multiset of types. Then |∆IM | = k, and for
every t ∈M , 1 ≤ i ≤M(t), and C ∈ sub¬(K), we have C ∈ t iff (t, i) ∈ CIM .

In order to use this lemma to obtain a characterization of consistent pKBs,
we need to take into account that, in ALCME, models are probability distribu-
tions over classical interpretations. Consequently, we need to consider probability
distributions over the set of all multisets of types of a given cardinality. The ag-
gregating semantics depends on counting instances of concepts. Thus, we need
to show that counting instances can be reduced to summing up the number of
occurrences of the corresponding types.
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Lemma 10. Let K be a pKB and I be an ALC interpretation with finite domain
∆ and τM (I) = M . Then for all (D|C)[p] occurring in K we have |CI | =∑
t∈M s.t.C∈tM(t) and |CI ∩ DI | =

∑
t∈M s.t. {C,D}⊆tM(t). Additionally, for

any a, b ∈ sigI(K), we have aI ∈ CI iff there is t ∈ M with {a,C} ⊆ t, and
(aI , bI) ∈ rI iff there is t ∈M with {a,∃r.b} ⊆ t.

Proof. M = τM (I) implies that

|CI ∩DI | =
∣∣{d ∈ ∆ ∣∣ d ∈ CI ∧ d ∈ DI}∣∣

= |{d ∈ ∆ | {C,D} ⊆ τM (I, d)}|

=
∑

t∈M s.t. {C,D}⊆t

M(t).

The same argument can be used to show |CI | =
∑
t∈M s.t.C∈tM(t).

Let t ∈ τM (I) be the unique type with a ∈ t. Then aI ∈ CI iff C ∈ t and
thus {a,C} ⊆ t. If (aI , bI) ∈ rI , then ∃r.b ∈ t = τ(I, aI), and thus {a,∃r.b} ⊆ t.
Conversely, if ∃r.b ∈ t = τ(I, aI), then (aI , bI) ∈ rI .

Note that Lemma 10 implies that, for interpretations I1 and I2 with the same
type τM (I1) = τM (I2), we have |CI1 | = |CI2 | and |CI1 ∩DI1 | = |CI2 ∩DI2 | for
all (D|C)[p] occurring in K, as well as aI1 ∈ CI1 iff aI2 ∈ CI2 and (aI1 , bI1) ∈ rI1
iff (aI2 , bI2) ∈ rI2 . This means that the aggregating semantics cannot distinguish
between interpretations with the same type. Thus, these types allow us to sim-
plify equation (1): instead of summing over all interpretations IK,∆, we only
have to consider those interpretations with different types. Based on these ideas,
the following theorem characterizes consistency of pKBs in ALCME.

Theorem 11. Let K be a pKB and ∆ be a finite domain with |∆| = k. Then K
is consistent if, and only if, the equation system (3) in Fig. 1 has a non-negative

solution pM ∈ RMK,k
≥0 .

Proof. For each M ∈ MK,k, let I(M) = {I ∈ IK,∆ | τM (I) = M} be the set
of interpretations with type M . It is easy to see that, for M 6= M ′, we have
I(M) ∩ I(M ′) = ∅. Using Lemma 10 together with this fact,5 we can translate
between models of K and solutions of the system of equations (3) as follows.

First, assume that K is consistent, i.e., there exists a model µ : IK,∆ → [0, 1]
of K. Then it is easy to see that setting pM :=

∑
I∈I(M) µ(I) yields a solution

of (3).

5 More precisely, this fact is used in the identities marked with ∗ below.



Consistency in the Probabilistic Description Logic ALCME 13

∑
M∈MK,k

∑
t∈M

s.t.C∈t∧D∈t

M(t) · pM

∑
M∈MK,k

∑
t∈M

s.t.C∈t

M(t) · pM
= p, for (D|C)[p] ∈ C,

∑
M∈MK,k

s.t.∃t∈M :{a,C}⊆t

pM = p, for C(a)[p] ∈ A,

∑
M∈MK,k

s.t.∃t∈M :{a,∃r.b}⊆t

pM = p, for r(a, b)[p] ∈ A,

∑
M∈MK,k

pM = 1.

(3)

Fig. 1. The system of equations that characterizes consistency of pKBs in ALCME.

In fact, for (D|C)[p] ∈ C we have∑
M∈MK,k

∑
t∈M

s.t.C∈t∧D∈t

M(t) · pM∑
M∈MK,k

∑
t∈M

s.t.C∈t

M(t) · pM
=

∑
M∈MK,k

∑
t∈M

s.t.C∈t∧D∈t

M(t) ·
∑
I∈IM

µ(I)

∑
M∈MK,k

∑
t∈M

s.t.C∈t

M(t) ·
∑
I∈IM

µ(I)

=

∑
M∈MK,k

∑
I∈IM

∑
t∈M

C∈t∧D∈t
M(t) · µ(I)∑

M∈MK,k

∑
I∈IM

∑
t∈M
C∈t

M(t) · µ(I)

Using Lemma 10 we see that this sum is equal to

=

∑
M∈MK,k

∑
I∈IM

∣∣CI ∩DI∣∣ · µ(I)∑
M∈MK,k

∑
I∈IM |C

I | · µ(I)

=∗
∑
I∈IK,∆

∣∣CI ∩DI∣∣ · µ(I)∑
I∈IK,∆ |C

I | · µ(I)
= p.

For C(a)[p] ∈ A we have∑
M∈MK,k

s.t.∃t∈M :{a,C}⊆t

pM =
∑

M∈MK,k
s.t.∃t∈M :{a,C}⊆t

∑
I∈IM

µ(I) =∗
∑
I∈IK,∆
aI∈CI

µ(I) = p.

The assertions r(a, b) ∈ A can be treated analogously, and finally we have∑
M∈MK,k

pM =
∑

M∈MK,k

∑
I∈IM

µ(I) =∗
∑
I∈IK,∆

µ(I) = 1.
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For the other direction, let pM ∈ RMK,k
≥0 be a solution to (3). Then, for every

M ∈ MK,k, I(M) is not empty since τM (IM ) = M . Thus, we can choose a
function µ : IK,∆ → [0, 1] such that

∑
I∈IM µ(I) = pM for every M ∈ MK,k,

e.g.,

µ(I) =
pτM (I)

|IτM (I)|
.

Then, analogously to the proof above, we can show that µ is indeed a probability
distribution and satisfies equation (1).

4 Complexity Bounds for Consistency in ALCME

In this section, we use the characterization of consistency given in Theorem 11 to
determine the complexity of the consistency problem in ALCME. We will start
with domain size complexity (where the complexity is measured in terms of
the size of the domain ∆ only), and then determine the combined complexity
(measured in terms of the size of the domain and the knowledge base). In both
settings, we will distinguish between unary and binary encoding of the domain
size.

Domain size complexity Given a pKB K and a domain ∆ with |∆| = k, we
know that the number n of types can grow exponentially with the size of K, i.e.,
n ∈ O(2|K|). Then, the number of different multisets [19] over those n types of
cardinality k is

|MK,k| =
((
n
k

))
=

(
n+ k − 1

k

)
=

(n+ k − 1)!

k! · (n− 1)!
.

Interestingly, this can be simplified to both |MK,k| = (n+k−1)(n+k−2)···n
k(k−1)···1 ∈ O(nk)

and |MK,k| = (n+k−1)(n+k−2)···(k+1)
(n−1)(n−2)···1 ∈ O(kn).

Since (3) is a linear equation system with O(|K|) equations and |MK,k| vari-
ables, and linear equation systems over the real numbers can be solved in poly-
nomial time [5], this yields the following complexities.

Corollary 12 (Domain size complexity). Let K be a fixed pKB (which is not
part of the input) and ∆ be a finite domain with |∆| = k. Then the consistency
of K w.r.t. ∆ can be decided in

– P in |∆| = k (unary encoding),
– ExpTime in log(k) (binary encoding).

This result extends an existing P-time result for domain size complexity for
unary encoding given in [23] from CBoxes to the case of general probabilistic
KBs also including assertional knowledge. It should be noted that the approach
used in [23] to show the “in P” result also uses types, but is nevertheless quite
different from the one employed here.
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Combined complexity Both the number of interpretations in equation (1)
and the number of multisets of types in (3) will usually grow exponentially
with the size of the pKB K, and thus will the number of variables. However,
the number of linear equations in both systems will always be the number of
probabilistic conditionals and probabilistic assertions plus one, i.e., it will at
most grow linearly with the size of K. We can exploit this fact using the following
“sparse solution lemma” from linear programming:

Lemma 13 ([5], Theorem 9.3). If a system of m linear equations has a non-
negative solution in R, then it has a solution with at most m variables positive.

Thus, we can solve the consistency problem for a given pKB K with m condi-
tionals and assertions (wherem ∈ O(|K|)) and a domain∆ non-deterministically,
by guessing a set M of m + 1 distinct multisets M1, . . . ,Mm+1 of types with
cardinality k = |∆|, and checking whether these multisets are consistent and
yield a solvable system of equations:∑

M∈M

∑
t∈M

s.t.C∈t∧D∈t

M(t) · pM∑
M∈M

∑
t∈M

s.t.C∈t

M(t) · pM
= p, for (D|C)[p] ∈ C,

∑
M∈M

s.t.∃t∈M :{a,C}⊆t

pM = p, for C(a)[p] ∈ A,

∑
M∈M

s.t.∃t∈M :{a,∃r.b}⊆t

pM = p, for r(a, b)[p] ∈ A,

∑
M∈M

pM = 1.

(4)

This provides us with the following complexity results:

Corollary 14 (Combined Complexity). Let K be a pKB and ∆ be a finite
domain with |∆| = k. Then consistency of K w.r.t. ∆ is

– NP-complete in |K|+ k (unary encoding of k),
– NExpTime-complete in |K|+ log(k) (binary encoding of k).

Proof. Guessing a multiset of size k can be done by guessing k types (of size at
most quadratic in |K|). Thus, in total guessing can be done in non-deterministic

time O(m · k · |K|2) = O(|K|3 · k). Evaluating the corresponding linear equation
system (4) (of size polynomial in |K|) can then be done in polynomial time. The
complexity upper bounds follow directly from this observation.

According to [6,18], fixed-domain reasoning in classical ALC is already NP-
complete for unary encoding of the domain size, and NExpTime-complete for
binary encoding of the domain size. There is an easy reduction from fixed-domain
consistency in classical ALC to ALCME consistency: Simply exchange GCIs C v
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D with conditionals (D|C)[1] and add probability 1 to all assertions. It is easy
to see that each model I of the original KB can be translated into a model of the
new pKB by setting the probability of I to 1, and of all other interpretations
to 0. Similarly, for each model of the pKB all interpretations with non-zero
probability must also be models of the original KB. Thus, the original classical
KB has a model with domain ∆ iff the constructed pKB is consistent w.r.t.
∆, which transfers the hardness results for fixed-domain consistency in classical
ALC to consistency in ALCME.

Note that the results for combined complexity cannot be shown using the
approach employed in [23]. There, the constructed equation system not only has
exponentially many variables, but also exponentially many equations. Thus, the
sparse solution lemma cannot be used to reduce the complexity.

5 Conclusion

In this paper, we have determined the complexity of the consistency problem in
the probabilistic Description Logic ALCME, considering both domain size and
combined complexity and distinguishing between unary and binary encoding
of the domain size. Our results are based on the notion of types, but to use
this notion in a setting with assertions, we had to extend it such that it also
takes named individuals and their relationships into account. Basically, these
results show that probabilities do not increase the complexity of the consistency
problem since we obtain the same results as for fixed domain reasoning in ALC.
Note that our results can be transferred easily to a variant of ALCME in which
probabilistic conditionals are provided with interval probabilities instead of point
probabilities.

In future work, we want to extend our complexity results to other reasoning
tasks and to DLs other than ALC. In [23] we have already considered drawing
inferences, but have only investigated the domain size complexity. More chal-
lenging is to go from fixed domain reasoning to finite domain reasoning, i.e.,
checking whether there is some finite domain ∆ such that the pKB is consistent
w.r.t. ∆. Finally, if a pKB is consistent, then we know that it has a unique ME-
model, but the complexity of computing (an approximation of) this distribution
is unclear, though [23] contains some preliminary results in this direction, but
again restricted to domain size complexity.
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